
Chapter 9
Nested Conceptual Graphs

Overview

The nested conceptual graph model presented in this chapter is a direct extension
of basic or simple conceptual graphs able to represent notions such as internal and
external information, zooming, partial description of an entity, or specific contexts.
This model also allows reasoning while taking a tree hierarchical structuring of
knowledge into account. Nestings are represented by boxes. A box is an SG and,
more generally, a box is a typed SG. In full conceptual graphs, a box represents the
negation of the graph inside the box. Thus, for differentiating these negation boxes
from the boxes used in this chapter, these boxes are usually called “positive” boxes.
Nevertheless, since the only kind of boxes considered hereafter are positive boxes,
we omit the term “positive.”

In Sect. 9.1 different notions representable by nested conceptual graphs are pre-
sented. In Sect. 9.2, we introduce Nested Basic Conceptual Graphs (NBGs), whose
boxes consist of BGs. Nested Conceptual Graphs (NGs), which extend NBGs with
coreference links, are presented in Sect. 9.3. Coreference links can relate concept
nodes of the same box (thus boxes become SGs) but also of different boxes. Coref-
erence links in nested graphs are more difficult to manage than in simple graphs.
Indeed, since boxes can represent contexts, it is generally irrelevant to merge all
nodes of a coreference class into a single node. In Sect. 9.4, we define graph types,
typed SGs, which are SGs with a graph type, and Nested Typed Conceptual Graphs
(NTGs), which generalize NBGs by typing the boxes. All of these nested graphs
classes are provided with homomorphism. The FOL semantics Φ introduced for
SGs is generalized to NTGs in Sect. 9.5 and a homomorphism soundness and com-
pleteness theorem is stated. As this semantics is a formula of the positive, con-
junctive and existential fragment of FOL, nested and non-nested CGs are some-
what equivalent. Finally, we build a mapping ng2bg from nested to non-nested CGs
which preserves homomorphisms. This mapping ng2bg shows, in another way than
through logical semantics, that nested and non-nested CGs have the same descrip-
tive power. It is easy to implement ng2bg and this avoids the construction of specific
nested graph homomorphism algorithms.
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248 9 Nested Conceptual Graphs

Nevertheless, from a user viewpoint, NTGs are interesting whenever knowledge
is intrinsically hierarchical, and when reasonings must follow the hierarchical struc-
ture, because in an NTG the hierarchy is explicitly and graphically represented.
Nested graphs can also be interesting whenever large graphs have to be manually
constructed, as the separation of levels of reasoning increases efficiency and clarity
when extracting information.

9.1 Introduction

Let us give a flavor of different knowledge representation situations which are rele-
vant to the conceptual graph model presented in this chapter. Consider, for instance,
representing information about a cottage. It is possible to distinguish internal from
external pieces of information about this cottage. The owner’s name can be consid-
ered as an external piece of information concerning the cottage, whereas the dis-
tribution of rooms, the plan of the cottage, is internal information. In information
retrieval, the ISBN number of a book can be considered as an external piece of in-
formation about that book, whereas the subject of the book is an internal piece of
information. In these examples, the internal information can also be called descrip-
tion (of the cottage or book), and more precisely partial description of the given
entity.

Zooming is a related notion. Let us again consider the cottage example. Having
the land registry position of the cottage, one may want to zoom into the cottage, e.g.,
to determine the cottage plan, which can be considered as internal information about
the cottage. Or, at a deeper level, having the cottage plan, one may want to know the
furniture distribution in a specific room. In the book example, zooming can consist
of obtaining the content of a chapter from a reference to this chapter (e.g., from the
number of this chapter).

The knowledge model presented in this chapter can also be related to the context
notion. An informational context can be defined as the (cultural, historical, social,
geographical, etc.) surroundings or circumstances of a piece of information that are
important to understand the meaning of this piece of information. For instance, in
the previous cottage example, the context of the furniture distribution (in a room) is
precisely the room having this furniture distribution, the context of the content of a
book chapter is precisely this chapter, and so on.

The notion of context is close to the two previous notions of external versus inter-
nal pieces of information, and to zooming. Indeed, zooming takes its full meaning
when one knows the origin of the zooming, and an internal piece of information
takes its full meaning when this origin, which can also be an internal piece of in-
formation, is known. In the forthcoming model, only very simple contexts can be
represented. Indeed, a context will be represented by a path of (nested) concept
nodes. Thus, considering partial description or zooming as an intuitive meaning of
what we aim to represent, seems as relevant as the context.
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A partial description can be included in another partial description, thus a recur-
sive model is proposed, and the entities are represented by a hierarchical structure.
Similarly to the classical notion of “boxes within boxes” used in document pro-
cessing, we define a model that consists of “graphs within graphs.” Briefly said,
our model consists of rooted trees of (typed) SGs, and reasoning is based on SG
homomorphisms respecting the tree structure.

9.2 Nested Basic Graphs (NBGs)

Let us consider the graph G in Fig. 9.1, expressing that “a drawing has been made
by the boy Paul.” Suppose one wants to add two pieces of information to G. First,

Drawing
1madeByBoy : Paul

2

Fig. 9.1 A basic conceptual graph

“the drawing is on a table,” and secondly “the drawing represents a green-coloured
train.” These pieces of information can be considered to be of different sorts. The
first one can be considered as external information about the drawing, i.e., it is a
fact concerning the drawing taken as a whole, i.e., a black box, with what is drawn
being irrelevant. On the other hand, the fact that a green train is represented on this
drawing can be considered as internal information, or a (partial) description, of the
drawing itself. If one wants to build a representation of these facts while keeping
this difference of status, then one can add “the drawing is on a table” at the same
level as G, and the fact that the drawing represents a green train can be put inside
the node representing the drawing. This latter piece of information can be obtained
by zooming on the drawing node, which is then considered as a glass box. After
adding the fact that the drawing in Fig. 9.1 is on a table, and by zooming on the
node “Drawing,” the nested graph NG represented Fig. 9.2 is obtained. It can also
be said that the piece of information nested in a node is relevant within the context
represented by this node. Thus, the context is represented by a concept node, or
more precisely by a path of concept nodes.
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Fig. 9.2 A nested conceptual graph
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Drawings of nested graphs can be quite difficult to read. A dynamic device, e.g.,
a graphical screen, allows nice vizualization of nested graphs by travelling level by
level within the graph, i.e., by zooming in and out. For instance, for representing the
nested graph in Fig. 9.2, a first image can show the graph without the description of
the drawing, a graphical mark indicating that the node corresponding to the drawing
has a non-empty description (as in Fig. 9.3). By zooming on a node with a non-
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2

Fig. 9.3 A nested conceptual graph before zooming

empty description, the description graph appears, and the rest of the graph is shaded
off (as in Fig. 9.4).
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Fig. 9.4 A nested conceptual graph after zooming

We hereafter propose two equivalent definitions of nested graphs corresponding
to different viewpoints of the same model. The first definition is a recursive defini-
tion obtained by adding a third field, called a description, to the concept node labels
of a basic conceptual graph (BG), and in the second definition the recursive facet
is explicitely represented by a tree. The first definition is well fitted for a graphical
user interface since it corresponds to the zoom viewpoint. The second definition fa-
cilitates the drawing of nested graphs on a sheet of paper because a nested graph is
basically a tree of SGs.

Definition 9.1 (Nested Basic Graph NBG).

• An elementary NBG G is obtained from a normal BG H by adding a third field to
the label of each concept node c equal to ∗∗. The set of boxes of G is boxes(G) =
{H} and the complete concept node set of G is XG =CH . A trivial bijection exists
between elementary NBGs and normal BGs (when no ambiguity occurs we do
not distinguish between them).

• Let H be an NBG and D an elementary NBG. The graph G obtained from H
by substituting D for the third field ∗∗ of a concept node c in XH is an NBG.
boxes(G) = boxes(H)∪boxes(D), and XG = XH ∪XD.
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• The third field of any concept node c ∈ XG is called the description of c and is
denoted Descr(c).

A BG appearing in the construction of an NBG G, i.e., an element of boxes(G),
is called a box of G.

An NBG is denoted G = (CG,RG,EG, lG), where CG,RG,EG are respectively the
concept, relation and edge sets of the first elementary NBG, denoted root(G), used
in the construction of G. lG is the labeling function obtained from the labeling func-
tion of root(G) by adding a third field with value Descr(c) to the labeling of each
concept node ∈CG.

We distinguish the set CG of concept nodes of an NBG G—i.e., the set of nodes
of root(G)—from the set XG of all concept nodes appearing in G, i.e., the set of
concept nodes of all boxes of G.

We explain in Sect. 9.3 why we consider normal BGs in the previous defini-
tion. Recall that we consider normal BGs and normal SGs as identical objects (cf.
Sect. 3.5).

It is important to note (for the forthcoming definitions of Tree(G) and XG) that if
a BG or an NBG K is used several times in the construction of a NBG G, we consider
that several copies of K (and not several times the graph K itself) are used in the
construction of G. Note also that a description is not a type definition (cf. Chap. 8).
First, a description applies to a specific concept node, whereas a graph defining a
type applies to all concept nodes of this type. Secondly, a type definition provides
a characterization of a type, i.e., it describes necessary and sufficient conditions for
any object to belong to the type, whereas a description is only a partial information
about an object.

Any NBG G has an associated tree Tree(G) whose nodes are in bijection with
the boxes of G. Before defining Tree(G), let us introduce the notion of a tree of
BGs.

Definition 9.2 (Tree of BGs). A tree of BGs is a labeled rooted tree T=(VT ,UT , lT ),
such that:

• VT , the node set of T , is in bijection with a set of pairwise disjoint normal BGs
{G1, . . . ,Gk}. For any i = 1, . . . ,k, the node associated with Gi is labeled Gi (the
set {G1, . . . ,Gk} can be identified with VT ).

• For any arc (Gi,G j) in UT , lT (Gi,G j) is a concept node c in Gi, and such a
labeled arc is also denoted (Gi,c,G j).

• All labels are distinct, i.e. a concept node c appears at most once as an arc label.

The mapping Tree that assigns a tree of BGs to any NBG is defined as follows.

Definition 9.3 (Tree(G)). Let G be an NBG, the mapping Tree is defined as follows.
If G is an elementary NBG, then Tree(G) is restricted to a single node labeled G.
If G is the NBG obtained from a NBG H by substituting D to ∗∗, which is the Descr
of the concept node c in H, then Tree(G) is built from Tree(H) by adding a node
labeled D successor of the node labeled K, and containing c, in Tree(H). The label
of (K,D) is c.
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The root of Tree(G) is root(G). Note that for any NBG G, (J,K) is an arc in
Tree(G) labeled c if and only if J and K are nodes in Tree(G) (i.e. are boxes of
G), c is a concept node in J, and K is the label of the root of the tree associated
with Descr(c), i.e., the description graph of c. Otherwise said, the existence of an
arc (J,c,K) in Tree(G) expresses the fact that: “J and K are two boxes of G, c is a
concept node in J, and K is the label of the root of Tree(Descr(c)).”
Example. The boxes and tree of the NBG in Fig. 9.2 are represented in Fig. 9.5.

Color : Green
K

madeBy

21

212 1

J

Kattr

J

On

c
Drawing

Train

TableBoy: Paul

c

Fig. 9.5 The “tree of boxes” view of the graph in Fig. 9.2

Figure 9.6 presents a more complex example of an NBG. Its boxes are repre-
sented in Fig. 9.7, where G1 is the root, G2 = Descr(d), G3 = Descr(c), G4 =
Descr(e), G5 = Descr( f ), G6 = Descr(i), G7 = Descr(h), G8 = Descr(l), G9 =
Descr(n), and its tree is represented in Fig. 9.8.
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Fig. 9.6 An NBG

The following property is immediate:

Property 9.1. The mapping Tree is a bijection from NBGs over a vocabulary V to
the trees of BGs over the same vocabulary V .



9.2 Nested Basic Graphs (NBGs) 253

G5

G9G8

G7G6

G3
G2

G1

G4

n

om

l

k
j

ba

c

d

hi

f

g
e

Fig. 9.7 The boxes of the graph in Fig. 9.6
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Fig. 9.8 The tree of the graph in Fig. 9.6
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Thus, Definition 9.1 and Definition 9.2 can be indiscriminately used.

Definition 9.4 (Depth).

• The depth of an NBG G is the depth of Tree(G), i.e., the maximum number of
arcs of a path beginning at the root.

• The depth of a node x in a NBG G is the depth of the vertex of Tree(G) to which
it belongs, i.e., if x is in root(G) then depth(x) = 0, and if x is in K and (J,c,K)
is an arc of Tree(G), then depth(x) = depth(J)+1.

For instance, in Fig. 9.6 the depth of the nodes m and k is 2, whereas the depth
of f and h is 1, and the depth of d and a is 0 (see also Fig. 9.7, where the depth of
a node in a box is the number of arcs of a path from the root to the box containing
that node).

A complex concept node is a node c in XG with a non-empty Descr(c), i.e., dif-
ferent from ∗∗. Such a node c is also called a context, and more precisely it is called
the context of Descr(c).concept!complex

A homomorphism from an NBG G to an NBG H is defined using the tree defini-
tion of NBGs. It is composed of an ordinary tree homomorphism π0 from the rooted
tree Tree(G) to the rooted tree Tree(H), and by a set of (BG) homomorphisms πi
from any box Gi of G to the box π0(Gi) of H.

Definition 9.5 (NBG homomorphism). Let G and H be NBGs and Tree(G) =
(VG,UG, lG) and Tree(H) = (VH ,UH , lH) be their associated rooted trees. An NBG
homomorphism from G to H is a pair π = (π0,(πG1 , . . . ,πGl )), where VG = {G1, . . . ,
Gl}, which satisfies:

• π0 is a (tree) homomorphism from Tree(G) to Tree(H), i.e., a mapping from
VG to VH , such that, if (J,K) is in UG, then (π0(J),π0(K)) is in UH , and
π0(root(G)) = root(H),

• ∀K ∈VG,πK is a (BG) homomorphism from (the BG) K to (the BG) π0(K),
• if lG(J,K) = c, then lH(π0(J),π0(K)) = πJ(c).

An example is given Fig. 9.9, where each arrow represents a homomorphism
from the BG origin of the arrow to the BG extremity of the arrow.

A homomorphism π from an NBG G to an NBG H naturally induces a mapping
(also noted π for simplicity) from the set of all nodes appearing in G to the set of all
nodes appearing in H. Let x be a node in a box K of G, π(x) = πK(x).

One can extend the homomorphism definition by removing the condition that
the root of the source tree has for image the root of the target tree. This extended
definition is a bit more general since the root of the first tree can be mapped to
any node of the target tree. In this case, only the relative depth is respected, more
precisely, if the root of Tree(G) is mapped to a box of depth k in Tree(H) then, for
any concept c of G, depth(π(c)) = depth(c)+ k. Let us give an example.
Example. In Fig. 9.10, G1 and G2 are two facts and Q1, Q2 and Q3 are three queries.
Q1 represents the question “Is there a train in the context of a thing?” Q2 represents
the question “Is there a train?” and Q3 represents the question “Is there a train and
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Fig. 9.9 An example of an NBG homomorphism

a boy?” With the definition 9.5, G1 answers NO to Q1, YES to Q2 and YES to Q3,
and G2 answers YES to Q1, NO to Q2 and NO to Q3. With the extended definition,
G1 answers NO to Q1, YES to Q2 and YES to Q3, and G2 answers YES to Q1, YES
to Q2 and NO to Q3. Both definitions disagree on the answer given by G2 to Q2:
with the first definition, the answer is NO because there is no train at the first level,
and with the extended definition it is YES, and it could be added “in the context of
a drawing.”
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Fig. 9.10 Facts and queries

As NBG homomorphisms preserve the (relative) depth of the nodes, they allow
only simple forms of reasoning. Other kinds of reasoning would be useful, espe-
cially reasonings mixing knowledge from different levels. Such reasonings can be
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defined by first defining transformations of graphs, then by using NG homomor-
phisms. The decision homomorphism problem for NBGs, NBG-HOMOMORPHISM,
is NP-complete (with a BG being a particular case of NBG), and an algorithm for
the NBG-HOMOMORPHISM polynomial in the complexity of an algorithm for BG-
HOMOMORPHISM can be simply constructed since computing a homomorphism
from a tree to a tree (or more generally to any graph) is a polynomial problem
(cf. Sect. 7.2.1).

9.3 Nested Graphs (NGs)

In order to express that different nodes appearing in an NBG represent the same
entity, one can add coreferences to NBGs, as we did for for BGs (cf. Definition 3.10
in Chap. 3).

The following piece of information about a scientific document that is “an ar-
ticle, whose subject is a wheat food product that is cooked in water, has a result,
whose nutritional observation is that the vitamin content of this wheat food product
decreases, whose biochemical explanation is that this wheat food product contains
hydrosoluble vitamin that is dissolved, and whose nutritional evaluation is that the
nutritional quality of this wheat product is deteriorated” can be represented by the
graph in Fig. 9.11. In this figure, the coreferent concept nodes are represented by
the named variable ∗x.

showshas

Nutritional evaluation

DeteriorationWheat food product : *x Nutritional quality

undergoescontains
Biochemaical explanation

DissolutionWheat food product : *x Hydrosoluble vitamin

Decreaseshows has

Nutritional observation

Wheat food product : *x Vitamin content

provides

deals withArticle

Wheat food product : *x Water cookingundergoes

Result

Subject Description

Fig. 9.11 A nested graph with coreferences represented by variables

An abstract example of a nested graph is represented in Fig. 9.12, where the
nodes j,m, p,w are coreferent along with the nodes q,r. In this example, the coref-
erence relation is represented by coreference links.
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Fig. 9.12 An abstract nested graph with coreference links

Two coreferent concept nodes represent the same entity in nested graphs as in
SGs. In SGs we have seen how it is possible to shrink each coreference class into a
single node, thus obtaining a graph in normal form. The situation is more compli-
cated for nested graphs. Knowledge is contextualized (by a hierarchical structure)
in a nested graph, and merging two coreferent concept nodes can be done only if the
contextualization is preserved. Two cases can be considered.
First, let us consider two coreferent concept nodes, say a and b, which are in the
same box. These nodes may have descriptions. But, as a and b both represent the
same entity (they are coreferent) in the same context (they are in the same box), one
can merge a and b into a single node without altering the meaning of the graph. The
description of the new node is the disjoint sum of the description of a and of the
description of b.
Secondly, let us consider two coreferent concept nodes, say c and d, which are not
in the same box, thus they are a priori not in the same context. The information
about an entity in a context may be irrelevant in another context and merging two
coreferent concept nodes which are in distinct contexts could entail inconsistencies.
For instance, in Fig. 9.13, the concept nodes c and d are coreferent. They repre-
sent the same boy Paul but in two different contexts. Merging the two descriptions
would state that Paul is dressed up as Zorro while this is stated only on the draw-
ing. Nevertheless, if two coreferent nodes c and d are in the description of a and b,
respectively, and a and b are coreferent nodes belonging to the same box, then after
merging a and b, c and d become coreferent in the same box. In this case, they can
be safely merged.

The simplest way of differentiating coreference links within a box and corefer-
ence links between two boxes is to stress that there is no coreference link within a
box, i.e., each box is a normal SG. Hence the following definition:

Definition 9.6 (Nested Conceptual Graph (NG)). A nested conceptual graph
(NG) (G,core f ) is an NBG G enriched by an equivalence relation core f on XG
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Fig. 9.13 An example of coreferent concept nodes which should not be merged

(the set of all concept nodes in all boxes of G) such that, for each box K in G, core f
restricted to K is the trivial equivalence, i.e., if (c,c′) ∈ core f and c �= c′ then c and
c′ are in two different boxes.

Note that any box of an NG is a normal BG. If the box normality condition is
not satisfied, i.e., if one considers a pair (G,core f ) where G is a NBG and core f an
equivalence relation which does not satisfy the condition in Definition 9.6, then G
can be transformed into an intuitively semantically equivalent NG when the follow-
ing normalization process is successful. One performs from the root of G a top-down
(e.g., by a depth-first search or a breadth-first search) normalization of each box as
follows. The normalization of a box consists of merging all coreferent nodes (in
the box) into a single node, whose description is the disjoint sum of merged node
descriptions. A sufficient condition for the normalization process is that each core f
class satisfies the condition of a coref class of an SG (cf. Definition 3.10), but this is
not a necessary condition.

Definition 9.7 (NG homomorphism). A (NG) homomorphism from an NG G to an
NG H is defined as a homomorphism of the underlying NBGs on condition that two
coreferent nodes of G must have coreferent images in H.

9.4 Nested Typed Graphs

Whenever the universe of discourse can be naturally broken down into independent
parts, some knowledge may possibly concern only some of these parts. In such a
case, pieces of knowledge can be organized so as to respect the universe of dis-
course structure. In the same way, when something can be described using different
viewpoints, each piece of information corresponding to a given viewpoint can be
typed by this viewpoint. Let us give an example about text annotations. Concern-
ing the content of a text, one can make a distinction between the text topic and the
way this topic is presented, i.e., the text rhetoric. One can also consider the structure
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of the text, the word distribution, or even bibliographical data such as the author’s
name, the publisher or the number of pages. For each of these aspects, a graph can
be constructed, with each graph being labeled by the type of annotation, e.g., topic,
rhetoric, structure, bibliographic data, and so on. Thus, one introduces graph types
and typed graphs, and also sets of typed graphs.

Graph types are especially useful in nested graphs when one wants to consider
different sorts of nesting. A nested typed graph can be considered as an NG in
which a complex concept node can have several typed descriptions. In Chap. 13
nested typed graphs are used for representing document annotations. Let us again
consider the previous text annotation example. An annotation of the text identified
by T 121 and represented by a concept node c labeled (Text, T121) can be composed
of an annotation concerning the text topic and another annotation concerning the text
rhetoric. Then, the (global) annotation of the text is a description of c composed of
a graph A of type topic and a graph B of type rhetoric, i.e., the label of c is the triple
(Text, T121, { (Topic, A), (Rhetoric, B)}).

We define typed SGs (TGs) before considering nested typed graphs. A TG vo-
cabulary V is an SG vocabulary supplemented by an ordered set of graph types TG,
i.e., V = (TC,TR,TG,I).

Figure 9.14 presents a tree of graph types.

Structure

CommentContent

RhetoricTopic

Annotation

GraphType

Fig. 9.14 A set of graph types

Definition 9.8 (TG and TG homomorphism). A typed BG (resp.SG) on a TG
vocabulary (TC,TR,TG,I) is an ordered pair (g,G), where g ∈ TG and G is a BG
(resp. SG) on (TC,TR,I). A homomorphism π from G to H is a (TG) homomorphism
from (g,G) to (h,H) if h≤ g.

Briefly said, a nested typed graph is a nested graph in which the boxes are no
longer normal BGs but are typed normal BGs. A BG can be considered as a partic-
ular typed BG (there is only one graph type) and, in the same way, an NG can be
considered as a particular nested typed graph defined as follows.

Definition 9.9 ( Nested Typed Graph (NTG)).
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• An elementary NTG G is obtained from a typed normal BG (g,H) by adding a
third field to the label of each concept node c in H equal to ∗∗. The set of boxes of
G is boxes(G) = {(g,H)} and the complete concept node set of G is XG = CH . A
trivial bijection exists between elementary NTGs and typed normal BGs (when
no ambiguity occurs we do not distinguish between them).

• Let H be an NTG and {(g1,H1), . . . ,(gk,Hk)} a set of elementary NTGs, such
that for any i �= j ∈ {1, . . . ,k}, gi �= g j. The graph G obtained from H by
substituting {(g1,H1), . . . ,(gk,Hk)} for the third field ∗∗ of a concept node c
in H is an NTG. boxes(G) = boxes(H)∪ {(g1,H1), . . . ,(gk,Hk)}), and XG =
XH ∪XH1 ∪ . . .∪XHk .

• The third field of any concept node c ∈ XG is called the description of c and is
denoted Descr(c).

• The set XG of all concept nodes appearing in G is provided with an equivalence
relation core f , such that for any box K the restriction of core f to K is the trivial
equivalence (i.e., if (c,c′) ∈ core f and c �= c′ then c and c′ are in two different
boxes).

The notions defined for nested graphs (NGs) can be extended to nested typed
graphs (NTGs) as follows. First, one can define a tree of typed SGs by substitut-
ing TGs for BGs in the definition of a BG tree (cf. Definition 9.2). Secondly, the
transformation Tree for nested graphs (cf. Definition 9.3) can be extended to nested
typed graphs. Thirdly, the homomorphism definition between NGs can be extended
to NTGs.

Definition 9.10 (Tree of typed BGs). A tree of TGs is a labeled rooted tree T =
(VT ,UT , lT ), such that:

• VT , the node set of T , is in bijection with a set of pairwise disjoint typed normal
BGs {G1, . . . ,Gk}. For any i = 1, . . . ,k, the node associated with Gi is labeled by
Gi (the set {G1, . . . ,Gk} can be identified with VT ).

• For any arc (Gi,G j) in UT , lT (Gi,G j) is a concept node in Gi; such a labeled arc
is also denoted (Gi,c,G j).

• For all pairs of arcs (Gi,G j) and (Gi,Gk) with same label c, the graphs G j and
Gk have a different type.

It is sometimes convenient to label an arc (Gi,c,G j) not only by c but also by a
pair (c, type(G j). In this case, the condition 3 of the previous definition becomes:
All labels are distinct, i.e., if (c,g) and (d,h) are the labels of two distinct arcs, then
c �= d or g �= h or both.

There are two differences between NTGs and NGs. In NTGs, the boxes are typed,
and a concept node has a description composed of a set of graphs, instead of a single
graph in NGs.

It is now possible to define a tree of typed BGs associated with an NTG.

Definition 9.11 (Tree(G)). The mapping Tree assigns to any NTG G a tree of typed
SGs, denoted Tree(G), which is defined as follows.
If G is an elementary NTG, then Tree(G) is restricted to a single node labeled G.
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If G is the NTG obtained from an NTG H by substituting {G1, . . . ,Gk} for ∗∗,
which is the Descr of the concept node c in H, then Tree(G) is built from Tree(H)
by adding k nodes labeled Gi, i = 1, . . . ,k as successors of the node labeled K in
Tree(H) containing c. Each arc (K,Gi), for i = 1, . . . ,k, is labeled by c.

It can immediately be checked that, as in NBGs, the mapping Tree is a bijection
from the NTGs on a vocabulary V to the trees of typed BGs on V . NTG homomor-
phisms are defined using the tree viewpoint.

Definition 9.12 (NTG Homomorphism). Let G and H be two NTGs with Tree(G)
= (VG,UG, lG) and Tree(H) = (VH ,UH , lH). A (NTG) homomorphism from G to H
is a pair π = (π0,{πG1 , . . . ,πGk}), where VG = {G1, . . . ,Gk}, which satisfies:

• π0 is an ordinary tree homomorphism from (VG,UG) to (VH ,UH) which maps the
root of Tree(G) to the root of Tree(H),

• ∀K ∈VG, πK is a TG homomorphism from K to π0(K),
• ∀(J,K) ∈UG, if lG(J,K) = c then lH(π0(J),π0(K)) = πJ(c)),
• two coreferent nodes of G must have coreferent images in H.

Example. The NTG in Fig. 9.15 is obtained from the NG in Fig. 9.11 by replac-
ing the concept types Description, Nutritional observation, Nutritional evaluation
and Biochemical explanation by graph types. Moreover the root is typed (here by
Annotation).

Result
Subject

Articledeals with provides

undergoes Water cookingWheat food product : *x

Description

contains Hydrosoluble vitamin undergoes Dissolution

Biochemical explanation

Wheat food product : *x

Decreaseshows hasWheat food product : *x Vitamin content

Nutritional observation

showshas
Deterioration

Nutritional evaluation

Wheat food product : *x Nutritional quality

Annotation

Fig. 9.15 An NTG

Example. In Fig. 9.16, it is assumed that: G is of type g, H of type h, g ≥ h, and
the graph types g1 and g2 are greater than or equal to g3. The mapping π such that:
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π(c1) = d1, π(c2) = d2, π(c3) = π(c4) = d3, π(r1) = s1, π(r2) = s2, π(r3) = s3, is
a homomorphism from (g,G) to (h,H).

r

c2

r1

v

s3s2

s1

d3

d1

(h,H)

d2

r3r2

c4c3

(g,G)
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v
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Fig. 9.16 An NTG homomorphism

9.5 The Semantics ΦN

The FOL semantics ΦN hereafter defined for NGs and NTGs is an extension of
the FOL semantics Φ for SGs (cf. Sect. 4.2.1). The definition of ΦN for NGs, i.e.,
untyped nested graphs, is based on two ideas. First, ΦN(G) is the conjunction of a
formula defining the tree structure of G with formulas associated with all boxes of
G. Secondly, the formula associated with a box K is obtained from Φ(K) by adding
an argument which is a variable representing K. The FOL semantics ΦN for NTGs
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is built from the FOL semantics for NGs by adding for each box K of type g an
atom g(y) (y being the variable representing K). Thus, we consider only NTGs in
this section. If graph types are useless, i.e., if NGs are considered instead of NTGs,
the soundness and completeness theorem still holds with ΦN for NGs.

After defining ΦN , we prove that the NTG homomorphism notion is sound and
complete with respect to ΦN .

9.5.1 Definition of ΦN

LetL be the FOL language associated with the vocabulary (TC,TR,I) (cf. Sect. 4.2.1).
The FOL language LN associated with the vocabulary V = (TC,TR,TG, I) on which
NTGs are built is obtained from L by the following transformations:

• a new constant a0 is added to the constants assigned to the individual markers,
• each predicate p of arity n≥ 1 in L is transformed into a predicate, still denoted

p, of arity n+1,
• a new ternary predicate descr is added to L,
• for any g ∈ TG a new unary predicate, also denoted g, is added to L (useless for

NGs).

Thus, a binary predicate is associated with each concept type in TC, and an (n +
1)-ary predicate is associated with each n-ary relation type. Note that the predicate
descr, which is used for representing the tree structure of any NTG, belongs to any
FOL language LN associated with a vocabulary.

The following set of formulas, denoted ΦN(V), is associated with V = (TC,TR,
TG, I):
∀z∀x1 ... xn(t1(x1, ..., xn,z)→ t2(x1, ..., xn,z)), for any t1 and t2 concept type in TC
(in this case n = 1) or relation type of arity n≥ 1 in TR such that t1 ≤ t2,
∀x(g1(x)→ g2(x)), for all g1,g2 in TG such that g1 ≤ g2 (useless for NGs).

Let G be an NTG or an NG, and let Tree(G) be its associated tree. A set of
constants a1, . . . ,am is assigned to the coreference classes containing an individ-
ual concept node (the same letter is used to designate an individual marker and its
associated constant), and a0 is assigned to the root box of G. Two disjoint sets of
variables are considered. First, a set of variables x1, . . . ,xn are assigned to the generic
coreference classes, and a set y1, . . . ,yk are assigned to the k boxes of G distinct from
the root box. Hereafter, we often refer to a box by its associated term, and to a coref-
erence class by its associated term. In an NTG, a concept node c is identified by a
pair (u,y), where u is the term (either a variable xi or a constant ai, i≥ 1) associated
with the coreference class of c, and y is the term (either a variable yi or a0) assigned
to the box containing c.
Example. For instance, in Fig. 9.17, the NG in Fig. 9.5 is represented with its asso-
ciated variables. x1 (resp. x2, x3) is the variable assigned to the generic concept node
of type Drawing (resp. Table, Train), a0 is the constant assigned to the root box and
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y1 is the variable assigned to the box description of the drawing. The fact that Paul
is an individual concept node of type Boy in the root box a0, is represented by the
atom Boy(Paul,a0). The fact that the concept node x3 has a Green attribute in the
box y1 is represented by the atom attr(x3,Green,y1). The fact that in a0 the concept
node x1 has y1 for description is represented by the atom descr(a0,x1,y1). Finally,
the fact that the type of J (resp. K) is Proposition (resp. Sub ject) is represented by
Proposition(a0) (resp. Sub ject(y1)).

Color : Green

K

a0

y1Subject

Proposition

madeBy

2attr

on

x3

x2x1
12 1 2

1

J

Drawing

Train

TableBoy: Paul

Fig. 9.17 Variables associated with concept nodes and boxes in an NTG

We require the following notation before giving the definition of ΦN . Let us re-
call that, given an SG G, φ(G) is the conjunction of all atoms assigned to nodes of
G without quantification, while Φ(G) is the existential closure of φ(G) (cf. Defini-
tion 4.7).

Definition 9.13 (φ(G,u)). Let G be an SG and let u be a term. φ(G,u) is the formula
obtained from φ(G) by adding the argument u to each atom in φ(G).

This transformation can be extended to any FOL formula. For instance, Φ(G,u)
denotes the formula obtained from Φ(G) by adding the argument u to each atom in
Φ(G).

Definition 9.14 (ΦN(G)). Let G be an NTG with typed boxes (g0,G0), . . . ,(gk,Gk),
(g0,G0) being the root box. Let yi, i = 1, . . . ,k be the variables assigned to the Gi-
s and xi, i = 1, . . . ,n be the variables assigned to the generic coreference classes.
ΦN(G) =
∃y1 . . .ykx1 . . .xn(φ(Tree(G))∧g0(a0)∧φ(G0,a0)∧ . . .∧gk(yk)∧φ(Gk,yk)), where:
φ(Tree(G)) is the conjunction, for any (J,c,K) arc in Tree(G), of the atoms
descr(v j,ui,yk), where v j is the term assigned to the box J, yk is the variable as-
signed to the box K and ui is the term assigned to the coreference class of c.

Example. The formula associated with the NTG G in Fig. 9.17 is:
ΦN(G) = ∃y1x1x2x3(descr(a0,x1,y1)∧ proposition(a0)∧ sub ject(y1)∧
Boy(Paul,a0)∧Drawing(x1,a0)∧Table(x2,a0)∧madeBy(x1,Paul,a0)∧
on(x1,x2,a0)∧Train(x3,y1)∧Color(Green,y1)∧attr(x3,Green,y1))
The formula associated with the NTG H in Fig. 9.18 is:
ΦN(H) = ∃y1x1x2(descr(a0,x1,y1)∧ proposition(a0)∧ sub ject(y1)∧Boy(x2,a0)∧
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Drawing(x1,a0)∧madeBy(x1,x2,a0)∧Child(x2,y1)∧Character(Zorro,y1)∧
dressU p(x2,Zorro,y1))

Character: Zorro

Subject

Proposition

y1

y1

a0a0 Boy Drawing
12

o

o

c x1

x1 J

K

Child

dressUp

1

2

x2

madeBy

Fig. 9.18 A NTG with coreferent nodes

9.5.2 Soundness and Completeness

Let us show that the homomorphism notion between NGs is sound and complete
with respect to the FOL semantics ΦN . More precisely,

Theorem 9.1. Let G and H be two N(T)Gs. There is a homomorphism from G to H
if and only if ΦN(V),ΦN(H) |= ΦN(G).

Note that there is no normality condition for completeness (contrary to the theorem
for SGs) since we only consider normal boxes in the definition of nested graphs.

Proof. The proof is based on relationships between NTG homomorphism and L-
substitution and on the L-substitution lemma. Ignoring the graph types, one obtains
a proof for NGs.

Soundness

Let G and H be two NTGs, Tree(G) = (VG,UG, lG), VG = {G1, . . . ,Gk}, and
Tree(H) = (VH ,UH , lH), VH = {H1, . . . ,Hl}. Let π = (π0,(πG1 , . . . ,πGk)) be a ho-
momorphism from G to H. Then (cf. Definition 9.12),

1. π0 is a homomorphism from Tree(G) to Tree(H) which maps the root of Tree(G)
to the root of Tree(H),

2. ∀K ∈VG,πK is a homomorphism from K to π0(K),
3. ∀(J,K) ∈ UG with lG(J,K) = (c,g), one has lH(π0(J),π0(K)) = (πK(c),h),

where h is the type of π0(K),
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4. if c and c′ are two coreferent concept nodes in G, then π(c) and π(c′) are coref-
erent in H.

Let us prove that there is a LN-substitution from ΦN(G) to ΦN(H).
ΦN(G) = ∃y1 . . .ykx1 . . .xm(φ(Tree(G))∧g0(a0)∧φ(G0,a0)∧ . . .∧gk(yk)∧
φ(Gk,yk)), where:
φ(Tree(G)) =

∧{descr(y′j,ui,yp) | (y′j,ui,yp) ∈ Tree(G)}, where y′j is either a0 or
a variable y j.
ΦN(H) = ∃z1 . . .zlw1 . . .wn(φN(Tree(H))∧h0(a0)∧φ(H0,a0)∧ . . .∧hl(zl)∧
φ(Hl ,zl)), where:
φ(Tree(H)) =

∧{descr(z′j,vi,zp) | (z′j,vi,zp) ∈ Tree(H)}, where z′j is either a0 or a
variable z j.

Let σ be the substitution defined as follows:
for any yi, i = 1, . . . ,k, σ(yi) = z f (i), where z f (i) is the variable assigned to the box
π0(Gi) of H;
for any xi, i = 1, . . . ,m, σ(xi) = wg(i), where wg(i) is the term assigned to the coref-
erence class of π(c), where c is any concept node in the coreference class associated
with xi (the images of coreferent nodes are coreferent nodes, thus wg(i) is well de-
fined).

Let us check that σ is a LN-substitution from ΦN(G) to ΦN(H).

• Let descr(y′j,ui,yp) be an atom of ΦN(G), then (J,K) ∈UG, K (associated with
yp) is the description of a concept node in J (associated with y′j), which is in
the coreference class associated with ui. Since π is a homomorphism from G to
H, (π0(J),πJ(c),π0(K)) is in Tree(H), and thus descr(σ(y′j),σ(ui),σ(yp)) is an
atom of ΦN(H).

• The atom h0(a0) of ΦN(H) corresponds to the atom g0(a0) of ΦN(G).
• Let gi(yi) be an atom of ΦN(G), gi the type of Gi and π0(Gi) = Hπ0(i). Let h be

the type of Hπ0(i) then h≤ gi and h(z f (i)) = h(σ(yi)) is an atom in ΦN(H).
• Let t(u,a0) be an atom of ΦN(G0). It corresponds to a concept node c in G0

which is in the coreference class associated with u. The atom t′(u′,a0) is assigned
to π(c), where u′ is equal to the term associated with the image by π of the
coreference class u. Thus, t′(u′,a0) = t′(σ(u),a0), and t′ ≤ t.

• Let t(u,yi) be an atom of ΦN(Gi). It corresponds to a concept node c in Gi, which
is in the coreference class associated with u. The atom t′(u′,z f (i)) is assigned
to π(c), where u′ is equal to the term associated with the image by π of the
coreference class u. Thus, t′(u′,z f (i)) = t′(σ(u),σ(yi)), and t′ ≤ t.

• Let p(�e,yi) be an atom of ΦN(Gi) corresponding to a relation node r of Gi. The
atom p′(�e′,z f (i)) is assigned to π(r), where p′ ≤ p and�e′ is the term vector asso-
ciated with the nodes which are the images by π of the nodes whose term vector
is�e, i.e.�e′ = σ(�e) . Thus, p′(π(�e),z f (i))= p′(σ(�e),σ(yi)) is in ΦN(H) and p′≤ p.
A similar proof can be done for an atom p(�e,a0) of ΦN(G0) corresponding to a
relation node in G0. One concludes with the L-substitution lemma.
��
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Completeness

Let G and H be two NTGs. Tree(G) = (VG,UG, lG), VG = {G0,G1, . . . ,Gk}, and
Tree(H) = (VH ,UH , lH), VH = {H0,H1, . . . ,Hl}. Let us assume that ΦN(V),ΦN(H)
|= ΦN(G), and, using the L-substitution lemma, let σ be a LN-substitution from
ΦN(G) to ΦN(H). From σ , we first build a tree homomorphism π0 from Tree(G)
to Tree(H) that maps the root of Tree(G) to the root of Tree(H); then we build a
homomorphism πi from Gi to π0(Gi) for any i = 0, . . . ,k.

One takes π0(G0) = H0. For any i = 1, . . . ,k, π0(yi) is defined by σ(yi). More
precisely if σ(yi) = z f (i) then π0(Gi) = Hf (i). The substitution σ associates to gi(yi)
an atom h(σ(yi)) with h≤ gi. Thus the type of π0(Gi) is ≤ type of Gi.

Let us now check that π0 is a tree homomorphism from Tree(G) to Tree(H).
If k = 0, then Tree(G) is restricted to a single node and π0 is a tree homo-
morphism. Let us assume that k ≥ 1. Let us consider an arc (J,K) in Tree(G)
with lG(J,K) = c. An atom descr(y′j,ui,yp) in ΦN(G) corresponds to this arc and
descr(σ(y′j),σ(ui),σ(yp)) is an atom of ΦN(Tree(H)). Thus, (π0(J),π0(K)) is an
arc of Tree(H) and lH(π0(J),π0(K)) = (d, type(π0(K)) where d is the (single) con-
cept node in π0(J) associated with the term σ(ui) (all boxes are normal). This proves
that π0 is a homomorphism from Tree(G) to Tree(H) (and it maps the root of
Tree(G) to the root of Tree(H)).

Let us show that σ is anL-substitution from Φ(Gi) to Φ(π0(Gi)), for i = 0, . . . ,k.
Let p(�e) be an atom of Φ(Gi); then there is an atom q(σ(�e)) in Φ(π0(Gi)) such that
q ≤ p. Indeed, for any i = 0, . . . ,k the atoms of ΦN(Gi) are mapped by σ to atoms
of ΦN(π0(Gi)) with a decrease of the predicate. Thus, the result holds for i = 0. For
any i ∈ {1, . . . ,k}, p(�e,yi) is an atom of Φ(Gi,yi); therefore it is an atom of ΦN(G)
and there is an atom q(σ(�e),σ(yi)) of ΦN(H) with q≤ p. q(σ(�e),σ(yi)) is an atom
of Φ(π0(Gi),σ(yi)). Thus q(σ(�e)) is an atom of Φ(π0(Gi)) with q ≤ p. As σ is
an L-substitution from Φ(Gi) to Φ(π0(Gi)), for i = 0, . . . ,k, then with Property 4.7
there is a homomorphism πi from Gi to π0(Gi) such that for any concept c in Gi
associated with the term u in Φ(Gi), the concept πi(c) is associated with σ(u) in
Φ(π0(Gi)). The last condition of an NTG homomorphism (cf. Definition 9.12) is
satisfied since if lG(J,K) = c (associated with u), then lH(π0(J),π0(K)) = d where
d is the single concept in π0(J) associated with σ(u) and d = πJ(c). ��

9.6 Representation of Nested Typed Graphs by BGs

In this section, we define an injective mapping ng2bg which assigns a BG to a nested
graph. We will see that this mapping preserves the homomorphisms.

A BG (or SG) vocabulary V ′ = (TC,TR∪TG∪{cont,descr},I∪{a0}) is assigned
to a typed graph vocabulary V = (TC,TR,TG,I), where the elements in TG are now
considered as unary relation types, and cont, descr and core f are three new binary
relations and a0 is a new individual marker.
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Let (G,core fG) be an NTG on V , with Tree(G) = (VG,UG, lG) and VG = {G1, . . . ,
Gk}, G1 being the root. First, for i = 1, . . . ,k, each Gi (on the vocabulary V) is
transformed into an BG G′

i (on the vocabulary V ′) as follows. A new concept node
ci is added to Gi and, if i = 1, i.e., Gi is the root of G, then its label is (�,a0).
Otherwise its label is (�,∗); ci is linked to a new unary relation node labeled by gi
(the type of Gi). For each concept node c in Gi, a new relation node labeled cont is
created with ci as its first neighbor and c as its second neighbor.

Secondly, the tree structure has to be coded by the relation descr used as follows.
Whenever G j is the description of c in Gi, i.e., (Gi,c,G j) is an arc of Tree(G), then
a new relation node labeled descr is added, which links c in G′

i to c j in G′
j.

Thirdly, core fG is translated by relation nodes of type core f . For each pair
(ci,c j) ∈ core fG, we add core f (ci,c j) (as core fG is an equivalence relation, we
also have core f (c j,ci), core f (ci,ci) and core f (c j,c j).
Example. For instance, let G be the NTG in Fig. 9.18, then ng2bg(G) is represented
in Fig. 9.19.

coref

coref

coref

descr

Character:ZorrodressUpChild

DrawingBoy

coref

coref

coref contcont

contcont

a0

subject

proposition

madeBy

Fig. 9.19 The SG ng2bg(G) associated with the nested typed graph G in Fig. 9.18

Theorem 9.2. ng2bg is an injective mapping from the set of NTGs on V to the set
of BGs on V ′. Furthermore, there is a bijection between the set of (NTG) homo-
morphisms from G to H and the set of (BG) homomorphisms from ng2bg(G) to
ng2bg(H).

Proof. Let G be an NTG on V , with Tree(G) = (VG,UG, lG) and VG = {G1, . . . ,Gk},
G1 being the root and G′ = ng2bg(G). For i = 1, . . . ,k, ci is the node in G′ associated
with Gi and G′

i is the subBG of G′ corresponding to Gi. Let H be an NTG on V ,
with Tree(H) = (VH ,UH , lH) and VH = {H1, . . . ,Hl}, with H1 being the root and
H′ = ng2bg(H). For i = 1, . . . , l, di is the node in H′ associated with Hi and H′

i is the
subBG of H′ corresponding to Hi. Let π = (πO,{π1, . . . ,πk}) be a homomorphism
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from G to H where πi is a homomorphism from Gi to Hf (i). A homomorphism π ′

from G′ to H′ is built as follows (cf. Fig. 9.20).

• For any i = 1, . . . ,k and any node x in G′
i , π ′(x) = πi(x).

• For any ci, i = 1, . . . ,k, π ′(ci) = d f (i).
• For any unary relation node r (of type lG(Gi)) incident to ci, π ′(r) is the unary

relation node (of type lH(Hf (i))≤ lG(Gi)) incident to π ′(ci) = d f (i).
• Let r be a binary relation node of type cont in G′ and (ci,c) its neighbor list. π ′(r)

is the relation node of type cont in Hf (i) having for neighbor list (π ′(ci),π ′(c)).
• Let r be a binary relation node of type descr in G′ and (c,c j) its neighbor list.

Let us assume that c is in G′
i . π ′(r) is the relation node of type descr in H′ having

for neighbor list (π ′(c),d f ( j)).
• Let r be a binary relation node of type core fG in G′ and (u1,u2) its neighbor list.

Let us assume that u1 and u2 are in G′
i . π ′(u1) and π ′(u2) are in H′

f (i), and there
is a binary relation node r′ of type core fH in H′

f (i). One takes π ′(r) = r′.

One can check that π ′ is a homomorphism from G′ to H′, and this mapping from
the (NTG) homomorphisms from G to H to the (BG) homomorphisms from G′ to
H′ is injective and surjective. ��

f(c)

contcont

desr

gkck dq hq

descr

cont cont

f(d)

cont

Fig. 9.20 ng2bg preserves the homomorphisms (proof of Theorem 9.2)

The previous correspondence allows us to transport notions and properties of SGs
to NTGs and, in a way, the nested typed graphs (NTGs) are not more expressive than
simple graphs (SGs). However, even if the transformation ng2bg is simple, the SG
obtained seems more difficult to understand for a human being than the initial NTG.
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9.7 Bibliographic Notes

It is generally agreed that knowledge has a contextual component, and different for-
malizations have been proposed to deal with knowledge contexts (e.g., cf. [BP83],
[Guh91] and [McC93]).

History of nested conceptual graphs. Nested conceptual graphs were intro-
duced in [Sow84]. Concept nodes representing a proposition can have a referent
that is a graph; the intuitive semantics is that this graph is asserted by, or describes,
the surrounding proposition. After that, several variants of nested conceptual graphs
have been proposed to represent contexts, knowledge description by increasing level
of detail, objects in object oriented programming, or related notions. Natural lan-
guage processing is a main application domain (e.g., [Sow92] [Naz93] [Dic94]).

theme
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Person:Mary
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Proposition:

 

Fig. 9.21 Nested Graph representing a natural language sentence

For instance, the Fig. 9.21 (due to Sowa, e.g., [Sow99])) represents the sentence
“Tom believes that Mary wants to marry a sailor.” Tom is the experiencer (expr) of
the concept [Believe], which is linked by the relation (theme) to a proposition that
Tom believes. This proposition is described by another graph, which states that Mary
is the experiencer of [Want], whose theme is a situation that Mary hopes will occur.
That situation is described by another graph, which says that Mary (represented by
the concept [�]) marries a sailor. The coreference link shows that the concept [�]
in the situation concept refers to the same individual as the concept [Person: Mary]
in the proposition concept.

We introduced a combinatorial structure in [CM97], provided with a homomor-
phism called “Graph of graphs,” and showed that the different kinds of nested con-
ceptual graphs found in the CG literature are instantiations of this generic notion,
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and more precisely are trees of specific graphs. Relationships with category theory
are also pointed out in this paper. Indeed, a kind of graphs provided with a mor-
phism is a concrete category and transformations like ng2bg are functors between
two categories. Note however that this framework did not take coreference links into
account. It was only concerned with the recursive structure of nested graphs.

The model of nested graphs (without coreference) presented in this chapter was
introduced in [MC96] and developed in [CM97]. The latter paper also introduces
typed nestings, to specify relationships between the surrounding node and one of
its descriptions. Note that, in the model presented in this chapter, we shifted nest-
ing types to graph types. This allows us to type graphs at the first level, and not
only as descriptions of a concept node. This model was motivated by two appli-
cations in knowledge representation, one concerning simulation (cf. [BBV97]) and
the other concerning document indexing (cf. [Gen00]) Since then it has been used
in other works (e.g., [GC05], [MLCG07] and [TML06] from which the example of
Fig. 9.11 and Fig. 9.15 are extracted). In [CMS98] and [PMC98]) nested graphs
with coreference links are processed and two sound and complete logical semantics
are defined (see below).

Different logical semantics. Sowa extends the mapping Φ (as defined on SGs)
by introducing a special binary predicate descr whose first argument is a term and
second argument is a formula. For each complex concept node c with referent a non-
empty graph D, Φ(G) contains the atom descr(e, Φ(D)), where e is the term as-
signed to c. This logical semantics is similar to the semantics of contexts in [Guh91]
[McC93], with descr playing the same role as the ist predicate. Note that the pred-
icate descr takes a formula as argument, thus this logical semantics goes beyond
FOL.

A non-classical logical semantics, with a calculus based on Gentzen-like se-
quents, equivalent to NG homomorphism, was presented in [PMC98]. In [Sim98]
[CMS98], two alternative semantics in classical FOL are given to NGs. The first one
extends Φ (as defined on SGs). For homomorphism completeness, the target NG has
to be in so-called k-normal form, where k is the depth of the source NG. Every graph
can be put in k-normal form. The drawback is that putting a graph into k-normal
form may involve increasing the depth of its tree structure. The second semantics
extends Ψ (as defined on SGs, cf. Chap. 4). As for SGs, there is no normality condi-
tion on the target graph. None of these two semantics are entirely satisfying because
they do not translate the notion of context. With Φ , a concept node is simply repre-
sented by the term associated with its coreference class without a term representing
its context. Thus properties attached to a concept node can be equivalently attached
to any coreferent concept node, even if this node is in another context. With Ψ , the
opposite approach is taken: Two coreferent nodes are translated by distinct terms
(plus a term translating the fact that they represent the same entity); consequently,
properties attached to one node cannot be equivalently attached to the second node,
even if these nodes are in the same context. The logical semantics ΦN defined in this
chapter distinguishes between two kinds of coreference, depending on whether it is
intra-context or inter-contexts, and thus can be seen as a combination of previous
semantics Φ and Ψ . The logical semantics for typed nested graphs is new.
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Other works on nested graphs. In [Bag99], a generalization of nested graphs
(boxed graphs) is defined in which each box contains a BG, and relation nodes can
link concept nodes belonging to different boxes. This extension was mainly done to
reify coreference links. The idea is to replace the coreference relation (or to supple-
ment it) by different relation types translating different coreference relations. Each
type is provided with rules which describe the properties of this coreference rela-
tion. More generally, a boxed graph can be seen as a nested graph with several roots,
added with a set of relation nodes linking concept nodes of different boxes (these re-
lation nodes are said to be out of context). The boxed graph homomorphism does not
necessarily map roots to roots, and a relation node out of context can be mapped to a
node in or out of context, provided that edges are preserved. A transformation from
boxed graphs to simple graphs is given, which, as a side effect, gives another proof
of equivalence between simple and nested graphs (see also [Bag01] (in French)).

In [Ker01], descriptions are named. However, this framework does not provide
operations on nested graphs. A formal declarative semantics is given by an embed-
ding into a nested structure, with an associated notion of truth, from which a notion
of deduction on nested graphs is defined. A transformation from these nested graphs
to simple graphs is exhibited, which preserves deduction.

In [Pre98a] and [Pre00], the NGs studied are without generic nodes. A semantics
(called contextual semantics) in connection with situation theory [BP83] and formal
concept analysis [GW99] is proposed. Triadic power context families, i.e., a kind of
formal context in the sense of formal concept analysis, are defined. The notion of
a standard model built on a triadic power context family and the related notion of
semantic entailment are introduced. An NG G2 is semantically entailed by an NG
G1 if and only if G2 is valid in the standard model of G1. Finally, the framework
is provided with eight sound and complete elementary rules which are sound and
complete with respect to semantic entailment.




