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Human Body Analysis 

3.1 Introduction 

The response of vehicle occupants to road inputs is an important factor in the 
design of any vehicle. A suspension ought to provide the greatest possible comfort.  

On the other hand, on poor roads and in off-road operation, protection of the 
occupants from actual damage is most important. Tractor drivers in particular are 
at risk of lower-back injuries and possibly damage to viscera (liver, heart and 
brain). 

In order to assess the merits of a suspension it is accordingly necessary to 
model the seat characteristics, particular those of the cushion. A model for the 
occupant(s) is also highly desirable, as will be described below. 

The efficiency of isolation of 67 conventional seats and 33 suspension seats has 
been reported (Paddan and Griffin, 2002). The measure used was seat effective 
amplitude transmissibility (SEAT), which is the frequency-weighted root mean 
square acceleration experienced with the seat compared to that experienced with a 
rigid seat.  

For 25 car seats the SEAT value varied between 57% and 122% with a median 
value of 78%. For the 16 trucks tested the SEAT range varied between 44% and 
115%, with a mean of 87%. For seven tractors the SEAT value varied between 
57% and 118%. 

These results indicate the importance of good seat design. A key parameter is 
the characteristics of the foam material used for the seat. 

Yu and Khameneh (1999) measured the transmissibility of three different types 
of foam formulations: two rather similar toluene diisocyanate (TDI) formulations, 
and one methylene diphenyl diisocyanate (MDI). 

Using a shaped 50 kg load, displacement transmissibility for each foam was 
recorded over the range 2.5–6 Hz for inputs of 5 mm and 20 mm. At low-
amplitude inputs (5 mm) the natural frequency was around 4 Hz. For all three 
foams, the natural frequency for 20 mm inputs was found to be about 0.5 Hz lower 
than that for 5 mm. The peak transmissibility was also reduced.  
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It is clear that the foams have a softening spring characteristic with damping 
ratio increasing with amplitude.  

3.2 Human Body Response 

Tests of 12 seated humans to vertical random acceleration in the range 0.2–20 Hz 
(Mansfield and Griffin, 2000) indicated that the human body also demonstrates a 
softening spring characteristic. The apparent mass resonance frequency fell from 
5.4 Hz to 4.2 Hz as the magnitude of vibration increased from 0.25 m/s to 2.5 m/s. 
From these tests an equivalent mechanical system was developed (Wei and Griffin, 
1998a and 1998b). While Wei and Griffin were careful to point out that no specific 
identification with parts of the body can be made, it appears plausible that this 
response is that of internal organs (viscera) within the skeleton. Excessive 
stretching of the intestinal attachment tissue (the mesentery) could lead to rupture 
and internal bleeding. Similarly the liver could be damaged, which implies serious 
implications for that vital organ. The visceral mass includes the brain, which 
sloshes within the skull. The issue here is that of pressure waves. Rebound of the 
brain causes reduced pressure which is thought to be the cause of concussion.  

The resonant frequencies reported by Mansfield and Griffin for the human body 
are little greater than those found by Yu and Khameneh for mass foam cushions. 
The possibility of resonant interaction between cushion and occupant is quite 
possible. This may explain why some seats are significantly less comfortable than 
others.  

Torsional chirp (swept sine) excitation of the wrist of subjects with forearm 
supported (Lakie et al., 1984) indicated that the wrist resonant frequency fell 
markedly as the magnitude of the oscillatory input was increased. Here is evidence 
of the stiffness of tendons decreasing drastically with increasing force and hence 
displacement. 

In view of the reported experimental work, it is plausible to adopt a spring force 
of the form )( 3xxK ε− , where K is the linear stiffness and 0>ε  for both foam 
and human body in the low-frequency range.  

Hysteric damping is assumed and can be modelled via a complex stiffness 
)i1( β+K , where β  is the loss factor. This formulation guarantees non-linear 

damping which increases with amplitude, as will be shown below. The same form 
of damping in the human viscera is assumed as for foam. 

3.3 Hysteretic Damping 

For sinusoidal response (and the hysteretic model is really only valid for that 
condition) adopting the complex response:  

 tie ωAx = , (3.1) 
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 xωx i= , (3.2) 

 ,i 333 xωx −=   (3.3) 

The damping term is hence obtained as: 
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The non-linear term produces increased damping when ε  > 0. 
An effective damping ratio can be obtained as:  
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ωn being the natural frequency of the linear system. 
Assuming now that )φsin( += tωCx , a mean damping of the form  

 ω
Cε.βωn

2
)501( 2

eff
+

=ζ  (3.6) 

can be obtained. 
The frequency response of the system can be obtained and is useful in 

indicating the general behaviour of the system. 

3.3.1 The Duffing Equation 

A system governed by an equation of Duffing type (Hagerdon, 1998) 

 ( ) ( )φcos3 +=−++ tωFxxKxBxM ε  (3.7) 

can exhibit jumps in amplitude if the damping is sufficiently low or the forcing F 
sufficiently large. Such jumps are undesirable, particularly so in the case of the 
visceral organs, where injury could result. 

The type of behaviour is indicated in Figure 3.2 where the amplitude X of the 
response: 

 ( ) termsorder-highercos += tωXx  (3.8) 
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is plotted as a function of 
nω
ωp = , where 

50.

n M
Kω ⎟
⎠
⎞

⎜
⎝
⎛=  is the natural frequency of 

the linear system. 
For small F the response is virtually that of the linear system, but for larger 

values of F the response curves exhibit a buckled shape. For the top curve in 
Figure 3.1, as p is decreased slowly from a large value, when the point A is 
reached the response jumps to B. The critical condition is the vertical tangent. The 
solution at A is no longer real, while the formerly unreal solution at B becomes 
real. 

As p is increased slowly again, when the point C is reached the response jumps 
to D (for a system in which the spring hardens with amplitude, the curves lean to 
the right).  

 
Fig. 3.1. Frequency response, softening spring; p = ω/ωn 

3.3.2 Suppression of Jumps 

The loss factor β to prevent jumps can be obtained from the condition that no 
vertical tangent exists in the frequency response plot. 

The equation of motion for a single-degree-of-freedom system has the form: 

 ( ) ( )tFtFxxK
ω
x

ω
xKxM ωωεεβ cossin)( 21

3
3

+=−+⎟
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It is convenient to non-dimensionalise the equation of motion by setting ωnt =τ. 
The equation governing motion becomes 
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where fj=Fj /M, p=ω/ωn  and differentiation is now with respect to τ. 
Assuming a solution ( )τpCx sin= : 

 ( ) 1
321 fCCp =−− ε , (3.11) 

 2
3 fCeC =+ ββ , (3.12) 

where 

 ε750.e = . (3.13) 

Then 

 ( )[ ] ( ) 22
2

2
1

232321 fffCeCCeCp =+=++−− ββ , (3.14) 

where f is a chosen input. 

Jumps occur when 
p
C

∂
∂  is infinite, or more usefully, when 0=

∂
∂

C
p . 

Differentiating (3.14) with respect to C, with the condition 0=
∂
∂

C
p  

 ( )[ ] ( ) ( ) ( ) 0323112 232232 =+++−−−− CeCeCCepCeCp ββββ .  
  (3.15) 

Dividing by 2C and arranging as an equation in p 

 ( ) ( ) ( ) ( ) ( ) 0311131212 22222224 =+++−−+−− CeCeCeCeCepp β .  
  (3.16) 

Jumps are impossible if this equation has no real roots for p2 , i.e., if  

 ( ) ( ) ( ) ( )( )2222222 31113121 CeCeCeCeCe +++−−<− β  (3.17) 

or 
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i.e.,  

 ( ) ( )22

42
2

311 CeCe
Ce

++
>β . (3.19)  

The value of β to suppress jumps is a function of 2Ce . This is a measure of the 
magnitude of the nonlinear component of the spring force; see Equation 3.9. When 

12 <<Ce , to prevent jumps it is necessary that 

 2Ce>β , (3.20) 

where ε750.e = . 

For 12 >>Ce , the required value of β to prevent all jumps is 0.58, greater than 
one would expect for human tissue. However, this is an extreme case. 

Studies of the human visceral model with β around 0.3 (the level indicated by 
experimental work on cushions) suggest that jumps would occur for sinusoidal 
oscillations of the viscera in excess of 3 mm in magnitude. On the other hand, the 
value of β to prevent jumps of a foam cushion is less than 0.1. 

3.4 Low-frequency Seated Human Model 

Various detailed models of the human body exist. However, cushion and visceral 
natural frequencies are below 6 Hz. Moreover because the amplitude of road 
profile fluctuations falls with decreasing wavelength, road inputs experienced by 
vehicle occupants are predominantly at low frequency. For realistic vehicle speeds 
higher frequency inputs are not important until wheel-hop is experienced at around 
12 Hz for cars and nearer 10 Hz for freight vehicles. When traversing rough 
ground, drivers instinctively slow, reducing the frequency of input. Hence a simple 
human model suitable for low-frequency inputs is adopted here. 

The model adopted for the human body is one of those developed by Wei and 
Griffin (Wei and Griffin, 1998a). This is shown in the upper part of Figure 3.3. The 
non-linear spring Kv models stiffness effects with hysteretic effects providing 
damping. 

The motion of the visceral mass Mv is denoted by x, and that of the remainder 
Mc of the body by y. This second mass could be that of the skeleton. The authors 
also produced a two-degree-of-freedom model in order to model response at 
frequencies greater than about 8 Hz. Vehicle simulations using this model 
indicated no significantly different response for realistic road inputs and vehicle 
speeds. Hence the single-degree-of-freedom model is adopted here. 

The seat is modelled as a mass Ms and a (non-linear) spring Ks. As indicated 
above the damping terms are deduced from a hysteric model. 

A seat control force Fc is considered. This would be provided by an actuator 
fixed to the vehicle floor beneath the seat.  
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The sprung mass Ms on a spring and damper suspension is modelled since it 
acts as a low-pass filter of road inputs. In the frequency range of interest, the 
unsprung mass is neglected, as is common with truck models.  

The experimental work using vertical inputs indicates a natural frequency of the 
human body in the range 4.2–5.4 Hz, depending on the amplitude of input  
(Mansfield and Griffin, 2000). This is not far from the resonant frequencies 
reported for a loaded foam cushion (Yu and Khameneh, 1999). 

3.4.1 Multi-frequency Input 

Vehicle-occupant model for low-frequency vibration is depicted in Figure 3.2. 

 
Fig. 3.2. Vehicle and occupant model (copyright Elsevier (1998), reproduced with minor 
modifications and with the addition of the bottom part of the figure from Wei and Griffin, 
The prediction of seat transmissibility from measures of seat impedance, J Sound  Vib,Vol. 
214, N 1, used by permission) 

Ground input is indicated by zg. The unsprung mass is not modelled as at the low 
frequencies considered (below 6 Hz) it follows the road.  

Ms represents the sprung mass of the vehicle, restrained by a linear spring and 
viscous damper, as is commonly modelled. 

The cushion is modelled as a complex spring Kc with loss factor βc; Mc and Mv 
represent the two masses of the Wei and Griffin 1DOF model (Wei and Griffin, 
1998b), with Kv a non-linear spring with loss factor βv. 
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The equations of motion for an input zg  of frequency ω are: 
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where xyu −= , yzw −= and 
c

v

M
M

R = ; ωv is the natural frequency of the linear 

visceral system, ωc is the natural frequency of the total mass Mv + Mc on the linear 
cushion, ωs is the natural frequency of the sprung mass on its suspension, zg is the 
road surface displacement as experienced by the vehicle.  

In the case of vehicles, the actual ground input is nearly always a multi- 
frequency input and the response similarly. The hysteretic damper analysis of 
Section 3.3 cannot now be employed.  

The damping can be calculated by summing the contributions obtained from 
individual frequency inputs (Wettergren, 1997). However, this procedure requires 
the amplitude of vibration at each frequency to be known, calling for a continuous 
FFT of the response, which would not appear practical and would certainly add 
expense to the system. The somewhat less elegant solution of selecting a typical ω 
is the strategy adopted here.  

The power spectral density for the road is defined over a range [Ω1, Ω2] of the 
spatial frequency Ω (cycles/m); the frequency (Hz) experienced by a vehicle 
moving at speed V is V Ω. 

The excitation has the form ( )∑ + jjj tVa φπ2sin Ω , where Ωj  is a spatial 
frequency (cycles/m), V the vehicle speed and φj  a random phase angle; g is the 

time derivative ( )∑ + jjjj tVπVπa φ2cos2 ΩΩ  of the road surface 
displacement. 

This model can be used to obtain the frequency response of the system, be it 
passive or controlled.  
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3.5 Semi-active Control 

A semi-active device can only dissipate energy. Hence the damper can be on only 
when: 

 0desc, <wF  (3.24) 

otherwise Fc, des should be set to zero. This can be achieved in a dry friction control 
system by separating the plates. For a viscous damper or for a magnetorheological 
damper zero force is not possible and the best that can be achieved is to demand 
the minimal setting. 

The response Fc  of the actuator is assumed to be governed by a first-order 
system of the form: 

 desc,ccconst FFFT =+ , (3.25) 

where Tconst  is the time for the error in the response to a step demand to fall to 
36%. 

The error caused by the non-zero time constant of the actuator can be reduced 
by a process of gain compensation. The demanded force is multiplied by a factor   
γ > 1, which is found to be effective when the integration time step is less than 20% 
of the actuator time constant. For zero error after one time constant, 

( ) 581e1γ
11 .=−=

−− . 
As long as switching decisions are made several times a time constant, there 

should be no overshoot; the gain compensation procedure is found to reduce 
visceral accelerations by around 10% at vehicle speeds up to 20 m/s.  

3.6 State Observer  

To achieve comfort, it is necessary to reduce the acceleration x  of the viscera. 
This could be achieved if the relative internal displacement u and relative velocity 
u  could be controlled. However, it is not possible in practice to measure these 
quantities.  

It is therefore necessary to construct a state observer. The observer concept was 
first proposed by Luenberger (1964). 

3.6.1 Luenberger State Observer 

The most general case is the one in which no state variable are measured. This is 
termed the full-order observer. 

Consider a system with state variables x =[x1 , x2 ,…, xn] which generates an 
output y = C x which can be measured. 

If the system dynamics are given by 
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 BuAxx += , (3.26) 

where u is a vector of control inputs, an estimate z of x is given by the equation 

 )( CzyKBuAzz −++=  (3.27) 

and K is the observer gain matrix, the error e = x – z is found to satisfy 

 eKCAe )( −= . (3.28) 

The estimate z of x is governed by:  

 KyBuzKCAz ++−= )( . (3.29) 

If the eigenvalues of the matrix A – KC are chosen suitably (by an appropriate 
choice of K) the error e = x – z should decay rapidly. 

The calculation of K involves, among other steps, the formation of a 
controllability matrix and an observability matrix, and is not simple. The reader is 
referred to Crossley and Porter (1979) or Burns (2001) for details. 

In many cases, as in the application considered here, some of the variables 
(such as seat relative displacement and relative velocity) can be measured. 
However, what cannot be measured are the displacement and velocity of the 
viscera relative to the skeleton and the skeleton relative to the seat. In the case 
where only some of the state variables need to be estimated, the observer is known 
as a reduced-order state observer. 

A similar mathematical path is required for the generation of K as in the full-
order observer. 

3.6.2 Simple State Observer 

The method outlined here (Stammers and Sireteanu, 2004) requires no pre-
processing, and is simple enough to be implemented in real time. 

The relative acceleration u  can be expressed from (3.21) and (3.22) as  
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If Fc  is chosen so that 
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whenever control is possible, u is the response of a damped oscillator and will 
decay toward zero. The relative displacement w and relative velocity w  of the seat 
with respect to the sprung mass can be obtained by the use of an LVDT or a pull-
wire transducer.  

Alternatively the accelerations of the seat and the vehicle floor could be 
recorded and the difference integrated and low-pass filtered to obtain the relative 
velocity and displacement, although this system might be more expensive than that 
needed for the displacement method.  

If the system were active and the time constant of the device low enough, the 
relative displacement and velocity of the viscera could be driven to zero and no 
discomfort would be experienced. 

For the semi-active device to be on it is necessary that power be dissipated, 
namely that 

 0c <wF . (3.32) 

Experience with a semi-active control for a random input shows that the 
damper can only be on about half of the time.  

3.6.3 Ideal Control 

The performance of the proposed observer can be assessed by a comparison with 
the ideal situation in which the relative displacement u and its derivative are 
known. 

In this case reference to Equation (3.30) shows that Fc should be chosen to 
satisfy 
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3.7 Results 

The value of εc was estimated from the transmission ratios found experimentally by 
Yu and Khameneh (1999). Their work indicated that εc is approximately 400 m-2. 
The results of Yu and Khameneh were also used to obtain values of fc and βc. 
Values of 4.35 Hz and 0.375 Hz, respectively, were deduced. The work of 
Mansfield and Griffin (2000) suggests εv is approximately 5000 m-2. 

Figure 3.3 shows the loss factor β required to prevent jumps in the cushion and 
viscera as a function of amplitude of response C. 

The required value of β for the cushion is sufficiently low that even with 
oscillations of 20 mm amplitude, jumps will not in practice occur. 
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Fig. 3.3. Loss factor β to prevent jumps as a function of amplitude: viscera (solid line), 
cushion (dashed line) 

The corresponding results for viscera indicate that, if visceral input oscillations are 
kept below 2 mm, a value of βv  of only 0.1 or greater is required. If on the other 
hand oscillations of up to 4 mm in amplitude occured, βv would need to be greater 
than 0.3 (of similar magnitude to that estimated for cushion material) to prevent 
jumps. Jumps in the viscera would be physically damaging quite apart from the 
effect of the oscillation itself. The value of βv likely to exist is not known but such 
predictions appear quite credible.  
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Fig. 3.4. Comparison of predicted (solid curves) and measured cushion transmissibility,       
* 5 mm input, + 20 mm input (measured data reproduced from Yu and Khameneh, 
Automotive seating foam: subjective dynamic comfort study. Reprinted with permission 
from SAE Paper # 1999-01-0588 © 1999 SAE International) 

In Figure 3.4 the quoted transmissibility for cushion C (acc. out/acc. in) is 
compared with the predicted value for sinusoidal inputs of amplitude (a) 5 mm and 
(b) 20 mm; βc = 0.3, εc =100 N/m3 and fn = 4.25 Hz.  

Agreement is quite good for the 5 mm inputs, and fair for the 20 mm inputs. 
Higher-order stiffness effects could be introduced if required. 
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Fig. 3.5. εv = 5000 m-2, εc = 100 m-2, β = 0.3 for both viscera and cushion; viscera fv = 5 Hz. 
Solid lines: fc = 4.75 Hz, dashed lines: fc = 4 Hz. Lower curves: 1 mm input, upper curves: 2 
mm input 
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With 2 mm seat input (Figure 3.5), a cushion with fc = 4.75 Hz has a peak visceral 
acceleration input (upper curves) which is 11% greater than that for fc = 4 Hz. 
However, for 1 mm input (lower curves) the increase in peak acceleration is 20%. 

Due to nonlinear damping, doubling the input increases the peak response by 
only 67%. The shift of peak response with increased magnitude of input is modest 
but detectable. 

The effect of a simple observer is shown in Figures 3.6 as a frequency response 
plot and in Figure 3.7 for a random road input. The observer removes the 
resonance at around 3.5 Hz. 
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Fig. 3.6. εv = 5000 m-2, εc = 100 m-2, βc = βv= 0.4, fc = 4 Hz, fv = 5 Hz. Observer-based seat 
control (dotted) versus passive case (solid) for inputs of 1 mm (lower curves) and 2 mm 
(upper curves) 
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Fig. 3.7. Visceral response passive (dashed), simple observer (solid line); data as above  
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3.8 Seated Human with Head-and-Neck Complex 

The seated human model has four subsystems: seat, cushion, driver body and the 
head-and-neck complex (HNC). The latter is represented as an inverted double 
pendulum. 

The entire seated human model, together with the seat mass and under seat 
semi-active damper, is presented in Figure 3.8.  

 

Fig. 3.8. Schematic diagram of the seated human model with HNC 

The equations of motion for the body and seat are: 

 ( ) ( ) ( )tfxxKxxCxm 331331333 =−+−= , (3.34) 

 ( ) ( ) ( )tfxxKxxCxm 221221222 =−+−= , (3.35) 
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 ( ) ( ) ( ) ( )tftfxxKxxCxm 321sc1sc11 −−−+−= , (3.36) 
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The non-linearity of the system is modelled by Equations 3.38 and 3.39 using 
the Bouc–Wen method to describe the linkage suspension friction and the end-stop 
buffers to protect the system from high-amplitude vibration, respectively. 

 3.8.1 Driver Seat (Including Cushions) 

A typical truck seat is made of a frame that usually contains some sort of 
suspension, and foam pads covered with fabric or leather. Cushions are commonly 
used in the car industry to protect the human spine and body from vibration due to 
road irregularities. The material and the design of foam pads may differ, hence one 
cushion may protect the occupant, while another amplifies the input vibration. 

Seat cushions generally have nonlinear characteristics (Yu and Khameneh, 
1999). Nonlinear hysteretic damping analysis is used here to model such effects.  

The model used is shown in Figure 3.9. End-stop buffers are used in order to 
protect the system from severe vibration with high amplitude. This system is 
modelled as nonlinear stiffness elements in terms of fifth-order polynomial 
functions. The coefficients of these polynomials were determined by applying a 
least-square curve fit to the measured buffer force–deflection characteristic 
(Gunston et al., 2004). 

 
Fig. 3.9. Non-linear driver seat model  

mm

X m

Xb 
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The input to the driver seat is the motion of the vehicle chassis which is combined 
heave and pitch. Only the vertical component is considered in the body response 
analysis. 

3.8.2 Driver Body 

The driver model (Figure 3.10) is based on experimental work of Wei and Griffin 
and consists of a light frame (m1) and two suspended masses (m2 and m3) each with 
a linear spring and damper. The three masses do not represent  actual human 
organs but are chosen so that the model reproduces the force response of  vibrated 
subjects.  

 
Fig. 3.10. Driver body model [copyright Elsevier (1998), reproduced with modifications 
from Wei and Griffin, The prediction of seat transmissibility from measures of seat 
impedance, J Sound Vib,Vol 214, N 1, pp 121–137, used by permission] 

3.8.3 Head-and-Neck Complex (HNC)  

A two-degree-of-freedom model (Figure 3.8) is used to describe the head-and-neck 
system (Fard et al., 2003); a linearised model of the double inverted pendulum is 
used to emulate the motion of the head-and-neck complex. The first centre of 
rotation is assumed to be very close to the centre of the neck O2, while the second 
centre of rotation is situated at O1. 

The determination of the viscoelastic parameters is a very difficult task that 
requires much experimental work and data with human volunteers. Based on 
published work of Fard et al. (2003) these parameters are summarised in Table 3.1. 
The head-and-neck complex is attached to the driver body in order to represent the 
human seated model including the driver body and the head-and-neck motion. For 
vehicle applications the driver body is assumed to vibrate in the vertical direction 
only, while the HNC is able to rotate in three dimensions in response to driver 
body vertical motion and the vertical, pitch and lateral motion of the vehicle 
chassis. The HNC system for 3D analysis is described using the Gibbs–Appel 
method. 

 

m1

m2

m3

X 1
X2

X3
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Table 3.1. Head-and-neck complex parameters (copyright Elsevier, reproduced from 
Tsampardoukas G, Stammers CW and Guglielmino E, Hybrid balance control of a 
magnetorheological truck suspension, accepted for publication in J Sound Vib, used by 
permission)  

Parameter Value 

L1p 0.042 m 

m1p 1.07 kg 

J1 0.0012 kgm2 

L2p 0.071 m 

m2p 4.31 kg 

J2 0.0216 kgm2 

K1p 15.57 Nm/rad 

C1p 0.358 Nms/rad 

K2p 10.45 Nm/rad 

C2p 0.266 Nms/rad 

3.8.4 Analysis of the Head-and-Neck System 

The motion of the head-and-neck complex (HNC) due to vertical, pitch and roll 
motions of the vehicle chassis is presented using the Gibbs–Appel method 
(Blundell and Harty, 2004), an alternative method to Lagrange. With the Gibbs–
Appel method the kinetic energy of the Lagrange method is replaced with the 
“energy” of acceleration. The potential energy of the system (Equation 3.46) is 
used just as with the Lagrange method. In complicated systems, Gibbs–Appel can 
be a simpler tool than Lagrange for the derivation of the equations of motion. 

The Appel function A of the system (the acceleration “energy”) in three 
dimensions is presented in Equation 3.47. Equations of motion are obtained via 
derivation of the total acceleration of each direction as presented by Equations 
3.48–3.51. 

The external accelerations (Figures 3.11 and 3.12) applied both to the head and 
neck due to the motion of the vehicle chassis are given by Equations 3.40–3.42, 
taking into account that the pitch and roll chassis accelerations can be analysed into 
two components, one vertical and one horizontal. The component in lateral 
direction is not illustrated in Figures 3.11 and 3.12. 
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Fig. 3.11. Head accelerations [copyright IMechE (2008), reproduced from Tsampardoukas 
G, Stammers CW and Guglielmino E, Semi-active control of a passenger vehicle for 
improved ride and handling, accepted for publication in Proceedings of the Institution of 
Mechanical Engineers, Part D: Journal of Automobile Engineering, Publisher: Professional 
Engineering Publishing, ISSN 0954/4070, Vol 222, D3/2008, pp 325–352, used by 
permission] 

 
Fig. 3.12. Neck accelerations [copyright IMechE (2008), reproduced from Tsampardoukas 
G, Stammers CW and Guglielmino E, Semi-active control of a passenger vehicle for 
improved ride and handling, accepted for publication in Proceedings of the Institution of 
Mechanical Engineers, Part D: Journal of Automobile Engineering, Publisher: Professional 
Engineering Publishing, ISSN 0954/4070, Vol 222, D3/2008, pp 325–352, used by 
permission] 
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The accelerations av, ah  and az in the vertical, longitudinal and lateral directions, 
respectively are used to form Ax, Ay and Az , the Appel function in terms of axes 
fixed in the head. 

 CC3cv 4
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The equations of motion are:  
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The equations of motion for the head-and-neck complex in three dimensions 
are obtained. In matrix form: 
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These equations can be then incorporated with those for the seat and body. 
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3.8.5 Head Accelerations During Avoidance Manoeuvre 

The acceleration of the driver’s head during an avoidance manoeuvre (modelled as 
a rapid lane change) are shown in Figure 3.13 as a function of vehicle speed. The 
performance of three different algorithms for the semi-active control (discussed 
subsequently in Chapters 4 and 7) of the suspension, namely skyhook, balance 
control cancelling (BCC) and balance control additive (BCA). 

Skyhook was designed to achieve improved ride, and the benefit of skyhook 
control compared with the passive case is evident in all three directions — 
longitudinal, vertical and lateral. The BCC algorithm was designed to limit 
dynamic tyre loads and hence reduce road damage in the case of heavy vehicles. It 
is of no help to the driver in terms of comfort, but is very helpful in improving 
handling and thus achieving the intended rapid lane change. The BCA algorithm is 
employed to reduce vehicle roll. This is important for a laden freight vehicle which 
will have a higher centre of gravity, but is of secondary importance for a passenger 
vehicle. The switching between different algorithms depending on the driving 
conditions could be implemented automatically on the basis of some feedback 
indicators. This could be made in a variety of ways. A possible approach could be 
using a rapid steering input at high speeds to select the BCC algorithm (to achieve 
improved safety). Conversely at lower speeds, skyhook could be selected for driver 
comfort. 
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Fig. 3.13. RMS acceleration of the driver head-and-neck complex: (a) longitudinal direction, 
(b) vertical direction, (c) lateral direction [copyright IMechE (2008), reproduced from 
Tsampardoukas G, Stammers CW and Guglielmino E, Semi-active control of a passenger 
vehicle for improved ride and handling, accepted for publication in Proceedings of the 
Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Publisher: 
Professional Engineering Publishing, ISSN 0954/4070, Vol 222, D3/2008, used by 
permission] 




