
Chapter 8
Other Specialization/Generalization Operations

Overview

This chapter is about more complex specialization/generalization operations than
the elementary specialization/generalization operations studied in Chap. 2. In order
to focus on the main ideas, the conceptual graphs considered here are BGs, and not
SGs. Moreover, for operations involving compatibility notions (i.e., maximal join
and extended join) we consider conjunctive concept types.

In Sect. 8.1, we show how the greatest specialization (or greatest lower bound)
and the least generalization (or least upper bound) of two BGs can be computed.
Computing the least generalization of two formulas is a fundamental problem in
inductive inference. Computing a common specialization of two (or more) BGs is
required in various applications. The greatest lower bound is usually not a “good”
notion since it does not merge BGs, so several specific common specializations of
two graphs were defined. They are often designed for specific applications, and we
give here the main ideas that can be used to define operations fitted for a given ap-
plication. Computing a common specialization of two graphs G and H consists of
establishing a correspondence between nodes in G and nodes in H, then merging
corresponding nodes. The operations can be distinguished by the kind of correspon-
dence between G and H (e.g., bijection between subsets of concept nodes or general
correspondence between a subgraph of G and a subgraph of H), and by a maximality
property of the correspondence.

In Sect. 8.2, the notion of a compatible set of concept nodes of a graph is re-
viewed and compatible sets of relation nodes are introduced. These notions are used
for defining maximal join operations. A maximal join operation between two BGs
G and H consists of first merging a concept node in G and a concept node in H, and
then merging as far as possible neighbors of previously merged nodes. Different
neighborhood search strategies lead to different generalized join operations. Usu-
ally a generalized join operation stops when it is no longer possible to merge two
nodes, so the term “maximal join” is used even though this term represents a set of
operations rather than a precisely defined one.
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208 8 Other Specialization/Generalization Operations

The third section is devoted to the study of compatible partitions of node sets. We
define and study compatible partitions of the concept node set of a BG, compatible
partitions of the relation node set and compatible partitions of the whole node set
of a BG. This last notion is strongly related to surjective homomorphisms. These
notions are used for the extended join operation, which generalizes maximal join
operations.

The main result in Sect. 8.4 concerns characterization of BGs that can be ob-
tained from a set of given BGs using elementary specialization operations (some-
times known as “canonical” BGs). As a corollary, one obtains an inductive definition
of the BGs built on a given vocabulary . This study is done using surjective homo-
morphisms and the union of a set of BGs.

Finally, in Sect. 8.5, the expansion and contraction operations used when consid-
ering defined concept types are presented.

This section is not an in-depth study of problems related to type definitions. The
aim is only to provide other examples of conceptual graph operations.

8.1 The Least Generalization and Greatest Specialization of Two
BGs

Computing a (or the) least generalization of two or more descriptions is a fundamen-
tal problem in inductive inference, which occurs particularly in machine learning.
This operation can be offered by knowledge-based systems along with classical in-
ference services. Consider, for instance, the tasks of building concept or relation
definitions, or schemata typically associated with certain concepts or relations, or
rules expressing general properties of certain entities. It may help to start from a
set of descriptions assumed to be examples of the same concept (or relation) and
consider their least generalization as a working basis. Least generalizations can also
be used to organize a large set of descriptions in a hierarchical structure.

If the description language is a BG language, this problem in its basic form takes
two BGs as input, say G and H, and asks for a least generalization of G and H, i.e., a
BG K such that KG and KH and for all BG K′, if K′G and K′H then K′
K. If we restrict ourselves to irredundant BGs, K is unique (up to ismorphism): it is
the least upper bound of G and H in the irredundant BG lattice (cf. Sect. 2.3.2). The
categorial product of two graphs (a graph theoretic notion which can be found in the
literature under a variety of other names, e.g., weak product) is used to compute a
least generalization of two BGs. Let us review the categorial product of two ordinary
graphs before considering BGs.

Definition 8.1 (Categorial Product). The (categorial) product of two (ordinary)
graphs G = (X ,U) and H = (Y,V ) is the graph G×H = (Z,W ) with Z = {(x,y)|x ∈
X and y ∈ Y} and W = {((x,y),(z, t))|(x,z) ∈U and (y, t) ∈V}.

Example. Figure 8.1 shows an example of the product of two graphs.
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Fig. 8.1 The categorial product of two graphs

Note that G×H and H×G are isomorphic. The following properties about ho-
momorphism can be easily observed.

Property 8.1 (Standard properties of the categorial product).

1. There is a homomorphism from G×H to G and a homomorphism from G×H
to H.

2. If there is a homomorphism from K to G and a homomorphism from K to H,
then there is a homomorphism from K to G×H.

3. There is a homomorphism from G to G×H if and only if there is a homomor-
phism from G to H.

Proof. 1. Take the homomorphism from G×H to G (resp. from G×H to H), which
maps each vertex (x,y) to vertex x (resp. y),

2. Take two homomorphisms f : K→G and f ′ : K→H. Then the mapping h : K→
G×H, which maps every vertex x to ( f (x), f ′(x)), is a homomorphism,

3. It follows from (1) and (2): If there is a homomorphism from G to G×H, then
by (1) there is a homomorphism from G to H; reciprocally, if there is a homo-
morphism from G to H then, since there is a homomorphism from G to G, by (2)
there is a homomorphism from G to G×H. ��

Let us extend the definition of the graph product to BGs. Labels have to be taken
into account. For ordinary graphs, we had exactly one vertex for each pair of vertices
(x,y), with x in G and y in H. Now the number of nodes created from (x,y), where
x and y are two concept nodes or two relation nodes in G and H respectively, is the
number of minimal upper bounds of x and y labels. Since the concept type set has
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a greatest element, and individual markers are less than the generic marker, every
pair of concept node labels has at least an upper bound. If the concept type set is a
sup-semi-lattice (for instance if conjunctive concept types are considered), all pairs
have a unique minimal upper bound (called their least upper bound, lub); otherwise,
some pairs have several minimal upper bounds.

Pairs of relation labels may have any number of minimal upper bounds (includ-
ing zero). Therefore, if no assumption is made on the structure of the concept and
relation type sets, the size of G×H is no longer bounded by the product of the size
of G and H (which is a rough upper bound) but involves the size of the vocabulary,
and more precisely the maximal number of minimal upper bounds of two concept
or relation types.

For the next definition, we consider the particular case where two concept labels
have a least upper bound (i.e., a single least generalization) and two relation labels
have either a least upper bound or do not have an upper bound. Then the number
of concept nodes in G×H is |CG|× |CH |, the number of relation nodes is bounded
by the sum of (|Ri

G|× |Ri
H |), where Ri

G and Ri
H denote the set of relation nodes with

arity i occurring respectively in G and in H, and the number of edges is bounded by
the sum of (|Ri

G|× |Ri
H |× i).

Definition 8.2 (BG product). Let V be a vocabulary where the concept type set is
a sup-semi-lattice and two relation types have at most one minimal upper bound,
and let G and H be two BGs on V . The product of G and H is the BG K = G×H
built as follows:

• CK = {(c,d)|c ∈CG and d ∈CH}, and the label of (c,d) is the lub of lG(c) and
lH(d),

• RK = {(r,s)|r ∈ RG, s ∈ RH and there is a relation label t with t ≥ lG(r) and
t ≥ lH(s)} , and the label of (r,s) is the lub of lG(r) and lH(s),

• EK = {((r,s), i,(c,d))|(r, i,c) ∈ EG and (s, i,d) ∈ EH}.

It can be easily checked that G×H is a BG and that the BG product satisfies the
standard properties (cf. property 8.1). This operation can be extended to the product
of n BGs.

Property 8.2. The least upper bound, i.e., the least generalization, of two BGs G and
H is the irredundant form of G×H.

Example. Consider G and H in Fig. 8.2. These BGs are obtained from the graphs in
Fig. 8.1 by transforming the vertices into concept nodes and edges (u,v) into binary
relation nodes, with the node assigned to u for first neighbor and the node assigned
to v for second neighbor. All pairs of concept node labels have a lub. Concerning
relation labels, one assumes that r and s have a lub, as well as r and t, but s and t have
no upper bound. Compare the skeleton of G×H to the product graph in Fig. 8.1: the
relation nodes corresponding to the edges (1b,3a) and (2b,3a) do not exist (since s
and t have no upper bound). It can be easily checked that G×H maps to G and to
H (assign to each node i j in G×H the node i in G and the node j in H). One can
check that G×H is not irredundant, the gray part composed of the concept node 1c,
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the concept node 2c and its neighbor relation node can be removed (cf. the dashed
arrows in Fig. 8.2). The BG obtained after these deletions is the least generalization
of G and H (check that it is irredundant even if some labels might actually be the
same in some vocabulary).

With the assumption that the concept type set is a sup-semi-lattice, G×H is
normal if G and H are normal. Indeed, an individual concept node (c,d) with marker
m may be created in G×H only if c and d are both individual nodes with marker
m; If G and H are normal, they may each possess at most one node with marker m.
As illustrated in Fig. 8.2, G×H is generally not irredundant, even if G and H are
irredundant. As far as we know, the conditions under which G×H is irredundant
have not been characterized.

Computing a common specialization of two (or more) graphs is required in var-
ious applications. A greater specialization of two BGs is easily built: It suffices to
compute their disjoint sum (see Property 2.10). Hence the property:

Property 8.3. The greatest lower bound of two BGs G and H is the irredundant form
of their disjoint sum G+H.

G + H is generally not normal or irredundant, even though G and H are normal
and irredundant. However, note that given G and H irredundant, G + H is irredun-
dant if and only if there is no connected component of one of the two graphs that
maps to a connected component of the other. Thus, in the case where G and H are
connected irredundant graphs, the greatest lower bound (glb) of G and H is G if H
maps to G, H if G maps to H, and otherwise it is exactly G+H.

The disjoint sum is easily computed but it is generally considered as unsatisfying
because it does not “merge” the two graphs. This has led to the introduction of other
notions of common specializations which rely on more complex operations than the
elementary specialization operations studied in Chap. 2. Among them, the so-called
“maximal join” is the most popular. It is studied in the next section.

8.2 Basic Compatibility Notions and Maximal Joins

In this section, we define compatible sets of concept nodes and of relation nodes.
A node set can be merged into a single node if and only if it is a compatible set.
Compatible sets are then used for defining the maximal join operation.

8.2.1 Compatible Node Set

Let us review the notion of compatible (or mergeable) concept nodes studied in
Chap. 3, i.e., when conjunctive concept types are considered.

A set of compatible concept nodes (cf. Definition 3.9) is a set of concept nodes
such that the set of their labels is compatible, i.e., these labels possess a greatest
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lower bound. The label of a compatible concept node set S is l(S) = glb({l(x) | x ∈
S}).

Compatibility is strongly related to homomorphism: If a set of concept nodes is
compatible, then these nodes may all be mapped to the same node by a homomor-
phism, and conversely.

More precisely, let us consider two BGs G and H and a homomorphism π from
G to H. If y is a concept node in π(G), then S = π−1(y) is a compatible concept
node set of G. Indeed, for any x ∈ S one has lG(x)≥ lH(y), thus the label set of S has
a lower bound (i.e., the conjunction of all types appearing in S is not a banned type
and at most one individual marker appears in S), and it has a greatest lower bound.

A set of concept nodes S is compatible if and only the nodes in S can be merged
into a single node. Merging these nodes consists of replacing them by a single node
labeled l(S) and having for neighbors the union of the neighbors of all nodes in
S. In terms of elementary specialization operations: first restricting their type to
the conjunction of their types, secondly, if an individual marker m appears in S,
restricting their marker to m, and thirdly joining them.

Property 8.4. Let G be a BG and S be a compatible concept node set of G. The graph
G/S obtained from G by merging S is a BG and there is a (surjective) homomor-
phism from G to G/S.

We shall now define the compatibility of relation nodes, which is more complex
than the concept node compatibility.

The set of partitions of the integer set {1, . . . ,k} is partially ordered by the usual
order on partitions. Given two relations r1 and r2 of the same arity, Pr2 (i.e., the
edge partition associated with r2, cf. Definition 6.2) is thinner than Pr1 (notation
Pr2 ⊆ Pr1 ) if each class of Pr2 is included in (or equal to) a class of Pr1 . Let π be
a BG homomorphism mapping a relation node r in G to a relation node r′ in G′.
Then, Pr is thinner than Pr′ . Indeed, two concept nodes can have the same image,
whereas a node cannot have two images. Moreover, let c′ be a neighbor of r′. For
any neighbor c of r such that Pr[c]⊆ Pr′ [c′], one has and π(c) = c′.
Example. Consider Fig. 8.3, where π is a homomorphism from G to G′, r(a,b,c,d,e,
f ) is in G, π(r) = r′ and r′(u,v,u,v,w,z) is in G′. Pr = {{1},{2}, . . . ,{6}} (it is the
discrete partition), and P′

r = {{1,3},{2,4},{5},{6}}. As Pr[a] = {1} ⊆ {1,3} =
Pr′ [u] and Pr[c] = {3} ⊆ {1,3}= Pr′ [u], one has π(a) = π(c) = u.
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Similar to concept nodes, a set of relation nodes is said to be compatible if these
nodes can be merged, i.e., they may all be mapped to the same node by a homomor-
phism.

More precisely, let G and H be two BGs, π a homomorphism from G to H and y a
relation node in π(G). The set of relation nodes A = π−1(y) = {r1, . . . ,rk} satisfies:

1. All ri have the same arity and furthermore for any i = 1, . . . ,k one has lG(ri) ≥
lH(y), therefore the set {lG(r1), . . . , lG(rk)} has a lower bound.

2. For any i = 1, . . . ,k, the partition Pri is thinner than or equal to Py, and thus the
least upper bound P(A) of all the Pri is thinner than or equal to Py.

3. Let C(A) denotes the set of concept nodes which is the union of the neighbors of
all nodes in A. For any class X in P(A), let C(X) be the subset of C(A) containing
concept nodes linked to a node in A by an edge numbered with an integer in X .
Let C(A) = {C(X) | X ∈ P(A)}. Every concept node in C(A) belongs to at least a
subset C(X) ∈ C(A) and possibly to several such subsets. C(A) is thus a covering
of the set C(A). Let PC(A) denote the thinnest partition of C(A) greater than (or
equal to) this covering, PC(A) is a compatible partition of C(A).

Example. Let us assume that π is the homomorphism from G to H represented in
Fig. 8.4, with π(r1) = π(r2) = r′. A = π−1(r′) = {r1,r2}. Pr1 = {{1,2},{3}}, Pr2 =
{{1},{2},{3}}, C(A) = {a,b,c,d}, P(A)={{1,2},{3}}, C(A)={{a,b,d},{b,c}},
and PC(A) = {{a,b,c,d}}.
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Fig. 8.4 Two relation nodes with the same image

A set of relation nodes satisfying all the previous properties is called a compatible
relation node set.

Definition 8.3 (Compatible relation nodes). A compatible relation node set of a
BG G is a set A = {r1, . . . ,rk} of relation nodes in G satisfying the following con-
straints:

• All relations in A must have the same arity; moreover, the set of labels of A must
have a lower bound (in the vocabulary upon which G is built),

• let C(A) denote the set of concept nodes which are neighbor of at least one rela-
tion node in A; let P(A) denote the lub of the partitions Pri , i = 1, . . . ,k; let PC(A)
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be the least partition containing the covering C(A) of C(A) associated with P(A);
each class of PC(A) must be a compatible set of concept nodes.

As for the concept nodes, if a set of relation nodes is compatible, one can define
a specialization operation that consists of merging these relation nodes.

Definition 8.4 (Compatible Relation Nodes Merging). Let A = {r1, . . . ,rk} be a
compatible relation node set of a BG G. The graph G/A obtained from G by merging
A is defined as follows.

• Compute the partition P(A), i.e., the lub of the partitions Pri .
• Compute C(A) = {C(X) | X ∈ P(A)} and PC(A), i.e., the thinnest partition of

C(A) greater than or equal to C(A).
• Merge each class of PC(A) (which involves a sequence of concept restrict and

join).
• Restrict the types of the relation nodes in A to l(A), a maximal lower bound of
{l(r1), . . . , l(rk)} (now, all relation nodes in A are twin relation nodes).

• Merge A into a single relation node labeled l(A) (i.e. remove all but one of the
twin relation nodes in A).

Note that if the relation type set is not an inf-semi-lattice, then a set of types may
have several maximal lower bounds and the operation is not deterministic.

Property 8.5. Let A be a compatible relation node set of a BG G. The graph G/A
obtained from G by merging A is a BG and there is a (surjective) homomorphism
from G to G/A.

Proof. Let A = {r1, . . . ,rk}. Each class of PC(A) is a compatible concept node set;
thus it can be merged (while keeping a BG). Let us check that after step 4 all nodes
in A are twin nodes. They have the same label l(A), so it remains to verify that if x
and y are i-th neighbors of r j and rl , respectively, then they are in the same class of
PC(A) (thus they are merged into a single node in step 3). Indeed, let X be the class
of i in P(A); x and y belong to C(X), which is included in a class of PC(A). Thus
step 5 keeps a BG. ��

8.2.2 Maximal Join

Maximal join is an important operation in conceptual graph applications. Intuitively,
the effect of the maximal join operation is to maximally join, or merge, connected
subgraphs of two graphs. It is mainly used to do plausible inference by applying
conceptual schemata, typical patterns, etc., to facts.

Although there is agreement on the intuitive purpose of this operation, a lot of
variants are considered in practice. In this section, we will thus present the general
ideas behind the maximal join, some variations, and give a simple algorithm that
illustrates one way of implementing this operation. Section 8.3 will provide the
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formal foundations required to define the notion of extended join, with maximal
join (and its variations) being a particular case of it.

Let us start with the simplest way of joining two graphs, the external join opera-
tion (by distinction with the elementary join operation already defined, which is also
sometimes called internal join). The external join consists of merging two concept
nodes of two disjoint graphs, say G and H.

Definition 8.5 (External join). Let G and H be two (disjoint) BGs and c and d be
two compatible concept nodes in G and H, respectively. The external join of c in G
and d in H is the BG obtained by first, computing G + H, secondly, restricting the
labels of c and d to their glb l, then by identifying c and d.

Since an external join can be decomposed into elementary specialization opera-
tions, the graph obtained is a common specialization of G and H.

A way of extending an external join of c in G and d in H consists of searching
mergeable neighbors (i.e., relation nodes) of c and d, then to check if new con-
cept nodes neighbors of these relations can be merged, and so on. Said otherwise,
starting from a pair of compatible concept nodes, the idea is to search, in a greedy
way, mergeable neighbors of previously identified mergeable nodes. The algorithm
stops when it is impossible to find new mergeable nodes. The result is thus locally
“maximal,” hence the name maximal join for this class of operations.

In order to specify a maximal join operation, one has to define a condition for
merging concept nodes and a condition for merging relation nodes (the nodes must
be at least compatible, but stronger conditions may be enforced) as well as a strategy
for exploring the graphs. Given two mergeable concept nodes as a starting point,
there may be several maximal joins, but computing one of them can be done in
polynomial time, whereas computing a maximal join with a maximum number of
nodes is NP-hard (indeed it admits homomorphism or injective homomorphism as
a special case, cf. Sect. 5.2).

We now describe a very simple maximal join algorithm. The graph exploration
involves extending the initial external join by a breadth-first strategy. One seeks
strongly compatible pairs of relation nodes defined as follows:

Definition 8.6 (Strongly compatible pair of relation nodes). Two relation nodes
r ∈ G and s ∈ H are strongly compatible with respect to compatible concept nodes
c ∈ G and d ∈ H if they fulfill:

• type(r) = type(s),
• there is an integer i with (r, i,c) ∈ G and (s, i,d) ∈ H,
• Pr = Ps and for each class of Pr (or Ps) if c′ (resp. d′) is the neighbor of r (resp.

s) associated with this class, then {c′,d′} is a pair of compatible concept nodes.

Starting from the concept node pair (c,d), the algorithm seeks in a greedy way a
maximal set of strongly compatible pairs of relations with respect to c and d: a first
pair (r,s) is sought, then another pair disjoint from (r,s) is sought and so on until no
new pair can be built in the neighborhood of c and d. The found relation pairs yield
concept node pairs, which are used as starting points for a new step.
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An important point is that the compatibility of concept nodes evolves during
the process. For instance, let (c1,c3) and (c2,c3) be two pairs of initially compatible
concept nodes; assume that the process leads to add the pair (c1,c3) to f ; the label of
c2 may be incompatible with the label of the node that will be obtained by merging
c1 and c3 (i.e., lG(c2) may be incompatible with glb({lG(c1), lH(c3)}). That is why
the algorithm maintains two labeling functions memorizing the “current label” of
concept nodes: These functions are initially equal to those of the input graphs and,
when a pair of concept nodes is added to f , the current label of these nodes becomes
the glb of their former current labels. A concept node may appear in several pairs,
thus its current label may change several times.

The result of the algorithm is first, the pair ( f ,g), and secondly, new labeling
functions l′G and l′H for concept nodes. Effectively computing the maximal join of the
input graphs consists of merging the nodes of f and g pair by pair. No computation
is necessary to obtain the labels of the new nodes: Merged relation nodes have the
same label, and merged concept nodes have the same label by l′G and l′H , which is
exactly the label of the new node.

If the relation nodes are first merged according to g, there is no need to consider
f , since concept merging follows from relation merging. If the concept nodes are
first merged according to f , relation nodes of the same pair become twins, and a
twin per pair has to be removed (i.e., by a sequence of relation simplify operations).

Hereafter we give the schema of a maximal join algorithm.
The set ToExplore contains pairs of concept nodes that have been added to f but

whose neighborhood has not yet been explored. The boolean explored is used to
explore the neighborhood of a given pair (x,y): Initially false, it becomes true when
no new pairs of relation neighbors of x and y can be built.
Example. Figure 8.5 presents two BGs G and H. For simplicity, it is assumed that
all concept nodes have the same label. Starting with concept nodes 1 and a, two
maximal joins that do not have the same number of nodes can be obtained. The first
one is defined by the mapping 1 �→ a, 2 �→ b, 3 �→ c, and the second one by 1 �→ a,
2 �→ d, 3 �→ e, 4 �→ f , 5 �→ g.
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Algorithm 23: Maxjoin(G,H,c,d)
Input: two BGs G and H, two compatible concept nodes c ∈ G and d ∈ H
Output: a pair ( f ,g) defining a maximal join of G and H with respect to (c,d), with f being

the set of concept node pairs and g being the set of relation node pairs; l′G and l′H
are labeling functions

begin
l′G ← lG
l′H ← lH
g ←∅
f ←{(c,d)}
ToExplore ←{(c,d)}
while ToExplore �= ∅ do

Remove (x,y) from ToExplore
explored ← f alse
while not explored do

if there is a pair (r, r′) of strongly compatible relation nodes with respect to
(x,y), l′G and l′H , such that r /∈ g, r′ /∈ g then

g ← g∪{(r, r′)}
foreach neighbor e of r, with e �= x do

let e′ = corresponding(e, r, r′)
if (e,e′) �∈ f then

f ← f ∪{(e,e′)}
ToExplore ← ToExplore∪{(e,e′)}
l′G(e) ← glb(l′G(e), l′H(e′)
l′G(e′) ← glb(l′G(e), l′H(e′)

else
explored ← true

return ( f ,g), l′G, l′H
end

Figure 8.6 shows that the joined subgraphs are not necessarily isomorphic. As-
sume that all concept nodes in G and H have the same label. Starting from (1,a),
each relation neighbor of 1 is matched with the relation of the same label neighbor
of a. Thus g = {(2,b),(3,c),(4,d)} and f = {(1,a),(5,e),(6,e),(7, f ),(7,g)}. The
concept nodes 5, 6 and e will be merged into a single node, as well as the concept
nodes 7, 8 and f . In this particular example, G and H are completely joined. Thus
they map entirely to the obtained graph.

Let us use this figure to illustrate the role of concept node labels. Assume that
(5,e) and (6,e) are pairs of compatible concept nodes, but that {5,6,e} is not a
compatible set. E.g., lG(5) = (t,a), lG(6) = (t,b) and lH(e) = (t,∗). If (2,b) is the
first relation pair added to g, then the pair (5,e) is added to f , and the current label
of 5 and e becomes (t,a). Consequently, (6,e) is no longer a compatible pair. Thus
(3,c) is no longer strongly compatible and cannot be added to f . If (3,c) is consid-
ered before (2,b), then (5,e) becomes an incompatible pair. Thus, depending on the
order in which the relation neighbors of 1 and a are considered, different maximal
joins are obtained.
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Fig. 8.6 Maximal Join of non isomorphic subgraphs

The algorithm can be seen as defining two homomorphisms from subgraphs of
G and H to the same graph. More precisely, let G′ (resp. H′) be the subgraph of G
defined by all nodes which are first (resp. second) components of an ordered pair in
f or g. First, let us point out that G′ and H′ are subBGs of G and H respectively.
Indeed, let r be a relation node in G′. There is a single relation node s in H′ such that
(r,s) is in g and all neighbors of r (resp. s) are first (resp. second) components of
f . Thus, all neighbors of a relation node in G′ are also in G′. Therefore G′ is a BG
(the same holds for H′). Let K denote the BG obtained by merging the correspond-
ing nodes in f and g. K is obtained from G′ and H′ by specialization operations,
therefore G′ and H′ map to K. Furthermore, these homomorphisms are injective on
relation nodes, but not necessarily on concept nodes (Indeed, a concept node may
appear in several pairs, as illustrated by Fig. 8.6).

Depending on the properties desired for homomorphisms from G′ and H′ to K,
one can adapt the condition for merging relation or concept nodes. By considering
stronger conditions for node merging, one obtains homomorphisms with stronger
properties, but the number of nodes in G′ and H′ can be smaller. By consider-
ing weaker conditions for node merging, one obtains homomorphisms with weaker
properties, but the number of nodes in G′ and H′ can be greater. Let us give some
examples.

Assume we want to make f injective, so that the joined subgraphs are isomor-
phic. In MAXJOIN, f is initially injective (It is restricted to the ordered pair (c,d)
and c �= d). The following condition concerning a pair of relation nodes guarantees
that f remains injective after an execution of the while loop.
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Let G and H be two BGs, and let f be an injective correspondence between some
concept nodes in G and some in H. A pair (r,s) of relation nodes, r in G and s in H,
is strongly compatible with respect to f if (r,s) is strongly compatible and if, for any
neighbor c of r and c′ = corresponding(c,r,s), either (c,c′) is in f or neither c nor c′

appears in f . In MAXJOIN, instead of considering “strongly compatible and disjoint
pairs of relation nodes with respect to (x,y),” let us consider “strongly compatible
with respect to f and disjoint pairs of relation nodes with respect to (x,y)”. The
correspondence f built by the algorithm is now injective and the restrictions of f
and g to nodes in G′ and H′ are bijective. Thus, there are bijective homomorphisms
from G′ to K and from H′ to K that, furthermore, do not restrict the relation node
labels. Note also that the compatibility of concept nodes does not evolve during the
algorithm.
Example. Applying this modified algorithm to G and H in Fig. 8.6, assuming
that all concept nodes are pairwise compatible, and starting from (1,a) one ob-
tains either K or K′ drawn Fig. 8.7. K is obtained with g = {(2,b),(4,d)} and
f = {(1,a),(5,e),(7,g)}, and K′ with g = {(3,c)} and f = {(1,a),(6,e),(7, f )}.
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Fig. 8.7 Maximal Joins of isomorphic subgraphs

Instead of reinforcing the condition for merging relation nodes (to obtain bijec-
tive homomorphisms keeping relation node labels), it can be relaxed. For instance,
one can replace the second point in the definition of a strongly compatible pair of
relation nodes by “ type(r) and type(s) have a lower bound.” In this case ( f ,g) de-
fines homomorphisms that are still injective on the relation nodes, but the relation
node labels can be restricted.

Let us end with an example showing how the maximal join can be used to add
plausible information to a BG representing a fact. A schema is a BG associated with
a concept type t gathering typical or plausible information commonly accompanying
the occurrence of an entity of type t (cf. Chap. 13). In Fig. 8.8, H is a schema for the
concept type Drink, with h being its privileged concept node. This schema for Drink
takes meaning in a “baby stories” context, i.e., usually, in a baby stories context, a
drink action has for object milk and for instrument a feeding bottle that contains the
milk. G is a fact containing a concept node c of type Drink. Computing a maximal
join between G and H from an external join between c and h adds plausible relevant
information to G. In the obtained graph, the soft drink has been specialized into
milk, the bottle into a feeding bottle which contains the milk.
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Fig. 8.8 Maximal join with a schema

When several schemas are associated with the same concept type, the situation
is more complex. For instance, let us assume that the previous schema H and the
schema H′ shown Fig. 8.9 are both associated with the concept type Drink, with
this second schema being related to a context “detective novels.” Then maximal join
can be used to determine a plausible context of the fact G in Fig. 8.8 as follows. If the
number of matched nodes in max join(G,H) is greater than the number of matched
nodes in max join(G,H′) then “babies stories” is a plausible context of G, otherwise
a plausible context of G is “detective novels.” As the number of matched nodes in
max join(G,H) is 5 whereas the number of matched nodes in max join(G,H′) is 1,
then the fact G more plausibly concerns a babies story than a detective novel.
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Fig. 8.9 Another schema for the concept type Drink

Maximal join operations are particular cases of the extended join that will be
defined at the end of the next section.

8.3 Compatible Partitions and Extended Join

In this section, we first study the partition of the node set of a BG induced by a
homomorphism. This notion is then used to define the extended join of two BGs.
A maximal join of two BGs G and H induces two particular homomorphisms from
G and H to the same graph. Similarly, an extended join of G and H induces homo-
morphisms from G and H to the same graph, but these homomorphisms are more
general. Finally, we consider a particular extended join that merges concept node
only, and is useful, for instance, in rule processing.

8.3.1 Compatible C-Partition and R-Partition

Let us now consider the partitions of the concept and relation node sets of a BG in-
duced by a homomorphism. Let G and H be two BGs and let π be a homomorphism
from G to H. A partition Pπ of the node set of G can be defined as follows: Two
nodes are in the same class of Pπ if they have the same image by π , i.e., two nodes
x and y in G are equivalent modulo Pπ if π(x) = π(y). Pπ is composed of a partition
of the concept node set of G such that any class of this partition is a compatible set
of concept nodes and a partition of the relation node set of G such that any class of
this partition is a compatible set of relation nodes (cf. Sect. 8.2.1).

Conversely, if PC (resp. PR) is a partition of the concept (resp. relation) node set
of a BG G, then we give conditions for the quotient graph G/PC (resp. G/PR) to
be a BG. In this case, there is a (surjective) homomorphism from G to G/PC (resp.
G/PR).

If PR is a partition of the relation node set of a BG G, G/PR is defined like G/PC
(cf. Definition 2.22). Note that if P is a partition of a subset of the node set of a BG,
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one can still consider G/P by supplementing P with classes having a single node
for all nodes that are not in a class of P

Definition 8.7 (Compatible C-partition). A compatible C-partition of a BG is a
partition P of its concept node set such that any class in P is a compatible concept
node set.

Property 8.6. Let G be a (normal) BG and π be a homomorphism from G to H,
then π induces a compatible C-partition of G. Conversely, let PC be a compatible
C-partition of G, then the graph G/PC obtained by merging each class of PC is a
(normal) BG and there is a surjective homomorphism from G to G/PC.

Proof. The first part comes from the definition of a compatible set of relation nodes.
The second part is obtained by recurrence on the number of classes in PC. Let
PC = {S1, . . . ,Sk}. Then G/S1 satisfies property 8.5. One concludes by noting that
G/{S1, . . . ,Sk}= (G/S1)/{S2, . . . ,Sk}. ��

Let us now consider the relation nodes.

Definition 8.8 (Compatible R-partition). A compatible R-partition of a BG is a
partition P = {A1, . . . ,Ak} of its relation node set such that:

• Any class in P is a compatible relation node set,
• the partition PC(PR) which is the lub of all the PC(Ai)′-s is a compatible C-

partition, where PC(Ai)′ denotes the partition of the whole concept node set ob-
tained by completing PC(Ai) by a trivial class for each concept node that does not
belong to a class of PC(Ai).

Example. Consider in the BG of Fig. 8.10, A = {r1,r2}. Then C(A) = {a,b,c,d},
Pr1 = {{1},{2,4},{3,5}}, Pr2 = {{1,2},{3},{4},{5}}, PA = {{1,2,4},{3,5}}
and the covering induces by PA is {{b,c,d},{a,c}}. Thus, PC(A) is equal to
C(A) = {a,b,c,d}. As C(A) is compatible, A is a compatible set of relation nodes.
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Fig. 8.10 {r1, r2} is a compatible set of relation nodes

The following property is obtained with a proof similar to that given for Prop-
erty 8.6:
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Property 8.7. Let G be a (normal) BG and let π be a homomorphism from G to H,
then π induces a compatible R-partition of G. Conversely, let PR be a compatible
R-partition of G, then the graph G/PR obtained by merging each class of PR is a
(normal) BG and there is a surjective homomorphism from G to G/PR.

After considering compatible C-partitions and compatible R-partitions, let us
now consider both the concept and relation node sets.

A compatible partition of a BG is composed of a compatible C-partition and a
compatible R-partition which are not independent.

Definition 8.9 (Compatible partition of a BG). Let G be a BG, PC a partition of
the concept node set of G and PR a partition of relation node set of G. PC ∪PR is a
compatible partition of G if:

• PR is compatible,
• PC is compatible and PC ⊇ PC(PR).

Let P = {PC,PR} be a compatible partition of a (normal) BG G = (C,R,E, l). A
quotient BG G/P is obtained from G and P as follows. First, the (ordinary) quotient
graph G/P is built. Then the node associated with a class of PC is labeled by the glb
of the labels of the class, and the node associated with a class of PR is labeled by a
maximal lower bound of the labels of the class. If there are several such maximal
lower bounds, then several G/P can be defined. They all have the same structure but
the labels of the relation nodes can be different.
Example. Let G be the BG presented Fig. 8.11. It is assumed that PC = {{a,b,c,d, f},
{e}} is a compatible C-partition and that type(r1) = type(r2) and type(r3) =
type(r4). Let us check that PR = {{r1,r2},{r3,r4}} is a compatible R-partition.
Pr1 = {{1}, {2,4},{3,5}}, Pr2 = {{1,2},{3},{4},{5}}, P(r1,r2) = {{1,2,4},
{3,5}}. The covering associated with {r1,r2} is {bcd,ac} thus PC({r1,r2}) =
{abcd}.
Pr3 = {{1},{2}}, Pr4 = {{1},{2}}, P(r3,r4) = {{1},{2}}. The covering associated
with {r3,r4} is {d f ,e} thus PC({r3,r4}) = {d f ,e}. Finally, PC(R) = PC; therefore
PR is a compatible R-partition and {PC,PR} is a compatible partition of G.
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Fig. 8.11 {{r1, r2},{r3, r4}} is a compatible partition of the relation node set
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The quotient graph G/P is presented Fig. 8.12.

{e}{a,b,c,d,f}

{r1,r2} {r3,r4}

1 21,2,3,4,5

Fig. 8.12 The quotient graph G/P associated with G and P in Fig. 8.11

Theorem 8.1. 1. If P is a compatible partition of a BG G then there is a surjective
homomorphism from G to (any) G/P.

2. Let G and H be two BGs. A mapping π from G to H is a BG homomorphism if
and only if the partition of the node set of G induced by the equality of the images
by π is a compatible partition of G.

3. If the only compatible partition of a BG is the trivial partition, i.e., each class is
restricted a single node, then it is irredundant.

Proof. 1. The mapping which associates to any node of G its class in P is a homo-
morphism from G to G/P.

2. If there is a homomorphism from G to H, then the partition of the node set of
G induced by the equality of the images by π is a compatible partition of G. In-
deed, PC and PR are compatible partitions by definition of a homomorphism, and
PC is greater than PC(PR) by definition of the underlying graph homomorphism.
Furthermore, there is a bijective homomorphism from G/P to π(G), and for any
class {c1, . . . ,ck} of PC let y be the concept node in H such that for i = 1, . . . , p,
π(ci) = y then glb({l(ci) | i = 1, . . . , p} ≥ l(y). The same applies for any class of
PR.

3. If the only compatible partition of a BG G is the trivial partition, i.e., each class
is restricted a single node, then G is irredudant. Indeed, if there is a non-injective
homomorphism from G to itself, then there is a non-trivial compatible partition.
��

Note that even if a graph is irredundant, it can have non-trivial compatible parti-
tions, as shown in Fig. 8.13 where G is irredundant; nevertheless there is a surjective
homomorphism from G to H, and G has a non-trivial compatible partition.
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Fig. 8.13 An irredundant graph with a non-trivial compatible partition

8.3.2 Extended Join

We have considered so far two join operations, which build a common specializa-
tion of two BGs by merging parts of them. The external join can be considered
as a merging of two trivial subgraphs (they are restricted to a single node). In the
maximal join algorithm described in Sect. 8.2.2, two connected subgraphs, obtained
by maximally extending an external join, can be merged. In this section, we con-
sider the extended join operation, which generalizes the previous joins, by allowing
subgraphs of any form to be merged.

Definition 8.10 (Fusionnable BGs). Let G1 and G2 be two BGs. They are fu-
sionnable if there are partitions P1 and P2 respectively compatible on G1 and G2,
such that there is an isomorphism f from G1/P1 to G2/P2, and f fulfills: For any
node x in G1/P1, {x, f (x)} is compatible.

The fusion of two fusionnable BGs G1 and G2 consists of merging any x in
G1/P1 with f (x). Let H be the BG obtained by such a fusion. H can be obtained
from G1/P1 by replacing the label of any node x by glb(l(x), l( f (x))). G1/P1 and
G2/P2 are more general or equal to H, and we have:
Property 8.8. If G1 and G2 are fusionnable then there is a BG H and two surjective
homomorphisms from G1 to H and from G2 to H.

Definition 8.11 (Extended join). An extended join operation between two BGs
consists of fusionning two of their fusionnable subBGs.

The Fig. 8.14 illustrates the extended join between two BGs L and M. f1 and
f2 are the canonical surjective homomorphisms from G1 to G1/P1 and from G2 to
G2/P2, g1 and g2 are bijective homomorphisms. g1 ◦ f 1 and g2◦ f 2 are the surjective
homomorphisms of Prop. 8.8.

8.3.3 Join According to a Compatible Pair of C-Partitions

The join defined in this section can be seen as a generalization of the external join,
and as a particular extended join. With respect to the external join, instead of only
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Fig. 8.14 Extended join between the BGs L and M

joining a concept c1 in G1 and a concept c2 in G2, several compatible sets of concept
nodes in G1 and in G2 are joined. With respect to the extended join, only concept
nodes are joined.

Definition 8.12 (Compatible Pair of C-partitions). Let P1 = (p11 , . . . , p1k) and
P2 = (p21 , . . . , p2k) be two ordered partitions with the same cardinality over two
subsets of the concept node sets of two BGs G1 and G2. {P1,P2} is a compatible
pair of C-partitions if for all i, i = 1, . . . ,k, the set p1i ∪ p2i is compatible.

Note that if {P1,P2} is a compatible pair of C-partitions, then P1 and P2 are com-
patible C-partitions of subsets of the concept node sets of G1 and G2.

The join of two graphs with respect to a compatible pair of C-partitions is de-
scribed in two steps. The first step consists of merging in G1 (resp. G2) the classes
of P1 (resp. P2) using the labels of classes of P2 (resp. P1). More precisely,

Definition 8.13 (Specialization of a BG with respect to a compatible pair of C-
partitions). Let P1 = (p11 , . . . , p1k) and P2 = (p21 , . . . , p2k) be a compatible pair of
C-partitions of G1 and G2. The specialization of G1 with respect to P1 and P2 is the
graph G1(P1,P2) built from G1 as follows:

• the label of any concept node in a class p1 j of P1 is specialized into glb(p1 j∪ p2 j),
• each class of P1 is merged.
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The join of two graphs with respect to a compatible pair of C-partitions can now
be defined.

Definition 8.14 (Join of two BGs with respect to a compatible pair of C-parti-
tions). Let P1 and P2 be a compatible pair of C-partitions of G1 and G2. The join
of G1 and G2 with respect to P1 and P2 is the graph obtained from G1 and G2 as
follows. First, build G1(P1,P2) and G2(P2,P1). Then, for all i join c1i and c2i, which
are respectively the node of G1(P1,P2) obtained by merging the i-th class of P1 and
the node of G2(P2,P1) obtained by merging the i-th class of P2.

Said otherwise, the join of G1 and G2 with respect to P1 and P2 is obtained from
G1 +G2 by merging the nodes of each set p1i ∪ p2i , 1≤ i≤ k.

If the C-partitions are empty, the join is simply a disjoint sum of G′
1 and G′

2. If
each C-partition is restricted to a single class with a single node, the join is simply an
external join. Classes of P1 and P2 may contain concept nodes of several connected
components. In such cases, the join can stick several connected components.

The join of two graphs with respect to a compatible pair of C-partitions will be
used for processing rules in backward chaining (see Chap. 10).

8.4 G-Specializations

Let G be a set of BGs. The main goal of this section is to give a computational
characterization of the set of G-specializations. A G-specialization is simply a BG
which can be obtained from G by using a finite number of elementary specialization
operations (cf. Sect. 3.4). Such a set G is sometimes called a “canonical base” of
BGs and, in this case, a G-specialization is called a “canonical BG.” BGs built on
a given vocabulary can be be considered as canonical BGs generated by star BGs.
Thus an inductive definition of BGs is stated. In order to achieve Theorem 8.3,
which is the main result of this section, we study surjective homomorphisms and
define the union of a set of (non-necessarily disjoint) BGs.

8.4.1 Surjective Homomorphism

In this section, the unary specialization operations and their relationships with ho-
momorphism are only considered. We also state an inductive definition of a BG that
differs from the definition given in Chap. 2.

Definition 8.15 (Gα ). Let α = {s,r, j} be the set of the unary strict specialization
operations (s for relation simplify, r for restrict, and j for join) and let G be a BG.
Gα is the set of BGs inductively defined by:

• (basis) G ∈ Gα ,
• (rules) If o ∈ α and H ∈ Gα then o(H) ∈ Gα .
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One has:

Property 8.9. Let G and H be two BGs. There is a surjective homomorphism from
G to H if and only if H is isomorphic to an element of Gα .

Proof. Let H be isomorphic to an element of Gα . If H = o(G) with o ∈ α , then
there is a surjective homomorphism π from G to H defined as follows.

1. If o = s and r’ a twin node of r is deleted then π(r′) = r and for all node x �= r′

π(x) = x,
2. if o = r then π is the identity,
3. if o = j and c and c′ are identified then π(c′) = c and for all node x �= c′ π(x) = x.

The composition of surjective homomorphisms is a surjective homomorphism,
so one obtains the sufficient condition. Reciprocally, let π be a surjective homo-
morphism from G to H. The following sequence of unary specialization operations
transforms G into H:

1. Let G1 be the BG obtained from G by restricting the label of any concept x to the
label of its image π(x) in H,

2. let G2 be the BG obtained from G1 by successively joining all concepts having
the same image in H,

3. let G3 be the BG obtained from G2 by successively simplifying all relations in
G2 having the same image in H, G3 is isomorphic to H.
��

Property 8.10. Let G and H be BGs, then G  H if and only if there is a subBG of
H which is isomorphic to an element of Gα .

Proof. If G  H, let us consider a homomorphism π from G to H. Then there is a
surjective homomorphism from G to π(G), which is a subBG of H. One concludes
with the preceding property for the necessary part. Conversely, let us suppose that
K is a subBG of H, with K being isomorphic to L ∈ Gα . Therefore, G  L, K
isomorphic to L, and K  H, yield G H. ��

In graph theory, a homomorphism is called complete if it is faithful and surjective.
As a BG homomorphism is faithful, one can replace surjective homomorphism by
complete homomorphism.

8.4.2 Union

The union of two (not necessarily disjoint) BGs is a partial operation defined as
follows.

Definition 8.16 (Union of two BGs). Let G=(CG,RG,EG, lG) and H=(CH ,RH ,EH ,
lH) be two BGs such that any node common to G and H has the same label in G and
H. The union of G and H is the BG (CG∪CH ,RG∪RH ,EG∪EH , lG∪H) where lG∪H
is defined by:
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• if x is a node in G which is not in H, then lG∪H(x) = lG(x),
• if x is a node in H which is not in G, then lG∪H(x) = lH(x),
• if x is a node in G and H, then lG∪H(x) = lH(x) = lG(x).

Property 8.11. Let G = (C,R,E, l) and G′ = (C′,R′,E′, l′) be two BGs such that for
any node or edge x in (C,R,E)∩ (C′,R′,E′) l(x) = l′(x) . (C∪C′,R∪R′,E ∪E′, l∪
l′) is a BG if and only if graph(G)∩graph(G′) provided with the labeling function
l (or l′) is a BG.

Proof. If (C∪C′,R∪R′,E ∪E′, l ∪ l′) is a BG and r is a relation in graph(G)∩
graph(G′) all its neighbors must be within G and G′. Otherwise there are two edges
(r, i,c) and (r, i,c′) with c �= c′; thus r has two i-ith neighbors in the union of G and
H. Therefore, the intersection of G and G′ is a BG. Reciprocally, let us suppose that
graph(G)∩ graph(G′) is not a BG, even if for any node or edge x in graph(G)∩
graph(G′) l(x) = l′(x) . Then there is a relation r in graph(G)∩ graph(G′) that
does not have all its neighbors in graph(G)∩graph(G′), and the union of G and G′

is not a BG because r does not fulfill the condition of BG. ��

Whenever the union operation is defined on a set of BGs it is a specialization
operation. More precisely,

Property 8.12. If a BG G is equal to the union of a set of BGs {G1, . . . ,Gk}, then G
is a specialization of the extended disjoint sum G′

1 + . . .+G′
k, such that for all i �= j

G′
i and G′

j are disjoint and Gi and G′
i are isomorphic for every i = 1, . . . ,k.

Proof. By recurrence on k. The property is true if k = 1. Let us consider a BG
G which is the union of k + 1 BGs G1, . . . ,Gk+1 and let H denote the union of
G1, . . . ,Gk. H is a BG and it is a specialization of G′

1 + . . . + G′
k. Let us consider

the union of H and Gk+1. The intersection K of H and Gk+1 is a BG K (cf. Prop-
erty 8.11). Let us consider the disjoint sum H + G′

k+1. By joining the concepts in
H and in G′

k+1 corresponding to a concept in K, and by deleting twin relations, one
obtains the union of H and Gk+1 which is equal to G. ��

Property 8.13. Let T be a specialization tree of G with k leaves labeled by H1, . . . ,
Hk. For all i = 1, . . . ,k there is a homomorphism πi from Hi to G such that G =
∪1,...,kπi(Hi).

Proof. For each i = 1, . . . ,k Hi is a generalization of G, therefore there is a homo-
morphism πi from Hi to G, and πi(Hi) is a subBG of G. Let us prove by recurrence
on the number n of nodes of T that the union of these sub-BGs is equal to G. The
property holds if n = 1. If G has only one predecessor H in T then G = op(H),
where op is one of the unary specialization operations. By the recurrence hypothe-
sis, H is equal to ∪1,...,kπ ′

i (Hi). One concludes by considering πi = π ◦π ′
i where π

is the surjective homomorphism associated with op as defined in property 8.9. If G
is the disjoint sum of two BGs H and K, the set {H1, . . . ,Hk} can be partitioned into
{K1, . . . ,Kl} and {M1, . . . ,Mm}, and by the recurrence hypothesis, H =∪1,...,lαi(Ki)
and K = ∪1,...,mβi(Mi). Then G is equal to the union of these two unions, which is
precisely ∪1,...,kπi(Hi). ��
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8.4.3 Inductive Definition of BGs

In this paragraph, BGs that can be obtained with specialization operations from a
set of BGs are studied.

Definition 8.17 ( G-specialization). Let G be a set of BGs. A BG G is called a G-
specialization if it is obtained by a specialization tree whose leaves are all labeled by
BGs in G. Stated otherwise, the set of G-specializations is the set of BGs inductively
defined with:

• (basis) the set G,
• (rules) the elementary specialization operations.

In Sect. 2.1.2 a star BG is defined as a BG restricted to a relation node and its
neighbors (cf. Definition 2.3). Elementary star BGs are specific star BGs defined as
follows:

Definition 8.18 (Elementary Star BG). The elementary star BG associated with
a relation type r of arity k is a BG restricted to a relation node labeled by r and k
neighbors, each labeled by (�,∗).

The BGs on V can now be inductively defined as follows.

Theorem 8.2. Let GV denote the set of elementary star BGs associated with a vo-
cabulary V plus a BG, denoted [�], reduced to a single concept node labeled by
(�,∗). The set of GV -specializations is equal to the set of (non-empty) BGs on the
vocabulary V .

Proof. Any GV -specialization is a BG on V . Let us prove, by recurrence on the
number of relation nodes, that if G is a BG on V then it is a GV -specialization. If G
has no relation node and k concept nodes xi labeled by ai, then G can be obtained
from the BG [�] with k− 1 disjoint sums, then restricting the labels of k nodes
to a1, . . . ,ak. If a BG G has k ≥ 1 relation nodes, then let us consider one relation
node r. If H is obtained from G by deleting r, then H can be obtained by a GV -
specialization (recurrence hypothesis). Let us consider the subBG K of G induced
by r. This BG can be obtained from the star BG associated to the type of r by a
sequence of concept restrictions and joins. Finally, one makes the disjoint sum of
H and K, and if (r, i,c) is in G, the node c in H is joined to the i-th neighbor of the
relation in K. ��

Note that if the relation types are equipped with signatures (cf. Sect. 2.1.1), then
the elementary star BG associated with the relation type r is the star BG having its
relation node labeled r and its i-th neighbor, for i = 1, . . . ,arity(r), labeled by σ(r),
i.e., the maximal concept type of the i-th neighbor of a relation node labeled r.
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8.4.4 G-Specializations

G-specializations can occur in design problems, particularly in the synthesis or ana-
lysis of complex objects. Let us consider a box with k legs which may represent an
abstraction of a simple physical object, e.g., a piece of a jigsaw, an electronic circuit,
a mechanical device, an atom (see Fig. 8.15). The box type indicates the type of
device, and leg types represent the connections of a box.

Let us assume that boxes can be glued together by means of legs for building
complex objects. In Fig. 8.15, two boxes are represented as well as their gluing by
identical colors.

Red

Red

BlackPink

Blue

Green

White

Yellow

Black

Black

Black

Red

Red
Blue

Pink

Green

White

Yellow

Fig. 8.15 Boxes with legs

A BG representation of boxes with legs in Fig. 8.15 is given Fig. 8.16. In this
representation, colors are considered as individuals thus gluing by identical colors
corresponds to normalization.
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Fig. 8.16 The boxes with legs example represented as BGs

If the rules gathering boxes are elementary specialization rules (or can be defined
by composition from specialization rules), then the complex objects obtainable from
the boxes correspond to the set of BGs over the vocabulary consisting of the box
and leg types (or a part of that BG set). Indeed, such a box with its legs can be
represented by a star BG. If the elementary pieces from which more complex objects
have to be built are not necessarily boxes but any set G of BGs, then the complex
objects are G-specializations.

A BG that is a G-specialization is sometimes called a canonical BG with respect
to the set G, which is called a canon.

The following property can be used to build an algorithm for recognizing a G-
specialization, which is polynomial in the complexity of a BG homomorphism al-
gorithm.

Theorem 8.3. Let G be a set of BGs. A G-cover of a BG G is a set {G1, . . . ,Gp} of
elements of G such that: G = ∪i=1,...,pGi. If a BG G has no isolated concepts, then
the three following properties are equivalent:

1. G is a G-specialization
2. there is a Gα -cover of G
3. for all relations r of G there is a homomorphism π from a Bi ∈ G to G with

r ∈ π(Bi)
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Proof.

• 1⇒ 2
Let us consider a G-specialization G. There is a specialization tree T of G with
all its leaves labeled with elements of G. Thus, with property 8.9, π(Bi) is an
element of Bα

i , and one concludes with Property 8.13 in which the union is a
Gα -cover.

• 2⇒ 3
Let us consider a BG G having a Gα -cover {G1, . . . ,Gk}. Any relation r of G
belongs to some Gi, a subBG of G which is an element of Gα . One concludes
with Property 8.9.

• 3⇒ 1
Let Br1 , . . . ,Brk denote the elements of G associated with relations r1, . . . ,rk of
G, and πi a homomorphism such that r ∈ πi(Bri). Each Bri is specialized into
πi(Bri). Then one makes the union of these BGs, which is equal to G (as there
are no isolated concepts in G, a cover of the relations is a cover of the whole BG).
One concludes with property 8.12.
��

The third characterization of a G-specialization in Theorem 8.3 leads to the fol-
lowing CANONICAL algorithm for G-specialization recognition.

Let us assume that there is a function HOM(Bi,G,r), where Bi ∈ G, G is a BG
and r is a relation node in G, which returns ∅ if there is no homomorphism from Bi
to G that maps a relation node in Bi to r, otherwise it returns such a homomorphism
π (and one says that “π covers r”).

Algorithm 24: CANONICAL (G is a BG, G is a canonical base)
Input: a BG G not reduced to a single concept node
Output: returns True if G is a G-specialization, otherwise False
begin

R is the relation node set of G
Rel ← R
// relation nodes not yet covered
while Rel �= ∅ do

covered ← False
Let r ∈ Rel
forall Bi ∈ G do

π ← HOM(Bi,G, r)
if π �= ∅ then

Rel ← Rel \{relation nodes appearing in π}
covered ← True
Exit(For loop)

if ¬covered then
return False

return True
end
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Initially, Rel contains all relation nodes in G. The algorithm iteratively tries to
cover a relation node r that has not already been covered (by a graph Bi). Whenever
a homomorphism covering r is found, then other relation nodes can be covered by
the same homomorphism and all these nodes are removed from Rel. If r cannot
be covered, the algorithm returns False. If Rel becomes empty, all relation nodes
have been covered and the algorithm returns True.

The time complexity of CANONICAL can be roughly bounded by |R| × |G|×
hom, where hom is the maximum complexity of computing a homomorphism from
a BG to another BG that covers a specific relation node. For known algorithms,
when computing a homomorphism from a BG to another BG the covering condition
does not increase the complexity. Since the problem of a homomorphism between
two graphs is NP-Complete (cf. Sect. 5.2), CANONICAL is exponential here. Nev-
ertheless, one important point is that the complexity of CANONICAL is polyno-
mially related to the complexity of hom. Thus, each time hom is polynomial, so is
CANONICAL.

8.5 Type Expansion and Contraction

The concept and relation types considered so far are primitive types. They are not
explicitly defined, and their meaning is only given by their position in the type hier-
archies and their possible occurrences in relation signatures, rules and other sorts of
knowledge.

If a type t is less than a type t′, this means that every entity of type t is also of
type t′, but nothing is explicitly said about the properties of entities of type t, nor
about what distinguishes a t from any t′. Two kinds of type definitions have been
proposed for conceptual graphs: By necessary and sufficient conditions, or with a
set of prototypes representing typical instances of the type. With the first approach,
an entity is of type t if and only if it fulfills the necessary and sufficient conditions.
With the second approach, an entity is of type t if it is sufficiently similar to one
of this prototype (We find here one application of the maximal join operations: The
similarity can be related to the ratio of nodes in both graphs that are matched by
a maximal join). The logical translation of the first kind of definition is simply a
logical equivalence, while this is not the case for the second kind of definition.

In this section, we consider type definitions by necessary and sufficient condi-
tions. Note that we shall not conduct an in-depth study of type definitions. Studying
how to classify a defined type, i.e., how to find its position in the concept type hi-
erarchy, or extending the specialization/generalization relation between graphs and
studying its relationships with FOL semantics, studying recursive type definitions
and so on, are beyond the scope of this section. Briefly, in this section we do not
extend the conceptual graph model presented in this book with type definitions, we
only consider expansion and contraction operations of a defined type.

Furthermore, we describe these operations for concept type definitions only. Sim-
ilar operations can be provided for relation type definitions (see the bibliographical



236 8 Other Specialization/Generalization Operations

notes). Finally, let us point out that we consider a classical BG vocabulary, thus
without conjunctive types.

Definition 8.19 (Concept type definition). Let V be a BG vocabulary and t be a
symbol which does not belong to V . A concept type definition of t is a unary λ -BG
(c)Dt , where Dt is connected and c is called the head of Dt . Such a type definition
is noted t = (c)Dt .

Example. Assume, for instance, that the vocabulary contains the concept type
Woman and the relation type childO f . One wants to define a new concept type
Mother, by the λ -graph (c)G in Fig. 8.17. This definition says that an entity m is of
type Mother if and only if m is of type Woman and has a child.

Intuitively, a concept type definition is a necessary and sufficient condition for
an entity to belong to this defined type. A definition t = (c)Dt can be considered
as an Aristotelician type definition by genus and difference. The genus of t is the
type of c; its difference is what completes c in Dt . Logically, the definition t =
(c)Dt is naturally translated by the formula ∀x(t(x)↔ Φ((c)Dt)), with the term
assigned to c in Φ((c)Dt) being x. For instance, the definition of the concept type
Mother (Fig. 8.17) is translated into ∀x(Mother(x)↔ ∃y(Woman(x)∧Person(y)∧
childO f (y,x))).

Even if one does not describe the modification of the ordered type set due to the
addition of a defined type, let us assume that, in the enriched vocabulary, the defined
type t is ≤ the type of c (and in general t might be less than other types which are
specializations of, or incomparable with, the type of c).

c Woman PersonchildOf

Fig. 8.17 Definition graph of the concept type Mother

In the same way, a relation type definition is defined as follows.

Definition 8.20 (Relation type definition). Let V be a BG vocabulary, r be a sym-
bol that does not belong to V and k an integer ≥ 1. A k-ary relation type definition
of r is a k-ary λ -BG (c1, . . . ,ck)Dr.

For instance, if the vocabulary contains the relation types parentO f and sibling,
then the binary relation type cousin can be defined by the λ -graph (c1,c2)G in
Fig. 8.18. A definition of a relation type of arity k is a necessary and sufficient
condition for k entities to be linked by this defined relation type, e.g., the enti-
ties represented by c1 and c2 are cousins if and only if they have parents who are
siblings. It is translated into logics in the same way as a concept type definition:
The formula assigned to the definition r = (c1, . . . ,ck)Dr is ∀x1...xk(r(x1...xk)↔
Φ(((c1, . . . ,ck)Dr))), where the variables assigned to c1, . . . ,ck are x1, . . . ,xk respec-
tively. For instance, the definition of the concept type cousin (Fig. 8.18) is translated
into ∀x1∀x2(cousin(x1,x2)↔∃y∃z(Person(x1)∧Person(x2)∧Person(y)∧Person(z)
∧parentO f (y,x1)∧ parentO f (z,x2)∧ sibling(y,z))).
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Note that cousin and sibling are both symmetrical relations, which can be ex-
pressed by BG rules (cf. Chap. 10).

parentOfparentOf

siblingPerson Person

PersonPerson c2c1

Fig. 8.18 Definition graph of the relation type cousin

The expansion of a concept type definition consists of replacing a concept node
with a defined type by the graph defining the type. More precisely:

Definition 8.21 (Concept type expansion). Let G be a graph containing a concept
node x with a defined type t = (c)Dt . The expansion of t at x is the BG exp(G,x,Dt)
obtained by merging x and c, the label of the new node being (t′,m) where t′ is the
type of c and m is the marker of x.

An example is given in Fig. 8.19.
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Fig. 8.19 A concept type expansion

Let us point out the relationships with rules. From a logical viewpoint, a concept
type definition t = (c)Dt can be considered as equivalent to two specific BG rules
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(and more precisely, λ -rules, cf. Chap. 10), say R1 and R2. The hypothesis of the
first rule is a single generic concept node labeled t, its conclusion is Dt , and the node
in the hypothesis is in correspondence with the head of Dt ; the second rule is the
reciprocal rule. See for instance Fig. 8.20, which shows both rules corresponding to
the definition of the concept type Mother.

At first glance, a type expansion looks like an application of the rule R1. However,
there are two differences. First, R1 can be applied to concept nodes with a type less
than t, whereas an expansion can occur only if the concept node has exactly the type
t. Secondly, a rule application cannot generalize the type of an existing node.

Mother

Woman childOf Person

R2

R1

THENIF

THENIF

Woman

Person

childOf

Mother

Fig. 8.20 Rules associated with the definition of the concept type Mother

A concept type expansion may add redundant information. This added redundant
information can be avoided by a more complex type expansion operation relying on
the piece notion that is defined hereafter. This notion will be generalized in Chap. 10,
where pieces are used in backward chaining of rules.

Definition 8.22 (Piece). Let G be a BG and let x be a concept node in G. Two nodes
u and v in G belong to the same piece of x if they are in the connected component of
G containing x and if there is a chain between them that does not go through x, i.e.,
there is a chain w0(= u), . . . ,wi, . . . ,wk(= v) such that wi �= x for all i = 1, . . . ,k−1.

Note that x belongs to all pieces of x and that x has more than one piece if and only if
x is a cut node of G (i.e., the deletion of x strictly increases the number of connected
components).
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The pieces of x can be built as follows. Let H be the connected component of
G containing x, the connected components H1, . . . ,Hk of the graph H− x obtained
from H by deleting x are computed. Then, for i = 1, . . . ,k the piece Ci of x is the BG
obtained from Hi by adding x and all edges in H joining x to a node in Hi. If k = 1
the single piece is H itself.

The BG exp(G,x,Dt) resulting from a concept type expansion can be reduced,
i.e., replaced by an equivalent BG having fewer nodes, by using pieces.

Definition 8.23 (Extended concept type expansion). The extended concept type
expansion of a defined type t = (c)Dt at x in G is the BG extexp(G,x,Dt) obtained
from exp(G,x,Dt), where x still denote the node resulting of the merging of x and
c, as follows. Let C1, . . . ,Ck be the pieces of x in G and let D1, . . . ,Dl be the pieces
of c in Dt . For all i = 1, . . . ,k and j = 1, . . . , l, if D j maps to Ci with c mapped to x,
then D j is deleted from exp(G,x,Dt).

In Fig. 8.21, G is a BG and Dt is the definition of the type t of x in G, all concept
nodes are assumed to be generic, and the type t′′ of z in G is less than the type t′ of
c (i.e., the head of Dt ) and t. Dt and G are restricted to a single piece with respect to
c and x respectively. G does not map to Dt and Dt does not map to G with c being
mapped to x. Thus, extexp(G,x,Dt) is equal to exp(G,x,Dt). One can also check
that G and Dt are irredundant. Nevertheless, extexp(G,x,Dt) is redundant. Indeed,
by folding z onto xc, extexp(G,x,Dt) is transformed into K, which is equivalent to
the subBG H of G.

Note that the reduction used in the extended concept type expansion can also be
done after any external join. Figure 8.21 can be used to show (consider that Dt is a
BG and not necessarily a type definition, i.e., x and c have the same labels) that after
such a reduction the obtained BG can be redundant even though the two joined BGs
are irredundant.

Let us now consider the type contraction operation, which can be more or less
considered as inverse to the expansion. In order to define this contraction opera-
tion, we use the fact that x is a cut node of exp(G,x,Dt), i.e., if x is deleted from
exp(G,x,Dt), two disjoint (not necessarily connected) graphs are obtained, which
correspond to Dt − c and G− x.

Let us assume that a graph G contains a subBG D isomorphic to a concept type
definition graph Dt . If D is shrunk into a single node, then all neighbors of the nodes
in D that are outside D are linked to the new node resulting from the shrinking of D.
This can add irrelevant information, as shown in Fig. 8.22.

In contracting a subgraph corresponding to a type definition, one does not want to
add irrelevant information, but one also does not want to lose relevant information.
For instance, if one knows that Paul is a child of the woman Mary, i.e., if G in
Fig. 8.23 is a fact and if we simply contract the definition of Mother, one obtains
graph H and the fact that Paul is a child of Mary is lost.

To avoid information loss in type contraction, the parts that strictly specialize the
corresponding parts in the type definition are kept. More precisely,

Definition 8.24 (Concept type contraction). Let G be a BG and Dt be a concept
type definition, with head c. Let π be a homomorphism from Dt to G, such that c
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Fig. 8.21 Extended concept type expansion and redundancy
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Fig. 8.22 A problematic contraction of a concept type
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and π(c) have the same type. Let x = π(c). The BG contract(G,x,Dt) is obtained
from G by replacing the type of x with t and, for each piece P of x in G that maps to
a piece of c in Dt (without considering the label of x), deleting P− x.

An example is given Fig. 8.24, where a 4-Wheel is a concept type less than the
concept type BigCar.
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exp(contract(G,x,Dt),x,Dt)

Fig. 8.24 Concept type contraction

Note that contract(exp(G,x,Dt),x,Dt) = G. Indeed, the type of x in exp(G,x,Dt)
is t and it is unchanged by the contraction. Furthermore, the homomorphism is a BG
isomorphism, thus no subBG is added by the contraction. When first computing a
contraction then an expansion, i.e., exp(contract(G,x,Dt),x,Dt), the graph obtained
is not necessarily equal to G (an example is given in Fig. 8.24 when the type Bobo
is expanded in H). Nevertheless, exp(contract(G,x,Dt),x,Dt) is hom-equivalent to
G since the deleted pieces in G are redundant (they map to pieces in Dt ) as well as
the pieces of Dt which are not in G.
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Finally, let us point out that the concept type expansion and contraction opera-
tions, as defined in this chapter, do not change the BG semantics. More precisely,
let G be a BG and G′ be obtained from G by a type expansion or contraction. Let
f be the formula translating the type definition involved in this operation. Then
Φ(V), f |= (Φ(G)↔Φ(G′)).

Like the concept type definition, a relation type definition can be considered as
equivalent to two reciprocal BG rules and similar relation type expansions and con-
tractions can be defined.
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In [Sow84] a maximal join operation is proposed that was implemented in the sys-
tem presented in [SW86]. The definition of a maximal join between two graphs G
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of K. Then, there is a bijection between the concept nodes of the joined subgraphs of
G and H. Maximal joins have been used especially in natural language processing
(e.g., cf. [FLDC86]).

Compatible partitions were introduced in [CM92]. Canonical conceptual graphs
were introduced in [Sow84], and the characterization Theorem 8.3 as well as the
recognition algorithm of canonical graphs were given in [MC93].

Type definitions as well as type expansion and contraction operations were in-
troduced by Sowa [Sow84]. Two kinds of type expansion are defined: the minimal
type expansion, which is the same as ours, and the maximal type expansion, which
essentially extends the minimal type expansion with a maximal join. This second
operation aims at avoiding the creation of redundant parts; but contrary to our ex-
tended type expansion it does not preserve the semantics and might strictly special-
ize the graph. We kept the overall idea of the type contraction operation proposed
by Sowa and precisely define it with graph operations.

Although type definitions were introduced as early as 1984, their processing re-
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[Lec98]) extending the framework of BGs to concept and relation type definitions.
In this framework, recursive type definitions (direct or indirect) are forbidden and a
primitive type cannot be specialized by a defined type. The specialization relation
between BGs is extended by the type expansion and contraction operations, and it
is shown that soundness and completeness properties are kept, i.e., given two BGs
G and H defined on a vocabulary V , G  norm(H) if and only if Φ(V),Φ(H) �
Φ(G), where Φ(V) is the set of formulas associated with the enriched vocabulary,
which now includes formulas translating type definitions. A unique expanded form
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obtained by performing type expansion until stability is associated with each BG.
The expanded form is a BG where all types are primitive (i.e., not defined). Thus
two expanded BGs can be compared by homomorphism. Let us add that to the best
of our knowledge type definitions have never been studied in conceptual graphs
beyond the BG model.




