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Abstract. This chapter considers the boundary control of damped wave equa-
tions using a boundary measurement in a networked control system (NCS)
setting. In this networked boundary control system, the induced delays can
be lumped as the boundary measurement delay. The Smith predictor is ap-
plied to the networked boundary control problem and the instability problem
due to large delays is solved and the scheme is proved to be robust against a
small difference between the assumed delay and the actual delay. In addition,
we analyze the robustness of the time-fractional order wave equation with a
fractional order boundary controller subject to delayed boundary measure-
ment. Conditions are given to guarantee stability when the delay is small. For
large delays, again the Smith predictor is applied to solve the instability prob-
lem and the scheme is proved to be robust against a small difference between
the assumed delay and the actual delay. The analysis shows that fractional
order controllers are better than integer order controllers in the robustness
against delays in the boundary measurement.

Keywords. Boundary control, distributed parameter system, fractional order
calculus, robustness, wave equation.

9.1 Introduction

In recent years, boundary control of flexible systems has become an active re-
search area, due to the increasing demand on high precision control of many
mechanical systems, such as spacecraft with flexible attachments or robots
with flexible links, which are governed by PDEs (partial differential equations)
rather than ODEs (ordinary differential equations) [2, 3, 4, 7, 8, 18, 19, 20, 21].
In this research area, the robustness of controllers against delays is an impor-
tant topic and has been studied by many researchers [5, 6, 14, 15, 17], due to
the fact that delays are unavoidable in practical engineering. All the available
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publications focus on the analysis of systems against a small delay, i.e., under
what conditions a very small delay will not cause instability problems and
can therefore be neglected. An equally important and very practical issue is,
how to synthesize a boundary controller when the delay is large and makes
the system unstable. To the best of our knowledge, publications studying this
problem are very few. In this chapter, we solve the instability problem caused
by large delays by applying the Smith predictor to the boundary control of
the damped wave equation. The control scheme is shown to be stable and
robust against a small difference between the actual delay and the assumed
delay.

Fractional diffusion and wave equations are obtained from the classical
diffusion and wave equations by replacing the first and second order time
derivative term by a fractional derivative of an order satisfying 0 < α ≤ 1 and
1 < α ≤ 2, respectively. Since many of the universal phenomena can be mod-
eled accurately using the fractional diffusion and wave equations (see [22]),
there has been growing interest in investigating the solutions and properties of
these evolution equations. Compared with the publications on control of inte-
ger order PDEs, results on control of fractional wave equations are relatively
few [10, 11, 16].

In this chapter, we will also investigate two robust stabilization problems
of the fractional wave equations subject to delayed boundary measurement.
First, under what conditions a very small delay in boundary measurement
will not cause instability problems. Second, how to stabilize the system when
the delay is large and makes the system unstable.

9.2 A Brief Introduction to the Smith Predictor

The Smith predictor was proposed by Smith in [24] and is probably the most
famous method for control of systems with time delays; see [9] and [25]. Con-
sider a typical feedback control system with a time delay in Fig. 9.1, where
C(s) is the controller and P (s)e−θs is the plant with a time delay θ.

With the presence of the time delay, the transfer function of the closed-loop
system relating the output y(s) to the reference r(s) becomes

C(s) P (s)e−θs+

-

yr

Fig. 9.1. A feedback control system with a time delay
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y(s)
r(s)

=
C(s)P (s)e−θs

1 + C(s)P (s)e−θs
. (9.1)

Obviously, the time delay θ directly changes the closed-loop poles. Usually,
the time delay reduces the stability margin of the control system, or more
seriously, destabilizes the system.

The classical configuration of a system containing a Smith predictor is
depicted in Fig. 9.2, where P̂ (s) is the assumed model of P (s) and θ̂ is the
assumed delay. The block C(s) combined with the block P̂ (s) − P̂ (s)e−θ̂s

is called “the Smith predictor”. If we assume perfect model matching, i.e.,
P̂ (s) = P (s) and θ = θ̂, the closed-loop transfer function becomes

y(s)
r(s)

=
C(s)P (s)e−θs

1 + C(s)P (s)
. (9.2)

Now, it is clear what the underlying idea of the Smith predictor is. With
perfect model matching, the time delay can be removed from the denominator
of the transfer function, making the closed-loop stability independent of the
time delay.

C(s) P (s)e−θs

P̂ (s)− P̂ (s)e−θ̂s

+ +

- -

yr

Fig. 9.2. The Smith predictor

9.3 Boundary Control of Damped Wave Equations with
Large Delays

Consider a string clamped at one end and free at the other end. We denote
the displacement of the string by u(x, t), where x ∈ [0, 1] and t ≥ 0. The
string is controlled by a boundary control force at the free end. The governing
equations are given as

utt(x, t)− uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, (9.3)

u(0, t) = 0, (9.4)

ux(1, t) = f(t), (9.5)
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where a > 0 is the damping constant and f(t) is the boundary control force
applied at the free end of the string.

It is known that the following boundary feedback controller stabilizes the
system [2],

f(t) = −kut(1, t), (9.6)

where k > 0 is the constant boundary control gain.
Now, we consider the presence of a time delay in the feedback loop, which

is shown as follows:
f(t) = −kut(1, t− θ), (9.7)

where θ is the time delay.
In [6] and [15], it was shown that if k and a satisfy

k
e2a + 1
e2a − 1

< 1, (9.8)

then the delayed feedback systems is stable for all sufficiently small delays.
In this chapter, we will solve the following problem: what if the time delay

θ is large enough to make the system unstable? We will apply the Smith
predictor to solve this problem.

Comparing Equation (9.7) with Fig. 9.2, we can see that in our case, the
plant output y is the tip end displacement u(1, t); the controller C(s) is a
derivative controller with the transfer function ks; and P (s) is the transfer
function from the control force f(t) to the undelayed displacement of the tip
end. If we assume P̂ (s) = P (s) and the time delay θ is known, the remaining
problem is how to get P (s), which is shown as follows.

Assuming zero initial conditions of u(x, 0) and ut(x, 0), take the Laplace
transform of (9.3), (9.4), and (9.5) with respect to t, the original PDE of u(x, t)
with initial and boundary conditions can be transformed into the following
ODE of U(x, s) with boundary conditions:

d2U(x, s)
dx2

− (s + a)2U(x, s) = 0, (9.9)

U(0, s) = 0, (9.10)

Ux(1, s) = F (s), (9.11)

where U(x, s) is the Laplace transform of u(x, t) and F (s) is the Laplace
transform of f(t).

Solving the ODE (9.9), we have the following solution of U(x, s) with two
arbitrary constants C1 and C2 (s can be treated as a constant in this step),

U(x, s) = C1e
−(s+a)x + C2e

(s+a)x. (9.12)

Substitute (9.12) into (9.10) and (9.11), we have the following two equa-
tions:

C1 + C2 = 0, (9.13)
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(−C1e
−(s+a) + C2e

s+a)(s + a) = F (s). (9.14)

Solving (9.13) and (9.14) simultaneously, we can obtain the exact values
of C1 and C2

C1 =
−F (s)

(s + a)(e−(s+a) + es+a)
, (9.15)

C2 =
F (s)

(s + a)(e−(s+a) + es+a)
. (9.16)

Now we have obtained the solution of U(x, s). Substituting x = 1 into
U(x, s), we obtain the following Laplace transform of the tip end displacement.

U(1, s) =
F (s)(1− e−2(s+a))

(s + a)
(
1 + e−2(s+a)

) . (9.17)

So the transfer function of the plant, which is P (s) in Fig. 9.2, is obtained
as

P (s) =
U(1, s)
F (s)

=
1− e−2(s+a)

(s + a)
(
1 + e−2(s+a)

) . (9.18)

Finally, we have the following expression for the boundary controller (the
Smith predictor), denoted as Csp(s):

Csp(s) =
ks

1 + ksP (s)(1− e−θ̂s)
. (9.19)

Notice that the controller (9.19) is physically implementable.

9.4 Stability and Robustness Analysis

In [2], the stability of the controller (9.6) was proved for the boundary control
of the damped wave equation without delays. If the assumed delay is equal to
the actual delay, the Smith predictor removes the delay term completely from
the denominator of the closed-loop transfer function. This means the stability
of the controller (9.19) is already proved.

Since the actual delay θ and the assumed delay θ̂ cannot be exactly the
same, another important issue is the robustness of the controller (9.19), i.e.,
what if an unknown small difference ε between the assumed delay and the
actual delay is introduced to the system, as shown in Fig. 9.3.

To study the robustness of the controller (9.19), we will first introduce a
theorem presented in [14, 15].

Theorem 9.1. Let H(s) be the open-loop transfer function as illustrated in
Fig. 9.4, and DH the set of all its poles. Define two closed-loop transfer func-
tions G0(s) and Gε(s) as
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C(s) P (s)e−θ̂s

e−εs

P̂ (s)− P̂ (s)e−θ̂s

+ +

- -

yr

Fig. 9.3. System with mis-matched delays

G0(s) =
H(s)

1 + H(s)
,

and

Gε(s) =
H(s)

1 + e−εsH(s)
.

Define again
C0 = {s ∈ C|�(s) > 0},

and
γ(H(s)) = lim sup

|s|→∞,s∈C0\DH

|H(s)|.

Suppose G0 is L2-stable. If γ(H) < 1, then there exists ε∗ such that Gε is
L2-stable for all ε ∈ (0, ε∗). �

The underlying idea of the above theorem is that the robustness of the
closed-loop transfer function G0(s) against a small unknown delay can be
determined by studying the open-loop transfer function H(s). Now we can
prove the robustness of the controller (9.19).

Claim. If θ̂ is chosen as the minimum value of the possible delay and k is
chosen to satisfy

k
e2a + 1
e2a − 1

≤ 1
3
, (9.20)

then the controller (9.19) is robust against a small difference ε between the
assumed delay θ̂ and the actual delay θ = θ̂ + ε.

H(s)

e−εs

+

-

yr

Fig. 9.4. Feedback system with delay
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Proof. For
H(s) = Csp(s)P (s)e−θ̂s

=
ksP (s)e−θs

1 + ksP (s)(1− e−θs)
.

Let T (s) = ksP (s). Then

|H(s)| = 1∣∣∣∣
(

1
T (s)

+ 1
)

eθ̂s − 1
∣∣∣∣
. (9.21)

Let Q(s) =
(

1
T (s)

+ 1
)

eθ̂s − 1. Then

|Q(s)| =
∣∣∣∣
(

1
T (s)

+ 1
)

eθ̂s − 1
∣∣∣∣

≥
∣∣∣∣
∣∣∣∣
(

1
T (s)

+ 1
)

eθ̂s

∣∣∣∣− 1
∣∣∣∣

≥
∣∣∣∣
∣∣∣∣ 1
T (s)

+ 1
∣∣∣∣ ∣∣eθ̂s

∣∣− 1
∣∣∣∣ . (9.22)

In [15], it was proved that

lim sup
|s|→∞,s∈C0

|T (s)| = k
e2a + 1
e2a − 1

.

So, if

k
e2a + 1
e2a − 1

≤ 1
3
,

for |s| large enough, ∣∣∣∣ 1
T (s)

+ 1
∣∣∣∣ ≥

∣∣∣∣
∣∣∣∣ 1
T (s)

∣∣∣∣− 1
∣∣∣∣ ≥ 2. (9.23)

Considering |eθ̂s| > 1, we have

|Q(s)| > 1. (9.24)

So
lim sup

|s|→∞,s∈C0

|H(s)| < 1. (9.25)

�

Remark 9.1. In Theorem 9.1, ε is positive. To satisfy this condition, θ̂ should
be chosen as the minimal value of the possible delay.

The damping constant a plays a key role in making the controllers (both
the original derivative controller ks and the Smith predictor) robust. if a =
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0, the damped wave equation becomes the conservative wave equation, the
transfer function of which is

P (s) =
1− e−2s

s(1 + e−2s)
. (9.26)

We can see that P (s) has an infinite number of poles on the imaginary axis.
In order to make γ(H(s)) < 1, controllers must cancel these poles completely,
which is impossible due to the uncertainty of the plant parameters. This means
both the original derivative controller ks and the Smith predictor are not
robust when applied to the boundary control of conservative wave equation. �

9.5 Fractional Order Case – Problem Formulation

We consider a cable made with special smart materials governed by the frac-
tional wave equation, fixed at one end, and stabilized by a boundary controller
at the other end. Omitting the mass of the cable, the system can be repre-
sented by

∂αu

∂tα
=

∂2u

∂x2
, 1 < α ≤ 2, x ∈ [0, 1], t ≥ 0 (9.27)

u(0, t) = 0, (9.28)
ux(1, t) = f(t), (9.29)
u(x, 0) = u0(x), (9.30)
ut(x, 0) = v0(x), (9.31)

where u(x, t) is the displacement of the cable at x ∈ [0, 1] and t ≥ 0, f(t) is
the boundary control force at the free end of the cable, u0(x) and v0(x) are
the initial conditions of displacement and velocity, respectively.

The control objective is to stabilize u(x, t), given the initial conditions
(9.30) and (9.31).

We adopt the following Caputo definition for fractional derivative of order
α of any function f(t), because the Laplace transform of the Caputo derivative
allows utilization of initial values of classical integer-order derivatives with
known physical interpretations [1, 23]

dαf(t)
dtα

=
1

Γ (α− n)

∫ t

0

f (n)(τ)dτ
(t− τ)α+1−n

, (9.32)

where n is an integer satisfying n − 1 < α ≤ n and Γ is Euler’s Gamma
function.

In this chapter, we study the robustness of the controllers in the following
format:

f(t) = −kdμu(1, t)
dtμ

, 0 < μ ≤ 1 (9.33)
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where k is the controller gain, μ is the order of fractional derivative of the
displacement at the free end of the cable.

Based on the definition in (9.32), the Laplace transform of the fractional
derivative is [1, 23]:

L
{

dαf

dtα

}
= sαF (s)−

n−1∑
k=0

fk(0+)sα−1−k. (9.34)

In the following, the transfer function from the boundary controller f(t)
to the tip end displacement will be derived for later use.

Assuming zero initial conditions of u(x, 0) and ut(x, 0), take the Laplace
transform of (9.27), (9.28), and (9.29) with respect to t, making use of (9.34),
the original PDE of u(x, t) with initial and boundary conditions can be trans-
formed into the following ODE of U(x, s) with boundary conditions,

d2U(x, s)
dx2

− sαU(x, s) = 0, (9.35)

U(0, s) = 0, (9.36)

Ux(1, s) = F (s), (9.37)

where U(x, s) is the Laplace transform of u(x, t) and F (s) is the Laplace
transform of f(t).

Solving the ODE (9.35), we have the following solution of U(x, s) with two
arbitrary constants C1 and C2 (s can be treated as a constant in this step),

U(x, s) = C1e
xsα/2

+ C2e
−xsα/2

. (9.38)

Substituting (9.38) into (9.36) and (9.37), we have the following two equations,

C1 + C2 = 0, (9.39)

sα/2(C1e
sα/2 − C2e

−sα/2
) = F (s). (9.40)

Solving (9.39) and (9.40) simultaneously, we can obtain the exact value of C1

and C2

C1 = −C2 =
F (s)esα/2

sα/2(e2sα/2 + 1)
. (9.41)

Now we have obtained the solution of U(x, s). Substituting x = 1 into
U(x, s) and dividing U(x, s) by F (s), we obtain the following transfer function
of the fractional wave equation P (s):

P (s) =
U(1, s)
F (s)

=
1− e−2sα/2

sα/2
(
1 + e−2sα/2

) . (9.42)
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9.6 Fractional Order Case – Robustness of Boundary
Stabilization

We consider the presence of a very small time delay θ in boundary measure-
ment, shown as follows

f(t) = −ku(μ)
t (1, t− θ), (9.43)

where θ is the time delay.
The situation is also illustrated in Fig.9.1, where P (s) is the transfer func-

tion of the plant and C(s) is the Laplace transform of the controller. In our
case, P (s) is (9.42) and C(s) is

C(s) = k sμ. (9.44)

In [5, 6, 14, 15], it was shown that an arbitrarily small delay in bound-
ary measurement causes the instability problem in boundary control of wave
equations using integer order controllers f(t) = −kut(1, t). Does this problem
exist in boundary control of the fractional wave equation? Since fractional
order controllers are chosen in this chapter, will this additional tuning knob
bring us any benefits of robustness against the small delay? To answer these
questions, we will use Theorem 9.1 in Section 9.4 [14, 15].

Again, the underlying idea of the above theorem is that the robustness
of the closed-loop transfer function G0(s) against a small unknown delay can
be determined by studying the open-loop transfer function H(s). Notice that
H(s) = C(s)P (s) in our case.

Claim. If the derivative order μ of controller (9.33) and the fractional order
α in the fractional wave equation (9.27) satisfy

μ <
α

2
, (9.45)

then the system is stable for a delay θ small enough in boundary measurement.

Proof. For s ∈ C0,

|H(s)| = |C(s)P (s)| (9.46)

=

∣∣∣∣∣ ksμ(1− e−2sα/2
)

sα/2
(
1 + e−2sα/2

)
∣∣∣∣∣

=

∣∣∣∣∣ k(1− e−2sα/2
)

s(α/2−μ)
(
1 + e−2sα/2

)
∣∣∣∣∣

≤ k|1− e−2sα/2 |
|s(α/2−μ)||1 + e−2sα/2 | .

Since
α

2
> μ, |s(α/2−μ)| → ∞ for |s| → ∞.
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Since
1
2

<
α

2
< 1, for |s| large enough, |1− e−2sα/2 | is bounded and

|1− e−2sα/2 | > η > 0,

where η is a positive number.
So

lim sup
|s|→∞,s∈C0

|H(s)| = 0 < 1. �

Following the above proof, it can easily be proved that an integer order
controller f(t) = −kut(1, t) is not robust against an arbitrarily small delay.

9.7 Fractional Order Case – Compensation of Large
Delays in Boundary Measurement

In the last section, it is shown that a fractional order controller is robust
against a small delay under the condition (9.45). In this section, we investigate
the problem that the delay is large and makes the system unstable. We will
apply the Smith predictor to solve this problem.

In Section 9.2, it is shown that if the assumed delay is equal to the actual
delay, the Smith predictor removes the delay term completely from the de-
nominator of the closed-loop. However, the actual delay is not exactly known.
In this section, we will investigate what happens if an unknown small differ-
ence ε between the assumed delay and the actual delay is introduced to the
system, as shown in Fig. 9.3.

Claim. If θ̂ is chosen as the minimum value of the possible delay and μ is
chosen to satisfy (9.45), then the controller (9.19) is robust against a small
difference ε between the assumed delay θ̂ and the actual delay θ = θ̂ + ε.

Proof. For s ∈ C0,

|H(s)| =
∣∣∣∣∣ ksμP (s)e−θ̂s

1 + ksμP (s)(1− e−θ̂s)

∣∣∣∣∣
≤ k|1− e−2sα/2 ||e−θs|
|s(α/2−μ)(1 + e−2sα/2) + k(1− e−2sα/2)(1− e−θs)|

<
k|1− e−2sα/2 |∣∣|s(α/2−μ)(1 + e−2sα/2)| − k|(1− e−2sα/2)(1− e−θs)|∣∣ .

When |s| → ∞,
|s(α/2−μ)(1 + e−2sα/2

)| → ∞,

while both |1− e−2sα/2 | and |(1− e−2sα/2
)(1− e−θs)| are bounded.

So
lim sup

|s|→∞,s∈C0

|H(s)| = 0 < 1. �
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Remark 9.2. In Theorem 9.1, ε is positive. To satisfy this condition, θ̂ should
be chosen as the minimal value of the possible delay. �

9.8 Conclusions

For both integer order and fractional order cases, this chapter considers the
boundary control of damped wave equations using a boundary measurement
in a networked control system (NCS) setting. In this networked boundary
control system, the induced delays can be lumped as the boundary measure-
ment delay. The Smith predictor is applied to the networked boundary con-
trol problem and the instability problem due to large delays is solved and the
scheme is proved to be robust against a small difference between the assumed
delay and the actual delay. Our analysis shows that fractional order bound-
ary controllers are better than integer order boundary controllers in terms of
robustness against delays in the boundary measurement.

Future work includes studying the robustness of the controller against
plant modeling errors and the controller performance of the Smith predictor.
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