
Chapter 4

High-Level MRF Models

High-level vision tasks, such as object matching and recognition and pose
estimation, are performed on features extracted from images. The arrange-
ments of such features are usually irregular, and hence the problems fall into
categories LP3 and LP4. In this chapter, we present MAP-MRF formulations
for solving these problems.

We begin with a study on the problem of object matching and recogni-
tion under contextual constraints. An MAP-MRF model is then formulated
following the systematic approach summarized in Section 1.3.4. The labeling
of a scene in terms of a model1 object is considered as an MRF. The optimal
labeling of the MRF is obtained by using the MAP principle. The matching
of different types of features and multiple objects is discussed. A related is-
sue, MRF parameter estimation for object matching and recognition, will be
studied in Chapter 7.

We then derive two MRF models for pose computation, pose meaning the
geometric transformation from one coordinate system to another. In visual
matching, the transformation is from the scene (image) to the model object
considered (or vice versa). In derived models, the transformation is from a
set of object features to a set of image features. They minimize posterior
energies derived for the MAP pose estimation, possibly together with an
MRF for matching.

4.1 Matching under Relational Constraints

In high-level image analysis, we are dealing with image features, such as
critical points, lines, and surface patches, that are more abstract than image
pixels. Such features in a scene are not only attributed by (unary) properties
about the features themselves but also related to each other by relations

1In this chapter, the word “model” is used to refer to both mathematical vision models
and object models.
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between them. In other words, an object or a scene is represented by features
constrained by the properties and relations. It is the bilateral or higher-order
relations that convey the contextual constraints. They play a crucial role in
visual pattern matching.

4.1.1 Relational Structure Representation

The features, properties and relations can be denoted compactly as a rela-
tional structure (RS) (Fischler and Elschlager 1973; Ambler et al. 1973; Cheng
and Huang 1984; Radig 1984; Li 1992c; Li 1992a). An RS describes a scene
or (part of) a model object. The problem of object recognition is reduced to
that of RS matching.

Let us start with a scene RS. Assume there are m features in the scene.
These features are indexed by a set S = {1, . . . , m} of sites. The sites
constitute the nodes of the RS. Each node i ∈ S has associated with
it a vector d1(i) composed of a number of K1 unary properties or unary
relations, d1(i) = [d(1)

1 (i), . . . , d(K1)
1 (i)]T . A unary property could be, for

example, the color of a region, the size of an area, or the length of a
line. Each pair of nodes (i, i′ ∈ S, i′ �= i) are related to each other by
a vector d2(i, i′) composed of a number of K2 binary (bilateral) relations,
d2(i, i′) = [d(1)

2 (i, i′), . . . , d(K2)
2 (i, i′)]T . A binary relation could be, for exam-

ple, the distance between two points or the angle between two lines. More gen-
erally, among n features i1, . . . , in ∈ S, there may be a vector dn(i1, . . . , in)
of Kn n-ary relations. This is illustrated in Fig. 4.1. An n-ary relation is also
called a relation, or constraint, of order n. The scope of relational dependen-
cies can be determined by a neighborhood system N on S. Now, the RS for
the scene is defined by a triple

G = (S,N , d) (4.1)

where d = {d1, d2, . . . , dH} and H is the highest-order. For H = 2, the RS
is also called a relational graph (RG). The highest-order H cannot be lower
than 2 when contextual constraints must be considered.

The RS for a model object is similarly defined as

G′ = (L,N ′,D) (4.2)

where D = {D1,D2, . . . , DH}, D1(I) = [D(1)
1 (I), . . . , D(K1)

1 (I)]T , D2(I, I ′) =
[D(1)

2 (I, I ′), . . . , D(K2)
2 (I, I ′)]T , and so on. In this case, the set of labels L

replaces the set of sites. Each element in L indexes one of the M model
features. In addition, the “neighborhood system” for L is defined to consist
of all the other elements, that is,

N ′
I = {I ′ | ∀I ′ ∈ L, I ′ �= I} (4.3)

This means each model feature is related to all the other model features. The
highest-order considered, H, in G′ is equal to that in G. For particular n and
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Figure 4.1: Three nodes and their unary, binary, and triple relations in the
RS representation. From (Li 1992a) with permission; c©1992 Elsevier.

k (1 ≤ k ≤ Kn; 1 ≤ n ≤ H), D
(k)
n represents the same type of constraint as

d
(k)
n ; for example, both represent the angle between two line segments.

Relations of various orders impose unary, binary, ... , H-ary constraints
on the features. Intercontextual constraints are represented by the second- or
higher-order relations. Due to these constraints, a scene, an object, or a view
of an object is seen as an integrated part rather than as individual features.
The higher the order of relations is, the more powerful the constraints are
but the higher the complication and expenses are in the computation.

There can be multiple model RSs in a model base. A model RS describes
a whole model object or a part of it. When an RS is used to describe a part
(for example, a view) of an object, the whole object may be described by
several RSs and these RSs may be related by some inter-RS constraints.

Now introduce a virtual model composed of a single node L0 = {0}.
It is called the NULL model. This special model represents everything not
modeled by G′, such as features due to all the other model objects and the
noise. So the actual label set in matching the scene to the model plus the
NULL contains M + 1 labels. It is denoted by

L+ = {0, 1, . . . ,M} (4.4)

After the introduction of the NULL, the mapping from S to L is illustrated
in Fig. 4.2.
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Figure 4.2: Discrete mapping involving the NULL label (numbered 0). All
scene nodes (sites) not modeled by the object considered should be matched
to this special label.

Figures 4.3 and 4.4 demonstrate two cup images and their segmentations
based on the H-K surface curvatures (Besl and Jain 1985). Suppose we are
matching the RG in Fig. 4.4(b) to that in Fig. 4.4(a). Based on the constraints
from the unary properties of surface curvature and region area and the binary
relations of distance between regions, the correct matching from Fig. 4.4(b)
to Fig. 4.4(a) is 5 → 1, 1 → 2, and the rest to NULL.

Model-based matching can be considered as finding the optimal mapping
from the image RS to the model RS (or vice versa). Such a mapping from
one RS to another is called a morphism, written as

f : G(S,N , d) → G′(L,N ′,D) (4.5)

which maps each node in S to a node in L

f : S → L (4.6)

and thus maps relations dn to relations Dn

f : dn → Dn (4.7)

A morphism is called an isomorphism if it is one-to-one and onto. It is called
a monomorphism if it is one-to-one but not onto. It is called a homomor-
phism if it is many-to-one. We do not allow one-to-many mappings because
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Figure 4.3: Cup images and segmentation based on H-K surface curvatures.
Top: A cup image and its H-K map. Bottom: A transformed version of
the cup image and the H-K map (note that some noise is introduced after
the transformation due to quantization). From (Li 1992c) with permission;
c©1992 Elsevier.

they contradict the definition of functions and, more crucially, increase the
difficulties in finding the optimal solutions.

When the properties and relations in the RSs considered include numeri-
cal values, the mappings are numerical morphisms, which are more difficult
to resolve than symbolic morphisms. Since such morphisms do not preserve
relations in the exact, symbolic sense, they may be called weak morphisms –
a term extended from the weak constraint models (Hinton 1978; Blake 1983;
Blake and Zisserman 1987).

The goodness of a numerical morphism is usually judged by an objective
function such as an energy. It is not very difficult to find a correct one-to-one
mapping (isomorphism) between two identical RSs. The requirement that
the unary properties of two nodes and the binary relations of two links must
be exactly the same in order to be matched to each other provides a strong
constraint for resolving the ambiguities. For the case where the two RSs have
different numbers of nodes and the matched properties and relations are not
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Figure 4.4: Relational graphs built from the cup H-K segmentation maps.
The textures of the nodes denote different surface types, and the links repre-
sent the adjacency relations. (a) The RG for the original upright cup image.
Node 1 corresponds to the body of the cup and node 2 to the handle. (b) The
RG for the transformed cup. Node 5 corresponds to the body, node 1 to the
handle, and the rest to NULL. (c) Legend for the correspondences between
texture types and H-K surface types. From (Li 1992c) with permission;
c©1992 Elsevier.

exactly the same, the matching is more difficult because it cannot exploit
the advantage of the strong constraint of the exact equalities. Only “weak
constraints” are available. The subsequent sections use MRF’s to establish
the objective function for weak homomorphisms for inexact, partial matching.

4.1.2 Work in Relational Matching

Two important computational issues in object matching are how to use con-
textual constraints and how to deal with uncertainties. Contextual constraints
in object recognition are often represented using the notion of relational
graphs. An object is represented by a set of features, their properties, and rela-
tions. Relative values between two image features embed context in matching
(Fischler and Elschlager 1973). Object matching is then reduced to match-
ing between two relational graphs. On the other hand, noise is inevitably
introduced in the process of feature extraction and relation measurement.

In the maximum clique method (Ambler et al. 1973; Ghahraman et al.
1980) for relational graph matching, an associated graph is formed from the
two relational graphs, one for the scene and the other for a model object
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(Ambler et al. 1973). Each node of the associated graph represents a possible
match. The optimal matching is given by the maximal cliques.

A class of constraint satisfaction problems for matching was studied by
Shapiro and Haralick (1981). In their work, the criterion is the weighted num-
ber of mismatched relations. Most such work involves definiting some criteria
to describe the “goodness”, or conversely the cost, of matching with relational
constraints. Mistakes in symbolic relations are mapped into a number, and
this number is then used as a criterion to decide whether a homomorphism is
acceptable or not. The inexact matching problem is viewed as finding the best
homomorphism (i.e., the one with minimum number of errors w.r.t. a given
attribute value threshold, a missing part threshold, and a relation threshold).

Relaxation labeling (RL) (Rosenfeld et al. 1976) has been a useful method
for solving the matching problem. The constraints are propagated via a com-
patibility function, and the ambiguity of labeling is reduced by using an
iterative RL algorithm. In our view, the most important part in RL-based
recognition is the definition of the compatibility function. Various RL schemes
should be considered as algorithms for finding solutions. This will be further
examined in Section 9.3.2.

Typical early works on relational matching using RL include (Davis 1979)
and (Bhanu and Faugeras 1984; Bhanu 1984). In (Davis 1979), the objective
function consists of four terms. Each term either encodes a particular con-
straint or penalizes unmatched features, the idea dating back to work by
Fischler and Elschlager (1973). An association graph (Ambler et al. 1973) is
used for matching relational structures. In the search for optimal matching,
incompatible nodes for which some evaluation function is below a threshold
are deleted from the graph. This generates a sequence of association graphs
until a fixed point is reached. In (Bhanu and Faugeras 1984; Bhanu 1984),
matching is posed as an optimization problem, and the optimization is per-
formed by using an RL algorithm presented in (Faugeras and Berthod 1981).

A feature common to most of the matching works above is that thresholds
are used to determine whether two matches are compatible. This effectively
converts the weighted-graph matching into symbolic matching. While greatly
reducing search space, this may rule out the potential matches. Because of
the noise, the observation of the objects, which represents feature properties
and relations extracted from the scene, can be considered as a set of random
variables. Furthermore, some object features may be missing, and spurious
features may emerge due to noise and unmodeled objects. The matching
strategy has to deal with these uncertainties. It is hard to judge that in the
presence of uncertainties a difference of 1.000001 is impossible while 0.999999
is possible.

In the weak constraint satisfaction paradigm, “hard” constraints are al-
lowed to be violated without causing the failure of constraint satisfaction.
However, each such violation is penalized by adding an amount to a cost
function that measures the imperfection of the matching. This is usually
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implemented by using the line process in low-Level vision (Geman and Geman
1984; Marroquin 1985). In a weak notion of graph matching, Bienenstock
(1988) proposed a scheme for an approximation of graph isomorphism in
which relation-preserving characteristics of isomorphism can be violated but
each violation incurs a small penalty. This is a transplant of the idea of the
line process at the lower-level to the higher-level perception. Nevertheless, at
a higher-level where more abstract representations are used, the weak con-
straint satisfaction problem becomes more complicated.

Li makes use of contextual constraints not only on the prior configura-
tion of labelings but also on the observed data into the labeling process (Li
1992c; Li 1992a; Li 1992b; Li et al. 1993). He proposes an energy function, on
a heuristic basis, that combines contextual constraints from both the prior
knowledge and the observation. Kittler et al. (1993) later derive from prob-
abilistic viewpoint the same compatibility used in Li’s energy function.

MRF’s provide a formal basis for matching and recognition under con-
textual constraints. Modestino and Zhang (1989) describe an MRF model
for image interpretation. They consider an interpretation of a scene as an
MRF and define the optimal matching as the MAP estimate of the MRF.
Unfortunately, the posterior probability therein is derived not by using the
laws of probability but designed directly by using some heuristic rules. This
contradicts the promises of MAP-MRF modeling. Cooper (1990) describes a
coupled network for simultaneous object recognition and segmentation. MRF
is used to encode prior qualitative and possibly quantitative knowledge in the
nonhomogeneous and anisotropic situations. The network is applied to rec-
ognize Tinkertoy objects. An interesting development are Markov processes
of objects proposed by Baddeley and van Lieshout (1993). Other works in
MRF-based recognition can be found in (Grenander et al. 1991; Baddeley
and van Lieshout 1992; Friedland and Rosenfeld 1992; Kim and Yang 1992;
Cooper et al. 1993). The MRF model described in the next section is based
on (Li 1994a).

4.2 Feature-Based Matching

The labeling of a scene in terms of a model object is denoted by f = {fi ∈
L+ | i ∈ S}, where elements in S index image features and those in L model
object features plus the NULL. It is also interpreted as a relational mapping
from G(S,N , d) to G′(L,N ′,D); see (4.5). We assume that f is a realization
of an MRF w.r.t. N . Below, we derive its posterior probability using the
MAP-MRF approach, in which contextual constraints not only on the prior
configuration but also the observation are considered.
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4.2.1 Posterior Probability and Energy

The prior distribution of f is defined using MRF’s. In RS matching, the
neighborhood covers all other related sites (scene features). One may restrict
the scope of interaction by defining Ni as the set of other features that are
within a distance r from i (see (2.3))

Ni = {i′ ∈ S | [dist(featurei′ , featurei)]2 ≤ r, i′ �= i} (4.8)

where the function dist is a suitably defined distance function for features.
The distance threshold r may be reasonably related to the size of the model
object. The set of first-order cliques is

C1 = {{i} | i ∈ S} (4.9)

The set of second-order cliques is

C2 = {{i, i′} | i′ ∈ Ni, i ∈ S} (4.10)

Here, only cliques of up to order two are considered.
The single-site potential is defined as

V1(fi) =
{

v10 if fi = 0
0 otherwise (4.11)

where v10 is a constant. If fi is the NULL label, it incurs a penalty of v10;
otherwise the nil penalty is imposed . The pair-site potential is defined as

V2(fi, fi′) =
{

v20 if fi = 0 or fi′ = 0
0 otherwise (4.12)

where v20 is a constant. If either fi or fi′ is the NULL, it incurs a penalty of
v20 or the nil penalty otherwise. The above clique potentials define the prior
energy U(f). The prior energy is then

U(f) =
∑

i∈S
V1(fi) +

∑

i∈S

∑

i′∈Ni

V2(fi, fi′) (4.13)

The definitions of the above prior potentials are a generalization of that
penalizing line process variables (Geman and Geman 1984; Marroquin 1985).
The potentials may also be defined in terms of stochastic geometry (Baddeley
and van Lieshout 1992).

The conditional p.d.f., p(d | f), of the observed data d, also called the
likelihood function when viewed as a function of f given d fixed, has the
following characteristics:

1. It is conditioned on pure nonNULL matches fi �= 0.

2. It is independent of the neighborhood system N .
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3. It depends on how the model object is observed in the scene, which in
turn depends on the underlying transformations and noise.

Assume (1) that D and d are composed of types of features which are invariant
under the class of transformations considered2; and (2) that they are related
via the observation model

d1(i) = D1(fi) + e1(i), d1(i, i′) = D2(fi, fi′) + e2(i, i′) (4.14)

where e is additive, independent, zero-mean Gaussian noise. The assumptions
of the independent and Gaussian noise may not be accurate but offer an
approximation when an accurate observation model is not available.

Then the likelihood function is a Gibbs distribution with the energy

U(d | f) =
∑

i∈S,fi �=0

V1(d1(i) | fi) +
∑

i∈S,fi �=0

∑

i′∈S−{i},fi′ �=0

V2(d2(i, i′) | fi, fi′)

(4.15)
where the constraints, fi �= 0 and fi′ �= 0, restrict the summations to take
over the nonNULL matches. The likelihood potentials are

V1(d1(i) | fi) =
{ ∑K1

k=1[d
(k)
1 (i) − D

(k)
1 (fi)]2/{2[σ(k)

1 ]2} if fi �= 0
0 otherwise

(4.16)
and

V2(d2(i, i′) | fi, fi′) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

∑K2
k=1[d

(k)
2 (i, i′) − D

(k)
2 (fi, fi′)]2/{2[σ(k)

2 ]2}
if i′ �= i and fi �= 0 and fi′ �= 0

0 otherwise
(4.17)

where [σ(k)
n ]2 (k = 1, . . . ,Kn and n = 1, 2) are the variances of the corre-

sponding noise components. The vectors D1(fi) and D2(fi, fi′) are the “mean
vectors”, conditioned on fi and fi′ , for the random vectors d1(i) and d2(i, i′),
respectively.

Using U(f | d) = U(f) + U(d | f), we obtain the posterior energy

U(f | d) =
∑

i∈S V1(fi)+
∑

i∈S
∑

i′∈Ni
V2(fi, fi′)+

∑

i∈S:fi �=0 V1(d1(i) | fi)+
∑

i∈S:fi �=0

∑

i′∈S−{i}:fi′ �=0 V2(d2(i, i′) | fi, fi′)

(4.18)

There are several parameters involved in the posterior energy: the noise vari-
ances [σ(k)

n ]2 and the prior penalties vn0. Only the relative, not absolute,
values of [σ(k)

n ]2 and vn0 are important because the solution f∗ remains the
2The discovery and computation of visual invariants is an active area of research; see

(Mundy and Zisserman 1992).
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same after the energy E is multiplied by a factor. The vn0 in the MRF prior
potential functions can be specified to achieve the desired system behavior.
The higher the prior penalties vn0, the fewer features in the scene will be
matched to the NULL for the minimal energy solution.

Normally, symbolic relations are represented internally by a number. The
variances [σ(k)

n ]2 for those relations are zero. One may set corresponding
[σ(k)

n ]2 to 0+ (a very small positive number), which is consistent with the
concept of discrete distributions. Setting [σ(k)

n ]2 = 0+ causes the correspond-
ing distance to be infinitely large when the symbolic relations compared are
not the same. This inhibits symbolically incompatible matches, if an opti-
mal solution is sought and thus imposes the desired symbolic constraint. A
method for learning [σ(k)

n ]2 parameters from examples will be presented in
Chapter 8.

4.2.2 Matching to Multiple Objects

The MAP configuration f∗ derived in the above is the optimal mapping from
the scene to the model object under consideration. In other words, it is the
optimal labeling of the scene in terms of the model object.

Suppose there are L potential model objects. Then L MAP solutions,
f (1), . . . , f (L), can be obtained after matching the scene to each of the models
in turn.3 However, any feature in the scene can have only one match of model
feature. To resolve this, we use the following method of cost minimization.

Rewrite E(f) = U(f | d) in (4.18) in the form

E(f) =
∑

i∈S
E1(fi) +

∑

i∈S

∑

i′∈S,i′ �=i

E2(fi, fi′)
�
=
∑

i∈S
E(fi | fNi

) (4.19)

where

E1(fi) =
{

v10 if fi = 0
V1(d1(i) | fi) otherwise (4.20)

and

E2(fi, fi′) =

⎧

⎨

⎩

v20 if i′ ∈ Ni & (fi = 0 or fi′ = 0)
V2(d2(i, i′) | fi, fi′) if i′ �= i and fi �= 0 and fi′ �= 0
0 otherwise

(4.21)
are local posterior energies of orders one and two, respectively. E(fi | fNi

) =
E1(fi) +

∑

i′∈S E2(fi, fi′) is the cost incurred by the local match i → fi

given the rest of the matches. It will be used as the basis for selecting the
best-matched objects for i in matching to multiple model objects. The image

3Fast indexing of model objects (Lamdan and Wolfson 1988) is a topic not studied in
this work.
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Figure 4.5: Mapping from the scene to multiple model objects. Different tex-
tures represent different structures. Bold lines represent submappings. Note
that the background and nonmodel structure are mapped to the NULL struc-
ture (the blank square). From (Li 1992b) with permission; c©1992 Elsevier.

feature i is considered to come from object �i if the decision incurs the least
cost

�i = arg min
�∈{1,...,L}

E(f (�)
i | f

(�)
Ni

) (4.22)

The final label for i is feature number f
(�i)
i of object �i. Note, however, that

the MAP principle is applied to matching to a single model object, not to
multiple objects; the simple rule (4.22) does not maximize the posterior since
at least the partition functions are different for matching to different objects.

Applying (4.22) to every i yields an overall mapping from the scene to
the models, composed of several submappings, as illustrated in Fig. 4.5. On
the right, the squares with different textures represent the candidate model
structures to which the scene is to be matched. Among them, the blank
square represents the NULL model. On the left is the scene structure. The
regions, each corresponding to a subpart of a model structure, are overlapping
(not separated). The recognition of the overlapping scene is (1) to partition
the scene structure into parts such that each part is due to a single object
and (2) to find correspondences between features in each part and those in
the corresponding model object. The parts of the scene corresponding to the
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background and unmodeled objects should be mapped to the NULL, or in
other words assigned the NULL label.

4.2.3 Extensions

The model above may be extended in a number of ways. With the assumption
that different constraints are independent of each other, embedding a higher
constraint can be achieved by adding a new energy term. Matching with
different types of object features (e.g., points and lines) can be treated as
coupled MRF’s.

Incorporating Higher Constraints

In matching schemes based on invariants, the features chosen to represent
the object modeled and the scene must be invariant to the expected transfor-
mations from the object to the observation for the process of cognition to be
accomplished. The more complicated the transformations are, the higher the
order of features needed for the invariant object representation (Li 1992a);
the order needed may be higher than two.

In previous subsections, only constraints of up to second-order were con-
sidered. Incorporation of higher-order constraints can be achieved by adding
higher-order energy terms. A clique of order n > 2 is an n-tuple {i1, . . . , in}
in which ir and is (r �= s) are neighbors to each other. The incorporation is
done as follows. First, the following n-th order a priori clique potentials are
added to the prior energy U(f):

Vn0(fi1 , . . . , fin
) =
{

vn0 if fik
= 0 ∃ik ∈ {i1, . . . , in}

0 otherwise (4.23)

where vn0 is a constant of prior penalty. Second, the likelihood energy for the
nth order observation has the likelihood potentials

Vn(dn(i1, . . . , in) | fi1 , . . . , fin
) =

∑Kn

k=1[d
(k)
n (i1, . . . , in) − D

(k)
n (fi1 , . . . , fin

)]2/{2[σ(k)
n ]2}

(4.24)
The corresponding posterior can be obtained using the Bayes rule, resulting
in the nth order energy

En(fi1 , . . . , fin
) =
{

vn0, if fik
= 0 ∃ik ∈ {i1, . . . , in}

Vn(dn(i1, . . . , in) | fi1 , . . . , fin
), otherwise

(4.25)
Adding together all the energy terms yields

E(f) =
∑

i∈S E1(fi) +
∑

i,i′∈S
E2(fi, fi′) + · · ·

+
∑

i1,...,iH∈S
EH(fi1 , . . . , fiH

) (4.26)
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where H is the highest-order.

Coupled MRF’s for Matching with Different Features

Let us consider the situation where an object consists of different types of
features, such as points and lines. Obviously, a point in the scene should not
be matched to a line in an object model. This is a symbolic constraint. In
this case, the positivity condition of MRF in (2.8) does not hold any more if
the configuration space F is still defined as the simple product as in (4.4) for
a single MRF.

To overcome this limitation, we partition the whole set L of labels to a
few admissible sets for different types of sites. This results in a few coupled
MRF’s. These MRF’s are coupled to each other via inter-relations dn (n ≥ 2).
For example, the distance between a point and a line can constrain the two
different types of features. Furthermore, they are also coupled via the label
NULL which is a “wildcard” compatible with all types of features.

If there are two different types of features, then L can be partitioned
into two admissible sets, with each set consisting of indices to features of the
same type. In the most general case, each of the m sites has its own set of
labels Li ⊆ L (i = 1, . . . ,m), each Li being determined using the symbolic
unary constraints; and the label for site i assumes a value fi ∈ L+

i , where
L+

i = {0} ∪ Li. Then, the configuration space is defined as

F = L+
1 × L+

2 × · · · × L+
m (4.27)

In this situation, the energy E(f) has the same form as usual and the solution
is still found by f∗ = arg minf∈F E(f). The only difference is in the definition
of the configuration space F in which the solution is searched for.

Relationships with Low Level MRF Models

Let us compare the present model with low-Level vision MRF models pro-
totyped by Geman and Geman (1984). The present model is similar to the
MRF models for piecewise constant image restoration, edge detection, and
texture segmentation in that the labels are discrete. Of course, their prior
distributions must be different to cope with different tasks.

In surface reconstruction involving discontinuities (Marroquin 1985; Blake
and Zisserman 1987; Chou and Brown 1990; Szeliski 1989; Geiger and Girosi
1991), there are commonly two coupled MRF’s: a surface field and a line
process field. The former field is defined on S1, the domain of an image grid.
It assumes configurations in the space LS1

1 where L1 is a real interval. The
latter is defined on S2, the dual of S1. It assumes configurations in the space
LS2

2 , where L2 is the set of labels such as {edge, nonedge}. These fields are
coupled to each other by the interaction between the line process variable
and the neighboring pixels.
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The concept of discontinuity in the high-level is the relational bond in the
scene RS. For example, when no fi or fi′ assumes the NULL value, i and i′

are relationally constrained; otherwise, when fi = 0 or fi′ = 0, the relational
bond between i and i′ is broken. This corresponds to the line process.

The main difference between this high-level model and those low-Level
models is in the encoding of higher-order relational constraints. Low-level
models use unary observations only, such as pixel intensity; although intensity
difference between neighboring pixels is also used, it is derived directly from
the intensity. The present model uses relational measurements of any order.
This is important for high-level problems in which contextual constraints
play a more important role. Moreover, in the present model, the neighborhood
system is nonhomogeneous and anisotropic, which also differs from the image
case.

The matching method we have presented is based on a prerequisite that
invariants are available for object representation under the group of trans-
formations concerned. If geometric variants are also used as sources of con-
straints, object poses have to be resolved during the computation of matching;
see the next section.

4.2.4 Experiments

The following presents some experiments. Given a number of model objects, a
scene is generated. Properties and relations in model objects and the scene are
measured using the same program. Only the second-order energy E2 is taken
into consideration. The energy is minimized by using a relaxation labeling
algorithm (see Section 9.3.2). In the computation of the minimal solution,
interactions or compatibilities are represented by integers of only 8 bits and
good results are achieved; this demonstrates the error-tolerant aspect of the
model. The optimal matching result is displayed by aligning the matched
object features to the scene while the unmatched are not displayed. The
alignment is performed between the matched pairs by using the least squares
fitting method (Umeyama 1991). The parameter v20 = 0.7 is fixed for all the
experiments. Parameters [σ(k)

2 ]2 vary for different applications.

Matching Objects of Point Patterns

There are three model objects as shown in Fig. 4.6(a)–Fig. 4.6(c). Each of the
objects consists of three types of point features, shown in different sizes. The
scene in (d) is generated from the model objects as follows: (1) Take a subset
of features from each of the three objects, (2) do a transformation (rotation
and translation) on each of the subsets, (3) mix the subsets together after
that, (4) randomly deviate the locations of the points using either Gaussian
or uniform noise, and (5) add spurious point features.

In this case of point matching, there is only one unary property (i.e., the
point size) denoted d1(i). Each d1(i) takes a value {1, 2, 3}. There is only a
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Figure 4.6: Matching objects of points. (a–c) The model objects. (d) The
scene.

binary relation; i.e., the Euclidean distance between two points d2(i, i′) =
dist(i, i′). The points, their sizes, and their distances constitute an RS. The
unary property is symbolic, and this restricts the set of admissible labels for
each i ∈ S as Li = {I | D1(I) = d1(i),∀I ∈ L}. The parameter is chosen as
[σ(1)

2 ]2 = 0.1.
Figure 4.7 shows the matching results in which the matched object points

are aligned with the scene in Fig. 4.7(d). The black points in Fig. 4.7(a)
correspond to points 5, 6, 7, 11, 12, 14, 15, 17, and 19 of the object in
Fig. 4.6(a). Those in Fig. 4.7(b) correspond to points 3, 5, 8, 9, 10, 11, 12,
13, 16, 17, and 18 of the object in Fig. 4.6(b). Those in Fig. 4.7(c) are points
4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and 21 of the object in
Fig. 4.6(c). In (d) is shown the union of all the individual results. The spurious
points 2, 8, 10, 27, 35, and 40 in Fig. 4.6(d) have found no counterparts in
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the three objects. They are correctly classified as the NULL. There is one
mismatch: Point 19 in Fig. 4.6(d) is matched to the NULL while its correct
home should be point 10 of Fig. 4.6(a).

d

a b

c

Figure 4.7: Results of matching objects of points. (a–c) Matched points (in
black) from the respective models aligned with the scene. (d) All matched
points aligned with the scene.

Matching Objects of Line Patterns

There are five objects made of lines, as shown in Fig. 4.8(a)–Fig. 4.8(e). The
scene in Fig. 4.8(f) consists of a subset of deviated lines taken from the first
three objects Fig. 4.8(a)–Fig. 4.8(c), shown as dotted lines, and spurious line
features shown as dashed lines. Four types of binary relations are measured:
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(1) d
(1)
2 (i, i′): the angle between lines i and i′;

(2) d
(2)
2 (i, i′): the distance between the midpoints of the lines;

(3) d
(3)
2 (i, i′): the minimum distance between the endpoints of the lines; and

(4) d
(4)
2 (i, i′): the maximum distance between the endpoints of the lines.
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Figure 4.8: Matching objects of lines. (a–e) The five model objects. (f) The
scene.
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No unary relations are used. The value for the prior clique potential is fixed
at v20 = 0.70000. The values for weighting the binary measurements are
1/[σ(1)

2 ]2 = 0.36422, 1/[σ(2)
2 ]2 = 0.20910, 1/[σ(3)

2 ]2 = 0.44354, and 1/[σ(4)
2 ]2 =

0.74789, which are estimated using a supervised learning procedure to be
presented in Chapter 8.

Figure 4.9 shows the matching results in which the matched object lines
from the first three objects are aligned with the scene in Fig. 4.9(d). The
solid lines in Fig. 4.9(a) correspond to lines 11, 13, 14, 16, 17, 18, 19, 21, 25,
26, and 28 of the object in Fig. 4.8(a). Those in Fig. 4.9(b) correspond to
lines 5, 8, 10, 11, 13, 14, 15, 16, and 17 of the object in Fig. 4.8(b). Those in
Fig. 4.9(c) correspond to points 1, 2, 3, 5, 8, 9, 11, 12, and 14 of the object
in Fig. 4.8(c). Objects in Fig. 4.9(d) and Fig. 4.9(e) do not have matches. In
Fig. 4.9(d) is shown the union of all individual results. The spurious lines 2,
13, 14, 15, 27, 33, and 36 in Fig. 4.8(f) have found no counterparts in the
object models. They are correctly classified as the NULL.

d’

a’ b’

c’

Figure 4.9: Results of matching objects of lines. (a–c) Matched lines (solid)
from the respective models aligned with the scene. (d) All matched lines
aligned with the scene.
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Matching Curved Objects under Similarity Transformations

In the experiment shown in Fig. 4.10. There are eight model jigsaw objects.
The scene contains rotated, translated, and scaled parts of the model objects,
some of which are considerably occluded. Boundaries are computed from the
image using the Canny detector followed by hysteresis and edge linking. After
that, corners of the boundaries are located as p1, . . . , pm.

The sites correspond to the corners on the scene curve and the labels cor-
respond to the feature points on the model curve considered. The neighbors
of a site are defined as the five forward points and the five backward points.
Invariant relations are derived from the boundaries as well as the corners
based on a similarity-invariant representation of curves (Li 1993). No unary
properties are used (K1 = 0). Only binary relations are used, which are of
the following five types (K2 = 5):

(1) d
(1)
2 (i, i′): ratio of curve arc length p̂ipi′ and chord length pipi′ ,

(2) d
(2)
2 (i, i′): ratio of curvature at pi and pi′ ,

(3) d
(3)
2 (i, i′): invariant coordinates vector,

(4) d
(4)
2 (i, i′): invariant radius vector, and

(5) d
(5)
2 (i, i′): invariant angle vector

which are derived from the boundaries and the corners using a similarity-
invariant representation of curves (Li 1993).

The parameters involved are supplied by an automated optimal estima-
tion procedure (see Chapter 8) with the values v20 = 0.7, 1/σ

(1)
2 = 0.00025,

1/σ
(2)
2 = 0, 1/σ

(3)
2 = 0.04429, 1/σ

(4)
2 = 0.02240, and 1/σ

(5)
2 = 0.21060.

The minimal labeling f∗ is found by using a deterministic relaxation label-
ing algorithm (Hummel and Zucker 1983). The final result of recognition is
shown in Fig. 4.11, in which model objects are aligned with the corresponding
(sub)parts in the scene. Note that most of the model objects share common
structures of round extrusion and intrusion. This means extensive ambiguities
exist, which has to be resolved by using context.
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Figure 4.10: (Top) The eight model jigsaw objects. From (Li 1997b) with
permission; c©1997 Kluwer. (Bottom) An overlapping scene.
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Figure 4.11: (Top) Boundaries detected from the scene. (Bottom) Matched
objects are aligned with the scene. From (Li 1994a) with permission; c©1994
IEEE.
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4.3 Optimal Matching to Multiple
Overlapping Objects

Previously, matching between the scene and model objects was performed
by considering one model object at a time. Once a part of the scene has
been matched to a model object, it is excluded from subsequent matching;
or better still, multiple matching results are obtained, each being optimal
w.r.t. a single model object, as was done in Section 4.2 (see also (Li 1998a)).
Inconsistencies may exist among the individual results because the matching
to one model is done independently of the other models. Post-processing may
be applied to obtain an overall consistent solution.

When a scene contains multiple mutually occluded objects, two sources of
contextual constraints are required: between-object constraints (BOCs) and
within-object constraints (WOCs). WOCs of an object, which describe the
particular structure of the object itself, are used to identify instances of that
object. BOCs, which are the constraints on features belonging to different
objects, are used to discriminate between objects and unmodeled features.

Here, a statistically optimal, MAP-MRF-based formulation for recogni-
tion of multiple, partially occluded objects is presented. The MAP solution
is defined w.r.t. all model objects, not just individual ones. Such a solution
is optimal overall, and consistent by itself. A two-stage MAP estimation ap-
proach is proposed to reduce the computational cost. The first stage finds
feature correspondence between the scene and each model object. The sec-
ond stage solves the original, target MAP-MRF estimation problem in a much
reduced space constructed from the stage 1 solutions. The energy functions
for the two MAP estimation problems are formulated. BOCs are encoded
in the prior distribution modeled as a Markov random field (MRF). WOCs
are encoded in the likelihood distribution modeled as a Gaussian. This way,
both BOCs and WOCs are incorporated into the posterior distribution. Ex-
perimental results are incorporated into the presentation to illustrate the
theoretical formulation.

4.3.1 Formulation of MAP-MRF Estimation

Figure 4.12 illustrates an example of object and scene representation. Let
O(all) = {O(1), . . . ,O(L)} be a number of L model objects (L = 8 on the
left in Fig. 4.12). The objects in the scene are rotated, translated, scaled,
and partially occluded versions of the model objects (Fig. 4.12, middle). The
objects and the scene are represented by features (e.g., corners on boundary
curves on the right in Fig. 4.12) and constraints on the feature such as unary
properties and binary relations between features (the interested reader is
referred to (Li 1997a) for an invariant representation of curved objects). The
task is to recognize (separate and identify) the objects in the scene, optimally
in the MAP sense, w.r.t. the L given objects. This can be done via feature
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matching, which is aimed at establishing feature correspondence between the
scene and the model objects based on partial observation of the objects.
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Figure 4.12: Top: Eight model jigsaw objects. Lower left: A scene. Lower right:
Three boundary curves and the corner features extracted from the scene.

In this problem, we have S = {1, . . . , m} corresponds to the set of m
image features. On the right in Fig. 4.12, there are three sequences of corner
features in the scene, represented by three S sets with m = 24, m = 47, and
m = 6.

Let L(α) = {1, . . . , M (α)} be a set of M (α) labels corresponding to the set
of M (α) features for model object α (M (1) = 12 for model object 1 on the
left in Fig. 4.12). A virtual label, called the NULL and numbered 0, is added
to represent everything not belonging to L(α) (such as features due to other
model objects and those due to background and noise). This augments L(α)

into L(α)+ = {0, 1, . . . ,M (α)}. Without confusion, the notation L is still used
to denote the augmented set L+ unless there is a need to elaborate. The set
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of all model features plus the NULL is L(all) = L(1) ∪L(2) · · · L(L). It consists
of #L(all) elements where #L(all) = 1 +

∑L
α=1 M (α).

The overall matching from S to the L model objects is represented by a
label configuration f = {f (α1)

1 , . . . , f
(αm)
m }. It is a mapping from the set of

the sites to the set of the labels, f : S → L(all). Three things are told by
a label f

(αi)
i ∈ L(αi). (i) It separates image features belonging to a model

object from those not belonging to any in the following way: If f
(αi)
i �= 0

(a nonNULL label), then image feature i belongs to an object; otherwise, if
f

(αi)
i = 0, it belongs to the background, noise, or an unmodeled object. (ii) If

f
(αi)
i �= 0, αi indicates that image feature i belongs to model object αi. (iii)

If f
(αi)
i �= 0, f

(αi)
i indexes the corresponding feature of object αi, to which

image feature i is matched.
The MAP solution for matching the scene to all the objects is defined by

f∗ = arg max
f∈F(all)

P (f | d,O(all)) (4.28)

where P (f | d,O(all)) is the posterior probability of the labeling f given the
observation d and the L object models, and F

(all) is the space of all admissible
configurations (solutions). When all the labels are admissible for all the sites,
F

(all) is the Cartesian product of the m L(all)’s; that is, F
(all) =

∏m
i=1 L(all).

Assuming that f , which is a realization of a family of m random variables,
is a Markov random field (MRF), then its posterior is a Gibbs distribution
P (f | d,O(all)) ∝ e−E(all)(f) where

E(all)(f)
�
= U(f |O(all)) + U(d | f,O(all)) (4.29)

is the posterior energy consisting of the prior energy U(f | O(all)) and the
likelihood energy U(d | f,O(all)). The solution to problem (4.28) equivalently
minimizes the posterior energy: f∗ = arg minf∈F(all) E(all)(f).

The objective of (4.28), finding the minimum f∗ in F
(all), is a formidable

job since the configuration space F
(all) consists of a huge number of #F

(all) =
(1+

∑L
α=1 M (α))m elements when all the model features (labels) are admissi-

ble. In the following, a two-stage MAP-MRF estimation approach is proposed
to tackle this problem.

Formulation of Energy Functions

The prior distribution of f (α) = {f (α)
1 , . . . , f

(α)
m } for matching w.r.t. object α

is assumed to be an MRF and hence is a Gibbs distribution P (f (α) | O(α)) ∝
e−U(f(α) | O(α)). The prior energy takes the form

U(f (α) | O(α)) =
∑

i∈S
V1(f

(α)
i ) +

∑

i∈S

∑

i′∈Ni

V2(f
(α)
i , f

(α)
i′ ) (4.30)
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where Ni is the set of neighbors for i, and V1(f
(α)
i ) and V2(f

(α)
i , f

(α)
i′ ) are

single- and pair-site clique prior potential functions, respectively for f (α).
The clique potentials are defined based on (4.11( and (4.12) as

V1(f
(α)
i ) =

{

0 if fi �= 0
v10 if fi = 0 (4.31)

V2(f
(α)
i , f

(α)
i′ ) =

{

0 if f
(α)
i �= 0 and f

(α)
i′ �= 0

v20 if f
(α)
i = 0 or f

(α)
i′ = 0

(4.32)

where v10 > 0 and v20 > 0 are penalty constants for NULL labels. These
definitions encode BOCs, that is, constraints between different objects and
between an object and the background. In a way, this is similar to the line
process model (Geman and Geman 1984) for differentiating edge and nonedge
elements.

The likelihood distribution p(d | f (α),O(α)) describes the statistical prop-
erties of the features seen in the scene and is therefore conditioned on pure
nonNULL matches (f (α)

i �= 0) only. The likelihood is a Gibbs distribution
with the energy function, which is based on (4.15)

U(d | f (α),O(α)) =
∑

i∈S,f
(α)
i �=0

V1(d1(i) | f
(α)
i ) (4.33)

∑

i∈S,f
(α)
i �=0

∑

i′∈S\i,f
(α)
i′ �=0

V2(d2(i, i′) | f
(α)
i , f

(α)
i′ )

where d1(i) is the set of unary properties of image feature i, d2(i, i′) is
the set of binary relations between i and i′, and V1(d1(i) | f

(α)
i ) and

V2(d2(i, i′) | f
(α)
i , f

(α)
i′ ) are the potentials in the likelihood distributions

(where the distributions may be assumed to be Gaussian). The likelihood
potentials encode WOCs, that is, constraints on image features belonging
to object α only. Both BOCs and WOCs are incorporated into the pos-
terior distribution with the posterior energy E(α)(f (α)) = U(f (α)|O(α)) +
U(d | f (α),O(α)).

The posterior in stage 2 is the target posterior distribution P (f | d,O(all))
of the original problem (1), with the posterior energy U(f | d,O(all)) =
U(f | O(all)) + U(d | f,O(all)). In this stage, if fi is non-NULL, then it is
associated with a model α, so it should be read as f

(α)
i (and fi′ as f

(α′)
i′ ).

In the following derivation, it is assumed that model objects α and α′ are
independent of each other when α �= α′.

The prior energy is

U(f | O(all)) =
∑

i∈S
V1(fi | O(all)) +

∑

i∈S

∑

i′∈Ni

V2(fi, fi′ | O(all)) (4.34)
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The single-site prior potentials are defined as V1(fi | O(all)) = V1(f
(α)
i ), which

is the same as that in (4.11) for matching to a single model object α. The
pair-site potential V2(fi, fi′ | O(all)) = V2(f

(α)
i , f

(α′)
i′ | O(α),O(α′)), where

V2(f
(α)
i , f

(α′)
i′ | O(α),O(α′)) =

{

V2(f
(α)
i , f

(α)
i′ ) if α = α′

v20 otherwise
(4.35)

where V2(f
(α)
i , f

(α)
i′ ) are as defined in (4.12) for matching to object α. Sub-

stituting (4.12) into (4.35) yields

V2(fi, fi′ | O(all)) =
{

0 if (α = α′) and (fi �= 0) and (fi′ �= 0)
v20 otherwise

(4.36)
where fi is associated with object α and fi′ with object α′. The definitions
above are an extension of (4.12) for dealing with multiple objects. In (4.12),
features due to other objects (not belonging to object α) are all labeled as
NULL ; (4.36) simply takes this into consideration.

The likelihood energy is

U(d | f,O(all)) =
∑

i∈S,fi �=0

V1(d1(i) | fi,O(all)) + (4.37)

∑

i∈S,fi �=0

∑

i′∈S\i,fi′ �=0

V2(d2(i, i′) | fi, fi′ ,O(all))

The single-site likelihood potentials are V1(d1(i) | fi,O(all)) = V1(d1(i) | f (α)
i ),

defined in the same way as for (4.15). The pair-site likelihood potentials are
V2(d2(i, i′) | fi, fi′ ,O(all)) = V2(d2(i, i′) | f

(α)
i , f

(α′)
i′ ,O(α),O(α′)), where

V2(d2(i, i′) | f (α)
i , f

(α′)
i′ ,O(α),O(α′)) =

⎧

⎨

⎩

V2(d2(i, i′) | f
(α)
i , f

(α)
i′ ) if α = α′

0 otherwise
(4.38)

where V2(d2(i, i′) | f
(α)
i , f

(α)
i′ ) are defined in the same way as for (4.15) when

matching to object α.
Some parameters have to be determined, such as v10 and v20 in the MRF

prior, in order to define the MAP solutions completely. They may be esti-
mated by using a supervised learning algorithm (see Chapter 8).

4.3.2 Computational Issues

Finding Solution in Two Stages

Stage 1 solves L subproblems, f (α) = arg maxf∈F(α) P (f | d,O(α)) for
α = 1, . . . , L, resulting in L MAP solutions {f (1), . . ., f (L)}. Then, a re-
duced configuration space is constructed from the L solutions. In stage 2, the
solution of (4.28) w.r.t. all the L objects is found in the reduced space.
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Stage 1 matches the scene to each of the L objects individually (which
can be done in parallel for all model objects). Let P (f | d,O(α)) ∝ e−E(α)(f)

be the posterior distribution of f for matching the scene to object α

(1 ≤ α ≤ L). The MAP-MRF solution for this is f (α) = {f (α)
1 , . . . , f

(α)
m } =

arg minf∈F(α) E(α)(f) where f
(α)
i denotes the corresponding model feature in

object α. The configuration space F
(α) for object α consists of only #F

(α) =
(1 + M (α))m elements. For the L objects, the total size is

∑L
1 (1 + M (α))m,

much smaller than #F
(all) which is (1 +

∑L
α=1 M (α))m.

Two things are told in f (α): First, it separates image features belonging to
object α from the other image features in the following way: If image feature
i belongs to object α, then f

(α)
i �= 0 (a nonNULL label); otherwise, f

(α)
i = 0.

Second, if f
(α)
i �= 0, f

(α)
i is the model feature to which image feature i is

matched.
f (α) is optimal w.r.t. model object α but not to another one, so incon-

sistencies may exist among the L MAP solutions. A feature i ∈ S in the
scene may have been matched to more than one model feature belonging to
different objects; that is, there may exist more than one α ∈ {1, . . . , L} for
which f

(α)
i �= 0. For example, in Fig. 4.13, model instances found by f (2),

f (3), and f (7) compete for a common part of the scene, which is mostly due
to the common structures, such as the round extrusions and intrusions, of the
matched objects. (Figure 4.13 also shows that a MAP solution allows mul-
tiple instances of a model object: e.g., f (7) contains two instances of model
object 7)

Stage 2 solves the original MAP problem of (4.28) w.r.t. all the L ob-
jects in a reduced solution space constructed from the stage 1 solutions
{f (1), . . ., f (L)} (see the next subsection for the construction of the reduced
space). This also resolves possible inconsistencies among the L MAP solutions
because only one label fi is assigned to i in the overall solution f . Figure 4.14
shows the overall optimal result, which is the output of stage 2, for the MAP
recognition of the scene w.r.t. all the models. It is consistent by itself.

Reduced Solution Space

Consider an illustration in Table 4.1, where a scene with m = 12 features
is matched to L = 5 model objects, resulting in five MAP solutions f (α)

(α = 1, . . . , 5). Let S ′ ⊂ S be the set of sites that according to the stage 1
solution have been matched to more than one nonNULL label, S ′ = {i ∈
S | f

(α)
i �= 0 for more than one α}. For example, S ′ = {8, 9, 10, 11} for the

f (α)’s in Table 4.1. We can derive the reduced set of admissible labels for i,
denoted by L(all)

i , from the f (α)’s as follows.

• For i ∈ S ′, L(all)
i consists of all the nonNULL labels assigned to i

by the f (α)’s, plus the NULL label; that is, L(all)
i = 0 ∪ {f (α)

i �=
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f (2) f (3) f (7)

Figure 4.13: f (2), f (3), and f (7) compete for a common part of the scene.

Figure 4.14: The overall matching and recognition result.

0 | α = 1, . . . , L}. For the case in Table 4.1, for example, L(all)
8 =

{0, 10(2), 1(4), 7(5)}, L(all)
9 = {0, 9(2), 6(5)}, L(all)

10 = {0, 7(2), 3(3), 5(5)},
and L(all)

9 = {0, 4(3), 4(5)}.

• For i �∈ S ′, L(all)
i consists in a unique label; e.g., L(all)

6 = {3(4)}, and
L(all)

3 = {0}.

Object α contributes one or no label to L(all)
i , as opposed to M (α) labels

before the reduction. For i ∈ S ′, the size of L(all)
i is at most L + 1; for
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Table 4.1: Matching and recognition of an image containing m = 12 features
to L = 5 objects.

i = 1 2 3 4 5 6 7 8 9 10 11 12
f (1) 0 0 0 0 0 0 0 0 0 0 0 0
f (2) 0 0 0 0 0 0 0 10(2) 9(2) 7(2) 0 0
f (3) 0 0 0 0 0 0 0 0 0 3(3) 4(3) 0
f (4) 0 0 0 5(4) 4(4) 3(4) 2(4) 1(4) 0 0 0 0
f (5) 0 0 0 0 0 0 0 7(5) 6(5) 5(5) 4(5) 3(5)

f∗ 0 0 0 5(4) 4(4) 3(4) 2(4) 7(5) 6(5) 5(5) 4(5) 3(5)

i �∈ S ′, the size of L(all)
i is one, whereas before the reduction, the size was

1 +
∑L

α=1 M (α) for every i.
The reduced space is constructed as F

(all)
reduced = L(all)

1 ×L(all)
2 ×· · ·×L(all)

m ,
where × is the Cartesian product of sets. Its size is much reduced. For the
case in Table 4.1, the previous size of the raw solution space #F

(all) =
(
∑5

α=1 M (α) + 1)12 configurations (e.g., 31384283770 for M (α) = 10) is re-
duced to 4 × 3 × 4 × 3 = 144. It is so small that an exhaustive search is
affordable.

Stage 2 performs the target minimization in F
(all)
reduced. In an iterative search

algorithm, only those labels on the sites i ∈ S ′ are subject to changes, whereas
those not in S ′ are fixed. This is equivalent to maximizing the conditional pos-
terior f∗

S′ = arg max
fS′∈F

(all)
S′

P (fS′ | d, fS−S′ ,O(all)), where fS′ = {fi | i ∈
S ′} is the set of labels to be updated, fS−S′ = {fi | i ∈ S − S ′} is the set of
labels that are fixed during the maximization, and F

(all)
S′ =

∏

i∈S′ L(all)
i .

A crucial question for the validity of the two-stage approach is whether
the solution of (4.28) is contained in the reduced solution space F

(all)
reduced.

The necessary and sufficient condition is that f (α) contains correct matches
for object α (it is also allowed to contain spurious matches). Now that the
global solution can be found in F

(all)
reduced (e.g., by an exhaustive search), this

means that the two-stage strategy can find the global solution of (4.28) if L(α)
i

derived from f (α) contains the correct matching components for the original
problem.

The optimization in MAP matching and recognition is combinatorial.
While an optimum is sought in a global sense, many optimization algorithms
are based on local optimization. The Hummel-Zucker relaxation labeling al-
gorithm (Hummel and Zucker 1983) is preferable in terms of the minimized
energy value and computational costs and is used in the implementation. It
converges after dozens of iterations. The computational time is dominated



4.4. Pose Computation 121

by relaxation labeling in the first stage and is roughly the complexity of the
whole system.

4.4 Pose Computation

Pose computation aims to estimate the transformation needed to map an
object model from the model coordinate system into the sensory data (Ay-
ache and Faugeras 1986; Faugeras and Hebert 1986; Bolles and Horaud 1986;
Stockman 1987; Haralick et al. 1989; Grimson 1990; Umeyama 1991). In this
section, we derive two MRF models for pose estimation. The first is a model
for pose clustering from corresponding point data containing multiple poses
and outliers. The second model attempts to solve 3D matching and pose
simultaneously from a 2D image without using view invariants.

4.4.1 Pose Clustering and Estimation

The problem of pose clustering is stated as follows. Let a set of corresponding
points be given as the data, d = {(pi, Pi) | i ∈ S}, where pi’s are the model
features, Pi are the scene features4 and S = {1, . . . ,m} indexes the set of
the matched pairs. Let fi be the geometric transformation from pi to Pi, and
consider the set f = {f1, . . . , fm} as a configuration of the “pose field”. In
the case of noiseless, perfect correspondences, the following m equations, each
transforming a model feature to a scene feature, should hold simultaneously:

Pi = fi(pi) i ∈ S (4.39)

We want to find the optimal pose configuration in the MAP sense; i.e., f∗ =
arg minf U(f | d).

Assume that each fi is confined to a certain class L of pose transforma-
tions such that the admissible pose space is F = Lm. This imposes constraints
on the parameters governing fi. The number of transformation parameters
(degree of freedom) needed depends on the class of transformation and the
representation adopted for the pose transformation. In the case of the 3D–3D
Euclidean transformation, for example, it can consists of an orthogonal rota-
tion Oi followed by a translation Ti (i.e., fi = (Oi, Ti)); the relation between
the corresponding points is Pi = fi(pi) = Oipi +Ti. The simple matrix repre-
sentation needs 12 parameters: nine elements in the rotation matrix Oi plus
three elements in the translation vector Ti. The rotation angle representation
needs six parameters: three for the three rotation angles and three for the
translation. Quaternions provide still another choice. A single pair (pi, Pi)
alone is usually insufficient to determine a pose transformation fi; more are
needed for the pose to be fully determined.

4Note that, in this section, the uppercase notations are for models and the lowercase
notations for the scene.
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If all the pairs in the data, d, are inliers and are due to a single transfor-
mation, then all fi, i ∈ S, which are points in the pose space, must be close
to each other; and the errors ‖Pi − fi(pi)‖, where ‖ · ‖ is the Euclidean dis-
tance, must all be small. Complications increase when there are multiple pose
clusters and outlier pairs. When there are multiple poses, fi’s should form
distinct clusters. In this case, the set f is divided into subsets, each giving a
consistent pose transformation from a partition of {pi} to a partition of {Pi}.
Figure 4.15 illustrates a case in which there are two pose clusters and some
outliers. Outlier pairs, if contained in the data, should be excluded from the
pose estimation because they can cause large errors. Multiple pose identifica-
tion with outlier detection has a close affinity to the prototypical problem of
image restoration involving discontinuities (Geman and Geman 1984) and to
that of matching overlapping objects using data containing spurious features
(Li 1994a).

pose value

1 2 3 4 5 6 7 8 9 10 11 i

Figure 4.15: Pose clusters in one-dimensional parameter space. Poses f1, f2,
f4, and f9, due to pairs 1, 2, 4, and 9, agree to one transformation and poses
f3, f5, f7, f8, and f11 agree to another. Poses f6 and f10 form isolated points
so that pair 6 and pair 10 are outliers.

Now we derive the MAP-MRF formulation. The neighborhood system is
defined by

Ni = {i′ ∈ S | [dist(pi, pi′)]2 ≤ r, i′ �= i} (4.40)

where dist(A,B) is some suitably defined measure of distance between model
features and the scope r may be reasonably related to the size of the largest
model object. We consider cliques of up to order two, and so the clique set
C = C1 ∪ C2, where C1 = {{i} | i ∈ S} is the set of single-site (first-order)
cliques and C2 = {{i, i′} | i′ ∈ Ni, i ∈ S} the pair-site (second-order) cliques.
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Under a single pose transformation, nearby model features are likely to
appear together in the scene, whereas model features distantly apart tend to
be less likely. This is the coherence of spatial features. We characterize this
using the Markovianity condition p(fi | fS−{i}) = P (fi | fNi

). The positivity
condition P (f) > 0 also holds for all f ∈ F, where F is the set of admissible
transformations.

The MRF configuration f follows a Gibbs distribution. The two-site po-
tentials determine interactions between the individual fi’s. They may be
defined as

V2(fi, fi′) = g(‖fi − fi′‖) (4.41)

where ‖ · ‖ is a norm in the pose space and g(·) is some function. To be able
to separate different pose clusters, the function g(·) should stop increasing as
‖fi − fi′‖ becomes very large. A choice is

gα,T (η) = min{η2, α} (4.42)

where α > 0 is a threshold parameter; this is the same as that used in the line
process model for image restoration with discontinuities (Geman and Geman
1984; Marroquin et al. 1987; Blake and Zisserman 1987). It may be any APF
defined in (5.28). Its value reflects the cost associated with the pair of pose
labels fi and fi′ and will be large when fi and fi′ belong to different clusters.
But it cannot be arbitrarily large since a large value such as might be given
by a quadratic g tends to force the fi and f ′

i to stay in one cluster as the
result of energy minimization, even when they should not. Using an APF
imposes piecewise smoothness.

The single-site potentials V1(fi) may be used to force fi to stay in
the admissible set L if such a force is needed. For example, assume fi =
(Oi, Ti) is a 2D-2D Euclidean transformation. Then, the rotation matrix
Oi = [oi,r,s | r, s = 1, 2] must be orthogonal. The unary potential for the
orthogonality constraint can be expressed by (oi,1,1oi,2,1 + oi,1,2oi,2,2)2 +
(oi,1,1oi,1,2 + oi,2,1oi,2,2)2. It has the value of zero only when Oi is orthog-
onal. If no scale change is allowed, then the scaling factor should be exactly
one, and an additional term [det(Oi) − 1]2 can be added, where det(Oi) is
the determinant. Adding these two gives the single-site potential as

V1(fi) = a
[

(oi,1,1oi,2,1 + oi,1,2oi,2,2)2 + (oi,1,1oi,1,2 + oi,2,1oi,2,2)2
]

+b[det(Oi) − 1]2 (4.43)

where a and b are the weighting factors. In this case, V1 imposes the orthogo-
nality. It is also possible to define V1(fi) for other classes of transformations.
Summing all prior clique potentials yields the following prior energy

U(f) =
∑

i∈S
V1(fi) +

∑

i∈S

∑

i′∈Ni

V2(fi, fi′) (4.44)

which defines the prior distribution P (f).
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The likelihood function is derived below. Assume that the features are
point locations and that they are subject to the additive noise model, Pi =
fi(pi) + ei, where ei ∼ N(0, σ2) is a vector of i.i.d. Gaussian noise. Then the
distribution of the data d conditional on the configuration f is

P (d | f) ∝ e−U(d | f) (4.45)

where the likelihood energy is

U(d | f) =
∑

i∈S
‖fi(pi) − Pi‖2/[2σ2] (4.46)

The location fi(pi) is the conditional “mean” of the random variable Pi. The
quantity fi(pi) − Pi reflects the error between the location fi(pi) predicted
by fi and the actual location Pi.

After that, the posterior energy follows immediately as U(f | d) = U(f)+
U(d | f). The optimal solution is f∗ = arg minf U(f | d). As the result of
energy minimization, inlier pairs undergoing the same pose transformation
will form a cluster, whereas outlier pairs will form isolated points in the pose
space, as illustrated in Fig. 4.15.

4.4.2 Simultaneous Matching and Pose Estimation

In the previous pose estimation formulation, a set of matched pairs is assumed
to be available. Here we assume the situation in which the matching has not
been done and pose estimation has to be performed during the matching.
Pose estimation during matching is practiced when invariants are unavail-
able or difficult to compute; e.g., because the class of transformations is not
linear or involves projections. In the following, an MRF model for simulta-
neous 3D-from-2D matching and pose estimation is derived without using
view invariants. Matching and pose estimation are jointly sought as in (Wells
1991). The formulation is an extension of that given in Section 4.2.

Let S = {1, . . . , m} index a set of m points on a 3D model object, {pi | i ∈
S}. Let L = {1, . . . , M} be the label set indexing a set of M scene points in
2D, {PI | I ∈ L}, and L+ = {0}

⋃

L be the augmented set with 0 representing
the NULL label. Let f = {f1, . . . , fm}, fi ∈ L+, denote the matching from
the {pi} to {PI}

⋃

NULL. When i is assigned the virtual point 0, fi = 0, it
means that there is no corresponding point found in the physically existing
point set L. Let T be the projective pose transformation from the 3D model
points pi to the matched 2D image points Pfi

(fi �= 0). We have Pfi
= T (pi),

for all i for which fi �= 0, under an exact pose.
Now we derive the MAP-MRF formulation. The neighborhood system is

defined by
Ni = {i′ ∈ S| ‖pi − pi′‖2 ≤ r, i′ �= i} (4.47)

The single-site potential is an extension of (4.11) as
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V1(fi, T ) =
{

v10 if fi = 0
v(T (pi), Pfi

) otherwise (4.48)

where v10 is a constant. The function v(T (pi), Pfi
) encodes the prior knowl-

edge about T . It may include prior terms, such as V1 in the previous sub-
section for the admissibility of pose transformations. If the p.d.f. of the pose
is known (e.g., to be a normal distribution centered at a known mean pose,
which is assumed in (Wells 1991)), then v(T (pi), Pfi

) is a multivariate Gaus-
sian function. The pair-site potential is defined as in (4.12)

V2(fi, fi′ , T ) =
{

v20 if fi = 0 or fi′ = 0
0 otherwise (4.49)

where v20 is a constant.
The likelihood function characterizes the distribution of the errors and

relates to the observation model and the noise in it. Given fi �= 0, the model
point pi = (xi, yi, zi) is projected to a point T (pi)

�
= P̂fi

= (X̂i, Ŷi) by
the projective transformation T . In the inexact situation, P̂fi

�= Pfi
, where

Pfi
= (Xi, Yi)

�
= d1(i) is the corresponding image point actually observed.

Assume the additive noise model

Pfi
= T (pi) + ei = P̂fi

+ ei (4.50)

where ei ∼ N(0, σ2) is a vector of i.i.d. Gaussian noise. Then the likelihood
function is

p(d1(i) | fi, T ) =
(

1√
2πσ2

)2

e−V1(d1(i) | fi,T ) (4.51)

where
V1(d1(i) | fi, T ) = [(Xi − X̂i)2 + (Yi − Ŷi)2]/[2σ2] (4.52)

is the unary likelihood potential. The joint likelihood is then p(d1 | f, T ) =
∏

i p(d1(i) | fi, T ), where d1 denotes the set of unary properties.
We also make use of the distances as an additional binary constraint. The

distance, ‖pi − pi′‖, between the two model points in 3D is projected to the
distance

d2(i, i′) = ‖P̂fi
− P̂fi′‖ =

√

(Xi − Xi′)2 + (Yi − Yi′)2 (4.53)

in 2D. Its p.d.f. can be derived, based on the distribution of the projected
points given in (4.50), in the following way. Let X = (Xi, Yi,Xi′ , Yi′). These
random variables are assumed independent, so their joint conditional p.d.f. is

p(Xi, Yi,Xi′ , Yi′ |fi, fi′ , T ) =
(

1√
2πσ2

)4

e−[(Xi−X̂i)
2+(Yi−Ŷi)

2+(Xi′−X̂i′ )
2+(Yi′−Ŷi′ )

2]/[2σ2]

(4.54)
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Introduce new random variables, Z(X) = (Z1, Z2, Z3, Z4), as

Z1 =
√

(Xi − Xi′)2 + (Yi − Yi′)2
Z2 = Yi

Z3 = Xi′

Z4 = Yi′

(4.55)

each of which is a function of the X variables. Note that we are deriving the
p.d.f. of Z1. The inverse of Z(X), denoted by X = X(Z), is determined by

Xi =
√

Z2
1 − (Z2 − Z4)2 + Z3

Yi = Z2

Xi′ = Z3

Yi′ = Z4

(4.56)

The Jacobian of the inverse is defined to be the determinant

J = det [∇Z(X)] =
Z1

√

Z2
1 − (Z2 − Z4)2

(4.57)

which is a function of the Z variables. The joint conditional p.d.f. pZ(Z) for
Z can be derived from the joint p.d.f. (4.54) using the relation (Grimmett
1982)

pZ(Z | fi, fi′ , T ) = pX(X(Z) | fi, fi′ , T ) × |J | (4.58)

The conditional distribution of Z1 = d2(i, i′) is then the conditional marginal

p(d2(i, i′) | fi, fi′ , T ) = pZ1(Z1 | fi, fi′ , T ) = (4.59)
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
pZ(Z1, Z2, Z3, Z4 | fi, fi′ , T ) dZ2 dZ3 dZ4

which is a function of Xi, Yi,Xi′ , Yi′ . This gives the binary likelihood potential
V (d2(i, i′) | fi, fi′ , T ). The joint p.d.f. of the set of binary features, d2, is
approximated by the “pseudo-likelihood”

p(d2 | f, T ) =
∏

i∈S

∏

i′∈Ni

p(d2(i, i′) | fi, fi′ , T ) (4.60)

The joint p.d.f. of d = {d1, d2} is approximated by

p(d | f, T ) = p(d1 | f, T ) p(d2 | f, T ) (4.61)

Now the posterior energy can be obtained as

U(f, T | d) =
∑

i∈S V1(fi, T ) +
∑

i∈S
∑

i′∈Ni
V2(fi, fi′ , T )+

∑

i∈S:fi �=0 V1(d1(i) | fi, T )+
∑

i∈S:fi �=0

∑

i′∈S:fi′ �=0 V2(d2(i, i′) | fi, fi′ , T )
(4.62)
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The optimal solution is (f∗, T ∗) = arg min(f,T ) U(f, T | d). The nonNULL

labels in f∗ represents the matching from the model object considered to the
scene and T ∗ determines the pose transformation therein. The model points
that are assigned the NULL label are either spurious or due to other model
objects. Another round of matching-pose operations may be formed on these
remaining points in terms of another model object.

4.4.3 Discussion

Minimizing the energies derived in this section is difficult. The dimensionality
of the search space is high. As a guide to the search, the energies are inefficient
unless some strong prior constraints are available, such as the normal prior
distribution of poses assumed in (Wells 1991). However, the derived models
may be useful for verifying the matching and pose estimation results. As-
sume that pose candidates are found by using techniques such as the Hough
transform or geometric indexing. The energies may be used as global cost
measures for the matching and pose.

4.5 Face Detection and Recognition

Face detection finds the face areas (usually rectangles) in an image, giving the
locations and sizes of the faces detected. Consider a subwindow (data d) of an
image at each location in the image plane and each scale. The basic detection
problem is to classify the subwindow as face or nonface. This dichotomy could
be done based on computing the ratio of likelihood densities of face and
nonface followed by comparing the ratio with a confidence threshold (Dass
et al. 2002).

Let S be the set of m pixel locations in the subwindow to be classified
and let the label set L consist of admissible pixel intensities. Dass, Jain, and
Lu (2002) proposed the following auto-model to model the likelihood

p(d | f) =
exp
{∑

i αifi +
∑

i

∑

i′∈Ni
βi,i′fifi′

}

∑

f1

∑

f2
· · ·
∑

fN
exp
{∑

i αifi +
∑

i

∑

i′∈Ni
βi,i′fifi′

} (4.63)

where αi and βi,i′ are the auto-model parameters. For computational tract-
ability, the pseudo-likelihood (see Section 7.1.2) approximation is used instead
of (4.63)

PL =
m
∏

i=1

exp
{

αifi +
∑

i′∈Ni
βi,i′fifi′

}

∑

fi
exp
{

αifi +
∑

i′∈Ni
βi,i′fifi′

} (4.64)

Two such auto-models could be used. The first assumes homogeneous
correlations for all the sites. This is described by two pairwise parameters:
βi,i′ = βh when i′ is a horizontal neighbor of i and βi,i′ = βv when i′ is a
vertical neighbor with constants βh and βv.
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The second model assumes inhomogeneous parameters βi,i′ across sites
i but isometric for different directions; that is, βi,i′ = βi is dependent on i
only. Thus, the pseudo-likelihood is

PL =
m
∏

i=1

exp
{

αifi + βi

∑

i′∈N i fifi′
}

∑

fi
exp
{

αifi + βi

∑

i′∈N i fifi′
} (4.65)

where m pairwise parameters are needed.
The parameters in the PL could be estimated using the maximum pseudo-

likelihood (MPL) on a training set. The detection decision of classifying a
subwindow as face or nonface is based on the pseudo-likelihoods of faces and
nonfaces. Hence, two sets of parameters need to be estimated, one from a
training set of faces and the other from a training set of nonface subwindows
(Dass et al. 2002).

In the detection stage, a subwindow d is classified into a face or nonface
based on the log pseudo-likelihood ratio (LPR)

LPR = log
PLface

PLnonface
(4.66)

The LPR is compared with a confidence value, and thereby a decision is
made.

Works on MRF modeling for face recognition in the MAP-MRF frame-
work have been reported in several papers, e.g., (Huang et al. 2004; Park
et al. 2005). In (Huang et al. 2004), a face image is divided into m blocks
represented by sites d = {d1, . . . , dm}. The label set L = {1, . . . , M} corre-
sponds to the M ID’s. Assuming added Gaussian noise, the data term p(d | f)
is a Gaussian function. A pairwise “smoothness” term is imposed on pairs
of labels as P (fi, fi′) = δ(fi, fi′). In (Park et al. 2005), straight lines, corre-
sponding to sites, are extracted from a face image. By attaching properties
and binary relations to the straight lines, a face is then represented as an
ARG. A partial matching is used to match two ARGs and select the best
match.




