
Chapter 6

MRF Model with Robust
Statistics

Robust statistical methods (Tukey 1977; Huber 1981; Rousseeuw 1984) are
tools for statistics problems in which outliers are an issue. It is well known
that the least squares (LS) error estimates can be arbitrarily wrong when
outliers are present in the data. A robust procedure is aimed at making
solutions insensitive to the influence of outliers. That is, its performance
should be good with all-inlier data and should deteriorate gracefully with
increasing number of outliers. The mechanism by which robust estimators
deal with outliers is similar to that of the discontinuity adaptive MRF prior
model studied in the previous chapter. This chapter provides a comparative
study (Li 1995a) of the two kinds of models based on the results from the
DA model and presents an algorithm (Li 1996b) to improve the stability of
the robust M-estimator to the initialization.

The conceptual and mathematical comparison comes naturally from the
parallelism of the two models: Outliers cause a violation of a distributional
assumption, while discontinuities cause a violation of the smoothness assump-
tion. Robustness to outliers is in parallel to adaptation to discontinuities.
Detecting outliers corresponds to inserting discontinuities. The similarity of
the two models suggests that results in either model could be used for the
other.

Probably for this reason,there have seen considerable interests in apply-
ing robust techniques to solving image and vision problems. Kashyap and
Eom (1988) developed a robust algorithm for estimating parameters in an
autoregressive image model where the noise is assumed to be a mixture of a
Gaussian and an outlier process. Shulman and Herve (1989) proposed to use
Huber’s robust M-estimator (Huber 1981) to compute optical flow involv-
ing discontinuities. Stevenson and Delp (1990) used the same estimator for
curve fitting. Besl, Birch, and Watson (1988) proposed a robust M window
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operator to prevent smoothing across discontinuities. Haralick, Joo, Lee,
Zhuang, Vaidya, and Kim (1989), Kumar and Hanson (1989) and Zhuang,
Wang, and Zhang (1992) used robust estimators to find pose parameters. Jo-
lion, Meer, and Bataouche (1991) used the robust minimum volume ellipsoid
estimator to identify clusters in feature space. Boyer, Mirza, and Ganguly
(1994) present a procedure for surface parameterization based on a robust
M-estimator. Black and Anandan (1993) and Black and Rangarajan (1994)
applied a robust operator not only to the smoothness term but also to the
data term. Li (1995a) presented a comparative study on robust models and
discontinuity adaptive MRF models. He also devised a method for stabilizing
robust M-estimation w.r.t. the initialization and convergence (Li 1996b).

A robust location estimator, which essentially seeks the mode of an
outlier-contaminated distribution, can be extended to perform data cluster-
ing. In this connection, the mean shift algorithm (Fukunaga 1990) has been
used successfully in vision problems such as segmentation (Cheng 1995; Co-
maniciu and Meer 1997; Comaniciu and Meer 1999).

As is well known, robust estimation procedures have a serious problem in
that the estimates are dependent on the initial estimate value; this problem
has been overcome by applying the principle of the graduated nonconvex-
ity (GNC) method (Blake and Zisserman 1987) for visual reconstruction.
The exchange of theoretical results and practical algorithms is useful to the
image and vision communities because both MRF and robust models have
applications in the4 areas.

6.1 The DA Prior and Robust Statistics

What do we mean by discontinuities and outliers? Unfortunately, their defi-
nitions are usually ambiguous. What we are certain of is that the likelihood
of a discontinuity between a pair of neighboring pixels is related to the dif-
ference in pixel labels (such as pixel values), and an outlier is related to the
distance between the location of the datum and the estimated value. Where
the label difference is very large, there is likely to be a discontinuity between
the pixels, and where the datum is very far from the cluster, it is likely an
outlier.

A more concrete comparison can be made by analyzing the adaptation (to
discontinuities) and the robustness (to outliers) in mathematical terms (Li
1995a). The adaptation is realized as follows. The interaction between related
(e.g., neighboring) points must be decreased as the violation of the relational
bond between them is increased and prohibited in the limit. This is true of
both the MRF and the robust models. We give the necessary condition for
such adaptation and then, based on this condition, a definition of a class of
adaptive interaction functions for both models. The definition captures the
essence of the adaptation ability and is general enough to offer in theory
infinitely many suitable choices of such functions.
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The problem of discontinuities and outliers also exists in other areas.
In model-based object recognition, for example, there are two related sub-
problems: first, separating the scene into different parts, each being due to
a single object; and second, finding feature correspondences between each
separate part of the scene and an object. The two subproblems have to be
solved somewhat simultaneously. The process of matching while separating
is similar to reconstruction with discontinuities and estimation with outliers.
Indeed, matches to one object can be considered as outliers w.r.t. matches
to a different object. Different groups of matches should not be constrained
to each other. The separation can be done by inserting “discontinuities” be-
tween different groups. This view can be regarded as a generalization of the
weak constraint (Hinton 1978; Blake and Zisserman 1987).

6.1.1 Robust M-Estimator

Robust statistical methods (Tukey 1977; Huber 1981) provide tools for statis-
tics problems in which underlying assumptions are inexact. A robust proce-
dure should be insensitive to departures from the underlying assumptions
caused, for example, by outliers. That is, it should have good performance
under the underlying assumptions, and the performance should deteriorate
gracefully as the situation departs from the assumptions. Applications of
robust methods in vision are seen in image restoration, smoothing and seg-
mentation (Kashyap and Eom 1988; Jolion et al. 1991; Meer et al. 1991),
surface and shape fitting (Besl et al. 1988; Stein and Werman 1992), and
pose estimation (Haralick et al. 1989), where outliers are an issue.

There are several types of robust estimators. Among them are the M-
estimator (maximum likelihood estimator), L-estimator (linear combinations
of order statistics), R-estimator (estimator based on rank transformation)
(Huber 1981), RM estimator (repeated median) (Siegel 1982) and LMS esti-
mator (estimator using the least median of squares) (Rousseeuw 1984). We
are concerned with the M-estimator.

The essential form of the M-estimation problem is the following. Given a
set of m data samples d = {di | 1 ≤ i ≤ m}, where di = f + ηi, the problem
is to estimate the location parameter f under noise ηi. The distribution of ηi

is not assumed to be known exactly. The only underlying assumption is that
η1, . . . , ηm obey a symmetric, independent, identical distribution (symmetric
i.i.d.). A robust estimator has to deal with departures from this assumption.

Let the residual errors be ηi = di −f (i = 1, . . . , m) and the error penalty
function be g(ηi). The M-estimate f∗ is defined as the minimum of a global
error function

f∗ = arg min
f

E(f) (6.1)

where
E(f) =

∑

i

g(di − f) (6.2)
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Table 6.1: Robust functions.

Type hγ(ξ) gγ(ξ) Range of ξ

Tukey =
{

(1 − ξ2)2

0 =
{

[1 −
(

1 − ξ2
)3]/6

1/6
|ξ| ≤ 1
|ξ| > 1

Huber =

{

1
τ sgn(ξ)

ξ

=
{

ξ2

2τ |ξ| − τ2
|ξ| ≤ τ
|ξ| > τ

Andrews =
{

sin(πξ)
πu

0
=
{

[1 − cos(πξ)]/π2

1/π2
|ξ| ≤ 1
|ξ| > 1

Hampel =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

1
a sgn(ξ)

ξ

a c−|ξ|
c−b

sgn(ξ)
ξ

0

=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

u2/2
a|u| − a2/2
ab − a2/2+
(c − b)a/2

[

1 −
(

c−|ξ|
c−b

)]

ab − a2/2 + (c − b)a/2

|ξ| ≤ a
a < |ξ| ≤ b
b < |ξ| ≤ c

|ξ| > c

To minimize (6.2), it is necessary to solve the equation
∑

i

g′(di − f) = 0 (6.3)

This is based on gradient descent. When g(ηi) can also be expressed as a
function of η2

i , its first derivative can take the form

g′(ηi) = 2ηih(ηi) = 2(di − f)h(di − f) (6.4)

where h(η) is an even function. In this case, the estimate f∗ can be expressed
as the weighted sum of the data samples

f∗ =
∑

i h(ηi) di
∑

i h(ηi)
(6.5)

where h acts as the weighting function. This algorithm can be derived by
using half-quadratic (HQ) optimization to be presented in Section 6.1.6.

In the LS regression, all data points are weighted the same with hγ(η) = 1
and the estimate is f∗ = 1

m

∑m
i=1 di. When outliers are weighted equally as

inliers, it will cause considerable bias and deterioration in the quality of the
estimate. In robust M-estimation, the function h provides adaptive weighting.
The influence from di is decreased when |ηi| = |di − f | is very large and
suppressed when it is infinitely large.

Table 6.1 lists some robust functions used in practice where ξ = η/γ. They
are closely related to the adaptive interaction function and adaptive potential
function defined in (5.27) and (5.28). Figure 6.1 shows their qualitative shapes
in comparison with the quadratic and the line process models (note that a
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Figure 6.1: The qualitative shapes of potential functions in use. The quadratic
prior (equivalent to LS) model in (a) is unable to deal with discontinuities
(or outliers). The line process model (b), Tukey’s (c), Huber’s (d), Andrews’
(e), and Hampel’s (f) robust model are able to, owing to their property of
limη→∞ hγ(η) = 0. From (Li 1995a) with permission; c©1995 Elsevier.

trivial constant may be added to gγ(η)). These robust functions are piecewise,
as in the line process model. Moreover, the parameter γ in ξ is dependent on
some scale estimate, such as the median of absolute deviation (MAD).

6.1.2 Problems with M-Estimator

Computationally, existing M-estimators have several problems affecting their
performance. First, they are not robust to the initial estimate, a problem
common to nonlinear regression procedures (Myers 1990), also encountered
by vision researchers (Haralick et al. 1989; Meer et al. 1991; Zhuang et al.
1992). The convergence of the algorithm depends on the initialization. Even
if the problem of convergence is avoided, the need for a good initial estimate
cannot be ignored for convergence to the global estimate; this is because most
M-estimators are defined as the global minimum of a generally nonconvex en-
ergy function and hence the commonly used gradient-based algorithms can
get stuck at unfavorable local solutions. The M-estimator has the theoretical
breakpoint of 1

p+1 , where p is the number of unknown parameters to be esti-
mated, but, in practice, the breakpoint can be well below this value because
of the problem of local minima.

Second, the definition of the M-estimator involves some scale estimate,
such as the median of absolute deviation (MAD), and a parameter to be
chosen. These are also sources of sensitivity and instability. For example,
Tukey’s biweight function (Tukey 1977) is defined as
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h(ηi) =

{ (

1 −
(

ηi

cS

)2
)2

if |ηi| < cS

0 otherwise
(6.6)

where S is an estimate of the spread, c is a constant parameter, and cS is
the scale estimate. Possible choices include S = median{ηi} with c set to
6 or 9, and S = median{|ηi − median{ηi}|} (median of absolute deviation
(MAD)) with c = 1.4826 chosen for the best consistency with the Gaussian
distribution. Classical scale estimates such as the median and MAD are not
very robust. The design of the scale estimates is crucial and needs devoted
study.

Furthermore, the convergence of the M-estimator often is not guaran-
teed. Divergence can occur when initialization or parameters are not chosen
properly. Owing to the problems above, the theoretical breakdown point can
hardly be achieved.

In the following, an improved robust M-estimator, referred to as the an-
nealing M-estimator (AM-estimator), is presented to overcome the above
problems (Li 1996b). It has two main ingredients: a redefinition of the M-
estimator and a GNC-like annealing algorithm.

6.1.3 Redefinition of M-Estimator

Resemblances between M-estimation with outliers and adaptive smoothing
with discontinuities have been noted by several authors (Besl et al. 1988;
Shulman and Herve 1989; Black and Anandan 1993; Black and Rangarajan
1994; Li 1995a). We can compare the M-estimator with the DA model studied
in Chapter 5. The influence of the datum di on the estimate f is proportional
to ηih(ηi). This compares with the smoothing strength f ′h(f ′) given after
(5.25). A very large |ηi| value, due to di being far from f , suggests an outlier.
This is similar to saying that a very large |f ′(x)| value is likely due to a
step (discontinuity) in the signal there. The resemblance suggests that the
definition of the DA model can also be used to define M-estimators (Li 1996b).

We replace the scale estimate in the M-estimator by a parameter γ > 0
and choose to use the adaptive interaction function hγ and the adaptive
potential function gγ for the M-estimation. However, hγ need only be C0

continuous for the location estimation from discrete data. Theoretically, the
definitions give an infinite number of suitable choices of the M-estimators.
Table 5.1 and Fig. 5.1 showed four such possibilities. With hγ and gγ , we can
define the energy under γ as

Eγ(f) =
∑

i

gγ(di − f) (6.7)

and thereby the minimum energy estimate

f∗
γ = arg min

f
Eγ(f) =

∑

i hγ(ηi) di
∑

i hγ(ηi)
(6.8)
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AM-Estimator
Begin Algorithm
set t = 0, f

(1)
γ = fLS ; choose initial γ;

do {
t ← t + 1;
compute errors ηi = di − f

(t−1)
γ , ∀i;

compute weighted sum f
(t)
γ =

∑

i hγ(ηi) di
∑

i hγ(ηi)
;

if (|f (t)
γ − f

(t−1)
γ | < ε) /* converged */

γ ← lower(γ);
} until (γ < δ) /* frozen */
f∗ ← f

(t)
γ ;

End Algorithm

Figure 6.2: The AM-estimation algorithm.

This defines a class of M-estimators that are able to deal with outliers as
the traditional M-estimators do. Their performance in the solution quality is
significantly enhanced by using an annealing procedure.

6.1.4 AM-Estimator

The annealing algorithm for the redefined M-estimator, called the AM-
estimator (Li 1996b), is based on the idea of the GNC algorithm (Blake
and Zisserman 1987). It aims to overcome the local minimum problem in the
M-estimation (i.e., to obtain a good estimate regardless of the initialization).
It also make the estimation free from parameters or at least insensitive to
their choices.

The annealing is performed by continuation in γ, and the AM-estimator
is defined in the limit

f∗ = lim
γ→0+

f∗
γ (6.9)

An algorithm that implements the AM-estimator algorithm is given in
Fig. 6.2. Initially, γ is set to a value high enough to guarantee that the
corresponding APF gγ(η) is convex in an interval. With such a γ, it is easy
to find the unique minimum of the global error function Eγ(f) using the
gradient-descent method, regardless of the initial value for f . The minimum
is then used as the initial value for the next phase of minimization under a
lower γ to obtain the next minimum. As γ is lowered, gγ(η) may no longer be
convex and local minima may appear. However, if we track the global minima
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for decreasing γ values, we may hopefully approximate the global minimum
f∗ under γ → 0+.

Obviously, whatever the initialization is, the first iteration always gives a
value equal to the LS estimate

fLS =
1
m

m
∑

i=1

di (6.10)

This is because for γ → +∞, which guarantees the strict convexity, all weights
are the same as hγ(ηi) = 1. The initial γ is chosen to satisfy

|ηi| = |di − fLS | < bH(γ) (6.11)

where bH(γ) (= −bL(γ)) is the upper bound of the band in (5.29). This
guarantees g′′γ (ηi) > 0 and hence the strict convexity of gγ . The parameter γ
is lowered according to the schedule specified by the function lower(γ). The
parameters δ and ε in the convergence conditions are some small numbers.
An alternative way is to decrease γ according to a fixed schedule regardless of
whether or not f (t) converges at the current γ, which is equivalent to setting
a big value for ε. In this case, the algorithm freezes after dozens of iterations.
This quick annealing is used in our experiments.

The advantages of the AM-estimator are summarized below. First, the
use of the annealing significantly improves the quality and stability of the
estimate. The estimate is made independent of the initialization. Because the
starting point for obtaining f∗

γ at current γ is the convergence point obtained
with the previous γ value, the divergence problem with the traditional M-
estimator is minimized. Second, the definition of the AM-estimator effectively
eliminates scale parameters in the M-estimation because γ is finally set to
zero (or a small number to whose value the final estimate is insensitive). This
avoids the instability problem incurred by inappropriate selection of the scale
parameters. Furthermore, it needs no order statistics, such as the median, and
hence no sorting. This improves the computational efficiency.

6.1.5 Convex Priors for DA and M-Estimation

Encoding the edge-preserving ability into prior distributions may lead to
nonconvex energy functions. This is the case in many models such as the
well-known line-process model (Geman and Geman 1984; Blake and Zisser-
man 1987). Models with nonconvex energy functions have two disadvantages.
The first is the instability of the solution (i.e., the energy minimum) w.r.t. the
data (Bouman and Sauer 1993; Stevenson et al. 1994). A small change in the
input might result in a drastic difference in the solutions. The phenomenon
is also due to a hard decision-making property of nonconvex models (Blake
and Zisserman 1987). As such, the solution often depends substantially on
the method used to perform the minimization. The second disadvantage is



6.1. The DA Prior and Robust Statistics 169

the high computational cost associated with the solution-finding proce-
dure. An annealing process, either deterministic or stochastic, is incorpo-
rated into a local search algorithm in order to locate the global minimum
(Geman and Geman 1984; Blake and Zisserman 1987). This makes the min-
imization procedure inefficient.

There has been considerable interest in convex energy models with
edge-preserving ability (Shulman and Herve 1989; Green 1990; Lange 1990;
Bouman and Sauer 1993; Stevenson et al. 1994; Li et al. 1995). This class of
models overcomes the problems mentioned above with nonconvex functions.
First, in terms of defining the minimal solution, the convexity guarantees
the stability w.r.t. the input and makes the solution less sensitive to changes
in the parameters (Bouman and Sauer 1993). The second advantage is the
computational efficiency in searching for the global solution. Because there is
only one unique solution, gradient-based minimization techniques can be ef-
ficiently utilized. Time-consuming techniques for tackling the local minimum
problem, such as continuation or annealing, are not necessary in convex min-
imization.

Shulman and Herve (1989) proposed to use

g(η) =
{

η2 |η| ≤ γ
2γ|η| − γ2 |η| > γ

(6.12)

for computing optical flows involving discontinuities. This is the error function
used in Huber’s robust M-estimator (Huber 1981). The function has also been
applied to curve fitting (Stevenson and Delp 1990), surface reconstruction
(Stevenson et al. 1994), and image expansion (Schultz and Stevenson 1994).
It has been shown to be advantageous in terms of computational complexity
and reconstruction quality (Stevenson et al. 1994).

Similar to the Huber function, the function of Green (1990)

g(η) = ln(cosh(η/γ)) (6.13)

is approximately quadratic for small η and linear for large values. Lange
(1990) suggested using

g(η) =
1
2

(

|η/γ| + 1
1 + |η/γ| − 1

)

(6.14)

which can be described by seven properties.
Bouman and Sauer (1993) construct a scale-invariant Gaussian MRF

model by using
g(η) = |η|p (6.15)

where 1.0 ≤ p ≤ 2.0. When p = 2, it becomes the standard quadratic func-
tion. When p = 1, the corresponding estimator is the sample median and
allows discontinuities. The results show that edges are best preserved when
p = 1 and deteriorated for p > 1. The reason will be given in the next section.
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Stevenson, Schmitz, and Delp (1994) presentd a systematic study on
both convex and nonconvex models and give the following four properties
for a function g to have good behavior: (i) convex, (ii) symmetric (i.e.,
g(η) = g(−η)), (iii) g(η) < η2 for |η| large to allow discontinuities, and
(iv) controlled continuously by a parameter γ. They define a class of convex
potential functions

g(η) =

⎧

⎪
⎨

⎪
⎩

|η|p |η| ≤ γ

(|η| + (p
q γp−1)

1
q−1 − γ)q

+γp − (p
q γp−1)

q
q−1 |η| > γ

(6.16)

with three parameters: γ, p, and q. When 1.0 ≤ p ≤ 2.0 and γ = ∞, it is
the same as that used by Bouman and Sauer; when p = 2.0 and q = 1.0, it
is the Huber error function. The values p = 1.8 and q = 1.2 are suggested in
that paper. We point out that (iii) is too loose and inadequate for preserving
discontinuities. An example is g(η) = η2 − g0, where g0 > 0 is a constant;
it satisfies (iii) but is unable to preserve discontinuities. As pointed out in
the next section, it is the derivative of g(η) that determines how a model
responds to discontinuities.

6.1.6 Half-Quadratic Minimization

The AM-estimator with convex priors can be explained by half-quadratic
(HQ) minimization. HQ performs continuous optimization of a nonconvex
function using the theory of convex conjugated functions (Rockafellar 1970).
Since the introduction of HQ minimization to the field of computer vision
(Geman and Reynolds 1992), HQ has now been used in M-estimation and
mean-shift for solving image analysis problems.

In HQ minimization, auxiliary variables are introduced into the origi-
nal energy function. The resulting energy function then becomes quadratic
w.r.t. the original variable when the auxiliary variables are fixed, and convex
w.r.t. the auxiliary variable given the original variable (thus the name “half-
quadratic”). An alternative minimization procedure is applied to minimize
the new energy function. The convergence of HQ optimization is justified in
(Nikolova and NG 2005; Allain et al. 2006). While HQ itself is a local mini-
mization algorithm, global minimization via HQ can be achieved by applying
the annealing M-estimator concept (Li 1996b).

Auxiliary Variables

Given a set of m data samples d = {di | 1 ≤ i ≤ m}, where di = f + ηi,
the problem is to estimate the location parameter f under noise ηi. The
distribution of ηi is not assumed to be known exactly. The only underlying
assumption is that η1, . . . , ηm obey a symmetric, independent, identical dis-
tribution (symmetric i.i.d.). A robust estimator has to deal with departures
from this assumption.
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Let the residual errors be ηi = di − f and the error penalty function be
g(ηi), satisfying conditions of (5.27) and g′(η) = 2ηh(η). The M-estimate f∗

is defined as the minimum of a global error function

f∗ = arg min
f

E(f) (6.17)

where
E(f) =

∑

i

g(ηi) (6.18)

HQ minimization applies the theory of convex conjugated functions (Rock-
afellar 1970). For each term g(ηi), introduce an auxiliary variable bi and
consider the dual function G(bi) of g(ηi)

G(bi) = sup
ηi∈R

{

−1
2
biη

2
i + g(ηi)

}

(6.19)

G(bi) is convex w.r.t. bi. We have reciprocally

g(ηi) = inf
bi∈R

{

1
2
biη

2
i + G(bi)

}

(6.20)

The infimum is reached at the explicit form (Charbonnier et al. 1997)

bi = 2h(ηi) =

{

g′′(0+) if ηi = 0
g′(ηi)

ηi
if ηi �= 0

(6.21)

With the auxiliary variables b = {bi} in (6.18), we get

Ẽ(f, b) =
∑

i

{

1
2
bi(di − f)2 + h(bi)

}

(6.22)

The infimum of Ẽ(f, b) with a fixed f is

E(f) = min
b

{Ẽ(f, b)} (6.23)

The optimal configuration can then be represented as

f∗ = arg min
f

E(f) = arg min
f,b

Ẽ(f, b) (6.24)

Alternate Minimization

The new energy function (6.22) is quadratic w.r.t. f when b is fixed and
convex w.r.t. b given f . So, it can be efficiently optimized by using an alternate
minimization algorithm.

Given (f t−1, bt−1) as the solution at the (t − 1)th step, the tth step cal-
culates
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bt = arg min
b∈R

Ẽ(f t−1, b) (6.25)

f t = arg min
f∈F

Ẽ(f, bt) (6.26)

The solutions to these two minimization problems can be found analytically
as

bt
i = 2h(di − f t−1) (6.27)

f t =
∑

i bt
i di

∑

i bt
i

(6.28)

If we choose the g(η) to be one of the robust functions given in Table 6.1,
the alternate minimization reduces to

f t =
∑

i h(di − f t−1) di
∑

i h(di − f t−1)
(6.29)

which is (6.5). A convergence analysis of the alternate minimization can be
found in (Nikolova and NG 2005).

The connection between the widely used mean-shift (MS) algorithm
(Fukunaga 1990; Comaniciu and Meer 1997) and HQ optimization is ex-
plained in (Yuan and Li 2007). The MS algorithm maximizes the following
kernel density estimation (KDE) w.r.t. the mean f :

p(d | f) =
∑

i

wik((di − f)2) (6.30)

where k is the kernel function and the predetermined weights satisfy
∑

i wi =
1. The MS algorithm is obtained immediately by solving the gradient equation
of p(d | f) via fixed-point iterations:

f t =
∑

i wik
′ ((di − f t−1)2

)

di
∑

i wik′ ((di − f t−1)2)
(6.31)

By setting g(t) = −k(t2) in (6.18), we can see that maximizing (6.30) is
equivalent to minimizing the error penalty function (6.18).

By applying HQ minimization to (6.30), we get the alternate maximiza-
tion algorithm

bt
i = −2k′((di − f t−1)2) (6.32)

f t =
∑

i wib
t
i di

∑

i wibt
i

(6.33)

which is identical to the iteration in the MS algorithm and AM-estimator.
This also explains the MS algorithm from the HQ optimization perspective.
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Annealing HQ

The HQ algorithm can be used with an annealing schedule to approximate
the global solution. Replacing the scale estimate in the HQ by a bandwidth
parameter γ > 0 and using an adaptive potential function gγ with the adap-
tive interaction function hγ gives the energy function

Eγ(f) =
∑

i

gγ(di − f) (6.34)

The alternate minimization is then

bt
i = 2hγ(di − f t−1) (6.35)

f t =
∑

i bt
i di

∑

i bt
i

(6.36)

The local minimum problem can be overcome using the idea of AM-
estimation (Li 1996b). Denote f∗

γ as the local minimum obtained under γ.
The annealing is performed by continuation in γ as

f∗ = lim
γ→0+

f∗
γ (6.37)

Initially, γ is set to a value large enough to guarantee that the corresponding
gγ(di − f) is convex in an interval. With such γ, it is easy to find the unique
minimum of the Eγ(f) using HQ minimization. The minimum is then used as
the initial value for the next phase of minimization under a lower γ to obtain
the next minimum. This way, we track the global minimum for decreasing γ
values and hopefully approximate the global minimum f∗ under γ → 0+.

6.2 Experimental Comparison

Two experiments are presented. The first is a general comparison of two
estimators, the AM-estimator and the M-estimator with Tukey’s biweight
function, with simulated data. The second deals with an application. Experi-
mental results demonstrate that the AM-estimator is significantly better than
the traditional M-estimator in estimation accuracy, stability, and breakdown
point.

6.2.1 Location Estimation

Simulated data points in 2D locations are generated. The data set is a mixture
of true data points and outliers. First, m true data points {(xi, yi) | i =
1, . . . , m} are randomly generated around f̄ = (10, 10). The values of xi and
yi obey an identical, independent Gaussian distribution with a fixed mean
value of 10 and a variance value V . After that, a percentage λ of the m
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True Location

Estimated Location Estimated Location

True Location

Figure 6.3: The AM-estimate of location. From (Li 1995a) with permission;
c©1995 Elsevier.

data points are replaced by random outlier values. The outliers are uniformly
distributed in a square of size 100×100 centered at (b, b) �= f̄ . There are four
parameters to control the data generation. Their values are:

1. the number of data points m ∈ {50, 200},

2. the noise variance V ∈ {0, 2, 5, 8, 12, 17, 23, 30},

3. the percentage of outliers λ from 0 to 70 with step 5, and

4. the outlier square centered parameter b = 22.5 or 50.

The experiments are done with different combinations of the parameter val-
ues. The AIF is chosen to be h3γ(η) = 1.0/(1 + η2/γ). The schedule in
lower(T ) is γ ←

(
100
t2

)1.5 − 1; when time t → ∞, γ → 0+. It takes about 50
iterations for each of these data sets to converge.

Figure 6.3 shows two typical data distributions and estimated locations.
Each of the two data sets contains 32 Gaussian-distributed true data points
and 18 uniformly distributed outliers. The two sets differ only in the arrange-
ment of outliers, while the true data points are common to both sets. The
algorithm takes about 50 iterations for each of these data sets to converge.
The estimated locations for the two data sets are marked in Fig. 6.3. The
experiments show that the estimated locations are very stable regardless of
the initial estimate, though the outlier arrangements are quite different in the
two sets. Without the use of AM-estimation, the estimated location would
have been much dependent on the initialization.

In a quantitative comparison, two quantities are used as the performance
measures: (1) the mean error ē versus the percentage of outliers (PO) λ and
(2) the mean error ē versus the noise variance (NV) V . Let the Euclidean
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Figure 6.4: Mean error of the AM-estimate. From (Li 1996b) with permission;
c©1996 Elsevier.
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Figure 6.5: Mean error of the M-estimate. From (Li 1996b) with permission;
c©1996 Elsevier.
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error be e = ‖f∗ − f̄‖ =
√

(x∗ − 10)2 + (y∗ − 10)2, where f∗ is the estimate
and f̄ is the true location.

Figures 6.4 and 6.5 show the mean errors of the AM-estimator and the M-
estimator, respectively. Every statistic for the simulated experiment is made
based on 1000 random tests, and the data sets are exactly the same for
the two estimators compared. Outliers are uniformly distributed in a square
centered at b = 22.5 (the left columns) or b = 50 (the right columns). The
plots show the mean error versus percentage of outliers with m = 50 (row
1) and m = 200 (row 2) and the mean error vs. noise variance with m = 50
(row 3) and m = 200 (row 4). It can be seen that the AM-estimator has a
very stable and elegant behavior as the percentage of outliers and the noise
variance increase; in contrast, the M-estimator not only gives a higher error
but also has an unstable behavior.

6.2.2 Rotation Angle Estimation

This experiment compares the AM-estimator with the M-estimator in com-
puting the relative rotation of motion sequences. Consider the sequence of
images in Fig. 6.6. Corners can be detected from these images as in Fig. 6.7

Figure 6.6: Part of a sequence of images rotating at 10 degrees between ad-
jacent frames. The image size is 256×256.
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Figure 6.7: Corners detected.

by using the Wang-Brady detector (Wang and Brady 1991). The data

d = {(pi, p
′
i) | i = 1, . . . , m} (6.38)

where pi = (xi, yi) and p′i = (x′
i, y

′
i) represent a set of matched point pairs

between two images. A previous work (Wang and Li 1994) showed that when
the rotation axis � = (�x, �y, �z)T is known, a unique solution can be com-
puted using only one pair of corresponding points and the LS solution can
be obtained using m pairs by minimizing

E(f) =
m
∑

i=1

{Ai tan(f/2) + Bi}2 (6.39)

where
Ai = �z(�y(xi + x′

i) − �x(yi + y′
i))

Bi = �x(xi − x′
i) + �y(yi − y′

i).
(6.40)

A unique solution exists for the LS problem (Wang and Li 1994). It is deter-
mined by the equation

m
∑

i=1

{

[Ai tan(f/2) + Bi] · Ai/2 · sec2(f/2)
}

= 0 (6.41)

where f∗ �= 180◦; that is,

f∗ = 2arctan
(

−
∑

AiBi
∑

A2
i

)

(6.42)

The formulation above is based on an assumption that all the pairs
{(xi, yi), (x′

i, y
′
i)} are correct correspondences. This may not be true in prac-

tice. For example, due to acceleration and deceleration, turning and occlusion,
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the measurements can change drastically and false matches (i.e., outliers) can
occur. The LS estimate can get arbitrarily wrong when outliers are present in
the data d. When outliers are present, the M-estimator can produce a more
reliable estimate than the LS estimator. The AM-estimator further improves
the M-estimator to a significant extent.

The AM-estimator minimizes, instead of (6.39),

E(f) =
m
∑

i=1

gγ(Ai tan(f/2) + Bi) (6.43)

where gγ is an adaptive potential function. By setting dE
df = 0 and using

g′γ(η) = 2ηhγ(η), one obtains

m
∑

i=1

{

[Ai tan(f/2) + Bi] · hγ(Ai tan(f/2) + Bi) · Ai/2 · sec2(f/2)
}

= 0

(6.44)
Rearranging this equation gives the fixed-point equation

f = 2arctan
(

−
∑m

i=1 hiAiBi
∑m

i=1 hiA2
i

)

(6.45)

where hi = hγ(Ai tan(f/2) + Bi). It is solved iteratively with decreasing γ
values.

Figures 6.8 and 6.9 show the estimated rotation angles (in the vertical
direction) between consecutive frames (the label on the horizontal axis is
the frame number) and the corresponding standard deviations (in vertical
bars) computed using the LS-, M-, and AM-estimators. From Fig. 6.8, we see
that with 20% outliers, the M-estimator still works quite well while the LS-
estimator has broken down. In fact, the breakdown point of the LS-estimator
is less than 5%.

From Fig. 6.9, we see that the M- and AM-estimators are comparable
when the data contains less than 20% outliers. Above this percentage, the
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Figure 6.8: Rotation angles computed from the correspondence data contain-
ing 20% of outliers using the LS-estimator (left) and the M-estimator (right).
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AM-estimator demonstrates its enhanced stability. The AM-estimator con-
tinues to work well when the M-estimate is broken down by outliers. The
AM-estimator has a breakdown point of 60%. This illustrates that the AM-
estimator has a considerably higher actual breakpoint than the M-estimator.
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Figure 6.9: Results computed from the correspondence data containing 20%
(row 1), 40% (row 2), 50% (row 3), and 60% (row 4) outliers using the M-
estimator (left) and the AM-estimator (right).




