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Abstract. A discrete-time jump fuzzy system is proposed in this chapter
for the modeling and control of a class of nonlinear networked control sys-
tems (NCS) with random but bounded communication delays and packets
dropout. Above all, a guaranteed cost control with state feedback is devel-
oped by constructing a sub-optimal performance controller for the discrete-
time jump fuzzy systems in such a way that a piecewise quadratic Lyapunov
function (PQLF) can be used to establish the global stability of the result-
ing closed-loop fuzzy control system. A homotopy-based iterative algorithm
solving for linear matrix inequality (LMI) is developed to get the feedback
gains. When not all states are available, an output feedback controller is de-
signed. For the NCS based on the mixed networks, a neuro-fuzzy controller is
develped, which is composed of three parts: a guaranteed cost state-feedback
controller, an adaptive neuro-fuzzy inference system (ANFIS) predictor and a
fuzzy controller. The ANFIS predictor is used to improve the performance of
the NCS when network delay is longer. Simulation examples are carried out
to show the effectiveness of the proposed approaches.

Keywords. Discrete-time jump fuzzy systems, guaranteed cost control, LMI,
Markovian jumping parameters, networked control systems.

8.1 Introduction

Over the past five years, networked control systems (NCSs) with feedback
loops closed through networks, have received considerable attention in the
literature, as illustrated by recent articles [1, 7, 8, 12, 14, 15, 17, 21, 23, 24,
27, 29], due to the enormous advantages, such as low cost, reduced power,
simple maintenance and wide applications to novel teleoperating areas.
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8.1.1 Fundamental Issues in NCS

An NCS exhibits issues which traditionally have not been taken into account
in control system design because control loops are closed through a real-time
network. Regardless of the type of network used, these special issues degrade
the system dynamic performance and are a source of potential instability. So
NCS issues should be investigated.

(i) A network-induced delay occurs while exchanging data among devices
connected to the shared medium. The sensor data or control signal arrive
at the controller or actuator of the NCS randomly due to network-induced
delays.

(ii) The node of the network may discard some of the received packets if it is
overloaded. Packets dropout renders the NCS data incomplete.

Compared with traditional control systems, an NCS does not possess data
with two different characteristics, namely fixity and integrality. As a result,
network delay and packets dropout should be considered simultaneously rather
than separately when an NCS is modeled. Most researchers regarded an NCS
as a time-delay control system or control system with packet dropout [1, 7, 12,
15, 29]. In addition, most existing literature reports consider only stabilization
of linear NCSs whereas nonlinear NCSs have received little attention [1, 8].
Therefore, advanced approaches for nonlinear NCSs are required.

8.1.2 Previous Work

Usually, distributed linear feedback control systems with random network in-
duced delay are modeled as Markovian jump linear control systems [8, 17, 21,
23], in which random variation of system delays corresponds to randomly vary-
ing structure of the state-representation. When the Markovian jump system
changes abruptly from one mode to another [6, 16, 19, 22, 23, 28], the switch-
ing between modes is governed by a Markov process with discrete and finite
state space. Markovian jump systems have been studied extensively because
jumping systems have been a subject of great practical importance.

Fuzzy systems have been used in recent years for the control of nonlin-
ear processes [5, 10, 11, 18, 20]. Fuzzy system theory enables us to utilize
qualitative, linguistic information about a highly complex nonlinear system
to construct a mathematical model. And a fuzzy linear model can be used
to approximate global behaviors of a highly complex nonlinear system. Local
dynamics in different state space regions are represented by local linear sys-
tems in this fuzzy linear model. The overall model of the system is obtained by
“blending” these linear models through nonlinear fuzzy membership functions.
Unlike conventional modeling, which uses a single model to describe the global
behavior of a system, fuzzy modeling is essentially a multi-model approach
in which simple submodels (a set of linear models) are combined to describe
the global behavior of the system. From the middle of the 1980s, there have
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appeared a number of analysis/synthesis problems for Takagi–Sugeno (T–S)
fuzzy systems [18]. Based on the T–S fuzzy systems, Palm and Driankov [16],
Choi and Park [6], and Tanaka [19] introduced new switching fuzzy systems
for more complicated nonlinear systems.

Motivated by these approaches, a discrete-time jump fuzzy system is pro-
posed to model NCS with random but bounded delay and packet dropout in
this chapter. Then new stability theorems and new controller design methods
are developed for discrete-time jump fuzzy systems. The chapter is organized
as follows. The discrete-time jump fuzzy system and the modeling of NCS are
proposed in Section 8.2. In Section 8.3, the LMI-based design of a guaranteed
cost state feedback fuzzy controller is presented. The fuzzy output feedback
controller is developed in Section 8.4. The neuro-fuzzy controller is provided
in Section 8.5. Finally, Section 8.6 summarizes some conclusions.

In this chapter, Z, Rn and Rm×n denote, respectively, the set of integer
numbers, the n-dimensional Euclidean space and the set of all m × n real
matrices. As usual, P > 0 (�, <, �, respectively) will denote that the matrix
P is symmetric and positive definite (positive semi-definite, negative definite,
negative semi-definite). In represents n × n identity matrix and diag{· · ·}
represents block diagonal matrix. The symmetric items in symmetric matrices
are represented by “ ∗ ”. E[·] stands for the mathematical expectation.

8.2 Modeling NCS

The general NCS configuration is illustrated in Fig. 8.1, which is composed
of a controller and a remote system containing a physical plant, sensors and
actuators. The controller and the plant are physically located at different
locations and are directly linked by a data network in order to perform remote
closed-loop control. Most networked control methodologies use the discrete-
time formulation [22].

Actuator Plant Sensor

Controller

Random Delay 

and/or

Packet Loss

Random Delay 

and/or

Packet Loss

x(k)

y(k)

u(k)

Fig. 8.1. The general NCS configuration
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8.2.1 Markov Characteristics of NCS

Suppose that r(k) is the network induced delay at time k with 0 � r(k) �
d <∞, and d is the finite delay bound. When the data is transmitted in turn
from sensor to controller or from controller to actuator through the network,
the transition probability of r(k + 1) is determined only by r(k) and not by
r(0), r(1), . . . , r(k−1) or the time at which it reached the present state. Hence
{r(k), k ∈ Z} is a homogeneous Markov chain. The transition probability is
defined as follows:

prij = Prob{r(k + 1) = j|r(k) = i},
pri = Prob(r(k) = i), (8.1)
i, j ∈ S = {0, 1, . . . , d}.

Here prij � 0 for i, j ∈ S, and

d∑
j=0

prij = 1.

In real-time control systems, the newest data is the best data [27]. The
assumption here means that the controller will always use the most recent
data. That is, the data at step k is available for feedback when there is no
new information coming in at step k+1 (data could be lost or there is a longer
delay). So in the model of the NCS, the delay r(k) can increase at most by 1
each step [17]. We develop a new controller for the set S denoting the possible
jump state. In this case, we have

Prob{r(k + 1) > r(k) + 1} = 0. (8.2)

Hence the structured transition probability matrix Pr is

Pr =

⎡
⎢⎢⎢⎢⎢⎢⎣

pr00 pr01 0 0 · · · 0
pr10 pr11 pr12 0 · · · 0

...
...

...
...

. . .
...

...
...

...
...

... prd−1,d

prd0 prd1 prd2 prd3 · · · prd,d

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(8.3)

with 0 � prij � 1 and
d∑

j=0

prij = 1.

Each row represents the transition probabilities from a fixed state to all
states. The diagonal elements are the probabilities of data coming in sequence
with equal delays. The elements above the diagonal indicate that data en-
counter longer delays, and the elements below the diagonal describe packet
dropout.
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8.2.2 Discrete-time Jump Fuzzy System

Many nonlinear dynamic systems can be represented by T–S fuzzy models. In
fact, it is proved that T–S fuzzy models are universal approximators. So we
shall introduce a discrete-time jump fuzzy system to model a class of nonlinear
NCSs such as:

xk+1 = fr(k)(xk, uk), (8.4)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector. Here fr(k) is
a local fuzzy function. The models in two-level forms are inferred as follows:

IF r(k) = i

THEN local plant rule l :
IF zk,1 is Mil,1 and · · · and zk,p is Mil,p, (8.5)
THEN xk+1 = Ailxk + Biluk,

x0 = x(0), l = 1, . . . , t(i).

Here, zk,1, . . . , zk,p are the local premise variables, Mil,1, . . . ,Mil,p are the local
fuzzy sets, t(i) is the number of IF-THEN rules when r(k) = i, {r(k), k ∈ Z}
is a discrete-time homogeneous Markov chain taking values in a finite set
S = 0, 1, . . . , d, with the transition probability from mode i at time k to mode
j at time k + 1, i, j ∈ S, k ∈ Z.

By the following local fuzzy weighting functions hil(zk), which are deter-
mined by a local premise variable vector zk = [zk,1 zk,2 . . . zk,p]T , the final
representation of the discrete-time jump fuzzy system is as follows:

xk+1 =
t(i)∑
l=1

hil(zk){Ailxk + Biluk}, (8.6)

where

hil(zk) =

p∏
j=1

Mil,j(zk,j)

t(i)∑
l=1

p∏
j=1

Mil,j(zk,j)

, (8.7)

and Mil,j(zk,j) is the grade of membership of zk,j in Mil,j .
To simplify the presentation, the discrete-time jump fuzzy system (8.5)

can be represented as follows:

xk+1 = Ai(Hi(zk))xk + Bi(Hi(zk))uk, (8.8)

where

[Ai(Hi(zk)) Bi(Hi(zk))]
	
=

t(i)∑
l=1

hil(zk)[Ail Bil]. (8.9)
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8.3 State-feedback Controller Design

8.3.1 The Closed-loop Model of an NCS

According to the direction of data transfers, network delays and packets
dropout in the NCS can be categorized as sensor-to-controller and controller-
to-actuator. When the control or sensor data travel across one type of network,
the data has the same transmission characteristic. So the simple NCS config-
uration in which the network exists only between the sensors and controller
is illustrated in Fig. 8.2.

When r(k) = i, the mode-dependent jump state feedback control law is:

uk = Ki(Hi(zk))xk−i, (8.10)

where

Ki(Hi(zk)) =
t(i)∑
l=1

hil(zk)Kil.

If we augment the state variable

Xk = [xT
k xT

k−1 · · · xT
k−d]

T , (8.11)

where Xk ∈ R(d+1)n, then the closed-loop system is:

Xk+1 =
(
Ãi (Hi (zk)) + B̃i (Hi (zk))Ki (Hi (zk)) G̃r(k)

)
Xk,

(8.12)
X0 = [xT

0 xT
−1 · · · xT

−d]
T ,

where

x(k)u(k)

Fig. 8.2. The simple NCS configuration
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Ãi(Hi(zk)) =

⎡
⎢⎢⎢⎢⎢⎣
Ai(Hi(zk)) 0 · · · 0 0

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦ ,

B̃i(Hi(zk)) =

⎡
⎢⎢⎢⎢⎢⎣
Bi(Hi(zk))

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

G̃r(k) =
[
0 · · · 0 I 0 · · · 0

]
,

and G̃r(k) has all elements zero except for the r(k)th block, which is an
identity matrix. Equation (8.12) corresponds to a discrete-time jump fuzzy
system.

8.3.2 Guaranteed Cost Controller Design

Now we will consider a guaranteed cost controller. For the performance cri-
terion, an upper bound of LQ cost associated with states and inputs in the
global systems called guaranteed cost is described as follows:

min max
hi(zk)∈H

E
{ ∞∑

k=0

(XT
k Qr(k)Xk + uT

k Rr(k)uk)

}
, (8.13)

where Qr(k) > 0, Rr(k) > 0, and H is defined as a set of all possible fuzzy
weighting functions. In this chapter, the LQ cost is a function of the grades
hi(zk).

Definition 1.1 of [3] is extended, and we have the following definitions.

Definition 8.1. For System (8.6) with uk ≡ 0 and r(k) = i ∈ S, the equi-
librium point 0 is said to be stochastically stable, if for every initial state
(X0, r(0)), there exists a finite W > 0 such that the following holds:

E
{ ∞∑

k=0

‖Xk(X0, r(0))‖2
∣∣∣ X0, r(0)

}
< XT

0 WX0. (8.14)

�

Lemma 8.1. The closed-loop system in (8.12) is stochastically stable if and
only if there exists a set of symmetric matrices Pi > 0, i ∈ S satisfying the
following coupled matrix inequalities:
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Li =
d∑

j=0

prij [Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)]TPj

(8.15)× [Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)]− Pi < 0.

Proof. Sufficiency. For the closed-loop system in (8.6), consider piece-
wise quadratic Lyapunov stability with the following PQLF candidate V (Xk)
mapping from Rn to R:

V (Xk, r(k) = i) = V (Xk, i) = XT
k PiXk > 0. (8.16)

The weak infinitesimal operator ÃV (X, i) [2, 4] of the stochastic process
(X, i) is defined by:

ÃV (X, i) = E{V (Xk+1, r(k + 1)) |Xk, r(k) = i} − V (Xk, i)

= XT
k

{
[Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)]T

×
[ d∑

j=0

prijPj

] [
Ãi(Hi(zk)) + B̃i(Hi(zk)) (8.17)

× Ki(Hi(zk))G̃r(k)

]
−Pi

}
Xk.

Thus, if Li < 0, then:

ÃV (X, i) = E{V (Xk+1, r(k + 1)) |Xk, r(k) = i}
− V (Xk, i) � −λmin(Li)XT

k Xk � −βXT
k Xk (8.18)

=− β‖Xk‖2,

where
β = inf{λmin(−Li), i ∈ S} > 0.

From (8.18), we can see that for any T � 1

E{V (XT+1, r(T + 1))} − E{V (X0, r(0))} � −βE
{

T∑
t=0

‖Xt‖2
}

.

Then,

E
{

T∑
t=0

‖Xt‖2
}

� 1
β

(E{V (X0, r(0))} − E{V (XT+1, r(T + 1))})

� 1
β
E{V (X0, r(0))}.
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From Definition 8.1, the stochastic stability is obtained.
Necessity. Let us assume that the closed-loop system in (8.18) is stochas-

tically stable. That is, we have

E
{ ∞∑

k=0

‖Xk(X0, r(0))‖2 |X0, r(0)

}
< XT

0 WX0. (8.19)

Consider the following function:

XT
t P̃T−t,r(t)Xt

	
= E

{
T∑

k=t

XT
k Or(k)Xk |Xt, r(t)

}
, (8.20)

with Or(k) > 0. Assume that Xk �= 0. Since Or(k) > 0, as T increases, either
XT

t P̃T−t,r(t)Xt is monotonically increasing or it increases monotonically until

E {XT
k Or(k)Xk |Xk, r(k)

}
= 0

for all k � k1 � t. It is shown in (8.19) that XT
t P̃T−t,r(t)Xt is bounded above,

and thus, its limit is given by

XT
t PiXt

	
= lim

T→∞
XT

t P̃T−t,r(t)Xt

(8.21)
	
= lim

T→∞
E
{

T∑
k=t

XT
k Or(k)Xk |Xt, r(t) = i

}
.

Since this is valid for any Xt, we have

Pi = lim
T→∞

P̃T−t,r(t). (8.22)

According to (8.21), Pi > 0 since Or(k) > 0. We get

E
{
XT

t P̃T−t,r(t)Xt −XT
t+1P̃T−t−1,r(t+1)Xt+1

∣∣∣Xt, r(t) = i
}

(8.23)
= XT

t OiXt.

Note that:

E
{
XT

t+1P̃T−t−1,r(t+1)Xt+1

∣∣∣Xt, r(t) = i
}

= XT
t

d∑
j=0

prij

(
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

)T

(8.24)

× P̃T−t−1,j

(
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

)
Xt.

This, together with (8.23), implies that for any Xt,



242 F. Sun and F. Wu

XT
t

⎡
⎣P̃T−t,r(t) −

d∑
j=0

prij

(
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

)T

× P̃T−t−1,j

(
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

)]
Xt

= XT
t OiXt.

Letting T →∞ and noticing that (8.22) and Oi > 0, we obtain:

Pi −
d∑

j=0

prij

[
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

]T

× Pj

[
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

]
> 0.

�

Lemma 8.2. The closed-loop jump fuzzy system(8.12) is stochastically stable
in the large and the cost (8.13) will be bounded by xT

0 Pix0 for any nonzero
initial state x0 ∈ Ri, if there exist Pi > 0, i ∈ S, and Ki(Hi(zk)) satisfying
the following conditions:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̄i ∗ · · · ∗ ∗ ∗⎛
⎜⎜⎝

Ãi (Hi (zk)) P̄i

+B̃i (Hi (zk))
×Ki (Hi (zk))
×G̃r(k)P̄i

⎞
⎟⎟⎠
(− (pri0)

−1

×P̄0

)
· · · 0 0 0

...
...

. . .
...

...
...⎛

⎜⎜⎝
Ãi (Hi (zk)) P̄i

+B̃i (Hi (zk))
×Ki (Hi (zk))
×G̃r(k)P̄i

⎞
⎟⎟⎠ 0 · · ·

(− (prid)
−1

×P̄d

)
0 0

P̄i 0 · · · 0 −Q−1
i 0(

Ki (Hi (zk))
×G̃r(k)P̄i

)
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (8.25)

Furthermore, a sub-optimal guaranteed cost controller can be obtained via
the following semi-definite programming:

Minimize γ subject to (8.25) and
[
γ xT

0

x0 P̄i

]
� 0. (8.26)

Proof. Consider the cost (8.13) associated with states as follows:
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min max
hi(zk)∈H

∞∑
k=0

{
XT

k QiXk + XT
k (Ki(Hi(zk))G̃r(k))T

(8.27)
×RiKi (Hi (zk)) G̃r(k)Xk

}
.

Then, the closed-loop system is stable via the guaranteed cost controller, if
there exists positive-definite symmetric Pi and Pj such that for all Xk and
i, j ∈ S, the following condition holds:

ÃV (X, i)XT
k QiXk+XT

k

(
Ki(Hi(zk))G̃r(k)

)T

(8.28)
×RiKi(Hi(zk))G̃r(k)Xk < 0.

We obtain:

[ABK]T
d∑

j=0

prijPj × [ABK]− Pi + Qi

+ (Ki(Hi(zk))G̃r(k))TRiKi(Hi(zk))G̃r(k)Xk < 0,

where
ABK = Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k).

Using Schur complements, we have the following matrix inequality:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pi ∗ · · · ∗ ∗ ∗
ABK −(pri0P0)−1 0 0 0

...
...

. . .
...

...
...

ABK 0 · · · −(pridPd)−1 0 0
In 0 · · · 0 −Q−1

i 0(
Ki(Hi(zk))
×G̃r(k)

)
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (8.29)

The left-hand side of the inequality (8.29) can be pre- and post-multiplied by
JT and J , respectively, where

J = blockdiag
{
P−1

i , In, In, Im

}
,

which yields the following:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P−1
i ∗ · · · ∗ ∗ ∗

ABKP −(pri0P0)−1 · · · 0 0 0
...

...
. . .

...
...

...
ABKP 0 · · · −(pridPd)−1 0 0
P−1

i 0 · · · 0 −Q−1
i 0(

Ki (Hi (zk))
×G̃r(k)P

−1
i

)
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (8.30)
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with

ABKP = Ãi(Hi(zk))P−1
i + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)P

−1
i .

Let P̄i
	
= Pi

−1. We obtain:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̄i ∗ · · · ∗ ∗ ∗⎛
⎜⎜⎝

Ãi (Hi (zk)) P̄i

+B̃i (Hi (zk))
×Ki (Hi (zk))
×G̃r(k)P̄i

⎞
⎟⎟⎠ − (pri0)

−1
P̄0 · · · 0 0 0

...
...

. . .
...

...
...⎛

⎜⎜⎝
Ãi (Hi (zk)) P̄i

+B̃i (Hi (zk))
×Ki (Hi (zk))
×G̃r(k)P̄i

⎞
⎟⎟⎠ 0 · · · − (prid)

−1
P̄d 0 0

P̄i 0 · · · 0 −Q−1
i 0(

Ki (Hi (zk))
×G̃r(k)P̄i

)
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

(8.31)
So, if the condition (8.25), P̄i > 0, Pj > 0 hold for all i, j ∈ S, then

ÃV (X, i) < 0 at xk �= 0.

Owing to continuity, there exists Mi > 0 such that

ÃV (X, i)−Mi < 0.

Based on Lemma 8.1, the closed-loop jump fuzzy system is stochastically
stable.

When the condition (8.25) holds, the cost (8.13) will be bounded for any
nonzero initial state X0 ∈ Ri:

max
hl(zk)∈H

∞∑
k=0

{
XT

k QiXk + uT
k Riuk

}
< XT

0 PiX0.

Since any feasible solutions γ, P̄i, Pj , and Ki(Hi(zk)) yielding (8.25) will also
satisfy

max
hl(zk)∈H

∞∑
k=0

{XT
k QiXk + uT

k Riuk} < XT
0 PiX0 ≤ γ,

for any hl and nonzero X0 ∈ Rd+1
i , we can use (8.26) to minimize XT

0 PiX0

for known nonzero initial states. The proof is completed. �
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8.3.3 Homotopy Algorithm

The design problem to determine the state feedback gains Ki for (8.26) can
be defined as follows: Find P with the constraints (8.25) and Ki such that
(8.26) are satisfied.

However, in general, the inequalities (8.25) cannot be transformed equiva-
lently to LMIs and we will utilize the homotopy method [13] to solve it in an
iterative manner.

The homotopy algorithm uses a continuous deformation to embed difficult
problems into a family of related problems. As a result, once the solution
to an “easy to solve” problem in this family is obtained, a continuous path
may be followed in solution space to obtain the desired solution to the original
problem. To construct a homotopy path, we introduce a real number λ varying
from 0 to 1, and define:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̄i(
Ãi (Hi (zk)) P̄i + B̃i (Hi (zk)) ((1− λ)K0 + λKi (Hi (zk))) G̃r(k)P̄i

)
...(

Ãi (Hi (zk)) P̄i + B̃i (Hi (zk)) ((1− λ)K0 + λKi (Hi (zk))) G̃r(k)P̄i

)
P̄i

((1− λ)K0 + λKi (Hi (zk))) G̃r(k)P̄i

∗ · · · ∗ ∗ ∗
− (pri0)

−1
P̄0 · · · 0 0 0

...
. . .

...
...

...
0 · · · − (prid)

−1 0 0
0 · · · 0 −Q−1

i 0
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, i, j ∈ S. (8.32)

Then the homotopy algorithm can be summarized as follows:
Step 1: Initialization: set k = 0, select N and Nmax. Compute the initial

values K0 and P0.
Step 2: Set k = k + 1 and k = k/N , set P to Pk−1.

If the LMIs (8.32) are feasible,
Then denote the feasible solution as Ki

k, set Pk = Pk−1, and go to
Step 4,

Else go to Step 3.

Step 3: Set Ki to Ki
k−1,

If the LMIs (8.32) are feasible,
Then solve the minimization problem:

min trace(P ) subject to (8.32),
denote the feasible solutions as Pk, and set Ki = Ki

k−1, then
go to Step 4,
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Else set N = 2N ,
If N > Nmax, then the algorithm fails in giving feasible solution,
Else set k = 0, go to Step 2.

Step 4: If k < N , go to Step 2. If k = N , the obtained solutions Ki
k and

Pk are a set of feasible solutions of (8.25) and (8.26). �

8.4 Output Feedback Controller Synthesis of an NCS

8.4.1 Fuzzy Observer Design

Suppose not all state variables are available, the following fuzzy observer is
considered:

x̂k+1 = Ai(Hi(zk))x̂k + Bi(Hi(zk))uk

+ L̂i(Hi(zk))(ŷk − yk), (8.33)
ŷk = Ci(Hi(zk))x̂k + Di(Hi(zk))uk.

We wish to find observer gains L̂i (Hi (zk)) such that ek = x̂k − xk → 0
asymptotically as k →∞. Define the fuzzy error system as:

ek+1 = x̂k+1 − xk+1 = AcL
i (Hi (zk)) ek, (8.34)

where AcL
i (Hi(zk)) = Ai (Hi(zk)) + L̂i (Hi(zk))Ci (Hi(zk)) .

Then we come to the result for piecewise fuzzy jump observer synthesis.

Lemma 8.3. The closed-loop fuzzy error system (8.34) is stochastically sta-
ble, if for any given set of matrices Ni > 0, i ∈ S, there exists a set of matrices
Ei, Fi, and a set of symmetric matrices Xi > 0, i ∈ S, satisfying the following
matrix inequality:⎡

⎢⎢⎢⎣
−Xi + Ni ∗ · · · ∗

Oi pri0X0 − Ei − Ei
T · · · 0

...
...

. . .
...

Oi 0 . . . pridXd − Ei − Ei
T

⎤
⎥⎥⎥⎦ < 0, (8.35)

where
Oi = EiAi (Hi (zk)) + FiCi (Hi (zk)) , i ∈ S.

In addition, the observer gain for each subspace is given by:

L̂i = E−1
i Fi, i ∈ S. (8.36)
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Proof. Based on Definition 8.1 and Lemma 8.1, the closed-loop fuzzy error
system (8.34) is stochastically stable if there exists a set of symmetric positive
definite matrices Pi > 0, satisfying the following inequalities,

d∑
j=0

prij

[
AcL

i (Hi (zk))
]T

Pj ×
[
AcL

i (Hi (zk))
]− Pi + Ni < 0. (8.37)

With Fi = EiL̂i, the LMI (8.35) is equivalent to:⎡
⎢⎢⎢⎣
−Xi + Ni ∗ · · · ∗

EiA
cL
i (Hi (zk)) pri0X0 − Ei − ET

i · · · 0
...

...
. . .

...
EiA

cL
i (Hi (zk)) 0 . . . pridXd − Ei − ET

i

⎤
⎥⎥⎥⎦ < 0. (8.38)

The left-hand side of the inequality (8.38) can be pre-multiplied by T1 and
post-multiplied by T2 = TT

1 to yield the inequality (8.37), where

T1 =
[
I

(
AcL

i (Hi(zk))
)T · · · (AcL

i (Hi (zk))
)T︸ ︷︷ ︸

d+1

]
.

Thus, LMI (8.35) implies the inequality (8.37). It can be concluded that
the fuzzy error system (8.34) is stochastically stable. �

8.4.2 Output Feedback Controller Design

The output feedback fuzzy controller design presented above with sub-optimal
guaranteed cost performance is based on the sub-optimal state feedback fuzzy
controller and fuzzy observer in each subspace. When r(k) = i, the observer
equation is defined in (8.33) and the output feedback jump fuzzy control law
is:

uk = K̂i (Hi (zk)) x̂k−i, (8.39)

where

K̂i (Hi (zk)) =
t(i)∑
l=1

hil (zk) K̂il.

If we augment the variable as

˜̂xk =
[
x̂T

k x̂T
k−1 · · · x̂T

k−d

]T
, ˜̂x (k) ∈(d+1)n,

(8.40)
ẽk =

[
eT

k eT
k−1 · · · eT

k−d

]T
,

then the closed-loop system becomes
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˜̂xk+1 =
(
Ãi (Hi (zk)) + B̃i (Hi (zk)) K̂i (Hi (zk)) G̃r(k)

)
˜̂xk

+ L̂i (Hi (zk)) C̃i (Hi (zk)) ẽk, (8.41)

ẽk+1 =
(
Ãi (Hi (zk)) + L̂i (Hi (zk)) C̃i (Hi (zk))

)
ẽk,

where

C̃i (Hi (zk)) =
[
Ci (Hi (zk)) 0 · · · 0

]
,

L̃i (Hi (zk)) =

⎡
⎢⎢⎢⎢⎢⎣
Li (Hi (zk))

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦.

Here for simplicity, the closed-loop output feedback jump fuzzy system
dynamics can be described by

x̄k+1 = Āi (Hi (zk)) x̄k (8.42)

where

x̄k =
[˜̂xk ẽk

]T
,

Āi (Hi (zk)) =

[
ÃCK

i L̂i (Hi (zk)) C̃i (Hi (zk))

0 Ãi (Hi (zk)) + L̂i (Hi (zk)) C̃i (Hi (zk))

]
,

ÃCK
i = Ãi (Hi (zk)) + B̃i (Hi (zk)) K̂i (Hi (zk)) G̃r(k).

Then the output feedback fuzzy controller is obtained.

Lemma 8.4. The closed-loop output feedback jump fuzzy system (8.39) is
stochastically stable if for any given set of symmetric matrices Wi > 0, i ∈ S,
there exists a set of symmetric matrices P̃i > 0, i ∈ S satisfying the following
matrix inequality:

d∑
j=0

prijĀ
T
i (Hi (zk)) P̃jĀi (Hi (zk))− P̃i + Wi < 0. (8.43)

Proof. The result directly follows from Lemma 8.1. �

Lemma 8.4 is only useful for checking the closed-loop stability of the
discrete-time jump fuzzy control system when the output feedback fuzzy con-
troller is already available. Note that the matrix inequality (8.43) contains
product terms involving K̂i, L̂i, P̃i and Wi. Nonlinear matrix inequality (NMI)
technique is required to generate the output feedback jump fuzzy controller.
Luckily, we have the following theorem by extending Theorem 5 of [25].
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Lemma 8.5. The matrix inequality (8.43) has feasible solutions if LMIs
(8.25)–(8.26) and ( 8.35)–(8.36) do.

Proof. Based on Theorem 5 of [25], we will show that if the feasible solutions
to LMIs (8.25)–(8.26) and (8.35)–(8.36) can be found then there always exists
a positive scalar α, such that:

P̃i =
[
P̄i 0
0 αXi

]
, i ∈ S, (8.44)

satisfies (8.43). And α can be obtained from the following inequality:

α

⎡
⎣ d∑

j=0

prij

(
AcL

i

)T
XiA

cL
i −Xi

⎤
⎦ <

(
Bi (Hi (zk)) K̂i (Hi (zk))

)T

×
⎡
⎣ d∑

j=0

prij

(
ACK

i

)T
P̄−1

i ACK
i −P̄−1

i

⎤
⎦−1

×
(
Bi (Hi (zk)) K̂i (Hi (zk))

)
, (8.45)

where
ACK

i = Ai (Hi (zk)) + Bi (Hi (zk)) K̂i (Hi (zk)) .

�

Based on Lemmas 8.4 and 8.5, the output feedback jump fuzzy controller
can be designed.

8.4.3 Simulation Example

To illustrate the proposed theoretical results, a numerical example is consid-
ered.

Different networks vary in network-induced delay bounds and the rate of
data loss. The induced delays and data dropout of typical networks are shown
in Figs. 8.3 and 8.4 by simulations using OPNET software.

In our example, local area network (LAN) including Ethernet, token ring,
etc., in which the induced delay is low and rate of data dropout is nearly
zero, is used as the communication network in the NCS. With the purpose
of defining v(r(k)), NCS experiments with fixed constant delays bounded by
the LAN delay are presented. If the low delay is considered, a good output
result is shown in Fig. 8.5 when delay is less than 0.001. On the contrary, if
the delay is high, the system is out of control when delay is larger than 0.007.

Based on the experiment, the states r(k) = 0, 1, 2 denote that the network
induced-delay is low, medium and high, respectively, and have the following
transition probability matrix:
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Fig. 8.3. Induced delay of typical networks
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Fig. 8.4. Data dropout rate of typical networks

Pr =

⎡
⎣0.5 0.5 0

0.3 0.6 0.1
0.3 0.6 0.1

⎤
⎦.

The delays v(r(k)) corresponding to the three states are:⎧⎪⎨
⎪⎩

v(r(k)) ∈ [0, 0.001], r (k) = 0,
v(r(k)) ∈ [0.001, 0.007], r (k) = 1,
v(r(k)) ∈ [0.007, 0.01], r (k) = 2.

Consider the discrete-time jump fuzzy system given by
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Fig. 8.5. System outputs under different fixed delays

Fig. 8.6. The local fuzzy weighting functions of the example

xk+1 =
2∑

l=1

hil (τk (r (k))) {Ailxk + Biluk},

yk+1 =
2∑

l=1

hil

(
i + pr(i−1)i

) {Cilxk + Diluk},

with

A01 =
[

0.8 0.1
−0.5 0.8

]
, A02 =

[
0.5 0.1
−0.4 0.5

]
, A11 =

[
0.7 0.1
−0.3 0.7

]
,

A12 =
[

0.5 0.1
−0.1 0.5

]
, A21 =

[
1 0.1
−0.4 1

]
, A22 =

[
0.5 0.1
−0.3 0.5

]
,

B01 =
[

0 0.1
0.2 0

]
, B02 =

[
0 −0.2

0.2 0

]
, B11 =

[
0 0.1

0.2 0

]
,
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B12 =
[

0 −0.1
0.4 0

]
, B21 =

[
0 −0.2
−0.5 0

]
, B22 =

[
0 0.3

0.2 0

]
,

C01 =
[

0 0.1
0.2 0

]
, C02 =

[
0 −0.2

0.2 0

]
, C11 =

[
0.1 0
0.2 0

]
,

C12 =
[
0.2 0
0 −0.4

]
, C21 =

[−0.2 0
0 0.3

]
, C22 =

[
0.1 0
0 0.2

]
,

D01 =
[
1 0
0 1

]
, D02 =

[
1 0.1
0 1

]
, D11 =

[−1 0
0 −1

]
,

D12 =
[−1 0.1

0 −1

]
, D21 =

[
1 0
0 1

]
, D22 =

[
1 0.12
0 1

]
,

where the local fuzzy weighting function hil(r(k)) followed the local fuzzy
weighting functions of Fig. 8.6. Figure 8.7 shows one simulation run of the
Markovian jump delays according to the given transition probability matrix.

By using mincx() in MATLAB r© LMI Toolbox, the minimal α for the
closed-loop output feedback fuzzy control system to be asymptotically stable
is 0.5438.

For the initial condition:

x0 = [3, 2]T , x1 = [2.5, 2]T , x2 = [1, 1]T ,

x̂0 = [0, 0]T , x̂1 = [1.5, 0]T , x̂2 = [1, 1]T .

The response behaviors of the closed-loop system are presented in Figs. 8.8
and 8.9 using the output feedback fuzzy controller. Fig. 8.8 shows the system
state responses and their estimates, while Fig. 8.9 shows outputs and control
variables curves and their corresponding estimates. It is shown from these
two figures that the estimated variables can converge to the original ones
asymptotically such that good system performance can be guaranteed.
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Fig. 8.7. Random delays
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Fig. 8.8. The system state responses and their estimates
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Fig. 8.9. The output and control variables curves and their corresponding estimates

8.5 Neuro-fuzzy Controller Design

Network type has a great effect on the characteristic of NCS. Fig. 8.5 shows
the system is out of control when the delay is high. Satellite network [26] is
a typical network with longer induced delay shown in Fig. 8.10 by simulation
using OPNET software.

A new neuro-fuzzy controller is presented for the NCS based on the mixed
network including terrestrial networks and satellite networks. It is constructed
of three parts: the guaranteed cost controller, the ANFIS predictor and the
fuzzy controller, presented in Fig. 8.11.
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Fig. 8.11. The neuro-fuzzy controller of NCS
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8.5.1 Neuro-fuzzy Predictor

In this subsection, a new method is proposed to improve the performance
of the NCS by adding a predictor to estimate the plant state. The neuro-
fuzzy predictor is computationally straightforward and has shown excellent
prediction capabilities. So the decision is made to use the ANFIS [18]. The
ANFIS predictor has two inputs: system states at time k and k − d, and
produce the predicted state value at time k+d. The architecture of the ANFIS
predictor is shown in Fig. 8.12, where d is the delay bound.

In the following description, ui
k denotes the ith input of a node in the kth

layer, oi
k denotes the ith node output in layer k, and there are n input values.

The ANFIS predictor uses Gaussian functions for fuzzy sets. The reason is
that a multidimensional Gaussian membership function can easily be decom-
posed into the product of one-dimensional membership functions. With this
choice, the operation performed in this layer is

o2
ij = exp

{
−
(
u2

i −m2
ij

)
(
δ2
ij

)2
}

, i = 1, 2, j = 1, 2, . . . , m, (8.46)

where u2
i and δ2

ij are, respectively, the center and the width of the Gaussian
membership function. The ANFIS predictor uses Gaussian functions for fuzzy
sets, linear functions for the outputs, and Sugeno’s inference mechanism [16].
The parameters of the network are the mean and standard deviation of the
membership functions and the coefficients of the output linear functions. The
ANFIS predictor learning algorithm is then used to obtain these parameters.

input inputmf outputoutputmfrule

x(k)

x(k-d)

x(k+d)

Logical Operations

and

Fig. 8.12. The structure of the ANFIS predictor
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Fig. 8.13. State responses

The learning algorithm is a hybrid algorithm consisting of the gradient descent
and the least squares estimate.

8.5.2 Fuzzy Controller

The fuzzy controller has two rules:

Rule 1: IF r (k) < d, THEN uk = Ki (Hi (zk)) = xg;
Rule 2: IF r (k) = d, THEN uk = Ki (Hi (zk)) = xp.

When r (k) < d, the guaranteed cost controller controls the system. When
network delay is longer, the ANFIS predictor provides the predicted state at
time k+d. In this way, the impact of network’s longer delay can be moderated.

With the same example as in Section 8.4, better control performance of
the neuro-fuzzy controller is illustrated in Figs. 8.13 and 8.14 for state and
control inputs compared with the guaranteed cost controller.

8.6 Conclusions

In this chapter, we studied the problem of modeling and controller design for
networked control systems, where a discrete-time jump fuzzy system is devel-
oped to model networked control systems with random but bounded delays
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and packets dropout. On the basis of the assumption that all state variables of
an NCS are available, a state feedback controller is developed for the discrete-
time jump system with sub-optimal guaranteed cost performance based on a
piecewise quadratic Lyapunov function. It is shown that the state feedback
sub-optimal fuzzy controller can be obtained by solving a set of LMIs using
the homotopy approach. Because not all state variables are available in many
practical cases, an output feedback fuzzy controller is proposed, which cannot
only stabilize the system, but also meet certain desired sub-optimal system
performance criteria. The LMI technique is used to effectively minimize the
overall cost function and thus achieve the sub-optimal system. When the net-
work is in a poor condition, a novel neuro-fuzzy controller including an ANFIS
predictor is designed to deal with the problem. Finally, the effectiveness of the
proposed approaches are verified by a numerical example.
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