
Chapter 1
Introduction

In Sect. 1.1, we place the book in the “Knowledge Representation and Reasoning”
(KR) Artificial Intelligence (AI) domain. We first briefly outline key concepts of the
KR domain, and then review KR formalism properties that we consider to be essen-
tial. The second section is devoted to an intuitive presentation of Conceptual Graphs
that were initially introduced by Sowa in 1976 [Sow76] and developed in [Sow84].
In the third section, we introduce the graph-based KR formalism that is detailed in
the book. This KR formalism is based on a graph theoretical vision of conceptual
graphs and complies with the main principles delineated in the first section.

1.1 Knowledge Representation and Reasoning

Knowledge Representation and Reasoning has long been recognized as a central
issue in Artificial Intelligence. Very generally speaking, the problem is to sym-
bolically encode human knowledge and reasoning in such a way that this encoded
knowledge can be processed by a computer via encoded reasoning to obtain intelli-
gent behavior. Human knowledge is taken here in a very broad sense. It can be the
knowledge of a single person, of an expert in some domain, shared knowledge of
ordinary people (common sense knowledge), social knowledge accumulated by gen-
erations, e.g., in a scientific domain, etc. Thus, we will not distinguish the modeling
view of KR, which involves studies on how to computationally represent knowledge
about the world, or the cognitivist view of KR, which assesses how to computation-
ally represent cognitive capacities of a human being.

Moreover, we shall carefully avoid specifying the exact meanings of the notions
of “human knowledge,” “reasoning,” “intelligence” or “representation.” All of these
issues have been discussed by philosophers since the Greek ancient times (at least in
the western world), and a discussion of such topics would be far beyond the scope
of this book.
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1.1.1 Knowledge-Based Systems

KR is the scientific domain concerned with the study of computational models able
to explicitly represent knowledge by symbols and to process these symbols in order
to produce new ones representing other pieces of knowledge. Systems built upon
such computational models are called knowledge-based systems. Their main com-
ponents are a knowledge base and a reasoning engine.
Example (a photo of children). Assume we want to represent common sense
knowledge about a photo depicting children playing in a room containing toys and
furniture. The formalism studied in the book can be used to represent elements in
this photo (e.g., there is a girl and a boy, a car is on the table), and knowledge about
elements in the photo (e.g., Mary is the name of the girl, Mary is a sister of the boy).
It is also used to represent general background knowledge (e.g., a building block is
a toy, if a person A is a sister of a person B then A and B are relatives).

Knowledge representation and reasoning formalism can also express problems to
be solved concerning the facts and general knowledge represented. For instance, one
may ask with what kind of toy Mary’s brother is playing. Answering such questions
requires descriptive knowledge but also reasoning capabilities (e.g., modus ponens,
which states that if A holds and if B can be deduced from A, then B holds).

Main Components of a Knowledge Base

A knowledge base (KB) gathers symbolic knowledge representation about an appli-
cation domain. We use the expression “application domain” to denote the part of the
world (which can be real or fantasy, a sophisticated model of a system or a model
of an expert competence) about which we represent knowledge and reasoning.

A KB generally contains different kinds of knowledge, typically an ontology,
facts, rules and constraints. From an epistemological viewpoint, an ontology pro-
vides an answer to the question “What kinds of things exist in the application do-
main?” or expressed in a more generic way, “How can we think about the world ?”
A computational ontology provides a symbolic representation of objects, classes of
objects, properties and relationships between objects used to explicitly represent
knowledge about an application domain. It is the cornerstone of a knowledge rep-
resentation since all other pieces of knowledge (e.g., facts, rules or constraints) are
represented by computational structures built with ontology terms.

Besides a KB, a knowledge-based system contains a reasoning engine. The rea-
soning engine processes knowledge in a KB in order to answer some question or to
solve some goal. A reasoning engine is composed of algorithms processing elements
of the KB in order to construct “new” knowledge, i.e., new symbolic constructs that
are only implicit in the KB. We should stress that in a knowledge-based system
we cannot have knowledge representation without having reasoning mechanisms. A
large part of KR research consists of finding a tradeoff between expressivity or gen-
erality of knowledge representation formalism and the efficiency of the reasoning
mechanisms.
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Knowledge Incompleteness

An essential point is that a KB is not assumed to provide a complete picture of the
world. The fundamental reasons are that any real thing, e.g., a human face or a peb-
ble, cannot be described by a finite set of symbolic structures, and also that a thing
does not exist in isolation but is included in unlimited sets of encompassing con-
texts. Thus, incompleteness of descriptions is a central feature of knowledge-based
systems, and is a main distinction with respect to databases: For some sentences, it
cannot be determined whether they are true or false given the knowledge in the base.
For instance, a KB representing the photo of children can be queried by an unlim-
ited number of questions (e.g., “Is the house where the photo was taken located in a
village?” “How old is the boy?” “Who are the children’s parents?” “In what country
were the toys built?” and so on ad libitum). To be answered, these questions would
need an unlimited amount of knowledge.

1.1.2 Requirements for a Knowledge Representation Formalism

In a nutshell, we are interested in KR formalisms that comply, or aim at complying,
with the following requirements:

1. to have a denotational formal semantic,
2. to be logically founded,
3. to allow for a structured representation of knowledge,
4. to have good computational properties,
5. to allow users to have a maximal understanding and control over each step of the

KB building process and use.

The graph-based KR formalism presented in this book has the first three prop-
erties, parts of the formalism have the fourth property, and we think that, at least
for some application domains, it has the last one too. We think that presently there
is no universal KR formalism. Indeed, such a formalism should represent natural
languages, and the present systems are far from being able to do that. Thus, every
existing KR formalism, including the one presented here, can be efficiently used
only for specific reasoning on specific knowledge (e.g., a privileged application do-
main, namely semantic annotation, will be briefly presented). The end of this section
is devoted to a brief discussion on the previous five requirements.

1.1.2.1 Denotational Semantics: What Rather than How

A KR formalism should allow us to represent knowledge in an explicit and a declar-
ative way: The meaning of the knowledge represented should be definable inde-
pendently of the programs processing the knowledge base. Namely, it should not
be necessary to precisely understand how reasoning procedures are implemented to
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build a knowledge representation, and one should be able to update the knowledge
base content without modifying any program. Ideally, the result of inferences should
depend only on the semantics of the given data and not on their syntax, i.e., seman-
tically equivalent knowledge bases should lead to semantically equivalent results,
regardless of their syntactical forms. Thus, having a denotational semantics is an
essential KR formalism feature.

A set (or model) semantics is appreciable, particularly whenever the KR for-
malism has to be used by informatics non-specialists. Indeed, the basic notions of
(naive) set theory: element and membership, subset and inclusion, application, rela-
tion, etc., are easily understood by many people. In addition, a set semantics should
provide the notions of truth and entailment, so that what holds in the modeled world
can be determined. This leads us to logic, since logic is the study of entailment, or
in other words, reasoning.

1.1.2.2 Logical Foundations

Generally speaking, doing an inference consists of producing a new expression from
existing ones. The correctness of an inference mechanism can be defined relative
to a logic, and in this book we essentially consider logical entailment, or logical
deduction.

What does it mean for a KR formalism to be logically founded? First, the ex-
pressions of the formalism are translatable into formulas of a logic. Such a mapping
gives a logical semantics to the formalism. Secondly, the reasoning engine contains
an inference mechanism, which should have two essential properties with respect to
deduction in the target logic: soundness and completeness. Let K be a knowledge
base expressed in some KR formalism, and let f be a logical semantics of K, i.e., f
is a mapping from K to formulas of some logic. The inference mechanism is sound
with respect to this semantics if for each expression i inferred from K, f (i) is actu-
ally logically deduced from f (K). It is complete if, for each expression i such that
f (i) is logically deduced from f (K), i is actually inferred from K. In other words, a
procedure P (or algorithm, or system of rules, etc.) is sound with respect to a logi-
cal semantics if every inference made by P corresponds to a logical deduction. It is
complete with respect to a logical semantics if every logical deduction in the logical
language target of the formalism can be done by P .

Soundness is usually ensured. But not all reasoning algorithms are complete. If
an incomplete, nevertheless sound, system answers “yes” to the question “can i be
retrieved from K?” then the answer is correct. If it answers “no,” then because of
incompleteness, it should preferably have answered “I don’t know.” If the system
also computes answers to a query then, if it is sound, all the computed answers are
correct answers, and if it is incomplete some answers can be missed.

The incompleteness of an algorithm can be motivated by efficiency concerns
when a complete reasoning is too time consuming. It can also be due to the unde-
cidability of the deduction problem. For instance, deduction in First Order Logic
(FOL) is undecidable, which means that it is not possible to build an algorithm
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deciding in finite time for any pair of formulas ( f ,g) whether f can be deduced
from g. More precisely, FOL deduction is only semi-decidable: One can build an
algorithm guaranteed to stop in finite time if the answer is “yes,” but which may
run indefinitely if the answer is “no.” Thus, algorithms that stop in finite time in all
cases are necessarily incomplete.

Different logics have been developed for KR purposes. FOL has been adopted
as a reference formalism for knowledge representation in the AI community. Its
model semantics is described with simple mathematical objects (sets and relations).
However, its computational complexity has led to study of fragments of it with good
computational properties.

KR formalisms can be compared according to different criteria, such as expres-
siveness, ease of use, computational efficiency, etc. Logical semantics facilitate ex-
pressiveness comparisons between KR formalisms and can avoid doing something
that is already known. Indeed, KR deals with knowledge and reasoning, and logic
(not only classical logic) is precisely the study of reasoning. The large corpus of re-
sults and techniques accumulated by logicians for more than two millennia cannot
be ignored.

From a modeling standpoint, other important properties of a KR formalism are its
empirical soundness and its empirical completeness with respect to an application
domain. A formalism is empirically sound if any “true” expression in the formalism
corresponds to a “true” fact of the application domain. It is empirically complete
if any true fact of the application domain can be coded in a true expression of the
KR formalism. Naturally, when there is no mathematical model of the application
domain, these notions are informal, rather subjective and difficult to evaluate. Hav-
ing different mathematical semantics of the KR formalism (e.g., a set semantics and
a logical semantics) can help, since each semantics can be used to study, with dif-
ferent notions, the correspondence between the KR formalism and the application
domain.

1.1.2.3 Knowledge Structuring

A KR formalism should provide a way of structuring knowledge. Knowledge struc-
turing can be motivated by model adequacy (i.e., its “conformity” to the modeling
of the application domain) and by efficiency concerns (algorithmic efficiency of
reasoning procedures, facility for managing the knowledge base).

One aspect of knowledge structuring is that semantically related pieces of infor-
mation (e.g., information relative to a specific entity) should be gathered together.
This idea was underlying the first KR formalisms, frames and semantic networks,
that were far from logics. Frames have been introduced in [Min75] as record-like
data structures for representing prototypical situations and objects. The key idea
was to group together information relevant to the same situation/object. Semantic
networks were originally developed as cognitive models and for processing the se-
mantics of natural language (cf. [Leh92] for a synthesis on semantic networks in
AI). A semantic network is a diagram that represents connections (relationships)
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between objects (entities) or concepts (classes) in some specific knowledge domain.
Basic links are the ISA link that relates an object and a concept of which it is an
instance, the AKO (A-Kind-Of) link, that relates two concepts (with one being a
kind of the other), and the property link that assigns a property to an object or con-
cept. Inferences are done by following paths in the network. For instance, properties
of an object are inherited following the ISA and AKO links. The main criticism
concerning semantic networks was their lack of a formal semantics: What’s in a
link? [Woo75] What’s in a concept? [Bra77]. The same network could be interpreted
in different ways depending on the user’s intuitive understanding of its diagrammat-
ical representation.

Description logics (DLs), formerly called terminological logics or concept lan-
guages, are rooted in semantic networks, particularly in the KL-ONE system [BS85],
and have been a successful attempt to combine well-defined logical semantics with
efficient reasoning [BCM+03]. This is one of the most prominent KR formalism
families. Let us point out, however, that DLs have lost the graphical aspects of their
ancestors. Conceptual graphs represent another family of formalisms issued from
semantic networks (at least partially, because they are also rooted in other domains),
which we shall consider in more detail in the next section.

Another aspect of knowledge structuring is that different kinds of knowledge
should be represented by different KR formalism constructs. Ontology, facts, rules,
constraints, etc., are distinct sorts of knowledge that are worth being differently
represented. An important distinction is between ontological and factual knowl-
edge. Ontological knowledge is related to general categories, also called concepts
or classes. Factual knowledge makes assertions about a specific situation (e.g., “this
specific entity belongs to a certain category, and has a certain relationship with an-
other entity, ...”). This distinction is essential in description logics and conceptual
graphs.

Another kind of knowledge is implicit knowledge described, for instance, by rules
of form “if this then that” (e.g., “if there is a relation r from x to y, then the same
relation r also holds from y to x”). Different kinds of rules can be considered. Some
rules can be included in an ontology (e.g., the transitivity of a binary relation), other
rules, for instance representing possible transformations, are not ontological knowl-
edge. Constraints, i.e., conditions that are to be fulfilled by some pieces of knowl-
edge in order to be correctly processed by a reasoning engine, frequently appear in
modeling and should be differentiated from other kinds of knowledge.

1.1.2.4 Good Computational Properties

We are interested in KR formalisms that can be used for building systems able to
solve real problems and not only toy problems. It is thus essential to anchor these
formalisms in a computational domain having a rich set of efficient algorithms. This
is a key point. AI aims at building systems (or agents) for solving complex tasks
and, from a complexity theory viewpoint, one can say that simple AI problems are
computationally difficult to solve—they are often NP-complete or NP-hard. Thus, if
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on one hand a KR formalism must firmly moor to logics in order to avoid reinventing
the wheel, on the other hand it must also moor to a rich algorithmic domain so that
usable systems can be built.

1.1.2.5 Knowledge Programming and the Semantic Gap

A KR system should allow a user to have a maximal understanding and control
over each step of the reasoning process. It should make it easy to enter the different
pieces of knowledge (e.g., ontological knowledge as well as factual knowledge) and
to understand their meaning and the results given by the system, and also (if asked
by the user) how the system computed the results. Any computing system should
have these qualities, i.e., should limit the semantic gap between real problems and
their formulation in a programming language.

The correspondence between knowledge about an application domain and an ex-
pression in the KR formalism representing this knowledge must be as tight as pos-
sible. Due to the importance of natural language and schemas in the description of
knowledge, a KR formalism should allow the user to easily represent simple phrases
in natural language and simple schemas. The ability for describing such a correspon-
dence, i.e., the natural semantics of a formal expression, is a good empirical criteria
for delimiting the usability of the formalism.

As already said, in order to understand the results given by the system, a precise
description of what is obtained (a denotational semantics) is mandatory. However, in
some situations, especially whenever the knowledge deals with a poorly formalized
application domain, it may be useful to understand how the results have been ob-
tained, i.e., to have an operational semantics. This point is important because there
can be a gap between the program and the knowledge represented in the system, i.e.,
a formal system, and the knowledge itself. There should be a tight correspondence
between what is seen by the user and how objects and operations are implemented.
This correspondence should be tight enough to enable faithful modeling of the ac-
tual data and problems, and to understand why and how results have been obtained.
A way to limit the semantic gap is to use a homogeneous model—the same kinds
of object and the same kinds of operation occur at each fundamental level (formal,
user interface, implementation). Such a correspondence is sometimes called an “iso-
morphism,” but this designation can be misleading. Indeed, this correspondence is
not a mathematical function between two mathematical objects but is rather a cor-
respondence between “reality” and a mathematical object. There is a gap between a
reality and the concepts describing it, as well as between a conceptual modeling and
its implementation, i.e., a representation of this modeling by computational objects.
Moreover, as in this book we use “isomorphism” in its usual mathematical sense,
we avoid using it metaphorically.
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1.2 Conceptual Graphs

This section provides an intuitive introduction to conceptual graphs. Precise defini-
tions are given in subsequent chapters. The conceptual graph model was introduced
by Sowa in 1976 [Sow76], developed in [Sow84], and then enriched and developed
by the conceptual graph community (cf. the proceedings of the International Con-
ference of Conceptual Structures). It is the synthesis of many works in AI, but its
roots are mainly found in the following areas: natural language processing, seman-
tic networks, databases and logics, especially the existential graphs of Pierce, which
form a diagrammatical system of logics.

We use the term “conceptual graphs” (CGs in short) to denote the family of for-
malisms rooted in Sowa’s seminal work, rather than a precise formalism, and we
use specific terms—e.g., basic conceptual graphs, simple conceptual graphs, posi-
tive nested conceptual graphs—for notions which are mathematically defined and
studied in this book.

1.2.1 Basic Notions

For an intuitive introduction to CGs, let us consider again the photo of children ex-
ample. We would like to represent some features of this photo and some knowledge
necessary to answer non-trivial questions about the content of the photo.

The basic vocabulary is composed of two partially ordered sets: a partially or-
dered set of concepts or classes (called concept types in the CG community) and
a partially ordered set of relation symbols (also called relation types). The partial
order is interpreted as a specialization or AKO relation: t1 ≤ t2 means that t1 is a
specialization of t2 (or t2 is a generalization of t1, t2 subsumes t1, t1 is a subtype
of t2 , or every entity of type t1 is of type t2). There is also a set of names, called
individual markers, used for denoting specific entities. This basic vocabulary can be
considered as a rudimentary ontology.

A basic conceptual graph (BG) is composed of two kinds of nodes, i.e., concept
nodes representing entities and relation nodes representing relationships between
these entities. Nodes are labeled by types, and one can indicate that a concept node
refers to a specific entity by adding an individual marker to its label. Otherwise the
concept node refers to an unspecified entity.

For instance, the conceptual graph K in Fig. 1.1 asserts that:

• there are entities (represented by rectangles): Mary who is a Girl, a Boy, who is
unspecified, and a Car, which is also unspecified.

• there are relations (represented by ovals) between the entities: a relation asserting
that Mary is the sister of the Boy, and two relations asserting that Mary and
the Boy play with the Car. The numbers on edges are used to totally order the
neighbors of each relation node. There is also a unary relation asserting that Mary
is smiling.
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Fig. 1.1 A basic conceptual graph

This BG could be translated by the sentence “Mary (who is a girl) and her brother
are playing with a car; Mary is smiling.”

Important differences between the conceptual graph model and its semantic net-
works ancestors are to be pointed out: Firstly, there is a clear distinction between
ontological knowledge (e.g., concept or relation types) and other kinds of knowl-
edge (such as factual or implicit knowledge); secondly, relations can be of any arity,
whereas the edges of semantic networks represent binary relations only; thirdly,
CGs have a logical semantics in FOL.

1.2.2 Subsumption and Homomorphism

The fundamental notion for studying and using BGs is homomorphism. In the CG
community, a BG homomorphism is traditionally called a projection. We prefer
the term “homomorphism” for two reasons. First, it corresponds to the classical
homomorphism notion in mathematics, and we will see that a BG homomorphism is
a mapping between BGs preserving the BG structure. Secondly, there is an operation
called “projection” in the relational database model, which is quite different from a
BG homomorphism.

A homomorphism from a BG G to a BG H is a mapping from the nodes of G to
the nodes of H, which preserves the relationships between entities of G, and may
specialize the labels of entities and relationships. In graph-theoretic terms, it is a
labeled graph homomorphism that we will precisely describe later. For the moment,
it is only necessary to know that a generalization/specialization relation (or sub-
sumption) over BGs can be defined with this notion: G is more general than H (or
G subsumes H, or H is more specific than G) if there is a homomorphism from G to
H.

Let us consider the graphs G and K in Fig. 1.2. The following mapping from the
node set of G to the node set of K (pictured in dashed lines) defines a homomorphism
from G to K:

the concept node [Girl] is mapped to the concept node [Girl: Mary] (the uniden-
tified girl is specialized into the girl Mary),
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the concept node [Child] is mapped to the concept node [Boy], with Boy being a
subtype of Child (the child is specialized into a boy),
the concept node [Toy] is mapped to the concept node [Car], with Car being a
subtype of Toy,
the relation node labeled (relativeOf) is mapped to the relation node (sisterOf)
(the relation “to be a relative of someone” is specialized into the relation “to be a
sister of someone”),
each relation node (actWith) is mapped to a relation node (playWith): The node
(actWith) with a first neighbor [Girl] is mapped to the node (playWith) with a
first neighbor [Girl:Mary], while the node (actWith) with a first neighbor [Child]
is mapped to the node (playWith) with a first neighbor [Boy].

G is a generalization of K (or K is a specialization of G) since each node of G is
mapped to a specialized (or identical) node of K, and because the relationships be-
tween concept nodes in G are specialized by (or identical to) relationships between
the image nodes in K.

This homomorphism maps G to a subgraph of K with the same structure as G.
This property is generally not fulfilled by a homomorphism, as illustrated by the
graphs H and K in Fig. 1.3: there is a homomorphism from H to K, which maps
both concept nodes [Car] in H to the same node [Car] in K. Graph H states that
“Mary is playing with a car and a boy is playing with a car” and K specializes it by
adding that they play with the same car. Moreover, K contains other relations, which
are not involved in the homomorphism from H to K.

KG

Car

2

1 2

1 1

2

Girl ChildrelativeOf

actWith actWith

Toy

1
Girl:Mary

2
sisterOf Boy

1 1

2
2

smile

playWith playWith

Fig. 1.2 G is a generalization of K

The fundamental problem for BGs is as follows: Given two BGs G and H, is
G a generalization of H? i.e., is there a homomorphism from G to H? We call
it BG-HOMOMORPHISM. We will see that this problem is NP-complete and pos-
sesses interesting polynomial cases. Furthermore, we will see that it is equivalent to
other fundamental problems in AI and databases, such as the constraint satisfaction
problem, which has been very well studied from an algorithmic viewpoint, or the
conjunctive query inclusion problem in database theory.
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Fig. 1.3 H is a generalization of K

1.2.3 Formal Semantics

Another essential point is that BGs possess a set semantics and a logical semantics,
with the former corresponding to the model theory of the latter.

Let us briefly outline how we provide BGs with a set semantics. First, one has to
define a model of a vocabulary. A model of a vocabulary consists of a non-empty
set D (the objects of the application domain), called the domain of the model, and
the definition δ of the meaning of each element of the vocabulary. δ assigns a part
of D (the set of objects of type t) to any concept type t, δ assigns a k-ary relation
over D (i.e., a part of Dk composed of the tuples of objects which are related by the
relation r) to any relation r of arity k and δ assigns an element of D to any individual
marker. As an example let us consider a situation described by the graphs G and K
in Fig. 1.2.

• The individual marker Mary is translated by an element in the domain D (i.e.,
δ (Mary) is the element in D representing the individual marker Mary).

• The concept types in the vocabulary, Girl, Boy, Car, etc., are translated by subsets
of D (e.g., δ (Girl) is the subset of D representing the concept type Girl).

• The binary relation symbols in the vocabulary, actWith, playWith, sisterOf, rel-
ativeOf, etc., are translated by binary relations over D (e.g., δ (sisterO f ) is the
binary relation over D representing the binary relation symbol sisterOf), and the
unary relation symbol smile is represented by a subset δ (smile) of D.

Secondly, we define BG models and the meaning of a BG that is satisfied by a
model (e.g., the type of the individual marker Mary is Girl, thus δ (Mary) must be in
δ (Girl); Mary is smiling, thus (δ (Mary) must be in δ (smile)). Then, an entailment
relation between BGs can be defined and, finally, its relationships with homomor-
phism is stated: Given two BGs G and H, there is a homomorphism from G to H if
and only if H entails G.

Let us now outline the logical semantics, classically called Φ . The vocabulary
is logically interpreted as follows. A predicate t is assigned to each type t (a unary
predicate to a concept type and a k-ary predicate to a k-ary relation type) and a
constant m to each individual marker m (for simplicity, here we use the same symbol
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for an object in the CG world and for its corresponding object in the FOL language,
e.g., a unary predicate t is assigned to a concept type t).

Given two k-ary types t1 and t2, t1 ≤ t2 is interpreted by the formula ∀X (t1(X)→
t2(X)), where X is a tuple of k variables, e.g., ∀x (Girl(x)→ Child(x)) or ∀x∀y
(sisterO f (x,y)→ relativeO f (x,y)). An existentially closed formula is assigned to
a BG, where terms (variables or constants) correspond to concept nodes.

For instance, the formula assigned to G in Fig. 1.1 is:
Φ(G) = ∃x∃y(Girl(Mary)∧Boy(x)∧Car(y)∧ smile(Mary)∧ sisterO f (Mary,x)∧
playWith(Mary,y)∧ playWith(x,y)).

Homomorphism is sound and complete with respect to logical deduction, i.e.,
given two BGs G and H, there is a homomorphism from G to H if and only if the
formula Φ(G) can be deduced from the formula Φ(H) and the logical translation of
the type hierarchies. The BG-HOMOMORPHISM problem can thus be identified with
a deduction problem. We will show later that basic conceptual graphs strongly cor-
respond to the existential, positive, conjunctive fragment of FOL (which we denote
by FOL(∃, ∧)) 1.

Basic conceptual graphs constitute the kernel of CGs. They can be used as such to
represent facts and queries. They are also basic bricks for more complex constructs,
such as nested graphs or rules, corresponding to more expressive CGs.

1.2.4 Full CGs

The most expressive conceptual graphs we shall consider, and call full conceptual
graphs, were introduced by Sowa in [Sow84] and are inspired from Peirce’s exis-
tential graphs (cf. [Dau02] for a mathematical study of full CGs and [Rob92] for
a presentation of Peirce’s existential graphs). The basic idea of the extension from
BGs to full CGs is that every FOL formula can be written as a formula by solely
using the existential quantifier and the conjunction and negation logical connectors.
By adding to BGs boxes representing negation and lines (called co-reference links)
indicating that two nodes represent the same entity, one obtains the same expressive-
ness as FOL. For instance, the graph of Fig. 1.4 shows that the relation r is transitive
on entities of type t, i.e., for all x, y, z of type t, if r(x, y) and r(y, z) then r(x, z). Its
logical translation is more precisely:

Φ(G) = ¬(∃x ∃y ∃z(t(x)∧ t(y)∧ t(z)∧ r(x,y)∧ r(y,z)∧¬(r(x,z)))),
which is equivalent to: ∀x∀y∀z((t(x)∧ t(y)∧ t(z)∧ r(x,y)∧ r(y,z))→ r(x,z))

Peirce’s existential graphs are provided with a sound and complete set of infer-
ence rules that can be adapted to CGs [Sow84] [Wer95a] [Dau02]. However, these
rules do not directly lead to automated reasoning because they heavily rely on hu-
man intuition2.

1 We will see that the universally quantified formulas associated with the vocabulary can be
dropped without restraining logical expressivity.
2 For instance, the insertion rule allows one to insert any graph (at a place obeying specific condi-
tions), which leads to an infinite number of choices.
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Fig. 1.4 A full CG

In this book, we will only briefly present full CGs, which are unsuitable for our
approach, as will become clear in the next section. Instead, we will build limited
extensions of BGs (e.g., with atomic negation), in an attempt to keep the essential
properties of BGs.

1.3 A Graph-Based Approach to KR

Since 1991 (cf. [CM92]) our aim has been to develop and study a KR formalism
respecting, as far as possible, the five requirements presented in Sect. 1.1. Our work
belongs to a logical approach to KR (and to the KR scientific community main-
stream as presented, for instance, by Brachman and Levesque in [BL04] or Baader
in [Baa99]), but it is also graph-based as explained hereafter. The formalism is
based on graphs and graph-theoretic notions and operations. It is logically founded,
but in some way is “autonomous” from (existing) logics. Stated differently, our KR
formalism is a pure graph-theoretic formalism, whose core corresponds to a FOL
fragment, and most extensions of this core correspond to FOL fragments. Since it is
embedded in graph theory, it is easy to define new operations, simple from a graph
viewpoint, and having simple intuitive semantics, but that do not necessarily have a
formal semantics expressed in a classical logic.

1.3.1 Motivations

Let us first outline our motivations for a graph-based approach to KR. They can
be divided into two categories: qualities of graphs for knowledge modeling and
qualities of graphs for computations.
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From a modeling viewpoint, we see two essential properties in the basic concep-
tual graph model. The objects, i.e., basic graphs, are easily understandable by users
(typically knowledge engineers or specialists in an application domain), at least if
the graphs are reasonably small (note that it is always possible to split up a large
conceptual graph into smaller ones while keeping its semantics). This feature par-
tially explains the success of semantic networks and, more generally, the success
of graphical models, such as the entity/relationships model, UML, Topic Maps, etc.
Many people, and not only computer scientists, are now familiar with kinds of la-
beled graphs (mainly trees, but not exclusively). This fact is especially important in
knowledge acquisition. In our approach to CGs, this quality does not only concern
the descriptive facet of the formalism. Reasoning mechanisms are also easily un-
derstandable, for two reasons. First, homomorphism is a “global” graph-matching
notion that can be easily visualized (we will also see that homomorphism is equiva-
lent to a sequence of elementary graph operations which are very simple and easy to
visualize). Secondly, the same language is used at interface and computing levels.
In particular, no transformation has to be done on the components of the knowledge
base before reasoning with it.

Thus, reasoning can be explained on the user’s representation itself, and expla-
nations can be given at any level from the user’s level to the implementation level.
At the implementation level, a graph can be represented by a structure with point-
ers, which is a graph too! To sum up, using a graph-based KR should reduce the
semantic gap mentioned in Sect. 1.1.2.

From a computational viewpoint, labeled graph homomorphism firmly moors
BGs to combinatorics. The graph homomorphism notion (or its variant, relational
structure homomorphism) was recognized in the 90s as a central notion, unifying
complexity results and algorithms obtained in several domains (e.g., cf. [Jea98] and
[FV93]). On the other hand, considering graphs instead of logical formulas provides
another view of knowledge constructs (e.g., some notions like path, cycle, or con-
nected components are natural on graphs) and provides other algorithmic ideas, as
we hope is illustrated throughout this book.

1.3.2 Extensions of the Basic Formalism

Full CGs à la Peirce are no longer graphs (in the graph theory sense); they are
diagrams. Associated inference rules are not graph-based operations either. In our
opinion, qualities of the BG model from a knowledge representation and reasoning
perspective (as presented above) are at least partially lost: namely, the readability of
objects as well as the easy understanding of the inference mechanism, and relation-
ships with combinatorial problems.

Rather than jumping from BGs to full CGs, we prefer, depending on the kind of
knowledge we would like to represent, to build extensions of the BG model, while
keeping its essential properties. These properties represent our motto and can be
summarized as follows:
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1. objects are labeled graphs (mathematically defined with graph-theoretic no-
tions),

2. reasoning mechanisms are based on graph-theoretic operations, mainly relying
on graph homomorphism,

3. efficient reasoning algorithms exist for important specific cases,
4. objects and operations have graphical representations, which make them easily

understandable by users (limitation of the semantic gap),
5. the BG model is logically founded, with the inference mechanism being sound

and complete with respect to FOL semantics.

Let us briefly give an example of extension: BG rules. A rule represents informa-
tion of the type: “if information H is found, then information C can be added.” H is
called the hypothesis of the rule and C its conclusion. This notion of a rule has been
widely used in AI to represent implicit knowledge, which can be made explicit by
applying the rules, on facts for instance.

Rules could be represented as full CGs, but in so doing they would lose their
specificity and could not be processed in a particular manner. A BG rule can be
defined as a bicolored BG (a more general rule definition will be given). One color
(white in the figures) defines the hypothesis, and the other color defines the conclu-
sion (gray in the figures). For instance, the rule in Fig. 1.5 has the same semantics
as the full CG in Fig. 1.4, i.e., it says that the relation r is transitive on type t enti-
ties. A more complex rule is pictured in Fig. 1.6. This rule allows us to decompose
the ternary relation give into simpler relations: If there is a relation give with first
argument a Human x, with second argument a T hing y and with third argument an
Animate entity z, then there is a Gi f t act, whose x is the agent, y is the ob ject and z
is the recipient.

The notion of a rule application is very simple. A rule R is said to be applicable
to a BG G if its hypothesis H can be mapped by a homomorphism to G. Then it
can be applied to G: Applying R consists of adding the conclusion of R to G guided
by the homomorphism from H to G. Rules are provided with a logical semantics
extending that of BGs, such that graph mechanisms, namely forward chaining and
backward chaining, are sound and complete. Let us consider a KB K composed
of a set F of BGs representing facts and a set R of rules. A BG is derived from
K if it can be obtained by a sequence of rule applications to the facts. The basic
problem considered is thus as follows: Given a KB K = (F ,R) and a BG Q, is a
specialization of Q derivable from K? Due to the soundness and completeness of
the graph mechanisms defined, it can be seen as a deduction problem, called FR-
DEDUCTION. By enriching BGs with rules, we obtain a computability model. This
is an important property but, similar to the fact that no computability model can
be the basis for building a universally good programming language, this does not
mean that this KR formalism is suitable for all KR domains. Moreover, this high
expressivity comes with undecidability of reasoning. That is why properties on rule
sets ensuring decidability of reasoning are studied. A simple example is that of rules
that do not add unspecified concept nodes (such as the rule in Fig. 1.5, contrary to
the rule in Fig. 1.6 which adds an unspecified Gift). In this case, FR-DEDUCTION
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is NP-complete, thus not more difficult than deduction checking in the BG model,
i.e., BG-HOMOMORPHISM.
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Fig. 1.5 A simple rule
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Fig. 1.6 Another rule

Other extensions presented in the book are type conjunctions, nested graphs,
atomic negation, and constraints, as well as a family of models combining rules and
constraints, called the BG-Family.

1.3.3 Several Approaches to CGs

Let us end this section by situating our approach in the CG landscape. Research on
CGs can be roughly classified according to three axes: CGs can be seen as a dia-
grammatic interface for other formalisms or as a diagrammatic calculus of logics,
or as a graph-based KR formalism.

Many works are mainly focused on the visual qualities of conceptual graphs.
The expressivity and readability of the obtained representations are therefore the
main criteria for evaluating a formalism. We shall not forget that a main motivation
behind conceptual graphs was the processing of natural language semantics: From
this standpoint, the relative easiness in translating a (small) conceptual graph into
a natural language sentence it represents is an important criterion. When reasoning
mechanisms are associated with representations, they are not part of the CG for-
malism: They are performed in a procedural way, or rely on another formalism into
which the CGs are translated. In this approach, conceptual graphs are seen as a dia-
grammatical interface for other formalisms (e.g., the Common Logic Standard and
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CLIF [CLS07]). They are not a knowledge representation and reasoning formalism
per se, i.e., in the sense of Sect. 1.1.

Other works can be seen as the continuation of Peirce’s work on a diagrammatical
system of logics. Conceptual graphs are then diagrams, and reasoning is based on
diagrammatic operations. In these works, automated reasoning is not the point and
the computational aspect of the formalism is absent.

Finally, the graph-based approach emphasizes the following points (cf. our motto
in Sect. 1.3.2), which distinguishes it from the other two approaches:

• CGs are seen as a KR and reasoning formalism. Thus, they are provided with
their own operations for reasoning.

• Reasoning mechanisms should be sound and complete with respect to a formal
semantics.

• Reasoning operations should be conducted in an efficient way. That is why de-
cidability and complexity studies, as well as the design of efficient algorithms
are important issues.

• Reasoning mechanisms are based on graph-theoretic notions, mainly labeled
graph homomorphism, as the structure underlying objects is a graph.

We became highly interested in CGs when we proved (cf. [Mug92] and [CM92])
that homomorphism on the BG fragment is complete with respect to the FOL seman-
tics. As Sowa in [Sow84] had proven that homomorphism is sound (with respect to
this FOL semantics), the completeness theorem established the graph homomor-
phism notion as a key reasoning tool. It is agreed that graph homomorphism is a
fundamental notion in graph theory and the results we have obtained, as well as
results in other fields (e.g., cf. [Jea98] and [FV93]), strengthened our belief that
labeled graph homomorphism is a key notion in KR.




