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Abstract. Collective behaviors of biological swarms have attracted significant
interest in recent years, but much attention and correlative effort has been fo-
cused on constant speed models in which all agents are assumed to move with
the same constant speed. One limitation of the constant speed models without
attraction functions is that it is quite difficult or even practically impossible
for the swarm to form large biological cluster(s) if the speed is relatively fast
or the sensory radius is small. In this chapter, we propose an adaptive veloc-
ity model with more reasonable assumptions in which every agent not only
adjusts its moving direction but also adjusts its speed based on the degree
of direction consensus among its local neighbors. It is also a nearest neighbor
rule but much easier for swarm agents to form a giant cluster or only one
cluster in the adaptive velocity model if each agent moves with a speed that
is proportional to its local direction consensus, even though the steady-state
speed is still fast. The adaptive velocity strategy also shows that attraction
actions or dominant leaders of swarms are not necessities for swarm cohesion.
Therefore, the adaptive velocity model provides a powerful mechanism for co-
ordinated motion in biological and technological multi-agent systems.
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10.1 Introduction

The emergence of biological swarms is a beauty and wonder of nature [3, 23,
24]. It is common to see huge herds of animals or flocks of birds or schools
of fish moving as if they were a single living creature. These swarms often
travel in the absence of any leader/leaders or external stimuli, and agents in
these swarms usually do not share any global information. How do they form
a congregation and move? What collective behaviors and properties do they
have? In recent years efforts have been devoted to modeling and exploring the
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dynamic properties of such systems which can roughly be divided into three
approaches: Lagrangian approach [4, 9, 10, 11, 12, 17, 22], Eulerian approach
[18, 27, 28, 29], and discrete approach [2, 5, 6, 8, 13, 15, 16, 19, 25, 30].

In 1987, Reynolds introduced three heuristic rules - cohesion, separation
and alignment - to create the first computer simulated model of flocking [25].
Later on, Vicsek et al. proposed a simplified minimal model, which focused
mainly on the emergence of directional alignment in self-driven particle sys-
tems [30]. In recent years, the Vicsek model has been one of the most fre-
quently investigated swarm models using nearest neighbor rules to imitate
swarming behaviors. For example, effects of noise and scaling behavior of the
model were considered in [8]. Intermittency and clustering in self-driven par-
ticles [15] and the onset of collective motion [13] were also studied. Stability
analysis of swarms revealed the relationship between network connectivity
and the stability property [16, 19]. There are some other models that capture
the important rule of the directional alignment used in the Vicsek model. For
example, Couzin et al. showed that the alignment actions together with at-
traction/repulsion functions between neighboring agents can lead to complex
patterns of swarms and revealed the existence of major group-level behavioral
transitions [5]. Effective leadership was investigated in [6], which indicated
that information owned by a few agents can be transferred within the whole
group. Self-driven many-particle systems with general network topologies such
as the vectorial network model (VNM) were investigated in [2].

All these researchers assumed that all agents in a swarm move with the
same constant speed (i.e., absolute value of the velocity). However, we believe
that in natural swarms, it is a more reasonable assumption that agents may
not only adjust their moving directions in the swarming evolution but also
adjust their speed according to the behavior of their neighbors. Indeed, when
an agent finds itself surrounded by scattered moving agents, it may naturally
feel at a loss to follow any direction, and may hesitate to move; in this dilemma,
it is safer for the agent to move with a slower speed. On the other hand, if
a certain moving direction is dominant, the agent may take this direction
without hesitation and thus moves relatively fast. Similar analogies are often
found in human lives and politics: when several different proposals or choices
have nearly the same support or weights, individuals (or organizations) may
find themselves embarrassed to decide on and thus little progress will be made
in this situation; but when consensus is reached by dominant or all individuals,
rapid progress tends to be made immediately. Another human-scale example
is the rhythmic clapping in a concert hall after a good performance, which
is suggested to be formed by each individual who tend to adjust the natural
clapping frequency lower or higher according to his/her hearing [20], just as
biological swarms, humans sometimes tend to do what their neighbors do.

In this chapter, we propose an adaptive velocity model in which each agent
adjusts its velocity (i.e., both direction and speed) simultaneously according to
the behavior of its neighbors. The direction adjustment consideration follows
the same rule that used in the Vicsek model. To design our speed adjustment
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rule, we introduce the concept of local order parameter to measure the local
degree of direction consensus (or local polarity) among the neighbors of an
agent. At each time step, each agent will move along the average direction
of its neighbors with a speed which is taken as the maximum possible speed
scaled by a power-law function of the magnitude of its local order parameter.
The power-law exponent α ≥ 0 reflects the willingness of each agent to move
faster or slower based on the local degree of direction consensus among its
neighbors. If α = 0, then the adaptive velocity model reduces to the constant
speed Vicsek model and each agent always moves with the maximum constant
speed. However, if α > 0, then an agent will move with the maximum speed if
and only if complete local direction consensus is achieved among its neighbors.
A larger value of α implies that an agent will move with a slower speed in the
face of a given level of non-complete local direction consensus, which results in
higher convergence probability that a group of initially randomly distributed
agents will finally move along a global consensus direction.

This chapter is organized as follows. In Section 10.2, we describe briefly
the constant speed model proposed by Vicsek et al. and compare two order pa-
rameters to measure the phase transition phenomena of the swarm. In Section
10.3, we propose an adaptive velocity model with a tunable parameter α based
on the concept of local order parameter. Simulation results and discussions
are given in Section 10.4. Conclusions are given in Section 10.5.

10.2 The Constant Speed Vicsek Model

We first describe the original constant speed Vicsek model [30]. Consider
N agents, labeled from 1 through N , all moving synchronously in a square
shaped cell of linear size L with periodic boundary conditions. Each agent
has the same absolute velocity v0 but with different direction at different time
steps. Originally, all agents’ positions are randomly distributed in the cell with
randomly distributed directions in [0, 2π). At each time step, agent i adjusts
its direction as the average moving direction 〈θi(k)〉R of its neighbors with
some random perturbation Δθ added:

θi(k + 1) = 〈θi(k)〉R + Δθ. (10.1)

Here, the neighbors of agent i are defined as those agents who fall in a circle
of predefined sensory radius R centered at the current position of agent i.
One characteristic of this homogeneous model is that only by local interac-
tions it shows phase transition through spontaneous symmetry breaking of
the rotational symmetry. The different pattern behaviors, such as large-scale
emergence, convergence and disordered disperse motion, can be observed un-
der different parameters using simulation [30]. This directional rule of local
interactions together with constant speed motion of agents has considerable
influences [2, 5, 6, 8, 13, 15, 16, 19, 25, 30]. The swarm model in [5] is an-
other important constant speed model that consists of homogeneous agents
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with directional alignment, attraction and repulsion rules, the emergences are
generated by spontaneous symmetry breaking. Certainly, attraction action
between agents is another reasonable consideration to form gathering and
to have considerable influence. We will show that attraction action is not a
necessity for large swarm clusters.

The following order parameter has been widely adopted to measure the
phase transition phenomena of the constant speed model from the initial zero
net transport to emergence [2, 5, 7, 14, 15, 30]:

Φv(k) =
1

Nv0

∣∣∣∣∣
N∑

i=1

⇀
vi(k)

∣∣∣∣∣ , 0 ≤ Φv(k) ≤ 1. (10.2)

Here
⇀
vi(k) is the velocity of agent i with direction θi(k) and the constant speed

v0 = |⇀vi(k)| for all i = 1, 2, . . . , N at all steps k. Φv(k) is a univocal physical
parameter by definition – a scaled average momentum of the whole system and
emergent behavior can be observed if Φv(k) � 0. Φv(k) = 0 corresponds to
the isotropy state of directional distribution and Φv(k) = 1 implies convergent
or linear coherent motion of all agents only on the prerequisite that all agents
have the same fixed speed v0.

Now suppose that different agents may have generally different speed at
different time steps. Let v0 be the average value of all agents’ possible max-

imum speeds, that is, v0 =
1
N

∣∣∣∣∣
N∑

i=1

vi0

∣∣∣∣∣, where vi0 is the maximum possible

speed of agent i. In this general case, it is possible that Φv(k) > 1 even if
the moving directions of all agents are isotropic which corresponds to a non-
emergence state. And Φv(k) = 1 does not necessarily mean linear coherence,
unless vi0 is the same value for all agents. Thus Φv(k) is not appropriate to
measure the level of emergence.

Another order parameter that has been widely adopted, especially for syn-
chronous characteristic in the networked phase oscillators, is defined as follows
[13, 26]

Φθ(k) =
1
N

∣∣∣∣∣
N∑

i=1

eiθi(k)

∣∣∣∣∣ , 0 ≤ Φθ(k) ≤ 1. (10.3)

This order parameter eliminates the influence of the agent’s speed, but at
the expense of having no physical meaning of scaled average momentum. For
the constant speed Vicsek model, it is obvious that the two order parameters
defined above are the same, i.e., Φv = Φθ.

10.3 The Adaptive Velocity Model

In this section, we propose an adaptive velocity model in which each agent
adjusts its direction and speed at different time steps simultaneously. To do
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so, we first define the complex-valued local order parameter of agent i at step
k + 1 as follows:

φi(k + 1)eiθi(k+1) =
1

ni(k + 1)

∑
j∈Γi(k+1)

eiθj(k), i = 1, 2, . . . , N ; k = 0, 1, . . . ,

(10.4)
where eiθj(k) is the unit directional vector and Γi(k+1) is the set of ni(k+1)
neighbors of agent i at step (k + 1). Magnitude (or local polarity) φi(k + 1)
of the local order parameter measures the local degree of direction consensus
among the neighbors of agent i at step (k + 1). Obviously, φi(k + 1) is a local
form of the global order parameter (10.3) and 0 ≤ φi(k + 1) ≤ 1. A larger
value of φi(k + 1) implies a higher degree of local direction consensus among
neighbors of agent i (Fig. 10.1). Angle θi(k + 1) is the corresponding moving
direction of agent i at step (k+1), which is the average directions of agents in
set Γi(k). Computations using this expression can also avoid some undesired
directional problems mentioned in [16].

Denote Xi(k) as the position of agent i on the complex plane at step k. In
our adaptive velocity model, each agent not only adjusts its moving direction,
but also adjusts its speed according to the degree of local direction consensus
among its neighbors, which is represented by its local polarity. Specifically,
the speed of agent i at step k is scaled by a power-law function of its local
polarity, i.e.,

cα(φi(k))
	
= φα

i(k), (10.5)
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Fig. 10.1. Illustration of local polarity φi of agent i. The arrows show the moving
directional vectors of neighboring agents of agent i. For simplicity, these modular
vectors are plotted with the same starting points located in the center of a circle. (a)
The collection of agents moving scattered in the plane with no dominant direction,
the order parameter φi ≈ 0 for this situation. (b) The agents with a relatively strong
dominant direction, φi �= 0 for this situation. The polarity φi = 0 if and only if all
the agents in set Γi(k) move in the same direction.
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Fig. 10.2. Scaled speed coefficient cα(φ) as a power function of local polarity φ.
For any value of α, cα(φ) = 1 if φ = 1. For α = 0, cα(φ) ≡ 1. For 0 < α < ∞,
0 < cα(φ) < 1 if 0 < φ < 1. For α = ∞, cα(φ) = 0 if 0 < φ < 1.

with an power-law exponent α ≥ 0 (Fig. 10.2).
The adaptive velocity model can then be described mathematically as

follows: ⎧⎪⎪⎨
⎪⎪⎩

Xi(k + 1) = Xi(k) + v0 × φα
i (k)eiθi(k) ×Δt

φi(k + 1)eiθi(k+1) =
1

ni(k + 1)

∑
j∈Γi(k+1)

eiθj(k)
(10.6)

i = 1, 2, . . . , N ; k = 0, 1, 2, . . . , where Δt is the discrete time interval, and here
without loss of generality, we take Δt = 1.

⇀
vi(k) ≡ v0×φα

i (k)eiθi(k) represents
the velocity of agent i at step k with its moving direction θi(k). Since 0 ≤
φα

i (k) ≤ 1 for any value of α ≥ 0, the corresponding speed |⇀vi(k)| = v0×φα
i (k)

satisfies 0 ≤ ⇀
vi ≤ v0.

This adaptive speed is another important factor that contributes to emer-
gence or swarming clusters that has been previously overlooked, especially for
swarms in three or higher dimensions. This adaptive speed model also satisfies
fundamental swarm’s characteristics: no any leader/leaders, no external stim-
uli, only homogeneous agents, and only local interactions, but induces more
intensified phase transition and symmetry-broken from disordered to ordered
state than the constant speed model.
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The power-law exponent α ≥ 0 reflects the willingness of each agent to
move faster or lower along the average direction of its neighbors based on the
local degree of direction consensus. If α = 0, then cα(φ) ≡ 1. The adaptive
velocity model (10.6) reduces to the constant speed Vicsek model and each
agent always moves with the maximum constant speed v0 without any consid-
erations about its local polarity. However, if α > 0, then an agent will move
with the maximum speed if and only if complete local direction consensus is
achieved among its neighbors. In the case of α = 1, the local order parameter
of agent i is just the direct sum of directional vectors of agent i’s neighbors.
A larger value of α implies that an agent will move with a slower speed in the
face of a given level of local direction consensus. In the limit case that α =∞,
we have

c∞(φ) = φ+∞ =
{

0, 0 ≤ φ ≤ 1,
1, φ = 1. (10.7)

It means that each agent will not move unless complete local direction con-
sensus is achieved among its neighbors.

The 2-dimensional adaptive velocity model (10.6) can easily be generalized
to general M -dimensional Euclidean space case. Let Pi = [pi1, pi2, . . . , piM ]T

represent position of agent i, i = 1, 2, . . . , N . The motion direction of agent i
is represented by a unitary vector di = [di1, di2, . . . , diM ]T which satisfies

‖di‖ = 1, −1 ≤ dij ≤ 1, j = 1, 2, . . . ,M, (10.8)

for all i. Agent i and agent j are neighbors if ‖pi(k)− pj(k)‖ ≤ R.
Define the order parameter as

ri(k + 1) =
1

ni(k + 1)

∥∥∥∥ ∑
j∈Γi(k+1)

dj(k)
∥∥∥∥. (10.9)

Of cause, 0 ≤ ri(k + 1) ≤ 1. The M -dimensional adaptive velocity model can
be described as:

Pi(k + 1) = Pi(k) + v0 × rα
i (k)× di(k)×Δt, k = 0, 1, 2, . . . , (10.10)

di(k + 1) =
( ∑

j∈Γi(k+1)

dj(k)
)/∥∥∥∥ ∑

j∈Γi(k+1)

dj(k)
∥∥∥∥, k = 0, 1, 2, . . . . (10.11)

10.4 Simulations and Discussions

It is a more natural assumption for swarms moving in the plane to ensure
that they can evolve freely and sufficiently. To illustrate the effect of adap-
tive velocity strategy, we consider N agents moving in the complex plane for
simulation instead of in a rectangle of open boundary or periodic boundary
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Fig. 10.3. Illustration of initially random distribution of positions and directions
of agents, the arrows point to the initial directions of agents, the ends of arrows
(denoted by blue circles) are positions of agents. Here the rectangle is 5×5 cell. The
swarm evolves in the whole 2D plane.

conditions [30]. The N agents’ positions and directions are initially randomly
distributed on a rectangle of linear size L (Fig. 10.3). Denote the initially
distributed directions and positions of agent i as θi and Pi(0), respectively,
i = 1, 2, . . . , N . Note that the initial distribution of direction θi is not the
initial moving direction θi(0). We compute the initial moving direction θi(0)
and initial polarity φi(0) of agent i according to local order parameter formula

φi(0)eiθi(0) =
1

ni(0)

∑
j∈Γi(0)

eiθj .

This means that each agent moves with adaptive velocity strategy in the very
beginning of its evolution. This beginning step is denoted as step k = 0 with
the corresponding initial speed v0 × φi(0).

In simulations, we take the parameters N = 300, L = 5 and R = 2. All
estimates are the results of averaging over 400 realizations, if without special
mention. We first investigate the influence of power-law exponent α in the
adaptive velocity model on the convergence probability p, which is defined as
the probability that a group of N initially randomly distributed agents will
finally all move along a global consensus direction with the same maximum
speed v0.
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Fig. 10.4. Convergent probability p as a function of the maximum speed v0 for five
different values of α
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Fig. 10.5. Convergent probability p as a function of the exponent α for five different
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Fig. 10.6. Transient time step as a function of the exponent α. The termination
condition for steady state of the swarms is that, the standard deviation of N vectors
that consist of the conterminous directional differences of every agent is less than
0.0001. The quantities are averaged over 200 realizations.

Fig. 10.4 shows that for any given value of α, the convergence probability
p is a decreasing function of the maximum speed v0, but it decreases more
slowly for larger value of α; while Fig. 10.5 shows that for any given value
of v0, the convergence probability p is an increasing function of the exponent
α, and smaller v0 leads to higher convergence probability. Therefore, if the
constant speed v0 is large enough, even though it is very difficult or even
practically impossible to achieve global convergence in the original Vicsek
model which corresponds to α = 0, the convergence probability can still be
high for the adaptive velocity model with a sufficiently large α. In particular,
the convergence probability approaches 1 in the case α = ∞ for the present
system parameters, even without any leader or other global information in
the adaptive velocity model.

Note that the dynamic speeds of all agents will always reach the same
maximal value v0 in steady state whether the swarm can finally converge or
not; but directions of agents will reach global consensus only under certain
conditions. Generally, speeds of agents in the adaptive velocity model are
varied over transient time and the average speed vave(k) of all agents in the
swarm increases monotonically until steady state is achieved. Since a larger
value of α implies that an agent will move with a slower speed in the face of a
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Fig. 10.7. The time step τ required for the average speed of all agents to reach 98%
of maximum speed v0 as a function of the exponent α. All estimates are the results
of averaging over 200 realizations.
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Fig. 10.8. MCSG in steady state as a function of the maximum speed v0 for five
different values of α
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Fig. 10.9. MCSG in steady state as a function of the exponent α for six different
values of v0
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Fig. 10.10. The global order parameter Φθ of swarm as a function of noise amplitude
η. For large η and α, Φθ decreases linearly. All estimates are the results of averaging
over 200 realizations.
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Fig. 10.11. The average speed coefficient Cα decreases to zero as the noise ampli-
tude η increases. All estimates are the results of averaging over 200 realizations.

given level of local direction consensus, one may wonder if the transient time
may be longer even though the convergence probability is higher. However, as
can be seen from Fig. 10.6, the value of α does not have a significant influence
on the transient time. Denote τ as the time step required for the average
speed of all agents to reach 98% of maximum speed v0. We find that τ obeys
a simple log scaling law of the form (Fig. 10.7):

τ ≈ 4 + β [log10 α] , α ≥ 1, (10.12)

where β ≈ 4.67. Therefore, even for a high value of α = 1000, most agents
will move with nearly the maximum speed in just less than 18 steps. This
behavior looks somewhat like the applause phenomenon which turns suddenly
into synchronized clapping [20].

Why is the convergence probability enhanced as the exponent α increases
in the adaptive velocity model? This is because the adaptive velocity strategy
with large value of α tends to hold the local agents together to form large
cluster. When in the approximate isotropy region, φ ≈ 0 which implies agents
move in scattered directions, the speeds of agents are relatively small according
to adaptive velocity strategy with positive value of α. Even for 0 φ < 1, the
speeds of agents are still small for large values of α. Thus transformations of
those agents’ positions are indistinctive, so neighbors tend to be also neighbors
in the next step or even later, and communications between them continue to
be held, which are beneficial to directional consensus.
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From the perspective of the complex network theory [1, 21], swarm topol-
ogy can also be expressed as a graph G = (V,E): every agent i is represented
by a vertex vi; an undirected edge between agent i and agent j means that
they are neighbors and vice versa. The component of a graph to which a
vertex belongs is that set of vertices that can be reached from it by paths
running along edges of the graph [21]. As time evolves, topology of the graph
G(k) = (V,E(k)) varies. We are interested in the maximal component of the
swarm graph (MCSG) in the steady state. Recent analysis shows that for a
swarm which moves in the plane instead of in a rectangle of periodic con-
ditions, convergence or emergence is due to the connectivity between agents
[16, 19], instead of long-range interactions [30, 31].

Denote S as the ratio of the number of vertices in MCSG in steady state
versus the total number of vertices in the whole graph of the underlying swarm.
Clearly, 0 < S ≤ 1 and global convergence is achieved if and only if S = 1. In
this case, the whole graph consists of only one component (swarming cluster).
S ≈ 0 means all the agents disperse without any apparent clusters. For S � 0,
there exists a dominate or giant cluster in the swarm.

For any given value of α, MCSG is understandably a decreasing function of
the maximum speed v0, and it decreases much more slowly for larger values of
α (Fig. 10.8); while for any given value of v0, MCSG is an increasing function
of the exponent α and smaller values of v0 result in higher values of MCSG
(Fig. 10.9). Thus, in the case of a large maximum speed v0, although it is quite
difficult or even impossible to form a giant cluster in the constant speed Vicsek
model which corresponds to α = 0, it is much easier to form a giant cluster
for the adaptive velocity model if α is large enough. This also indicates that
attractive actions between agents is not a necessity for swarm aggregations.

Figs. 10.10 and 10.11 show the influence of uniformly distributed noise
added to the moving direction of each agent with noise amplitude η based
on the global order parameter Φθ defined in (10.3) and the average speed
coefficient Cα defined as:

Cα
	
=

1
N

N∑
i=1

cα (φi) =
1
N

N∑
i=1

φα
i . (10.13)

We can see from Fig. 10.10 that for large noise amplitude η and large
exponent α, the global order parameter Φθ decreases along the same straight
line, which deserves further investigation.

Comparing Figs. 10.10 and 10.11, one finds that the more robust the speed,
the less emergence the swarm in the exposure of noise. The value α = 0
corresponds to constant speed and it is the least anti-noise case of the swarm.

10.5 Conclusions

We propose an adaptive velocity model in which each agent not only adjusts
its moving direction but also adjusts its speed based on the local degree of
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Fig. 10.12. Some interesting shapes that swarms take on. These are all coherent
moving cases. The arrows denote the coherent moving direction of swarms. The
parameters here are N = 200, R = 1.2, v0 = 0.4, α = 0.

direction consensus among its neighbors at every time step. Each agent takes
its moving direction as the average angle of its local order parameter with
its speed proportional to the power function of the magnitude of its local
complex-valued order parameter at each step. The adaptive velocity model
reduces to the constant speed Vicsek model when the power-law exponent
α = 0. A larger value of α implies that an agent will move with a slower speed
in the face of a given level of non-complete local direction consensus, which
results in higher convergence probability and larger swarm clusters.

Some difficult yet important problems about the adaptive velocity model
remain to be further investigated. For example, under what conditions can we
guarantee the existence of a critical value of α such that above the value, a
given convergence probability or average MCSG can be guaranteed? Further-
more, stability analysis about the linearized Vicsek’s model has been focused
on the topology of swarms in the process of evolution [16], but the question
of what initial distribution condition of the underlying swarm can guarantee
this topology restriction remains unsolved. More practical stability analysis
for the adaptive velocity model needs to be explored.

The properties of evolutional graphs of swarms over time may serve as a
promising topic for further research. Unlike regular (or quasi-regular) geomet-
ric shape the attraction–repulsion models [5, 14, 22] take on (see the figures
in the reference papers), what shapes (for example, see Fig. 10.12) the non-
attraction-repulsion models, such as adaptive velocity model, will take in the
coherent moving state also remains elusive. These questions remain interesting
and challenging for further investigation.
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