
Chapter 8

Parameter Estimation
in Optimal Object
Recognition

Object recognition systems involve parameters such as thresholds, bounds,
and weights. These parameters have to be tuned before the system can per-
form successfully. A common practice is to choose such parameters manually
on an ad hoc basis, which is a disadvantage. This chapter1 presents a theory
of parameter estimation for optimization-based object recognition where the
optimal solution is defined as the global minimum of an energy function. The
theory is based on supervised learning from training examples. Correctness
and instability are established as criteria for evaluating the estimated param-
eters. A correct estimate enables the labeling implied in each example con-
figuration to be encoded in a unique global energy minimum. The instability
is the ease with which the minimum is replaced by a nonexample configu-
ration after a perturbation. The optimal estimate minimizes the instability.
Algorithms are presented for computing correct and minimal-instability es-
timates. The theory is applied to the parameter estimation for MRF-based
recognition, and promising results are obtained.

8.1 Motivation

Object recognition systems almost inevitably involve parameters such as
thresholds, bounds, and weights (Grimson 1990). In optimization-based ob-
ject recognition, where the optimal recognition solution is explicitly defined
as the global extreme of an objective function, these parameters can be part
of the definition of the objective function by which the global cost (or gain)

1This chapter is based on Li (1997b).
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of the solution is measured. The selection of the parameters is crucial for a
system to perform successfully.

Among all the admissible parameter estimates, only a subset of them lead
to the desirable or correct solutions to the recognition. Among all the correct
estimates, a smaller number of them are better in the sense that they lead
to correct solutions for a larger variety of data sets. One of them may be
optimal in the sense that it makes the vision procedure the most stable to
uncertainties and the least prone to local optima in the search for the global
optimum.

The manual method performs parameter estimation in an ad hoc way
by trial and error: A combination of parameters is selected to optimize the
objective function, and then the optimum is compared with the desirable
result in the designer’s perception and the selection is adjusted. This process
is repeated until a satisfactory choice, that makes the optimum consistent
with the desirable result, is found. This is a process of supervised learning
from examples. When the objective function takes a right functional form,
a correct manual selection may be made for a small number of data sets.
However, there is no reason to believe that the manual selection is an optimal
or even a good one. Such empirical methods have been criticized for their ad
hoc nature.

This chapter aims to develop an automated optimal approach for param-
eter estimation2 applied to optimization-based object recognition schemes.
A theory of parameter estimation based on supervised learning is presented.
The learning is “supervised” because a training set of examples is given. Each
example represents a desirable recognition result where a recognition result
is a labeling of the scene in terms of the model objects. Correctness and
optimality are proposed as the two-level criteria for evaluating parameters
estimates.

A correct selection of parameters enables the configuration given by each
example to be embedded as a unique global energy minimum. In other words,
if the selection is incorrect, the example configuration will not correspond to a
global minimum. While a correct estimate can be learned from the examples,
it is generally not the only correct solution. Instability is defined as the mea-
sure of the ease with which the global minimum is replaced by a nonexample
labeling after a perturbation to the input. The optimality minimizes the in-
stability so as to maximize the ability to generalize the estimated parameters
to other situations not directly represented by the examples.

Combining the two criteria gives a constrained minimization problem:
minimize the instability subject to the correctness. A nonparametric algo-
rithm is presented for learning an estimate which is optimal as well as cor-
rect. It does not make any assumption about the distributions and is useful
for cases where the size of the training example set is small and where the

2In this chapter, parameter “selection”, “estimation” and “learning” are used inter-
changeably.
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underlying parametric models are not accurate. The estimate thus obtained
is optimal w.r.t. the training data.

The theory is applied to a specific model of MRF recognition proposed
in (Li 1994a). The objective function in this model is the posterior energy of
an MRF. The form of the energy function has been derived, but it involves
parameters that have to be estimated. The optimal recognition solution is
the maximum a posteriori (MAP) configuration of an MRF. Experiments
conducted show very promising results in which the optimal estimate serves
well for recognizing other scenes and objects.

A parametric method based on maximum likelihood is also described for
computing the optimal parameter estimate under the Gaussian-MRF as-
sumption. It takes advantage of the assumption and may be useful when
the size of the training data is sufficiently large. The parameter estimate
thus computed is optimal w.r.t. the assumption.

Although automated and optimal parameter selection for object recog-
nition in high-level vision is an important and interesting problem that has
existed for a long time, reports on this topic are rare. Works have been done
in related areas. In (Poggio and Edelman 1990), to recognize 3D objects from
different viewpoints, a function mapping any viewpoint to a standard view
is learned from a set of perspective views. In (Weng et al. 1993), a network
structure is introduced for automated learning to recognize 3D objects. In
(Pope and Lowe 1993), a numerical graph representation for an object model
is learned from features computed from training images. In (Pelillo and Refice
1994) a procedure is proposed for learning compatibility coefficients for re-
laxation labeling by minimizing a quadratic error function. Automated and
optimal parameter estimation for low-Level problems has achieved significant
progress. MRF parameter selection has been dealt with in statistics (Besag
1974; Besag 1975) and in applications such as image restoration, reconstruc-
tion, and texture analysis (Cross and Jain 1983; Cohen and Cooper 1987;
Derin and Elliott 1987; Qian and Titterington 1989; Zhang 1988; Nadabar
and Jain 1992). The problem is also addressed from the regularization view-
point (Wahba 1980; Geiger and Poggio 1987; Shahraray and Anderson 1989;
Thompson et al. 1991).

The chapter is organized as follows. Section 8.2 presents the theory.
Section 8.3 applies the theory to an MRF recognition model. Section 8.4
presents the experimental results. Finally, conclusions are made in Section 8.5.

8.2 Theory of Parameter Estimation
for Recognition

In this section, correctness, instability, and optimality are proposed for eval-
uating parameter estimates. Their relationships to nonparametric pattern
recognition are discussed, and nonparametric methods for computing correct
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and optimal estimates are presented. Before preceeding, necessary notations
for optimization-based object recognition are introduced.

8.2.1 Optimization-Based Object Recognition

In optimization-based recognition, the optimal solution is explicitly defined
as the extreme of an objective function. Let f be a configuration represent-
ing a recognition solution. The cost of f is measured by a global objective
function E(f | θ), also called the energy. The definition of E is dependent on
f and a number of K +1 parameters θ = [θ0, θ1, . . . , θK ]T . As the optimality
criterion for model-based recognition, it also relates to other factors such as
the observation, denoted G, and model references, denoted G′. Given G, G′,
and θ, the energy maps a solution f to a real number by which the cost of the
solution is evaluated. The optimal solution corresponds to the global energy
minimum, expressed as

f∗ = arg min
f

E(f | θ) (8.1)

In this regard, it is important to formulate the energy function so that the
“correct solution” is embedded as the global minimum. The energy may also
serve as a guide to the search for a minimal solution. In this respect, it is
desirable that the energy should differentiate the global minimum from other
configurations as much as possible.

The energy function may be derived using one of the following probabilis-
tic approaches: fully parametric, partially parametric, and nonparametric. In
the fully parametric approach, the energy function is derived from probabil-
ity distributions in which all the parameters involved are known. Parameter
estimation is a problem only in the partially parametric and nonparametric
cases.

In the partially parametric case, the forms of distributions are given but
some parameters involved are unknown. One example is the Gaussian distri-
bution with an unknown variance, and another is the Gibbs distribution with
unknown clique potential parameters. In this case, the problem of estimating
parameters in the objective function is related to estimating parameters in
the related probability distributions.

In the nonparametric approach, no assumptions are made about distri-
butions and the form of the objective function is obtained based on expe-
riences or prespecified “basis functions” (Poggio and Edelman 1990). This
also applies to situations where the data set is too small to have statistical
significance.

An important form for E in object recognition is the weighted sum of
various terms, expressed as

E(f | θ) = θT U(f) =
K
∑

k=0

θkUk(f) (8.2)
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where U(f) = [U0(f), U1(f), . . . , UK(f)]T is a vector of potential functions.
A potential function is dependent on f , G, and G′, where the dependence can
be nonlinear in f , and often measures the violation of a certain constraint
incurred by the solution f . This linear combination of (nonlinear) potential
functions is not an unusual form. It has been used in many matching and
recognition works; see (Duda and Hart 1973; Fischler and Elschlager 1973;
Davis 1979; Ghahraman et al. 1980; Jacobus et al. 1980; Shapiro and Haralick
1981; Oshima and Shirai 1983; Bhanu and Faugeras 1984; Wong and You
1985; Fan et al. 1989; Nasrabadi et al. 1990; Wells 1991; Weng et al. 1992;
Li 1994a). Note that when E(f | θ) takes the linear form, multiplying θ by a
positive factor κ > 0 does not change the minimal configuration

arg min
f

E(f | θ) = arg min
f

E(f | κθ) (8.3)

Because of this equivalent, an additional constraint should be imposed on θ
for the uniqueness. In this work, θ is confined to having a unit Euclidean
length

‖θ‖ =

√

√

√

√

K
∑

k=0

θ2
k = 1 (8.4)

Given an observation G, a model reference G′, and the form of E(f | θ), it is
the θ value that completely specifies the energy function E(f | θ) and thereby
defines the minimal solution f∗. It is desirable to learn the parameters from
examples so that the minimization-based recognition is performed correctly.
The criteria for this purpose are established in the next subsection.

8.2.2 Criteria for Parameter Estimation

An example is specified by a triple (f̄ ,G,G′), where f̄ is the example config-
uration (recognition solution) telling how the scene (G) should be labeled or
interpreted in terms of the model reference (G′). The configuration f̄ may be
a structural mapping from G to G′. Assume that there are L model objects;
then at least L examples have to be used for learning to recognize the L
object. Let the instances be given as

{(f̄ �,G�,G′�) | � = 1, . . . , L} (8.5)

We propose two-level criteria for learning θ from examples:

1. Correctness. This defines a parameter estimate that encodes constraints
into the energy function in a correct way. A correct estimate, denoted
θcorrect, should embed each f̄ � into the minimum of the corresponding
energy E(f � | θcorrect), that is

f̄ � = arg min
f

E�(f | θcorrect) ∀� (8.6)
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where the definition of E�(f | θ) is dependent on the given scene G� and
the model G′� of a particular example (f̄ �,G�,G′�) as well as θ. Briefly,
a correct θ is one that makes the minimal configuration f∗ defined in
(8.1) coincide with the example configuration f̄ �.

2. Optimality. This is aimed at maximizing the generalizability of the pa-
rameter estimate to other situations. A measure of instability is defined
for the optimality and is to be minimized.

The correctness criterion is necessary for a vision system to perform correctly
and is of fundamental importance. Only when this is met does the MRF model
make correct use of the constraints. The optimality criterion is not necessary
in this regard but makes the estimate most generalizable.

Correctness

In (8.6), a correct estimate θcorrect enables the f̄ to be encoded as the global
energy minimum for this particular pair (G,G′). Therefore, it makes any
energy change due to a configuration change from f̄ to f �= f̄ positive; that
is,

ΔE�(f | θ) = E�(f | θ) − E�(f̄ � | θ) (8.7)

=
∑

k

θk[Uk(f) − Uk(f̄ �)] > 0 ∀f ∈ F�

where
F� = {f | f �= f̄ �} (8.8)

is the set of all non-f̄ � configurations. Let

Θcorrect = {θ | ΔE�(f | θ) > 0,∀f ∈ F�, � = 1, . . . , L} (8.9)

be the set of all correct estimates. The set, if non-empty, usually comprises
not just a single point but a region in the allowable parameter space. Some
of the points in the region are better in the sense of stability, to be defined
below.

Instability

The value of the energy change ΔE�(f | θ) > 0 can be used to measure the
(local) stability of θ ∈ Θcorrect w.r.t. a certain configuration f ∈ F�. Ideally,
we want E�(f̄ � | θ) to be very low and E�(f | θ) to be very high, such that
ΔE�(f | θ) is very large, for all f �= f̄ �. In such a situation, f̄ � is expected
to be a stable minimum where the stability is w.r.t. perturbations in the
observation and w.r.t. the local minimum problem with the minimization
algorithm.

The smaller ΔE�(f | θ) is, the larger is the chance with which a pertur-
bation to the observation will cause ΔE�(f | θcorrect) to become negative to
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violate the correctness. When ΔE�(f | θcorrect) < 0, f̄ � no longer corresponds
to the global minimum. Moreover, we assume that configurations f whose en-
ergies are slightly higher than E�(f̄ � | θ) are possibly local energy minima at
which an energy minimization algorithm is most likely to get stuck.

Therefore, the energy difference (i.e., the local stabilities) should be en-
larged. One may define the global stability as the sum of all ΔE�(f | θ).
For reasons to be explained later, instability, instead of stability, is used for
evaluating θ.

The local instability for a correct estimate θ ∈ Θcorrect is defined as

c�(θ, f) =
1

ΔE�(f | θ)
(8.10)

where f ∈ F�. It is “local” because it considers only one f ∈ F�. It is desirable
to choose θ such that the value of c�(θ, f) is small for all f ∈ F�. Therefore,
we defined the global p-instability of θ

C�
p(θ) =

⎧

⎨

⎩

∑

f∈F�

[

c�(θ, f)
]p

⎫

⎬

⎭

1/p

(8.11)

where p ≥ 1. The total global p-instability of θ is

Cp(θ) =
L
∑

�=1

C�
p(θ) (8.12)

In the limit as p → ∞, we have that3

C�
∞(θ) = max

f∈F�
c�(θ, f) =

1
minf∈F� ΔE�(f | θ)

(8.13)

is due solely to f having the smallest c�(θ, f) or largest ΔE�(f | θ) value.
Unlike the global stability definition, the global instability treats each

item in the following manner: Those f having smaller ΔE�(f | θ) (larger
c�(θ, f)) values affect C�

p(θ) in a more significant way. For p = 2, for example,
the partial derivative is

∂C�
2(θ)

∂θk
=

∂C�
2(θ)

∂ΔE�(f | θ)
∂ΔE�(f | θ)

∂θk
(8.14)

=
1

[ΔE�(f | θ)]3
[Uk(f) − Uk(f̄ �)] (8.15)

where E�(f | θ) takes the linear form (8.2). The smaller the ΔE�(f | θ) is,
the more it affects θ. This is desirable because such f are more likely than the
others to violate the correctness, because their ΔE�(f | θ) values are small,
and should be more influential in determining θ.

3This is because, for the p-norm defined by ‖y‖p = (|y1|p + |y2|p + · · · + |yn|p)1/p, we
have limp→∞ ‖y‖p = maxj |yj |.
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Optimality

The optimal estimate is defined as the one in Θcorrect that minimizes the
instability

θ̄ = arg min
θ∈Θcorrect

Cp(θ) (8.16)

Obviously, Cp(θ) is positive for all θ ∈ Θcorrect, and hence the minimal solu-
tion always exists. The minimal solution tends to increase ΔE(f | θ) values in
the global sense and thus maximizes the extent to which an example configu-
ration f̄ remains to be the global energy minimum when the observation d is
perturbed. It is also expected that with such a θ̄, local minima corresponding
to some low-energy-valued f are least likely to occur in minimization.

The correctness in (8.7), instability in (8.11), and optimality in (8.16) are
defined without specifying the form of the energy E(f | θ). Therefore, the
principle established so far is general for any optimization-based recognition
models. Minimizing the instability with the constraint of the correctness is a
nonlinear programming problem when the instability is nonlinear in θ.

For conciseness, in the following, the superscript � will be omitted most
of the time unless necessary.

8.2.3 Linear Classification Function

In this work, we are interested in cases where the E(f | θ) is linear in θ.
Assume that, with a nonparametric or partially parametric modeling method,
the energy is derived to take the linear form (8.2). With the linear form, the
energy change can be written as

ΔE(f | θ) = θT x(f) (8.17)

where
x(f) = [x0(f), x1(f), . . . , xK(f)]T = U(f) − U(f̄) (8.18)

is the potential change. Denote the set of all potential changes by

X = {x(f) | f ∈ F} (8.19)

Note that X excludes x(f̄), the vector of zeros. The set X will be used as the
training data set. When there are L > 1 examples,

X = {x�(f) = U �(f) − U �(f̄ �) | f ∈ F�,∀�} (8.20)

contains training data from all the instances. X is the K + 1-dimensional
data space in which x’s are points.

The correctness (8.7) can be written as

θT x(f) > 0 ∀x ∈ X (8.21)

In pattern recognition, θT x is called a linear classification function when con-
sidered as a function of x; θT x(f) is called a generalized linear classification
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Figure 8.1: Correct and incorrect parameter estimates. A case where the C∞-
optimal hyperplane is parallel to x′x′′. From (Li 1997b) with permission;
c©1997 Kluwer.

function when considered as a function of f . There exist useful theories and
algorithms for linear pattern classification functions (Duda and Hart 1973).

The equation θT x = 0 is a hyperplane in the space X , passing through
the origin x(f̄) = 0. With a correct θ, the hyperplane divides the space into
two parts, with all x(f) (f ∈ F) on one side, more exactly the “positive”
side, of the hyperplane. The Euclidean distance from x to the hyperplane
is equal to θT x/‖θ‖, a signed quantity. After the normalization (8.4), the
point-to-hyperplane distance is just θT x(f).

The correctness can be judged by checking the minimal distance from the
point set X to the hyperplane. We define the “separability” as the smallest
distance value

S(θ) = min
f

θT x(f)/‖θ‖ (8.22)

and it can also be considered as the stability of the system with a given θ.
The correctness is equivalent to the positivity of the separability.

It is helpful to visually illustrate the optimality using C∞. With C∞, the
minimal-instability solution is the same as the minimax solution

θ̄ = arg min
θ∈Θcorrect

C∞(θ) = arg min
θ∈Θcorrect

[

max
f∈F

ΔE(f | θ)
]

(8.23)

In this case, S(θ) = 1/C∞(θ) and the above is maximal separability.
Figure 8.1 qualitatively illustrates correct/incorrect and maximal separa-

bility parameters. It is an example in two-dimensional space where an energy
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Figure 8.2: A case where the optimal hyperplane is perpendicular to ox′.
From (Li 1997b) with permission; c©1997 Kluwer.

change takes the form of ΔE(f | θ) = θT x(f) = θ1x1 + θ2x2. The point
x(f̄) = 0 coincides with the origin of the x1–x2 space. Data x(f) (f ∈ F)
are shown as filled dots. The three lines L(1), L(2), and L(3) represent three
hyperplanes, corresponding to three different estimates of parameters θ. Pa-
rameter estimates for L(1) and L(2) are correct ones because they make all
the data points on the positive side of the hyperplane and thus satisfy (8.7).
However, L(3) is not a correct one. Of the two correct estimates in Fig. 8.1,
the one corresponding to L(1) is better than the other in terms of C∞.

The separability determines the range of disturbances in x within which
the example configuration f̄ remains minimal. Refer to point x′ = x(f ′) in
the figure. Its distance to L(2) is the smallest. The point may easily devi-
ate across L(2) to the negative half space due to some perturbation in the
observation d. When this happens, ΔE(f | θ) < 0, causing E(f ′ | θ) to be
lower than E(f̄ | θ). This means that f̄ is no longer the energy minimum. If
the parameters are chosen as those corresponding to L(1), the separability is
larger and violation of the correctness is less likely to happen.

The dashed polygon in the figure forms the convex hull (polytope) of the
data set. Only those data points that form the hull affect the minimax solution
whereas those inside the hull are ineffective. The ineffective data points inside
the hull can be removed and only the effective points, the number of which
may be small compared with the whole data set, need be considered in the
solution-finding process. This increases the efficiency.

There are two possibilities for the orientation of the maximal-separability
hyperplane w.r.t. the polytope. The first is that the optimal hyperplane is
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parallel to one of the sides (faces in cases of 3D or higher-dimensional pa-
rameter space) of the polytope, which is the case in Fig. 8.1. The other is
that the optimal hyperplane is perpendicular to the line linking the origin ø
and the nearest data point, which is the case in Fig. 8.2. This is a property
we may use to find the minimax solution. When the points constituting the
polytope are identified, all the possible solutions can be enumerated; when
there are only a small number of them, we can find the minimax solution
by an exhaustive comparison. In Fig. 8.2, L(2) is parallel to x′x′′ and L(3) is
parallel to x′x′′′, but L(1) is perpendicular to 0x′. Let θ1, θ2 and θ3 be the
sets of parameters corresponding to L(1), L(2) and L(3). Suppose that in the
figure the following relations hold: S(θ1) > S(θ2) and S(θ1) > S(θ3). Then
θ1 is the best estimate because it maximizes the separability.

The minimax solution (8.23) with p = ∞ was used in the above only for
illustration. With p = ∞, a continuous change in x may lead to a discontin-
uous change in the C∞-optimal solution. This is due to the decision-making
nature of the definition which may cause discontinuous changes in the min-
imum. We use other p-instability definitions, with p = 1 or 2 for example,
because they give more stable estimates.

8.2.4 A Nonparametric Learning Algorithm

Consider the case where p = 2. Because θT x ≥ 0, minimizing C2(θ) is equiv-
alent to minimizing its square,

[C2(θ)]
2 =

∑

x∈X

1
(θT x)2

(8.24)

The problem is given formally as

minimize
∑

x∈X
1

(θT x)2

subject to ‖θ‖ = 1
θT x > 0 ∀x ∈ X

(8.25)

This is a nonlinear programming problem and can be solved using the stan-
dard techniques. In this work, a gradient-based, nonparametric algorithm is
used to obtain a numerical solution.

The perceptron algorithm (Rosenblatt 1962) has already provided a so-
lution for learning a correct parameter estimate. It iterates on θ to increase
the objective of the form θT x based on the gradient information, where the
gradient is simply x. In one cycle, all x ∈ X are tried in turn to adjust θ.
If θT x > 0, meaning x is correctly classified under θ, no action is taken.
Otherwise, if θT x ≤ 0, θ is adjusted according to the gradient-ascent rule

θ ←− θ + μx (8.26)

where μ is a small constant. The update is followed by a normalization op-
eration
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Algorithm learning(θ, X )
/* Learning correct and optimal θ from the training data X */
Begin Algorithm

initialize(θ);
do {

θlast ← θ;
if (θT x > 0 ∃x ∈ X ) {

correct(θ);
θ ← θ/‖θ‖;

}
θ ←− θ + μ

∑

x∈X
x

(θT x)3
;

θ ← θ/‖θ‖;
} until (‖θT

last − θ‖ < ε);
return(θ̄ = θ);

End Algorithm

Figure 8.3: Algorithm for finding the optimal combination of parameters.
From (Li 1997b) with permission; c©1997 Kluwer.

θ ← θ/‖θ‖ (8.27)

when ‖θ‖ = 1 is required. The cycle is repeated until a correct classification
is made for all the data and thus a correct θ is learned. With the assumption
that the solution exists, also meaning that the data set X is linearly separable
from the origin of the data space, the algorithm is guaranteed to converge
after a finite number of iterations (Duda and Hart 1973).

The objective function [C2(θ)]2 =
∑

x∈X
1

(θT x)2
can be minimized in a

similar way. The gradient is

∇[C2(θ)]2 = −2
∑

x∈X

x

(θT x)3
(8.28)

An update goes as

θ ←− θ + μ
∑

x∈X

x

(θT x)3
(8.29)

where μ is a small constant. If θ were unconstrained, the above might diverge
when (θT x)3 becomes too small. However, the update is again followed by
the normalization ‖θ‖ = 1. This process repeats until θ converges to θ̄.

In our implementation, the two stages are combined into one procedure as
shown in Fig. 8.3. In the procedure, initialize(θ) sets θ at random, correct(θ)
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learns a correct θ from X , and (‖θT
last − θ‖ < ε), where ε > 0 is a small

number, verifies the convergence. The algorithm is very stable.
The amount of change in each minimization iteration is μ

∑

x∈X
x

(θT x)3
.

The influence from x is weighted by 1/(θT x)3. This means that those x with
smaller θT x values (closer to the hyperplane) have bigger force in pushing
the hyperplane away from themselves, whereas those with big θT x values (far
away from the hyperplane) have small influence. This effectively stabilizes the
learning process.

When p = ∞, we are facing the minimax problem (8.23). An algorithm
for solving this is the “generalized portrait technique” (Vapnik 1982), which
is designed for constructing hyperplanes with maximum separability. It is
extended by Boser, Guyon, and Vapnik (1992) to train classifiers of the form
θT ϕ(x), where ϕ(x) is a vector of functions of x. The key idea is to trans-
form the problem into the dual space by means of the Lagrangian. This gives
a quadratic optimization with constraints. The optimal parameter estimate
is expressed as a linear combination of supporting patterns, where the sup-
porting patterns correspond to the data points nearest to the hyperplane.
Two benefits are gained from this method: There are no local minima in the
quadratic optimization and the maximum separability obtained is insensitive
to small changes of the learned parameters.

The θ computed using the nonparametric procedure is optimal w.r.t. the
training data X . It is the best result that can be obtained from X for gener-
alization to other data. Better results may be obtained, provided that more
knowledge about the training data is available.

8.2.5 Reducing Search Space

The data set X in (8.20) may be very large because there are a combinatorial
number of possible configurations in F = {f �= f̄}. In principle, all f �= f̄
should be considered. However, we assume that the configurations thay are
neighboring f̄ have the largest influence on the selection of θ. Define the
neighborhood of f̄ as

Nf̄ = {f = (f1, . . . , fm) | fi �= f̄i, fi ∈ L,∃1i ∈ S} (8.30)

where ∃1 reads “one and only one exists” and L is the set of admissible labels
for every fi. The Nf̄ consists of all f ∈ F that differ from f̄ by one and only
one component. This confinement reduces the search space to an enormous
extent. After the configuration space is confined to Nf̄ , the set of training
data is computed as

X = {x = U(f) − U(f̄) | f ∈ Nf̄} (8.31)

which is much smaller than the X in (8.20).
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8.3 Application in MRF Object Recognition

The theory is applied to the parameter estimation for MRF object recognition
where the form of the energy is derived based on MRF’s. MRF modeling
provides one approach to optimization-based object recognition (Modestino
and Zhang 1989; Cooper 1990; Baddeley and van Lieshout 1992; Kim and
Yang 1992; Li 1994a). The MAP solution is usually sought. The posterior
distribution of configurations f is of Gibbs type

P (f | d) = Z−1e−E(f | θ) (8.32)

where Z is a normalizing constant called the partition function and E(f | θ) is
the posterior energy function measuring the global cost of f . In the following,
E(f | θ) is defined and converted to the linear form θT U(f).

8.3.1 Posterior Energy

An object or a scene is represented by a set of features where the features are
attributed by their properties and constrained to one another by contextual
relations. Let a set of m features (sites) in the scene be indexed by S =
{1, . . . , m}, a set of M features (labels) in the considered model object by
L = {1, . . . , M}, and everything in the scene not modeled by labels in L
by {0} which is a virtual NULL label. The set union L+ = L ∪ {0} is the
augmented label set. The structure of the scene is denoted by G = (S, d)
and that of the model object by G′ = (L,D), where d denotes the visual
constraints on features in S and D describes the visual constraints on features
in L, where the constraints can be, for example, properties and relations
between features.

Let object recognition be posed as assigning a label from L+ to each of
the sites in S so as to satisfy the constraints. The labeling (configuration)
of the sites is defined by f = {f1, . . . , fm}, in which fi ∈ L+ is the label
assigned to i. A pair (i ∈ S, fi ∈ L+) is a match or correspondence. Under
contextual constraints, a configuration f can be interpreted as a mapping
from the structure of the scene G = (S, d) to the structure of the model object
G′ = (L,D). Therefore, such a mapping is denoted as a triple (f,G,G′).

The observation d = (d1, d2), which is the feature extracted from the
image, consists of two sources of constraints, unary properties d1 for single-
site features, such as color and size, and binary relations d2 for pair-site
features, such as angle and distance. More specifically, each site i ∈ S is
associated with a set of K1 properties {d(k)

1 (i) | k = 1, . . . ,K1, i ∈ S} and each
pair of sites with a set of K2 relations {d(k)

2 (i, i′) | k = 1, . . . ,K2; i, i′ ∈ S}. In
the model object library, we have model features {D(k)

1 (I) | k = 1, . . . ,K1, I ∈
L} and {D(k)

2 (I, I ′) | k = 1, . . . ,K2; I, I ′ ∈ L} (note that L excludes the
NULL label). According to (4.14), under the labeling f , the observation d is
a noise-contaminated version of the corresponding model features D
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d1(i) = D1(fi) + e(i), d1(i, i′) = D2(fi, fi′) + e(i, i′) (8.33)

where fi, fi′ �= 0 are nonNULL matches and e is a white Gaussian noise; that
is, d1(i) and d2(i, i′) are white Gaussian distributions with conditional means
D1(fi) and D2(fi, fi′), respectively.

The posterior energy E(f) = U(f | d) takes the form shown in (4.18),
rewritten as

E(f) =
∑

i∈S V1(fi)+
∑

i∈S
∑

i′∈Ni
V2(fi, fi′)+

∑

i∈S:fi �=0 V1(d1(i) | fi)+
∑

i∈S:fi �=0

∑

i′∈S−{i}:fi′ �=0 V2(d2(i, i′) | fi, fi′)

(8.34)

The first and second summations are due to the joint prior probability of the
MRF labels f ; the third and fourth are due to the conditional p.d.f. of d or
the likelihood of f , respectively. Refer to (4.11), (4.12), (4.16), and (4.17).

8.3.2 Energy in Linear Form

The parameters involved in E(f) are the noise variances [σ(k)
n ]2 and the prior

penalties vn0 (n = 1, 2). Let the parameters be denoted uniformly by θ =
{θ(k)

n | k = 0, . . . , Kn, n = 1, 2}. For k = 0,

θ(0)
n = vn0 (8.35)

and for k ≥ 1,
θ(k)

n = (2[σ(k)
n ]2)−1 (8.36)

Note all θ
(k)
n ≥ 0. Let the different energy components be uniformly denoted

by U = {U (k)
n | k = 0, . . . , Kn, n = 1, 2}. For k = 0,

U
(0)
1 (f) = N1 = #{fi = 0 | i ∈ S} (8.37)

is the number of NULL labels in f and

U
(0)
2 (f) = N2 = #{fi = 0 or fi′ = 0 | i ∈ S, i′ ∈ Ni} (8.38)

is the number of label pairs, at least one of which is NULL . For k ≥ 1, U
(k)
n (f)

relates to the likelihood energy components; They measure how much the
observations d

(k)
n deviate from the values D

(k)
n that should-be true under f :

U
(k)
1 (f)

�
= U

(k)
1 (d | f) =

∑

i∈S,fi �=0

[d(k)
1 (i) − D

(k)
1 (fi)]2/{2[σ(k)

1 ]2} (8.39)

and
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U
(k)
2 (f)

�
= U

(k)
2 (d | f) (8.40)

=
∑

i∈S,fi �=0

∑

i′∈S,i′ �=i,fi′ �=0

[d(k)
2 (i, i′) − D

(k)
2 (fi, fi′)]2/{2[σ(k)

2 ]2}

After some manipulation, the energy can be written as

E(f | θ) =
2
∑

n=1

Kn
∑

k=0

θ(k)
n U (k)

n (f) = θT U(f) (8.41)

where θ and U(f) are column vectors of K1 + K2 + 2 components. Given
an instance (f̄ ,G,G′), the U(f̄) is a known vector of real numbers. The θ
is the vector of unknown weights to be determined. The stability follows
immediately as

ΔE(f | θ) = θT x(f) (8.42)

where x(f) = U(f) − U(f̄).
Some remarks on θ, U(f), and E are in order. Obviously, all θ

(k)
n and

U
(k)
n are nonnegative. In the ideal case of exact (possibly partial) matching,

all U
(k)
n (f) (k ≥ 1) are zeros because d

(k)
1 (i) and D

(k)
1 (fi) are exactly the

same and so are d
(k)
2 (i, i′) and D

(k)
2 (fi, fi′). In the general case of inexact

matching, the sum of the U
(k)
n should be as small as possible for the minimal

solution. The following are some properties of E:

• Given f , E(f | θ) is linear in θ. Given θ, it is linear in U(f).

• For κ > 0, θ and κθ are equivalent, as has been discussed.

• The values of θ
(0)
n relative to those of θ

(k)
n (k ≥ 1) affect the rate of

NULL labels. The higher the penalties θ
(0)
n are, the more sites in S will

be assigned nonNULL labels and vice versa.

The first property enables us to use the results we established for linear
classifiers in learning the correct and optimal θ. According to the second
property, a larger θ

(k)
n relative to the rest makes the constraints d

(k)
n and

D
(k)
n play a more important role. Useless and misleading constraints d

(k)
n and

D
(k)
n should be weighted by 0. Using the third property, one can decrease

θ
(0)
n values to increase the number of the NULL labels. This is because for

the minimum energy matching, a lower cost for NULL labels makes more
sites labeled NULL , which is equivalent to discarding more not so reliable
nonNULL labels into the NULL bin.

8.3.3 How the Minimal Configuration Changes

The following analysis examines how the minimum f∗ = arg minf E(f | θ)
changes as the observation changes from d0 to d = d0 + δd, where δd is a
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perturbation. In the beginning, when ‖δd‖ is close to 0, f∗ should remain as
the minimum for a range of such small δd. This is simply because E(f | θ)
is continuous w.r.t. d. When the perturbation becomes larger and larger, the
minimum has to give way to another configuration.

When should a change happen? To see the effect more clearly, assume
the perturbation is in observation components related to only a particular i

so that the only changes are d0(k)
1 (i) → d

(k)
1 (i) and d0(k)

2 (i, i′) → d
(k)
2 (i, i′),

∀i′ ∈ Ni. First, assume that f∗
i is a nonNULL label (f∗

i �= 0) and consider
such a perturbation δd that incurs a larger likelihood potential. Obviously,
as the likelihood potential (conditioned on {f∗

i′ �= 0 | i′ ∈ Ni})

V (d | f∗
i ) =

K1
∑

k=1

θ
(k)
1 (d(k)

1 (i) − D
(k)
1 (f∗

i ))2 + (8.43)

∑

i′∈S,i′ �=i,f∗
i′ �=0

K2
∑

k=1

θ
(k)
2 (d(k)

2 (i, i′) − D
(k)
2 (f∗

i , f∗
i′))

2

increases, it will eventually become cheaper for f∗
i �= 0 to change to fi = 0.

More accurately, this should happen when

V (d | f∗
i ) > θ

(0)
1 +

∑

i′∈Ni,f∗
i′ �=0

θ
(0)
2 = θ

(0)
1 + N i

2θ
(0)
2 (8.44)

where
N i

2 = #{i′ ∈ Ni | f∗
i′ �= 0} (8.45)

is the number of nonNULL labeled sites in Ni under f∗.
Next, assume f∗

i = 0 and consider such a perturbation that incurs a
smaller likelihood potential. The perturbation has to be such that d and D
more closely resemble each other. As the conditional likelihood potential

V (d | fi) =
∑K1

k=1 θ
(k)
1 (d(k)

1 (i) − D
(k)
1 (fi))2+

∑

i′∈S,i′ �=i,f∗
i′ �=0

∑K2
k=1 θ

(k)
2 (d(k)

2 (i, i′) − D
(k)
2 (fi, f

∗
i′))

2 (8.46)

decreases, it will eventually become cheaper for f∗
i = 0 to change to one of

the nonNULL labels, fi �= 0. More accurately, this should happen when

V (d | fi) < θ
(0)
1 +

∑

i′∈Ni,f∗
i′ �=0

θ
(0)
2 = θ

(0)
1 + N i

2θ
(0)
2 (8.47)

The analysis above shows how the minimal configuration f∗ adjusts as
d changes when θ is fixed. On the other hand, the f∗ can be maintained
unchanged by adjusting θ; this means a different encoding of constraints
into E.
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8.3.4 Parametric Estimation under Gaussian Noise

Assuming the functional form of the noise distribution is known, then we can
take advantage of (partial) parametric modeling for the estimation. When
the noise is additive white Gaussian with unknown [σ(k)

n ]2, the estimate can
be obtained in closed form. The closed form estimation is performed in two
steps. (1) Estimate the noise variances [σ̄(k)

n ]2 (k ≥ 1) and then compute
the weights θ̄

(k)
n (k ≥ 1) using the relationship in (8.36). (2) Then compute

the allowable θ̄
(0)
n relative to θ̄

(k)
n (k ≥ 1) to satisfy the correctness in (8.7).

Optimization like (8.16) derived using a nonparametric principle may not be
applicable in this case.

Given d, D, and f̄ , the Gaussian noise variances can be estimated by
maximizing the joint likelihood function p(d | f̄) (ML estimation). The ML
estimates are simply

[σ̄(k)
1 ]2 =

1
N ′

1

∑

i∈S,f̄i �=0

[d(k)
1 (i) − D

(k)
1 (f̄i)]2 (8.48)

and

[σ̄(k)
2 ]2 =

1
N ′

2

∑

i∈S,f̄i �=0

∑

i′∈S,i′ �=i,f̄i′ �=0

[d(k)
2 (i, i′) − D

(k)
2 (f̄i, f̄i)]2 (8.49)

where
N ′

1 = #{i ∈ S | fi �= 0} (8.50)

is the number of nonNULL labels in f and

N ′
2 = #{(i, i′) ∈ S2 | i′ �= i, fi �= 0, fi′ �= 0} (8.51)

is the number of label pairs of which neither is the NULL . The optimal
weights for k ≥ 1 can be obtained immediately by

θ̄(k)
n = 1/2[σ̄(k)

n ]2 (8.52)

So far, only the example configurations f̄ , not others, are used in computing
the θ̄

(k)
n .

Now the remaining problem is to determine θ̄
(0)
n to meet the correctness

(8.7). Because θ
(0)
n = vn0, this is done to estimate the MRF parameters vn0 in

the prior distributions implied in the given examples. There may be a range
of θ̄

(0)
n under which each f̄ is correctly encoded. The range is determined by

the lower and upper bounds.
In doing so, only those configurations in Nf̄ that reflect transitions from a

nonNULL to the NULL label and the other way around are needed; the other
configurations, which reflect transitions from one nonNULL label to another,
are not. This subset is obtained by changing each of the nonNULL labels in f̄
to the NULL label or changing each of the NULL labels to a nonNULL label.
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First, consider label changes from a nonNULL label to the NULL label.
Assume a configuration change from f̄ to f is due to the change from f̄i �= 0
to fi = 0 for just one i ∈ S. The corresponding energy change is given by

1
2ΔE(f | θ) = θ

(0)
1 −

∑K1
k=1 θ̄

(k)
1 [d(k)

1 (i) − D
(k)
1 (f̄i)]2 +

∑

i′∈Ni,f̄i′ �=0 θ
(0)
2 −

∑

i′∈S,i′ �=i,f̄i′ �=0

∑K2
k=1 θ̄

(k)
2 [d(k)

2 (i, i′) − D
(k)
2 (f̄i, f̄i′)]2

(8.53)

The change above must be positive, ΔE(f | θ) > 0. Suppose there are N
nonNULL labeled sites under f̄ and therefore f̄ has N such neighboring con-
figurations. Then N such inequalities of ΔE(f | θ) > 0 can be obtained. The
two unknowns, θ

(0)
1 and θ

(0)
2 , can be solved for and used as the lower bounds

(θ(0)
1 )min and (θ(0)

2 )min.
Similarly, the upper bounds can be computed by considering label changes

from the NULL label to a nonNULL label. The corresponding energy change
due to a change from f̄i = 0 to fi �= 0 is given by

1
2ΔE(f | θ) =

∑K1
k=1 θ̄

(k)
1 [d(k)

1 (i) − D
(k)
1 (fi)]2 − θ

(0)
1

∑

i′∈S,f̄i′ �=0

∑K2
k=1 θ̄

(k)
2 [d(k)

2 (i, i′) − D
(k)
2 (fi, fi′)]2 −

∑

i′∈Ni,f̄i′ �=0 θ
(0)
2

(8.54)
The change above must also be positive, ΔE(f | θ) > 0. Suppose there are
N NULL labeled sites under f̄ and recall that there are M possible nonNULL

labels in L. Then N × M inequalities can be obtained. The two unknowns,
θ
(0)
1 and θ

(0)
2 , can be solved and used as the upper bounds (θ(0)

1 )max and
(θ(0)

2 )max. If the example configurations f̄ are minimal for the corresponding
G and G′, then the solution must be consistent; that is, (θ(0)

n )min < (θ(0)
n )max,

for each instance.
Now, the space of all correct parameters is given by

Θcorrect = {θ(k)
n | θ(0)

n ∈ [(θ(0)
n )min, (θ(0)

n )max]; θ(k)
n = θ̄(k)

n , k ≥ 1} (8.55)

A correct θ makes θT x > 0 for all x ∈ X . The hyperplane θT x = 0 partitions
X into two parts, with all x ∈ X on the positive side of it. The value for θ̄

(0)
n

may simply be set to the average [(θ(0)
n )min + (θ(0)

n )min]/2.
When there are L > 1 instances, θ

(k)
n (k ≥ 1) are obtained from the data

set computed from all the instances. Given the common θ
(k)
n , L correct ranges

can be computed. The correct range for the L instances as a whole is the
intersection of the L ranges. As a result, the overall (θ(0)

n )min is the maximum
of all the lower bounds and (θ(0)

n )max the minimum of all the upper bounds.
Although each range can often be consistent (i.e., (θ(0)

n )min < (θ(0)
n )max for

each n), there is less of a chance to guarantee that they, as a whole, are
consistent for all � = 1, . . . , L: The intersection may be empty when L > 1.
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This inconsistency means a correct estimate does not exist for all the instances
as a whole. There are several reasons for this. First of all, the assumptions,
such as the model being Gaussian, are not verified by the data set, especially
when the data set is small. In this case, the noise in different instances has
different variances; when the ranges are computed under the assumption that
the ML estimate is common to all instances, they may not be consistent with
each other. This is the most direct reason for the inconsistency. Second, f̄
in some examples cannot be embedded as the minimal energy configuration
to satisfy the given constraints. Such instances are misleading and also cause
inconsistency.

8.4 Experiments

The following experiments demonstrate: (i) the computation (learning) of
the optimal parameter θ̄ from the examples given in the form of a triplet
(f̄ ,G,G′), and (ii) the use of the learned estimate θ̄ to recognize other scenes
and models. The nonparametric learning algorithm is used because the data
size is too small to assume a significant distribution. The convergence of the
learning algorithm is demonstrated.

8.4.1 Recognition of Line Patterns

This experiment performs the recognition of simulated objects of line patterns
under 2D rotation and translation. There are six possible model objects shown
in Fig. 8.4. Figure 8.5 gives an example used for parameter estimation. The
scene is given in the dotted and dashed lines, which are generated as follows.
(1) Take a subset of lines from each of the three objects in Fig. 8.4(a)–
(c); (2) rotate and translate each of the subsets; (3) mix the transformed
subsets; (4) randomly deviate the positions of the endpoints of the lines,
which results in the dotted lines; and (5) add spurious lines, shown as the
dashed lines. The scene generated consists of several subsets of model patterns
plus spurious lines, as shown in Fig. 8.5(b). The example configuration f̄ is
shown in Fig. 8.5(a). It maps the scene to one of the models given in Fig. 8.4.
The alignment between the dotted lines of the scene and the solid lines of
the model gives the nonNULL labels of f̄ , whereas the unaligned lines of the
scene are labeled as NULL .

The following four types of bilateral relations are used with n = 2 and
K2 = 4):

(1) d
(1)
2 (i, i′): the angle between lines i and i′;

(2) d
(2)
2 (i, i′): the distance between the mid-points of the lines;

(3) d
(3)
2 (i, i′): the minimum distance between the endpoints of the lines; and
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Figure 8.4: The six objects of line patterns in the model base. From (Li
1997b) with permission; c©1997 Kluwer.

(4) d
(4)
2 (i, i′): the maximum distance between the endpoints of the lines.

Similarly, there are four model relations D
(k)
2 (I, I ′) (k = 1, . . . , 4) of the same

type. No unary properties are used (K1 = 0). The G and G′ are composed
of these four relational measurements. Therefore, there are five components
(k = 0, 1, . . . , 4) in x and θ.

The C2-optimal parameters are computed as θ̄ = {θ̄(0)
2 , θ̄

(1)
2 , . . . , θ̄

(4)
2 } =

{0.58692, 0.30538, 0.17532, 0.37189, 0.62708}, which satisfies ‖θ‖ = 1. The
computation takes a few seconds on an HP series 9000/755 workstation. To be
used for recognition, θ̄ is multiplied by a factor of 0.7/θ̄

(0)
2 , yielding the final
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Figure 8.5: An exemplary instance consisting of (a) exemplary configuration
f̄ , (b) scene G, and (c) model G′. From (Li 1997b) with permission; c©1997
Kluwer.

weights θ∗ ={0.70000, 0.36422, 0.20910, 0.44354, 0.74789} (our recognition
system requires (θ(0)

2 )∗ = 0.7).
The θ∗ is used to define the energy for recognizing other objects and

scenes. The recognition results are shown in Fig. 8.6. There are two scenes,
one in the upper row and the other in the lower row, composed of the dotted
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Figure 8.6: The optimal parameter estimate learned from the example is used
to recognize other scenes and models (see the text). From (Li 1997b) with
permission; c©1997 Kluwer.

and dashed lines. The upper one was used in the example, whereas the lower
scene contains subparts of the three model objects in Fig. 8.4(d)–(f). Each
scene is matched against the six model objects. The optimally matched object
lines are shown as solid lines aligned with the scenes. The objects in the scenes
are correctly matched to the model objects.



238 8. Parameter Estimation in Optimal Object Recognition

8.4.2 Recognition of Curved Objects

This experiment deals with jigsaw objects under 2D rotation, translation and
uniform scaling. There are eight model jigsaw objects shown in Fig. 4.10. In
this case of curved objects, the features of an object correspond to the corner
points of its boundary. For both the scene and the models, the boundaries are
extracted from the images using the Canny detector followed by hysteresis
and edge linking. Corners are detected after that. No unary relations are
used (K1 = 0). Denoting the corners by p1, . . . , pm, the following five types
of bilateral relations are used (n = 2;K2 = 5) based on a similarity-invariant
curve representation of curves (Li 1993):

(1) d
(1)
2 (i, i′): ratio of curve arc length p̂ipi′ and chord length pipi′ ;

(2) d
(2)
2 (i, i′): ratio of curvature at pi and pi′ ;

(3) d
(3)
2 (i, i′): invariant coordinate vector;

(4) d
(4)
2 (i, i′): invariant radius vector; and

(5) d
(5)
2 (i, i′): invariant angle vector.

They are computed using information about both the boundaries and the
corners. Similarly, there are five model relations D

(k)
2 (I, I ′) (k = 1, . . . , 5) of

the same types. Therefore, there are six components (k = 1, . . . , 5) in each x
and θ, one for the NULL and five for the relational quantities above.

Figure 8.7 gives the example used for parameter estimation. The scene
in Fig. 8.7(b) contains rotated, translated and scaled parts of one of the
model jigsaw objects. Some objects in the scene are considerably occluded.
The alignment between the model jigsaw object (the highlighted curve in (a))
and the scene gives nonNULL labels of f̄ , whereas the unaligned boundary
corners of the scene are labeled as NULL .

The C2-optimal parameters are computed as θ̄ = {θ̄(0)
2 , θ̄

(1)
2 , . . . , θ̄

(6)
2 } =

{0.95540, 0.00034, 0.00000, 0.06045, 0.03057, 0.28743}, which satisfies ‖θ‖ =
1. It takes a few seconds on the HP workstation. Note that the weight θ̄

(2)
2

for d
(2)
2 (i, i′) and D

(2)
2 (I, I ′) (ratio of curvature) are zero. This means that

this type of feature is not reliable enough to be used. Because our recognition
system has a fixed value of θ

(0)
2 = 0.7, θ̄ is multiplied by a factor of 0.7/θ̄

(0)
2 ,

yielding the final weights θ∗ ={0.70000, 0.00025, 0.00000, 0.04429, 0.02240,
0.21060}.

The θ∗ is used to define the energy function for recognizing other objects
and scenes. The recognition results are shown in Fig. 8.8. There are two
scenes, one in the left column and the other in the right column. The scene
on the left was the one used in the example and the one on the right is a new
scene. The optimally matched model objects are shown in the highlighted
curves aligned with the scenes. The same results can also be obtained using
the C∞-optimal estimate, which is {0.7, 0.00366, 0.00000, 0.09466, 0.00251}.
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Figure 8.7: An example consisting of (a) example configuration f̄ , (b) scene
G and (c) model G′. From (Li 1997b) with permission; c©1997 Kluwer.
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Figure 8.8: The learned estimate is used to recognize other scenes and models.
The matched model jigsaw objects are aligned with the scene. From (Li
1997b) with permission; c©1997 Kluwer.

8.4.3 Convergence

The parameter estimation algorithm is very stable and has a nice convergence
property. Figure 8.9 shows how the global instability measure C2 and one of
the learned parameters θ̄

(3)
2 evolve given different starting points. The values

stabilize after hundreds of iterations, and different starting points converge
to the same point.
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Figure 8.9: Convergence of the algorithm from different starting points. Left:
Trajectories of C2. Right: Trajectories of θ̄

(3)
2 . From (Li 1997b) with permis-

sion; c©1997 Kluwer.
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8.5 Conclusion

While manual selection is a common practice in object recognition sys-
tems, this chapter has presented a novel theory for automated optimal pa-
rameter estimation in optimization-based object recognition. The theory is
based on learning from examples. Mathematical principles of correctness
and instability are established and defined for the evaluation of parame-
ter estimates. A learning algorithm is presented for computing the optimal
(i.e., minimal-instability) estimate. An application to MRF-based recogni-
tion is given. Experiments conducted show very promising results. Optimal
estimates automatically learned from examples can be well generalized for
recognizing other scenes and objects.

The training examples are given to reflect the designer’s judgment of
desirable solutions. However, a recognizer with a given functional form cannot
be trained by arbitrary examples. The example should be selected properly
to reflect the correct semantics, in other words, they should be consistent
with the constraints with which the functional form is derived. Assuming
the form of the objective function is correct and the training set contains
useful information, then the more examples are used for training, the more
generalizable the learned parameter estimate will be.

The learning procedure also provides a means for checking the validity of
the energy function derived from mathematical models. An improper mathe-
matical model leads to an improper functional form. If no correct parameter
estimates can be learned, it is a diagnostic symptom that the assumptions
used in the model are not suitable for modeling the reality of the scene. The
procedure also provides useful information for feature selection. Components
of the optimal parameter estimate will be zero or near zero for unstable
features.




