
Chapter 3
Simple Conceptual Graphs

Overview

Concept nodes representing the same entity are said to be coreferent nodes. In basic
conceptual graphs (BGs) only individual concept nodes may be coreferent. Simple
Conceptual Graphs (SGs) enrich BGs with unrestricted coreference. The introduc-
tion of this chapter develops the discussion concerning equality started in the previ-
ous chapter and presents the conjunctive type and coreference notions. A new defi-
nition of a vocabulary extending the previous one with conjunctive types is given in
Sect. 3.2. Section 3.3 defines SGs. An SG is simply a BG plus a coreference relation.
The coreference relation is an equivalence relation over the concept node set with
the following meaning: All concept nodes in a given equivalence class represent the
same entity.

SG homomorphisms naturally extend BG homomorphisms. In Sect. 3.4, gener-
alization and specialization operations defined on BGs are extended to SGs. Nor-
mal SGs are introduced in Sect. 3.5. An SG is normal if its coreference relation
is the identity relation, i.e., each node is solely coreferent with itself. A normal
SG can be associated with any SG. In fact, normal SGs and normal BGs can
be identified, which emphasizes the importance of normal BGs. The notion of
coref-homomorphism, which is specific to SGs, is introduced in Sect. 3.6. Instead
of mapping concept nodes onto concept nodes as for a homomorphism, a coref-
homomorphism maps coreference classes onto coreference classes. Relationships
between homomorphisms and coref-homomorphisms are studied, and it is shown
that, in the presence of a coreference, the intuitive meaning of generalization or
specialization operations is better captured by coref-homomorphism than by homo-
morphism. The normal form of an SG is in a sense the most compact form of an
SG. The antinormal form studied in the last section can be considered as the most
scattered form of an SG: Each relation node is separated from any other relation
node, and there are no multiple edges.
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60 3 Simple Conceptual Graphs

3.1 Introduction

The essential difference between basic conceptual graphs (BGs) and simple concep-
tual graphs (SGs) is that in SGs several concept nodes not necessarily individual can
represent the same entity. Nodes representing the same entity are said to be coref-
erent, i.e., they refer to the same entity. Then the first question is: Can any pair of
concepts be coreferent?

This question is closely related to the structure and the interpretation of the con-
cept type set. Besides the structure of the ordered concept type set (e.g., a semi-
lattice or lattice), an essential point is how the type hierarchy is interpreted. When
a type is interpreted as a set of entities, the order over the hierarchy is interpreted
as the inclusion. Then, the greatest lower bound (glb) of two types, when it exists,
can be lattice-theoretically or order-theoretically interpreted. In the order-theoretic
interpretation there is nothing more than the interpretation of the subtype relation by
set inclusion. In the lattice interpretation, the interpretation of the glb of two types is
then interpreted as the intersection of these sets. E.g., let Building and OldT hing be
two incomparable types, and let HistoricLandmark be their glb (see Fig. 3.1 left).
With both interpretations, every entity of type HistoricLandmark is also of types
Building and OldT hing. With the lattice interpretation, every entity of both types
Building and OldT hing is necessarily of type HistoricLandmark. With the order-
theoretic interpretation, the glb of two types is simply a subtype, thus a subset of
their intersection; an entity of both types Building and OldT hing is not necessarily
a HistoricLandmark (cf. Fig. 3.1 right).

HistoricLandmark

OldThingBuilding

HistoricLandmark

Building and OldThing

Building OldThing

Fig. 3.1 Interpretation of types

The way the concept type set is interpreted has an effect on reasoning.
For instance, let Q be the query [HistoricLandmark:*] (“is there a historic land-

mark?”) and let G be a fact containing the coreferent concept nodes [Building:a]
and [OldThing:a], thus indicating that a is an entity which is a Building and an
OldT hing. With the lattice interpretation, G should provide an answer to Q while in
the order-theoretic interpretation it should not.
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The lattice-theoretic interpretation explicitly requires building all types of inter-
sections (for instance, if an entity of types Building and OldT hing is not necessarily
of type HistoricLandmark one has to build their common subtype Buildingand-
OldT hing, which is a supertype of HistoricLandmark, see Fig. 3.1 right). Thus it
leads to a number of new and artificial types which can be exponential in the number
of useful types.

On the other hand, the drawback of the order-theoretic interpretation is that we
lose the possibility of expressing conjunctions of types, e.g., that HistoricLandmark
is exactly the intersection of OldT hing and Building. This property could be ex-
pressed by a rule (cf. Chap. 10), stating that every entity of type Building and of
type OldT hing is also of type HistoricLandmark. However, coding the conjunction
of types in the hierarchy itself is more efficient than using rules, exactly as coding
the subtype relation in a type hierarchy is more efficient than considering a flat set
of types and representing the hierarchy by rules.

Conjunctive Type

A concept node represents an entity, but an entity can be represented by several
coreferent concept nodes. A way of gathering all or some concept nodes represent-
ing the same entity is desirable to ease the building and understanding of an SG by
a human being.

A simple way to gather these nodes is to merge them into one node. This opera-
tion has to keep the meaning of the original SG. Thus if an entity is represented by
a node of type t and by a node of type t′ there must be a type representing exactly
the entities which are of both types t and t′. More generally, we need to express that
a type is the conjunction of several types. Any subset of (incomparable) primitive
types defines a conjunctive type. The set of conjunctive types is partially ordered by
an order extending the order defined on primitive types.

However, not all conjunctions of types have a meaning. Thus we need a way of
expressing that the conjunction of two (or more) types is banned, or equivalently that
they cannot have a common subtype. A classical way of doing this is to add a special
Absurd type below disjoint types. But this technique is not always precise enough.
For instance, t1, t2, t3 being direct supertypes of Absurd means that the intersection
of any two of them is empty. We cannot express that t1 and t2 are disjoint as well as
t1 and t3, but that there can be an entity of type t2 and t3 (e.g. t1 = Animal, t2 = Ship,
t3 = Robot, with all being subtypes of MobileEntity).

Giving all acceptable (i.e., non-banned) types in extension is not conceivable
in practice, so we define the set of acceptable conjunctive types by the primitive
type set and the (maximal) banned conjunctive types. In the previous example, the
types {t1, t2} and {t1, t3}would be banned. Theoretically, the number of banned con-
junctive types can be exponential in the number of primitive types but, practically,
considering banned types of cardinality two seems sufficient and their number is at
most quadratic in the number of primitive types.
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Coreference

An individual marker is generally considered as a surrogate or an identifier (in the
programming meaning) of an entity. According to the Unique Name Assumption
(UNA) common in knowledge representation, it is thus assumed that two distinct
individual markers represent distinct entities. Hence nodes with distinct individual
markers cannot belong to the same coreference set.

Let us consider two concepts with incomparable types t1 and t2. Can these nodes
be coreferent without any condition on t1 and t2? The answer is positive in many
works. As already said, in our opinion important properties required are, first, that
(a) coreferent concepts can always be merged into a single node, secondly, that (b)
the meaning of the obtained graph is the same as that of the original one. With a
lattice-interpretation of concept types these properties are fulfilled if the types of
the coreferent nodes have a glb (distinct from the Absurd type), which becomes
the type of the new node. With the order-theoretic assumption, and in the absence
of conjunctive types, the only way to fulfill these properties is to require that the
set of types of the coreferent nodes possesses a minimal element in this set itself.
Indeed, let us suppose for instance that there are two coreferent concepts with types
Building and OldT hing, respectively. Either these concepts cannot be merged and
(a) is not satisfied, or they can and the type of the new node is a subtype of Building
and OldT hing and the obtained graph is (in general) strictly more specialized than
the original one. That is why in works where properties (a) and (b) are required, it is
required that coreferent nodes have the same type. In the framework of conjunctive
types proposed here, (a) and (b) are obtained as soon as the conjunction of the
types of the coreferent nodes is not a banned type. Then every SG can be easily
transformed into an equivalent normal SG, which is called its normal form.

Whether a coreference set contains both generic and individual nodes is less im-
portant. Indeed, making a generic node and an individual node coreferent can al-
ways be performed by restricting the marker of the generic concept to the individual
marker of the other node without changing the meaning of the graph.

3.2 Vocabulary

In a conjunctive vocabulary, the set TC of concept types is built with three compo-
nents: a set of primitive concept types, an operation of type conjunction and a set of
banned conjunctive types. A set of primitive concept types has the same structure
as a set of concept types in a vocabulary as defined in Chap. 2, i.e., it is a partially
ordered set with a greatest element.

A conjunctive type is a set of n incomparable primitive types E = {t1, . . . , tn}. A
conjunctive type is either acceptable or banned. Thus, TC is the set of acceptable con-
junctive types. Let {t1, . . . , tn} be an acceptable conjunctive type, then every subset
of this set is also an acceptable conjunction. Let {t1, ..., tn} be a banned conjunctive
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type, which does not mean that any subset of this conjunction is banned but that
there is no entity with all these types.

Let us assume that incomparability of types in a conjunctive type is not re-
quired. Let {t1, ..., tn} be an acceptable conjunctive type with, for instance, ti ≤
t j. Then the conjunction of ti and t j has the same meaning as ti since every
entity of type ti is of type t j, hence t j, the greatest type, is useless. For ex-
ample, let us consider t = {Boy,Person,SmallEntity}, as Boy < Person, t has
the same meaning as t′ = {Boy,SmallEntity}. If the conjunction of {t1, ..., tn} is
banned, then t j is useless too, because if there cannot be an entity with types
{t1, . . . , tn}, there cannot be an entity with types {t1, . . . , tn} \ {t j} . For example if
t = {RacingCar,Animal,Car} is banned, then as RacingCar < Car, t has the same
meaning has t′ = {RacingCar,Animal} which is banned too.

Thus we restrict conjunctive types to the set of minimal types of a type set,
and if {t1, ..., tn} is a set of types, then its associated conjunctive type is denoted
min{t1, ..., tn} or t1∧ . . .∧ tn.

Due to the associativity of the conjunction operator, defined as the minimal op-
erator, a conjunction of conjunctions of primitive types is a conjunction of primitive
types. Therefore, we consider only conjunctions of primitive types.

The set of all acceptable conjunctions of primitive types can be exponentially
bigger than the primitive type set. This is why the set of concept types is not defined
in extension but by means of the primitive type set and a set of assertions stating
which types are banned. Let us define these notions more formally.

Definition 3.1 (Primitive concept type set). A primitive concept type set is an or-
dered set (T,≤) with a greatest element denoted by �.

This definition is the same as the concept type set definition (cf. Definition 2.1).

Definition 3.2 (Conjunctive concept type). A conjunctive concept type is given by
a (non-empty) set of incomparable types {t1, ..., tn}. This type is denoted by the set
itself or by t1∧ . . .∧ tn . Let A be any (non-empty) subset of T , then the conjunctive
type associated with A is defined as the set, min(A), of minimal elements of A (a
minimal element of A is an element t of A such that ∀t′ ∈ A, t′ ≮ t).

A primitive type t is identified with the conjunctive type {t}. Conjunctive types
are provided with a natural partial order that extends the order defined between
primitive types: Given two conjunctive types t and s, t is a specialization of s if
every primitive type of s has a specialization (possibly equal to itself) in t.

Definition 3.3 (Conjunctive concept type set). Let T be a set of primitive concept
types. T� denotes the set of all conjunctive types over T . It is provided with the
following partial order, which extends the partial order on T : Given two types t =
{t1, . . . , tn} and s = {s1, . . . ,sp}, t ≤ s if for every s j ∈ s, 1≤ j ≤ p, there is a ti ∈ t,
1≤ i≤ n, such that ti ≤ s j.

Example. Let t=BuidingBlock∧Cube∧Small and s=Toy∧Cube. BuidingBlock≤
Toy and Cube≤Cube then t ≤ s.
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Property 3.1. (T�, ≤) is a lattice.

The previous property relies on basic results in order theory. In order theory, a
subset of incomparable elements is called an antichain, and it is well-known that
the set of antichains provided with the previous partial order is a lattice: Each pair
of antichains has a greatest lower bound that is the set of minimal elements of the
union of the antichains, and a least upper bound which is the set of minimal elements
of the intersection of the filters generated by the two antichains. Furthermore, the
inf-irreducible elements of that lattice are exactly the primitive types (cf. Appendix).
Example. Figure 3.2 represents an ordered set and the lattice of its antichains; the
first set can be seen as the set T of primitive types and the lattice is then the set T�

of conjunctive types over T .
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Fig. 3.2 An ordered set and the lattice of its antichains

The property of being a banned conjunctive type is hereditary: If a conjunctive
type A is banned, all conjunctive types less than A are also banned. For instance, if
A = {Car,Animal} is banned then {RacingCar,Animal} is banned too.

Definition 3.4 (Banned type set). Let B denote a set of conjunctive types. An ele-
ment of T� is said to be banned with respect to B if it is less than or equal to (at
least) an element of B. B∗ denotes the set of all banned types: B∗ = {t ∈ T� | ∃t′ ∈
B, t ≤ t′}.

In the ordered sets terminology,B∗ is the union of the ideals generated by the banned
types.
Example. Figure 3.3 presents examples of banned and non-banned types. {Building-
Block,Cube,Firetruck} is banned because it is less than {BuildingBlock,Car},
which is itself banned.

The set of non-banned types, i.e., of acceptable types, is obtained from T� by
removing B∗:

Definition 3.5 (Concept type hierarchy). A concept type hierarchy TC(T, B), is
given by a couple (T, B), where:

• T , the set of primitive concept types, is partially ordered by ≤, with a greatest
element, denoted by � and called the universal type,
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{Toy,Firetruck}

banned type {BuildingBlock,Cube,Firetruck}

Car

Acceptable type sBanned type s
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BuildingBlock       Cube Firetruck

{BuildingBlock,Cube}

Toy
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{Red, Blue}

{Action, Object}

{Toy, Attribute}

{Animal, MathNotion}

Fig. 3.3 Examples of banned and acceptable concept types

• B, the set of basic banned conjunctive types, is composed of conjunctive types
over T ,

• B complies with T , i.e., for all b ∈ B, there is no type t ∈ T with t ≤ b i.e.,
B∗∩T = ∅.

TC(T, B) is defined as the set T� \B∗. T� is thus partitioned into the acceptable
types TC(T, B) and the banned types B∗. Whenever there is no risk of ambiguity,
TC(T, B) is simply denoted TC.

An important particular concept type hierarchy is the case where there are no banned
types, i.e., B is empty. In this case TC = T� and TC is a lattice. In general case, TC is
a sup-semi-lattice, i.e., each pair of types has a least upper bound.

A conjunctive vocabulary contains three parts: A hierarchy of concept types, a
hierarchy of relation types, and a set of markers.

Definition 3.6 (Vocabulary). A conjunctive vocabulary is a triple (TC,TR,I).
• TC,TR,I are pairwise disjoint sets.
• TC is the concept type hierarchy defined by a set T of primitive concept types and

a set B of banned conjunctions.
• TR, the set of relation symbols, is ordered by a relation ≤, and is partitioned into

subsets T 1
R , . . . ,T k

R of relation symbols of arity 1, . . . ,k respectively. The arity of
a relation r is denoted arity(r). Furthermore, any two relations with different
arities are not comparable.

• I is the set of individual markers.

BGs (cf. Definition 2.2) can be defined on a conjunctive vocabulary and hereafter
a conjunctive vocabulary is simply called a vocabulary.

The set of ordered concept labels is defined in the same way as in Chap. 2:

Definition 3.7 (Ordered set of concept labels). The ordered set of concept labels
is the cartesian product of the ordered sets TC and I ∪{∗}.
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The introduction of conjunctive types gives a semi-lattice structure to the set of
concept labels:

Property 3.2. The ordered set of concept labels on a conjunctive vocabulary is a
sup-semi-lattice.

Proof. TC is a sup-semi lattice since it is obtained from a lattice by removing ele-
ments while keeping the least upper bound of all remaining elements (if t and t′ are
acceptable, then t∨t′ is acceptable too). I∪{∗} is a sup-semi-lattice. One concludes
using a (simple) semi-lattice property: The product of two sup-semi-lattices is a sup-
semi-lattice (indeed, let (t,m) and (t′,m′) be two concept labels; it is easy to check
that (lub(t, t′), lub(m,m′)) is equal to lub((t,m),(t′,m′))). Thus TC×{I ∪{∗}} is a
sup-semi-lattice. ��

A set of labels therefore has a least upper bound. An entity of the application
domain can be represented by several concepts. In this case the labels of these con-
cepts have to satisfy two conditions. The first condition, already seen in Chap. 2,
corresponds to the Unique Name Assumption: Two distinct individual markers can-
not represent the same entity. The second condition requires that the conjunction of
the types of the concepts representing an entity does not yield a banned type. These
two conditions are fulfilled in the following definition.

Definition 3.8 (Compatible concept labels). The concept labels (t1,m1), . . . ,
(tk,mk) are compatible if

• there is at most one individual marker, i.e., |I ∩{m1, . . . ,mk}| ≤ 1,
• the conjunctive type t′ = min{t1∪ . . .∪ tk} is in TC.

Property 3.3. The concept labels (t1,m1), . . . , (tk,mk) are compatible if and only if
these labels possess a greatest lower bound.

The greatest lower bound of concept labels (t1,m1), . . . , (tk,mk) is the concept
label (t′, m′) with t′ = min{t1 ∪ . . .∪ tk} and m′ = min{m1, . . . ,mk}, i.e., m′ is the
generic marker if all mi are generic markers, otherwise m is the only individual
marker appearing in the mi.
Example. (Ob ject,∗),(Cube,C3),(Toy ∧ Small,∗) are compatible. Assume that
{Young, Mother} is not banned then (Young, Judy) and (Mother, ∗) are compati-
ble, but (Young, Judy) and (Mother, Mary) are not compatible because Judy and
Mary are different individuals.

3.3 Simple Conceptual Graphs (SGs)

Roughly said, an SG is a BG plus a coreference relation. A coreference relation is
an equivalence relation over the concept set and two equivalent concepts are called
coreferent concepts. The important properties to fulfill are, first, that coreferent con-
cepts can always be merged, secondly, that the formal semantics of the obtained
graph is equivalent to those of the original one (cf. Chap. 4).
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Definition 3.9 (Compatible concept nodes). A set of compatible concept nodes is
a set of concept nodes such that the set of their labels is compatible, i.e., these labels
possess a greatest lower bound. The label of a compatible concept set X is defined
as l(X) = glb({l(x) | x ∈ X}).

Definition 3.10 (Simple conceptual graph). A simple conceptual graph (in short
SG) over a vocabulary V is a 5-tuple (C,R,E, l,core f ), such that:

• (C,R,E, l) is a basic conceptual graph over V .
• core f is an equivalence relation over C, such that:

any coref class is compatible,
if two individual concepts have the same marker then they are in the same
coref class.

In graph drawings, a coreference relation is usually only partially represented by
coreference links (cf. Fig. 3.4). A coreference link connects two coreferent concepts.
Coreference links are usually represented by dashed lines. Note that the coreference
relation is the reflexive and transitive closure of the relation, which is the union of the
set of coreference links and the relation linking two individual concept nodes having
the same marker. When it is totally represented in a graph drawing, the coreference
links form a “clique” on concepts belonging to the same coreference class, i.e., each
pair of concepts of a coreference class is connected by a coreference link.
Example. An SG is presented in Fig. 3.4. Its coreference classes are: {c1,c2,c3},
{d1,d2}, and the trivial classes {a}, {b} and {c}. The coreference link between c1
and c3 is not represented, it is obtained by transitive closure.
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Fig. 3.4 A Simple conceptual graph

What are coreference links useful for? A first feature is that they can be exploited
in user interfaces. Indeed, one advantage of BGs is their readability, a quality that
is lost when the BG becomes too big (e.g., too big to be entirely drawn on a screen)
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or too complex. A BG that is too big can be split into pieces, with each piece being
displayable on a screen. The split can also be performed to decompose a BG into
semantic modules, or to enhance a particular substructure. Coreference links enable
the representation of a BG by several pieces, while keeping its global structure.
A user can build a BG piece by piece, then connect them with coreference links.
Another important case is when a conceptual graph basis has been constructed by
different people or at different times. Finally, coreference links can also be used to
decompose a graph into a simpler structure that can be exploited in algorithms. See
for instance the tree covering notion in Chap. 7.

We will see that it is easy to construct a BG (i.e., to get rid of the coreference re-
lation) that is semantically equivalent to an SG. Thus, even if coreference is a useful
representation tool, it does not add expressivity to BGs. The reasoning mechanisms
defined for BGs can still be used, with the SGs being transformed into BGs before
any computation. Let us point out, however, that coreference will play a more sub-
stantial role in more complex graphs such as nested conceptual graphs (Chap. 9)
and rules (Chap. 10). It will also be a fundamental element in full conceptual graphs
(Chap. 12).

Definitions concerning BGs can be directly adapted to SGs. Indeed, an SG is a
BG plus a coreference relation on the set of concept nodes. Thus, let P be a notion
concerning BGs, then an extension of this notion to SGs can be obtained as fol-
lows. Let G = (C,R,E, l,core f ) be an SG: The notion P is considered for the BG
(C,R,E, l) and a condition taking the coreference relation into account is added. Let
us give some examples.

Definition 3.11 (subSG). Let G = (C,R,E, l,core f ) be an SG. A subSG of G is an
SG G′ = (C′,R′,E′, l′,core f ′), such that:

• (C′,R′,E′, l′) is a subBG of (C,R,E, l).
• core f ′ is the restriction of core f to C′ (i.e., a class of core f ′ is the intersection

of a class of core f with C′).

The homomorphism notion for BGs can also be easily extended to SGs. Two
coreferent concepts must have coreferent images: either the same image (since coref
is a reflexive relation) or distinct coreferent images.

Definition 3.12 (SG homomorphism and ). Let G = (CG,RG,EG, lG,core fG)
and H = (CH ,RH ,EH , lH ,core fH) be two SGs defined on the same vocabulary. A ho-
momorphism π from G to H is a homomorphism from the BG (CG,RG,EG, lG) to the
BG (CH ,RH ,EH , lH) that preserves the coreference, i.e. ∀x,y ∈CG,core fG(x,y)→
core fH(π(x),π(y)).
G H means that there is a homomorphism from G to H.

An SG isomorphism is naturally defined as follows:

Definition 3.13 (SG isomorphism). Let G = (C,R,E, l,core f ) and G′ = (C′,R′,
E′, l′,core f ′) be two SGs. G and G′ are isomorphic if first, there is a BG isomor-
phism π from (C,R,E, l) to (C′,R′,E′, l′); secondly, π preserves the coref classes,
that is x and y are coreferent in G if and only if π(x) and π(y) are coreferent in G′.
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Before studying the SG homomorphism in more detail it is useful to define gen-
eralization and specialization operations.

3.4 Generalization and Specialization Operations

In this section, the elementary generalization and specialization operations defined
in Chap. 2 are extended to SGs, i.e., the coreference relation is taken into account.

We will group operations into three clusters: Equivalence operations, (plain) gen-
eralization operations and (plain) specialization operations. By “plain” we mean that
these operations generally do not produce an equivalent SG although they may be
equivalent in some cases. Note that when operations have the same name as for
BGs, they are the same operation, i.e., the coreference relation is not changed by the
operation.

Definition 3.14 (SG Equivalence operations). The elementary equivalence opera-
tions are:

• Copy. Create a disjoint copy of an SG G. More precisely, given an SG G,
copy(G) is an SG which is disjoint from G and isomorphic to G.

• Relation duplicate. Given an SG G and a relation r of G, relDuplicate(G,r) is
the SG obtained from G by adding a new relation node r′ having the same type
and the same list of arguments as r.

• Relation simplify. Given an SG G, and two twin relations r and r′ (relation
with the same type and the same list of neighbors), relSimpli f y(G,r′) is the SG
obtained from G by deleting r′.

• Concept split. Split a concept into coreferent concepts. Let c be a concept node
of G and {A1,A2} be a partition of the edges incident to c. split(G,c,A1,A2) is
the SG obtained from G by: creating two new concept nodes c1 and c2 with the
same label as c, attaching A1 to c1 and A2 to c2 (A1 or A2 may be empty), adding
c1 and c2 to the coreference class of c, and finally deleting c.

• Coreferent nodes merge. Given an SG G, and two coreferent concepts c1 and
c2 of G, merge c1 and c2, i.e., create a node c with the label being the greatest
lower bound of c1 and c2 labels, attach to c all edges incident to c1 or c2 (replace
every edge (r, i,c1) or (r, i,c2) with an edge (r, i,c)), add c in the coreference class
of c1 and c2 and delete these nodes.

• Concept label modify. Let c be a concept node in a coreference class X of an SG
G = (C,R,E, l,core f ). Change l(c) = L into L′ in such a way that the label of X
is unchanged; otherwise said, the modification of the label of c does not change
the glb of the label of concepts in X .

Definition 3.15 ((plain) SG Generalization operations). The elementary general-
ization operations are:

• Increase. Increase the label of a node (concept or relation). More precisely,
given an SG G, a node x of G, and a label L ≥ l(x) increase(G,x,L) is the SG
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obtained from G by increasing the label of x up to L, i.e., its type if x is a relation,
its type and/or its marker if x is a concept.

• Coreference delete. Split a coreference class into two (non-empty) classes.
• Substract. Given an SG G, and a set of connected components C1, . . . ,Ck of G,

substract(G,C1, . . . ,Ck) is the SG obtained from G by deleting C1, . . . ,Ck (the
result may be the empty graph).

Definition 3.16 ((plain) SG Specialization operations). The elementary special-
ization operations are:

Restrict. Given an SG G, a node x of G, and a label l ≤ l(x) restrict(G,x, l) is
the SG obtained from G by decreasing the label of x to l that is its type if x is a
relation, its type and/or its marker if x is a concept. The compatibility condition
has to be preserved.
Coreference add up. Make the union of two coreference classes of G provided
that their union is a compatible set.
Disjoint sum. Given two disjoint SGs G = (C,R,E, l,core f ) and H = (C′,R′,
E′, l′,core f ′), G+H = (C∪C′,R∪R′,E∪E′, l∪ l′,core f ∪core f ′) (G or H may
be empty).

Generalization and specialization of SGs are defined similar to BGs as a sequence
of elementary operations.

Definition 3.17 (SG generalization and specialization operations). The set of
generalization operations is composed of equivalence operations and plain gener-
alization operations. The set of specialization operations is composed of equiva-
lence operations and plain specialization operations. Given two SGs G and H, G is
a generalization (resp. specialization) of H if there is a generalization (resp. special-
ization) sequence from G to H.

The disjoint sum operation is not the inverse of the substract operation, but the in-
verse of a substract operation can be performed by a disjoint sum plus a coreference
addition, thus:

Property 3.4. Given two SGs G and H, G is a generalization of H if and only if H
is a specialization of G.

Definition 3.18 (Gen-Equivalence). Given two SGs G and H they are called gen-
equivalent if G is a generalization (or specialization) of H and reciprocally.

Operations on BGs are naturally included in operations on SGs, either directly
under the same name, or they can be performed by a combination of operations
of the same category on SGs. Indeed, a detach operation for SGs can be obtained
by a split into coreferent nodes followed by a coreference deletion, which are both
generalization operations, and a join for SGs can be obtained by a co-reference
addition followed by a merging of co-referent nodes, which are both specialization
operations.
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3.5 Standard and Normal SGs

A normal SG is such that core f is the identity relation, i.e., each node is uniquely
coreferent with itself. In the notation of a normal SG, core f is usually omitted; a
normal SG is thus simply denoted by (C,R,E, l), as a (normal) BG. This is a consis-
tent notation because a BG can be considered as an SG with the following implicit
coreference relation: Each generic concept constitutes a class and all individual con-
cepts with the same marker are coreferent.

Thus, normal SGs and normal BGs can be identified. Furthermore, a normal SG
can be associated with any SG G by considering the SG G/core f , obtained by merg-
ing all concepts belonging to a coreference class. Merging a coreference class X
consists of two successive sequences of elementary specialization operations: First,
all concept labels in X are restricted to l(X) = glb({l(c) | c ∈ X}), then the class is
condensed to a single concept by a merge coreferent nodes operation. The first step
is called the standardization of an SG G. The result is the standard form of G.

Definition 3.19 (Standard SG). A standard SG is an SG such that all coreferent
nodes have the same label. The standard form of an SG G, denoted stand(G), is
obtained from G by restricting the label of each concept in a coreference class X to
l(X) = glb({l(x) | x ∈ X}).
Example. Figure 3.5 presents the standard form of the SG in Fig. 3.4.
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Fig. 3.5 Standard form of the SG in Fig. 3.4

The normal form of an SG G is indifferently denoted norm(G) or G/core f . The
latter notation shows that the normal form can be computed by first computing the
(ordinary) quotient graph graph(G)/core f ′, where core f ′ is obtained from core f
by adding trivial classes corresponding to the relation nodes of G (each relation node
constitutes a class), then by giving the correct labels to the nodes.

Definition 3.20 (G/core f and norm(G)). Let G = (C,R,E, l,core f ) be an SG.
G/core f is the normal SG obtained as follows: for any coref class X = {c1, . . . ,ck},
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all ci are merged into one concept X . G/core f is also called the normal form of G,
and denoted by norm(G).

The normal form of the SG G in Fig. 3.4 is the SG in Fig. 3.6. Note that the
standard and normal forms can be computed in linear time (relative to the size of
the original graph) if the computation of the glb of k concept labels is in O(k).
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Fig. 3.6 G/core f

The three SGs G, stand(G) and norm(G) are gen-equivalent in the sense of Def-
inition 3.18.

Property 3.5. For any SG G, the three SGs G, stand(G), and norm(G) are gen-
equivalent.

Proof. One can see that there are sequences of equivalence operations for trans-
forming any SG in {G,stand(G),norm(G)} into any other. stand(G) is obtained
from G by a sequence of concept label modify operations. norm(G) is obtained
from stand(G) by a sequence of coreferent node merge operations, finally G is
obtained from norm(G) by a sequence of concept split and concept label modify
operations. ��

Intuitively, G, stand(G) and norm(G) have the same meaning. We will see later
that their formal semantics are indeed equivalent.

3.6 Coref-Homomorphism

Let us now study the relationships between an SG G, its standard form stand(G)
and its normal form norm(G) with respect to SG homomorphism. The following
property is immediate:
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Property 3.6. Let G be an SG. There is a homomorphism from G to stand(G) and a
homomorphism from stand(G) to norm(G). Thus: G stand(G) norm(G).

The homomorphisms associated with the sequence of equivalence operations de-
scribed above yielding stand(G) and norm(G) are called canonical homomorphisms
from G to stand(G) and norm(G). The former is restricted to the identity (it is a bi-
jective homomorphism) and the latter is the surjective mapping naturally associated
with the quotient operation G/core f . Thus, as natural as it may seem, the SG ho-
momorphism notion is not entirely satisfactory.

The converse homomorphisms do not generally occur (unless G is standard or
normal).

We are faced with the problem we had foreseen on BGs: Due to the presence of
coreferent nodes, graphs with the same intuitive semantic may not be equivalent for
homomorphism. Let us go into further detail.

Property 3.7. Given SGs G and H, there is a bijective mapping between the set of
homomorphisms from G to norm(H) and the set of homomorphisms from norm(G)
to norm(H).

Proof. Let πG be the canonical homomorphism from G to norm(G). Let P be the
mapping that associates the homomorphism π ′ = π ◦πG from G to norm(H) with
any homomorphism π from norm(G) to norm(H).
P is injective because, given two distinct homomorphisms π1 and π2 from norm(G)
to norm(H) and any node x of norm(G), if π1(x) �= π2(x), then for any node y with
πG(y) = x, π1(πG(y)) �= π2(πG(y)).
Let us prove that P is surjective. Let π ′ be any homomorphism from G to norm(H),
then we prove that it can be decomposed into π ◦ πG, where π is a homomor-
phism from norm(G) to norm(H). Indeed, π is built as follows: For every node
x in norm(G), if x is a node of G, in particular if x is a relation node, then
π(x) = π ′(x). Otherwise let c1...cn be the nodes of G merged into x in norm(G);
by definition of πG, for all these nodes ci, πG(ci) = x, and since π ′ is a ho-
momorphism and norm(H) is normal, all ci have the same image by π ′, then,
given any ci, one takes π(x) = π ′(ci). By definition of coreference and homomor-
phism, for any i = 1, . . . ,n label(ci) ≥ label(π ′(ci)) = label(π(x)), so label(x) =
glb({label(ci) | i = 1, . . . ,n})≥ label(π(x)). Furthermore, let (r, i,x) be in norm(G)
then π(r) = π ′(r). If x belongs to G then π(x) = π ′(x). As π ′ is a homomor-
phism, (π ′(r), i,π ′(x)) = (π(r), i,π(x)) is in norm(H). Otherwise, x is obtained
from c1...cn and there is a c j, 1 ≤ j ≤ n, with (r, i,c j) in G. As π ′ is a homomor-
phism, (π ′(r), i,π ′(x)) = (π(r), i,π(x)) is in norm(H). Thus, π is a homomorphism.
Check that π ◦πG = π ′.
P is injective and surjective so it is bijective. ��

Figure 3.7 shows Property 3.7 as a commutative diagram.
Thus, in order to obtain a “good” SG homomorphism behavior, one only has to

ensure that the target graph H is in normal form, regardless of whether the source
graph G is normal or not.
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The normal form of an SG always exists and is easily computable, however in
some cases it may be important to keep SGs exactly as they are. For example, con-
sider a set of SGs over the same vocabulary built by different users. If a query is
made on this base the whole base has to be considered to compute the answers,
but the SGs must not be changed. Another example is that of a base distributed on
several sites.

The question now is the following: Why does homomorphism not deal correctly
with coreference? The reason is that it is first of all a mapping on concepts; if we
modify it so that it maps coreference classes onto coreference classes, we obtain the
desired notion.

Definition 3.21 (coref-homomorphism). Let G=(CG,RG,EG, lG,core fG) and H=
(CH ,RH ,EH , lH ,core fH) be two SGs defined on the same vocabulary. A coref-
homomorphism from G to H is a mapping π from core fG to core fH and from RG to
RH , such that:

1. ∀(r, i,c)∈G , let C be the coreference class of c, then there is a concept c′ ∈ π(C)
such that (π(r), i,c′) ∈ H,

2. ∀C ∈ core fG, let lH(π(C)) be the greatest lower bound of the concept labels in
π(C) then, for all c ∈C, lG(c)≥ lH(π(C)),

3. ∀r ∈ RG, lG(r)≥ lH(π(r)).

Each homomorphism defines a coref-homomorphism, since all coreferent nodes
have their images in the same coreference class. The following property specifies
the relationships between both notions.
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Property 3.8. Given SGs G and H, there is a bijective mapping between the set of
coref-homomorphisms from G to H and the set of homomorphisms from norm(G)
to norm(H).

Proof. There is a bijection, say b, between concept nodes of norm(G) (resp.
norm(H)) and coreference classes in G (resp. H). Let us show that b defines the
desired mapping between the set of coref-homomorphisms from G to H and the set
of homomorphisms from norm(G) to norm(H). Let π be a coref-homomorphism
from G to H. Let π ′ be the induced mapping from nodes of norm(G) to nodes of
norm(H): For each concept c in norm(G), π ′(c) = b−1(π(b(c))) and for each rela-
tion r of norm(G), π ′(r) = π(r).

This correspondence is injective. Indeed, let π1 and π2 be two coref-homomor-
phisms from G to H. There is a concept c in norm(G) with π1(c) �= π2(c), then
π ′

1(c) �= π ′
2(c).

We check that π ′ is a homomorphism from norm(G) to norm(H): For every
edge (r, i,c) in norm(G), there is an edge (r, i,d) in G where d is in the corefer-
ence class b(c), thus, due to condition 1 of the coref-homomorphism, there is an
edge (π ′(r), i,d′) in H where d′ is in the coreference class π(b(c)). Thus an edge
(π ′(r), i,π ′(c)) since π ′(c) = b−1(π(b(c))). For every concept c in norm(G), condi-
tion 2 of coref-homomorphism ensures that for all ci ∈ b(c), l(ci)≥ l(π ′(c)); thus by
definition of a greatest lower bound, l(c)≥ l(π ′(c)). In the same way, we check that
any homomorphism π ′ from norm(G) to norm(H) yields a coref-homomorphism π
from G to H using bijection b. For every edge (r, i,c j) in G, let C be the corefence
class of c j, there is an edge (r, i,c) in norm(G), where C = b(c), hence an edge
(r, i,π ′(c)) in norm(H), thus an edge (r, i,c′j) in H such that c′j belongs to the coref-
erence class b(π ′(c)), which is exactly π(C). For every coreference class C in G, for
every c in C, l(c)≥ l(π ′(b−1(C))), which is exactly l(π(C)), thus l(c)≥ l(π(C)).

Thus, the correspondence between coref-homomorphisms from G to H and ho-
momorphisms from norm(G) to norm(H) is surjective and injective. ��

The following theorem summarizes the “safe” ways of comparing two SGs.

Theorem 3.1. Let G and H be two SGs. There is a bijective mapping between:

• coref-homomorphisms from G to H,
• homomorphisms from norm(G) to norm(H),
• homomorphisms from G to norm(H).

The intuitive meaning of generalization or specialization operations is better cap-
tured by coref-homomorphism than by homomorphism. This is shown in the follow-
ing theorem for SGs, which is similar to the Theorem 2.3 for BGs where homomor-
phism is replaced by coref-homomorphism:

Theorem 3.2. Let G and H be two SGs. The three following propositions are equiv-
alent:

1. H is a specialization of G,
2. G is a generalization of H,
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3. there is a coref-homomorphism from G to H.

Proof. The equivalence between (1) and (2) has already been stated (cf. Sect. 3.4).
(1) ⇒ (3): in a specialization sequence from G to H, each specialization step, say
from Hi to Hi+1, defines a coref-homomorphism from Hi to Hi+1. By composition
of these coref-homomorphisms, one obtains a coref-homomorphism from G to H.
(3) ⇒ (1): Let π be a coref-homomorphism from G to H. Let us show that H
is a specialization of G. From G, one builds norm(G) using the equivalence op-
eration coreferent nodes merge. By Property 3.8, there is a homomorphism from
norm(G) to norm(H). Thus by Theorem 2.3, there is a BG specialization sequence
from norm(G) to norm(H). This BG specialization sequence can be rewritten as an
SG specialisation sequence, with the join operation being replaced either by a coref-
erent nodes merge if the joined nodes are individual nodes, or decomposed into a
coreference addition followed by a coreferent nodes merge if the joined nodes are
generic nodes. By Property 3.5, there is a specialization sequence from norm(H) to
H. ��

3.7 Antinormal Form and Homomorphism

The normal form of an SG is, in a sense, the most compact form of an SG. The
antinormal form studied in this section can be considered as the most scattered form
of an SG: Each relation node is disconnected from the other relation nodes and there
are no multiple edges. Thus, a relation node and its neighbors can be considered as a
tuple. The antinormal form of an SG can be considered as a representation of an SG
by tables in the database relational model. Indeed, gathering all tuples correspond-
ing to relation nodes with the same label is equivalent to building a table. Then
usual database systems and operations can be used. The correspondence between
conceptual graphs and relational structures is studied in Chap. 5. In this section, it is
assumed that an SG has no isolated concept node, and it is straightforward to extend
all the results if isolated concepts exist.

Definition 3.22 (Antinormal SG). An SG is called antinormal if:

• any concept node is incident to exactly one edge,
• it is standard, i.e., all the concept labels in any coref class are identical.

For any SG G antinorm(G) is the SG obtained from G as follows: First it is
standardized; then each concept node c with k > 1 incident edges, say e1, . . . ,ek, is
split into k coreferent nodes c1, . . . ,ck, with each edge ei = (r, j,c) becoming an edge
(r, j,ci). antinorm(G) is obtained from G by a sequence of specialization operations,
moreover:

Property 3.9. Let G be an SG. There is a homomorphism from antinorm(G) to
stand(G), i.e., antinorm(G) stand(G).
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Fig. 3.8 An SG and its antinormal form

Example. Figure 3.8 presents an SG and its antinormal form. In this figure, the
concepts labeled by x (or by y or by z) are coreferent.

Figure 3.9 shows that antinorm(G) does not generally map to G if G is not stan-
dard.
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Fig. 3.9 antinorm(G) does not map to � G

Note that the relation node sets of antinorm(G) and G are equal, even if G is not
standard.

If an SG is not antinormal then it does not generally map to its antinormal form
by a homomorphism (cf. example given in Fig. 3.8).

The subsumption relation behaves in the same way for the normal forms and
antinormal forms.

Property 3.10. Given two SGs G and H, there is a bijection from the set of ho-
momorphisms from norm(G) to norm(H) to the set of homomorphisms from
antinorm(G) to antinorm(H).

Proof. Let π be a homomorphism from norm(G) to norm(H) and φH be the canon-
ical homomorphism from antinorm(H) to norm(H). A homomorphism π ′ from
antinorm(G) to antinorm(H) can be constructed as follows. For any relation node,
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π ′(r) = π(r) since the relation nodes of an SG and its normal form are the same.
Let c be a concept node of antinorm(G). c is in the coreference class of a con-
cept d of norm(G) and is incident to a unique edge (r, i,c). There is a unique con-
cept c′ of antinorm(H), which corresponds to the edge (π(r), i,π(d)) in norm(H).
One takes π ′(c) = c′ (cf. Fig. 3.10). If one considers two different homomorphisms
from norm(G) to norm(H) the associated homomorphisms from antinorm(G) to
antinorm(H) are also different. Reciprocally, let π ′ be a homomorphism from
antinorm(G) to antinorm(H). The mapping π defined as follows is a homomor-
phism from norm(G) to norm(H). To any relation node r of norm(G) π(r) = π ′(r).
Let d be a concept of norm(G). For any (r, i,d) in norm(G) corresponds a single
c in antinorm(G) with (r, i,c) in antinorm(G). (π ′(r), i,π ′(c)) is in antinorm(H).
One takes π(d) = φH(π ′(c)).

This does not depend on the choice of the edge (r, i,d) incident to d since for any
other edge (r′, j,d) in norm(G) corresponding with the node c′ in antinorm(G), we
have φH(π ′(c)) = φH(π ′(c′)) by the preservation of coreference by π ′.

Figure 3.10 illustrates this part of the proof. Indeed, one can say that the dia-
gram in Fig. 3.10 commutes. If one considers two different homomorphisms from
antinorm(G) to antinorm(H), the associated homomorphisms from norm(G) to
norm(H) are also different. The construction is injective in the two directions, so
there is a bijection between the two homomorphism sets. ��
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Fig. 3.10 Illustration of Property 3.10
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Let us use an example to illustrate the importance for Property 3.10 of the last
condition in Definition 3.22 of an antinormal SG. Figure 3.11 presents two non-
standard SGs G1 and G2, where the relation types r and s are not comparable. These
SGs satisfy the first antinormality condition since they are totally scattered. One has
norm(G1) = norm(G2) = G, but there is neither a homomorphism from G1 to G2
nor from G2 to G1.
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Fig. 3.11 G1 and G2 are not antinormal SGs

The following property shows the difference between the behavior of the homo-
morphism for the normal form and the antinormal form (cf. Property 3.7).

Property 3.11. Let G and H be two SGs. If antinorm(G) H, then antinorm(G)
antinorm(H). When H is standard, the converse is true: If antinorm(G) 
antinorm(H) then antinorm(G) H.

Proof. Let π be a homomorphism from antinorm(G) to H. A homomorphism π ′

from antinorm(G) to antinorm(H) can be constructed as follows. For any relation
node, π ′(r) = π(r) since the relation nodes of an SG and its antinormal form are the
same. Let (r, i,c) in antinorm(G). (π(r), i,π(c)) is in H and the label of c is greater
than or equal to the label of π(c). There is a single concept d in antinorm(H) which
is adjacent to an edge numbered i to π(r). The label of π(c) is greater than or equal
to the label of d and one takes π ′(c) = d (cf. Fig. 3.12). Let us assume that H is
standard. Property 3.9 and the transitivity of yield the second part of the property.
��

Example. Let us consider an SG H isomorphic to the SG G on the left side in
Fig. 3.9). There is a (trivial) homomorphism from antinorm(G) to antinorm(H) =
antinorm(G), but there is no homomorphism from antinorm(G) to H.
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Fig. 3.12 Illustration of Property 3.11
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