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Abstract. A common approach to the implementation of digital systems
is through the emulation of idealized continuous-time blocks in order to be
able to leverage the rich expanse of results and design tools available in the
continuous-time domain. The so-called sampled-data systems are now com-
monplace in practice and rely upon results that ensure that many properties
of the nominal continuous-time system, including notions of stability, are pre-
served under sampling when certain conditions are verified. In analogy with
(fast) sampled-data design, this chapter explores an emulation-based approach
to the analysis and design of networked control systems (NCS). To that end,
we survey a selection of emulation-type NCS results in the literature and high-
light the crucial role that scheduling between disparate components of the
control systems plays, above and beyond sampling. We detail several different
properties that scheduling protocols need to verify together with appropriate
bounds on inter-transmission times such that various notions of input–output
stability of the nominal “network-free” system are preserved when deployed
as an NCS.

Keywords. Nonlinear systems robust stability, scheduling, emulation-based
design.

3.1 Introduction

Control of a system is to influence its behavior to achieve a desired goal, often,
through the use of feedback. Diagrammatically, we are often concerned with
the setup depicted in Fig. 3.1: analysis of plant P with (vector) output y
and design of a controller C with a (vector) control u to achieve a desired
closed-loop behavior, typically, a notion of stability.
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Fig. 3.1. Conceptual block diagram of feedback control

The interconnection of physical signals between controller and plant is sel-
dom as elementary as that depicted in Fig. 3.1. Many properties of the plant
including its physical size, complexity and mobile nature require the distri-
bution of the control and observation task across multiple spatially separated
nodes, including actuators, sensors and devices that compute the control law,
connected via a network. For example, the system in Fig. 3.1 may poten-
tially be implemented as in Fig. 3.2, using two output-feedback controllers
C1, C2 and two sensors that transmit output values y1, y2 across a network
to both controllers. Note that this implementation is suggested without spe-
cific reference to how and when and under which constraints this exchange of
information takes place.

Abstractly, any set of communication channels together with a connection
topology and constraints on the exchange of information across the channels
that prescribe how and when information can be exchanged between nodes
can be referred to as a network.

In this chapter, we restrict our attention to systems with nodes connected
via a single shared communication channel or bus as in Fig. 3.3. The control
law, plant, nodes, the bus itself and the protocol that describes how and when
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Fig. 3.2. A potential 4 node implementation of the system in Fig. 3.1 as an NCS
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Fig. 3.3. Nodes connected with a bus network topology

information can be exchanged amongst nodes are collectively referred to as
the networked control system (NCS).

Central to the study of NCS is the analysis and design of scheduling pro-
tocols. NCS depart from the use of dedicated point-to-point links for con-
nectivity amongst nodes replacing some or all links with a shared network
channel.

As in traditional data networks, the problem of arbitrating multiple access
on the network becomes an issue, motivating the discussion of the scheduling
of nodes and the design and analysis of scheduling protocols suitable for NCS
applications. By scheduling, we mean the transmission of information across
a link in the form of a discrete packet or frame.

Canonical NCS examples include so-called by-wire systems: drive-by-wire
and fly-by-wire with analogies in industrial applications. Here, the network in
NCS is thought of as in the sense of a traditional data (computer) network
but the “network” may exist at a lower level of abstraction as in, for example,
embedded digital control systems.

Example 3.1 (Embedded digital control systems). Transmission of controller
and sensor values to and from the device executing the control law is governed
by protocols of an electrical bus, e.g., a PCI bus, and typically, the scheduler
of an operating system. Even if the underlying control system employs point-
to-point connections from nodes to the controller, communication within the
controller and its constituent components are subject to the communication
constraints of various electrical buses and the operating system. �

Example 3.1 is one of the strongest motivations for studying NCS as pre-
sented in this chapter. It is perhaps taken for granted that the digital control
systems designed and deployed in industry will continue to behave like their
idealized continuous-time (resp., discrete-time) counterparts, besides the ef-
fects of sampling and quantization. As control systems increase in size and
complexity and the levels of component integration increase, the flow of data
between elements of the system is subject to constraints similar to that of a
“real” network. Indeed, components of systems based on the PCI Express r©

architecture communicate via a switched serial network. Regardless of how
controllers and sensors are connected, at least internally, every non-trivial
digital control system can be thought of as an NCS.
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From designs based on traditional wireless and wireline networks to the
growing internal complexity of “un-networked” control systems, an increasing
number of practical NCS implementations and their respective traffic schedul-
ing protocols now exist. Standards-based component connectivity offers lower
implementation costs, greater interoperability and a wide range of choices in
developing control systems. The price paid for these advantages is the added
complexity in the initial design and analysis of NCS. As alluded to earlier, part
of this complexity comes in the form of issues of arbitration of network access
amongst links, or scheduling, which is of fundamental importance. But above
and beyond scheduling, NCS also presents the designer with the limitations
of

(a) finite bandwidth of communication channels;
(b) finite precision of encoding and decoding schemes for transmitted infor-

mation;
(c) pure (propagation) delays of channels;
(d) and data dropouts from unreliable channels.

These limitations are not mutually exclusive, however. As transmission
rates increase, and with frame and packet sizes well in excess of machine
(CPU) precision, effects of quantization and pure delay play an increasingly
diminishing role in the analysis of most NCS and we forgo their consideration
in this chapter. We will, however, examine models of data dropouts and unre-
liable channels with the Ethernet and the so-called p-persistent collision-sense
multiple access (CSMA) as prime examples of such channels.

3.2 Overview of Emulation-based NCS Design

3.2.1 Principles of Emulation-based NCS Design

As stated in the introduction, scheduling and scheduling protocols are an
integral part of NCS design. A survey of scheduling and various scheduling
protocols is provided in [17] and stability and performance results of NCS have
been examined in [8, 9, 15, 16, 17, 19]. An elementary example of a scheduling
protocol, round-robin (RR), grants network access to NCS components in
sequential, round-robin fashion and is used almost exclusively in practice. The
aforementioned works present various alternative protocols that demonstrate a
performance gain over RR in simulations and, in special cases, demonstrate the
superiority of the alternative protocols analytically. The NCS design approach
adopted in [8, 9, 12, 15, 16, 18], and in this chapter consists of the following
steps:

(1) design a stabilizing controller ignoring the network;
(2) choose an appropriate scheduling protocol;
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(3) and analyze the robustness of stability with respect to effects that schedul-
ing within a network introduce.

The principal advantage of this approach is its simplicity – the designer of the
NCS can exploit familiar tools for controller design and select an appropriate
scheduling protocol and transmission rate such that the desired properties of
the network-free system are preserved.

This chapter will introduce and characterize the various classes of admis-
sible protocols for which stability results are developed but it is important to
note that when the network-free system verifies a nominal stability property
and an admissible protocol is chosen, stability of the resultant NCS can be
achieved through sufficiently high transmission rates (or equivalently, suffi-
ciently low inter-transmission times). Moreover, stability (robustness) prop-
erties of the NCS are actually parameterized by the transmission rate and
hence, step (3) in the design process can be reinterpreted as:

(3′) choose a transmission rate (above requisite minimum) to achieve a desired
degree of robust stability.

Results will be presented where this design approach is adopted with vari-
ous notions of transmission rate (minimum or expected) and robust stability
(uniform global exponential or asymptotic stability, Lp or Lp in-expectation
or input-to-state stability).

3.2.2 Results in Perspective

Consider the following LTI control system:

ẋP = APxP + BPu, ẋC = ACxC + BCy, (3.1)
y = CPxP , u = CCxC , (3.2)

where xP ∈ RnP , xC ∈ RnC , y, and u denote, respectively, plant state, con-
troller state, plant output, and control, and where u has been designed ig-
noring the network as outlined in the previous section. In the presence of a
network and an associated scheduling protocol, y and u cannot be continu-
ously transmitted between the plant and controller. The network introduces
the following limitations:

(a) transmissions occur only at specific transmission instants {ti}∞i=0; and
(b) only one logical component of the NCS is allowed to transmit (broadcast)

data onto the network at a given transmission instant ti, e.g., for a 3-
output 2-input system, one component of y = (y1, y2, y3), u = (u1, u2)
can be transmitted.

Let ŷ denote the “stand-in” for y available to and maintained by the device(s)
that compute the control law and û denote the “stand-in” for u available to
and maintained by the device(s) that actuate the plant. In effect, the NCS for
the network-free system is described by
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ẋP = APxP + BP û, ẋC = ACxC + BC ŷ, (3.3)
y = CPxP , u = CCxC . (3.4)

In analogy with zero-order hold sampling, ŷ and û can be held constant be-
tween transmission instants and “reset” or updated with components of u
and y as those become available and transmitted. Fig. 3.4 illustrates the situ-
ation for an NCS where two outputs are alternately transmitted in RR fashion
across the network to the device(s)3 that compute the control law and actuate
the plant at transmission instants. RR is only one example of a scheduling
protocol amongst several that we consider and one of the primary aims of the
chapter will be to characterize protocol properties that capture the effects of
the protocol on NCS stability.

ŷ1

ŷ2 ?

y1y2 y2 y1

t1 t2 t3 t4

? ?
y2(t1) y2(t1)

y1(t2) y1(t2)
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network transmission

t

Fig. 3.4. RR scheduling of two-outputs with a zero-order hold ŷ update policy

Although a scheduling protocol determines how the transmission of plant
measurements and control values are arbitrated at transmission instants, it is
useful to think of the scheduling protocol in terms of the effects on the error
that a network induces compared to the network-free system. Indeed, if we
define

e =
(

ey

eu

)
=
(

ŷ − y
û− u

)
, (3.5)

we can rewrite (3.3) and (3.4) between transmissions as

ẋP = APxP + BPu + BP eu, ẋC = ACxC + BCy + BCey,

y = CPxP , u = CCxC ,

˙̂u = 0, ˙̂y = 0,

and hence, [
ẋ
ė

]
=
[
A11 A12

A21 A22

] [
x
e

]
, (3.6)

3 Since data is presumed to be broadcast across the network, the number of
controller-actuator devices that actuate the plant is immaterial so long as they
adopt identical policies for updating their copies of ŷ.
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where

A11 =
[

AP BPCC

BCCP AC

]
, A12 =

[
BP BC

]
, (3.7)

A21 = − [CP 0
]
A11, A22 = − [CP 0

]
A12 . (3.8)

These equations describe how the state and NCS error evolves between trans-
missions and it is clear that components of e are reset or experience “jumps”
at transmissions instants. For example, let ey,j = ŷj − yj . Ignoring the effects
of quantization and delay, if the jth component of y is transmitted at the ith
transmission instant we have

ŷj(ti)← yj(ti) ⇐⇒ ey,j(ti)← 0 . (3.9)

Hence, the effect of the scheduling protocol is to reset components of the NCS
error4 at transmission instants. An NCS model in this fashion is thus com-
pletely prescribed by:

(a) NCS continuous-time dynamics as in (3.6) and depicted conceptually in
Fig. 3.5;

(b) a sequence of increasing transmission instants {ti}∞i=0; and
(c) a scheduling protocol, or error reset map that is described via its effect

on the error, e, at transmission instants.

Regarding the NCS continuous-time dynamics as fixed, we would like to char-
acterize the sequence of transmission instants or, equivalently, the sequence
of inter-transmission intervals and the set of protocols for which we can con-
clude that the NCS state (x, e) is stable in an appropriate sense. The origins
of emulation-based NCS design in this sense begin with the pioneering work of
Walsh et al. in [15] and [16] where NCS models in the form of (3.6) and its non-
linear counterpart were presented, together with conditions on the maximum
allowable transmission interval (MATI) such that the resultant NCS was uni-
formly globally asymptotically or exponentially stable (UGAS, UGES) when
using the RR or maximum-error-first try-once-discard (TOD) scheduling pro-
tocols. We defer a detailed discussion of these and other protocols until Section
3.3.2 and outline results in the spirit of those presented in [15, 16, 19].

Let e ∈ Rne and x ∈ Rnx . The following class of nonlinear systems was
considered in [15]:

ẋ = f(t, x, e),
ė = g(t, x, e), (3.10)

with the shorthand notation:

ż = h(t, z), (3.11)

where z = (xT eT )T .
4 Ordinarily and as in (3.9), the result of the transmission is to reset a component

of error to zero, though we stress that for many of the results outlined in the
chapter, this assumption is not necessary.
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Fig. 3.5. Interconnection of signals in NCS dynamics

The Lipschitz constants for f , g and h are denoted, respectively, by kf ,
kg and kh; that is, the right-hand side in (3.11) is assumed to be globally
Lipschitz, uniformly in t. The class of linear systems (3.6) with the obvious
shorthand:

ż = Az (3.12)

was considered in [16, 19].
It is supposed in [15] that there exists a continuously differentiable Lya-

punov function V such that the system (3.10) satisfies:

c1|x|2 ≤ V (t, x) ≤ c2|x|2 for all x ∈ Rnx and t ∈ R, (3.13)
∂V

∂t
+

∂V

∂x
f(t, x, 0) ≤ −c3|x|2 for almost all x ∈ Rnx and t ∈ R, (3.14)∣∣∣∣∂V∂x

∣∣∣∣ ≤ c4 |x| , (3.15)

where c1, c2, c3, c4 are positive constants. A similar condition was used in
[16, 19] for the linear system (3.6). Indeed, it was assumed that for some
positive definite and symmetric matrix Q there exists a positive definite and
symmetric matrix P that solves the Lyapunov matrix equation5:

AT
11P + PA11 = −Q . (3.16)

It is obvious that (3.16) implies that (3.13)–(3.15) are satisfied for the linear
system (3.6), V (x) = xTPx and

c1 = λmin(P ); c2 = λmax(P ); c3 = λmin(Q); c4 = 2λmax(P ), (3.17)

where λmin(·) and λmin(·) denote the minimum and maximum singular value
of a symmetric matrix, respectively. For linear systems, we can let

kh = kf = kg = |A| . (3.18)

A bound on MATI that guarantees the stability of the linear system (3.6)
with the RR and TOD protocols was obtained in [16, 19]. We denote bounds
computed in [16, 19], respectively, as τRR

∗ and τTOD
∗ for the RR and TOD

5 The results in [16] are only presented for the special case Q = I. The result with
general Q is presented in [19].
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protocols. Similar bounds were obtained in [15] for nonlinear systems (3.10)
with the RR and TOD protocols, where6 the bounds obtained are also such
that τRR

∗ = τTOD
∗ . The bounds in [15, 16, 19] can be expressed as:

τRR
∗ = τTOD

∗ =
c3

M�(� + 1)khkfc4
, (3.19)

where the value of the constant M is different for linear and nonlinear sys-
tems and � denotes the number of nodes that participate in scheduling. For
nonlinear systems, we have

M = MNL = 16
(
c2
c1

)3/2(√
c2
c1

+ 1
)

, (3.20)

established in [15]. Analogously in [16, 19], the following is obtained for linear
systems

M = ML = 8

√
λmax(P )
λmin(P )

(√
λmax(P )
λmin(P )

+ 1

)
, (3.21)

where the meaning of all constants in (3.19) is explained through (3.17) and
(3.18). These MATI bounds obtained in [15, 16, 19] do not differentiate be-
tween RR and TOD; that is τTOD

∗ = τRR
∗ .

In general, intuition suggests that MATI bounds should be protocol-
dependent. Significant improvements upon these MATI bounds were made in
[8] by efficiently capturing protocol properties through protocol-specific Lya-
punov functions and characterizing the effects of transmission errors through
Lp gains. Essentially, UGES and Lp input–output stability is with a MATI
of:

0 < τ <
1
L

ln
(

1 +
1− θ

γ/L + θ

)
, (3.22)

where θ ∈ [0, 1) characterizes the ability of the protocol to reduce network
error at transmission instants while L > 0 describes the speed of the network-
error dynamics, and γ > 0 captures the effect of network-error on the behavior
of the ideal system through an Lp gain. In particular, τ is protocol-dependent
through θ – the better the protocol is at reducing network-error at trans-
mission instants, the larger the MATI bound is, and hence, the less frequent
transmissions have to be to guarantee stability of the NCS.

3.3 Modeling Networked Control Systems and
Scheduling Protocols

The premise of networked control systems (NCS) is to spatially distribute
a “traditional” control system across a number of nodes that will exchange
6 Note that we do not use different notation for MATI bounds for linear and non-

linear systems, although they are different in general. This is because it always
will be clear from the context which bound we mean.
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data subject to the constraints of a shared data channel. These nodes include
sensors, actuators and units that compute various control laws and the data
channel is typically a wireless or wireline computer network, many examples
of which can be found in [14].

Computer networks and communication systems present rich and sophisti-
cated models of varying degrees of complexity, within stochastic and determin-
istic settings, and of various underlying physical communication media. For
the vast majority of computer networks described in [14], the primary con-
straint on the exchange of data between nodes is that the respective channels
are exclusive. This means that the attempt of more than one node to trans-
mit data at a given time will result in data loss, i.e., a collision. Collisions can
be prevented by arbitration of network access through the use of scheduling
protocols that decide which node(s) can transmit and at what times.

The network models presented in this chapter aim to capture the essential
aspects of control over networks in the context of several important settings:

(a) locally7 arbitrated network access without packet dropouts;
(b) arbitrated network access with and without packet dropouts; and
(c) unarbitrated network access with and without packet dropouts.

Arbitration takes place through the use of a scheduling protocol adopted
by every node in the network. A protocol can be thought of as a map

h : W → {1, . . . , �} (3.23)

that selects the node currently being allowed to transmit and an associated
dynamical system that evolves the scheduler state variable ω ∈ W . For spa-
tially separated nodes, this generally means that each node must maintain
a copy of the state ω that is evolved identically by the node (local knowl-
edge with globally-known inputs), or, ω is known globally and updated in
a distributed fashion. Such protocols are often referred to as contentionless
protocols. For example, labeling the NCS nodes {a1, a2, . . . , a�}, round-robin
scheduling would entail apportioning the channel’s time, [0,∞), into slots
{s1 := [t0, t1), s2 := [t1, t2), . . . , } such that node ai is permitted to transmit
during slot si+k�, k = {0, 1, . . . }. Depending on the context, this scheduling
protocol is also known as time-division multiplexing or token ring and relies
on each node being able to count transmissions. In this case,

ω = number of transmissions from some initial time.

For networks with a large number of nodes, mobile nodes that are spatially
separated across varying distances or networks with a varying number of
nodes, it may be impractical or impossible to keep ω, the state information,
synchronized across all nodes.
7 By “locally” we mean that the arbitration process takes place without the ex-

change of global arbitration information prior to network access, e.g., a priority
field.
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The alternative is unarbitrated access in the sense that there is no global
policy to enforce exclusive network access for a given node at a transmis-
sion instant. In particular, collisions may occur, and have to be detected and
recovered from. The number that occur can often be reduced by employing
various heuristics using data available to each node locally. Concrete and fa-
miliar examples of this approach include the family of carrier-sense multiple
access protocols (CSMA) exemplified by Ethernet, p-persistent CSMA (Blue-
tooth, 802.11a/b/g) and variants of ALOHA. See [14] for an overview of these
protocols and their operational characteristics.

Thus far, the discussion holds true for both computer and control net-
works. Where computer networks and control networks differ radically is in
access patterns – ideally, a continuous-time control system would have nodes
constantly transmitting sensor values and constantly receiving control values,
in complete contrast to the usual assumption of access in short and irreg-
ular bursts for nodes in a computer network. Stated explicitly, we assume
continuous-time controllers and plant outputs are such that there will always
be data to transmit when the network channel becomes idle.

This assumption applies to all forms of network access in NCS, the key dif-
ference being that the unarbitrated network access does not enforce a partic-
ular choice of which link to transmit when the channel becomes idle whereas
global arbitration would. We present a unified approach for the analysis of
NCS both for ideal channels and in the presence of random packet dropouts
and random inter-transmission times – effects that are essentially attributes
of non-ideal or stochastic network channels.

We assume that every link in the NCS contests access to the network at
either predetermined time-slots or times at which the network is sensed to be
idle. This results in two potential sources of randomness:

(a) At any idle time or transmission slot, either some node j transmits success-
fully or a collision results or the transmitted packet is dropped. Denoting
the probability that a packet is dropped or a collision occurs by p0, we will
always assume that the probabilities of successful transmission of links is
identically equal to (1−p0)/� for an �-link NCS without global arbitration.
While this is not strictly necessary in our analyses, there is no reason to
statically (off-line) favor any one link over another during contention by
adjusting transmission-success probabilities. Contentionless protocols do,
however, enforce a particular choice of which link to transmit in a given
slot eliminating the possibility of a collision.

(b) Sensing the network as being idle, synchronizing to transmissions time-
slots or else randomly waiting for a period of time after any of these
events to reduce the likelihood of collisions are common features of network
protocols. These uncertainties can be faithfully modeled with a stochastic
(renewal) process. For the set of protocols we discuss, it is sufficient to
restrict our attention to Poisson processes with some intensity λ or a
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class of renewal processes where inter-transmission times are uniformly
bounded, i.e., by the MATI.

3.3.1 Scheduling and a Hybrid System Model for NCS

We model the NCS as a so-called jump-continuous (hybrid) system, where
jump times and the associated jump or reset maps are both potentially random
but not necessarily so. Our NCS model incorporates the effects of exogenous
perturbations w as first presented in [8]. As alluded to earlier, the model we
present is general enough to examine several scheduling alternatives with and
without packet dropouts when inter-transmission times are either uniformly
bounded with a MATI or random.

Node data (controller and sensor values) are transmitted at (possibly)
random transmission instants {t0, t1, . . . , ti}, i ∈ N and our NCS model is
prescribed by the following dynamical and jump equations. In particular, for
all t ∈ [ti−1, ti]:

ẋP = fP (t, xP , û, w), (3.24)
ẋC = fC(t, xC , ŷ, w), (3.25)
u = gC(t, xC), y = gP (t, xP ), (3.26)
˙̂y = 0, ˙̂u = 08, ˙̂e = 0, (3.27)

and at each transmission instant ti,

e(t+i ) = Qi(e(ti))e(ti)9, (3.28a)

or
e(t+i ) = Qi(ê(ti))e(ti),
ê(t+i ) = Λ

(
i, (I −Qi(ê(ti)))e(ti), ê(ti)

)
.

(3.28b)

The effect of the protocol on the error is such that if the mth to nth
nodes are successfully transmitted at transmission instant ti the corresponding
components of error, en, . . . , em, experience a “jump”. It may be the case that
a single logical node (a “link”) consists of several sensors or several actuators
or both with the transmission of that link having the effect of setting multiple
components of e to zero. It may also be the case that the network allows the
transmission of more than one node at each transmission and our model allows
for this extra degree of freedom. For transmission from mth node to nth node,
we will always assume that en(t+i ), . . . , em(t+i ) = 0 and hence, Qi(·)e = [akj ]e,
where akj = 0 for k = j ∈ [n,m] ∪ {k �= j} and 1 elsewhere. We group the

8 The assumption that ˙̂y and ˙̂u are zero simplifies the presentation and is not
strictly necessary. Non-zero choices correspond to schemes that predict y and u
between transmissions in an open-loop sense.

9 Given t ∈ R and a piecewise continuous function f : R → Rn, we use the notation
f(t+) = lims→t,s>t f(s).



3 Networked Control Systems: Emulation-based Design 69

nodes that are transmitted together into logical links, associating a partition
of size si, denoted by ei = (ei1, ei2, . . . , eisi

), of the error vector e such that
we can write e = (e1, . . . , e�). We say that the NCS has � links and

∑�
i=1 si

nodes. Note that this is purely a notational convenience and simplifies the
description of scheduling protocols and the NCS itself.

The two alternative forms of the error jump-map (3.28a) and (3.28b) refer
to two different situations with respect to the scheduler state ω in the abstract
description of a scheduling protocol given in (3.23):

(a) ω ≡ (i, e) in (3.28a), where Qi(·) may be a random jump map – in partic-
ular, Qi may be the identity in the case where nothing was transmitted
or a collision or dropout occurred.

(b) ω ≡ (i, ê) in (3.28b), where Qi(·) is an ordinary map and ê is a state
variable synchronously maintained and updated by all nodes.

In both cases, we refer to Q as the scheduling function and Λ as the
decision-update function in (3.28b). The key difference between these two
alternatives is the decision-vector ê. Special cases of ê-based scheduling were
first considered in [18]. The model we introduced in [12] and described here
formalizes the ê-based scheduling that was considered in [18] and it generalizes
the NCS models considered in [8].

With respect to the available state-information, there are several alterna-
tives as to what information the scheduler has available in making scheduling
decisions prior to transmissions:

(a) (x, e, i) is known by all nodes;
(b) (e, i) is known by all nodes;
(c) i is known and any broadcast data becomes known after transmissions;10

(d) only i is known globally; or
(e) only local policies are adopted and no global information is used in

scheduling.

These correspond to the following NCS scenarios:

(1) “Classical” control, that is, if (x, e, i) is known to all nodes prior to trans-
missions, transmissions would not be necessary as any of x, y, and u could
be recovered.

(2) Each node can encode e into an arbitration field and participate in what
is, in effect, a distributed scheduling decision, e.g., through binary count-
down.

(3) Nodes only have i and local information available to make a scheduling
decision, and once a transmission (broadcast) has taken place, are free to
update their local information (ê) with the broadcast data.11 To ensure

10 This data can be used to evolve locally maintained state, e.g., ê.
11 For reasons that shall become apparent, there is no loss of generality in assuming

that the broadcast data is given by (I − Qi(ê(ti)))e(ti) – the component of error
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that the nodes arrive at a unanimous decision, the update rule, and hence
the local data is updated in the same fashion across all nodes.

(4) For situations (2)–(3) it is assumed that nodes can count the number of
transmissions that have passed from some reference time and hence i is
known. In this NCS scenario, no other data is known or maintained by
nodes for scheduling purposes.

(5) Network access is, in effect, unarbitrated and access patterns are deter-
mined by local policy.

The maps prescribed by (3.28a) and (3.28b) are sufficiently general to cap-
ture the scenarios (2)–(5). We combine the controller and plant states into
a vector x = (xP , xC) and assuming gP , gC are continuous and a.e. (almost
everywhere) C1, for example, we can rewrite (3.24)–(3.28b) in a form more
amenable to analysis:

ẋ = f(t, x, e, w), t ∈ [ti−1, ti], (3.29)
ė = g(t, x, e, w), t ∈ [ti−1, ti], (3.30)

and
e(t+i ) = Qi(e(ti))e(ti), (3.31a)

or
e(t+i ) = Qi(ê(ti))e(ti),
ê(t+i ) = Λ

(
i, (I −Qi(ê(ti)))e(ti), ê(ti)

)
,

(3.31b)

where x ∈ Rnx , e ∈ Rne , w ∈ Rnw , and ê ∈ Rnê .
Implicit in this definition is that there are no (pure) propagation delays.

Transmission at time ti results in the instant reset of the relevant error com-
ponent to zero. We appeal to the robustness properties verified by the class of
systems considered to assert that the results in this chapter remain true for
sufficiently small delays.

With respect to (3.24)–(3.28b) and (3.29)–(3.31b), we further assume that
the sequence of (attempted) transmission times {ti}i∈N is such that ti+1−ti is
exponentially distributed for all i or satisfy ε < tj+1−tj ≤ τ for all j ≥ 0 where
τ > 0 and ε > 0.12 The constant τ is the maximum allowable transmission
interval (MATI).

3.3.2 NCS Scheduling Protocol Properties

We have previously described protocols in a general setting as maps that
effect errors at transmission instants. We now aim to identify general protocol

that was reset to zero at the ith transmission instant and hence, appears as the
only input in (3.28b).

12 This ensures that Zeno solutions cannot occur. Zeno behavior occurs in hybrid
systems when there are an infinite number of discrete transitions in a finite period
of time.



3 Networked Control Systems: Emulation-based Design 71

properties that appropriately characterize protocol behaviors and that are
able to parametrize NCS stability under appropriate conditions. Recall that
by “protocol” we refer to both the maps of the form (3.31a) and (3.31b) as
well as an associated sequence of transmission times {ti}∞i=0, where ti+1 − ti
is either uniformly bounded or exponentially distributed.

We introduce several protocol properties that are phrased in terms of mem-
bership in the class of Lyapunov UGES (uniformly globally exponentially sta-
ble) protocols, the class of PET (persistently exciting) protocols, the class of
almost surely Lyapunov UGES protocols and the class of almost surely (a.s.)
covering protocols.

3.3.3 Lyapunov UGES and a.s. UGES Scheduling Protocols

Let E[·] and P {·} denote the expectation and probability operators and let
X ∼ Exp(λ) denote that X is an exponentially-distributed random variable
with E[X] = 1/λ. For purely deterministic maps and ignoring the dynamics
introduced by (3.30), we can regard (3.31a) as a discrete-time system that
captures the behavior of the scheduling protocol. The system is given by:

e+ = Qi(e)e . (3.32)

Maps of this form were used to capture the behavior of the protocol in [8]
on an ideal network. Describing the protocol in this fashion allows one to
speak of uniformly globally asymptotically and exponentially stable (UGAS
and UGES) scheduling protocols whenever the associated discrete-time sys-
tem (3.32) is UGAS or UGES. Beyond taxonomy, the notion of UGES and
UGAS protocols and the construction of smooth Lyapunov functions for the
associated UGAS and UGES discrete-time systems is central to the stability
analysis approach developed in [8] and [9].

NCS employing UGES and UGAS protocols on non-ideal network channels
are still subject to packet losses and varying inter-transmission times. By
assigning a probability, p0, to the event that the channel drops a packet, we
model the behavior of the protocol on non-ideal channels in this section with
jump maps of the form

Q̃i(e)e = qiQi(e) + (1− qi)e, (3.33)

where qi is an i.i.d.13 sequence of Bernoulli random variables that model the
dropout process of channel with P {qi = 1} = 1−p0. Depending on the specific
system, the sequence of arrival times (transmission instants) {ti}i∈N are either
random and defined inductively by:

t0 = τ0,

where τ0 ∼ Exp(λ) and for each i > 0,
13 Independently identically distributed.
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ti = ti−1 + τi,

τi ∼ Exp(λ), where the sequence {τi} is i.i.d., or inter-transmission times are
uniformly (deterministically) bounded by a MATI.

As in (3.32), it becomes natural to define the associated auxiliary discrete-
time system for (3.33):

e+ = qiQi(e)e + (1− qi)e, i ∈ N, (3.34)

where the sequence {qi} is defined as in (3.33).
We introduce the following definition with respect to System (3.34).

Definition 3.1 (Almost surely Lyapunov UGES protocols). Let W :
N × Rne → R≥0 be given and suppose that κi is a sequence of nonnegative
i.i.d. random variables and a1, a2 > 0 such that the following conditions hold
for the discrete-time system (3.34) for all i ∈ N and all e ∈ Rne :

a1|e| ≤W (i, e) ≤ a2|e| (3.35)

W (i + 1, Q̃i(e)e) ≤ κiW (i, e) (3.36)
E[κi] < 1 . (3.37)

Then we say that (3.34) (equivalently, the contentionless protocol) is al-
most surely uniformly globally exponentially stable (a.s. UGES) with Lyapunov
function W . �

Before discussing implications of this definition, we present a motivating
example:

Example 3.2 (Try-once-discard). The TOD protocol was introduced in [16]
and can be expressed with a model of the form (3.34) where

Qi(e) = (I − Ψ(e))

and Ψ(e) = diag{ψ1(e)Il1 , . . . , ψ�(e)Il�}, with Ilj identity matrices of dimen-
sion lj and

ψj(e) =
{

1, if j = min(arg maxj |ej |)
0, otherwise. (3.38)

That is, TOD picks out the node with the largest magnitude of error for
transmission. It was shown that TOD preserves stability properties of the
network-free system in [15] (linear systems) and [8] (nonlinear systems with
disturbance) for sufficiently small MATI. As in [8, Proposition 5], we set
W (i, e) = |e| and claim that TOD is a.s. Lyapunov UGES whenever the
probability of a dropout, p0 is such that

p0 + (1− p0)

√
�− 1
�

< 1. (3.39)

�
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The inequality (3.39) is a particular example of a more general condition
that ensures that any Lyapunov UGES protocol in the sense of [8] is an a.s.
Lyapunov UGES for sufficiently low probability of dropout. We first recall the
definition of a Lyapunov UGES protocol:

Definition 3.2 (Lyapunov UGES protocols). A protocol (3.34) on an
ideal channel (p0 = 0⇒ qi = 1) is said to be Lyapunov UGES in the sense of
[8] if there exists W : N×Rne → R≥0, a1, a2 > 0, and 0 ≤ θ < 1 such that for
all i ∈ N and all e ∈ Rne :

a1|e| ≤W (i, e) ≤ a2|e| (3.40)
W (i + 1, Qi(e)e) ≤ θW (i, e) . (3.41)

This definition admits the following proposition:

Proposition 3.1. Suppose that the protocol (3.34) on an ideal channel (p0 =
0 ⇒ qi = 1) is Lyapunov UGES. Then (3.34) is a.s. Lyapunov UGES on a
non-ideal channel (p0 ≥ 0) if

p0 + (1− p0)θ < 1. (3.42)

Remark 3.1. The rationale for the introduction of the class of a.s. Lyapunov
UGES protocols is to provide an analysis framework for Lyapunov UGES
protocols capable of handling random packet dropouts – any Lyapunov UGES
protocol is automatically an a.s. Lyapunov UGES protocol for sufficiently
low p0. In the case where inter-transmission times are uniformly bounded
by a MATI and p0 = 0, we recover the usual definition of Lyapunov UGES
protocols as in Definition 3.2. �

Remark 3.2. The definition of Lyapunov UGAS and hence, a.s. Lyapunov
UGAS protocols is analogous and we refer the reader to [9] for details and
results. �

3.3.4 PET Scheduling Protocols

Intuition suggests that schemes such as TOD should perform better than
RR, as the node with the greatest error is transmitted at each transmission
instant. TOD is certainly implementable in variants of CAN14 as the error can
be encoded into an arbitration field15 in a frame but no such arbitration is
possible for wireless channels and, indeed, many wireline channels and hence,
it is often unreasonable to assume knowledge of the entire error vector e in
these contexts.

Several variants of TOD were introduced in [18] that “estimate” the error
vector and were shown to outperform RR in simulations. Stability results
14 Control Area Network.
15 Specifically, through binary countdown – see [14] and [17] for details.
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are also provided for linear systems that lead to conservative estimates on
performance bounds. One model of NCS that accommodates these variants
was proposed in [12] that is a special case of (3.29)–(3.31b).

The variants of TOD presented in [18] as well as the RR scheduling pro-
tocol satisfy the following property: there is a fixed (finite) number of trans-
missions T such that all nodes of the NCS have transmitted within T trans-
missions. This T is related to the notion of a node’s “silent-time” in [18].
This property is the point of departure of this section, and for reasons that
will become apparent, we call protocols that satisfy this property uniformly
persistently exciting scheduling protocols, or simply, PE protocols. Whenever
T is known, we say that the protocol is PET . Round-robin is the first example
of a PET protocol.

Example 3.3 (Round-robin). Round-robin scheduling is employed in the token
ring and token bus network protocols as well as (once) being the ubiquitous
scheduling protocol of time-sharing operating systems. Each link of the net-
work is assigned a unique index and links are “visited” in the order of index.
Consider an �-link NCS. In terms of NCS scheduling, the discrete-time system
is a linear time-varying system where the protocol map has no dependence on
state:

e+ = (I −Δ(i))e, (3.43)

where Δ(i) = diag{δ1(i)Is1 , . . . , δN (i)Is�
}, and

δk(i) =
{

1, if k − 1 = i mod �
0, otherwise. (3.44)

It was established in [8] that RR is a Lyapunov UGES protocol and that
it preserves stability properties of the network-free system for high enough
transmission rates. As the protocol does not depend on NCS state it makes
RR easily implementable and is PET with T = �. �

PE in the sense we have described is verified by many network technolo-
gies. Ethernet and 802.11 are examples of CSMA/CD protocols where it is
known (see [2], for instance) that for a finite number of users (links), the ex-
pected waiting time for a link is finite. We pursue a stochastic analogue of
PE for such protocols in Section 3.3.5.

For a more formal characterization of the PE property, it can be shown
that if we integrate the equations (3.30) and ˙̂e = 0 on the interval [t+i−1, ti]
and then apply the jump map (3.31b) at ti, the NCS induces the following
discrete-time system:

e+ = (I − Ψ(i, ê))(e + d), (3.45)

ê+ = Λ(i, Ψ(i, ê)(e + d), ê), (3.46)

where d captures the inter-sample behavior of e(·). This idea of examining an
induced discrete-time system to evaluate protocol properties was first used
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in [8] as outlined in Section 3.3.3 though used here with a key difference: for
specific initializations (k, e(k), ê(k)) and specific (bounded) values of d(j), j ≥
k the solution of the system (3.45)–(3.46) coincides with that of (3.29)–(3.31b)
at time instants t+j , j ≥ k which is not the case for (3.34). As we think of the
inter-sample behavior d as a perturbation, our formal definition of PE will be
stated as a property that is robust to bounded perturbations.

Definition 3.3. The protocol (3.45)–(3.46) is said to be (robustly) persis-
tently exciting in T or PET if there exists T ∈ (0,∞) such that

i+T−1∏
k=i

Qk(ê(k))) = 0, (3.47)

holds for every k ∈ N and any initial condition e(i) and ê(i) where we
have written φê(k) in place of φê(k, i, e(i), ê(i), d[k,i]) and all d ∈ �∞, where
φê(i) := φê(i, e, ê, d[k,i]) is the ê component of the solution of the system
(3.45)–(3.46). That is, the T -fold product of the jump map evaluated along
any set of trajectories that can be generated by (3.45)–(3.46) from any set of
initial condition is the zero matrix. �

The protocols below are typical of what has been proposed in NCS liter-
ature and what is used in practice. In what follows, we will always assume
an �-link NCS with the ith linking consisting of li nodes and an error vector
ei. Two PET protocols are presented next though we note that the simplest
example of a PE protocol is RR (Example 3.3).

Example 3.4 (Hybrid RR-TOD scheduling protocol). The hybrid RR-TOD
scheduling protocol enforces PE in a time-periodic manner. For a prescribed
M ∈ N, the protocol takes the form:

e+ = (I −Ω(i, ê))(e + d), (3.48)

ê+ = (I −Ω(i, ê))ê + Ω(i, ê)(e + d), (3.49)

Ω(i, ê) :=
{

diag{p1(i)Is1 , . . . , pN (i)IsN
}, if mod(i,M) = 0

diag{ψ1(ê)Is1 , . . . , ψN (ê)IsN
}, otherwise,

where, pn(i) = 1 when mod(i/M,N) = n − 1 and pn(i) = 0 otherwise with
ψj defined in (3.38). The hybrid RR-TOD protocol is PET with T = MN .
In particular, when M = 1, we obtain the simplest PET protocol: “classical”
RR. �

Example 3.5 (Constant-penalty TOD). Constant-penalty TOD (CP-TOD) [18]
uses the mechanism of “silent-time” to ensure that every link is eventually
visited within a finite window of time: each link j has a counter rj that is in-
cremented at every transmission instant that it is not scheduled and reset to
zero when it is scheduled. Irrespective of the underlying scheduling protocol,
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when a link’s counter reaches a predetermined threshold, say M , it will be
scheduled. This ensures that every link is scheduled within �+M transmission
instants16.

The underlying scheduler in this example is TOD and corresponds to the
constant-penalty TOD scheme in [18] with a penalty (vector) of Θ:

e+ = (I − Φ(r, ζ))(e + d), (3.50)

ζ+ = (I − Φ(r, ζ))(ζ + Θ) + Φ(r, ζ)(e + d), (3.51)

r+ = (I − Φ(r, ζ))(r + 1), (3.52)

where 1 = [1 . . . 1]T , the scheduling function Φ is given by

Φ(r, ζ) = diag{ϕj(r, ζ)Isj
}, j ∈ [1, . . . , �]

and

ϕn(r, ζ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if [n = min{m : rm ≥M}]∨[
n = min

(
arg max1≤j≤N |ζj |

)
∧(rm < M,∀m ∈ {1, . . . , N})]

0, otherwise

(3.53)

a ∧ b and a ∨ b denote the logical conjunction and logical disjunction of two
conditions a and b, respectively. The role of estimating e is played by ζ and
through the term Φ(r, ζ)e, ζ is updated with ej whenever the jth link is
transmitted. For those links that are not transmitted, the estimated error is
incremented by a fixed penalty Θ that might capture the worst-case growth
of error (in the absence of disturbance) for a given MATI. In addition to
performing this ad hoc estimation, the scheduling protocol counts the number
of transmission instants that a link has not been visited for, the link’s silent
time, and schedules links that have exceeded a predetermined threshold for
silent-time. In this way, if ζ is degenerating into an arbitrarily bad estimate of
e, all links will continue to be visited within a fixed-length, finite window of
transmission instants through the mechanism of forcing a finite silent-time for
each link. In a loose sense, the protocol’s behavior will “often” be qualitatively
similar to that of RR, a protocol that has been shown to lead to Lp stability
of the NCS with appropriate conditions. �

3.3.5 a.s. Covering Protocols

By a random protocol, we mean a sequence of random transmission times
together with i.i.d. random jump maps Qi that are independent of e with
16 The silent-time protocols described in [18] have the links measure continuous time

as opposed to counting the number of transmission instants elapsed (discrete-
time) and set the silent-time threshold in terms of an integer multiple of MATI,
say Mτ . Since, for all i ∈ N, Mτ ≥ M(tsi+1 − tsi+1), our silent-time threshold
will be smaller for the same M but the protocol will behave in precisely the same
manner as when using the verbatim definition of silent-time given in [18].
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reference to (3.31a). That is, Qi are i.i.d. random matrices taking values in
the finite setMne

= {M0,M1, . . . ,M�}, where M0 = Ine
and Mj is such that

Mje = Mj(e1, . . . , ej , . . . , e�)
= (e1, . . . , ej−1,0, ej+1, . . . , e�).

We make this definition more precise shortly. The intuition behind this model
is that at a transmission time ti, either some link j will acquire the channel
and have its component of e set to zero, that is,

ej(t+i ) = 0, ek(t+i ) = ek(ti), k �= j.

Hence Qi = Mj or else more than one node attempted to transmit resulting in
a collision with e remaining unchanged (Qi = M0). Due to random “back-off”
times, and wait times inserted into medium access protocols, transmission
times are potentially random. Collectively, these issues are the same issues
presented in multi-user access in computer and mobile voice networks though
the network access patterns are somewhat different. See [14] for an overview.

Definition 3.4. For an �-link NCS, abstractly, we define a random protocol
as a discrete Markov chain Qi subordinated by a renewal process17 N(t) such
that

(1) Qi ∈ Mne
are i.i.d. random ne × ne with associated link and collision

probabilities given by
P {Qi = Mk} = pk.

(2) The sequence of arrival times {ti}i∈N is defined inductively by:

t0 = τ0,

where τ0 ∼ Exp(λ) and for each i > 0,

ti = ti−1 + τi,

τi ∼ Exp(λ), where the sequence {τi} is i.i.d. We set

N(t) =
{

0, t ∈ [0, t0),
k, t ∈ [tk−1, tk).

Hence, N(t) is a Poisson process with intensity λ. �

Essentially, the τis denote the wait time after the arrival of a packet (before
a new transmission begins). When not otherwise stated, we will henceforth
assume that P {Qi = Mk} = P {Qi = Mj} = (1 − p0)/�, k, j �= 0, i.e., each

17 More precisely, the process of interest is in fact a marked point process. See [10]
for an exposition.
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link is equally likely to transmit successfully. This assumption is not strictly
necessary for our analyses, however, any other distribution of probabilities
results in a static choice of priorities among links where one link may be
favored over another during contention. There may be examples of NCS that
would benefit from such an adjustment of relative link priorities offline in
terms of required transmission rates or greater robustness of stability but as
these choices are made offline and not in response to the evolution of the NCS
state online, we believe that the scope of exploiting this degree of freedom is
limited.

We pursue here a stochastic analogue of the PET property described in
Section 3.3.4.

Definition 3.5 (Cover time). Consider a random protocol in the sense of
Definition 3.4 for an �-link protocol and define

T0 = min {j ≥ 1: {M1, . . . ,M�} ⊂ {Q0, . . . , Qj−1}}
and, inductively for i > 0,

Ti = min
{
j ≥ 0: {M1, . . . ,M�} ⊂ {QTi−1 , . . . , QTi−1+j−1}

}
.

We refer to Ti as the ith cover time, and collectively the cover time process.
It is clear from our definition of Qi that Ti is a stationary process. �

Definition 3.6 (Covering sequence). Let τi = ti+1 − ti, as in Definition
3.4, that is, τi are inter-arrival times. We say that

C(j, k) = {(Qj , τj), . . . , (Qk, τk)}, k ≥ j,

is a covering sequence if and only if {M1, . . . ,M�} ⊂ C(1)(j, k).18 It is easy
to see that cover times are simply the lengths of consecutive disjoint covering
sequences. �

Remark 3.3. From our definition of random protocols, the distribution of Tn is
given by the solution to the (weighted) coupon collectors problem. When pi =
pj , i, j �= 0, we have the following closed form expression for the expectation:

E[T ] = �H�/(1− p0), (3.54)

where H� is the �th harmonic number and we have dropped the time in-
dex n since Tn is stationary. We also have the bound for the distribution,
P {Tn ≥ β� ln �/(1− p0)} ≤ �−(β−1)/(1 − p0), for any β > 1. Intuitively,
Tn = E[T ] “most of the time” and P {Tn <∞} = 1. �

Our abstract definition of a contention protocol is a model for the con-
tention protocols discussed earlier and to that end we present two natural
examples in this setting.
18 The notation C(1)(j, k) refers to the covering sequence of matrices Qi with no

reference to inter-transmission times τi, i.e., {Qj , . . . , Qk}.
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Definition 3.7 (Almost surely finite cover time). We say that a protocol
is a.s. covering or has an a.s. finite cover time if in Definition 3.5

(∀i ∈ N) P {Ti <∞} = 1. �

Note that from the preceding discussion, this property is verified by all con-
tention protocols in the sense of Definition 3.4.

3.3.6 Slotted p-Persistent CSMA

What has been referred to as “scheduling” and the associated scheduling pro-
tocols by [13] is generally known as medium access in the communications
literature. Carrier sense multiple access with collision detection (CSMA/CD)
is by far the most widely used medium access protocol by virtue of the sheer
volume of Ethernet and Ethernet-like networking devices shipped and manu-
factured each year.

CSMA/CD is a simple protocol: Links listen for transmissions on the chan-
nel. A link wanting to transmit acquires the channel when it senses that the
channel is idle. When more than one link senses that the channel is idle and
begins transmission, a collision occurs. At this point, all transmissions are
immediately aborted. There are several variants of CSMA/CD that prescribe
how transmissions are rescheduled and how links initially acquire the channel.

With slotted p-persistent CSMA, rather than have links transmit when-
ever the channel is idle, links are only permitted to transmit at prescribed
transmission slots that occur every ts > 0 seconds in slotted protocols. At
the start of slot sk, links S = {i, . . . , j} intending to transmit acquire the
channel with a probability of p. If a collision occurs, links Sc are permitted to
transmit in the next slot and links S reschedule their transmissions at slots
{sk+di

, . . . , sk+dj
}.

As alluded to earlier, the primary reason that CSMA protocols and indeed,
all contention protocols work in practice is that the access patterns of com-
puter and voice networks are “bursty” in nature. The assumption is that a link
will occasionally transmit a burst of information and remain otherwise idle.
Transmissions are expected to eventually succeed as links are “infrequently”
contending for the channel.

The situation is quite different for control networks with the implication
that medium access patterns are constant rather than bursty and for slotted
p-persistent CSMA, we assume that every slot will be in contention. Another
key difference between computer networks and NCS is in the treatment of col-
lisions and dropouts. NCS should not buffer failed transmissions of controller
or sensor values but rather, attempt to transmit the latest values when a slot
is free. As the maximum number of links contending slots is constant for every
slot, there is no reason for a link to delay transmission for more than one slot
after a collision.
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With these assumptions, consider an �-link NCS with the p-persistent
CSMA protocol. The probability P {Qi = Mj} that a particular link j trans-
mits successfully during the ith slot is given by

P {Qi = Mj} = p(1− p)�−1.

It is clear that P {Qi = Mj} is maximized when p = 1/�. We will henceforth
set p = 1/� and have that

P {Qi = Mj} =
1
�

(
1− 1

�

)�−1

=
(�− 1)�−1

��
.

Notice that in this “optimal” case,

P {Qi = Mj} = P {Qi = Mk} = (�− 1)�−1/�� for j, k �= 0

and the probability of a collision is given by P {Qi = M0} = 1−(�−1)�−1/��−1.
Finally, we assume that slots occur every ts > 0 seconds and hence, p-
persistent CSMA is a contention protocol in the sense of Definition 3.4 where
inter-arrival times τi are deterministic.

3.3.7 CSMA with Random Waits

Whereas the use of fixed slots tends to improve throughput and reduce col-
lisions with computer networks, e.g., slotted versus pure ALOHA, the con-
tention by every link at every slot forces transmissions to happen in lock-step
with NCS network access patterns with the potential for a collision at every
slot.

Suppose that instead of immediately acquiring the channel with proba-
bility p after sensing the channel to be idle or after a new slot arrives, links
instead wait for a random amount of time before transmitting. In partic-
ular, if a particular link j waits for a random time η′j ∼ Exp(λ/�), then,
P {Qi = Mj} = (1− p0)/�, j �= 0. The actual wait time before any particular
transmission will be given by

τ = min{η′1, . . . , η′�};

that is, the link that waits the least gets to transmit first. Hence, τ ∼ Exp(λ).
Assuming the wait times are i.i.d. for each link, this is the prototypical example
of what we mean by a stochastic protocol and a stochastic channel.

In the presence of transmission errors, p0 is generally nonzero and con-
ceptually, p-persistent CSMA and CSMA with random waits are essentially
the same apart from the fact that the transmission process is truly random
with the latter. While CSMA with random waits can be thought of as a pro-
tocol in its own right when the random waits are enforced explicitly in the
implementation, it can also be thought of as a model of medium access with
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NCS access patterns while using a class of CSMA wireless protocols. Delays
in signal detection, multi-path effects and varying processor loads mean that
links are only prepared to transmit after some delay upon sensing the channel
being idle and although the cumulative effects of these delays may not be
exponentially distributed, the principle remains the same.

3.4 NCS Stability

The notion of robustness of various stability properties plays a fundamental
role in practical design and implementation of control systems as evidenced
by the extensive literature discussing, for example, input-to-state stability
(ISS), H2, H∞ design and variants of robust stability. To that end, [8] and
[9] have examined Lp and input-to-state stability of NCS, respectively and it
was shown in [13] that persistently exciting scheduling protocols lead to Lp

stable NCS when appropriate conditions are imposed on transmission rates
and the nominal system and similar results were provided for UGES and
UGAS protocols in [8] and [9], respectively. While the proof techniques and
settings are substantially different, the novel use of various small-gain the-
orems is a unifying theme throughout these results and a powerful tool for
quantifying robustness. See [7, Chapter 5.4] for an introduction to the notion
of input/output stability gain and [6] for general ISS small-gain results.

We outline several NCS stability results in the ensuing sections and refer
the reader to [8], [9] and [13] where the results are stated and proved in
greater generality. Finally, while these results are ISS or input–output stability
(IOS) type results, whenever exogenous perturbations are removed, UGES and
UGAS can be recovered under additional mild technical assumptions. See [8,
Section II-B], for instance.

We first recall the definition of Lp stability and detectability for a system
Σz with jumps:

Σz : ż = f(t, z, w), t ∈ [ti, ti+1] , (3.55)

output y(t) = g(t, z) and with jump equation

z(t+i ) = h(i, z(ti)). (3.56)

Let f : R → Rn be a (Lebesgue) measurable function and define ‖f‖p :=(∫
R
|f(s)|pds)1/p for 1 ≤ p < ∞ and define ‖f‖∞ := ess. supt∈R |f(t)|. We

say that f ∈ Lp for p ∈ [1,∞] whenever ‖f‖p < ∞. Let f : R → Rn and let
[a, b] ⊂ R. We use the notation

‖f [a, b]‖p :=

(∫
[a,b]

|f(s)|pds
)1/p

to denote the Lp norm of f when restricted to the interval [a, b].
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Definition 3.8. Let p ∈ [1,∞] and γ ≥ 0 be given. We say that Σz is Lp

stable from w to y with gain γ if ∃K ≥ 0: ‖y[t0, t]‖p ≤ K|z0|+ γ‖w[t0, t]‖p.�
Definition 3.9. Let p, q ∈ [1,∞] and γ ≥ 0 be given. The state z of Σz is said
to be Lp to Lq detectable from output y with gain γ if ∃K ≥ 0: ‖z[t0, t]‖q ≤
K|z0|+ γ‖y[t0, t]‖p + γ‖w[t0, t]‖p. �

An exposition of these ideas as they pertain to NCS can be found in [8,
Section II-B].

3.4.1 Lp Stability of NCS with Lyapunov UGES Protocols

A more general version of the following result was first presented in [8] and
asserts that Lyapunov UGES scheduling protocols preserve Lp stability of the
network-free system under appropriate conditions and for small enough values
of MATI.

Theorem 3.1. Consider NCS (3.29)–(3.31b) and suppose that:

(i) the NCS scheduling protocol (3.31a) is Lyapunov UGES with Lyapunov
function W that is locally Lipschitz in e and uniformly in i, and there
exists L ≥ 0 such that:〈

∂W (i, e)
∂e

, g(t, x, e, w)
〉
≤ LW (i, e) + |ỹ|, (3.57)

for almost all e ∈ Rne , for all (x,w) ∈ Rnx ×Rnw , for all t ∈ (ti, ti+1), for
all i ∈ N, where ỹ : Rne × Rnw → R is a continuous function of (x,w);

(ii) System (3.29) is Lp stable from (W,w) to ỹ with gain γ for some p ∈ [1,∞];
(x,w) is Lp to Lp detectable from ỹ; (e, w) is Lp to Lp detectable from
W ; and

(iii) MATI satisfies τ ∈ (ε, τ∗), ε ∈ (0, τ∗), where

τ∗ =
1
L

ln
(

L + γ

θL + γ

)
, (3.58)

and θ comes from (3.41).

Then, the NCS is Lp-stable from w to (x, e) with linear gain. �

Remark 3.4. Within the framework of hybrid systems presented in [4], results
analogous to Theorem 3.1 are developed in [1] where τ∗ is given by

τ∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Lr

arctan

⎛
⎜⎝ r(1− θ)

2
θ

1 + θ

( γ

L
− 1

)
+ 1 + θ

⎞
⎟⎠ , γ > L,

1− θ

L(1 + θ)
, γ = L,

1
Lr

arctanh

⎛
⎜⎝ r(1− θ)

2
θ

1 + θ

( γ

L
− 1

)
+ 1 + θ

⎞
⎟⎠ , γ < L,

(3.59)
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where

r =

√∣∣∣∣( γ

L

)2

− 1
∣∣∣∣ . (3.60)

This bound is shown to improve upon (3.58) in [1] when verifying UGES. The
results therein are stated for UGAS, UGES and semi-global practical ISS and
can, in principle, be extended to apply to Lp IOS. �

3.4.2 Lp Stability of NCS with PET Protocols

The following theorem asserts that PE protocols lead to Lp stability of the
NCS for sufficiently small MATI. While we do not provide a closed-form ex-
pression for MATI bounds, the bounds are readily obtained in examples by
numerically solving for τ∗ in (3.59). Note that we only consider stability of e
and x. The decision-vector, if used in the protocol being analyzed, may fail to
verify any stability properties but as ê has no physical significance as a state
vector whose evolution is governed by the protocol, this is generally not an
issue. Let An denote the set of all n× n matrices and let A+

n denote the sub-
set of all matrices that are positive semi-definite, symmetric and have positive
entries and let Rn

+ denote the nonnegative orthant.

Theorem 3.2. Consider NCS (3.29)–(3.31b) and suppose that:

(i) the NCS scheduling protocol (3.31b) is uniformly persistently exciting in
time T and there exists A ∈ A+

ne
and a continuous ỹ : Rnx × Rnw → R

ne
+

so that the error dynamics (3.30) satisfy19

g(t, x, e, w) � Ae + ỹ(x,w) (3.61)

for all (x, e, w) ∈ Rnx × Rne × Rnw , for all t ∈ (ti, ti+1), for all i ∈ N,
where ỹ = G(x) + H(w);

(ii) System (3.29) is Lp stable from (e, w) to G(x) with gain γ for some p ∈
[1,∞]; (x,w) is Lp to Lp detectable from ỹ;

(iii) and MATI satisfies τ ∈ (ε, τ∗), ε ∈ (0, τ∗), where τ∗ =
ln(z)
|A|T and z solves

z(|A|+ γT )− γTz1−1/T − 2|A| = 0, (3.62)

where A comes from (3.61).

Then, the NCS is Lp-stable from w to (x, e) with linear gain. �

19 Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn. The vector partial order �
is given by x � y ⇐⇒ (x1 ≤ y1) ∧ · · · ∧ (xn ≤ yn) and e and g are given

by e := (|e1|, . . . , |ene |)T and t
g�→ g(t), respectively. That is, e is the vector

that results from taking the absolute value of each scalar component of e and g
operates analogously on the image of g.
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Remark 3.5. Suppose that g(t, x, e, w) = Bx + Ce + Dw and let A = [aij ],
where aij = max{|cij |, |cji|} and ỹ(x,w) = Bx + Dw. We immediately have
that A and ỹ(x,w) satisfy Condition 2 of Theorem 3.2 and ‖ỹ(x,w)‖p =
‖Bx + Dw‖p ≤ ‖Bx‖p + ‖Dw‖p. Whenever g satisfies a linear growth bound
of the form |g(t, x, e, w)| ≤ L(|x|+ |e|+ |w|), it is straightforward to construct
an appropriate A and ỹ. �

Remark 3.6. Suppose that the network-free system is Lp stable from w to x
with gain γ and the NCS satisfies the hypotheses of Theorem 3.2. Then for
any γ∗ > γ, it is possible to show that there exists a MATI τ such that the
NCS is Lp stable from w to x with gain γ∗. This corollary of Theorem 3.2 is
particularly useful in the design of optimal/robust controllers. �

3.4.3 Lp Stability of NCS with Random Protocols

The following result analyzes the input–output Lp stability (IOS) of NCS (in
expectation), the essence of which is that outputs (or state) of an NCS verify
a robustness property with respect to exogenous disturbances. We stress that
it is only the network protocol and channel that induces randomness in our
models and that the exogenous disturbances are Lp signals as in [8] and [13].

Although link cover times and inter-transmission are now random, and
hence, not uniform, if the network-free system is Lp stable, the NCS remains
so with any contention protocol, in the sense of our definition, whenever at-
tempted transmissions occur “fast enough.” By “fast enough” we mean that
there exists a choice of intensity λ of the transmission process parameterized
by properties of the protocol and the NCS dynamics such that the NCS is Lp

stable-in-expectation from disturbance to NCS state with a finite expected
gain.

Intuitively, and despite the presence of collisions, random packet dropouts
and random inter-arrival times, it seems natural to expect that the stability
of the NCS (3.24)–(3.28a) for high enough “average” transmission rates and
in light of the a.s. cover times of contention protocols and in analogy with
persistently exciting scheduling protocols, this stability ought to be robust in
an Lp sense. In fact, if we relax our notion of “Lp stability” to “Lp stability-in-
expectation,” we can prove a positive result in that direction. The definition of
these properties is obtained, essentially, by using expected norms E‖ ·‖ in lieu
of ‖ · ‖ in Definitions 3.8 and 3.9. We stress that, as developed in this chapter,
these notions only apply to hybrid systems of the form (3.55) and (3.56), i.e.,
we insist that w is “essentially” an Lp signal and not a Lèvy process (cf. [5])
specifically because we are concerned with robustness of stability in the sense
of, e.g., [3], whereas a Lèvy process characterization of disturbances may be
more appropriate in modeling sensor noise and quantization phenomena.

While the following results are stated for the delay and inter-arrival pro-
cesses presented in Definition 3.4, it is straightforward to extend them to a
more general class of processes.
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Theorem 3.3. Consider an �-link NCS (3.29)–(3.31b) and suppose that:

(i) the NCS employs a contention scheduling protocol with i.i.d. cover times
Ti and the inter-arrival process is Poisson with intensity λ and also suppose
that the NCS error dynamics satisfy

g(t, x, e, w) � Ae + ỹ(x,w) (3.63)

for all (x, e, w) ∈ Rnx × Rne × Rnw and almost all t, where A is a
nonnegative symmetric ne × ne matrix with nonnegative entries and
ỹ = G(x) + H(w);

(ii) System (3.29) is Lp stable-in-expectation from (e, w) to G(x) with ex-
pected gain γ for some p ∈ [1,∞]; (3.30) is Lp to Lp detectable-in-
expectation from ỹ.

Then, there exists λ <∞ depending on (�, |A|, γ,E[T ], p0) such that the NCS
is Lp stable-in-expectation from w to (x, e) with a finite linear expected gain
1/(1− γγ∗). Specifically, λ solves γ∗γ < 1 with

γ∗ =
E[T ](1 + ρ)

(λ− |A|)(1− ρ)
,

where,

ρ = (α(1− p0))�
�∏

k=1

�− (k − 1)
�(1− p0α)− (k − 1)(1− p0)α

− 1,

and α =
λ

λ− |A| and λ >
|A|

1− p0
. �

Remark 3.7. While no bounds for λ are given, the requisite intensity can be
found numerically. �

3.4.4 Lp Stability of NCS with a.s. Lyapunov Protocols

The following result is a natural extension to Theorem 3.1 for channels that
have a non-zero probability of packet dropout and is intended to be used in
much the same way as the latter result. While [8] presents sufficient condi-
tions for Lp stability in the presence of deterministically characterized packet
dropouts for Lyapunov UGES protocols, we believe the following result is a
more natural treatment of dropouts and the conditions are directly verifiable.

Theorem 3.4. Consider NCS (3.29)–(3.31b) and suppose that:

(i) the NCS scheduling protocol (3.31a) is a.e. Lyapunov U GES with Lya-
punov function W that is locally Lipschitz in e and uniformly in i, and
there exists L ≥ 0 such that:
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∂W (i, e)

∂e
, g(t, x, e, w)

〉
≤ LW (i, e) + |ỹ|, (3.64)

for almost all e ∈ Rne , for all (x,w) ∈ Rnx ×Rnw , all t ∈ (ti, ti+1), for all
i ∈ N, where ỹ : Rne × Rnw → R is a continuous function of (x,w);

(ii) System (3.29) is Lp stable from (W,w) to ỹ with finite expected gain γ for
some p ∈ [1,∞]; (x,w) is Lp to Lp detectable from ỹ with finite expected
gain; e is Lp detectable from W with finite expected gain;

(iii) the channel packet dropout probability is given by p0 ≥ 0 and (3.36) is
satisfied with an i.i.d. sequence {κi} such that the intensity of the inter-
transmission process λ satisfies

λ >
γ + L

1−E[κ]
. (3.65)

Then, the NCS is Lp-stable from w to (x, e) with finite expected linear gain.
�

Remark 3.8. As the motivation for studying a.s. Lyapunov UGES comes from
the use of Lyapunov UGES protocols on non-ideal channels, we can restate
several of the conditions of Theorem 3.4 in light of Proposition 3.1. Let θ be
as in (3.41) and let the probability of packet dropout p0 satisfy (3.42). The
requisite intensity in (3.65) becomes

λ >
γ + L

(1− p0)(1− θ)
. (3.66)

�

Remark 3.9. As in [8] and [13], in both this and the preceding section, several
generalizations and specializations of the stability results are possible. With
additional technical assumptions on the NCS dynamics, one can conclude
uniform global exponential stability (in expectation) and the assumptions on
the various reset maps can be relaxed so as to infer ISS-like properties in lieu
of Lp stability as discussed in [9]. If we forgo the detectability assumptions
in the hypotheses of Theorems 3.3 and 3.4 we can only infer input-to-output
stability-in-expectation. �

3.5 Case Studies and Comparisons

The aim of this section is to examine the various results presented in this chap-
ter and compare them to results presented in the literature. For simplicity we
will focus on the following linear time-invariant systems where the simplified
equations for an �-link NCS are given by (3.6) together with jump equations
(3.31a) or (3.31b).
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Example 3.6 (Batch Reactor). The linearized model of an unstable batch re-
actor is a two-input-two-output NCS that can be written as:

ẋP = APxP + BPu, y = CPxP ,

where CP =
[

1 0 1 −1
0 1 0 0

]
,

AP =

⎡
⎢⎢⎣

1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

⎤
⎥⎥⎦ , BP =

⎡
⎢⎢⎣

0 0
5.679 0
1.136 −3.146
1.136 0

⎤
⎥⎥⎦ .

The system is controlled by a PI controller with a state-space realization
prescribed by

ẋC = ACxC + BCy, u = CCxC + DCy,

and

AC =
[

0 0
0 0

]
, BC =

[
0 1
1 0

]
, CC = −

[
2 0
0 8

]
, DC = −

[
0 2
−5 0

]
.

Assuming that only the outputs are transmitted via the network, we have
a two-link NCS (� = 2, l1 = l2 = 1) with error and state equations prescribed
by (3.6) where

A11 =
[
AP + BPDCCP BPCC

BCCP AC

]
, A12 =

[
BPDC

BC

]
,

A21 = − [CP 0
]
A11, A22 = − [CP 0

]
A12.

The error equation is given by

ė = A22e + A21x. (3.67)

�

This example is used as the benchmark in comparing the inter-transmission
bounds with the stability analysis frameworks outlined in this chapter and in
[16, 18, 19].

3.5.1 Comparison of Analytical Inter-transmission Bounds

Prior to making numerical comparisons with respect to the bounds obtained
for Example 3.6, we provide a brief summary of the analytical bounds in
Table 3.1 as they apply in general. The various constants used are defined
and explained in the respective referenced sections and details can be found
in the respective sources cited in the table. These are analytical bounds that
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Table 3.1. Summary of inter-transmission bounds for various classes of protocols

MATI – Section 3.2.2, [16, 18, 19] (Worst Case Analysis)

RR & TOD Protocol τWC
3.2.2 =

c3

M�(� + 1)khkfc4

Silent-time Protocols τST
3.2.2 = min

(
ln(2)

khT
,
S

8
,

S

16c1

p
c1/c2kh

)
, where

silent-time T S = [kh

p
c1/c2

P�
i=1(i + T − �)]−1

MATI – Section 3.4.1, [8] (Lyapunov UGES Analysis)

RR Protocol τRR
3.4.1 =

1

kh

√
�

ln

 √
�(kh + γ)

kh

√
� − 1 + γ

√
�

!

TOD Protocol τTOD
3.4.1 =

1

L
ln

 
L
√

� + γ
√

�

L
√

� − 1 + γ
√

�

!

MATI – Section 3.4.2, [13] (PET Analysis)

PET Protocols τPE
3.4.2 =

ln(z)

|A|T , where z solves

(including RR) z(|A| + γT ) − γTz1−1/T − 2|A| = 0

Reciprocal-Intensity – Section 3.4.3, [11] (a.s. Cover Time Analysis)

Stochastic Protocols τSTO
3.4.3 <

(1 − p0)

|A| ,

P {dropout} = p0 solved numerically via Theorem 3.3

Reciprocal-Intensity – Section 3.4.4, [11] (a.s. Lyapunov UGES Analysis)

RR Protocol τRR
3.4.4 =

(1 − p0)(
√

� −√
� − 1)

�(γ + kh)

TOD Protocol τTOD
3.4.4 =

(1 − p0)(
√

� −√
� − 1)√

�(γ + L)
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guarantee stability. For all bounds presented, stability is in the sense of Lp

(in-expectation) except for those derived in [16, 18, 19], where UGES is the
applicable notion of stability.

Table 3.2 compares a selection of these MATI bounds as they apply to TOD
and RR. It is shown in [13, Section VI-C] that for LTI systems employing RR
scheduling, MATI bounds obtained within the framework outlined in Section
3.4.2 are asymptotically larger by a factor of O(�1/2) than the MATI obtained
in [8] which are, in turn, shown to be analytically superior to the bounds in
[15] for both TOD and RR. As indicated in Remark 3.4, for protocols that are
Lyapunov UGES or UGAS, [1] may offer improved MATI bounds over [8] and,
for the batch reactor example, these were demonstrated to be an improvement
of approximately 10%.

Table 3.2. Summary of analytic comparisons for NCS without dropouts for an
�-link NCS with constants as in (3.13)–(3.15)

Linear Systems

RR Protocol
τRR
3.4.1

τWC
3.2.2

≥ 2
� + 1√

�

r
c2

c1

„r
c2

c1
+ 1

«

τPE
3.4.2

τRR
3.4.1

≥ O(�1/2) as � → ∞

TOD Protocol
τTOD
3.4.1

τWC
3.2.2

≥ 2(� + 1)

r
c2

c1

„r
c2

c1
+ 1

«

Nonlinear Systems

RR Protocol
τRR
3.4.1

τWC
3.2.2

≥ 8
� + 1√

�

„
c2

c1

« 3
2
„r

c2

c1
+ 1

«

TOD Protocol
τTOD
3.4.1

τWC
3.2.2

≥ 8(� + 1)

„
c2

c1

« 3
2
„r

c2

c1
+ 1

«

3.5.2 Comparison of Numerical Inter-transmission Bounds
(p0 = 0)

For simplicity, and since Lp stability results are not provided in [18], we will
largely restrict our discussion without exogenous disturbances and examine
bounds that verify UGES and related properties. Much of the focus will be
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on RR scheduling as it is the only scheduling protocol that can be mutually
treated by the analysis frameworks in this chapter, [8] and [18] but several
other protocols will be examined as well.

We present and compare various results for the batch reactor example,
Example 3.6, following [8], [13], [15]. The comparison results are summarized
below:

(a) The MATI bounds are shown in Table 3.3 with the bounds computed via
the PE framework larger than those obtained using the results of [18]
by a factor of 107 and larger than the bound obtained by the results of
[8] by a factor of 1.5. The bounds τPE

3.4.2 and τWC
3.2.2 apply to any PET

protocol for the original two-link system. The bound τRR
3.4.1 only applies to

RR (T = � = 2).
(b) When using RR, τPE

3.4.2 that achieves UGES is equivalent to a network
throughput of 84 kbps (assuming 128 byte frames), achievable on cur-
rent 802.11g and 802.11b wireless networks and τRR

3.4.4 requires an effective
network throughput of approximately 125 kbps.

(c) We formally fix the constants used to compute the respective bounds and
plot τPE

3.4.2 and τRR
3.4.4 with T = � ∈ [1, 1000] in Fig. 3.6 to examine the

behavior of the bounds as the number of links grow. We also fix � = 2
and allow T ≥ 2 to vary for τST

3.2.2 and τPE
3.4.2. Despite the relatively modest

improvements for the nominal two-link system using RR, the differences
are significant on the log10(T )× log10(τ∗) scale used in Fig. 3.6 when we
formally increase T or, equivalently, the number of links.

Simulations and alternative techniques for calculating MATI are a key test
of the practicality of the MATI bounds and stability results produced in this
chapter and in the literature. For linear systems with equidistant transmis-
sion times employing RR scheduling, an actual analytic MATI bound can be
computed as discussed in [8, Section VII-A]. For general protocols, however,

Theorem 5.2
[1, Section III] T=N
[2, Theorem 1] N=2, T  2 
[2, Theorem 1] T=N

log10HTL
log10(t )*

1.25 1.5 1.75 2.25 2.5 2.75 3

- 14

- 12

- 10

- 8

- 6

- 4

- 2

τPE
3.4.2

τRR
3.4.1

τST
3.2.2, � = 2, T ≥ 2

τST
3.2.2, � = T

Fig. 3.6. Batch reactor MATI bounds comparison for PET protocols, T ∈ [1, 1000]
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Table 3.3. MATI bounds achieving UGES for Example 3.6 with PET and Lyapunov
UGES protocols

T = 2 T = 6 T = 50

τPE
3.4.2 0.0123 0.004 4.75 × 10−4

τRR
3.4.4 0.0082 N/A N/A

τWC
3.2.2 1.05 × 10−9 2.86 × 10−10 3.18 × 10−11

τTOD
3.4.4 0.01 N/A N/A

τPE
3.4.2/τWC

3.2.2 1.18 × 107 1.40 × 107 1.49 × 107

τPE
3.4.2/τRR

3.4.4 1.50 N/A N/A

τPE
3.4.2/τTOD

3.4.4 1.23 N/A N/A

simulations are the only resort, and as such, no firm conclusions can be drawn
vis-a-vis the theoretical bounds for arbitrary NCS.

3.5.3 Comparison of Numerical Inter-transmission Bounds
(p0 > 0)

Finally, we examine Example 3.6 for channels where p0 > 0. In particular, we
look at the CSMA protocol described in Section 3.3.7 and hence,

E[T ] = 2 ·H2/(1− p0) = 3/(1− p0). (3.68)

By Theorem 3.3, the batch reactor system will be Lp stable-in-expectation
from w to x if

E[T ](1 + ρ)
(λ− |A|)(1− ρ)

γ < 1, (3.69)

where γ is the Lp gain of x subsystem from the input e to an “auxiliary”
output ỹ = A21x.

By solving for λ numerically in (3.69), subject to the constraint λ >
|A|/(1− p0), we are able to establish expected transmission rate bounds as a
function of p0 that ensure Lp stability of the batch reactor system. The batch
reactor system with the CSMA protocol was also simulated using expected
transmission rates of [1,∞) transmissions per second for p0 ∈ [0.1, 0.8]. A
bisection heuristic was used to find the intensities that resulted in stability
with the ensemble average of multiple simulations with fixed initial conditions
to yield the simulation-derived intensity bound.

The expected transmission rate bounds and expected inter-transmission
times are shown in Table 3.4 as a function of dropout/collision probability p0

and plotted in Fig. 3.7. Simulation-derived bounds are also listed in Table 3.4.
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Fig. 3.7. Batch reactor expected transmission rate bounds for stochastic protocols
as a function of dropout/collision probability p0 with identical initial conditions

For the initial condition used, the bounds obtained via Theorem 3.3 are
within a factor of 4 of simulation-based bounds, and for example, demonstrate
that with a 50% probability of dropout/collision, the network must deliver
approximately 922 kbps (116 × 8 bits) of network throughput to maintain
Lp stability. This is well within the realm of ordinary Ethernet and 802.11
wireless technology.

We can also consider the example within the context of a.s. Lyapunov
UGES. Suppose that the TOD scheduling is employed. From Table 3.1, the
requisite intensity for the conditions of Theorem 3.4 to be verified is

Table 3.4. Transmission rate and inter-transmission time bounds λ and τSTO
3.4.3 = 1/λ

are derived via Theorem 3.3; λ∗ and τSTO∗
3.4.3 = 1/λ∗ are derived via simulation

p0 λ τSTO
3.4.3 = 1/λ (s) λ∗ τSTO∗

3.4.3 = 1/λ∗ (s)

0 50.19 0.02 14.77 0.0677

0.1 57.46 0.017 16.05 0.0623

0.2 66.52 0.015 18.38 0.0544

0.3 78.15 0.013 21.37 0.0468

0.4 93.63 0.011 25.00 0.0400

0.5 115.27 0.0087 31.65 0.0316

0.6 147.71 0.0068 37.74 0.0265

0.7 201.74 0.0049 61.35 0.0163

0.8 309.74 0.0032 145.77 0.00686
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λ >
108.07
1− p0

.

For an ideal channel (p0 = 0), this corresponds to a transmission at least
once every 9.25 ms compared to a MATI of 0.01 s for the deterministic results
presented in [8] – a factor of 1.08 improvement in favor of the deterministic
results. The notion of MATI implies that every inter-transmission time is
uniformly bounded whereas the intensity (or reciprocal) is an “average MATI”
– individual inter-transmission times can individually exceed or fall short of
the average. Notably, both values fall short of the figure obtained for the
CSMA protocol of 0.02 s. As the characterization of dropouts in [8] is markedly
different from that presented here, we do not pursue a comparison for p0 > 0.
We can, however, compare CSMA and TOD in the presence of dropouts as
presented in this section and we see that the trend is continued for p0 > 0,
e.g., the requisite intensity for p0 = 0.5 is over 216 for TOD and less than 116
for CSMA.

3.6 Conclusions

This chapter presented several general frameworks for emulation-based de-
sign of a general nonlinear control systems with disturbances that rely upon
properties of the network-free system and various properties of the scheduling
protocol used. Our guiding philosophy in the approach is the following qual-
itative statement that intuition suggests: for high enough transmission rates,
a scheduling protocol that is guaranteed to reduce the network-induced error
within a finite amount of time ought to preserve stability properties of the
network-free system. In particular, this is the case for (a.s.) Lyapunov UGES
and UGAS protocols as well as PET and a.s. covering protocols.

Quantitatively, the results outlined provide the sharpest bounds for MATI
and expected transmission rate currently known in the literature for the classes
of systems and protocols analyzed, and in some cases, are the only known
results for certain classes of systems and scheduling protocols.

We qualify this observation by noting that the various protocol properties,
namely, PET , Lyapunov UGES and UGES and their stochastic analogs are
not necessarily the finest characterization possible of any particular protocol.
This is reflected in the disparity between theoretical MATI and transmission
rate values and those obtained by simulations. For example, it is known that
for LTI systems employing RR with equidistant inter-transmission times, an-
alytic MATI bounds that achieve UGES can be computed and, indeed, are
as sharp or sharper than those obtained by any result in this chapter. The
aim of this chapter, however, was to present emulation-type results and de-
sign procedures for the largest class of systems for which results are currently
known and which are useful in practice. To that end, we believe that this
work serves as a useful starting point from which there is still much scope for
improvement.
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