Chapter 10

Minimization — Global
Methods

The minimal solution is usually defined as the global one or one of them
when there are multiple global minima. Finding a global minimum is non-
trivial if the energy function contains many local minima. Whereas methods
for local minimization are quite mature, with commercial software on the
market, the study of global minimization is still young. There are no efficient
algorithms that guarantee finding globally minimal solutions as there are for
local minimization.

In analytical studies, local and global minima may be studied via convex-
ity analysis. Let E(f) be a real function defined on F = R"™. E(f) is said to
be convex in T if

EQx+ (1—\y) < AE(@) + (1— NE(y) (10.1)

for any two points z,y € F and any real number A € [0,1]. It is strictly
convex if strict inequality “<” holds in the above. When plotted, a convex
E(f) will always lie below the line segment connecting any two points on
itself. The neighboring points of a minimum are always above the tangent at
the minimum. A local minimum is also a global one if E(f) is convex on F.
Tt is the unique global minimum if E(f) is strictly convex. Therefore, when
E(f) is convex, we can find a global minimum by finding a local minimum
using the gradient-descent method.

Global minimization requires (1) finding all (a finite number of) local
minima and (2) proving that there are no more local minima. Without an
efficient algorithm, this amounts to an exhaustive search. In reality, one is
always facing one of two choices: (1) to find the exact global minimum with
possibly intolerable expense or (2) to find some approximations to it with
much less cost.
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274 10. Minimization — Global Methods

Two methods may be used to deal with the local minimum problem:
random search and annealing. In random search methods, a new configuration
does not always make energy descend; occasional energy increases are allowed.
The probability with which a configuration is generated is proportional to
e EW/T where T is a control parameter called the temperature. Therefore,
a lower-energy configuration is generated with a larger probability.

Annealing is incorporated into a local search method to overcome the
problem of local minima. It is performed by decreasing the temperature pa-
rameter in the Gibbs distribution from a high value to a low value during
the iterative minimization. At one extreme (e.g., a high temperature), the
energy landscape is convex and smooth and thus the unique minimum can
be located easily; the minimum is tracked as the is gradually decreased to
a sufficiently low value. This is the so-called continuation method (Wasser-
strom 1973). Such a technique can significantly overcome the local minimum
problem and improve the quality of the solution. A disadvantage is that they
take more time since an annealing algorithm has to decrease the parameter
gradually over a range of values and at each value some convergence has to
be reached.

There are two types of annealing: deterministic and stochastic. In MRF vi-
sion work, the stochastic simulated annealing algorithm (Geman and Geman
1984) and the deterministic graduated nonconvexity (GNC) algorithm of
Blake and Zisserman (1987) enjoy a popularity. Other deterministic algo-
rithms include mean field annealing (Peterson and Soderberg 1989; Yuille
1990; Geiger and Girosi 1991) and the Hopfield network approach (Hopfield
and Tank 1985; Koch et al. 1986; Yuille 1987).

While stochastic annealing such as simulated annealing is theoretically
justified (Geman and Geman 1984), deterministic annealing remains heuris-
tic. There is no guarantee that the minimum at high temperature can always
be tracked to the minimum at low temperature.

10.1 Simulated Annealing

Simulated annealing (SA), introduced independently by Cerny (1982), Kirk-
patrick, Gellatt, and Vecchi (1982),Cerny (1985), and Kirkpatrick, Gellatt,
and Vecchi (1983), is a stochastic algorithm for combinatorial optimization.
It simulates the physical annealing procedure in which a physical substance is
melted and then slowly cooled down in search of a low energy configuration.
Consider a system in which any f in the configuration space F has probability

Pr(f) =[P(FHIV" (10.2)

where T' > 0 is the temperature parameter. When T — oo, Pr(f) is a
uniform distribution on F; for T =1, Pr(f) = P(f); and as T — 0, Pr(f)
is concentrated on the peak(s) of P(f). This gives intuition as to how the
samples of f distribute in F.
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initialize T and f;

repeat
randomly sample f from N(f) under T}
decrease T,

until (7" — 0);

return f;

Figure 10.1: The simulated annealing algorithm.

The SA algorithm is described in Fig. 10.1. SA applies a sampling algo-
rithm, such as the Metropolis algorithm (Metropolis et al. 1953) or Gibbs
sampler (Geman and Geman 1984) (see Section 7.1.6), successively at de-
creasing values of temperature T'. Initially, T" is set very high and f is set to
a random configuration. At a fixed T, the sampling is according to the Gibbs
distribution Pp(f) = e /T /37 e~ EU/T After the sampling converges
to the equilibrium at current T', T' is decreased according to a carefully cho-
sen schedule. This continues until 7" is close to 0, at which point the system
is “frozen” near the minimum of E(f). The cooling schedule, specified by a
decrement function and a final value, plays an important part; see below.

Two convergence theorems have been developed (Geman and Geman
1984). The first concerns the convergence of the Metropolis algorithm. It
states that if every configuration is visited infinitely often, the distribution
of generated configurations is guaranteed to converge to the Boltzmann (i.e.,
Gibbs) distribution. The second is about SA. It states that if the decreasing
sequence of temperatures satisfy

Jim T® =0 (10.3)
and
A
T > X2 10.4
~ In(1+1¢) (104)

where A = max; E(f) —min; E(f), then the system converges to the global
minimum regardless of the initial configuration f(?). Note that the conditions
above are sufficient but not necessary for the convergence.

Unfortunately, the schedule (10.4) is too slow to be of practical use. In
practice, heuristic, faster schedules have to be used instead. Geman and Ge-
man (1984) adopt the following

C

Tt — _ ~
In(1+1¢)

(10.5)
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where the constant C' is set to C' = 3.0 or C' = 0.4 for their problem. Kirk-
patrick et al. (1983) choose

T® = g7t=Y (10.6)

where x typically takes a value between 0.8 and 0.99. The initial tempera-
ture is set high enough that essentially all configuration changes are accepted.
At each temperature, enough configurations are tried that either there are
10m (10 times the number of sites) accepted configuration transitions or the
number of tries exceeds 100m. The system is frozen and annealing stops if
the desired number of acceptances is not achieved at three successive tem-
peratures. In (Kato et al. 1993a), a multi-temperature annealing scheme is
proposed for annealing in multiresolution computation; there, the tempera-
ture in the Gibbs distribution is related not only to the time but also to the
scale.

The two sampling procedures (i.e., the Metropolis algorithm and Gibbs
sampler) are proven to be asymptotically equivalent for SA performed on
lattices, but this is not generally true for non-lattice structures (Chiang and
Chow 1992). The interested reader is referred to (Kirkpatrick et al. 1982;
Geman and Geman 1984; Aarts 1989) for discussions devoted on SA.

A performance comparison between SA and GNC for edge-preserving
surface reconstruction is given in (Blake 1989). Based on the results of the
experiments under controlled conditions, Blake argues that GNC excels SA
both in computational efficiency and problem-solving power. An experimental
comparison between SA and deterministic RL algorithms for combinatorial
optimization will be presented in Section 10.6.1.

10.2 Mean Field Annealing

Mean field annealing (Peterson and Soderberg 1989) provides another ap-
proach for solving combinatorial optimization problems using real computa-
tion. It can be considered as a special RL algorithm incorporating an an-
nealing process. Let f = {f;(I) € {0,1}|i € S, € L} be an unambiguous
labeling assignment in P* defined in (9.24); each f; takes the value of one of
the vectors (1,0,...,0), (0,1,...,0), and (0,0,...,1). Still denote the energy
with the RL representation by E(f). The Gibbs distribution of the energy
under temperature 7' > 0 is given as

Pr(f) =z 'e TEW) (10.7)
where the partition function

Z=3 e TED (10.8)
fep*

sums over P*. The statistical mean of the distribution is defined as
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(fir= ZfiPT(f) = Zfizflef%E(f) (10.9)
f f

As the temperature approaches zero, the mean of the Gibbs distribution
approaches its mode or the global energy minimum f*

lim (f)p = %iLnOZfPT(f) = f* (10.10)
f

T—0

This suggests that instead of minimizing F(f) directly, we could try to eval-
uate the mean field (f)r at a sufficiently high temperature and then track it
down using the continuation method (Wasserstrom 1973) as the temperature
is lowered toward zero.

The analysis of the partition function is central in mean field theory be-
cause once it is calculated all statistical information about the system can
be deduced from it. The mean field trick for calculating the partition func-
tion is to (1) rewrite the sum over a discrete space as an integral over a
pair of continuous variables p and ¢, p = {p;(I) € R|i € S§,I € L} and
qg={q(I) € Rli € S,I € L} having the same dimensionality as f, and then
(2) evaluate its integrand at the saddle point (saddle-point approximation).
As will be seen later, p and ¢ correspond to a labeling assignment as defined
in (9.20) and a gradient as defined in (9.29), respectively. In the following, f,
p, and ¢ are considered m x M matrices. To do step (1), we begin by rewriting
any function g(f) as the integral

g(f)=/D g(P)o(f —p)dp (10.11)

where ¢ is the Dirac delta function and Dp is the |S| x |£] dimensional real
space. The definition of the Dirac delta function

ig) =C equdpdq (10.12)
Dy

is used in the above, where T denotes transpose, Dy is the |S| x |L]-
dimensional imaginary space, and C is a normalizing constant. Therefore,

Using the formula above, we can rewrite the partition function, which is the
. 1
sum of the function e~ T#®) ag

Zc/ /e—%E(p)e(qu—qu)dpdq (10.14)
Dr J/D;

fep*

c / / e HEW D | 37 UM | apag
Dgr /Dy

fep*

A
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The summation inside the integrand can be written as

PORACE | DI (10.15)

feP* €S IeL
Therefore,
Z=C / / e~ T Perr(Pa)dpdg (10.16)
Dr /Dy
where
Eets(p) = E(p) + TpTq =T Y In Y- (e#)) (10.17)
€S IeL

is called the effective energy.

The integral expression of Z above is exact but too complicated for precise
calculation. The calculation may be approximated based on the following
heuristic argument: The double integral is dominated by saddle points in the
integration intervals, and therefore the integral is approximated by

7~ e TEess(07:0) (10.18)

where (p*,¢*) is a saddle point of E.ss;. The saddle points are among the
roots of the equations

VpEesr(p,q) =0 and VyEcs7(p,q) =0 (10.19)
where V), is the gradient w.r.t. p. This yields the mean field theory equations

1 OE(p) et
T api(1) and p;(I) = ZJeqqz(J)

The p matrix represents a labeling assignment in the feasibility space defined
by (9.19). The mean field theory equations for combinatorial minimization
have been derived in many places, for example, in (Yuille 1990; Simic 1990;
Elfadel 1993; Haykin 1994; Yang and Kittler 1994).

Note that in terms of the RL representation, the energy can be written
as E(f) = Const — G(f), and so ¢ can be computed as

a(I) = 7 [rl)+2 0es Lpecria 1) pu(I')] (10.21)

(see 9.29). Now we obtain the fixed-point iteration

ai(l)=—

(10.20)

et (D)
S, S eV ()

In iterative computation, the temperature 1" in ¢ is decreased toward 0T
as the iteration preceeds. The unambiguity of p is achieved when 7' — 0.

p{I(I) (10.22)
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in (Peterson and Soderberg 1989), the convergence is judged by a quantity
defined as

S = % > P (10.23)
I

also called the “saturation” of f. The iteration (10.22) is considered con-
verged if S > 0.99. Analog network implementation schemes for mean field
algorithms are investigated in (Elfadel 1993).

It is worth pointing out that the idea of mean field annealing for global op-
timization was proposed earlier by Pinkus (1968) as the integral limit method.
There, the global minimum is expressed in closed form as a limit of an integral.
Assume that F is the closure of a bounded domain in R™. Suppose that E(f)
is continuous on F and has a unique global minimum f* = {f,..., 5} € F.
Pinkus shows that the integral

o~ FE(f
ﬁ»:—fFfle _ D i=1,....m (10.24)
f]F e~ TEgf

approaches the global minimum f* as T' — 0%. Obviously, the integral above
is the continuous version of the mean field defined in (10.9), and the idea of the
integral limit is similar to that of mean field annealing. Theoretical analysis
shows that this approximation has rather good asymptotic properties, but
its realization may need some heuristic trials. Computationally, the values
fF can be obtained analytically only in exceptional cases, and a numerical
method has to be used in general.

10.3 Graduated Nonconvexity

Graduated nonconvexity (GNC) (Blake and Zisserman 1987) is a determin-
istic annealing method for approximating a global solution for nonconvex
minimization of unconstrained, continuous problems such as (9.5). It finds
good solutions with much less cost than stochastic simulated annealing. En-
ergies of the form

E(f) =" xilfi —di)> + A3 3" g0 (fi = fi) (10.25)
=1 i=14i'eN;

will be considered in the subsequent discussion of GNC. When g is a non-
convex function, a gradient-based method such as (9.7) finds only a local
minimum.

10.3.1 GNC Algorithm

The idea of GNC is the following. Initially, v is set to a sufficiently large
value 7(°) such that E(f|y(?)) is strictly convex. It is easy to find the unique
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minimum of E(f|y(?)) regardless of the initial f by using the gradient-descent
method. The minimum f;‘(o) found under () is then used as the initial value

for the next phase of minimization under a lower value v(!) < 4(9) to obtain
the next minimum ff:(l). As vy is lowered, E( f|v) becomes nonconvex and local
minima appear. However, if we track the sequence of minima as v decreases
from the high value 49 to the target value v, we may approximate the
global minimum f§ under the target value (i.e., the global minimum f* of
the target energy F(f)).

The first term on the right-hand side of (10.25) is quadratic and hence
strictly convex w.r.t. f. The second term may or may not be convex, de-
pending on f and g. Its nonconvexity could be partly compensated by the
convexity of the closeness term. If g(n) = g,(n) = 1?, then the second term
is strictly convex and so is E(f). If g(n) = go(n) = min{n?, a} (see (5.10)),
the second term is nonconvex and so is E(f). However, if the function g and
the parameters involved are chosen to satisfy

g"(fi—fisr) 2 =" Vi (10.26)

where ¢* > 0 is some constant, then the convexity of E(f) is guaranteed.
The value of ¢* depends on the type of model and whether the data d are
complete. Provided d; are available for all 4, the value is ¢* = 1/2 for the
string, 1/4 for the membrane, 1/8 for the rod, and 1/32 for the plate (Blake
and Zisserman 1987). If d; are missing altogether, it requires ¢"’ (f;— fi—1) > 0,
so that the second term is convex by itself, to ensure the convexity of E(f).
The practical situation is generally better than this worst case because the
data cannot be missing altogether.

Therefore, to construct an initially convex g, we can choose an initial

parameter v = () for which g;’ o ( fi(o) — f}E)l) < 0 for all 4. This is equivalent

to choosing a (9 such that fi(o) — fi(E)l € B, where B, is the band. For
APFs, 1, 2 and 3, the 49 must be larger than 2v, 3v and v, respectively,
where v = max; [fi(o) — fi(f)l]?

The GNC algorithm is outlined in Fig. 10.2. Given d, A\, and a target

value iqrger for v, the algorithm aims to construct a sequence {yO} (y(>) —

Viarget) and thus {fﬁz)} to approach the global minimum f* = lim;_, o fﬂst(z)
for which E(f*) = min. In the algorithm, € is a constant for judging the
convergence, and £ is a factor for decreasing v toward Vearget, 0 < K < 1.
The choice of x controls the balance between the quality of the solution
and the computational time. In principle, 4(*) should vary continuously to
keep good track of the global minimum. In discrete computation, we choose
0.9 < x < 0.99. A more rapid decrease of v(*) (with smaller &) is likely to
lead the system to an unfavorable local minimum. Witkin, Terzopoulos, and
Kass (1987) present a more sophisticated scheme for decreasing v by relating
the step to the energy change: vt = ~() — ¢ e=IVEl where ¢; and ¢,
are constants. This seems reasonable.
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Choose a convex v(9; Set f(9) «— d and t = 0;
Do 1) Update f® using (9.7);
2) Set t —t+1;
3) If (fO) — f-1) < ¢)
set 'Y(t) — maX{'Ytargeta “'Y(til)}ﬁ
Until (f® — f¢=1D < ¢) and (v = Vtarget);
Setf* — f)

Figure 10.2: A GNC algorithm for finding the DA solution.

To approximate the truncated quadratic function g, (1) = Amin{n?, a},
Blake and Zisserman (1987) construct the function

» An? Il <q
Agam) =3 a—cnl—=r)?/2 q<[nl<r (10.27)
« otherwise

where p € [0,1] is a continuation parameter, ¢ = ¢*/p, 72 = a(2/c + 1/)\),
and ¢ = a/(Ar). The corresponding interaction function is

AN Inl <gq
AP () = —c(In| = r)sign(n) g <|n| <r (10.28)
0 otherwise

The continuation parameter p is decreased from 1 to 0. When p = 1, the

corresponding EP=Y

is convex, where F, is the energy with g,. When p = 0,
E,gp =0 — E,, equals the original energy. A performance comparison between
GNC and SA for reconstruction is given in (Blake 1989).

However, the complexity of the convexity treatment above can be avoided.
Instead of modifying the definition of g, we can simply modify the parameter
a in it. To achieve graduated nonconvexity, we can use « as the control
parameter and decrease it from a sufficiently high value, o(®) > (max|d; —
d;_1])?, toward the target value. Let f be initialized so that max | fi(o) - fff)l\ <
max |d; — d;_1|. Then the energy is convex at such a(?). An assumption is
that if so initialized, max | fi(t) - fi(f)1| < max |d; — d;_1| always holds at any
t during the iteration. Parameter values for the convexity in this way are
related to the band B defined in (5.29) for the DA (discontinuity-adaptive)
model. In a similar way, parameter values for the convexity can be derived
for the LP (line process) approximation models given by Koch, Marroquin,
and Yuille (1986), Yuille (1987), and Geiger and Girosi (1991).

The computation can be performed using an analog network. Let f; be the
potential of neural cell i. Let C; = C = 1/2u be the membrane capacitance
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Figure 10.3: Schematic diagram of the analog network circuit.

and R; = 1/x; the membrane resistance. Let
Tiir = Tiri = Ay (fi — fir) (10.29)

be the conductance or synaptic efficacy between neurons ¢ and 7', where
li —i'| =1 and h, € H,. If the exponential g, is used, then

Ty = T = Aexp{—[fi — fv)*/7} (10.30)

Let d; be the external current input to ¢, with d; = 0 when x; = 0. Now (9.7)
can be written as

ofi
¢ ot

= —%fi +di + Ticrilficr = fil + Tivr il firr — fil (10.31)

The above is the dynamic equation at neuron ¢ of the network. The diagram
of the network circuit is shown in Fig. 10.3. The synaptic current from ¢ to
i is

Liiw = Mg, (fi = fir) = ALfi = furlhy (fi = fir) (10.32)
If the exponential g, is used, then
L = Nfi = fulexp{=[fi = fs1*/7} (10.33)

A plot of current I; ;» versus potential difference f; — f;; was shown at the
bottom of Fig. 5.2. The voltage-controlled nonlinear synaptic conductance
T; i+, characterized by the h function in (5.27), realizes the adaptive conti-
nuity control; the corresponding nonlinear current I; ;» realizes the adaptive
smoothing. The current I; ;; diminishes asymptotically to zero as the poten-
tial difference between neurons ¢ and i’ reaches far beyond the band B,.
Comparing the DA and LP models, the former is more suitable for VLSI
implementation than the latter. This is because the continuous shape of the
adaptive conductance T; ;» = A (f; — fir) in the DA is easier to implement
using analog circuits than the piecewise Ah, in the LP. This advantage of
the DA model is also reflected in the work by Harris, Koch, Staats, and
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Figure 10.4: Stability of the DA solution under disturbances in parameters.

Lou (1990) and Lumsdaine, Waytt, and Elfadel (1990). There, the piecewise
current-voltage characteristic I = AV h,(AV) is implemented by a resistive
fuse. Interestingly, the resistive fuse is of finite gain and thus does not give rise
to a sharp switch-off as described by the piecewise h,. The actual current-
voltage characteristic of the resistive fuse is more like I = AVh,(AV) than
I = AVhy(AV). Tt seems to satisfy all the requirements in (5.27) except for
the C! continuity. The definition of H., offers guidelines for the DA circuit
design.

Figure 10.4 shows the behavior of the analog DA network under com-
ponent defects such as manufacturing inadequacy, quality changes, etc.The
defects are simulated by adding +25% evenly distributed random noise into
R, C,and T in (10.31). The data d are shown in triangles with a 50% missing
rate; the locations of the missing data, for which x; = 0, are indicated by
triangles at the bottom. The noise in the data is white Gaussian with stan-
dard deviation ¢ = 10 (left) and ¢ = 20 (right). The interaction function
is chosen to be hay (1) = W Solutions obtained with simulated com-
ponent defects are shown as dashed lines in comparison with those obtained
without such noise, shown as thicker solid lines. The ideal signal is shown as
thinner solid lines. As can be seen, there is only a little difference between
the solutions obtained with and without such noise. This demonstrates not

only the stability of the network circuit but also the error-tolerance property
of the DA model.
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10.3.2 Annealing Labeling for MAP-MRF Matching

Here we describe a special GNC algorithm, called annealing labeling (Li et al.
1994), which may be used to improve the optimization of the posterior energy
(see 4.18) formulated for the MAP matching.

We first do an energy-gain conversion (Section 9.3.2). Substituting (4.11),
(4.12), (4.16), and (4.17) into (4.18), we have

U(fld) = {vioN1 +v20Na} + > ics. 20 Vildi(d)| f)
T iesifir0 oives—{iyify+0 V2(d2 (i, )| fi, fir)

where Ny = #{f; = 0] € S} is the number of NULL labels in f and Ny =
#{fi = 0or fiy =0i € S, € N;} is the number of label pairs at least
one of which is NULL . The constants v1¢ and vyg control the number of sites
assigned the NULL label. The smaller they are, the more sites will be assigned
the NULL . The corresponding gain function is

G(f) = {g10N1 + gaoNa} +
Yics:firoTilfi) ¥ 2icsifiro 2oives—{iyi g0 Tii (fis fir)
(10.35)
In the above, gio = COTLStl — V10, 920 — OOTLStQ — V20, and rz(fz) and
ri.i(fiy fir) arve related to Vi(dy(i)|f;) and Va(da(i,i')|fi, fir) by (9.26) and
(9.27). These determine the compatibilities in RL. The gain is to be maxi-
mized.

The parameters gi19 and gog affect not only the NULL labels but also the
local behavior of the maximization algorithm. When both are zero, there will
be no NULL labels. The larger their values, the more sites will be assigned
the NULL and the more serious the problem of local maxima becomes. In
other words, we found that a labeling f in which f; = 0 for some 4, is likely
a local optimum and that the labeling f in which f; = 0 for all 7, is a deep
local optimum. This has motivated us to incorporate a heuristic annealing
procedure into the labeling process, in a way similar to the graduated non-
convexity (GNC) algorithm (Blake and Zisserman 1987), to overcome the
local optimum problem.

Introduce a temperature parameter into the gain

G(fIT) = {g10N1 + g20Na} /T + 3 5.4, 20 Ti (i)
T2 ies fit0 2aires—{iy: 0 Tii (fis fir)

(10.34)

(10.36)

with G(f) = limp_; G(f|T). T is initially set to a very high value T(®) — oo
and gradually lowered toward 7(>) = 1. The maximum f* obtained at 7(¢~1)
is used as the initial value for the next new phase of maximization at 7). In
this way, the f* are tracked from high T to low T. Because g19 and goy are
weighted by %, the optimum f* obtained at high T is less affected by the local
optimum problem; when it is tracked down, a better quality solution may be
obtained than one found by a nonannealing algorithm. The improvement of
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annealing labeling ICM, a procedure incorporating annealing labeling into
ICM, over the simple ICM will be shown shortly.

Note that the T in the annealing labeling acts on only the prior part,
whereas in SA, T acts on both the prior and likelihood parts. So the present
annealing procedure is more like GNC (Blake and Zisserman 1987) than SA
(Geman and Geman 1984).

10.4 Graph Cuts

Graph cuts is a class of algorithms that uses max-flow algorithms to solve
discrete energy minimization problems. It was first proposed to obtain the
global minimum of a two-label MRF model (Ising model) by Greig, Porteous,
and Seheult (1989). It was then extended to solve convex multilabel problems
(Roy and Cox 1998) and approximate the global solution for more general
multilabel MRF problems (Boykov et al. 2001). Graph cuts has now been
widely used in image analysis problems such as image segmentation, restora-
tion, super-resolution, and stereo. This section introduces basic concepts of
graph cuts. The reader is referred to the Website of Zabih () for more about
the theories and applications.

10.4.1 Max-Flow

Max-flow (or min-cut or s-t cut) algorithms play a key role in graph cuts.
There are two types of max-flow algorithms: augmenting paths algorithms
(Ford-Fulkerson style) and push-relabel algorithms (Goldberg-Tarjan style).
A comparison of these algorithms for energy minimization in image analysis
can be found in (Boykov and Kolmogorov 2004).

Let G = (V, &) be a digraph (directed graph) with nonnegative weight on
each edge, where V is the set of vertices and £ the set of edges. In max-flow,
V contains two special vertices, the source s and sink t. A cut &. of G is
a subset of &, satisfying: (1) the subgraph excluding &, G = (V,€ — &),
is disconnected; (2) adding to this subgraph any edge in &, giving G =
WV, (€ — &) UA{e}) (Ve € &), the subgraph is connected. The cost of a cut
E. is the sum of its edge weights. The min-cut problem is to find the cut
that has the minimum cost. According to the Ford-Fulkerson theorem, this
problem is equivalent to find the maximum flowing from s to ¢.

Fig. 10.5 shows an example of max-flow. On each edge there is a pair of
number (x,y), where x is the maximum flux permitted by this edge and y is
the maximum flux in practice. The edges are cut by the dashed line and this
forms the min-cut. The flux of this cut is equivalent to the maximum flux
from the source s to the terminal ¢, which in this digraph is 11. The dashed
line divides the nodes of the digraph into two parts, S and T, with all the
nodes in S connected to the source s, and all the nodes in T connected to
the terminal ¢. In a two-label MRF problem, this can be explained as all the
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nodes in S having the same label /1 and all the nodes in T having the label
ls.

min-cut

Figure 10.5: An example of max-flow.

10.4.2 Two-Label Graph Cuts

The simplest case of a labeling problem is binary labeling, where £ = {¢1, 5 }.
If the prior of an MRF is defined as an Ising model, the exact optimum
solution can be obtained by finding the max-flow on a special defined graph
constructed according to the energy function; in other words, the minimum
cut or the maximum flow of this graph is the same as the global minimum of
the energy function (Greig et al. 1989).

A related concept for the max-flow is the submodularity. Let S be a finite
set and ¢ : 2° — R be a real-valued function defined on the set of all subsets
of §. U is called submodular if for arbitrary X, Y C S

9(X) +9(Y) 2 g(XUY)+g(XNY) (10.37)

When the energy function is submodular, the following algorithm produces
a graph that represents the energy function.

Introduce two auxiliary vertices s and ¢ (source and sink), and let G =
(V,€) be the digraph to be constructed, with V = S U {s,t}. The following
describes how to construct the edge set £. This can be done in two parts.

For the closeness terms Vi (i, f;), Vi € S, according to the definition of sub-
modularity, all functions with only one variable are submodular. Therefore,
an energy function with the V; term only is submodular. If V4 (4, 1) > V4 (4, 0),
then add an edge < s, > with the weight w, ; = Vi1 (¢, 1) —V1(3, 0); otherwise,
add an edge < i,t > with the weight w; , = V1(4,0) — V4 (¢,1). This can be
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done using a procedure edge(i, £): if £ > 0, then add an edge < s,i > with the
weight . Otherwise, add an edge < i,t > with the weight —/; see Fig. 10.6.

The smoothness term V5 is submodular if it satisfies the following condi-
tion:

Va(iyi',0,1) 4+ Va(i,i',1,0) > Va(i,7',0,0) + Va(i,#',1,1)  Vi,i' €S (10.38)

The digraph for representing a smoothness term V5(4,4’, f;, fi) can be con-
structed as follows (see also Fig. 10.6):

e edge(i, Va(i,i',1,0) — Va(i,i',0,0));

o edge(i', Va(i,i',1,1) — Va(i,d',1,0));

e add anedge < 7,7’ > with the weight w; ;» = Va(i,4,0,1)+Va(4,4',1,0)—
Va(i,i',0,0) — Va(i, ', 1,1).

A digraph is thus constructed for a submodular energy function. A
max-flow algorithm can then be applied to this graph to find the opti-
mum. The necessary condition for finding the exact optimum of binary
labeling in polynomial time is that the energy function be submodular
(Kolmogorov and Zabih 2004). If the energy function can be expressed as
Ve, (f) + Ve, (f) + Vey(f), this is also the sufficient condition (Kolmogorov
and Zabih 2004). Methods exist for constructing digraphs for nonsubmodular
energy functions; see (Kolmogorov and Rother 2007).

S S

wq

%

w3

Figure 10.6: Construction of edges of a digraph for the closeness term (left and
middle) and the smoothness term (right) of a submodular energy function.

10.4.3 Multilabel Graph Cuts

Minimization of a convex energy function with multiple discrete labels can
be solved exactly. Assuming that the discrete label set is ordered (such as
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1 <2< ... < M as the depths for stereo vision (Roy and Cox 1998)) and
the smoothness term is convex, then the original multilabel problem can be
transformed into a two-label one for a graph with an augmented set of nodes
(sites) and solved using a two-label graph cut method (Roy and Cox 1998).
This finds a global solution.

Minimization of a more general energy function with multiple discrete
labels is an NP-hard problem. Numerous algorithms have been proposed to
approximate the global solution with a lower complexity. Such an approxi-
mation could be done using graph cuts by transforming the original problem
to an equivalent problem of multiway cuts of a special graph constructed
according to the primal minimization problem (Boykov et al. 1998). The two
algorithms presented in (Boykov et al. 2001), a—3 swap and a-expansion, use
methods of iteratively solving multiple two-label graph cuts and achieve bet-
ter computational performance. It is shown that the a-expansion algorithm
has a linear time complexity w.r.t. the number of labels (O(M)), whereas
a—f3 has an O(M?) complexity. The a-expansion can be further improved to
achieve a logarithmical time complexity (Lempitsky et al. 2007). The follow-
ing introduces the a-expansion and a—3 swap algorithms.

a-expansion

The a-expansion algorithm (Boykov et al. 2001) assumes that the smoothness
prior term V5 is a metric, that is

o Vo(fi, fir) =0, Va(fi, fir) =0 fi = fu,
° ‘/Z(fzafz’) = ‘é(fi’?fi)v

o Va(fi, fir) < Valfis fir) + Valfir, fir).

such that the submodularity condition (10.37), which is weaker than the
aforementioned convexity condition, is satisfied. Each iteration considers an
a € L value and the two-label set of {a,non-a}, and solves the two-label
graph cut problem. The algorithm decides whether or not a site i € S, f; # «
needs to change from non-a to a. The iteration continues until the energy
does not decrease any more; see Fig. 10.7. The energy of the approximate
solution is upper-bounded by cU*, where U* is the global minimum of the
original energy function and ¢ > 1 is a constant that depends on the original
energy function.

a—0 Swap

The a—3 Swap (Boykov et al. 2001) is an iterative graph cut algorithm ap-
plicable to situations when the smoothness term V5 is semimetric, i.e.,

o Vo(fi, fir) >0, Valfi, fir) =0 fi = fir;
o Vo(fi, fir) = Valfir, fi);
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Begin
1. Initialize f with an arbitrary labeling;
2. Flag: = false;
3. For each label a € L;
3.1 Find f = arg min E(f') among f" within one a expansion of f;
3.21f E(f) < E(f), set f:= f and Flag: = true;
4. If Flag = true goto step 2
5. Return f;
End

Figure 10.7: a-expansion Algorithm

It chooses two labels o, 8 € L in each iteration. Let S, = {i € S | fi =
a} and Sg = {i € S| fi = B}. A two-label graph cut algorithm is used
to determine two subsets, S’a c S, and 5‘5 C Sp, that need to swap the
labels. The iteration continues until the energy function stops decreasing; see
Fig. 10.8.

Begin
1. Initialize f with an arbitrary labeling;
2. Flag: = false;
3. For each pair {«, 8} € L;
3.1 Find f = argmin E(f') among f’ within one a — 3 swap of f;
3.2 1If E(f) < E(f), set f:= f and Flag: = true;
4. If Flag = true goto step 2
5. Return f;
End

Figure 10.8: a3 swap algorithm

10.5 Genetic Algorithms

Genetic algorithms (GAs) (Holland 1975; Goldberg 1989) are another class
of heuristic procedures for global optimization. Inspired by the principle of
natural evolution in the biological world, the procedures simulate the evo-
lutionary process in which a population of individuals who have the highest
goodness-of-fit values survives.
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generate initial population P = {f1, ... f"};
compute E(f) Vf € P;
repeat
select two individuals from P;
recombine the individuals to produce two offsprings;
compute E(f) of the offsprings;
update P with the offsprings;
until (converged);
return f = argminyep E(f);

Figure 10.9: A standard genetic algorithm.

10.5.1 Standard GA

Figure 10.9 illustrates a standard genetic algorithm for unconstrained, com-
binatorial optimization.! Initially, a number of (say, n = 50) individuals are
generated, yielding a population P. An individual is determined by his chro-
mosome f, which is a string of m genes (labels) f; (i =1,...,m).

At a point of the evolution, two individuals are randomly selected for
mating. The selection is done according to a scheme that favors the fitter
individuals (with lower E value); the lower the value of E(f), the more likely
f will be selected. For example, f may be selected with a probability propor-
tional to 1 — % or a monotonically increasing function of it, assuming

E(f) is nonnegative. There are numerous selection schemes (Goldberg 1989).

Recombination takes place between the two individuals selected. The
mechanisms of crossover and mutation are typically used for this. Figure 10.10
illustrates two such basic operations in which a gene can take any alphanu-
meric value. Crossover takes two individuals, cuts their chromosome strings
at some randomly chosen position, and recombines the opposite segments to
create two offsprings. Crossover is not always invoked; it is applied with a
probability p. typically between 0.6 and 1. If it is not applied, the offsprings
are simply the duplicates of the selected individuals. Mutation is applied to
each offspring after the crossover. It randomly alters a randomly chosen gene
with a small probability p,,, typically 0.001. As is usual in GA practice, there
are many crossover and mutation operators.

The offsprings are then added to P, and the two least fit individuals (i.e.,
those with the highest E(f) values) are removed from the population P.
As the evolution continues in this way, the fitness of the best individual as

ISpecial coding of solutions into chromosomes needs to be done when GA is used for
(piecewise) continuous optimization problems.
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crossover point

v
{abcdefghij} {abcd456789}
0123456789} {0123efghij}
selecetd individuals offsprings

mutation point

{abcd456789}

mutate

{abcd456w89}

Figure 10.10: The two basic operations in recombination: crossover and mu-
tation.

well as the average fitness increases toward the global optimum. Convergence
is judged by uniformity: A gene is said to have converged when most (say
95%) of the population share the same value. The population is said to have
converged when all the genes have converged. The convergence of GAs is
obtained, but no theoretical proof is given.

Impressive empirical results for solving real and combinatorial, uncon-
strained and constrained optimization problems, such as the traveling sales-
man problem, and neural network optimization and scheduling are reported
(see (Goldberg 1989) for a review). Applications in computer vision are also
seen (Bhanu et al. 1989; Ankenbrandt et al. 1990; Hill and Taylor 1992).
Currently, there is no theory that explains why GAs work. However, some
hypotheses exist. Among these are the schema theorem (Holland 1975) and
building block hypothesis (Goldberg 1989).

10.5.2 Hybrid GA: Comb Algorithm

Combining a local search with a GA yields a hybrid GA, also called a memetic
algorithm (Moscato 1989; Radcliffe and Surry 1994). Here, a new random
search method, called the Comb method, is described for combinatorial opti-
mization. Assume that an energy function has been given that is formulated
based on the MRF theory for image restoration and segmentation. The Comb
method maintains a number of best local minima found so far, as a popu-
lation based method. It uses the common structure of the local minima to
infer the structure of the global minimum. In every iteration, it derives one
or two new initial configurations based on the Common structure (common
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labels) of the Best local minima (hence “Comb”): If two local minima have
the same label (pixel value) in a pixel location, the label is copied to the
corresponding location in the new configuration; otherwise, a label randomly
chosen from either local minimum is set to it. The configuration thus derived
contains about the same percentage of common labels as the two local min-
ima (assuming the two have about the same percentage of common labels).
But the configuration derived is no longer a local minimum, and thus further
improvement is possible. The new local minimum then updates the best ex-
isting ones. This process is repeated until some termination conditions are
satisfied.

The resulting Comb algorithm is equivalent to a GA hybridized with
steepest descent, in which the Comb initialization therein works like a uniform
crossover operator. There have been various interpretations for the crossover
operation. The idea of encouraging common structures in the Comb initial-
ization provides a new perspective for interpreting the crossover operation in
GA.

Experimental results in both image restoration and segmentation are pro-
vided to compare the Comb method with the ICM, HCF (Chou et al. 1993)
and SA. The results show that the Comb yields solutions of better quality
than the ICM and HCF and comparable to SA.

The Comb method maintains a number N of best local minima found so
far, denoted F' = {fI ..., fIN1 as a population based method. In every
iteration, it derives a new initial configuration from F' and performs steepest
descent using the initial configurations derived. If the local minimum found
is better than an existing one in F', it replaces it.

Ideally, we desire that all local minima in F' converge towards the global
minimum f19°°%*] " in which case, there must be
finh = glotoball g <y < N (10.39)

3

for all i € S. We call fi[gl(’ba” the minimal label at i. To achieve (10.39), all the

labels at 4, { fi[n]|Vn}, should finally converge to the minimal label fi[g toball
The Comb is performed with this objective.

The following heuristic is the basis for deriving new initial configurations.
Although fIY, ..., fIN! are local minima, they share some structure with the
global minimum fl9%b@ll More specifically, some local minima f[™ have the

minimal label fi["] = fi[gl‘)ba” for some i € S. Figure 10.11 shows the (approxi-
mate) global minimum for an MAP-MRF restoration problem and some local
minima found by using the multi-start method with initially random config-
urations. A statistic over a number of N = 10 local minima is made to see
how many minimal labels they have. Table 10.1 shows the statistic in terms
of the percentile of the sites (pixels) ¢ € S at which at least k local minima
£ have the minimal label f" = flotobal],

The Comb initialization is aimed at deriving configurations having a sub-
stantial number of minimal labels so as to improve F' toward the objective
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Figure 10.11: The global minimum (upper left) and five local minima. The
local minima share some structure with the global minimum.

of (10.39). Although a configuration with a larger number of minimal labels
does not necessarily have a lower-energy value, we hope that it provides a
good basis to start with (i.e., it can serve as a good initial configuration).

Table 10.1: Percentile (rounded up to integers) of the sites (pixels) i € S at

_ f[global]

which at least k local minima fI") have the same label fi[n] as the

global minimum floteball,

E| 0 |1 |2]|3]|4]5 6 7|8]9]10
% | 100 | 98 | 95 [ 87 | 75 | 60 | 43 | 28 | 16 | 7 | 2

The Comb algorithm is described in Fig. 10.12. The initialization at the
beginning of the Comb algorithm is done according to a uniform distribution
like the multi-start method. This is followed by iterations of four steps. First,
two local minima in F, fl4 and I, (a # b), are randomly selected accord-
ing to a uniform distribution. Second, a new initial configuration f% is de-
rived from 1% and fI using the standard Comb initialization, which will be
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comb_initialization (£, flt], F)

begin
for (each i € §) do:
if (1) == " && rand[0,1] < 1—7)
then fI% = fll;
else
£ = rand(0);
end
Comb_Algorithm
begin
initialize the set F' = {fI1, ... fINI},
do {
random_selection(fl4, fI¥) F):
comb_initialization(f%!, flal, f[t1).
steepest_descent(f*, f10);
update(F, f*);
} until (termination condition satisfied);
return(arg min ;e g E(f));
end

Figure 10.12: The Comb algorithm.

explained shortly. Then, steepest descent is applied to f[% to produce a local
minimum f*. Finally, the set F' is updated by f*: If E(f*) < maxsepr E(f),
then the configuration arg max{ f|f € F'}, which has the highest energy value,
higher than E(f*), is replaced by f*. The termination condition may be that
all configurations in F' are the same or that a certain number of local minima
have been performed. The algorithm returns the best local minimum in F
(i.e., the one having the lowest energy).

The central part of the Comb method is the derivation of new initial
configurations. The Comb is aimed at deriving £ in such a way that fI°
contains as many minimal labels as possible. Because the minimal labels
are not known a priori, the Comb attempts to use common structure, or
common labels, of fl9 and fI’! to infer the minimal labels. We say that
feemm is a common label of flal and £ if fromm = fi[a] = fi[b]. The Comb
makes a hypothesis that f™" is a minimal label if fi[a] = fi[b]. The Comb
initialization schemes are illustrated as follows:
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1. The basic Comb initialization. For each ¢ € S, if fi[a] and fi[b] are iden-
tical, then set fi[o] = f[a]; otherwise set fi[o] = rand(L), which is a label

3
randomly drawn from L. The use of the common label in the initial
configuration encourages the enlargement of common structure in the

local minimum to be found subsequently.

2. The standard Comb initialization. The basic Comb initialization is ac-
cepted with a probability 1 — 7, where 0 < 7 < 1. The probabilistic
acceptance of common labels diversifies the search and prevents F' from
converging to a local minimum too soon. The standard Comb initial-
ization is shown in the upper part of Fig. 10.12, where rand|0, 1] stands
for an evenly distributed random number in [0, 1].

Then, how many minimal labels are there in f[% as the result of copying
common labels(i.e., as the result of inferring minimal labels using common
labels)? In supervised tests where the (near) global minimum is known, we
find that the percentage of minimal labels in £ is usually only slightly
(about 1.0-2.0%) lower than those in fl? and fI’l. That is, the number of
minimal labels retained in fI° is about the same as those in fl% and f[!.
Given this and that f[% is no longer a local minimum like f[% and f[*!, there
is room to improve f1% using a subsequent local minimization. This makes it
possible to yield a better local minimum from £l

There are two parameters in the Comb algorithm, N and 7. The solution
quality increases (i.e., the minimized energy value decreases) as the size of F,
N, increases from 2 to 10, but remains about the same (probabilistically) for
greater N values; and a larger N leads to more computational load. Therefore,
we choose N = 10. Empirically, when 7 = 0, the algorithm converges sooner
or later to a unique configuration, and choosing a smaller N makes such a
convergence quicker. But 7 = 0 often gives a premature solution. The value
of 7 =0.01 is empirically a good choice.

The Comb algorithm corresponds to a hybrid GA as described in
Fig. 10.13. The standard Comb initialization is effectively the same as a
crossover operation followed by a mutation operation, the major and minor
operations in genetic algorithms (GA) (Goldberg 1989). More exactly,

e the basic Comb corresponds to uniform crossover and

e the probability acceptance in the standard Comb corresponds to mu-
tation.

In GA, two offspring, fi[Ol] and fi[02], are produced as the result of crossover.
In the uniform crossover, either of the following two settings are accepted
with equal probability:

(i) 10U = flol anq fl02l = ¢

7

(ii) f10U = £ and 02 = gl
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So, if fi[a] = fi[b], there must be fi[m] = fi[OQ] = fi[a], just as in the Comb
initialization. This encourages common labels because common labels are
copied to the new initial configurations; in contrast, noncommon labels are
subject to swap. The discussion above is about the uniform crossover. It
should be noted that even the simplest one-point crossover also works in a
way that encourages common labels.

The above suggests that the essence of both the Comb and GA is cap-
tured by using common structures of local minima. This is supported by the

fact that the original Comb and the GA-like Comb yield comparable results:
In the GA-like Comb algorithm (Fig. 10.13), when fi[a] #+ f[b], fi[m] and fi[OQ]
inherit the values of fi[“] and fi[b], as does a crossover operator. However, set-
ting fi[m] and fi[OQ] to a random label rand(L) (i.e., not necessarily inheriting
fi[a] and fi[b]) leads to comparable results as long as the common labels are
copied to fi[O] when fi[a] =f [ol, Moreover, whether to derive one initial config-

1
uration fI% or two initial configurations f°’ and f1°% does not matter; both
schemes yield comparable results. In summary, the Comb and the GA-like
Comb produce comparable results, and this suggests that retaining common
labels is important and provides an interpretation for the crossover operation
in GA.

The Comb is better than the multi-start method. Running a steepest
descent algorithm a number of times using the Comb initialization gets a
better solution than running it the same number of times using the inde-
pendent initialization of multi-start. The Comb has a much higher efficiency
in descending to good local minima because it makes use of the best local
minima.

To summarize, the Comb attempts to derive good initial configurations
from the best local minima found so far in order to achieve better solutions.
To do so, it uses the common structure of the local minima to infer label
values in the global minimum. An initial configuration thus derived has about
the same number of minimal labels as the two local minima from which it is
derived. However, it is no longer a local minimum and thus its quality can be
improved by a subsequent local minimization. This makes it possible to yield
a better local minimum and thus increments the solution quality step by step.
The comparison shows that the Comb produces better results than the ICM
and HCF though at higher computational cost, and results comparable to the
SA at lower cost (Section 10.6.3). This suggests that the Comb can provide a
good alternative to the well-known global minimizer SA. Further, the Comb
algorithm is applicable, in principle, to many optimization problems of vision
and pattern recognition.
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GA _comb_initialization(fl, fl*, F)
begin
foreachi € S
/* uniform crossover */
if (£ == ")
then fl0 = fl02 _ flal,
else if (rand[0,1] < 0.5)
FOU _ plal g 402 _ b,
else
01— Bl g 0 flel,

/* mutation */
if (rand[0,1] < 1)
fi[Ol] = rand(L);
if (rand[0,1] < 7)
F— a0
end

GA_Comb_Algorithm
begin
initialize F = {fI1, ..., IV},
do {
random_selection(fl?, fI¥) F);
GA _comb_initialization(f01, f02  flal f[t]).
steepest_descent (f*!, f01);
steepest_descent(f*2, f102]);
update(F, f**, f*?);
} until (termination condition satisfied);
return(argminse g E(f));
end

Figure 10.13: A GA-like Comb algorithm.

10.6 Experimental Comparisons
10.6.1 Comparing Various Relaxation
Labeling Algorithms

In the following experiments, we compare several algorithms for combinatorial
minimization and for constrained minimization:
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1. ICM of Besag (1986),

2. RL of Hummel and Zucker (1983),

3. RL of Rosenfeld, Hummel, and Zucker (1976),
4. MF annealing of Peterson and Soderberg (1989),
5. SA of Geman and Geman (1984),

6. Annealing ICM (Section 10.3.2).

The comparison is in terms of (1) the solution quality measured by the max-
imized gain G(f*), (2) the computational cost measured by the number of
iterations required and (3) the need for heuristics to tune the algorithm.

The schedules for the annealing algorithms are as follows. There are two
annealing schedules for MFA. In the first schedule, which is given in (Peterson
and Soderberg 1989), T is decreased according to T¢HD «— 0.997®); we set
the initial temperature as 7© = 10° x M x m. The second is also in the
form T+ — gEHDT®  hut £+ is chosen on an ad hoc basis of trial and
error to get the best result, which is

0.9 if S <0.9rmand kY <0.9
D =2 095 if S < 0.95 rmand k® < 0.95 (10.40)
0.99 otherwise

where S is the saturation defined in (10.23). We refer to these two schedules
as MFA-1 and MFA-2, respectively. For the SA, it is 7¢tD «— 0.997® but
with the initial temperature set to 10° x M x m; annealing stops if the de-
sired number of acceptances is not achieved at 100 successive temperatures
(Kirkpatrick et al. 1983). These are purposely tuned for the best result pos-
sible. The schedule for the annealing ICM is quite tolerant; it is chosen as
T+ — 0.97® with T = 10.

The initial labeling is assigned as follows. First, we set p§0>(1 ) =1+
0.001xrnd (Vi,I) as the start point common to all the algorithms compared,
where rnd is a random number evenly distributed between 0 and 1. For the
continuous algorithms (2, 3, and 4), we normalized p(®) to satisfy (9.19). For
the discrete algorithms (1, 5, and 6), i is initially labeled according to maximal
selection, fi(o) = I* = argmax; pz(-o)(l). The convergence of the continuous
algorithms is judged by checking whether the saturation, S, is larger than
0.99.

The test bed is the MRF matching of weighted graphs. Here, a node cor-
responds to a point in the X —Y plane. Two random graphs, each containing
m = M nodes, are randomly generated as follows. First, a number of [2m]
nodes, where |-] is the “floor” operation, are generated using random num-
bers uniformly distributed within a box of size 100 x 100. They are for the

first graph. Their counterparts in the other graph are generated by adding
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Gaussian noise of N (0,0?) to the z and y coordinates of each of the nodes in
the first graph. This gives L%mj deviated locations of the nodes. Then, the
rest of the [%m} nodes in each of the two graphs are generated independently
by using random numbers uniformly distributed in the box, where [-] is the
“ceiling” operation. This simulates outlier nodes.

The steps above generate two weighted graphs, G = (S,d) and G’ =
(L,D),where S = {1,...,m}and £ = {1,..., M} index the sets of nodes and
d = [d(i,i"))ives and D = [D(I,I')]11ec are the distances between nodes
in the first and second graphs, respectively. The weights in d and D, which
reflect bilateral relations between nodes, are the basis for matching, whereas
unary properties of nodes are not used in the test. We augment £ by a special
node, called the NULL node and indexed by 0, into £’ = {0,1,...,M}. The
purpose is to cater for the matching of outlier nodes. Refer also to Section 4.1
for the graph representation. The matching is to assign a node from £’ to
each of the nodes in § so that some goodness (cost) of matching is maximized
(minimized).

The posterior energy formulated in Section 4.2 is used to measure the
cost of a matching f = {f1,..., fm}. To be suitable for real, as opposed to
combinatorial, computation, the problem is then reformulated in terms of
relaxation labeling (see Section 9.3.2). From the two weighted graphs, the
compatibility matrix [r; (I, I’)] is defined as

y Consty — [d(i,i') — D(I,1")]* if I" #0 and I’ # 0
T4 (I, I ) = .
’ Consty — v9g otherwise
(10.41)
where vy > 0 is a constant. The gain function is then

GH=3 3 3 a1 pd) pu(l') (10.42)

i€SIeL eSS i'#il'eLl’!

To reduce storage, we used only one byte (8 bits) to represent the compatibil-
ity coefficients r; (I, I"). Positive values are truncated to an integer between
0 and 255 while negative values are truncated to zero. In this case, we set
Consty = 255. Although the precision of the compatibility coefficients is low,
good results are still obtained; this demonstrates the error-tolerant aspect of
the RL minimization approach.

The purpose of the MRF and RL formulations is to provide the compat-
ibility matrix. Our ultimate objective here is more abstract: to compare the
ability of the algorithms to solve the minimization problem expressed, given
the posterior probability function or the corresponding compatibility matrix.

The following results are obtained after 200 runs. Figure 10.14 illustrates
the solution quality in terms of the maximized gain as a function of the noise
level o. SA provides the best result when carefully tuned, followed by the
Hummel-Zucker algorithm, whereas the quality of the ICM solution is the
poorest. The annealing procedure (see Section 10.3.2) significantly improves
the quality of the ICM solution.
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Figure 10.14: The maximized gain G(f*) (after dividing by m?) for m = 10
(top) and m = 20 (bottom); the higher, the better.
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The performance of MFT annealing is after the Hummel-Zucker algorithm
when m = M = 10. However, for “harder” problems (e.g., when m = M =
20) the results produced by using the simple schedule MFA-1 deteriorate
quickly as the noise level ¢ increases, dropping to even lower than that of
ICM. For large m and M and high o2 values, the algorithm is often trapped
in the all-NULL solution, which is a significant local optimum. We also found
that a lower schedule (i.e., smaller xk in T« kT') does not necessarily yield
better solutions.

Figure 10.15 demonstrates the cost in terms of the number of iterations
as a function of the noise level o. ICM converges very fast, after just a few
iterations. In contrast, the number for SA with the specified heuristic schedule
is two to four orders higher than all the deterministic algorithms. Figure 10.16
shows the efficiency measured by the maximized-gain/iteration-number ratio.
The ordering by the efficiency is roughly consistent with the inverse ordering
by the iteration number.

Besides the solution quality and the cost, an important factor that must
be taken into account is the need for, and difficulties in, tuning the annealing
schedule. It is well known that the schedule is critical to the success of SA, and
it is an area of study (Aarts 1989). We add that the schedule is also critical
to the mean field annealing. How to choose an optimal schedule depends not
only on the type of the problem, but also on the size. Finding a good heuristic
schedule based on trial and error can be tedious.

The comparison leads to a conclusion in favor of the Hummel-Zucker
algorithm. It yields good-quality solutions quite comparable with the time-
consuming simulated annealing; yet, it is much more efficient than SA, thus
balancing well between quality and cost. Furthermore, it avoids the cum-
bersome needs for the heuristic tuning of annealing schedules in annealing
algorithms. MFT annealing would also be a good choice if the rapid deterio-
ration of solutions to “harder” problems could be remedied. An experimen-
tal result (Li 1995¢) shows that the Lagrange-Hopfield algorithm described
in Section 9.5 yields solutions of quality similar to those produced by the
Hummel-Zucker algorithm.

An earlier experimental comparison of several RL algorithms in terms of
the number of iterations (cost) and the number of errors (quality) was done
by Price (1985). Price concluded that the algorithm of Faugeras and Price
(1981) is the best, that of Hummel and Zucker (1983) is about as good, that
by Peleg (1980) converges too fast to yield a good result, and that of Rosen-
feld, Hummel, and Zucker (1976) performs only adequately. The goodness of
interpretation in (Price 1985) relates not only to algorithms themselves but
also to how the problem is formulated (e.g., the definition of compatibilities),
which is a combination of the two issues, problem formulation and computa-
tional algorithm. Here, we measure the solution quality by the quantitative
gain G(f*) and regard RL as just a mechanism of minimization rather than
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one of interpretation. In our comparison, our interest is in how well an algo-
rithm can minimize an energy regardless of the problem formulation.

10.6.2 Comparing the ALH Algorithm with Others

In the following, two experiments are presented, one for MAP-MRF image
restoration and the other for segmentation, to compare the performance of
the following algorithms: (1) ALH of this chapter, (2) ICM (Besag 1986),
(3) HCF (Chou et al. 1993) (the parallel version), (4) MFA (Peterson and
Soderberg 1989; Yuille and Kosowsky 1994) (see Section 10.2), and (5) SA
with the Metropolis sampler (Kirkpatrick et al. 1983) implemented based on
a procedure given in (Press et al. 1988). The comparison is in terms of (i)
the solution quality measured by the minimized energy values and (ii) the
convergence rate measured by the number of iterations. In calculating the
energy, E(f) of (9.94) is used where, for the continuous algorithms of ALH
and MFA, f is obtained from p by a maximum selection (winner-take-all)
operation.

For ALH, p = 100 and T = 10° are fixed, and 3 is increased from 1 to
100 according to 3 « 1.013. The convergence criterion is [[u(® —u=1|, <
0.0001. The schedule for SA is Tt « 0.9997®) (with 7 = 10*) and for
MFA is TtHD — 0.997®) (with T(©) = 10?).

The first set of experiments is for MAP-MRF restoration performed on
three synthetic images of M = 4 gray levels, and Figs. 10.17-10.19 show the
results. In each figure, (a) is the true image with M = 4 gray levels, the label
set £ = {1,2,3,4}, and the pixel gray values also in {1,2,3,4}. The clique
potential parameters ay and (8, - -+, B4) for generating the three images are
shown in Table 10.2. (b) is the observed image in which every pixel takes a
real value that is the true pixel value plus zero-mean i.i.d. Gaussian noise
with standard deviation o = 1. (c) is the maximum likelihood estimate that
was used as the initial labeling. (d) to (h) are the solutions found by the
algorithms compared.

Table 10.3 shows the minimized energy values, the error rates, and the
iteration numbers required. It can be seen from the table that objectively
ALH performs the best out of the three deterministic algorithms in terms of
both the minimized energy values. Overall, the solution quality is ranked as
“ICM < HCF < MFA < ALH < SA”, which is in agreement with a subjective
evaluation of the results. We also implemented a parallel ICM using codings
but the results were not as good as for the serial ICM.

The second experiment compares the algorithms in performing MAP-
MRF segmentation on the Lena image of size 256 x 240 into a tri-level seg-
mentation map. The results are illustrated in Fig. 10.20. The input image
(a) is the original Lena image corrupted by the i.i.d. Gaussian noise with
standard deviation 10. The observation model is a Gaussian distribution of
standard deviation 10 with mean values 40, 125, and 200 for the three-level
segmentation. An isometric MRF prior is used, with the four § parameters
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()| (b)| (¢) | (d)
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Figure 10.17: Restoration of image no. 1. (a) Original image. (b) Observed
noisy image. (¢) Maximum likelihood estimate. (d) ALH solution. (e) ICM
solution. (f) HCF solution. (g) MFA solution. (h) SA solution.

Table 10.2: The MRF parameters (« and 3) and noise parameter o for gen-
erating the three images.

\ o las | B | Bo | B3 | B4
ImageNo.1 | 1| 0 | -1 |—-1|—-1]1

ImageNo.2 | 1| 0 | =2 | -2 | 1 1
Image No.3 | 1 | 0 1 1 1 1

being (—1,—1,—1, —1). (b) is the maximum likelihood estimate that was used
as the initial segmentation. (¢)—(f) are the segmentation results of ALH, ICM,
MFA, and SA, respectively. Table 10.4 illustrates the minimized energy (i.e.,
maximized posterior probability) values and the iteration numbers numeri-
cally. The solution quality is ranked as “HCF < ICM < SA < ALH < MFA”.

According to the iteration numbers, the ALH method takes much fewer
iterations than SA, about 0.2%4.4%, to converge. Although it takes more
iterations than the other deterministic algorithms, it is not as slow as it
might seem. That the ALH converged after thousands of iterations was due
to the stringent convergence criterion ||u® — u(=1|, < 0.0001. However,
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Figure 10.19: Restoration of image 1no.3 (refer to Fig. 10.17 for legend).

looking at the energy evolution curve in Fig. 10.21 (SA is not included there
because it is far from the convergence within a thousand iterations), we see
that the ALH reaches a solution better than ICM and HCF after only a dozen
iterations and becomes nearly convergent after a hundred of iterations. The
MFA needs five hundred iterations to converge.

10.6.3 Comparing the Comb Algorithm with Others

In the following, two experiments are presented, one for MAP-MRF image
restoration and the other for segmentation, to compare the performance of
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Table 10.3: The minimized energy values (top block), error rates (middle
block), and iteration numbers (bottom block) for images 1-3.

’ ALH \ ICM \ HCF \ MFA \ SA ‘
Image No. 1 | —11049 | —10003 | —10049 | —10824 | —11988
Image No. 2 | —10191 | —8675 | —9650 | —10073 | —11396
Image No. 3 | —26974 | —25881 | —26629 | —26716 | —27526
Image No. 1 | 0.268 0.349 0.367 0.291 0.164
Image No. 2 | 0.360 0.438 0.414 0.381 0.306
Image No. 3 | 0.212 0.327 0.273 0.181 0.125
Image No. 1 3654 7 31 553 83034
Image No. 2 1456 6 29 553 68804
Image No. 3 2789 7 36 560 92721

Table 10.4: Numerical comparison of the algorithms on the segmentation of
the Lena image.

] \ ALH \ ICM \ HCF \ MFA \ SA ‘
Min. Energy | —180333 | —171806 | —176167 | —180617 | —173301
Iterations 1255 7 38 545 593916

the following algorithms: (1) the Comb algorithm; (2) the ICM (Besag 1986);
(3) the HCF (Chou et al. 1993) (the parallel version); and (4) the SA with the
Metropolis sampler (Kirkpatrick et al. 1983). For the Comb, the parameters
are N = 10 and 7 = 0.01. The implementation of SA is based on a procedure
given in (Press et al. 1988). The schedules for SA are set to T(*+1) « 0.9997(*)
with 7(® = 10%. The initial configurations for ICM, HCF, and SA are taken
as the ML estimate, whereas those in F' for the Comb are entirely random.
The termination condition for Comb is that all configurations in F' are the
same or that 10000 new local minima have been generated.

The first set of experiments is for MAP-MRF restoration performed on
three synthetic images of M = 4 gray levels, shown in Figs. 10.22-10.24. The
original has the label set £ = {1,2,3,4} and the pixel gray values also in
{1,2,3,4}. Table 10.5 gives the clique potential parameters a; and fy, -- -,
(B4 for generating the three types of textures and the standard deviation o of
the Gaussian noise.

The second experiment compares the algorithms in performing MAP-
MRF segmentation on the Lena image of size 256 x 240 into a tri-level seg-
mentation map. The results are illustrated in Fig. 10.25. The input image is
the original Lena image corrupted by the i.i.d. Gaussian noise with standard
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Figure 10.20: Segmentation of the Lena image. Top raw: Input image, max-
imum likelihood segmentation, ALH solution. Bottom raw: ICM solution,
MFA solution, SA solution.

Table 10.5: The MRF parameters (a and ) and noise parameter o for gen-
erating the three images.

| Image o | oz | Bi | B2 | B5 | B4 |
No. 1 1 0 -1 -1 -1 1
No. 2 1 0 -2 =2 1 1
No. 3 1 0 1 1 1 1

deviation 10. The observation model is assumed to be the Gaussian distribu-
tion superimposed on the mean values of 40, 125 and 200 for the three-level
segmentation. An isometric MRF prior is used, with the four § parameters
being (—1,—1,—1,-1).

Table 10.6 compares the quality of restoration and segmentation solu-
tions in terms of the minimized energy values. We can see that the Comb
outperforms the ICM and the HCF and is comparable to SA. A subjective
evaluation of the resulting images would also agree to the objective numerical
comparison. The quality of the Comb solutions is generally also better than
that produced by using a continuous augmented Lagrange method developed
previously (Li 1998b).
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Figure 10.21: The solution evolution curves for image no.1 (top) and the Lena
image (bottom).

The Comb as a random search method needs many iterations to con-
verge, the number increasing as 7 decreases. All the Comb solutions with
7 = 0.01 are obtained when the limit of generating 10,000 local minima is
reached. This is about 1000 times more than the fast-converging ICM and
HCF. Nonetheless, the Comb takes about 1/20 of the computational effort
needed by the SA.

The Comb algorithm does not rely on initial configurations at the begin-
ning of the algorithm to achieve better solutions; the maximum likelihood
estimate can lead to a better solution for algorithms that operate on a single
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Figure 10.22: Restoration of image 1. (a) Original clean image. (b) Observed
noisy image (input data). (c) Comb solution. (d) ICM solution. (¢) HCF
solution. (f) SA solution.

configuration, such as the ICM, HCF, and SA, but not necessarily for the
Comb.

10.7 Accelerating Computation

The MRF configuration space for image and vision analysis is generally
large, and the search for an energy minimum is computationally intensive.
When the global solution is required, the computation is further increased
by complications incurred by the problem of local minima and can well be-
come intractable. Unrealistic computational demand has been criticism of the
MAP-MRF framework. Efforts have been made to design efficient algorithms.
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Figure 10.23: Restoration of image 2. Legends same as Fig. 10.22.

Table 10.6: The minimized energy values for the restoration of images 1-3
and the segmentation of the Lena image.

’ [ Comb | ICM | HCF | SA |
No. 1 [[ —12057 [ —10003 [ —10269 | —11988
No. 2 | —10944 | —8675 | —9650 | —11396
No. 3 | —27511 | —25881 | —26629 | —27526

[ Lena [| 175647 | —171806 | —167167 | —173301

10.7.1 Multiresolution Methods

Multiresolution methods provide a means for improving the convergence of it-
erative relaxation procedures (Hackbusch 1985). It was shown by Terzopou-
los (1986a) that multiresolution relaxation can be used to efficiently solve
a number of low-Level vision problems. This class of techniques has been
used for MRF computation by many authors (Konrad and Dubois 1988b;
Barnard 1989; Bouman and Liu 1991; Kato et al. 1993b; Bouman and Shapiro
1994). Gidas (1989) proposed a method that uses renormalization group the-
ory, MRF’s, and the Metropolis algorithm for global optimization. How to
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Figure 10.24: Restoration of image 3. Legends same as Fig. 10.22.

preserve the inter-relationships between objects in the scene using the renor-
malization group transformation has been studied in (Geiger and Kogler Jr.
1993; Hurn and Gennison 1993; Petrou 1993).

An important issue in multiresolution computation of MRF’s is how to
preserve the Markovianity and define consistent model descriptions at dif-
ferent resolutions. In general, the local Markovian property is not preserved
at the coarse levels after a sub-sampling. In (Jeng 1992), two theorems are
given for a periodic sub-sampling of MRF’s. One gives necessary and suffi-
cient conditions for preserving the Markovianity and the other states that
there is at least one sub-sampling scheme by which the Markovianity is pre-
served. A multiresolution treatment is presented by Lakshmanan and Derin
(1993) in which (possibly) non-Markov Gaussian fields are approximated by
linear Gaussian MRF’s. In (Heitz and Bouthemy 1994), a consistent set of
parameters are determined for objective functions at different resolutions; a
nonlinear multiresolution relaxation algorithm that has fast convergence to-
wards quasi-optimal solutions, is developed. A general transformation model
is considered in (Perez and Heitz 1994) as the “restriction” of an MRF, de-
fined on a finite arbitrary non-directed graph, to a subset of its original sites;
several results are derived for the preservation of the Markovianity which
may be useful for designing consistent and tractable multiresolution relax-
ation algorithms.
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Figure 10.25: Segmentation of the Lena image. (a) The noisy Lena image. (b)
ML configuration. (¢) Comb solution. (d) ICM solution. (e¢) HCF solution.
(f) SA solution.

10.7.2 Use of Heuristics

Apart from theory-supported methods, heuristics are often combined into the
search. Solution candidates are quickly located using some efficient means.
They are then evaluated by the derived energy function. Because the num-
ber of such candidates is usually small, the energy values can be compared
exhaustively to give the minimal solution.

Not to miss the true global solution is crucial to successfully applying
heuristics. One has to balance between efficiency and the danger of missing
the true solution. More restrictive heuristics reduce the number of hypotheses
generated and increase the efficiency, but they also cause a greater chance of
missing the true minimum.

The bounded noise model (Baird 1985; Breuel 1992) is a simple heuristic
for approximating noise distributions to quickly reduce the search space. By
checking whether an error is within the allowed bounds, numerical constraints
are converted into symbolic ones so that a yes-or-no decision can be made to
prune the search space. This strategy has been used in many methods where
numerical constraints have to be converted into symbolic ones. For example,
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in maximal cliques (Ambler et al. 1973), dynamic programming (Fischler and
Elschlager 1973), and constraint search (Faugeras and Hebert 1986; Grimson
and Lozano-Prez 1987), symbolic compatibilities are determined; in Hough
transform (Hough 1962; Duda and Hart 1972) and geometric hashing (Lam-
dan and Wolfson 1988), numerical values are quantized to vote accumulators.

Hypothesis-verification is another approach for efficient search. Hypothe-
ses are generated, which may correspond to peaks in Hough transform space
or geometric hashing space, leaves of an interpretation tree (Grimson and
Lozano-Prez 1987), random samples in random sampling (Fischler and Bolles
1981; Roth and Levine 1993), or result from minimal sets of image-model cor-
respondences in the alignment method (Huttenlocher and Ullman 1987). Be-
cause the number of hypothesesgenerated is much smaller than the number of
points in the original solution space, costs incurred by hypothesis evaluation
is much reduced. In (Lowe 1992), matching and measurement errors are used
to determine the probability of correctness for individual labels. Techniques
presented therein may be used to speed verification. All these have potential
applications in MRF’s to tackle the problem of low computational efficiency.





