
Chapter 2

Mathematical MRF
Models

This chapter introduces foundations of MRF theory and describes important
mathematical MRF models for modeling image properties. The MRF models
will be used in the subsequent chapters to derive MAP-MRF image analysis
models and for MRF parameter estimation.

2.1 Markov Random Fields
and Gibbs Distributions

Markov random field theory is a branch of probability theory for analyzing
the spatial or contextual dependencies of physical phenomena. It is used in
visual labeling to establish probabilistic distributions of interacting labels.
This section introduces notations and results related to MRF’s.

2.1.1 Neighborhood System and Cliques

The sites in S are related to one another via a neighborhood system (Sec-
tion 2.12). A neighborhood system for S is defined as

N = {Ni | ∀i ∈ S} (2.1)

where Ni is the set of sites neighboring i. The neighboring relationship has
the following properties:

(1) A site is not neighboring to itself: i �∈ Ni.

(2) The neighboring relationship is mutual: i ∈ Ni′ ⇐⇒ i′ ∈ Ni.
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Figure 2.1: Neighborhood and cliques on a lattice of regular sites.

For a regular lattice S, the set of neighbors of i is defined as the set of sites
within a radius of

√
r from i

Ni = {i′ ∈ S | [dist(pixeli′ ,pixeli)]
2 ≤ r, i′ �= i} (2.2)

where dist(A,B) denotes the Euclidean distance between A and B, and r
takes an integer value. Note that sites at or near the boundaries have fewer
neighbors.

In the first-order neighborhood system, also called the 4-neighborhood
system, every (interior) site has four neighbors, as shown in Fig. 2.1(a)
where x denotes the site considered and zeros its neighbors. In the second-
order neighborhood system, also called the 8-neighborhood system, there are
eight neighbors for every (interior) site, as shown in Fig. 2.1(b). The numbers
n = 1, . . . , 5 shown in Fig. 2.1(c) indicate the outermost neighboring sites in
the nth-order neighborhood system. The shape of a neighbor set may be
described as the hull enclosing all the sites in the set.

When the ordering of the elements in S is specified, the neighbor set
can be determined more explicitly. For example, when S = {1, . . . , m} is
an ordered set of sites and its elements index the pixels of a 1D image, an
interior site i ∈ {2, . . . , m− 1} has two nearest neighbors, Ni = {i− 1, i+1},
and a site at the boundaries (the two ends) has one neighbor each, N1 =
{2} and Nm = {m − 1}. When the sites in a regular rectangular lattice
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Figure 2.2: Neighborhood and cliques on a set of irregular sites.

S = {(i, j) | 1 ≤ i, j ≤ n} correspond to the pixels of an n × n image in
the 2D plane, an internal site (i, j) has four nearest neighbors as Ni,j =
{(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}, a site at a boundary has three, and
a site at the corners has two.

For an irregular S, the neighbor set Ni of i is defined in the same way as
(2.2) to comprise nearby sites within the radius of

√
r

Ni = {i′ ∈ S | [dist(featurei′ , featurei)]2 ≤ r, i′ �= i} (2.3)

The dist(A,B) function needs to be defined appropriately for non-point fea-
tures. Alternatively, the neighborhood may be defined by the Delaunay tri-
angulation,1 or its dual, the Voronoi polygon, of the sites (Besag 1975). In
general, the neighbor sets Ni for an irregular S have varying shapes and
sizes. Irregular sites and their neighborhoods are illustrated in Fig. 2.2(a).
The neighborhood areas for sites i and j are marked by the dotted circles.
The sizes of the two neighbor sets are #Ni = 3 and #Nj = 2.

The pair (S,N )
�
= G constitutes a graph in the usual sense; S contains

the nodes and N determines the links between the nodes according to the
neighboring relationship. A clique c for (S,N ) is defined as a subset of sites
in S. It consists of either a single-site c = {i}, a pair of neighboring sites c =
{i, i′}, a triple of neighboring sites c = {i, i′, i′′}, and so on. The collections
of single-site, pair-site, and triple-site cliques will be denoted by C1, C2, and
C3, respectively, where

C1 = {i | i ∈ S} (2.4)

1Algorithms for constructing a Delaunay triangulation in k ≥ 2 dimensional space can
be found in (Bowyer 1981; Watson 1981).



24 2. Mathematical MRF Models

C2 = {{i, i′} | i′ ∈ Ni, i ∈ S} (2.5)

and

C3 = {{i, i′, i′′} | i, i′, i′′ ∈ S are neighbors to one another} (2.6)

Note that the sites in a clique are ordered and {i, i′} is not the same clique
as {i′, i}, and so on. The collection of all cliques for (S,N ) is

C = C1 ∪ C2 ∪ C3 · · · (2.7)

where “· · · ” denotes possible sets of larger cliques.
The type of a clique for (S,N ) of a regular lattice is determined by its

size, shape, and orientation. Figures 2.1(d)–(h) show clique types for the
first- and second-order neighborhood systems for a lattice. The single-site
and horizontal and vertical pair-site cliques in (d) and (e) are all those for
the first-order neighborhood system (a). The clique types for the second-
order neighborhood system (b) include not only those in (d) and (e) but
also diagonal pair-site cliques (f) and triple-site (g) and quadruple-site (h)
cliques. As the order of the neighborhood system increases, the number of
cliques grows rapidly and so do the computational expenses involved.

Cliques for irregular sites do not have fixed shapes like those for a regular
lattice. Therefore, their types are essentially depicted by the number of sites
involved. Consider the four sites f , i, m, and n within the circle in Fig. 2.2(a),
in which m and n are supposed to be neighbors to each other and so are n
and f . Then the single-site, pair-site, and triple-site cliques associated with
this set of sites are shown in Fig. 2.2(b). The set {m, i, f} does not form a
clique because f and m are not neighbors.

2.1.2 Markov Random Fields

Let F = {F1, . . . , Fm} be a family of random variables defined on the set
S in which each random variable Fi takes a value fi in L. The family F is
called a random field. We use the notation Fi = fi to denote the event that
Fi takes the value fi and the notation (F1 = f1, . . . , Fm = fm) to denote
the joint event. For simplicity, a joint event is abbreviated as F = f , where
f = {f1, . . . , fm} is a configuration of F corresponding to a realization of
the field. For a discrete label set L, the probability that random variable Fi

takes the value fi is denoted P (Fi = fi), abbreviated P (fi) unless there is a
need to elaborate the expressions, and the joint probability is denoted P (F =
f) = P (F1 = f1, . . . , Fm = fm) and abbreviated P (f). For a continuous L,
we have probability density functions (p.d.f.s) p(Fi = fi) and p(F = f).

F is said to be a Markov random field on S w.r.t. a neighborhood system
N if and only if the following two conditions are satisfied:

P (f) > 0, ∀f ∈ F (positivity) (2.8)
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P (fi | fS−{i}) = P (fi | fNi
) (Markovianity) (2.9)

where S − {i} is the set difference, fS−{i} denotes the set of labels at the
sites in S − {i}, and

fNi
= {fi′ | i′ ∈ Ni} (2.10)

stands for the set of labels at the sites neighboring i. The positivity is as-
sumed for some technical reasons and can usually be satisfied in practice. For
example, when the positivity condition is satisfied, the joint probability P (f)
of any random field is uniquely determined by its local conditional probabil-
ities (Besag 1974). The Markovianity depicts the local characteristics of F .
In MRF’s, only neighboring labels have direct interactions with each other.
If we choose the largest neighborhood in which the neighbors of any sites
include all other sites, then any F is an MRF w.r.t. such a neighborhood
system.

An MRF can have other properties, such as homogeneity and isotropy. It
is said to be homogeneous if P (fi | fNi

) is independent of the relative location
of the site i in S. So, for a homogeneous MRF, if fi = fj and fNi

= fNj
, there

will be P (fi|fNi
) = P (fj |fNj

) even if i �= j. The isotropy will be illustrated
in the next subsection with clique potentials.

In modeling some problems, we may need to use several coupled MRF’s;
each of the MRF’s is defined on one set of sites, and the sites due to different
MRF’s are spatially interwoven. For example, in the related tasks of image
restoration and edge detection, two MRF’s, one for pixel values ({fi}) and
the other for edge values ({li,i′}), can be defined on the image lattice and its
dual lattice, respectively. They are coupled to each other, for example, via
conditional probability P (fi | fi′ , li,i′) (see Section 3.3.1).

The concept of MRF’s is a generalization of that of Markov processes
(MPs), which are widely used in sequence analysis. An MP is defined on a
domain of time rather than space. It is a sequence (chain) of random variables
. . . , F1, . . . , Fm, . . . defined on the time indices {. . . , 1, . . . ,m, . . .}. An nth-
order unilateral MP satisfies

P (fi | . . . , fi−2, fi−1) = P (fi | fi−1, . . . , fi−n) (2.11)

A bilateral or noncausal MP depends not only on the past but also on the
future. An nth-order bilateral MP satisfies

P (fi | . . . , fi−2, fi−1, fi+1, fi+2, . . .) = P (fi | fi+n, . . . , fi+1, fi−1, . . . , fi−n)
(2.12)

It is generalized into MRF’s when the time indices are considered as spatial
indices.

There are two approaches for specifying an MRF, that in terms of the
conditional probabilities P (fi | fNi

) and that in terms of the joint proba-
bility P (f). Besag (1974) argued for the joint probability approach in view
of the disadvantages of the conditional probability approach. First, no obvi-
ous method is available for deducing the joint probability from the associated
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conditional probabilities. Second, the conditional probabilities themselves are
subject to some non obvious and highly restrictive consistency conditions.
Third, the natural specification of an equilibrium of a statistical process is in
terms of the joint probability rather than the conditional distribution of the
variables. Fortunately, a theoretical result about the equivalence between
Markov random fields and Gibbs distributions (Hammersley and Clifford
1971; Besag 1974) provides a mathematically tractable means of specifying
the joint probability of an MRF.

2.1.3 Gibbs Random Fields

A set of random variables F is said to be a Gibbs random field (GRF) on S
w.r.t. N if and only if its configurations obey a Gibbs distribution. A Gibbs
distribution takes the form

P (f) = Z−1 × e−
1
T U(f) (2.13)

where
Z =

∑

f∈F

e−
1
T U(f) (2.14)

is a normalizing constant called the partition function, T is a constant called
the temperature, which shall be assumed to be 1 unless otherwise stated, and
U(f) is the energy function. The energy

U(f) =
∑

c∈C
Vc(f) (2.15)

is a sum of clique potentials Vc(f) over all possible cliques C. The value
of Vc(f) depends on the local configuration on the clique c. Obviously, the
Gaussian distribution is a special member of this Gibbs distribution family.

A GRF is said to be homogeneous if Vc(f) is independent of the relative
position of the clique c in S. It is said to be isotropic if Vc is independent of
the orientation of c. It is considerably simpler to specify a GRF distribution
that is homogeneous or isotropic than one without such properties. The ho-
mogeneity is assumed in most MRF vision models for mathematical and com-
putational convenience. The isotropy is a property of direction-independent
blob-like regions.

To calculate a Gibbs distribution, it is necessary to evaluate the partition
function Z, which is the sum over all possible configurations in F. Since there
are a combinatorial number of elements in F for a discrete L, as illustrated in
Section 1.1.2, the evaluation is prohibitive even for problems of moderate size.
Several approximation methods exist for solving this problem (see Chapter 8).

P (f) measures the probability of the occurrence of a particular configura-
tion, or “pattern”, f . The more probable configurations are those with lower
energies. The temperature T controls the sharpness of the distribution. When
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the temperature is high, all configurations tend to be equally distributed.
Near zero temperature, the distribution concentrates around the global en-
ergy minima. Given T and U(f), we can generate a class of “patterns” by
sampling the configuration space F according to P (f); see Section 3.4.1.

For discrete labeling problems, a clique potential Vc(f) can be specified
by a number of parameters. For example, letting fc = (fi, fi′ , fi′′) be the
local configuration on a triple clique c = {i, i′, i′′}, fc takes a finite number
of states and therefore Vc(f) takes a finite number of values. For continuous
labeling problems, fc can vary continuously. In this case, Vc(f) is a (possibly
piecewise) continuous function of fc.

Sometimes, it may be convenient to express the energy of a Gibbs distri-
bution as the sum of several terms, each ascribed to cliques of a certain size,
that is,

U(f) =
∑

{i}∈C1

V1(fi) +
∑

{i,i′}∈C2

V2(fi, fi′) +

∑

{i,i′,i′′}∈C3

V3(fi, fi′ , fi′′) + · · · (2.16)

The above implies a homogeneous Gibbs distribution because V1, V2, and
V3 are independent of the locations of i, i′ and i′′. For nonhomogeneous
Gibbs distributions, the clique functions should be written as V1(i, fi),
V2(i, i′, fi, fi′), and so on.

An important special case is when only cliques of size up to two are
considered. In this case, the energy can also be written as

U(f) =
∑

i∈S
V1(fi) +

∑

i∈S

∑

i′∈Ni

V2(fi, fi′) (2.17)

Note that in the second term on the right-hand side, {i, i′} and {i′, i} are two
distinct cliques in C2 because the sites in a clique are ordered. The conditional
probability can be written as

P (fi | fNi
) =

e−
[

V1(fi)+
∑

i′∈Ni
V2(fi,fi′ )

]

∑

fi∈L e−
[

V1(fi)+
∑

i′∈Ni
V2(fi,fi′ )

] (2.18)

By incorporating (2.17) into (2.13), we can write the joint probability as the
product

P (f) = Z−1
∏

i∈S
ri(fi)

∏

i∈S

∏

i′∈Ni

ri,i′(fi, fi′) (2.19)

where ri(fi) = e−
1
T V1(fi) and ri,i′(fi, fi′) = e−

1
T V2(fi,fi′ ).
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2.1.4 Markov-Gibbs Equivalence

An MRF is characterized by its local property (the Markovianity) whereas
a GRF is characterized by its global property (the Gibbs distribution). The
Hammersley-Clifford theorem (Hammersley and Clifford 1971) establishes the
equivalence of these two types of properties. The theorem states that F is an
MRF on S w.r.t. N if and only if F is a GRF on S w.r.t. N . Many proofs of
the theorem exist, e.g., in (Besag 1974), (Moussouris 1974) and (Kindermann
and Snell 1980).

A proof that a GRF is an MRF is given as follows. Let P (f) be a Gibbs
distribution on S w.r.t. the neighborhood system N . Consider the conditional
probability

P (fi | fS−{i}) =
P (fi, fS−{i})
P (fS−{i})

=
P (f)

∑

f ′
i∈L P (f ′)

(2.20)

where f ′ = {f1, . . . , fi−1, f
′
i , . . . , fm} is any configuration that agrees with f

at all sites except possibly i. Writing out P (f) = Z−1 × e−
∑

c∈C Vc(f) gives2

P (fi | fS−{i}) =
e−
∑

c∈C Vc(f)

∑

f ′
i
e−
∑

c∈C Vc(f ′)
(2.21)

Divide C into two sets A and B with A consisting of cliques containing i and
B cliques not containing i. Then (2.21) can be written as

P (fi | fS−{i}) =

[

e−
∑

c∈A Vc(f)
] [

e−
∑

c∈B Vc(f)
]

∑

f ′
i

{[

e−
∑

c∈A Vc(f ′)
] [

e−
∑

c∈B Vc(f ′)
]} (2.22)

Because Vc(f) = Vc(f ′) for any clique c that does not contain i, e−
∑

c∈B Vc(f)

cancels from both the numerator and denominator. Therefore, this probabil-
ity depends only on the potentials of the cliques containing i,

P (fi | fS−{i}) =
e−
∑

c∈A Vc(f)

∑

f ′
i
e−
∑

c∈A Vc(f ′)
(2.23)

that is, it depends on labels at i’s neighbors. This proves that a Gibbs random
field is a Markov random field. The proof that an MRF is a GRF is much
more involved; a result to be described in the next subsection, which is about
the uniqueness of the GRF representation (Griffeath 1976), provides such a
proof.

The practical value of the theorem is that it provides a simple way of
specifying the joint probability. One can specify the joint probability P (F =
f) by specifying the clique potential functions Vc(f) and choosing appropriate

2This also provides a formula for calculating the conditional probability P (fi | fNi
) =

P (fi | fS−{i}) from potential functions.
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potential functions for the desired system behavior. In this way, one encodes
the a priori knowledge or preference about interactions between labels.

How to choose the forms and parameters of the potential functions for
a proper encoding of constraints is a major topic in MRF modeling. The
forms of the potential functions determine the form of the Gibbs distribution.
When all the parameters involved in the potential functions are specified, the
Gibbs distribution is completely defined. Defining the functional forms is the
theme in Chapters 3 and4, while estimating parameters is the subject in
Chapters 7 and 8.

To calculate the joint probability of an MRF, which is a Gibbs distribu-
tion, it is necessary to evaluate the partition function (2.14). Because it is
the sum over a combinatorial number of configurations in F, the computation
is usually intractable. The explicit evaluation can be avoided in maximum-
probability-based MRF models when U(f) contains no unknown parameters,
as we will see subsequently. However, this is not true when the parameter es-
timation is also a part of the problem. In the latter case, the energy function
U(f) = U(f | θ) is also a function of parameters θ and so is the parti-
tion function Z = Z(θ). The evaluation of Z(θ) is required. To circumvent
the formidable difficulty therein, the joint probability is often approximated
in practice. Several approximate formulae will be introduced in Chapter 7,
where the problem of MRF parameter estimation is the subject.

2.1.5 Normalized and Canonical Forms

It is known that the choices of clique potential functions for a specific MRF
are not unique; there may exist many equivalent choices that specify the
same Gibbs distribution. However, there exists a unique normalized potential,
called the canonical potential, for every MRF (Griffeath 1976).

Let L be a countable label set. A clique potential function Vc(f) is said
to be normalized if Vc(f) = 0, whenever for some i ∈ c, fi takes a partic-
ular value in L. The particular value can be any element in L, e.g., 0 in
L = {0, 1, . . . ,M}. Griffeath (1976) established the mathematical relation-
ship between an MRF distribution P (f) and the unique canonical representa-
tion of clique potentials Vc in the corresponding Gibbs distribution (Griffeath
1976; Kindermann and Snell 1980). The result is described below.

Let F be a random field on a finite set S with local characteristics
P (fi | fS−{i}) = P (fi | fNi

). Then F is a Gibbs field with canonical po-
tential function defined by

Vc(f) =
{

0 c = φ
∑

b⊂c(−1)|c−b| ln P (f b) c �= φ
(2.24)

where φ denotes the empty set, |c − b| is the number of elements in the set
c − b, and

f b
i =

{

fi if i ∈ b
0 otherwise (2.25)
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is the configuration that agrees with f on set b but assigns the value 0 to all
sites outside of b. For nonempty c, the potential can also be obtained as

Vc(f) =
∑

b⊂c

(−1)|c−b| ln P (f b
i | f b

Ni
) (2.26)

where i is any element in b. Such a canonical potential function is unique
for the corresponding MRF. Using this result, the canonical Vc(f) can be
computed if P (f) is known.

However, in MRF modeling using Gibbs distributions, P (f) is defined
after Vc(f) is determined, and therefore it is difficult to compute the canon-
ical Vc(f) from P (f) directly. Nonetheless, there is an indirect way: Use a
noncanonical representation to derive P (f) and then canonicalize it using
Griffeath’s result to obtain the unique canonical representation.

The normalized potential functions appear to be immediately useful. For
instance, for the sake of economy, one would use the minimal number of
clique potentials or parameters to represent an MRF for a given neighborhood
system. The concept of normalized potential functions can be used to reduce
the number of nonzero clique parameters (see Chapter 7).

2.2 Auto-models

Contextual constraints on two labels are the lowest order constraints to con-
vey contextual information. They are widely used because of their simple
form and low computational cost. They are encoded in the Gibbs energy
as pair-site clique potentials. With clique potentials of up to two sites, the
energy takes the form

U(f) =
∑

i∈S
V1(fi) +

∑

i∈S

∑

i′∈Ni

V2(fi, fi′) (2.27)

where “
∑

i∈S” is equivalent to “
∑

{i}∈C1
” and “

∑

i∈S
∑

i′∈Ni
” equivalent

to “
∑

{i,i′}∈C2
”. Equation (2.27) is a special case of (2.16), which we call a

second-order energy because it involves up to pair-site cliques. It the most
frequently used form because it is the simplest in form but conveys contextual
information. A specific GRF or MRF can be specified by properly selecting
V1 and V2. Some important such GRF models will be described subsequently.
Derin and Kelly (1989) presented a systematic study and categorization of
Markov random processes and fields in terms of what they call strict-sense
Markov and wide-sense Markov properties.

When V1(fi) = fiGi(fi) and V2(fi, fi′) = βi,i′fifi′ , where Gi(·) are ar-
bitrary functions and βi,i′ are constants reflecting the pair-site interaction
between i and i′, the energy is

U(f) =
∑

{i}∈C1

fiGi(fi) +
∑

{i,i′}∈C2

βi,i′fifi′ (2.28)
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Such models are called auto-models (Besag 1974). The auto-models can be
further classified according to assumptions made about individual fi.

An auto-model is said to be an auto-logistic model if the fi’s take on values
in the discrete label set L = {0, 1} (or L = {−1,+1}). The corresponding
energy is of the form

U(f) =
∑

{i}∈C1

αifi +
∑

{i,i′}∈C2

βi,i′fifi′ (2.29)

where βi,i′ can be viewed as the interaction coefficients. When N is the
nearest neighborhood system on a lattice (the four nearest neighbors on a
2D lattice or the two nearest neighbors on a 1D lattice), the auto-logistic
model is reduced to the Ising model. The conditional probability for the
auto-logistic model with L = {0, 1} is

P (fi | fNi
) =

eαifi+
∑

i′∈Ni
βi,i′fifi′

∑

fi∈{0,1} eαifi+
∑

i′∈Ni
βi,i′fifi′

=
eαifi+

∑

i′∈Ni
βi,i′fifi′

1 + eαi+
∑

i′∈Ni
βi,i′fi′

(2.30)
When the distribution is homogeneous, we have αi = α and βi,i′ = β, re-
gardless of i and i′.

An auto-model is said to be an auto-binomial model if the fi’s take on val-
ues in {0, 1, . . . ,M−1} and every fi has a conditionally binomial distribution
of M trials and probability of success q

P (fi | fNi
) =
(

M − 1
fi

)

qfi(1 − q)M−1−fi (2.31)

where

q =
eαi+

∑

i′∈Ni
βi,i′fi′

1 + eαi+
∑

i′∈Ni
βi,i′fi′

(2.32)

The corresponding energy takes the form

U(f) = −
∑

{i}∈C1

ln
(

M − 1
fi

)

−
∑

{i}∈C1

αifi −
∑

{i,i′}∈C2

βi,i′fifi′ (2.33)

It reduces to the auto-logistic model when M = 1.
An auto-model is said to be an auto-normal model, also called a Gaus-

sian MRF (Chellappa 1985), if the label set L is the real line and the joint
distribution is multivariate normal. Its conditional p.d.f. is

p(fi | fNi
) =

1√
2πσ2

e−
1

2σ2 [fi−μi−
∑

i′∈Ni
βi,i′ (fi′−μi′ )]

2

(2.34)

It is the normal distribution with conditional mean

E(fi | fNi
) = μi −

∑

i′∈Ni

βi,i′(fi′ − μi′) (2.35)
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and conditional variance
var(fi | fNi

) = σ2 (2.36)

The joint probability is a Gibbs distribution

p(f) =

√

det(B)
√

(2πσ2)m
e

(f−μ)TB(f−μ)
2σ2 (2.37)

where f is viewed as a vector, μ is the m×1 vector of the conditional means,
and B = [bi,i′ ] is the m × m interaction matrix whose elements are unity
and the off-diagonal element at (i, i′) is −βi,i′ , i.e., bi,i′ = δi,i′ − βi,i′ with
βi,i = 0. Therefore, the single-site and pair-site clique potential functions for
the auto-normal model are

V1(fi) = (fi − μi)2/2σ2 (2.38)

and
V2(fi, fi′) = βi,i′(fi − μi)(fi′ − μi′)/2σ2 (2.39)

respectively. A field of independent Gaussian noise is a special MRF whose
Gibbs energy consists of only single-site clique potentials. Because all higher-
order clique potentials are zero, there is no contextual interaction in the
independent Gaussian noise. B is related to the covariance matrix Σ by B =
Σ−1. The necessary and sufficient condition for (2.37) to be a valid p.d.f. is
that B be symmetric and positive definite.

A related but different model is the simultaneous auto-regression (SAR)
model (Woods 1972) Unlike the auto-normal model, which is defined by the
m conditional p.d.f.s, this model is defined by a set of m equations

fi = μi +
∑

βi,i′(fi′ − μi′) + ei (2.40)

where ei are independent Gaussian, ei ∼ N(0, σ2). It also generates the class
of all multivariate normal distributions, but with joint p.d.f.s, as

p(f) =
det(B)
√

(2πσ2)m
e

(f−μ)TBTB(f−μ)
2σ2 (2.41)

where B is defined as before. Any SAR model is an auto-normal model with
the B matrix in (2.37) being B = B2+BT

2 −BT
2 B2, where B2 = Bautoregressive.

The reverse can also be done, though in a rather unnatural way, via Cholesky
decomposition (Ripley 1981). Therefore, both models can have their p.d.f.s
in the form of (2.37). However, for (2.41) to be a valid p.d.f. requires only
that Bautoregressive be nonsingular.

2.3 Multi-level Logistic Model

The auto-logistic model can be generalized to a multilevel logistic (MLL)
model (Elliott et al. 1984; Derin and Cole 1986; Derin and Elliott 1987),
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Figure 2.3: Clique types and associated potential parameters for the second-
order neighborhood system. Sites are shown as dots and neighboring rela-
tionships as joining lines.

also called a Strauss process (Strauss 1977) and generalized Ising model
(Geman and Geman 1984). There are M (> 2) discrete labels in the label
set L = {1, . . . , M}. In this type of model, a clique potential depends on the
type c (related to size, shape, and possibly orientation) of the clique and the

local configuration fc
�
= {fi | i ∈ c}. For cliques containing more than one

site (#c > 1), the MLL clique potentials are defined by

Vc(f) =
{

ζc if all sites on c have the same label
−ζc otherwise (2.42)

where ζc is the potential for type c cliques; for single-site cliques, they depend
on the label assigned to the site

Vc(f) = Vc(fi) = αI if fi = I ∈ Ld (2.43)

where αI is the potential for label value I. Figure 2.3 shows the clique types
and the associated parameters in the second-order (8-neighbor) neighborhood
system.

Assume that an MLL model is of second order as in (2.27), so that only
the α (for single-site cliques) and β (for pair-site cliques) parameters are
nonzero. The potential function for pairwise cliques is written as

V2(fi, fi′) =
{

βc if sites on clique {i, i′} = c ∈ C2 have the same label
−βc otherwise

(2.44)
where βc is the β parameter for type c cliques and C2 is set of pair-site cliques.
For the 4-neighborhood system, there are four types of pairwise cliques (see
Fig. 2.3), and so there can be four different βc. When the model is isotropic, all
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the four neighbors take the same value. Owing to its simplicity, the pairwise
MLL model (2.44) has been widely used for modeling regions and textures
(Elliott et al. 1984; Geman and Geman 1984; Derin and Cole 1986; Derin and
Elliott 1987; Murray and Buxton 1987; Lakshmanan and Derin 1989; Won
and Derin 1992).

When the MLL model is isotropic, it depicts blob-like regions. In this
case, the conditional probability can be expressed as (Strauss 1977)

P (fi = I | fNi
) =

e−αI−βni(I)

∑M
I=1 e−αI−βni(I)

(2.45)

where ni(I) are the number of sites in Ni that are labeled I. It reduces to
(2.30) when there are only two labels, 0 and 1. In contrast, an anisotropic
model tends to generate texture-like patterns. See the examples in Section 3.4.

A hierarchical two-level Gibbs model has been proposed to represent
both noise-contaminated and textured images (Derin and Cole 1986; Derin
and Elliott 1987). The higher-level Gibbs distribution uses an isotropic ran-
dom field (e.g., MLL) to characterize the blob-like region formation process.
A lower-level Gibbs distribution describes the filling-in in each region. The
filling-in may be independent noise or a type of texture, both of which can
be characterized by Gibbs distributions. This provides a convenient approach
for MAP-MRF modeling. In segmenting noisy and textured images (Derin
and Cole 1986; Derin and Elliott 1987; Lakshmanan and Derin 1989; Hu and
Fahmy 1987; Won and Derin 1992), for example, the higher-level model de-
termines the prior of f for the region process, while the lower-level Gibbs
model contributes to the conditional probability of the data given f . Note
that different levels of MRF’s in the hierarchy can have different neighbor-
hood systems.

2.4 The Smoothness Prior

A generic contextual constraint on this world is the smoothness. It assumes
that physical properties in a neighborhood of space or in an interval of time
present some coherence and generally do not change abruptly. For example,
the surface of a table is flat, a meadow presents a texture of grass, and a
temporal event does not change abruptly over a short period of time. Indeed,
we can always find regularities of a physical phenomenon w.r.t. certain prop-
erties. Since its early applications in vision (Grimson 1981; Horn and Schunck
1981; Ikeuchi and Horn 1981) aimed at imposing constraints (in addition to
those from the data) on the computation of image properties, the smoothness
prior has been one of the most popular prior assumptions in low-Level vision.
It has been developed into a general framework, called regularization (Poggio
et al. 85a; Bertero et al. 1988), for a variety of low-Level vision problems.

Smoothness constraints are often expressed as the prior probability or
equivalently an energy term U(f), measuring the extent to which the
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smoothness assumption is violated by f . There are two basic forms of such
smoothness terms corresponding to situations with discrete and continuous
labels, respectively.

Equations (2.42) and (2.44) of the MLL model with negative ζ and β
coefficients provide method for constructing smoothness terms for unordered,
discrete labels. Whenever all labels fc on a clique c take the same value,
which means the solution f is locally smooth on c, they incur a negative
clique potential (cost); otherwise, if they are not all the same, they incur a
positive potential. Such an MLL model tends to give a smooth solution that
prefers uniform labels.

For spatially (and also temporally in image sequence analysis) continuous
MRF’s, the smoothness prior often involves derivatives. This is the case with
the analytical regularization (to be introduced in Section 1.3.3). There, the
potential at a point is in the form of [f (n)(x)]2. The order n determines the
number of sites in the cliques involved; for example, [f ′(x)]2, where n = 1 cor-
responds to a pair-site smoothness potential. Different orders imply different
classes of smoothness.

Let us take continuous restoration or reconstruction of nontexture sur-
faces as an example. Let f = {f1, . . . , fm} be the sampling of an underlying
“surface” f(x) on x ∈ [a, b], where the surface is one-dimensional for simplic-
ity. The Gibbs distribution P (f), or equivalently the energy U(f), depends
on the type of surface f we expect to reconstruct. Assume that the surface
is flat a priori. A flat surface that has equation f(x) = a0 should have zero
first-order derivative, f ′(x) = 0. Therefore, we may choose the prior energy as

U(f) =
∫

[f ′(x)]2dx (2.46)

which is called a string. The energy takes the minimum value of zero only if f
is absolutely flat, or a positive value otherwise. Therefore, the surface which
minimizes (2.46) alone has a constant height (gray value for an image).

In the discrete case where the surface is sampled at discrete points
a ≤ xi ≤ b, i ∈ S, we use the first-order difference to approximate the
first derivative and use a summation to approximate the integral, so (2.46)
becomes

U(f) =
∑

i

[fi − fi−1]2 (2.47)

where fi = f(xi). Expressed as the sum of clique potentials, we have

U(f) =
∑

c∈C
Vc(f) =

∑

i∈S

∑

i′∈Ni

V2(fi, fi′) (2.48)

where C = {(1, 2), (2, 1), (2, 3), · · · , (m − 2,m − 1), (m,m − 1), (m − 1,m)}
consists of only pair-site cliques and

Vc(f) = V2(fi, fi′) =
1
2
(fi − fi′)2 (2.49)



36 2. Mathematical MRF Models

Its 2D equivalent is
∫ ∫

{[fx(x, y)]2 + [fy(x, y)]2}dxdy (2.50)

and is called a membrane.
Similarly, the prior energy U(f) can be designed for planar or quadratic

surfaces. A planar surface, f(x) = a0 +a1x, has zero second-order derivative,
f ′′(x) = 0. Therefore, one may choose

U(f) =
∫

[f ′′(x)]2dx (2.51)

which is called a rod. The surface that minimizes (2.51) alone has a con-
stant gradient. In the discrete case, we use the second-order difference to
approximate the second-order derivative, and (2.51) becomes

U(f) =
∑

i

[fi+1 − 2fi + fi−1]2 (2.52)

For a quadratic surface, f(x) = a0 +a1x+a2x
2, the third-order derivative

is zero, f ′′′(x) = 0, and the prior energy may be

U(f) =
∫

[f ′′′(x)]2dx (2.53)

The surface that minimizes (2.53) alone has a constant curvature. In the
discrete case, we use the third-order difference to approximate the second-
order derivative and (2.53) becomes

U(f) =
∑

i

[fi+1 − 3fi + 3fi−1 − fi−2]2 (2.54)

The above smoothness models can be extended to 2D. For example, the
2D equivalent of the rod, called a plate, comes in two varieties, the quadratic
variation

∫ ∫

{[fxx(x, y)]2 + 2[fxy(x, y)]2 + [fyy(x, y)]2}dxdy (2.55)

and the squared Laplacian
∫ ∫

{fxx(x, y) + fyy(x, y)}2dxdy (2.56)

The surface that minimizes one of the smoothness prior energies alone has
either a constant gray level, a constant gradient, or a constant curvature. This
is undesirable because constraints from other sources such as the data are not
used. Therefore, a smoothness term U(f) is usually utilized in conjunction
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with other energy terms. In regularization, an energy consists of a smoothness
term and a closeness term, and the minimal solution is a compromise between
the two constraints; refer to Section 1.3.3.

The encodings of the smoothness prior in terms of derivatives usually
lead to isotropic potential functions. This is due to the assumption that the
underlying surface is nontextured. Anisotropic priors have to be used for
texture patterns. This can be done, for example, by choosing (2.27) with
direction-dependent V2. This will be discussed in Section 3.4.

2.5 Hierarchical GRF Model

A hierarchical two-level Gibbs model has been proposed to represent both
noise-contaminated and textured images (Derin and Cole 1986; Derin and El-
liott 1987). The higher-level Gibbs distribution uses an isotropic random field
(e.g., MLL) to characterize the blob-like region’s formation process. A lower-
level Gibbs distribution describes the filling-in in each region. The filling-in
may be independent noise or a type of texture, both of which can be char-
acterized by Gibbs distributions. This provides a convenient approach for
MAP-MRF modeling. In segmenting noisy and textured images (Derin and
Cole 1986; Derin and Elliott 1987; Lakshmanan and Derin 1989; Hu and
Fahmy 1987; Won and Derin 1992), for example, the higher-level model de-
termines the prior of f for the region process, while the lower-level Gibbs
model contributes to the conditional probability of the data given f . Note
that different levels of MRF’s in the hierarchy can have different neighbor-
hood systems.

Various hierarchical Gibbs models result, according to what are chosen
for the regions and for the filling-ins. For example, each region may be filled
in by an auto-normal texture (Manjunath et al. 1990; Won and Derin 1992)
or an auto-binomial texture (Hu and Fahmy 1987); the MLL for the region
formation may be substituted by another appropriate MRF. The hierarchical
MRF model for textured regions will be further discussed in Section 3.4.1.

A drawback of the hierarchical model is that the conditional probability
P (di | fi = I) for regions given by {i ∈ S | fi = I} cannot always be written
exactly. For example, when the lower-level MRF is a texture modeled as an
auto-normal field, its joint distribution over an irregularly shaped region is
not known. This difficulty may be overcome by using approximate schemes
such as pseudo-likelihood (to be introduced in Section 7.1) or by using the
eigenanalysis method (Wu and Leahy 1993).

2.6 The FRAME Model

The FRAME (filter, random fields and maximum entropy) model, proposed
in (Zhu et al. 1997),(Zhu and Mumford 1997) and (Zhu et al. 1998), is a
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generalized MRF model that fuses the essence of filtering theory and MRF
modeling through the maximum entropy principle. It is generalized in the
following two aspects: (1) The FRAME model is defined in terms of statistics
(i.e., potential functions) calculated from the output of a filter bank by which
the image is filtered, instead of the clique potentials of the image itself. Given
an image (a realization of an MRF), the image is filtered by a bank of filters,
giving a set of output images. Some statistics are then calculated from the
output images. (2) The FRAME model provides a means of learning the
model parameters from a set of samples (example images) representative of
the MRF to be modeled. Besides, it also gives an algorithm for filter selection.

The joint distribution of the FRAME model is constrained in such a way
that the model can reproduce the statistics of the example images. It is found
by solving a constrained maximum entropy problem. Let G(k) (k = 1, . . . ,K)
be a bank of K filters (such as Gabor filters), f (k) = G(k) ∗ f the output of
filtering f by G(k), and H(k) ∈ LS (the L is assumed to be the same for all
the K filter outputs) the histogram of f (k) defined by

H(k)(I) =
1
|S|
∑

i∈S
δ(I − f

(k)
i ) (2.57)

where δ(t) = 1 if t = 0 or 0 otherwise. For the filtered sample images, we

denote the averaged histogram of the kth filter output by H
(k)
samp (averaged

across all example images). Now, the joint distribution of the FRAME is
defined as:

p(f) = arg max
p

{

−
∫

p(f) log(p(f))df

}

(2.58)

subject to

H
(k)
p(f)(I) = H

(k)
samp(I) ∀k,∀I (2.59)

∫

p(f)df = 1 (2.60)

where
H

(k)
p(f) =

∫

H(k)(f)p(f)df (2.61)

is the expectation of H(k) w.r.t. p(f). By using Lagrange multipliers θ
(k)
I for

the constraints of (2.59), we get the Lagrangian

L(p, θ) = −
∫

p(f) log(p(f))df (2.62)

+
∫

I

∑

k

θ
(k)
I

{
∫

f

p(f)
∑

i

δ(I − f
(k)
i )df − |S| H

(k)
samp(I)

}

dI
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(Note that the constraints are multiplied by the factor of |S|.) By setting
∂L(p,θ)

∂p = 0, the solution to the constrained optimization (ME) problem can
be derived as (consider p(f) = p(f | θ) when θ is given)

p(f | θ) =
1

Z(θ)
e−
∑K

k=1
∑

i∈S{
∫

θ(k)(I)δ(I−f
(k)
i )dI}

=
1

Z(θ)
e−
∑K

k=1
∑

i∈S{θ(k)(f
(k)
i )} (2.63)

where θ(k)(·) are the potential functions of the FRAME model and Z the
normalizing factor.

In the discrete form, assume that I(k) = f
(k)
i is quantized into L discrete

values I
(k)
1 , . . . , I

(k)
L . The solution in (2.63) can be written as

p(f | θ) =
1

Z(θ)
e−
∑K

k=1
∑

i∈S
∑L

�=1{θ
(k)
� δ(I

(k)
i −f

(k)
i )}

=
1

Z(θ)
e−
∑K

k=1
∑L

�=1 θ
(k)
� H

(k)
�

=
1
Z

e−<θ,H> (2.64)

where θ
(k)
� = θ(k)(I(k)

� ), H
(k)
� = H(k)(I(k)

� ), and < a, b > is the inner product
of a and b.

The FRAME model provides a means of modeling complicated high-order
patterns in a tractable way. In the traditional MRF model, the neighborhood
is usually small to keep the model tractable, and therefore it is difficult to
model patterns in which interaction in a large neighborhood is necessary.
In contrast, the FRAME model is able to model more complicated patterns
by incorporating larger neighborhood and potential functions of higher-order
cliques implicitly determined by the filter windows; moreover, it uses an ac-
companying learning procedure to estimate high-order potential functions
from the filter outputs. This makes the high-order model tractable in formu-
lation, albeit expensive in computation. There are two things to learn in the
FRAME model: (1) the potential functions θ

(k)
I ; and (2) the types of filters

G(k) to use. These will be described in Section 7.1.7.
Zhu and his colleagues (Wu et al. 2000) have established an equivalence

between the FRAME model and another mathematical model of texture,
called Julesz ensembles (Julesz 1962), when the size of the image lattice goes
to infinity. On the other hand, they also propose fast MCMC algorithms for
sampling p(f | θ) which involves hundreds of parameters to estimate in a
large neighborhood (Zhu and Liu 2000).
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2.7 Multiresolution MRF Modeling

The motivation for multiresolution MRF (MRMRF) modeling here is similar
to that of FRAME modeling: to model complex and macro patterns by incor-
porating interactions in a large neighborhood. The approach used in MRMRF
modeling is to build an MRF model based on the outputs of multiresolution
filters.

From orthogonal wavelet decomposition, such as in Haar or Daubechies
wavelets, nonredundant subbands can be obtained in different scales and di-
rections. They can be used to represent the original image completely. On
the other hand, these subbands are downsampled with the discrete wavelet
transform. Therefore, the texture structure represented by the information
of two faraway pixels in the original image may become that of immediate
neighbors in the subband images on the higher-levels. Figure 2.4 shows an
example of multiresolution wavelet decomposition. We can see that with the
decomposition and downsampling, the subbands of different scales and di-
rections can reveal different characteristics of the original image. The pixel
relationship at different scales is not the same, even in the same direction.

Let f be an image defined on a lattice of sites S indexed by i ∈ S,
G = {G(1), G(2), ..., G(K)} a set of multiresolution filters such as wavelet
filters, and f (k) = G(k) ∗ f the kth subband output of filtering f with G(k).
Assume that the pixel values of the K filter outputs are quantized into M
levels, giving the label set L = {1, . . . , M}, which is the same for all the K
subbands. Then the distribution of image f can be written in the form

P (f | G) =
1

Z(G)
exp(−U(f | G)) (2.65)

where Z(G) is the normalizing partition function. U(f | G) is the energy
function, which takes the form

U(f | G) =
K
∑

k=1

∑

c∈C
V (k)

c (f) (2.66)

where C is the set of all cliques in a neighborhood system and V
(k)
c (f) is the

clique potential associated with the filter output f (k).
Consider cliques of up to two sites. Let θ = {θ(k)} = {α(k), β(k)} be the set

of MRMRF parameters, where α(k) = {α(k)(I)} consists of M components
for the eight quantized pixel values I = f

(k)
i , and β(k) = {β(k)

c } consists of
four components for cliques c = (i, i′) in the 4-neighborhood system. For
homogeneous MRMRF’s, the potential functions are location independent,
though the pair-site clique potentials are direction dependent. The following
energy function is used to include cliques of up to two sites:
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Figure 2.4: The original image (row 0). Haar wavelet decomposition at level
1 (row 1), level 2 (row 2), and level 3 (row 3). From left to right of rows 1–3
are the low-pass, horizontal, vertical, and diagonal subbands.

U(f | G, θ) = (2.67)
K
∑

k=1

∑

i∈S

⎧

⎨

⎩

α
(k)
i (f (k)

i ) +
∑

i′∈Ni,c=(i,i′)

β(k)
c

[

1 − 2 exp(−(f (k)
i − f

(k)
i′ )2)

]

⎫

⎬

⎭

The corresponding potential functions are V
(k)
1 (i) = α

(k)
i (f (k)

i ) for the single-

site clique and V
(k)
2 (i, i′) = β

(k)
c

[

1 − 2 exp(−(f (k)
i − f

(k)
i′ )2)

]

for c = (i, i′).
In this model, the exponential form of the pair-site clique potential is

similar to that of the multilevel logistic (MLL) model (see Section 2.3). But
it is easier to process and more meaningful in texture representation than the
MLL model (Liu and Wang 1999). In MLL, if the two labels are not exactly
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the same, they contribute nothing to the potential even if they are similar; in
contrast, the use of the exponential term in MRMRF incorporates the label
similarity into the potential in a soft way.

Before giving the conditional probability P (fi|fNi
, G, θ), we first define a

generalized energy of fi as

U(fi | G, θ) = (2.68)
K
∑

k=1

⎧

⎨

⎩

α(k)(f (k)
i ) +

∑

i′∈Ni,c=(i,i′)

β(k)
c

[

1 − 2 exp(−(f (k)
i − f

(k)
i′ )2)

]

⎫

⎬

⎭

Thus

P (fi|fNi
, G, θ) =

∑K
k=1 exp(−U(f (k)

i | θ(k)))
∑K

k=1

M
∑

I(k)=1

exp(−U(I(k) | θ(k)))
(2.69)

where I(k) = f
(k)
i is the value of pixel i in the kth subband image. To define

a pseudo-likelihood, we simplify it by

P (fi | fNi
, G, θ) ≈

K
∏

k=1

exp(−U(f (k)
i | θ(k)))

M
∑

I(k)=1

exp(−U(I(k) | θ(k)))
(2.70)

Then the pseudo-likelihood can be written as

PL(f | G, θ) =
∏

i∈S
P (fi | fNi

, G, θ)

≈
∏

i∈S

K
∏

k=1

exp(−U(f (k)
i | θ(k)))

M
∑

I(k)=1

exp(−U(I(k) | θ(k)))

=
K
∏

k=1

PL(f (k) | θ(k)) (2.71)

where

PL(f (k) | θ(k)) =
∏

i∈S

exp(−U(f (k)
i | θ(k)))

M
∑

I(k)=1

exp(−U(I(k) | θ(k)))
(2.72)

Thus the pseudo-likelihood PL(f | G, θ) can be approximated by the product
of individual pseudo-likelihoods of the subband outputs f (k), in which an as-
sumption is made that the parameters at different subbands are independent
of each other. With this simplification, the parameter of the model can be
estimated easily.

The parameters are estimated from sample data fsamp, which is given.
The estimation can be done by maximum likelihood P (f (k)

samp | θ(k)) or by



2.8. Conditional Random Fields 43

maximizing the pseudo-likelihood PL(f (k)
samp | θ(k)) defined in (2.71). Accord-

ing to that definition, each subband can be considered as an independent
MRF model,and hence the parameters of each subband can be estimated in-
dependently without considering the other subbands. Any method for MRF
parameter estimation can be used to estimate parameters of each subband.
The Markov chain Monte Carlo (MCMC) method (Section 7.1.6) used in
the parameter estimation for the FRAME model (Section 7.1.7) would be a
proper choice.

The MRMRF model attempts to incorporate information in a large neigh-
borhood by fusing filtering theory and MRF models, which is similar to the
FRAME model (Zhu et al. 1998). Compared with the traditional MRF model,
the MRMRF model can reveal more information contained in the textures
since the original images are decomposed into subbands of different scales
and directions and downsampled. For this reason, the MRMRF model is more
powerful than the traditional MRF model; however, it seems less powerful
than the FRAME model since only up to pair-site interactions are considered
in MRMRF. Computationally, it is also between the traditional MRF and the
FRAME, the FRAME being very expensive.

2.8 Conditional Random Fields

In the MAP-MRF framework, the optimal configuration is the optimum of
the posterior probability P (f | d), or equivalently that of the joint proba-
bility P (f, d) = p(d | f)P (f). The prior is formulated as an MRF, and the
likelihood is due to the observation model. Usually, for tractability reasons
p(d | f) is assumed to have the factorized form (Besag 1974)

p(d | f) =
∏

i∈S
p(di | fi) (2.73)

even though the underlying observation model is not as simple.
The conditional random field (CRF) models the posterior probability

P (f | d) directly as an MRF without modeling the prior and likelihood indi-
vidually. The label set f is said to be a CRF, given d, if every fi satisfies the
Markovianity (with positivity assumed) (Lafferty et al. 2001)

P (fi | d, fS−{i}) = P (fi | d, fNi
) (2.74)

According to the Markov-Gibbs equivalence, we have

P (f | d) =
1
Z

exp
(

− 1
T

E(f | d)
)

(2.75)

where Z is the partition function and E(f | d) the energy function. If only up
to pairwise clique potentials are nonzero, the posterior probability P (f | d)
has the form
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P (f | d) =
1
Z

exp

{

−
∑

i∈S
V1(fi | d) −

∑

i∈S

∑

i′∈Ni

V2(fi, fi′ | d)

}

(2.76)

where −V1 and −V2 are called the association and interaction potentials,
respectively, in the CRF literature (Lafferty et al. 2001). Generally, these
potentials are computed as a linear combination of some feature attributes
extracted from the observation.

There are two main differences between the CRF and MRF. First, in
a CRF, the unary (or association) potential at site i is a function of all
the observation data d1, . . . , dn as well as that of the label fi; in an MRF,
however, the unary potential is a function of the observations fi and di only.
Second, in an MRF, the pairwise (or interaction) potential for each pair of
sites i and i′ is independent of the observation; however, in a CRF, it is also
a function of all d1, . . . , dn as well as that of the labels fi and fi′ (Lafferty
et al. 2001; Ng and Jordan 2002; Rubinstein and Hastie 1997).

Therefore, a CRF may be suitable for dealing with situations where the
likelihood of an MRF is not of a factorized form such that all the di (∀i ∈ S)
can explicitly exist in both unary and pairwise potentials. Moreover, unlike
in an MRF, where di′ can influence fi (i �= i′) indirectly through the neigh-
borhood system, in a CRF, this is done directly by the link between di′ and
i. The CRF has so far been used mainly in speech (1D signal) analysis. It
can be extended to discriminative random fields (DRF) for image analysis as
follows.

2.9 Discriminative Random Fields

While the MRF is a generative model for modeling a spatial pattern such as
an image, the discriminative random field (DRF) (Kumar and Hebert 2003;
Kumar 2005; Kumar and Hebert 2006) is a discriminative model that has
been used for classifying patterns directly (e.g., target vs. non target classifi-
cation) in images. The DRF is a special type of CRF with two extensions to
it. First, a DRF is defined over 2D lattices (such as the image grid), as illus-
trated in Fig. 2.5. Second, the unary (association) and pairwise (interaction)
potentials therein are designed using local discriminative classifiers.

The DRF of Kumar and Hebert (2003) and Kumar and Hebert (2006)
defines the potentials in terms of generalized linear models as

V1(fi | d) = − log (σ[fiTi(d)]) (2.77)
V2(fi, fi′ | d) = αfifi′ + β(2σ[δ(fi, fi′)Ti,i′(d)] − 1) (2.78)

where σ[x] is the logistic function (e.g., 1/(1 + e−x)), Ti(d) and Ti,i′(d) are
functions that transform d into the unary and binary feature attributes and
then linearly combine them into scalars, α and β are parameters to be learned
from training examples, and δ(fi, fi′) is an indication function
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fi fi′

di di′

MRF

fi fi′

di di′

DRF

Figure 2.5: MRF vs. DRF. In an MRF, each site is connected to one obser-
vation datum. In a DRF, each site is connected to all the observation data.

δ(fi, fi′) =
{

1 if fi = fi′

−1 otherwise (2.79)

In their work, the solution to the target detection problem is based on the
maximum posterior marginal principle. Belief propagation and sampling al-
gorithms are employed to find the MPM estimate.

2.10 Strong MRF Model

In addition to the (local) Markovianity (2.9) introduced in Section 2.1.2, there
are two other variants of Markov properties, namely pairwise Markovianity
and global Markovianity (Lauritzen 1996).

Pairwise Markovianity. A Markovianity is pairwise if for any non-adjacent
sites i and i′, it satisfies P (fi | fi′) = P (fi | fS−{i}−{i′}). This means that
the labels of two nonadjacent sites are independent given the labels of the
other sites.

Global Markovianity. A Markovianity is global if for any disjoint subsets
A, B, and C of S, C separating A from B, it satisfies P (fA | fB) = P (fA | fC);
that is, given a set of sites, the labels of any two separated subsets are inde-
pendent.

Generally, pairwise Markovianity can be deduced from local Markovianity,
and local Markovianity can be deduced from global Markovianity, but the
reverse does not always hold (Lauritzen 1996). From this viewpoint, the local
Markovianity is stronger than the pairwise Markovianity and weaker than
the global Markovianity.

A strong MRF is a special case of the standard MRF (Moussouris 1974).
Let G = (S,N ) represent a graph, and suppose F is an MRF defined on G
w.r.t. N . Assuming that D ⊆ S is a subset of S, an MRF is a strong MRF,
then it satisfies

P (fi | fD−{i}) = P (fi | fNi∩D) ∀A ⊆ S (2.80)
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which is the global Markovianity for i. That is, an MRF is strong if the
Markovianity holds not only w.r.t. the neighborhood system but also any of
the subsets D ⊆ S (Moussouris 1974; Paget 2004). In such a case, if the label
of a neighboring site i is undefined, the label of the site i is still conditionally
dependent on the labels of its neighboring sites in Ni that have been labeled.

While in the standard MRF the conditional distribution P (fi | fS−{i}) is
a Gibbs distribution of clique potentials, the strong MRF, based on the strong
Markovianity (2.80) models P (fi | fD−{i}) without the potentials. Therefore,
it can be used to develop a nonparametric model. It has been used for texture
classification in which images contain other textures of unknown origins.

2.11 K-MRF and Nakagami-MRF Models

In a GMRF model, the joint prior distribution p(f) is multivariate normal.
In an analysis of ultrasound envelopes of backscattered echo and spatial in-
teraction, the prior p(f) takes the form of a K-distribution or Nakagami dis-
tribution. Therefore, the K-MRF (Bouhlel et al. 2004) and Nakagami-MRF
(Bouhlel et al. 06a) have been proposed for the modeling problems therein.

A K-distribution (Jakeman and Pusey 1976) with parameters (α, β) has
the form

Kα,β(x) =
2β

Γ(α)

(

βx

2

)2

Bα−1(βx) ∀x ∈ R+ (2.81)

where Γ(·) is the Gamma function, α is the shape parameter, Bα−1(·) is a
modified Bessel function of the second kind of order (α − 1), and β is the
scaling parameter of the K-distribution.

The conditional density of a K-MRF model is also a K-distribution (Bouh-
lel et al. 2004; Bouhlel et al. 06b)

p(fi | fNi
) ∝ Kαi,β(fi) (2.82)

where the parameter αi is given by

αi = ai + 1 +
∑

i′∈Ni

bi,i′ ln fi′ (2.83)

where the real valued ai, bi,i′ , and β can be estimated from examples by
solving the following system of equations (Bouhlel et al. 06b)

E[fi | fNi
] =

2Γ(αi + 0.5)
βΓ(αi)

Γ(1.5) (2.84)

E[f2
i | fNi

] = 4
αi

β2
(2.85)

where E[·] is the mathematical expectation.
The Nakagami distribution, with parameters (α, β), has the form
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Nα,β(x) =
2βα

Γ(α)
x2α−1 exp(−βx2) ∀x ∈ R+ (2.86)

where Γ(·) is the Gamma function. The conditional density of a Nakagami-
MRF model is also a Nakagami distribution (Bouhlel et al. 06a)

p(fi | fNi
) ∝ Nαi,β(fi) (2.87)

where the parameter αi is given by

αi =
1
2

⎛

⎝ai + 1 +
∑

j∈Ni

bi,i′ ln fi′

⎞

⎠ (2.88)

where the parameters ai, bi,i′ , and β can be estimated from examples by
solving the system of equations

E[f2
i | fNi

] =
αi

β
(2.89)

D[f2
i | fNi

] =
αi

β2
(2.90)

where E[·] is the variance.

2.12 Graphical Models: MRF’s versus
Bayesian Networks

The MAP-MRF approach models MRF problems defined on undirected
graphs. The graphical model (GM) (or probabilistic graphical model) ap-
proach incorporates the probability theory in the manipulation of more gen-
eral graphs (Pearl 1988; Jordan 1998; Jensen 2001). The graph theory part
represents a complex system by a graph built on many simpler parts linked
by relations and provides the data structure required by efficient algorithms.
The probability theory part manipulates on the graph, provides interfaces
between the model and data, and ensures consistency therein. A GM can be
undirected or directed.

An undirected GM, also called a Markov network, is equivalent to a pair-
wise or second-order MRF. It can be denoted as G = (S,N ), where each
node (site) is associated with a label, with or without an observation on the
node, and the relationships between nodes are modeled via the neighborhood
system N .

A directed GM is denoted as G = (S,M), where S is the set of nodes
and M is the “parent system”. If i′ ∈ S is a parent node of i, then there is
a directed edge from i′ to i. All the nodes that i is dependent on constitute
the parent set Mi. All the Mis constitute the parent system M. Such a GM
can used to depict causal relationships.
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A directed GM is a Bayesian network (BN) or belief network when the
graph is acyclic, meaning there are no loops in the directed graph. In a BN,
a node i is associated with a random variable taking a discrete or continuous
value fi. The labels and observations can be defined on disjoint subsets of
nodes and related through the parent system M. Figure 2.6 illustrates dif-
ferences between an MRF and a Bayesian network. Both are referred to as
inference network in machine learning literature.

fi fi′

di di′

MRF

x1 x2

x3 x4

x5 x6 x7

x8 x9

Bayesian Network

Figure 2.6: MRF vs. BN. Left: A part of an MRF, with sites (circles), labels
(fi’s), and observations (squares). Right: A simple instance of a BN, where
nodes x1 and x2 are the observation variables and the other nodes are latent
variables whose values are to be inferred. The arrows show the dependency
of the nodes (note that the observation nodes x1 and x2 depend on no other
nodes).

The relationships in a BN can be described by local conditional proba-
bilities P (xi | Mi); if i has no parents, as for observation nodes, its local
probability is considered unconditional as P (xi | Mi) = P (xi). The joint dis-
tribution for a BN can be expressed as the product of the local conditional
probabilities

P (f) = P (f1, . . . , fM ) =
M
∏

i=1

P (fi | fMi
) (2.91)

Similar to MRF’s, issues in BNs include representation, inference (finding
the optimal solution), learning (parameter estimation), decision, and appli-
cation. The inference can be formulated as a maximum posterior probability
or maximum marginal probability problem. Efficient algorithms exist for in-
ference (such as belief propagation; see Section 9.3.3) and learning in BNs
(Jordan 1998).




