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Preface

The accelerated integration and convergence of communications, computing,
and control over the last decade has inspired researchers and practitioners
from a variety of disciplines to become interested in the emerging field of net-
worked control systems (NCS). In general, a NCS consists of sensors, actua-
tors, and controllers whose operations are distributed at different geographical
locations and coordinated through information exchanged over communica-
tion networks. Some typical characteristics of those systems are reflected in
their asynchronous operations, diversified functions, and complicated organi-
zational structures. The widespread applications of the Internet have been
one of the major driving forces for research and development of NCS. More
recently, the emergence of pervasive communication and computing has sig-
nificantly intensified the effort of building such systems for control and man-
agement of various network-centric complex systems that have become more
and more popular in process automation, computer integrated manufacturing,
business operations, as well as public administration.

Control over a communication network is not a new concept in automation.
From tele-operation for space and hazardous environments to process regula-
tion with distributed control systems, control systems with communications
have already been developed and utilized in applications of real-world prob-
lems for more than 30 years. However, there are many factors that distinguish
the current NCS and previous control with communications. Two of them are
the most significant: (1) in the previous control with communications, the net-
work is specialized and dedicated for the timeliness of information exchange
and stability of process operation, while in the current NCS the network is
general-purpose and public for various irrelevant yet concurrent applications,
and thus real-time communication and stable operation are no longer ensured;
(2) the functionality of the NCS from the previous to current has been diver-
sified tremendously, from pure control to a variety of control and management
or administrative functions, ranging from resource allocation, event schedul-
ing, to task organization, etc., involving concept and methods from control
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and communication engineering, operations research, computer science, and
management science.

Demands on diversity, complexity, and real-time performance for net-
worked operations have brought new technological challenges to NCS. To-
day, many fundamental questions regarding the stability of interconnected
dynamical systems, the effects of communication on the performance of con-
trol systems, etc., remain open and to be answered. Even from the perspective
of control field alone, we need to think about what the new direction for re-
search and application in this age of connected world would be. One potential
approach is to extend the concept of “code on demands” with agent program-
ming to “control on demands” with agent-based control (so called ABC). In
other words, can we liberate control algorithms that are fixed to plants to be
controlled to control agents that are free and mobile in a connected world?
Once this is accomplished, various innovative methods based on connectiv-
ity can be employed for control and management, e.g., using “local simple,
remote complex” principle to design low cost yet high performance and in-
telligent NCS that require less computing power, small memory space, and
little upgrading. Indeed, there are many new, exciting, and challenging ideas,
problems, and concepts in the emerging field of networked control systems.

This book is a follow up effort after the publication of the special issue on
“Networking, Sensing, and Control for Networked Control Systems: Architec-
tures, Algorithms, and Applications” in the IEEE Transactions on Systems,
Man, and Cybernetics–Part C, vol. 37, no. 2, Mar. 2007. The book includes
eleven chapters written by leading experts in NCS and addresses some of the
questions and problems discussed above.

We start the book with two review chapters. The first chapter by Gupta
and Chow provides an overview of NCS, its history, issues, architectures, com-
ponents, methods, and applications. A case study of NCS with test-bed sys-
tem iSpace is also described in this chapter. Chapter 2 by Wang presents the
history and issues of agent-based control and management for NCS from the
perspective of his own research group. He argues and calls for a paradigm shift
from control algorithms to control agents so that agent-based control can be
established as the new control mechanism for operation and management of
networked devices and systems. The goal of his agent-based approach is to
transform “code on demand” in programming into “control on demand” in
control, and provides a platform for designing and building low cost but high
performance networked equipment in the age of connectivity.

The remaining chapters address specific issues in design, analysis, and im-
plementation of NCS. In Chapter 3, considering the fact that the design and
implementation of many digital systems have been based on the emulation of
idealized continuous-time blocks, and in analogy with sampled-data control
system design, Tabbara, Nesic, and Teel explore an emulation-based approach
to the analysis and design of NCS. For this purpose, they survey a selection
of emulation-type NCS results in the literature and highlight the crucial role
that scheduling between disparate components of the control systems plays.
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They then detail several different properties that scheduling protocols need to
verify together with appropriate bounds on inter-transmission times such that
various notions of input-output stability of the nominal “network-free” system
are preserved when deployed as an NCS. This could be an important method
for designing NCS in the future. In Chapter 4, Liu addresses issues in analysis
and design of NCS based on a novel control strategy, termed networked pre-
dictive control. The stability of the closed-loop networked predictive control
system is analyzed. The analytical criteria are obtained for both fixed and
random c ommunication time delays. The on-line and real-time simulation of
networked predictive control systems is presented in detail.

In Chapter 5, Yue, Han, and Lam discuss the design of robust H∞ con-
trollers and H∞ filters for uncertain NCS with the effects of both network-
induced delay and data dropout taken into consideration. In this chapter, a
new analysis method for H∞ performance of NCS is provided by introduc-
ing slack matrix variables and employing the information of the lower bound
of the network-induced delay. Numerical examples and simulation results are
given to illustrate the effectiveness of their proposed method. In Chapter 6,
Nikolakopoulos, Panousopoulou, and Tzes propose a switched output feedback
control scheme for networked systems, and apply the scheme to client–server
architectures where the feedback control loop is closed over a general pur-
pose wireless communication channel between the plant (server) and the con-
troller (client). To deal with network delay effects, a linear quadratic regulator
(LQR)-output feedback control scheme is introduced, whose parameters are
tuned according to the variation of the measured round trip latency times. The
overall scheme resembles a gain scheduler controller with the latency times
playing the role of scheduling parameter. The proposed control scheme is ap-
plied in both experimental and simulation studies to an NCS over different
communication channels.

Yang and Zhang in Chapter 7 have developed a guaranteed cost net-
worked control (GCNC) method and established the corresponding stability
for Takagi–Sugeno (T–S) fuzzy systems with time delay. Both analytical stud-
ies and simulation results show the validity of their proposed control scheme.
A robust H∞ networked control method for T–S fuzzy systems with uncer-
tainty and time delay is also presented in this chapter, along with sufficient
conditions for robust stability with H∞ performance. In Chapter 8, Sun and
Wu have proposed a discrete-time jump fuzzy system for the modeling and
control of a class of nonlinear NCS with random but bounded communication
delays and packets dropout. In this chapter, a guaranteed cost control with
state feedback is developed by constructing a sub-optimal performance con-
troller for the discrete-time jump fuzzy systems in such a way that a piecewise
quadratic Lyapunov function (PQLF) can be used to establish the global sta-
bility of the resulting closed-loop fuzzy control system. When not all states are
available, an output feedback controller is designed. For the NCS based on the
mixed networks, a neuro-fuzzy controller is developed. Simulation examples
are carried out to show the effectiveness of their proposed approaches. Chen
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in Chapter 9 investigates the boundary control of damped wave equations
using a boundary measurement in an NCS setting. In his approach, induced
delays in this networked boundary control system are lumped as the boundary
measurement delay. The Smith predictor is applied to this problem and the
instability problem due to large delays is solved and the scheme is proved to
be robust against a small difference between the assumed delay and the actual
delay. He also analyzes the robustness of the time-fractional order wave equa-
tion with a fractional order boundary controller subject to delayed boundary
measurement.

The last two chapters address two basic methods for NCS. In Chapter 10
Li and Wang discuss the coordination mechanism of multi-agent systems using
an adaptive velocity strategy. In previous works, much attentions and correla-
tive efforts for swarm intelligence have been focused on constant speed models
in which all agents are assumed to move with the same constant speed. In this
chapter, they have proposed an adaptive velocity model with a more reason-
able assumption in which every agent not only adjusts its moving direction
but also adjusts its speed based on the degree of direction consensus among
its local neighbors. The adaptive velocity model provides a powerful mecha-
nism for coordinated motion in both biological and technological multi-agent
systems. In Chapter 11, Yu and Wang study the robust synthesis problem
for strictly positive real (SPR) transfer functions. By using the complete dis-
crimination system (CDS) for polynomials, complete characterization of the
(weak) SPR regions for transfer functions in coefficient space is given. They
have proposed an algorithm for robust design of SPR transfer functions. Their
algorithm works well for both low-order and high-order polynomial families.

Finally, as the editors of the book, we would like to express our sincere
appreciation to all authors for their time and effort, and to Springer’s En-
gineering Associate Editor Oliver Jackson for his patience and great help.
Although every effort has been made to include a wide spectrum of methods
and applications in this emerging field, a book like this can only include a
rather small number of selected chapters, and we must say that the coverage
here is by no means comprehensive.

Fei-Yue Wang
Chinese Academy of Sciences, Beijing, China
The University of Arizona, Tucson, AZ, USA
Derong Liu
The University of Illinois at Chicago
Chicago, IL, USA
January, 2008
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Overview of Networked Control Systems

Rachana A. Gupta and Mo-Yuen Chow

North Carolina State University, Raleigh, NC 27695, USA
ragupta@ncsu.edu, chow@ncsu.edu

Abstract. Networked control systems (NCS) have been one of the main
research focuses in academia as well as in industrial applications for many
decades. NCS has taken the form of a multidisciplinary area. In this chapter,
we introduce NCS and the different forms of NCS. The history of NCS, differ-
ent advantages of having such systems are the starting points of the chapter.
Furthermore, the chapter gives an insight to different challenges which come
with building efficient, stable and secure NCS. The chapter talks about differ-
ent fields and research arenas, which are part of NCS and which work together
to deal with different NCS issues. A brief literature survey concerning each
topic is also included in the chapter. iSpace is the test-bed for NCS and it
attends the practical issues and implementation of NCS. At the end, iSpace at
ADAC is presnted as a case study for NCS with different experimental results.

Keywords. Networked control systems, time-sensitivity, intelligent space,
UGV navigation.

1.1 Introduction

A control system is a device or set of devices to manage, command, direct or
regulate the behavior of other devices or systems. In engineering and mathe-
matics, control theory deals with the behavior of dynamical systems. Although
control systems of various types date back to antiquity, a more formal analysis
of the field began with a dynamics analysis of the centrifugal governor, con-
ducted by the famous physicist Maxwell in 1868 entitled “On Governors.” A
notable application of dynamic control was in the area of manned flight. The
Wright brothers made their first successful test flights on December 17, 1903
and were distinguished by their ability to control their flights for substantial
periods (more so than the ability to produce lift from an airfoil, which was
known). Control of the airplane was necessary for flight safety. For many years,



2 R.A. Gupta and M.-Y. Chow

researchers have given us precise and optimum control strategies emerging
from classical control theory, starting from open-loop control to sophisticated
control strategies based on genetic algorithms.

The advent of communication networks, however, introduced the concept
of remotely controlling a system, which gave birth to networked control sys-
tems (NCS). The classical definition of NCS can be as follows: When a tradi-
tional feedback control system is closed via a communication channel, which
may be shared with other nodes outside the control system, then the control
system is called an NCS [15]. An NCS can also be defined as a feedback control
system wherein the control loops are closed through a real-time network. The
defining feature of an NCS is that information (reference input, plant out-
put, control input, etc.) is exchanged using a network among control system
components (sensors, controllers, actuators, etc., see Fig. 1.1).

Fig. 1.1. A typical networked control system

1.1.1 Advantages and Applications of Control over Network

For many years now, data networking technologies have been widely applied in
industrial and military control applications. These applications include man-
ufacturing plants, automobiles, and aircraft. Connecting the control system
components in these applications, such as sensors, controllers, and actuators,
via a network can effectively reduce the complexity of systems, with nominal
economical investments. Furthermore, network controllers allow data to be
shared efficiently. It is easy to fuse the global information to take intelligent
decisions over a large physical space. They eliminate unnecessary wiring. It is
easy to add more sensors, actuators and controllers with very little cost and
without heavy structural changes to the whole system. Most importantly, they
connect cyber space to physical space making task execution from a distance
easily accessible (a form of tele-presence). These systems are becoming more
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realizable today and have a lot of potential applications [16, 20], including
space explorations, terrestrial exploration, factory automation (Fig. 1.2), re-
mote diagnostics and troubleshooting, hazardous environments, experimental
facilities, domestic robots, automobiles, aircraft, manufacturing plant moni-
toring, nursing homes or hospitals, tele-robotics (Fig. 1.3) and tele-operation,
just to name a few.

Fig. 1.2. Factory automation

Fig. 1.3. Unmanned ground vehicle navigation (image courtesy of Space and Naval
Warfare Systems Center, San Diego)
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1.1.2 Brief History of Research Field of NCS

The advent of the Internet gave a huge base for millions of smaller domestic,
academic, business, and government networks, which together carry informa-
tion and services, such as electronic mail, online chat, file transfer, interlinked
web pages and other documents of the World Wide Web. In the last few years,
there has also been a tremendous increase in the deployment of wireless sys-
tems, which has triggered the development and research of distributed NCS.
As the concept of NCS started to grow because of its potential in various
applications, it also provided many challenges for researchers to achieve reli-
able and efficient control. Thus the NCS area has been researched for decades
and has given rise to many important research topics. A wide branch in the
literature focuses on different control strategies and kinematics of the actua-
tors/vehicles suitable for NCS [2], [19], [26], [45]. Another important research
area concerning NCS is the study of the network structure required to pro-
vide a reliable, secured communication channel with enough bandwidth, and
the development of data communication protocols for control systems [2],
[23], [35]. Collecting real-time information over a network using distributed
sensors and processing the sensor data in an efficient manner are important
research areas supplementing NCS. Thus NCS is not only a multidisciplinary
area closely affiliated with computer networking, communication, signal pro-
cessing, robotics, information technology, and control theory, but it also puts
all these together beautifully to achieve a single system which can efficiently
work over a network. For example, a robot which is in the eastern part of the
world can be controlled by a person sitting in the USA (Fig. 1.4) [8].

Some of the well-known research institutes and research labs working in
NCS are listed below.

Advanced Diagnosis, Automation and Control (ADAC) Labora-
tory at North Carolina State University (http://www.adac.ncsu.edu/).

Alleyne Research Group at University of Illinois at Urbana-Champaign
(http://mr-roboto.me.uiuc.edu/).

Fig. 1.4. Remote mobile robot path-tracking via IP setup between ADAC lab (USA)
and Hashimoto lab (Japan)
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Networked Control Systems Laboratory at University of Washing-
ton (Seattle) (http://www.ee.washington.edu/research/ncs/index.html).

Center for Networked Communicating Control Systems (CNCS)
at University of Maryland at College Park (http://www.isr.umd.edu/CNCS/).

Network Control Systems Laboratory at National Taiwan University
(http://cc.ee.ntu.edu.tw/∼ncslab/).

Interdisciplinary Studies of Intelligent Systems at University of
Notre Dame (http://www.nd.edu/∼isis/).

1.2 NCS Categories and NCS Components

Generally speaking, the two major types of control systems that utilize com-
munication networks are (1) shared-network control systems and (2) remote
control systems. Using shared-network resources to transfer measurements,
from sensors to controllers and control signals from controllers to actuators,
can greatly reduce the complexity of connections. This method, as shown
in Fig. 1.5, is systematic and structured, provides more flexibility in instal-
lation, and eases maintenance and troubleshooting. Furthermore, networks
enable communication among control loops. This feature is extremely useful
when a control loop exchanges information with other control loops to per-
form more sophisticated controls, such as fault accommodation and control.
Similar structures for network-based control have been applied to automobiles
and industrial plants.

On the other hand, a remote control system can be thought of as a system
controlled by a controller located far away from it. This is sometimes referred
to as tele-operation control. Remote data acquisition systems and remote
monitoring systems can also be included in this class of systems. The place
where a central controller is installed is typically called a “local site,” while
the place where the plant is located is called a “remote site.”

There are two general approaches to design an NCS. The first approach
is to have several subsystems form a hierarchical structure, in which each
of the subsystems contains a sensor, an actuator, and a controller by itself,

Fig. 1.5. Shared-network connections
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Fig. 1.6. Data transfers of hierarchical structure

as depicted in Fig. 1.6. These system components are attached to the same
control plant. In this case, a subsystem controller receives a set point from
the central controller CM. The subsystem then tries to satisfy this set point
by itself. The sensor data or status signal is transmitted back via a network
to the central controller.

The second approach of networked control is the direct structure, as shown
in Fig. 1.7. This structure has a sensor and an actuator of a control loop
connected directly to a network. In this case, a sensor and an actuator are
attached to a plant, while a controller is separated from the plant by a network
connection.

Both the hierarchical and direct structures have their own pros and cons.
Many networked control systems are a hybrid of the two structures. For ex-
ample, the remote teaching lab is an example that uses both structures [7],
[10].

Networked control applications can be divided into two categories: (1)
time-critical/time-sensitive applications and (2) time-delay-insensitive appli-
cations. In time-delay-sensitive applications, time is critical, i.e., if the delay-
time exceeds the specified tolerable time limit, the plant or the device can
either be damaged or produce inferior performance. An example of time-

Fig. 1.7. Data transfers of direct structure
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delay-sensitive applications is tele-operation via networks for fire-fighting op-
erations, undersea operations, and automated highway driving. On the other
hand, time-delay insensitive applications are tasks or programs that run in
real time but whose deadlines are not critical. Examples of these applications
are e-mail, ftp, DNS, and http. We will briefly mention many advantages of
networked control systems, tele-operation being the most evident and tangible
one. Let us categorize the NCS according to the amount of human interference
in the loop.

(1) Tele-operated systems with human operator–In this case, a human oper-
ator from one location controls the actuators (robots, arms, unmanned
vehicles) at different locations. The feedback to the operator is mainly vi-
sual (video or real-time image). The precision and accuracy of the system
operation also depends upon operator skill including system precision,
feedback delay and accuracy, signal distortion. This can also be called the
human supervisory control [33]. Therefore for such tele-operated systems,
many times, the human operators are required to be trained to operate
the system. There are various applications of such systems like distributed
virtual laboratories, remote surgery systems [14], field robotics, etc. Such
systems therefore suffer from issues like human perception accuracy, force
feedback to the operator, network delay, control prediction, ergonomics,
security, system portability, etc. [4], [34]. There are also many tools de-
veloped for accurate operator feedback such as virtual reality (VR), inter-
active televisions, 3-D visualization environment, etc. [4]. One of the VR
environments developed by Alfred E. Mann Institute at USC is used to
simulate the movement of prosthetic limbs and human limbs. Its main use
is to prototype the control of the prosthetic systems and fit the control to
patient needs. It also allows the patients to train in VR to operate their
prosthetic limbs (Fig. 1.8).

(2) Tele-operation without human intervention–In such systems the intelli-
gence is built inside the controller modules. The sensor data and actuator
feedback data is directly fed to the controller over the network. This can
also be called the autonomous networked control system. The supervisory
controller is not a human in this case. A human can act as an external user
which can choose tasks or specify some manual control commands. Such
systems are therefore not dependent on human perception and do not
require operators to be skilled or trained. However developing intelligent
and efficient data processing and controlling algorithms for supervisory
control is very important. Supervisory controllers can use techniques such
as machine learning, neural networks and artificial intelligence algorithms
to take intelligent operation decisions. In this case, sensor data fusion and
actuator bandwidth optimization and scheduling are equally important
issues to be considered.

(3) Hybrid control: Main controller and actuator have distributed intelligence
to increase the efficiency of network operations.
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Fig. 1.8. Virtual reality (image courtesy Alfred E. Mann Institute, USC)

Here in this chapter we will focus mainly upon time-sensitive supervisory
networked control systems.

1.2.1 NCS Components

Whatever the arrangement or modalities used for connecting and configur-
ing the hardware and the software assets in order to actualize a networked
control system that has certain capabilities, the components used have to en-
able four functions which form the basis of the function an NCS is required to
project. These basis functions are information acquisition (sensors), command
(controllers), and communication and control (actuators).

1.2.2 Information Acquisition in a Network

As the name suggests information acquisition requires us to study sensors,
data processing, and signal processing. There is a growing excitement about
the potential application of large-scale sensor networks in diverse applications
such as precision agriculture, geophysical and environment monitoring, remote
health care, and security [9]. Rapid progress in sensing hardware, communi-
cations and low-power computing has resulted in a profusion of commercially
available sensor nodes. NCS suggests collecting the relevant data using dis-
tributed sensors in the network to study the system under control. Sensor
data can be in any form starting from small numbers representing temper-
ature, pressure, weight, etc. or in chunk form such as images, arrays, videos
streams, etc. This raises important questions like:

(a) Bandwidth requirements for the data transfer in the network.
(b) Data collection strategies in the case of a number of sensors.
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(c) Cheap, reliable and energy efficient sensors which can easily be added to
the NCS.

Sensor fusion and sensor networks [11], [40] are very wide research fields which
help improve information acquisition in a network. Developing middleware
and operating systems for sensor nodes to send data efficiently in the network
[29], [30], information assurance [28], energy efficient sensor nodes [44] and
sensitivity of the data are the key research foci related to information acquisi-
tion in a network. Sensor networks hold the promise of facilitating large-scale,
real-time data processing in complex environments.

Image data is used for applications like surveillance [9], robot navigation
[27], target tracking [32] and tele-operation, etc. With the advancement in the
field of computer vision and image processing, there are many sophisticated
algorithms available to process images for pattern recognition and feature
extraction. Many systems and algorithms have been developed using visual
and other local sensing capabilities to control ground and aerial vehicles [12],
[31].

1.2.3 Control of Actuators over a Network

One of the biggest advantages of a system controlled over a network is scala-
bility. As we talk about adding many sensors connected through the network
at different locations, we can also have one or more actuators connected to
one or more controllers through the network. For many years now, researchers
have given us precise and optimum control strategies emerging from classical
control theory, starting from PID control, optimal control, adaptive control,
robust control, intelligent control and many other advanced forms of these
control algorithms. Applying all these control strategies over a network how-
ever becomes a challenging task. We will study different issues to be considered
for successful and efficient operation of an NCS in the next section.

1.2.4 Communication

The communication channel being the backbone of the NCS, reliability, se-
curity, ease of use, and availability are the main focus when choosing the
communication or data transfer type. In today’s world, plenty of communica-
tion modes are available from telephone lines, cell phone networks, satellite
networks and, most widely used, Internet. Sure enough, the choice of network
depends upon the application to be served. Internet is the most suitable and
inexpensive choice for many applications where the plant and the controller
are far from each other (as shown in Fig. 1.4, where the controller is in USA
and the robot to be controlled is in Japan [7]). The controller area network
(CAN) is a serial, asynchronous, multi-master communication protocol for
connecting electronic control modules in automotive and industrial applica-
tions. CAN was designed for applications needing high-level data integrity
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and data rates of up to 1 Mbps. Many manufacturing plants have a complete
line of products enabling industrial designers to incorporate CAN into their
applications.

For years, wireless LANs having been supporting enterprise applications,
such as warehouse management and mobile users in offices. With lower prices
and stable standards, homeowners are now installing wireless LANs at a rapid
pace. LANs for the support of personal computers and workstations have
become nearly universal in organizations of all sizes. Even those sites that
still depend heavily on the mainframe have transferred much of the processing
load to networks of personal computers. Perhaps the prime example of the
way in which personal computers are being used is to implement client/server
applications. Back-end networks are used to interconnect large systems such as
mainframes, supercomputers, and mass storage devices. The key requirement
here is for bulk data transfer among a limited number of devices in a small
area. High reliability is generally also a requirement.

GPS systems can be used to localize vehicles all over the planet. Military
applications, surgical and other emergency medical applications, however, can
use dedicated optical networks to ensure fast speed and reliable data commu-
nication.

1.3 NCS Challenges and Solutions

After having an overview of different categories, components and applications
of NCS, we now describe the different challenges and issues to be considered
for a reliable NCS.

We can broadly categorize NCS applications into two categories as (1)
time-sensitive applications or time-critical control such as military, space and
navigation operations; (2) time-insensitive or non-real-time control such as
data storage, sensor data collection, e-mail, etc. However, network reliability
is an important factor for both types of systems. The network can introduce
unreliable and time-dependent levels of service in terms of, for example, delays,
jitter, or losses. Quality-of-service (QoS) can ameliorate the real-time network
behavior, but the network behavior is still subject to interference (especially in
wireless media), to routing transients, and to aggressive flows. In turn, network
vagaries can jeopardize the stability, safety, and performance of the units in
a physical environment [21], [36]. A challenging problem in the control of
network-based systems is the network delay effects. The time to read a sensor
measurement and to send a control signal to an actuator through the network
depends on network characteristics such as topology and routing schemes.
Therefore, the overall performance of an NCS can be affected significantly by
network delays. The severity of the delay problem is aggravated when data loss
occurs during a transmission. Moreover, the delays do not only degrade the
performance of a network-based control system, but they also can destabilize
the system.
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(1) Stability in Control and Delay Compensation

For many years now, researchers have given us precise and optimum control
strategies emerging from classical control theory, starting from PID control,
optimal control, adaptive control, robust control, intelligent control and many
other advanced forms of control algorithms. But these control strategies need
to be modified according to the application requirements as well as for them
to reliably work over a network to compensate for delays and unpredictability.
Fig. 1.9 displays the typical NCS model with the time delay taken into consid-
eration. Fig. 1.10 shows the adverse effect of the network delay on a remotely
controlled system. It displays the scenario where a mobile agent was asked to
track a path with varying curvatures, first with local controller and later with
remote controller. As we can observe, without any modifications to the con-
troller, the mobile agent is not able to track the path, especially at the high
curvature because of the network delay [7]. Instability of the system due to the
network delay is therefore a very important factor to be considered in NCS.
Different mathematical, heuristic and statistical-based approaches are taken
for delay compensation in NCS. A gain scheduler middleware (GSM) has been
developed by Tipsuwan and Chow to alleviate the network time delay effect
on network-based control systems. GSM methodology estimates the network
traffic and controls the gain of the whole system using a feedback processor as
shown in Fig. 1.11. Yu and Yang [46] suggested a predictive control model of
NCS to overcome the adverse influences of stochastic time delay, which could
improve the performance through model matching and multi-step predictive
output compensation. Wang and Wang [43] suggested a delay compensation
controller solution with an iterative procedure of a linear matrix inequality
(LMI) minimization problem, which is derived from the cone complementarity
linearization algorithm.

(2) Bandwidth Allocation and Scheduling

As we talk about having multi-sensor and controlling multi-actuator systems
in a network, important consideration should be given to the available band-
width in the network. With the finite amount of bandwidth available, we want

Fig. 1.9. NCS plant structure showing network delays
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Fig. 1.10. Mobile agent trajectory (1) local control (2) remote control without delay
compensation

Fig. 1.11. GSM module for network delay compensation

to utilize it optimally and efficiently. This further raises the need for priority
decisions and scheduling issues for controlling a series of actuators for a series
of tasks [41]. Different scheduling methods and bandwidth allocation strate-
gies have been developed for NCS over the past decade [1], [39]. There are also
many tools like Petri-net modeling, integer, nonlinear, dynamic programming,
AI tools, genetic algorithms developed for scheduling of networked control
systems. Kim et al. [18] formulated a method to obtain a maximum allow-
able delay bound for scheduling networked control systems in terms of linear
matrix inequalities. Walsh et al. [41] introduced a control network protocol,
try-one-discard (TOD), for MIMO NCS. Li and Chow proposed sampling rate
scheduling to solve the problem of signal fidelity and conserve the available
data transmission [24], [25].

(3) Network Security

All this discussion of sending important sensor and actuator control commands
in the network brings us to an important point of security over the network.
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Any network medium especially wireless medium is susceptible to easy inter-
cepting; it is extremely critical to protect transmitted data from unauthorized
access and modifications in wireless systems. Malicious users can intercept and
eavesdrop the data in transit via shared and broadcast medium. Network se-
curity includes essential elements in Internet security devices that provide
traffic filtering, integrity, confidentiality, and authentication. Therefore data
sharing, data classification and data/network security is of utmost concern in
distributed networked control systems considering the time and data sensi-
tive applications. In wireless systems, several security protocols such as wired
equivalent privacy (WEP), 802.1x port access control with extensible authen-
tication protocol (EAP) support are proposed to address security issues [5],
[17]. Moreover, due to strong security provided by IP security protocol (IPsec)
in wired networks, it is considered as a good option for wireless systems as
well. However, information security and data sensitivity have not been suffi-
ciently addressed to be applied in a real-time NCS. Very few researchers have
addressed the trade-off between security addition and real-time operation of
NCS. Gupta et al. [13] characterize the wireless NCS application on the basis
of security effect on NCS performance to show the trade-off between security
addition and real-time operation of NCS.

1.3.1 Integration of Components and Distribution of Intelligence

After discussing individual modules involved in NCS and possible issues re-
lated to control system, network structure and information acquisition, we
come to a point of integrating the components to achieve the final goal. Fus-
ing the global information to make intelligent decisions or to perform a par-
ticular task requires integration of different modules like data acquisition,
data processing, information extraction, and actuator control. All these differ-
ent modules perform tasks independently yet together making it one system.
Therefore, a few of the issues faced by a network-based navigation system
include data sharing, data transfer and interfacing between different modules.
Thus it is evident that to improve the efficiency of an integrated networked
control system, we not only have to improve each integrated module but also
provide an efficient data interface between different modules.

There is a wealth of techniques available for actualizing each one of the ba-
sic function modules. A well-designed software architectural framework and
middleware are critical for the widespread deployment and proliferation of
networked control systems. There are a few system architectures or middle-
ware developed to put such heterogeneous systems together. Component ar-
chitecture allows individual components to be developed separately and in-
tegrated easily later, which is very important for the development of large
systems. Further, such architecture promotes software reuse, since a well-
designed component such as a control algorithm, tested for one system, can
easily be transplanted into another similar system. At the same time suitabil-
ity of the environment representation for use with the communication and
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command modules should also be taken into consideration, which is the key
point in any practical application of NCS. Baliga and Kumar [3] developed
a list of key requirements for such middleware and presented Etherware, a
message oriented component middleware for networked control. Tisdale et al.
[38] from University of California Berkeley also developed a software architec-
ture for autonomous vision-based navigation, obstacle avoidance and convoy
tracking. This software architecture has been developed to allow collaborative
control concepts to be examined. These architectures represent the system
at an abstract level and focus on modularization of the system to achieve
flexibility and scalability in design. However, while studying all these mod-
ules separately, it is highly unlikely to find a realistic command module that
jointly takes into consideration the realization of an admissible control signal
when converting a task and constraints on behavior into a group of reference
signals. Designing the NCS at the system level by choosing the most suitable
and appropriate modules for each component of the NCS is a challenging task.
To elaborate more on this point let us look at an example of NCS.

1.4 A Case Study for NCS–iSpace

Intelligent space (iSpace) is a relatively new concept to effectively use various
engineering disciplines such as automation and control, hardware and software
design, image processing, distributed sensors, actuators, robots, computing
processors and information technology over communication networks over a
space of interest to make intelligent operation decisions. It can also be con-
sidered as a large-scale mechatronic system over networks. This space can be
as small as a room or a corridor or can be as big as an office, city or even a
planet. ADAC lab at NCSU in Raleigh has developed a multi-sensor network-
controlled integrated navigation system for multi-robots demonstrating the
concept of iSpace [20]. The modularized structure of iSpace at ADAC is as
shown in Fig. 1.12. The information acquisition about the space is through
network cameras. The task for the robots is to reach the destination point
chosen by the user through the GUI (accessible through internet). All the
intelligence to generate navigation commands for the robots resides in the
network controller (path generation avoiding the obstacles in the space and
path tracking to reach the destination as soon as possible without hitting any
of the obstacle in the space).

The system, being an NCS, observes network delay for image acquisition
and command transfer from controller to the robot on wireless channels. The
image processing, feature extraction and real-time path tracking algorithms
are also computationally intensive. The application led to the following choice
of different modules to be implemented in the network controller.
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Fig. 1.12. Modularized structure of iSpace at ADAC

(1) HPF for Motion Planning

The use of potential field in motion planning was introduced by Khatib in
1985, where the obstacles were represented by the repelling force and the
point of destination was represented by the attractive force. Harmonic poten-
tial fields (HPF) were introduced by Connolly to avoid the local minima in
navigation. Therefore, tracking the negative gradient from the source in the
harmonic potential field map will lead the robot towards the destination as
shown in Fig. 1.13 created synthetically to represent obstacle boundaries by
white edges and the navigation path for the robot as grey. The HPF equations
are given by

∇2φ(x, y) ≡ 0, (x, y) ∈ Ω
subject to
φ(x, y) = 1, (x, y) ∈ Γ

and φ(x, y) = −1, (x, y) = (xT , yT )
and φ(x, y) = 0, (x, y) /∈ Γ and (x, y) �= (xT , yT )

(1.1)

where ∇2 is the Laplace operator, Ω is the workspace of the UGV (Ω ⊂ �2),
Γ is the boundary of the obstacles (output of the edge detection stage), and
(xΓ , yΓ ) is the target point. The obstacle free path to the target is generated
by traversing the negative gradient of (φ), i.e., (∇φ).

HPF is a suitable algorithm for path planning on the network controller
once the image of the actual space is acquired from the network camera as
HPF is computationally fast (O(n) algorithm) and it drives the mobile robot
away from the boundaries of the obstacles because of the Dirichlet’s settings.
Fig. 1.13 shows the path planner created using HPF. All the arrows show
the negative gradient direction confirming that UGV is directed away from
obstacle boundaries and driven towards the goal point.
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Fig. 1.13. Path planner using the HPF algorithm (goal point shown by the dot in
the circle)

Fig. 1.14. Edge detection results

(2) Edge Detection for Boundary Detection

Converting the actual iSpace image into the raised boundaries of the obsta-
cles is the task of information acquisition as well as data/image processing.
Edge detection was used for obstacle boundary recognition. Edge detection
is a classic early vision tool to extract discontinuities from the image as fea-
tures. Thus all the discontinuities, which are more or less obstacle boundaries,
will be represented by binary edges in the edge detected image of the UGV
workspace. Results are shown in Fig. 1.14. This network-based robot navi-
gation is developed as the research platform for NCS and it is designed for
indoor environments. Therefore assuming that the system has enough control
over the ambient or artificial light inside the room, cameras are calibrated and
fixed, edge detection was a suitable vision feature extractor module to fit in the
whole integrated navigation system. The edge maps can be mathematically
described by:
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E(xi, yj) =
{

1, if (xi, yj) ∈ Γ
0, if (xi, yj) /∈ Γ for all (i, j) (1.2)

where E(x, y) is the image representing the edge map and Γ is the set of
boundary points for all obstacles in workspace.

Comparing (1.1) and (1.2), we achieved perfect data interfacing between
information processing (edge detection) and motion planning (HPF) module
as the output of the edge detection module is directly fed to the HPF planner
without any preprocessing.

(3) Path Tracking Using Quadratic Curve Fitting Controller

A quadratic curve fitting path tracking controller is implemented as the mo-
tion controller for the UGV to traverse the path from source to the destination
point after path planning using HPF is done. The basic principle of this control
algorithm, as explained in [45] by Yoshizawa et al., is that a reference point
is moved along a desired path so that the length between the reference point
and the UGV is kept at some distance (d0). Control (velocity) commands–
speed (v, in cm/s) and turn rate (ω, in rad/s)–are generated for the UGV to
reach that reference position from the current position. This algorithm runs
in a feedback loop until the UGV reaches its destination point tracking the
reference path generated (Fig. 1.15).

The reference point needed for the path tracking algorithm to reach the
destination is chosen by looking at the next negative gradient point of the
HPF map. As we know, negative gradient following will lead the mobile robot
towards the destination avoiding the obstacles according to the property of
the HPF map.

Fig. 1.15. Path tracking control using quadratic curve
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(4) Network Delay

As we have been talking about network delay in the NCS, Fig. 1.16 shows the
typical network delay graph observed in iSpace operation.

For network delay compensation, we used the gain scheduler middleware
technique introduced by Chow and Tipsuwan [36], [37]. GSM methodology
uses middleware to modify the output of an existing controller based on a gain
scheduling algorithm with respect to the current network traffic conditions.
The overall GSM operations for networked control and tele-operation can be
summarized as follows [36], [37]. The structure is as shown in Fig. 1.11.

(i) The feedback preprocessor waits for the feedback data from the remote
system. Once the feedback data arrives, the preprocessor processes it using
the current values of network variables and passes the preprocessed data
to the controller.

(ii) The controller computes the control signals and sends them to the gain
scheduler.

(iii) The gain scheduler modifies the controller output based on the current
values of network variables and sends the updated control signals to the
remote system.

Thus, GSM takes care of network delay compensation satisfactorily.

Fig. 1.16. Actual network delay
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Fig. 1.17. Navigation results of the networked control navigation system for differ-
ent environmental patterns. White line is the ideal path and dark line is the actual
path traversed by the robot.
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Fig. 1.18. Mean median and max distance error as a function of network delay for
iSpace

The choice of individual modules to build the NCS required for indoor
robot navigation was done carefully by looking at the data compatibility,
environment details, and application requirements. Fig. 1.17 shows some of
the experimental results using the NCS structure with edge detection and
HPF for UGV navigation in ADAC lab. Fig. 1.18 shows the distance error
graph as a function of average network delay for the same experiments. The
distance error is the error between the robot’s actual navigation path and the
ideal path it should have taken with no delays.

Thus, we observe that iSpace, being one form of NCS, the choice of different
components, integration of components, and network delay alleviation are
important aspects of the system building. These parameters and properties
decide the efficiency and operability of the NCS.
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1.5 Conclusions

When a traditional feedback control system is closed via a communication
channel, which may be shared with other nodes outside the control sys-
tem, the control system is called a networked control system (NCS). Some
of the many advantages of NCS is remote operability, scalability, global fu-
sion of data, globally optimal solutions, etc. NCS can be broadly categorized,
depending upon the multi-actuator and multi-sensor structure, as a shared
network system and remote control system. It can also be categorized as a
time-sensitive/real-time control system and a non-real-time/time-insensitive
control system. Human intervention in the feedback loop of the NCS makes
it a human supervisory controller having applications like remote operation,
remote surgery, etc. On the other hand, autonomous NCS takes the human
operator out of the feedback loop and only task- or system configuration-
related inputs from human users are accepted, putting all the feedback data
directly into the network controller.

NCS is a multidisciplinary research field affiliated with sensor fusion, data
processing, control theory, computer networking, communication, security,
etc. This leads to research into all fields separately and also poses the challenge
of integrating all the modules efficiently. Systems software architectures are
developed to design the system on the abstract level, modularize the system
such that it becomes scalable and flexible.

There are issues to be considered for QoS of NCS. Network delay, stability,
bandwidth allocation, scheduling, modularizing, integration of the modules
are some of the key issues considered by the research community to develop
an efficient, fast and reliable NCS.

However, NCS has a lot of potential applications like space explorations,
terrestrial exploration, factory automation, remote diagnostic/troubleshooting,
hazardous environments, experimental facilities, domestic robots navigation,
automobiles, etc.
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19. Léchevin N, Rabbath CA, Tsourdos A, White BA (2005) A causal discrete-time
estimator-predictor for unicycle trajectory tracking. In: Proceedings of the 44th
IEEE Conference on Decision and Control, and European Control Conference,
Seville, Spain, 2658–2663

20. Leung WLD, Vanijjirattikhan R, Li Z, Xu L, Richards T, Ayhan B, Chow
M-Y (2005) Intelligent space with time-sensitive application. In: Proceedings
IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Monterey, CA, 1413–1418

21. Lian F-L, Moyne J, Tilbury D (2002) Network design consideration for dis-
tributed control systems. IEEE Transactions on Control Systems Technology
10(2):297–307

22. Liberatore V (2006) Networked control systems and internet robotics. [Online
Document] available http://vorlon.case.edu/∼vxl11/NetBots/

23. Liberatore V (2006) Integrated play-back, sensing, and networked control. In:
Proceedings of 25th IEEE Conference on Computer Communication, Barcelona,
Catalunya, Spain, 1–12

24. Li Z, Chow M-Y (2005) Adaptive multiple sampling rate scheduling of real-
time networked supervisory control system-Part I. In: Proceedings of the IEEE
Industrial Electronics Conference, Raleigh, NC, 4605–4609

25. Li Z, Chow M-Y (2005) Adaptive multiple sampling rate scheduling of real-
time networked supervisory control system-Part II. In: Proceedings of the IEEE
Industrial Electronics Conference, Raleigh, NC, Seville, Spain, 4615–4620

26. Litz L, Gabel O, Solihin I (2005) NCS-controllers for ambient intelligence
networks-control performance versus control effort. In: Proceedings of the 44th
IEEE Conference on Decision and Control, and European Control Conference,
Seville, Spain, 1571–1576

27. Mariottini GL, Pappas G, Prattichizzo D, Daniilidis K (2005) Vision-based
localization of leader-follower formations. In: Proceedings of the 44th IEEE
Conference on Decision and Control, and European Control Conference, Seville,
Spain, 635–640

28. Olariu S, Xu Q (2005) Information assurance in wireless sensor networks. In:
Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium, Denver, CO

29. Park S, Kim JW, Lee K, Shin K-Y, Kim D (2006) Embedded sensor net-
worked operating system. In: Proceedings of Ninth IEEE International Sympo-
sium on Object and Component-Oriented Real-Time Distributed Computing,
Gyeongju, Korea, 117–124

30. Park S, Kim JW, Shin K-Y, Kim D (2006) A nano operating system for wire-
less sensor networks. In: Proceedings of the 8th International Conference on
Advanced Communication Technology, Phoenix Park, Korea, 1:345–348

31. Rathinam S, Zu K, Soghikian A, Sengupta R (2005) Vision based following
of locally linear structures using an unmanned aerial vehicle. In: Proceedings



1 Overview of Networked Control Systems 23

of the 44th IEEE Conference on Decision and Control, and European Control
Conference, Seville, Spain, 6085–6090

32. Saeed IAK, Afzulpurkar NV (2005) Real time, dynamic target tracking using
image motion. In: Proceedings IEEE International Conference on Mechatronics,
Taipei, Taiwan, 241–246

33. Sheridan TB (1992) Telerobotics, automation, and human supervisory control.
The MIT Press, Cambridge, MA

34. Tanner NA, Niemeyer G (2005) Improving perception in time delayed teleop-
eration. In: Proceedings of the IEEE International Conference on Robotics and
Automation, Barcelona, Spain, 354–359

35. Tavassoli B, Maralani PJ (2005) Robust design of networked control systems
with randomly varying delays and packet losses. In: Proceedings of the 44th
IEEE Conference on Decision and Control, and European Control Conference,
Seville, Spain, 1601–1606

36. Tipsuwan Y, Chow M-Y (2004) Gain scheduler middleware: a methodology
to enable existing controllers for networked control and tele-operation–Part I:
networked control. IEEE Transactions on Industrial Electronics 51(6):1218–
1227

37. Tipsuwan Y, Chow M-Y (2004) Gain scheduler middleware: A methodology
to enable existing controllers for networked control and teleoperation–Part II:
teleoperations. IEEE Transactions on Industrial Electronics 51(6):1228–1237

38. Tisdale J, Ryan A, Zennaro M, Xiao X, Caveney D, Rathinam S, Hedrick JK,
Sengupta R (2006) The software architecture of the Berkeley UAV platform. In:
Proceedings IEEE International Conference on Control Applications, Munich,
Germany, 1420–1425

39. Velasco M, Fuertes JM, Lin C, Marti P, Brandt S (2004) A control approach to
bandwidth management in networked control systems. In: Proceedings of the
30th Annual Conference of IEEE Industrial Electronics Society, Busan, South
Korea, 3:2343–2348

40. Vieira MAM, Coelho CN Jr, da Silva DC Jr, da Mata JM (2003) Survey on
wireless sensor network devices. In: Proceedings of IEEE Conference on Emerg-
ing Technologies and Factory Automation, Lisbon, Portugal, 1:537–544

41. Walsh GC, Hong Y (2001) Scheduling of networked control systems. IEEE
Control Systems Magazine 21(1):57–65

42. Walsh GC, Hong Y, Bushnell LG (2002) Stability analysis of networked control
systems. IEEE Transactions on Control Systems Technology 10(3):438–446

43. Wang C, Wang Y (2004) Design networked control systems via time-varying
delay compensation approach. In: Proceedings of the Fifth World Congress on
Intelligent Control and Automation, Hangzhou, P. R. China, 2:1371–1375

44. Yamasaki K, Ohtsuki T (2005) Design of energy-efficient wireless sensor net-
works with censoring, on-off, and censoring and on-off sensors based on mutual
information. In: Proceedings of the IEEE 61st Vehicular Technology Confer-
ence, Stockholm, Sweden, 2:1312–1316

45. Yoshizawa K, Hashimoto H, Wada M, Mori SM (1996) Path tracking control
of mobile robots using a quadratic curve. In: Proceedings of IEEE Intelligent
Vehicles Symposium, Tokyo, Japan, 58–63

46. Zhuzheng Y, Maying Y (2004) MFC-based control methodology in network
control system. In: Proceedings of Fifth World Congress on Intelligent Control
and Automation, Hangzhou, P. R. China, 2:1361–1365



2

Overview of Agent-based Control and
Management for NCS

Fei-Yue Wang

Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China
The University of Arizona, Tucson, AZ, USA
feiyue@sie.arizona.edu

Abstract. Every breakthrough in technology has brought a milestone change
or paradigm shift in automatic control. As electricity evolves into connectivity
and we are at the edge of a connected world, what would be the corresponding
changes in automation? This is the focus of discussion in this chapter. We ar-
gue and call for a paradigm shift from control algorithms to control agents so
that agent-based control can be established as the new control mechanism for
operation and management of networked devices and systems. The motivation
is to transform “code on demand” into “control on demand” and provide a
platform for designing and building low cost but high performance networked
equipment in the age of connectivity. Issues related to this vision and real-
world applications are addressed in the chapter based on our previous work
in this direction.

Keywords. Agent-based control, control on demand, networked systems,
fuzzy logic based control systems, neuro-fuzzy networks.

2.1 Introduction

The idea of control can be traced back to the origin of human civilization,
but control as an independent scientific field did not begin until late 1940s
when N. Wiener published his classic book on control and coined the term
cybernetics for this field [1]. Before Wiener’s work, the practice of control was
geared toward specific problems and applications, its studies was ad hoc and
normally considered as particular problem solving in mechanics or applied
mathematics.

World War II and the space exploration afterwards provide the thrust for
a full-fledged development of automatic control, and T. S. Tsien’s Engineering
Cybernetics [2] marked the true beginning of modern control for real-world
applications. Today, both as a field in science and an area in technology,
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automatic control or automation has become an indispensable part of the
modern society.

According to Friedland [3], we may call the period from 1868 to the early
1900s the primitive period of automatic control. It is standard to call the
period from then until 1960 the classical period, and the period from 1960
through present times the modern period [4]. During those periods, our soci-
ety went from agricultural, mechanical or steam engine, electrical, electronic,
to computer ages, while our control theory and applications experienced the
changes from ad hoc applied mathematical problems, frequency-domain de-
sign, state space approach, and discrete event and hybrid dynamic systems,
to intelligent control algorithms.

With no exception, every breakthrough in technology has caused a mile-
stone change or paradigm shift in automatic control. Now we have entered
the age of a networked society, people are expecting and experiencing a new
connected lifestyle in a connected world where you can “compute anywhere,
connect anything.” What would be the corresponding milestone change or
paradigm shift for automatic control? To be specific, what will we design and
use to control networked devices and systems in the new age?

In this chapter, we call for a paradigm shift toward agent-based control
(ABC) for networked systems [5]–[14]. Our basic idea is to go from “code on
demand” in programming to “control on demand” in automation, and trans-
form and “liberate” dedicated control algorithms within controlled devices to
mobile control agents over interconnected networks. We believe agent-based
computing and control will be the mechanism for future automation and could
provide a foundation for developing next-generation control theory and appli-
cation in the age of a connected world. Note that our discussion in the sequel
is based exclusively on our own previous work.

2.2 From Electricity to Connectivity: Why Agent-based
Control and Management for Networked Systems

Over the last century, electricity has changed our world, and automatic control
has played a critical and significant role in this process of change. Now comes
connectivity, and we know it has started and will continue to change our
world. What would automatic control do in response this time?

In daily life, the availability of various low cost and reliable electrical ap-
pliances turned electricity from limited industrial use to infinite household
applications, and consequently changed our lifestyle. We depend on electricity
everywhere and all the time now. Today, the development of various network-
enabled devices, or “net appliances,” will turn the connectivity provided by
the Internet from its currently limited use in the workplace to infinite appli-
cations in homes and everywhere in the near future, thus leading us to the
true Connected Lifestyle in a Connected World.
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Many network-enabled devices are already available on the market and in
daily life now. The central issue to be addressed here is how to develop intelli-
gent networked systems with low cost but reliable and with high performance.
Are we going to use the traditional control methods through incremental but
small modification and improvement? Or do we need some “revolutionary”
changes in our control and management for networked systems, or at least a
paradigm shift in the mechanism and implementation of automatic control?

In the age of electrical and microchip industries, various control algorithms
have been developed to run industrial and household devices, many modeling
and synthesis methods, from linear to nonlinear, deterministic to stochastic,
have been established for the design of such algorithms. A control algorithm
for real execution is always designed as an integral part of a device, it resides
and functions within the device, and once out of a device, it becomes “lifeless”
or “meaningless.” Normally, as the performance requirement increases, the
corresponding complexity and cost of a control algorithm will increase too.
For example, to make a network-enabled refrigerator behave intelligently with
enhanced functionalities, a sophisticated and complicated control algorithm
demanding more memory space and more processing power, and thus high
cost, must be developed and implemented.

In the era of Internet and connected world, the connectivity and mobility
provided by the Internet offer us an opportunity to control network-enabled
devices with a new technology, i.e., mobile agent-based control method. In this
method, a control algorithm is decomposed into many simple task-orientated
control agents distributed over a network, normally a wide area one. Control
agents that can be deployed and replaced over the network as operating con-
ditions vary will run network-enabled devices. In this way, a network-enabled
device can operate on a “control-on-demand” basis, i.e., it will need to host
only the operating agents, not all possible agents that are needed for its overall
operation. This is similar to the idea of “code-on-demand” in the mobile agent
technology, which has been successfully used in many areas [5]–[14]. There-
fore, the memory space and processing power requirement for agent-controlled
network-enabled devices will be less than those operated by traditional control
algorithms. This is significant because network-enabled devices are normally
embedded systems for which memory space and processing power are key fac-
tors in determining their cost. Since manufacturers or service providers can
develop and maintain control agents over the network efficiently, mobile agent-
based control can lead to low cost but reliable and intelligent network-enabled
devices for end-users or consumers. This is the foundation for the agent-based
control theory.

One may naturally ask what will happen to a network-enabled device
when its network is disconnected or not working. When the electricity is not
available, one has to use candles instead of lights, i.e., back to the pre-electrical
time. Similarly, when the connectivity is not available, one will have a network-
enabled device operated by its current or “default” control agents with limited
functionality and performance, back to the electrical age from the network
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era. In this case, instead of an intelligent device, you would have a dumb
but working device. In other words, whenever the connectivity is available,
network-enabled devices can demonstrate intelligent and high performance.
Without the connectivity, they would behave like the conventional isolated
devices in the electrical age. Therefore, the connectivity to network-enabled
devices is like the electricity to conventional devices.

We believe the step from control algorithms to control agents is a natu-
ral development of control engineering in the Internet era and the connected
world. It would make control become an independent entity instead of an affil-
iated function in system design. The development of a theoretical framework
for agent-based control systems would be significant in advancing knowledge
in control engineering from the network and information technology aspect. It
also has a much broader and significant impact on many real-world industrial
and household applications, especially for home automation systems, traffic
control systems, vehicle electronic systems or telematics, etc., where real-time
requirements are not extremely demanding, systems have a long “resting” or
idle period, and network connectivity is available or emerging.

Last but not least, an additional advantage of utilizing agent-based control
is the reduced demand for upgrading than using conventional control algo-
rithms. As will become obvious from the hosting mechanism for agents, there
is no need for upgrading as long as the largest agents (in terms of memory
space and computing power requirements) can be hosted by the device.

In view of those advantages, as electricity evolves into connectivity, we
should go from control algorithms to control agents.

2.3 Hosting Mechanism and System Architecture for
ABC

The operating mechanism of agent-based control is illustrated in Fig. 2.1 in
comparison with that of traditional control systems. In a traditional control
system, a control algorithm is constructed as an integral part of each isolated
device to be controlled. In an agent-based control system, the operation of
a network-enabled device is carried out by control agents distributed and
moving over networks.

Fig. 2.2 details the hosting mechanism for control agents. First, a number
of “default control agents” reside in a device to ensure its basic operation
and performance in the case that connectivity is not available. Second, the
device hosts a number of “executing control agents” which are “optimal”
for its operation under the current situation. In general, the control process
performed by the executing agents can be divided into three steps as follows,

(1) situation assessment,
(2) arbitration, and
(3) control fusion.
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Fig. 2.1. Control agents vs control algorithms: the operating mechanism

The function of situation assessment is to classify the current external
and internal system status into particular cases upon which control agents
can make decision on their actions. Executing control agents will compete
for the right to make the decision for a particular case. An arbitrator will
determine which executing control agents are appropriate to participate in
the decision process. If only one control agent is selected by the arbitrator,
that agent will control the device on behalf of all executing control agents. If
multiple agents are selected, they will make their individual decisions and a
control fusion algorithm will combine those decisions into a single one for the
control of the network-enabled device. The arbitrator also decides whether
some executing agents should retire and be replaced by new control agents.
New control agents are located outside the device at a remote global control
agent center and are deployed by a regional control agent dispatcher upon
request by some arbitrator. Both executing and default control agents can also
be recalled directly through the network by the remote global control agent
center. Simple and effective algorithms for situation assessment, arbitration,
and control fusion are key issues for the success of agent-based control systems.
In our previous work, we have used a fuzzy logic approach to address those



30 F.-Y. Wang

Default agents

Executing agents

Default agents

Executing agents

Local Devices

Networks

Feedback

Feedback Feedback

Feedback

Control Fusion

Local Device Local Device

Control Fusion

AgentsControlRemote

. . .

. . .

Situation Assessment

Arbitration

Networks

Fig. 2.2. The hosting mechanism for agent-based control

problems [15]–[26], where control behavior programs can be considered as
earlier version of control agents.

To ensure a coherent control and communication mechanism among con-
trol agents, we must integrate and coordinate their activities for required
function and performance. To this end, the hierarchical architecture devel-
oped for intelligent control systems [5] is utilized to divide an agent-based
control system into three levels of organization, coordination, and execution
for its control agents, as indicated in Fig. 2.3. In general, the function of each
of the three levels can be specified briefly as follows.

Agent Organization Level: This level mainly performs reasoning and plan-
ning for task sequences and organizes control agents to achieve specified goals.
It also develops, maintains, and trains control agents, and provides proto-
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Fig. 2.3. Three levels of hierarchical agent-based control systems – organization,
coordination, and execution

cols, algorithms, knowledge bases and databases for agent communication,
decision-making, and learning. Methods developed in artificial intelligence,
organization theory, and intelligent systems can be utilized here.

Agent Coordination Level: This level is the interface between the organiza-
tion and execution levels. Generally, it consists of a dispatcher and a number
of coordinators. The dispatcher receives control agents from the organization
level and deploys control agents to appropriate coordinators through wide
area networks in a “control-on-demand” basis. A coordinator is connected
to several network-enabled devices through local area networks and will be
responsible for downloading control agents to devices and enabling the possi-
ble collaboration of those agents. Normally, the dispatcher and coordinators
are located in different geographical places and connected through wide area
networks, the dispatcher is close to the remote center, and the coordinators
are close to the network-enabled devices. Methods developed in operations re-
search, such as dynamic programming, task allocation, event scheduling, and
resource sharing should be applied at this level.

Agent Execution Level: This level consists of embedded hardware and soft-
ware units for deploying, replacing, hosting, and running control agents. Gen-
erally, this level is distributed among many LAN linked workplaces that are
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connected by wide area networks. Methods used in this level are mainly from
control systems and computational intelligence.

The corresponding system architecture of agent-based control for operat-
ing and managing network-enabled devices in a distributed environment is
given in Fig. 2.4. Clearly, supporting networks for such operations involve
multiple types of networks, such as wide area networks, local area networks,
and sometimes ad hoc mobile networks.

As an example, consider the operation and management of network-
enabled intelligent household appliances through agent-based control. The
appliance manufacturer will establish a global control agent center (GCAC)
to develop and maintain various control agents for intelligent appliances. The
GCAC is connected to several regional control agent dispatchers (RCAD) via
wide area networks. Each RCAD maintains a control agent repository and
is responsible for dispatching control agents to millions of intelligent appli-
ances at thousands of households in a region. At each household, a gateway is
responsible for downloading control agents from a wide area network into in-

Gateway
Coordinator

Network NetworkNetwork

LAN LAN

Network Network Network
Device

RCAD RCAD

RCAD

GCAC

RCAD

Gateway
Coordinator Coordinator

Gateway

. . . . . .

WAN WAN

Device Device Device DeviceDevice

. . . . . .

Fig. 2.4. Architecture of agent-based control for networked devices and systems
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telligent appliances through a local area network, and uploading information
or requests from intelligent appliances to the RCAD. Each household also
has a control agent coordinator for conducting cooperative controls among
intelligent appliances or even within a single appliance [58].

This mechanism will enable us to develop region-specific, household-
specific, weather-specific, or application-specific intelligent appliances from
initially mass-produced uniform appliances, for the purpose of energy effi-
ciency or other high performance considerations. For example, the same ap-
pliances at neighboring houses may behave quite differently later since local
environments and user habits are different and therefore very different control
agents might be utilized by the neighboring houses eventually.

2.4 Design Principle for Networked Control Systems:
Local Simple, Remote Complex (LSRC)

The smartness, efficiency, and performance of control agents can be greatly
enhanced by the design principle for networked control systems: local sim-
ple and remote complex (LSRC). The idea is straightforward: find a way to
represent a control agent in two different but somehow equivalent forms, one
is simple and can be implemented by local devices at low cost with limited
memory and computing power, and another is complex, of high cost and can
be used at remote sites with complex machines and sophisticated algorithms.
In this way, through the connectivity provided by networks, a control agent
of simple form working in a local device can travel to some remote site with
related data or experience after a period of task execution, and then trans-
form itself into its equivalent complex form and start to learn or improve its
task skills by using remote complex algorithms and the powerful computing
facility there. After learning and performance enhancement, the control agent
transforms itself back into its simple form suitable for low cost implementation
and then travels back to the local device as a renewed agent.

This is very similar to the process of training human subjects, such as
local factory process or machine operators, at some off site or remote schools
for improved ability, enhanced skill, and better performance.

How to achieve this goal and implement the design principle of “local sim-
ply, remote complex” for networked control systems? A simple but effective
way of doing this is to use the concept and algorithms of neuro-fuzzy net-
works developed by our group in the early 1990s [15]–[17]. Fig. 2.5 presents
the structure of neuro-fuzzy networks consisting of three types of subnets:
pattern recognition networks, fuzzy reasoning networks, and control synthesis
networks.

A neuro-fuzzy network is constructed directly from the set of decision rules
used in fuzzy control systems. The uniqueness of these kinds of networks is
that they are equivalent to their original fuzzy control systems from which
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they are built. In other words, one is able to recover the rule structure, mem-
bership functions, logic operators for fuzzy reasoning used in the original fuzzy
systems. However, the complexity of the constructed neuro-fuzzy networks is
much higher than that of the source fuzzy control systems. Since it is much
easier and more cost effective to implement a set of fuzzy rules than a set
of sub neural networks, we can use simple hardware to realize fuzzy control
systems at local devices or systems, and complex machines to achieve corre-
sponding neuro-fuzzy networks. This provides a mechanism for the realization
of “local simple, remote complex” design principle for agent-based control of
networked devices and systems.

Many methods of combining neural networks and fuzzy logic have been
proposed in the last two decades, but our neuro-fuzzy networks are different
from others in their preservation of original structures, procedures, and pa-
rameters of fuzzy logic during the combination and transformation. In our
approach, we can go from fuzzy logic to neural networks and vice versa, in-
stead of one way to neural networks with no return to fuzzy logic as in many
other methods. The price for this equivalence is paid in terms of the extra lay-
ers in the network structure, the extra number of nodes in network processing,
and the additional complexity of corresponding learning algorithms. However,
those extras are justified by the availability of powerful computing capacity at
the remote sites. Therefore, we can achieve high performance and intelligent
networked devices and systems with no additional cost to users and reason-
able extra burden to manufacturers or service providers. Note that extra cost



2 Overview of Agent-based Control and Management for NCS 35

might be easily recovered by manufactures or service providers through some
value-added services. Actually, this could become a potential avenue for new
profits.

The original motivation for our neuro-fuzzy networks was to construct
neural networks using linguistic knowledge instead of digital information, and
build knowledge structure into artificial neural networks so those networks
are no longer like black boxes but more like biological neural networks where
different regions have different processing capacities and distinctive functions
[15]–[17].

In a sense, the function of rule-based fuzzy control systems is similar to that
of providing lectures, manual, or verbal instructions to train new operators for
assembly lines or machining processes. This will ensure that operators know
how to conduct their job safely and with limited performance. To improve
their skills and achieve better performance, operators must further learn with
their brains, i.e., their biological neural networks, based on their job experience
and knowledge bases. Clearly, the function of this human learning process is
similar to that of our neuro-fuzzy networks.

This comparison offers us the confidence to apply neuro-fuzzy networks
to adaptive and intelligent controls. For traditional adaptive control, a prob-
lem or concern always exists regarding the beginning and transient period
of the execution. In other words, how can we jump start the adaptive con-
trol mechanism without the risk of breaking the system or deteriorating its
performance significantly in the beginning or during the transition? For a
neuro-fuzzy network that can easily be constructed from ad hoc and heuristic
knowledge in linguistic forms without invoking analytic models (which are
normally unknown and need to be learnt during the process of adaptation),
its initial performance is safe but not optimal since its behaviors are almost
identical to that of the original rule-based fuzzy control system. Therefore,
we do not need to worry about the safety of using neuro-fuzzy networks for
adaptive control or other kinds of intelligent control. Clearly, this feature of
neuro-fuzzy networks can be extended to control agents in their implementa-
tion so that their initial behaviors are not optimal but safe and reasonable,
thus providing a time period so that learning and performance improvement
can be conducted as data and experiences are gained during the process of
their task execution.

2.5 Modular Construction and Learning Algorithms of
Neuro-fuzzy Networks for LSRC Implementation

This section describes briefly network construction and learning algorithms of
neuro-fuzzy networks for “local simple, remote complex” agent-based control.
Most of the materials are from our previous work presented in [17].
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Procedure of Fuzzy Logic Control Systems
We will use a fuzzy logic based control system (FLCS) to represent the
decision-making mechanism for a control agent. As in Fig. 2.6, an FLCS con-
sists of five major parts: a set of fuzzy linguistic variables that describe sig-
nal patterns and control actions, a mechanism that associates crisp values of
signals to linguistic variables (fuzzification), a knowledge base that specifies
decision rules in terms of linguistic variables (IF-THEN rules), an inference
engine for fuzzy reasoning that determines fuzzy control actions based on the
knowledge base, and an algorithm that converts a fuzzy control action into
a control action of crisp value (defuzzification). The detailed procedure of
conducting fuzzy logic based controls is described as follows.

Consider a process monitored through a signal vector s with m readings,

s = (s1, s2, . . . , sm),

and driven by a control vector u with n components,

u = (u1, u2, . . . , un).

Each of the sensor readings and control components is described by a set
of linguistic terms, namely,

Ai = {S1
i , S

2
i , . . . , S

pi

i } and Bj = {U1
j , U

2
j , . . . , U

qj

j }

for sj and uj , i = 1, . . . ,m, j = 1, . . . , n, respectively. Association of a partic-
ular value x of si or uj with a linguistic term Z in Ai or Bj is characterized
by the concept of membership function in fuzzy set theory, denoted by μz(x),
where μz(x) : X → [0, 1] and X is the universe of discourse of si or uj . The

Fuzzy Membership Functions

Fuzzy Reasoning

Rule Base

Environment

Actuators

Defuzzification

Sensors

Fuzzification

Fig. 2.6. Fuzzy logic based control systems (FLCS)
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knowledge base of the FLCS consists of a number of linguistic IF-THEN de-
cision rules. Assume that the knowledge base has R control rules,

Rule 1: IF s1 is Sk11
1 and . . . and sm is Skm1

m ,

THEN u1 is U c11
1 and . . . and un is U cn1

n ,

...

Rule R : IF s1 is Sk1R
1 and . . . and sm is SkmR

m ,

THEN u1 is U c1R
1 and . . . and un is U cnR

n ,

where Skir
i ∈ Ai and U

cjr

j ∈ Bj for r = 1, . . . , R, i = 1, . . . ,m and j = 1, . . . , n.
The preconditions of rule r form a cross product of fuzzy sets Sk1r

1 × · · · ×
Skmr

m and the corresponding consequence is the union of n independent fuzzy
sets U c1r

1 + · · ·+U cnr
n . Thus the rule can be represented as a fuzzy implication:

Rule r : Sk1r
1 × · · · × Skmr

m → U c1r
1 + · · ·+ U cnr

n .

Given a specific sensor reading s = (s1, s2, . . . , sm), the function of the in-
ference engine of the FLCS is to match the preconditions of R control rules
with the sensor reading and conduct fuzzy implication. Many approximate
reasoning methods have been developed for fuzzy inference (Mizumoto, 1988;
Lee, 1990). One of the most popular strategies is the maxmin compositional
rule of inference. The inference procedure of this method can be summarized
as follows.

• Firing Strength Calculation: The strength of firing rule r is calculated as

αr = μ
S

k1r
1

(S1) ∧ μ
S

k2r
2

(S2) ∧ · · · ∧ μSkmr
m

(Sm), r = 1, . . . , R, (2.1)

where ∧ is the conjunction (and) operator.
• Rule Consequence Deduction: The consequence of rule r for the jth control

component is determined by

μCr
j
(uj) = ar ∧ μ

U
cjr
j

(uj), j = 1, . . . , n, r = 1, . . . , R, (2.2)

where Cr
j is the fuzzy set for the jth control component according to rule

r.
• Resultant Control Generation: The resultant fuzzy set Cj for the jth con-

trol component is deduced from

μCj
(uj) = μc1

j
(uj) ∨ μc2

j
(uj) ∨ · · · ∨ μcR

j
(uj), j = 1, . . . , n, (2.3)

where ∨ is the disjunction (or) operator.

There are several different ways to perform the fuzzy implication by using
different operators for conjunction and disjunction operations.
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The inference process produces a fuzzy set for each of the control com-
ponents. Because a physical system must be driven by a non-fuzzy control
input, a method of defuzzificaton is needed to generate a crisp control value
that best represents the membership function of a fuzzy control action. Sev-
eral procedures have been proposed for tackling this problem. Among them,
center-of-area (COA) and weighted combination (WC) procedures are two of
the most commonly used. According to these two methods, the fuzzy control
Cj is defuzzified to a crisp value using the following methods.

• Center-of-Area Defuzzification: The strength of firing rule r is calculated
as

u∗
j =

∑nj

i=1 ujiμCj
(uji)∑nj

i=1 μCj
(uji)

, j = 1, . . . , n, (2.4)

where Uj = {uj1, . . . , ujnj
} is the discrete universe of discourse of uj .

• Weighted Combination Defuzzification:

u∗
j =

B∑
r=1

ωrju
∗
rj , j = 1, . . . , n, (2.5)

where

ωrj =

∑nj

i=1 μCr
j
(uji)∑R

r=1

∑nj

i=1 μCr
j
(uji)

, u∗
rj =

∑nj

i=1 ujiμCr
j
(uji)∑nj

i=1 μCr
j
(uji)

, (2.6)

respectively. Note that in the WC defuzzification, there is no need to cal-
culate the fuzzy resultant control, because the WC procedure has been
carried out for each individual rule and the final crisp control is a combi-
nation of individual defuzzifications weighted by the areas covered by the
corresponding membership functions.

To be specific, consider the popular cart-pole problem of controlling the
motion of the cart along a horizontal line so that the pole does not fall down
and eventually stands vertically; see Fig. 2.7. An Internet-based experimental
setup controlling this system had been developed in the middle of 1990s [68],
and now similar systems are widely used for lab experiments of networked
control systems over the world. For the purpose of control, a 9-rule fuzzy
control system is used. Letting s1 = θ, s2 = θ̇ and u be the control, these
control rules are,

Rule 1: If s1 is PO and s2 is PO then u is PL;
Rule 2: If s1 is PO and s2 is ZE then u is PM;
Rule 3: If s1 is PO and s2 is NE then u is ZE;
Rule 4: If s1 is ZE and s2 is PO then u is PS;
Rule 5: If s1 is ZE and s2 is ZE then u is ZE;
Rule 6: If s1 is ZE and s2 is NE then u is NS;
Rule 7: If s1 is NE and s2 is PO then u is ZE;
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(9 rules)

u = F
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Fuzzy controller
s  = 

s  = 

Fig. 2.7. Fuzzy logic based control for cart-pole problem

Rule 8: If s1 is NE and s2 is ZE then u is NM;
Rule 9: If s1 is NE and s2 is NE then u is NL.

Here we have A1 = A2 = {PO,ZE,NE} and B1 = {PL,PM,PS,ZE,NL,
NM,NS}.
Modular Construction of Neuro-fuzzy Networks
As indicated in Fig. 2.5, the structure of the neural network implementation
of FLCS consists of three modular subnets of distinctive functions.

The first network identifies patterns of input variables in terms of mem-
bership functions of linguistic terms; the second one conducts fuzzy reasoning
(conjunction) by calculating the strength of firing each of the decision rules;
and the third carries out the task of control synthesis by generating fuzzy
control action and then defuzzifying it. Although the three neural networks
are connected sequentially, it is important to point out that the construction
and training of these networks can be performed independently and simulta-
neously, and the decision-making procedure in an FLCS is fully preserved in
its network implementation. This will be clear from the following description.

Neural Subnets for Pattern Recognition. For each signal reading si, a neu-
ral network SNi is constructed to match its values with the linguistic terms in
the set of signal patterns Ai. In other words, the function of SNi is to calcu-
late membership functions μk

si
(x) for k = 1, . . . , pi, i = 1, . . . ,m. Fig. 2.8(a)

shows a three-layer SNi for this purpose. Initially, this network is trained
with the specified membership functions for terms in Ai. At this stage, net-
work SNi is not required to learn the memberships very accurately because
these specified membership functions are usually very subjective. Note that
if two sensor readings have an identical set of linguistic terms, they can use
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Fig. 2.8. Neural subnets for modular construction of neuro-fuzzy networks

the same subnet at the beginning. However, through network learning, the
membership functions of linguistic terms can be changed adaptively later for
better performance.

Neural Subnets for Fuzzy Reasoning. For each decision rule r in the knowl-
edge base of an FLCS, a subnet RNr, r = 1, . . . , R, is used to calculate the
firing strength of the rule. Thus, RNr is actually a network implementation of
the conjunction operator. Fig. 2.8(b) presents a three-layer RNr. By chang-
ing its weights, this network could implement S1, S2, S3, or other triangular
norms. Therefore the initial training of RNr can be carried out by using any
of these norms, or even their combinations, and the network can easily be
modified for new fuzzy reasoning by the use of learning algorithms. Clearly,
as long as every rule has the same number of linguistic terms in its precondi-
tion, we can choose the same fuzzy reasoning network for all the control rules
at the initial stage. Note no input or output scaling is needed for network RNr

because both its input and output range from 0 to 1.
Neural Subnets for Control Synthesis. Control synthesis is the process of

determining the final crisp control according to the firing strengths of rules
and membership functions of linguistic terms defined for control actions. It
involves steps of deducing consequences for individual rules, generating resul-
tant fuzzy control, and then converting it into a crisp value. There are two
ways to use neural networks to conduct control synthesis. The first one is to
develop an individual network for each control component, and the second is
to build a single network for all components. However, the actual construc-
tion of control synthesis networks is not trivial. There are several different
implementation schemes. The key issue in the network construction is how to
recover completely the membership functions of fuzzy control actions from a
network implementation. Here we present only one of the design paradigms.

Fig. 2.8(c) illustrates a two-layer neural network CNj for the synthesis of
control component uj , j = 1, . . . , n. The first layer is introduced for calculating
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fuzzy controls. In this layer, a neuron is created for each of the elements in the
universe of discourse Uj . Given the firing strengths of control rules, neuron
k produces the value of the membership function of the resultant control
at a specific ujk, 1 ≤ k ≤ nj . Note that we have used the S2 operator
for conjunction in rule consequence deduction and T3 for disjunction in the
resultant fuzzy controls [17]. Because the logic operations have been fixed,
there is no need for initial network training. The initial weights of network
CNj at this layer can be calculated from membership functions as

wjkr = μ
U

cjr
j

(ujk), k = 1, . . . , nj , (2.7)

while disjunction operator T3 is implemented by a linear activation function
f(x) = x, if 0 ≤ x ≤ 1; f(x) = 0, if x < 0; and f(x) = 1, if x > 1 [17].

The second layer carries out the task of defuzzification. Initial values of
weights in this layer depend on the defuzzification algorithm selected. How-
ever, if we assume

∑R
r=1 μCr

j
(ujk) ≤ 1 then COA and WC defuzzifications will

give us the same result. Therefore, we will consider only COA defuzzification.
In this case, weights of the second layer are given by

γjk = ujk/σj , σj =
nj∑

k=1

μjk, uj =
nj∑

k=1

γjkμjk, j = 1, . . . , n, (2.8)

where μjk is the value of neuron k at the first layer. These initial weights of
network CNj , j = 1, . . . , n, can be changed later by learning algorithms to
improve control performance. However, learning will only change the mem-
bership functions of control actions and the defuzzification algorithm, not the
logic operations involved in control synthesis.

Integration of Neural Subnets: Neuro-fuzzy Networks. Once modular sub-
nets SNi, RNr and CNj have been created, the final step toward a structured
neuro-fuzzy network is to connect those networks appropriately according to
the original FLCS. Fig. 2.9 presents the neuro-fuzzy network for the 9-rule
fuzzy controller described in the previous section. From its construction, it is
very clear that the whole computation process of the integrated neural net-
work can be divided into three stages: pattern recognition, fuzzy reasoning,
and control synthesis (Fig. 2.5), resulting in a functional interpretation for a
subnet and a structure of flow of knowledge thereof. Although the structured
neural network, designated as FCN, can be viewed as an ordinary multilayer
network with sensor readings as its input and control actions as its output,
the distinctive knowledge structure embedded within this network makes it
different from other neural network implementations of fuzzy logic controls.
Note that as a neural network, FCN is not a fully connected one. For example,
its subnet SNi is linked only to input node si and has no connection with other
input nodes (i.e., connection weights are zero), and subnet RNr is linked only
to one output node of subnet SNi.

As long as the original FLCS works reasonably well, no additional training
is required to put the structured neural network FCN to work. Because its
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Fig. 2.9. Neural subnets for modular construction of neuro-fuzzy networks

performance should be at least as good as the original FLCS from which
the network is constructed. Additional trainings and on-line learning by the
network, however, can improve its performance and thus lead to refinement
of the existing control rules and even generation of new rules for the original
FLCS. This is discussed in detail in the following section.

Rule Refinement by Back Propagation Training
Because the whole decision-making procedure of the FLCS is preserved in
network FCN, by breaking it up into subnets of pattern recognition, fuzzy
reasoning and control synthesis, the actual modification in membership func-
tions of sensor readings, operators of fuzzy reasoning, membership functions
of control actions, and methods of defuzzification can be recovered separately
from FCN. Therefore, the neural network implementation provides a mecha-
nism for the refinement of fuzzy logic based control systems, a problem that
has not been addressed effectively within the original context of fuzzy logic
controls. Furthermore, by augmenting the network with neurons of zero ini-
tial weights, new control rules can be produced through network training or
learning.

The back propagation learning algorithm developed for standard multi-
layer feedforward neural networks can easily be generalized to neuro-fuzzy
network FCN. As for multilayer neural networks, this will enable FCN to
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tune its weights to match a given set of optimal input/output pairs. To find
the training algorithms for FCN, we define the error function as

e =
1
2

n∑
j=1

(
ud

j − uj

)2 (2.9)

where ud
j is the jth component of a desired control. If we use (2.8) only

for the calculation of initial values of weights γjk the rules for updating the
weights of FCN are exactly the same as those for the standard multilayer
neural networks, except that weights between any two neurons with no direct
connection are always treated as zero. This will change the defuzzification
algorithm through training. On the other hand, if (2.8) is considered as the
definition of γjk, which implies no change in the defuzzification algorithm,
then the rule for updating weight wjkr in the first layer of CNj has to be
modified as

wjkr(t + 1) = wjkr(t) + ηαr(ud
j − uj)

(
γjk −

nj∑
l=1

μjlujl/σ
2
j

)
f ′(μjk) (2.10)

where f ′(x) = 1 when 0 < x < 1, f ′(x) = 0 otherwise; 0 < η < 1 is the
learning rate; and t represents the number of iteration steps in training. This
result can easily be obtained from gradient calculation. In this case, error term
δr backpropagated to the output neuron of RNr is found to be

δr =
n∑

j=1

(
ud

j − uj

) ∂uj

∂αr
,

∂uj

∂αr
=

nj∑
k=1

wjkr

(
γjk −

nj∑
l=1

μjlujl/σ
2
j

)
f ′(μjk).

(2.11)

After training has been completed, we can recover membership functions
and fuzzy conjunction operators by breaking up FCN into subnets of pattern
recognition, fuzzy reasoning, and control synthesis. Specifically, from SNi we
get the refined membership functions of signal patterns for si, and from RNr

the modified conjunction operator for rule r. Note that, after training, differ-
ent control rules would have different conjunction operators. To obtain the
updated membership functions of control actions from uj , we need to set only
one input neuron, say, αj , of CNj to 1, and all others to zero. In this way,
output values of neurons in the first layer of CNj present the new membership
function for control term U

Cjr

j . Like conjunction operators, a fuzzy control ac-
tion employed by two or more control rules could have different membership
functions in different rules after training.

Rule Generation by Network Augmentation
In many cases, the performance of an FLCS cannot be improved further unless
new control rules are added. Using network FCN, we can generate new rules
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automatically by augmenting FCN with neurons of zero initial weights. As
illustrated in Fig. 2.10, for a single new rule, this can be achieved by adding
an output neuron Snew

i to each subnet SNi, and a new fuzzy reasoning subnet
RNnew that takes Snew

i as its input neurons and a αnew as its output neuron.
These new neurons represent a new control rule in the form of

IF s1 is Snew
1 and . . . and sm is Snew

m

THEN u1 is Unew
1 and . . . and un is Unew

n

where Snew
i and Unew

j are new signal and control terms with unknown mem-
bership functions. Initially, all weights associated with these neurons are zero
or very small random numbers. Therefore, the new control rule has no or very
little effect in the computing process of the augmented network FCN. How-
ever, after training the augmented FCN with the algorithm described above,
weights associated with these neurons would take certain non-zero values.
Membership functions of the new signal patterns now can be obtained from
the output of neurons Snew

i , i = 1, . . . ,m, while the conjunction operator of
the new rule from the output of neuron αnew. The procedure to get member-
ship functions of the new fuzzy control actions Unew

j , j = 1, . . . , n, is the same
as the one used for the existing control terms. Clearly, multiple new rules can
be generated in the same way.

As proposed in [17], the generation of new rules can be carried out either
globally or locally. The global scheme is to update all weights of the augmented
network FCN simultaneously according to the training algorithm, while in the
local scheme, only the weights associated with the new neurons are modified
and all other weights remain unchanged. Because new weights can be viewed as
additional optimization variables, it is expected that the augmented network
will have better control performance. Although the global scheme would have
better results than the local one eventually, it may cause serious performance
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Fig. 2.10. Neural subnets for rule generation by network augmentation
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degradation during the initial training stage because it starts the training
process by driving the network away from a locally optimal stage. (Assume
that the original network has obtained at least locally optimal weights.) On
the other hand, the local learning method can at best achieve a locally optimal
performance for the augmented network. However, this method can result in
a smooth improvement during the training process without causing dramatic
changes in control performance. A preferred strategy is to combine the global
and local schemes, i.e., starting with the local one in the initial stage and
then switching to the global one gradually. A simple implementation of this
strategy can be accomplished by

w(t + 1) = w(t) + α(t)ηΔw(t) (2.12)

where w represents any weight that is not associated with the new neurons
Snew

i and α is the learning rate, and

α(t) =
{

0, t ≤ TL,
1− e−β(t−TL), t > TL,

where TL is the local learning period and β is the rate of introducing the
global scheme.

Real-time Learning from On-line Task Executions
A more realistic way to achieve real-time on-line learning for neuro-fuzzy net-
work FCN is through learning after each task execution. After all, learning
is only meaningful when a task is repetitive. This is especially appropriate
for FCN because it is expected that the network has a reasonable perfor-
mance without any training other than learning membership functions and
conjunction operators by small subnets at the very beginning.

We propose a learning scheme based on the idea of self-learning control
systems developed in automatic control [17]. To this end, we assume that the
process to be controlled has dynamics in the form

si+1 = P (s(i), u(i)), i = 0, 1, . . . ,K, (2.13)

during each task execution, where P represents an unknown dynamic equation
and control is determined by the neuro-fuzzy network u(i) = FCN(s(i)). The
objective of process control is to minimize the final error,

e =
1
2
‖sd − s(K)‖2,

where sd is the desired state of the process after K steps of execution.
Because the plant dynamics is unknown, a separate neural network NE,

called the plant emulator, is trained to behave like the plant before we conduct
learning after task execution for FCN. Training the emulator NE is similar to
plant identification in control theory, except that the plant identification here
is done automatically by the neural network capable of modeling nonlinear
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plants. Once the emulator NE is trained to match the plant dynamics P
closely, we use it for the purpose of learning from on-line task executions for
network FCN. Specifically we have

w(t + 1) = w(t)− η
∂e

∂w
= w(t) + η(sd − s(K))

∂s(K)
∂w

(2.14)

where w is any weight parameter of FCN, and gradient vectors are calculated
recursively by the following equations:

∂s(i)
∂w

=
∂NE
∂s

∂s(i− 1)
∂w

+
∂NE
∂u

∂FCN
∂w

∣∣∣∣
s=s(i−1),u=u(i−1)

,
∂s(0)
∂w

= 0.

Therefore, gradients to be calculated from neural networks are derivatives of
output with respect to input (∂NE/∂s and ∂NE/∂u) and weight (∂FCN/∂w),
respectively. The first gradient can be calculated very easily for any specific
network, while the second one can be found based on (2.10) and (2.11).

As discussed in the previous subsection, automatic rule generation can also
be implemented here through network augmentation by learning from on-line
task execution.

Note that both modular subnets and learning algorithms are some primi-
tive version of more efficient construction and algorithms for real applications.
Based on different task requirements and performance demands, we can con-
struct different neuro-fuzzy networks for fuzzy logic based control systems
at different levels of equivalence. Corresponding learning algorithms can be
developed accordingly [25].

2.6 Issues in Software, Middleware, and Hardware
Platforms

Software Platforms
The system architecture for agent-based control consists of three layers that
are Global Control Agent Center (GCAC), Regional Control Agent Dispatcher
(RCAD), and local Gateway and Coordinator (GC). The GCAC coordinates
RCADs to achieve global control agent management and to optimize the entire
system performance. To address the control agent management tasks, GCAC
features the following functions.

Control Agent Naming Service keeps track of control agent location
to facilitate inter-agent communication.

Control Agent Factory designs and creates control agents to implement
dynamic control intelligence.

Control Agent School trains and improves the performance of control
agents based on their specific task experiences, task requirements, and task
environments.

Control Agent Repository stores and maintains control agents.
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Performance Management monitors control agents and system run-
time situations and gauges their performances.

Task Dependency analyzes and decomposes the dependency relation-
ships existing among various control and service tasks as well provides basis
for failure analysis and recovery.

Resource Allocation manages system resource reservation and alloca-
tion mechanisms and implementation.

Interoperability and Legacy manages, facilitates and integrates exist-
ing out-of-date or heterogeneous control systems.

Quality of Service builds up negotiation mechanisms to guarantee soft
real-time requirements, and looks up failure causes and corresponding recovery
schemes based on service dependency analysis, failure recovery managements.

Security Service provides mobile agent mutual-trust mechanisms which
are the base of secured agent-based control systems.

System Management provides the general system management services.
Regional Control Agent Dispatcher coordinates the regional network

communications and implements control agents caching as well provide re-
gional control agents coordination functionality.

Local Gateway and Coordinator (LGC) functions as the single
integration-point for a range of agent-based services in local network envi-
ronment. It works not only as a network communication gateway but also the
coordinator of local control agents.

Due to the limitations of memory space and computing ability imposed on
practical embedded devices, it is infeasible to make them powerful enough to
host all possible control algorithms or control agents for that matter. Doing
this will increase both complexity and cost of embedded devices. The emer-
gence of mobile agents provides a novel way to address these problems, since
the mobile agent is a mobile object which can migrate from one network node
to another one with its code, data, and thread.

In our software platform for Agent-based Distributed Control Systems
(aDCS) [8], we combine mobile agents and CORBA to form a flexible system
software platform to achieve the goal of “control-on-demand” by dispatching
related agents to the controller according to particular demands of various
control scenarios. In this software platform, required control algorithms or
control parameters have been encapsulated into mobile agents that can mi-
grate from remote control center to the field controller or from one field con-
troller to another. This software platform benefits from the complementary
properties of mobile agents and CORBA communication infrastructure. On
one hand, the mobile agent expands the static object concept of CORBA, that
is, the object can move from one node to another one until its task is com-
pleted. The “dynamical adaptability” of mobile agents enables them to sense
their execution environments and react autonomously to changes. The asyn-
chronous and autonomous execution of mobile agents makes them suitable to
work in agile network environments. On the other hand, CORBA provides
mobile agents with necessary services: Naming Service keeps track of the lo-
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cation of mobile agents; Lifecycle Service defines services and conventions for
creating, deleting, copying and moving CORBA objects; Externalization Ser-
vice provides a standardized mechanism for mobile agents migration during
which the state of mobile agents can be recorded into or re-constructed from
a network data stream; and Security Service to guarantee the execution of
mobile agents. Furthermore, the adoption of CORBA as the underlining com-
munication infrastructure facilitates the integration of heterogeneous control
system and legacy control systems that could be non-mobile-agent-based or
even non-object-oriented.

Middleware Platforms and OSGi
Middleware support and the corresponding operating and service protocols
are critical for applications of agent-based control. Since the objective of
agent-based control systems is to deploy and maintain control agents that
will run network-enabled devices efficiently over the network, issues related
to protocols of manufacturing, delivery, and maintenance of control agents
become essential and must be addressed. Open Services Gateway Initiative
(OSGi), an open specification for the delivery of multiple services over wide
area networks to local networks and devices, provides a reasonable foundation
for further investigation. In the architecture of the OSGi model, the concept
of Services Gateways is proposed, which connect smart devices together and
enabling them to seamlessly communicate with each other or to receive a va-
riety of services from providers. A service gateway acts as a bridge between
an external network, typically the Internet, and a local network consisting
for example of Ethernet. It provides flexible interfaces and an environment
for service providers to deploy and maintain services to users at the end of
local networks. Therefore, the scenario considered by OSGi is almost identical
to that of agent-based control systems, and OSGi architecture and modules
can be directly applied to operate network-enabled devices with agent-based
control systems.

Another important issue is where to locate embedded servers for network-
enabled devices when dealing with more complicated tasks. To reduce addi-
tional cost, embedded servers generally reside in network-enabled devices with
limited computing ability and resources. Based on such hardware conditions,
some special requirements for embedded servers arise: small memory footprint,
high performance, platform independence, scalability, dynamic code-loading
capability etc. Now the approach to develop and deliver the software of em-
bedded servers becomes a problem to be solved. Based on the requirement,
Java or C++ will be the choices to construct embedded servers. To some
extent, an embedded server can be considered as an agent to control “con-
trol agents.” That means embedded servers will also be easily delivered like
other control agents. Network-enabled devices can download and install con-
trol agents (including embedded servers), and remove them when they are
no longer required. Like a control agent, embedded servers might migrate
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among network-enabled devices in the local network and get more flexibility
and scalability.

There are still some issues related to embedded environment formed by
network-enabled devices. First, embedded servers are intended to run on many
kinds of network-enabled devices whose different hardware features will affect
many aspects of control agent implementation. How can embedded servers
repel such difference to provide a common view to manufacturer or service
providers? A concise and consistent operation model provided by embedded
servers will be essential. It will simplify the deployment of control agents and
decouple the service’s specification from its implementations. A consistent
operation model helps control agent developers cope with scalability issue that
is significant. Consistent interfaces insure that the software components can be
mixed up and still result in a stable status. On the other hand, agent-based
control systems will have multiple real-world applications. The model also
guarantees application independency via defining common implementation
APIs, making it suitable for embedded servers of a variety of applications in
different markets.

Hardware Platforms
Development of Remote Configurable and Programmable Devices (RCPD)
and real-time Application Specific Operating Systems (ASOS) should be the
key issue for supporting hardware platforms of agent-based control. Pro-
grammable devices are a class of general-purpose chips that can be config-
ured for a wide variety of applications. The Field Programmable Gate Array
or FPGA, In-System Programmable or iSP, as they are more widely called,
are types of programmable device. FPGA, iSP, or similar devices can be pro-
grammed an unlimited number of times. Their main features include the fol-
lowing.

Ease of Design: Hardware Description Language (HDL) is used in the
design process, such as VHDL, Verilog, and ABEL.

Lower Development Cost: Since FPGAs and iSP are re-programmable,
designers can very easily and inexpensively modify their designs and imple-
mentation with no penalty.

Reduced Board Area: FPGAs or iSP offers a high level of integration.
Reconfigurable: When FPGA or iSP is used in a Reconfigurable Com-

puting Platform, it can be configured from within an application program and
triggered from outside through a network.

All those features make this kind of hardware technique ideal for imple-
menting agent-based control systems at the execution level. Over the last few
years we have developed a hardware platform for constructing mobile agent-
based Distributed Control Systems (aDCS), and developed applications in
process control and home automation based on this platform.

ASOS is the heart of RCPDs and agent-based control in general [27]–[29].
A systematic approach to constructing ASOS for different applications is still
under development. At this stage, our approach is first to build ASOS for a
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specific class of applications, such as vASOS for vehicular applications, hASOS
for home automation, rASOS for robotic systems, tASOS for traffic control,
iASOS for intelligent spaces, etc, and then to develop a common framework
and methodology for general ASOS.

2.7 Real-world Applications

Over the last one and half decades, several industrial applications have been
conducted based on the idea of ABC systems. However, at this early devel-
opment stage of agent-based control systems and due to the current network
speed constraint, ABC’s use is limited to problems where real-time demands
are important but easy to meet, and system operations allow frequent and long
communication over networks. The followings are some real-world examples.

A. Web-based Physical Control Experimental Systems [68]
Students can design control agents based on different control algorithms for
different operating situations, download them from a local web site to control
remote physical control experimental systems, such as an inverted pendulum,
and receive almost real-time data feedback and delayed visual feedback. An
aDCS was constructed for this system. This has been conducted in our pre-
vious work with a US NSF funded project WAVES (Web-based Audio/Video
Educational Systems) for combined research and curriculum development in
the area of systems dynamics and automatic control.

B. Internet-based Home Automation Systems [57]–[67]
Household appliances such as refrigerators, air conditioners, washing ma-
chines, and cameras are controllable via the Internet for security, convenience,
energy efficiency and cost management purposes. An integrated home server
(iHS) and a home application-specific operating system (hASOS) were con-
structed in this work. This has been developed based on previous work on
Internet refrigerators and air conditioners in a project funded by the Chinese
appliance manufacturer Kelon Electrical Group.

C. Network-based Traffic Control Systems [51]–[56]
Intersection traffic light controllers are connected through networks to a traffic
operation center (TOC) and different control agents are deployed to different
local traffic light controllers from the traffic operation center according to the
current traffic conditions and/or weather conditions. In this system, a traf-
fic control application-specific operating system (tASOS) and an agent-based
distributed and adaptive platform for transportation systems (aDAPTS) were
developed. This had been conducted in previous work on intelligent intersec-
tion signal and ramp control systems for integrated urban freeways and sur-
face streets, a US DOT funded research project over the last decade and a
recent funded project by the Knowledge Innovation Program of the Chinese
Academy of Sciences.
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D. Wireless Connected Vehicle Electronic Systems [45]–[50]
Vehicles are connected through wireless communications to a vehicle opera-
tion center (VOC) and different control agents are sent to different vehicles
by the vehicle operation center for safety warning, vehicle health monitoring,
repairing and maintenance services, emergence help, entertainment purposes,
and others. A vehicular application-specific operating system (vASOS) and
several other agent-based control and management systems were built in this
project. A prototype system was developed based on previous work on the
Lunar/Martian Robotic Vehicle Prototype Project funded by US NASA, the
AutoDig Systems for Wheel Loaders funded by Caterpillar, the autonomous
and intelligent vehicle project VISTA funded by the Arizona DOT, the in-
telligent vehicle/highway system project funded by US DOT, and a key 863
project on software development funded by the MOST and the Shandong
Province of China.

On the basis and experience from those projects, a recent project, called
intelligent agent spaces or iaSpace, for developing intelligent space application-
specific operating systems (iASOS) and related agent-based systems has
been launched. The purpose of this project is to construct a common soft-
ware/hardware platform for embedded applications encountered in intelligent
space research and development, such as in fixed spaces for labs, homes, offices,
and business settings, mobile spaces with vehicles, aircrafts, ships, trains, and
space objects, and mixed spaces on intersections, airports, harbors, stations,
and border crossings. Clearly, agent-based computing and control will be the
key techniques for future intelligent spaces, especially intelligent transporta-
tion spaces.

There are also several other applications in process control and automation
where the idea and concept of agent-based control were originated and for-
mulated [8], [9], and its potentials and usefulness will be continuously tested
and justified.

2.8 Concluding Remarks and Future Work

Our future work will be focused on developing a comprehensive framework
for agent-based control systems based on the new and emerging gateway in-
frastructure that connects network-enabled devices and systems together and
enables them to seamlessly communicate with each other or to receive a wide
variety of services from providers via the Internet or other networks in a
cost effective manner. This approach to control also has great potential in
operations and management of general complex systems. To this end, one
must address various important issues related to the theoretical foundation,
software and hardware requirements and platforms for agent-based control
systems. Specifically, efforts must be made in the following aspects.

A Theoretical Framework for Agent-based Control Systems. To
address issues related to system architecture, operation flow, agent construc-
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tion, communication protocol, cooperation strategy, agent assignment, task
scheduling, learning mechanism, etc.

A Software Platform for Agent-based Distributed Control Sys-
tems. To address issues related to programming, mobility, optimization, and
software environment of control agents in distributed environments over the
Internet.

A Hardware Platform for Remote Programmable and Config-
urable Devices. To address issues related to the hosting, manipulation, and
hardware environment of control agents in network-enabled devices and sys-
tems.

The theoretical framework can be established based on mobile agent theo-
ries developed in distributed systems, especially distributed AI methods such
as behavior control or programming proposed for mobile robots, and intelli-
gent control systems established for hierarchical systems.

The software and hardware platforms can be developed based on the ser-
vice gateway infrastructure specified in OSGi, a first protocol designed specif-
ically for delivering services over the Internet. They are the keys to the techni-
cal development and application of agent-based control systems. Since OSGi
is a Java-based protocol and has specific requirements for accessing network-
enabled devices, it can be used to implement control agents in distributed
environments effectively and easily. In our previous work, the software and
hardware platforms consist of two prototypes for an integrated gateway server
that is OSGi-compatible and a gateway operating system based on real-time
Linux. This will be the foundation for future development of software and
hardware platforms for constructing agent-based control systems.

In conclusion, agent-based control provides a mechanism for a paradigm
shift in intelligent automation of networked devices and systems. Furthermore,
agent-based computing and control will be the foundation for developing next-
generation control theory and applications in the age of a connected world.
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Abstract. A common approach to the implementation of digital systems
is through the emulation of idealized continuous-time blocks in order to be
able to leverage the rich expanse of results and design tools available in the
continuous-time domain. The so-called sampled-data systems are now com-
monplace in practice and rely upon results that ensure that many properties
of the nominal continuous-time system, including notions of stability, are pre-
served under sampling when certain conditions are verified. In analogy with
(fast) sampled-data design, this chapter explores an emulation-based approach
to the analysis and design of networked control systems (NCS). To that end,
we survey a selection of emulation-type NCS results in the literature and high-
light the crucial role that scheduling between disparate components of the
control systems plays, above and beyond sampling. We detail several different
properties that scheduling protocols need to verify together with appropriate
bounds on inter-transmission times such that various notions of input–output
stability of the nominal “network-free” system are preserved when deployed
as an NCS.

Keywords. Nonlinear systems robust stability, scheduling, emulation-based
design.

3.1 Introduction

Control of a system is to influence its behavior to achieve a desired goal, often,
through the use of feedback. Diagrammatically, we are often concerned with
the setup depicted in Fig. 3.1: analysis of plant P with (vector) output y
and design of a controller C with a (vector) control u to achieve a desired
closed-loop behavior, typically, a notion of stability.
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C Py u

Fig. 3.1. Conceptual block diagram of feedback control

The interconnection of physical signals between controller and plant is sel-
dom as elementary as that depicted in Fig. 3.1. Many properties of the plant
including its physical size, complexity and mobile nature require the distri-
bution of the control and observation task across multiple spatially separated
nodes, including actuators, sensors and devices that compute the control law,
connected via a network. For example, the system in Fig. 3.1 may poten-
tially be implemented as in Fig. 3.2, using two output-feedback controllers
C1, C2 and two sensors that transmit output values y1, y2 across a network
to both controllers. Note that this implementation is suggested without spe-
cific reference to how and when and under which constraints this exchange of
information takes place.

Abstractly, any set of communication channels together with a connection
topology and constraints on the exchange of information across the channels
that prescribe how and when information can be exchanged between nodes
can be referred to as a network.

In this chapter, we restrict our attention to systems with nodes connected
via a single shared communication channel or bus as in Fig. 3.3. The control
law, plant, nodes, the bus itself and the protocol that describes how and when

Sensor
2

Sensor
1

P
u1

u2

y2

y1

C2

C1 Network

(y1, y2)

Fig. 3.2. A potential 4 node implementation of the system in Fig. 3.1 as an NCS
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Fig. 3.3. Nodes connected with a bus network topology

information can be exchanged amongst nodes are collectively referred to as
the networked control system (NCS).

Central to the study of NCS is the analysis and design of scheduling pro-
tocols. NCS depart from the use of dedicated point-to-point links for con-
nectivity amongst nodes replacing some or all links with a shared network
channel.

As in traditional data networks, the problem of arbitrating multiple access
on the network becomes an issue, motivating the discussion of the scheduling
of nodes and the design and analysis of scheduling protocols suitable for NCS
applications. By scheduling, we mean the transmission of information across
a link in the form of a discrete packet or frame.

Canonical NCS examples include so-called by-wire systems: drive-by-wire
and fly-by-wire with analogies in industrial applications. Here, the network in
NCS is thought of as in the sense of a traditional data (computer) network
but the “network” may exist at a lower level of abstraction as in, for example,
embedded digital control systems.

Example 3.1 (Embedded digital control systems). Transmission of controller
and sensor values to and from the device executing the control law is governed
by protocols of an electrical bus, e.g., a PCI bus, and typically, the scheduler
of an operating system. Even if the underlying control system employs point-
to-point connections from nodes to the controller, communication within the
controller and its constituent components are subject to the communication
constraints of various electrical buses and the operating system. �

Example 3.1 is one of the strongest motivations for studying NCS as pre-
sented in this chapter. It is perhaps taken for granted that the digital control
systems designed and deployed in industry will continue to behave like their
idealized continuous-time (resp., discrete-time) counterparts, besides the ef-
fects of sampling and quantization. As control systems increase in size and
complexity and the levels of component integration increase, the flow of data
between elements of the system is subject to constraints similar to that of a
“real” network. Indeed, components of systems based on the PCI Express r©

architecture communicate via a switched serial network. Regardless of how
controllers and sensors are connected, at least internally, every non-trivial
digital control system can be thought of as an NCS.
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From designs based on traditional wireless and wireline networks to the
growing internal complexity of “un-networked” control systems, an increasing
number of practical NCS implementations and their respective traffic schedul-
ing protocols now exist. Standards-based component connectivity offers lower
implementation costs, greater interoperability and a wide range of choices in
developing control systems. The price paid for these advantages is the added
complexity in the initial design and analysis of NCS. As alluded to earlier, part
of this complexity comes in the form of issues of arbitration of network access
amongst links, or scheduling, which is of fundamental importance. But above
and beyond scheduling, NCS also presents the designer with the limitations
of

(a) finite bandwidth of communication channels;
(b) finite precision of encoding and decoding schemes for transmitted infor-

mation;
(c) pure (propagation) delays of channels;
(d) and data dropouts from unreliable channels.

These limitations are not mutually exclusive, however. As transmission
rates increase, and with frame and packet sizes well in excess of machine
(CPU) precision, effects of quantization and pure delay play an increasingly
diminishing role in the analysis of most NCS and we forgo their consideration
in this chapter. We will, however, examine models of data dropouts and unre-
liable channels with the Ethernet and the so-called p-persistent collision-sense
multiple access (CSMA) as prime examples of such channels.

3.2 Overview of Emulation-based NCS Design

3.2.1 Principles of Emulation-based NCS Design

As stated in the introduction, scheduling and scheduling protocols are an
integral part of NCS design. A survey of scheduling and various scheduling
protocols is provided in [17] and stability and performance results of NCS have
been examined in [8, 9, 15, 16, 17, 19]. An elementary example of a scheduling
protocol, round-robin (RR), grants network access to NCS components in
sequential, round-robin fashion and is used almost exclusively in practice. The
aforementioned works present various alternative protocols that demonstrate a
performance gain over RR in simulations and, in special cases, demonstrate the
superiority of the alternative protocols analytically. The NCS design approach
adopted in [8, 9, 12, 15, 16, 18], and in this chapter consists of the following
steps:

(1) design a stabilizing controller ignoring the network;
(2) choose an appropriate scheduling protocol;



3 Networked Control Systems: Emulation-based Design 61

(3) and analyze the robustness of stability with respect to effects that schedul-
ing within a network introduce.

The principal advantage of this approach is its simplicity – the designer of the
NCS can exploit familiar tools for controller design and select an appropriate
scheduling protocol and transmission rate such that the desired properties of
the network-free system are preserved.

This chapter will introduce and characterize the various classes of admis-
sible protocols for which stability results are developed but it is important to
note that when the network-free system verifies a nominal stability property
and an admissible protocol is chosen, stability of the resultant NCS can be
achieved through sufficiently high transmission rates (or equivalently, suffi-
ciently low inter-transmission times). Moreover, stability (robustness) prop-
erties of the NCS are actually parameterized by the transmission rate and
hence, step (3) in the design process can be reinterpreted as:

(3′) choose a transmission rate (above requisite minimum) to achieve a desired
degree of robust stability.

Results will be presented where this design approach is adopted with vari-
ous notions of transmission rate (minimum or expected) and robust stability
(uniform global exponential or asymptotic stability, Lp or Lp in-expectation
or input-to-state stability).

3.2.2 Results in Perspective

Consider the following LTI control system:

ẋP = APxP + BPu, ẋC = ACxC + BCy, (3.1)
y = CPxP , u = CCxC , (3.2)

where xP ∈ RnP , xC ∈ RnC , y, and u denote, respectively, plant state, con-
troller state, plant output, and control, and where u has been designed ig-
noring the network as outlined in the previous section. In the presence of a
network and an associated scheduling protocol, y and u cannot be continu-
ously transmitted between the plant and controller. The network introduces
the following limitations:

(a) transmissions occur only at specific transmission instants {ti}∞i=0; and
(b) only one logical component of the NCS is allowed to transmit (broadcast)

data onto the network at a given transmission instant ti, e.g., for a 3-
output 2-input system, one component of y = (y1, y2, y3), u = (u1, u2)
can be transmitted.

Let ŷ denote the “stand-in” for y available to and maintained by the device(s)
that compute the control law and û denote the “stand-in” for u available to
and maintained by the device(s) that actuate the plant. In effect, the NCS for
the network-free system is described by



62 M. Tabbara, D. Nešić, and A.R. Teel

ẋP = APxP + BP û, ẋC = ACxC + BC ŷ, (3.3)
y = CPxP , u = CCxC . (3.4)

In analogy with zero-order hold sampling, ŷ and û can be held constant be-
tween transmission instants and “reset” or updated with components of u
and y as those become available and transmitted. Fig. 3.4 illustrates the situ-
ation for an NCS where two outputs are alternately transmitted in RR fashion
across the network to the device(s)3 that compute the control law and actuate
the plant at transmission instants. RR is only one example of a scheduling
protocol amongst several that we consider and one of the primary aims of the
chapter will be to characterize protocol properties that capture the effects of
the protocol on NCS stability.

ŷ1

ŷ2 ?

y1y2 y2 y1

t1 t2 t3 t4

? ?
y2(t1) y2(t1)

y1(t2) y1(t2)

y2(t3) y2(t3)

y1(t4)

network transmission

t

Fig. 3.4. RR scheduling of two-outputs with a zero-order hold ŷ update policy

Although a scheduling protocol determines how the transmission of plant
measurements and control values are arbitrated at transmission instants, it is
useful to think of the scheduling protocol in terms of the effects on the error
that a network induces compared to the network-free system. Indeed, if we
define

e =
(

ey

eu

)
=
(

ŷ − y
û− u

)
, (3.5)

we can rewrite (3.3) and (3.4) between transmissions as

ẋP = APxP + BPu + BP eu, ẋC = ACxC + BCy + BCey,

y = CPxP , u = CCxC ,

˙̂u = 0, ˙̂y = 0,

and hence, [
ẋ
ė

]
=
[
A11 A12

A21 A22

] [
x
e

]
, (3.6)

3 Since data is presumed to be broadcast across the network, the number of
controller-actuator devices that actuate the plant is immaterial so long as they
adopt identical policies for updating their copies of ŷ.
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where

A11 =
[

AP BPCC

BCCP AC

]
, A12 =

[
BP BC

]
, (3.7)

A21 = − [CP 0
]
A11, A22 = − [CP 0

]
A12 . (3.8)

These equations describe how the state and NCS error evolves between trans-
missions and it is clear that components of e are reset or experience “jumps”
at transmissions instants. For example, let ey,j = ŷj − yj . Ignoring the effects
of quantization and delay, if the jth component of y is transmitted at the ith
transmission instant we have

ŷj(ti)← yj(ti) ⇐⇒ ey,j(ti)← 0 . (3.9)

Hence, the effect of the scheduling protocol is to reset components of the NCS
error4 at transmission instants. An NCS model in this fashion is thus com-
pletely prescribed by:

(a) NCS continuous-time dynamics as in (3.6) and depicted conceptually in
Fig. 3.5;

(b) a sequence of increasing transmission instants {ti}∞i=0; and
(c) a scheduling protocol, or error reset map that is described via its effect

on the error, e, at transmission instants.

Regarding the NCS continuous-time dynamics as fixed, we would like to char-
acterize the sequence of transmission instants or, equivalently, the sequence
of inter-transmission intervals and the set of protocols for which we can con-
clude that the NCS state (x, e) is stable in an appropriate sense. The origins
of emulation-based NCS design in this sense begin with the pioneering work of
Walsh et al. in [15] and [16] where NCS models in the form of (3.6) and its non-
linear counterpart were presented, together with conditions on the maximum
allowable transmission interval (MATI) such that the resultant NCS was uni-
formly globally asymptotically or exponentially stable (UGAS, UGES) when
using the RR or maximum-error-first try-once-discard (TOD) scheduling pro-
tocols. We defer a detailed discussion of these and other protocols until Section
3.3.2 and outline results in the spirit of those presented in [15, 16, 19].

Let e ∈ Rne and x ∈ Rnx . The following class of nonlinear systems was
considered in [15]:

ẋ = f(t, x, e),
ė = g(t, x, e), (3.10)

with the shorthand notation:

ż = h(t, z), (3.11)

where z = (xT eT )T .
4 Ordinarily and as in (3.9), the result of the transmission is to reset a component

of error to zero, though we stress that for many of the results outlined in the
chapter, this assumption is not necessary.
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Fig. 3.5. Interconnection of signals in NCS dynamics

The Lipschitz constants for f , g and h are denoted, respectively, by kf ,
kg and kh; that is, the right-hand side in (3.11) is assumed to be globally
Lipschitz, uniformly in t. The class of linear systems (3.6) with the obvious
shorthand:

ż = Az (3.12)

was considered in [16, 19].
It is supposed in [15] that there exists a continuously differentiable Lya-

punov function V such that the system (3.10) satisfies:

c1|x|2 ≤ V (t, x) ≤ c2|x|2 for all x ∈ Rnx and t ∈ R, (3.13)
∂V

∂t
+

∂V

∂x
f(t, x, 0) ≤ −c3|x|2 for almost all x ∈ Rnx and t ∈ R, (3.14)∣∣∣∣∂V∂x

∣∣∣∣ ≤ c4 |x| , (3.15)

where c1, c2, c3, c4 are positive constants. A similar condition was used in
[16, 19] for the linear system (3.6). Indeed, it was assumed that for some
positive definite and symmetric matrix Q there exists a positive definite and
symmetric matrix P that solves the Lyapunov matrix equation5:

AT
11P + PA11 = −Q . (3.16)

It is obvious that (3.16) implies that (3.13)–(3.15) are satisfied for the linear
system (3.6), V (x) = xTPx and

c1 = λmin(P ); c2 = λmax(P ); c3 = λmin(Q); c4 = 2λmax(P ), (3.17)

where λmin(·) and λmin(·) denote the minimum and maximum singular value
of a symmetric matrix, respectively. For linear systems, we can let

kh = kf = kg = |A| . (3.18)

A bound on MATI that guarantees the stability of the linear system (3.6)
with the RR and TOD protocols was obtained in [16, 19]. We denote bounds
computed in [16, 19], respectively, as τRR

∗ and τTOD
∗ for the RR and TOD

5 The results in [16] are only presented for the special case Q = I. The result with
general Q is presented in [19].
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protocols. Similar bounds were obtained in [15] for nonlinear systems (3.10)
with the RR and TOD protocols, where6 the bounds obtained are also such
that τRR

∗ = τTOD
∗ . The bounds in [15, 16, 19] can be expressed as:

τRR
∗ = τTOD

∗ =
c3

M�(� + 1)khkfc4
, (3.19)

where the value of the constant M is different for linear and nonlinear sys-
tems and � denotes the number of nodes that participate in scheduling. For
nonlinear systems, we have

M = MNL = 16
(
c2
c1

)3/2(√
c2
c1

+ 1
)

, (3.20)

established in [15]. Analogously in [16, 19], the following is obtained for linear
systems

M = ML = 8

√
λmax(P )
λmin(P )

(√
λmax(P )
λmin(P )

+ 1

)
, (3.21)

where the meaning of all constants in (3.19) is explained through (3.17) and
(3.18). These MATI bounds obtained in [15, 16, 19] do not differentiate be-
tween RR and TOD; that is τTOD

∗ = τRR
∗ .

In general, intuition suggests that MATI bounds should be protocol-
dependent. Significant improvements upon these MATI bounds were made in
[8] by efficiently capturing protocol properties through protocol-specific Lya-
punov functions and characterizing the effects of transmission errors through
Lp gains. Essentially, UGES and Lp input–output stability is with a MATI
of:

0 < τ <
1
L

ln
(

1 +
1− θ

γ/L + θ

)
, (3.22)

where θ ∈ [0, 1) characterizes the ability of the protocol to reduce network
error at transmission instants while L > 0 describes the speed of the network-
error dynamics, and γ > 0 captures the effect of network-error on the behavior
of the ideal system through an Lp gain. In particular, τ is protocol-dependent
through θ – the better the protocol is at reducing network-error at trans-
mission instants, the larger the MATI bound is, and hence, the less frequent
transmissions have to be to guarantee stability of the NCS.

3.3 Modeling Networked Control Systems and
Scheduling Protocols

The premise of networked control systems (NCS) is to spatially distribute
a “traditional” control system across a number of nodes that will exchange
6 Note that we do not use different notation for MATI bounds for linear and non-

linear systems, although they are different in general. This is because it always
will be clear from the context which bound we mean.
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data subject to the constraints of a shared data channel. These nodes include
sensors, actuators and units that compute various control laws and the data
channel is typically a wireless or wireline computer network, many examples
of which can be found in [14].

Computer networks and communication systems present rich and sophisti-
cated models of varying degrees of complexity, within stochastic and determin-
istic settings, and of various underlying physical communication media. For
the vast majority of computer networks described in [14], the primary con-
straint on the exchange of data between nodes is that the respective channels
are exclusive. This means that the attempt of more than one node to trans-
mit data at a given time will result in data loss, i.e., a collision. Collisions can
be prevented by arbitration of network access through the use of scheduling
protocols that decide which node(s) can transmit and at what times.

The network models presented in this chapter aim to capture the essential
aspects of control over networks in the context of several important settings:

(a) locally7 arbitrated network access without packet dropouts;
(b) arbitrated network access with and without packet dropouts; and
(c) unarbitrated network access with and without packet dropouts.

Arbitration takes place through the use of a scheduling protocol adopted
by every node in the network. A protocol can be thought of as a map

h : W → {1, . . . , �} (3.23)

that selects the node currently being allowed to transmit and an associated
dynamical system that evolves the scheduler state variable ω ∈ W . For spa-
tially separated nodes, this generally means that each node must maintain
a copy of the state ω that is evolved identically by the node (local knowl-
edge with globally-known inputs), or, ω is known globally and updated in
a distributed fashion. Such protocols are often referred to as contentionless
protocols. For example, labeling the NCS nodes {a1, a2, . . . , a�}, round-robin
scheduling would entail apportioning the channel’s time, [0,∞), into slots
{s1 := [t0, t1), s2 := [t1, t2), . . . , } such that node ai is permitted to transmit
during slot si+k�, k = {0, 1, . . . }. Depending on the context, this scheduling
protocol is also known as time-division multiplexing or token ring and relies
on each node being able to count transmissions. In this case,

ω = number of transmissions from some initial time.

For networks with a large number of nodes, mobile nodes that are spatially
separated across varying distances or networks with a varying number of
nodes, it may be impractical or impossible to keep ω, the state information,
synchronized across all nodes.
7 By “locally” we mean that the arbitration process takes place without the ex-

change of global arbitration information prior to network access, e.g., a priority
field.
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The alternative is unarbitrated access in the sense that there is no global
policy to enforce exclusive network access for a given node at a transmis-
sion instant. In particular, collisions may occur, and have to be detected and
recovered from. The number that occur can often be reduced by employing
various heuristics using data available to each node locally. Concrete and fa-
miliar examples of this approach include the family of carrier-sense multiple
access protocols (CSMA) exemplified by Ethernet, p-persistent CSMA (Blue-
tooth, 802.11a/b/g) and variants of ALOHA. See [14] for an overview of these
protocols and their operational characteristics.

Thus far, the discussion holds true for both computer and control net-
works. Where computer networks and control networks differ radically is in
access patterns – ideally, a continuous-time control system would have nodes
constantly transmitting sensor values and constantly receiving control values,
in complete contrast to the usual assumption of access in short and irreg-
ular bursts for nodes in a computer network. Stated explicitly, we assume
continuous-time controllers and plant outputs are such that there will always
be data to transmit when the network channel becomes idle.

This assumption applies to all forms of network access in NCS, the key dif-
ference being that the unarbitrated network access does not enforce a partic-
ular choice of which link to transmit when the channel becomes idle whereas
global arbitration would. We present a unified approach for the analysis of
NCS both for ideal channels and in the presence of random packet dropouts
and random inter-transmission times – effects that are essentially attributes
of non-ideal or stochastic network channels.

We assume that every link in the NCS contests access to the network at
either predetermined time-slots or times at which the network is sensed to be
idle. This results in two potential sources of randomness:

(a) At any idle time or transmission slot, either some node j transmits success-
fully or a collision results or the transmitted packet is dropped. Denoting
the probability that a packet is dropped or a collision occurs by p0, we will
always assume that the probabilities of successful transmission of links is
identically equal to (1−p0)/� for an �-link NCS without global arbitration.
While this is not strictly necessary in our analyses, there is no reason to
statically (off-line) favor any one link over another during contention by
adjusting transmission-success probabilities. Contentionless protocols do,
however, enforce a particular choice of which link to transmit in a given
slot eliminating the possibility of a collision.

(b) Sensing the network as being idle, synchronizing to transmissions time-
slots or else randomly waiting for a period of time after any of these
events to reduce the likelihood of collisions are common features of network
protocols. These uncertainties can be faithfully modeled with a stochastic
(renewal) process. For the set of protocols we discuss, it is sufficient to
restrict our attention to Poisson processes with some intensity λ or a
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class of renewal processes where inter-transmission times are uniformly
bounded, i.e., by the MATI.

3.3.1 Scheduling and a Hybrid System Model for NCS

We model the NCS as a so-called jump-continuous (hybrid) system, where
jump times and the associated jump or reset maps are both potentially random
but not necessarily so. Our NCS model incorporates the effects of exogenous
perturbations w as first presented in [8]. As alluded to earlier, the model we
present is general enough to examine several scheduling alternatives with and
without packet dropouts when inter-transmission times are either uniformly
bounded with a MATI or random.

Node data (controller and sensor values) are transmitted at (possibly)
random transmission instants {t0, t1, . . . , ti}, i ∈ N and our NCS model is
prescribed by the following dynamical and jump equations. In particular, for
all t ∈ [ti−1, ti]:

ẋP = fP (t, xP , û, w), (3.24)
ẋC = fC(t, xC , ŷ, w), (3.25)
u = gC(t, xC), y = gP (t, xP ), (3.26)
˙̂y = 0, ˙̂u = 08, ˙̂e = 0, (3.27)

and at each transmission instant ti,

e(t+i ) = Qi(e(ti))e(ti)9, (3.28a)

or
e(t+i ) = Qi(ê(ti))e(ti),
ê(t+i ) = Λ

(
i, (I −Qi(ê(ti)))e(ti), ê(ti)

)
.

(3.28b)

The effect of the protocol on the error is such that if the mth to nth
nodes are successfully transmitted at transmission instant ti the corresponding
components of error, en, . . . , em, experience a “jump”. It may be the case that
a single logical node (a “link”) consists of several sensors or several actuators
or both with the transmission of that link having the effect of setting multiple
components of e to zero. It may also be the case that the network allows the
transmission of more than one node at each transmission and our model allows
for this extra degree of freedom. For transmission from mth node to nth node,
we will always assume that en(t+i ), . . . , em(t+i ) = 0 and hence, Qi(·)e = [akj ]e,
where akj = 0 for k = j ∈ [n,m] ∪ {k �= j} and 1 elsewhere. We group the

8 The assumption that ˙̂y and ˙̂u are zero simplifies the presentation and is not
strictly necessary. Non-zero choices correspond to schemes that predict y and u
between transmissions in an open-loop sense.

9 Given t ∈ R and a piecewise continuous function f : R → Rn, we use the notation
f(t+) = lims→t,s>t f(s).
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nodes that are transmitted together into logical links, associating a partition
of size si, denoted by ei = (ei1, ei2, . . . , eisi

), of the error vector e such that
we can write e = (e1, . . . , e�). We say that the NCS has � links and

∑�
i=1 si

nodes. Note that this is purely a notational convenience and simplifies the
description of scheduling protocols and the NCS itself.

The two alternative forms of the error jump-map (3.28a) and (3.28b) refer
to two different situations with respect to the scheduler state ω in the abstract
description of a scheduling protocol given in (3.23):

(a) ω ≡ (i, e) in (3.28a), where Qi(·) may be a random jump map – in partic-
ular, Qi may be the identity in the case where nothing was transmitted
or a collision or dropout occurred.

(b) ω ≡ (i, ê) in (3.28b), where Qi(·) is an ordinary map and ê is a state
variable synchronously maintained and updated by all nodes.

In both cases, we refer to Q as the scheduling function and Λ as the
decision-update function in (3.28b). The key difference between these two
alternatives is the decision-vector ê. Special cases of ê-based scheduling were
first considered in [18]. The model we introduced in [12] and described here
formalizes the ê-based scheduling that was considered in [18] and it generalizes
the NCS models considered in [8].

With respect to the available state-information, there are several alterna-
tives as to what information the scheduler has available in making scheduling
decisions prior to transmissions:

(a) (x, e, i) is known by all nodes;
(b) (e, i) is known by all nodes;
(c) i is known and any broadcast data becomes known after transmissions;10

(d) only i is known globally; or
(e) only local policies are adopted and no global information is used in

scheduling.

These correspond to the following NCS scenarios:

(1) “Classical” control, that is, if (x, e, i) is known to all nodes prior to trans-
missions, transmissions would not be necessary as any of x, y, and u could
be recovered.

(2) Each node can encode e into an arbitration field and participate in what
is, in effect, a distributed scheduling decision, e.g., through binary count-
down.

(3) Nodes only have i and local information available to make a scheduling
decision, and once a transmission (broadcast) has taken place, are free to
update their local information (ê) with the broadcast data.11 To ensure

10 This data can be used to evolve locally maintained state, e.g., ê.
11 For reasons that shall become apparent, there is no loss of generality in assuming

that the broadcast data is given by (I − Qi(ê(ti)))e(ti) – the component of error
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that the nodes arrive at a unanimous decision, the update rule, and hence
the local data is updated in the same fashion across all nodes.

(4) For situations (2)–(3) it is assumed that nodes can count the number of
transmissions that have passed from some reference time and hence i is
known. In this NCS scenario, no other data is known or maintained by
nodes for scheduling purposes.

(5) Network access is, in effect, unarbitrated and access patterns are deter-
mined by local policy.

The maps prescribed by (3.28a) and (3.28b) are sufficiently general to cap-
ture the scenarios (2)–(5). We combine the controller and plant states into
a vector x = (xP , xC) and assuming gP , gC are continuous and a.e. (almost
everywhere) C1, for example, we can rewrite (3.24)–(3.28b) in a form more
amenable to analysis:

ẋ = f(t, x, e, w), t ∈ [ti−1, ti], (3.29)
ė = g(t, x, e, w), t ∈ [ti−1, ti], (3.30)

and
e(t+i ) = Qi(e(ti))e(ti), (3.31a)

or
e(t+i ) = Qi(ê(ti))e(ti),
ê(t+i ) = Λ

(
i, (I −Qi(ê(ti)))e(ti), ê(ti)

)
,

(3.31b)

where x ∈ Rnx , e ∈ Rne , w ∈ Rnw , and ê ∈ Rnê .
Implicit in this definition is that there are no (pure) propagation delays.

Transmission at time ti results in the instant reset of the relevant error com-
ponent to zero. We appeal to the robustness properties verified by the class of
systems considered to assert that the results in this chapter remain true for
sufficiently small delays.

With respect to (3.24)–(3.28b) and (3.29)–(3.31b), we further assume that
the sequence of (attempted) transmission times {ti}i∈N is such that ti+1−ti is
exponentially distributed for all i or satisfy ε < tj+1−tj ≤ τ for all j ≥ 0 where
τ > 0 and ε > 0.12 The constant τ is the maximum allowable transmission
interval (MATI).

3.3.2 NCS Scheduling Protocol Properties

We have previously described protocols in a general setting as maps that
effect errors at transmission instants. We now aim to identify general protocol

that was reset to zero at the ith transmission instant and hence, appears as the
only input in (3.28b).

12 This ensures that Zeno solutions cannot occur. Zeno behavior occurs in hybrid
systems when there are an infinite number of discrete transitions in a finite period
of time.



3 Networked Control Systems: Emulation-based Design 71

properties that appropriately characterize protocol behaviors and that are
able to parametrize NCS stability under appropriate conditions. Recall that
by “protocol” we refer to both the maps of the form (3.31a) and (3.31b) as
well as an associated sequence of transmission times {ti}∞i=0, where ti+1 − ti
is either uniformly bounded or exponentially distributed.

We introduce several protocol properties that are phrased in terms of mem-
bership in the class of Lyapunov UGES (uniformly globally exponentially sta-
ble) protocols, the class of PET (persistently exciting) protocols, the class of
almost surely Lyapunov UGES protocols and the class of almost surely (a.s.)
covering protocols.

3.3.3 Lyapunov UGES and a.s. UGES Scheduling Protocols

Let E[·] and P {·} denote the expectation and probability operators and let
X ∼ Exp(λ) denote that X is an exponentially-distributed random variable
with E[X] = 1/λ. For purely deterministic maps and ignoring the dynamics
introduced by (3.30), we can regard (3.31a) as a discrete-time system that
captures the behavior of the scheduling protocol. The system is given by:

e+ = Qi(e)e . (3.32)

Maps of this form were used to capture the behavior of the protocol in [8]
on an ideal network. Describing the protocol in this fashion allows one to
speak of uniformly globally asymptotically and exponentially stable (UGAS
and UGES) scheduling protocols whenever the associated discrete-time sys-
tem (3.32) is UGAS or UGES. Beyond taxonomy, the notion of UGES and
UGAS protocols and the construction of smooth Lyapunov functions for the
associated UGAS and UGES discrete-time systems is central to the stability
analysis approach developed in [8] and [9].

NCS employing UGES and UGAS protocols on non-ideal network channels
are still subject to packet losses and varying inter-transmission times. By
assigning a probability, p0, to the event that the channel drops a packet, we
model the behavior of the protocol on non-ideal channels in this section with
jump maps of the form

Q̃i(e)e = qiQi(e) + (1− qi)e, (3.33)

where qi is an i.i.d.13 sequence of Bernoulli random variables that model the
dropout process of channel with P {qi = 1} = 1−p0. Depending on the specific
system, the sequence of arrival times (transmission instants) {ti}i∈N are either
random and defined inductively by:

t0 = τ0,

where τ0 ∼ Exp(λ) and for each i > 0,
13 Independently identically distributed.
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ti = ti−1 + τi,

τi ∼ Exp(λ), where the sequence {τi} is i.i.d., or inter-transmission times are
uniformly (deterministically) bounded by a MATI.

As in (3.32), it becomes natural to define the associated auxiliary discrete-
time system for (3.33):

e+ = qiQi(e)e + (1− qi)e, i ∈ N, (3.34)

where the sequence {qi} is defined as in (3.33).
We introduce the following definition with respect to System (3.34).

Definition 3.1 (Almost surely Lyapunov UGES protocols). Let W :
N × Rne → R≥0 be given and suppose that κi is a sequence of nonnegative
i.i.d. random variables and a1, a2 > 0 such that the following conditions hold
for the discrete-time system (3.34) for all i ∈ N and all e ∈ Rne :

a1|e| ≤W (i, e) ≤ a2|e| (3.35)

W (i + 1, Q̃i(e)e) ≤ κiW (i, e) (3.36)
E[κi] < 1 . (3.37)

Then we say that (3.34) (equivalently, the contentionless protocol) is al-
most surely uniformly globally exponentially stable (a.s. UGES) with Lyapunov
function W . �

Before discussing implications of this definition, we present a motivating
example:

Example 3.2 (Try-once-discard). The TOD protocol was introduced in [16]
and can be expressed with a model of the form (3.34) where

Qi(e) = (I − Ψ(e))

and Ψ(e) = diag{ψ1(e)Il1 , . . . , ψ�(e)Il�}, with Ilj identity matrices of dimen-
sion lj and

ψj(e) =
{

1, if j = min(arg maxj |ej |)
0, otherwise. (3.38)

That is, TOD picks out the node with the largest magnitude of error for
transmission. It was shown that TOD preserves stability properties of the
network-free system in [15] (linear systems) and [8] (nonlinear systems with
disturbance) for sufficiently small MATI. As in [8, Proposition 5], we set
W (i, e) = |e| and claim that TOD is a.s. Lyapunov UGES whenever the
probability of a dropout, p0 is such that

p0 + (1− p0)

√
�− 1
�

< 1. (3.39)

�
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The inequality (3.39) is a particular example of a more general condition
that ensures that any Lyapunov UGES protocol in the sense of [8] is an a.s.
Lyapunov UGES for sufficiently low probability of dropout. We first recall the
definition of a Lyapunov UGES protocol:

Definition 3.2 (Lyapunov UGES protocols). A protocol (3.34) on an
ideal channel (p0 = 0⇒ qi = 1) is said to be Lyapunov UGES in the sense of
[8] if there exists W : N×Rne → R≥0, a1, a2 > 0, and 0 ≤ θ < 1 such that for
all i ∈ N and all e ∈ Rne :

a1|e| ≤W (i, e) ≤ a2|e| (3.40)
W (i + 1, Qi(e)e) ≤ θW (i, e) . (3.41)

This definition admits the following proposition:

Proposition 3.1. Suppose that the protocol (3.34) on an ideal channel (p0 =
0 ⇒ qi = 1) is Lyapunov UGES. Then (3.34) is a.s. Lyapunov UGES on a
non-ideal channel (p0 ≥ 0) if

p0 + (1− p0)θ < 1. (3.42)

Remark 3.1. The rationale for the introduction of the class of a.s. Lyapunov
UGES protocols is to provide an analysis framework for Lyapunov UGES
protocols capable of handling random packet dropouts – any Lyapunov UGES
protocol is automatically an a.s. Lyapunov UGES protocol for sufficiently
low p0. In the case where inter-transmission times are uniformly bounded
by a MATI and p0 = 0, we recover the usual definition of Lyapunov UGES
protocols as in Definition 3.2. �

Remark 3.2. The definition of Lyapunov UGAS and hence, a.s. Lyapunov
UGAS protocols is analogous and we refer the reader to [9] for details and
results. �

3.3.4 PET Scheduling Protocols

Intuition suggests that schemes such as TOD should perform better than
RR, as the node with the greatest error is transmitted at each transmission
instant. TOD is certainly implementable in variants of CAN14 as the error can
be encoded into an arbitration field15 in a frame but no such arbitration is
possible for wireless channels and, indeed, many wireline channels and hence,
it is often unreasonable to assume knowledge of the entire error vector e in
these contexts.

Several variants of TOD were introduced in [18] that “estimate” the error
vector and were shown to outperform RR in simulations. Stability results
14 Control Area Network.
15 Specifically, through binary countdown – see [14] and [17] for details.



74 M. Tabbara, D. Nešić, and A.R. Teel

are also provided for linear systems that lead to conservative estimates on
performance bounds. One model of NCS that accommodates these variants
was proposed in [12] that is a special case of (3.29)–(3.31b).

The variants of TOD presented in [18] as well as the RR scheduling pro-
tocol satisfy the following property: there is a fixed (finite) number of trans-
missions T such that all nodes of the NCS have transmitted within T trans-
missions. This T is related to the notion of a node’s “silent-time” in [18].
This property is the point of departure of this section, and for reasons that
will become apparent, we call protocols that satisfy this property uniformly
persistently exciting scheduling protocols, or simply, PE protocols. Whenever
T is known, we say that the protocol is PET . Round-robin is the first example
of a PET protocol.

Example 3.3 (Round-robin). Round-robin scheduling is employed in the token
ring and token bus network protocols as well as (once) being the ubiquitous
scheduling protocol of time-sharing operating systems. Each link of the net-
work is assigned a unique index and links are “visited” in the order of index.
Consider an �-link NCS. In terms of NCS scheduling, the discrete-time system
is a linear time-varying system where the protocol map has no dependence on
state:

e+ = (I −Δ(i))e, (3.43)

where Δ(i) = diag{δ1(i)Is1 , . . . , δN (i)Is�
}, and

δk(i) =
{

1, if k − 1 = i mod �
0, otherwise. (3.44)

It was established in [8] that RR is a Lyapunov UGES protocol and that
it preserves stability properties of the network-free system for high enough
transmission rates. As the protocol does not depend on NCS state it makes
RR easily implementable and is PET with T = �. �

PE in the sense we have described is verified by many network technolo-
gies. Ethernet and 802.11 are examples of CSMA/CD protocols where it is
known (see [2], for instance) that for a finite number of users (links), the ex-
pected waiting time for a link is finite. We pursue a stochastic analogue of
PE for such protocols in Section 3.3.5.

For a more formal characterization of the PE property, it can be shown
that if we integrate the equations (3.30) and ˙̂e = 0 on the interval [t+i−1, ti]
and then apply the jump map (3.31b) at ti, the NCS induces the following
discrete-time system:

e+ = (I − Ψ(i, ê))(e + d), (3.45)

ê+ = Λ(i, Ψ(i, ê)(e + d), ê), (3.46)

where d captures the inter-sample behavior of e(·). This idea of examining an
induced discrete-time system to evaluate protocol properties was first used
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in [8] as outlined in Section 3.3.3 though used here with a key difference: for
specific initializations (k, e(k), ê(k)) and specific (bounded) values of d(j), j ≥
k the solution of the system (3.45)–(3.46) coincides with that of (3.29)–(3.31b)
at time instants t+j , j ≥ k which is not the case for (3.34). As we think of the
inter-sample behavior d as a perturbation, our formal definition of PE will be
stated as a property that is robust to bounded perturbations.

Definition 3.3. The protocol (3.45)–(3.46) is said to be (robustly) persis-
tently exciting in T or PET if there exists T ∈ (0,∞) such that

i+T−1∏
k=i

Qk(ê(k))) = 0, (3.47)

holds for every k ∈ N and any initial condition e(i) and ê(i) where we
have written φê(k) in place of φê(k, i, e(i), ê(i), d[k,i]) and all d ∈ �∞, where
φê(i) := φê(i, e, ê, d[k,i]) is the ê component of the solution of the system
(3.45)–(3.46). That is, the T -fold product of the jump map evaluated along
any set of trajectories that can be generated by (3.45)–(3.46) from any set of
initial condition is the zero matrix. �

The protocols below are typical of what has been proposed in NCS liter-
ature and what is used in practice. In what follows, we will always assume
an �-link NCS with the ith linking consisting of li nodes and an error vector
ei. Two PET protocols are presented next though we note that the simplest
example of a PE protocol is RR (Example 3.3).

Example 3.4 (Hybrid RR-TOD scheduling protocol). The hybrid RR-TOD
scheduling protocol enforces PE in a time-periodic manner. For a prescribed
M ∈ N, the protocol takes the form:

e+ = (I −Ω(i, ê))(e + d), (3.48)

ê+ = (I −Ω(i, ê))ê + Ω(i, ê)(e + d), (3.49)

Ω(i, ê) :=
{

diag{p1(i)Is1 , . . . , pN (i)IsN
}, if mod(i,M) = 0

diag{ψ1(ê)Is1 , . . . , ψN (ê)IsN
}, otherwise,

where, pn(i) = 1 when mod(i/M,N) = n − 1 and pn(i) = 0 otherwise with
ψj defined in (3.38). The hybrid RR-TOD protocol is PET with T = MN .
In particular, when M = 1, we obtain the simplest PET protocol: “classical”
RR. �

Example 3.5 (Constant-penalty TOD). Constant-penalty TOD (CP-TOD) [18]
uses the mechanism of “silent-time” to ensure that every link is eventually
visited within a finite window of time: each link j has a counter rj that is in-
cremented at every transmission instant that it is not scheduled and reset to
zero when it is scheduled. Irrespective of the underlying scheduling protocol,
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when a link’s counter reaches a predetermined threshold, say M , it will be
scheduled. This ensures that every link is scheduled within �+M transmission
instants16.

The underlying scheduler in this example is TOD and corresponds to the
constant-penalty TOD scheme in [18] with a penalty (vector) of Θ:

e+ = (I − Φ(r, ζ))(e + d), (3.50)

ζ+ = (I − Φ(r, ζ))(ζ + Θ) + Φ(r, ζ)(e + d), (3.51)

r+ = (I − Φ(r, ζ))(r + 1), (3.52)

where 1 = [1 . . . 1]T , the scheduling function Φ is given by

Φ(r, ζ) = diag{ϕj(r, ζ)Isj
}, j ∈ [1, . . . , �]

and

ϕn(r, ζ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if [n = min{m : rm ≥M}]∨[
n = min

(
arg max1≤j≤N |ζj |

)
∧(rm < M,∀m ∈ {1, . . . , N})]

0, otherwise

(3.53)

a ∧ b and a ∨ b denote the logical conjunction and logical disjunction of two
conditions a and b, respectively. The role of estimating e is played by ζ and
through the term Φ(r, ζ)e, ζ is updated with ej whenever the jth link is
transmitted. For those links that are not transmitted, the estimated error is
incremented by a fixed penalty Θ that might capture the worst-case growth
of error (in the absence of disturbance) for a given MATI. In addition to
performing this ad hoc estimation, the scheduling protocol counts the number
of transmission instants that a link has not been visited for, the link’s silent
time, and schedules links that have exceeded a predetermined threshold for
silent-time. In this way, if ζ is degenerating into an arbitrarily bad estimate of
e, all links will continue to be visited within a fixed-length, finite window of
transmission instants through the mechanism of forcing a finite silent-time for
each link. In a loose sense, the protocol’s behavior will “often” be qualitatively
similar to that of RR, a protocol that has been shown to lead to Lp stability
of the NCS with appropriate conditions. �

3.3.5 a.s. Covering Protocols

By a random protocol, we mean a sequence of random transmission times
together with i.i.d. random jump maps Qi that are independent of e with
16 The silent-time protocols described in [18] have the links measure continuous time

as opposed to counting the number of transmission instants elapsed (discrete-
time) and set the silent-time threshold in terms of an integer multiple of MATI,
say Mτ . Since, for all i ∈ N, Mτ ≥ M(tsi+1 − tsi+1), our silent-time threshold
will be smaller for the same M but the protocol will behave in precisely the same
manner as when using the verbatim definition of silent-time given in [18].
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reference to (3.31a). That is, Qi are i.i.d. random matrices taking values in
the finite setMne

= {M0,M1, . . . ,M�}, where M0 = Ine
and Mj is such that

Mje = Mj(e1, . . . , ej , . . . , e�)
= (e1, . . . , ej−1,0, ej+1, . . . , e�).

We make this definition more precise shortly. The intuition behind this model
is that at a transmission time ti, either some link j will acquire the channel
and have its component of e set to zero, that is,

ej(t+i ) = 0, ek(t+i ) = ek(ti), k �= j.

Hence Qi = Mj or else more than one node attempted to transmit resulting in
a collision with e remaining unchanged (Qi = M0). Due to random “back-off”
times, and wait times inserted into medium access protocols, transmission
times are potentially random. Collectively, these issues are the same issues
presented in multi-user access in computer and mobile voice networks though
the network access patterns are somewhat different. See [14] for an overview.

Definition 3.4. For an �-link NCS, abstractly, we define a random protocol
as a discrete Markov chain Qi subordinated by a renewal process17 N(t) such
that

(1) Qi ∈ Mne
are i.i.d. random ne × ne with associated link and collision

probabilities given by
P {Qi = Mk} = pk.

(2) The sequence of arrival times {ti}i∈N is defined inductively by:

t0 = τ0,

where τ0 ∼ Exp(λ) and for each i > 0,

ti = ti−1 + τi,

τi ∼ Exp(λ), where the sequence {τi} is i.i.d. We set

N(t) =
{

0, t ∈ [0, t0),
k, t ∈ [tk−1, tk).

Hence, N(t) is a Poisson process with intensity λ. �

Essentially, the τis denote the wait time after the arrival of a packet (before
a new transmission begins). When not otherwise stated, we will henceforth
assume that P {Qi = Mk} = P {Qi = Mj} = (1 − p0)/�, k, j �= 0, i.e., each

17 More precisely, the process of interest is in fact a marked point process. See [10]
for an exposition.
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link is equally likely to transmit successfully. This assumption is not strictly
necessary for our analyses, however, any other distribution of probabilities
results in a static choice of priorities among links where one link may be
favored over another during contention. There may be examples of NCS that
would benefit from such an adjustment of relative link priorities offline in
terms of required transmission rates or greater robustness of stability but as
these choices are made offline and not in response to the evolution of the NCS
state online, we believe that the scope of exploiting this degree of freedom is
limited.

We pursue here a stochastic analogue of the PET property described in
Section 3.3.4.

Definition 3.5 (Cover time). Consider a random protocol in the sense of
Definition 3.4 for an �-link protocol and define

T0 = min {j ≥ 1: {M1, . . . ,M�} ⊂ {Q0, . . . , Qj−1}}
and, inductively for i > 0,

Ti = min
{
j ≥ 0: {M1, . . . ,M�} ⊂ {QTi−1 , . . . , QTi−1+j−1}

}
.

We refer to Ti as the ith cover time, and collectively the cover time process.
It is clear from our definition of Qi that Ti is a stationary process. �

Definition 3.6 (Covering sequence). Let τi = ti+1 − ti, as in Definition
3.4, that is, τi are inter-arrival times. We say that

C(j, k) = {(Qj , τj), . . . , (Qk, τk)}, k ≥ j,

is a covering sequence if and only if {M1, . . . ,M�} ⊂ C(1)(j, k).18 It is easy
to see that cover times are simply the lengths of consecutive disjoint covering
sequences. �

Remark 3.3. From our definition of random protocols, the distribution of Tn is
given by the solution to the (weighted) coupon collectors problem. When pi =
pj , i, j �= 0, we have the following closed form expression for the expectation:

E[T ] = �H�/(1− p0), (3.54)

where H� is the �th harmonic number and we have dropped the time in-
dex n since Tn is stationary. We also have the bound for the distribution,
P {Tn ≥ β� ln �/(1− p0)} ≤ �−(β−1)/(1 − p0), for any β > 1. Intuitively,
Tn = E[T ] “most of the time” and P {Tn <∞} = 1. �

Our abstract definition of a contention protocol is a model for the con-
tention protocols discussed earlier and to that end we present two natural
examples in this setting.
18 The notation C(1)(j, k) refers to the covering sequence of matrices Qi with no

reference to inter-transmission times τi, i.e., {Qj , . . . , Qk}.
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Definition 3.7 (Almost surely finite cover time). We say that a protocol
is a.s. covering or has an a.s. finite cover time if in Definition 3.5

(∀i ∈ N) P {Ti <∞} = 1. �

Note that from the preceding discussion, this property is verified by all con-
tention protocols in the sense of Definition 3.4.

3.3.6 Slotted p-Persistent CSMA

What has been referred to as “scheduling” and the associated scheduling pro-
tocols by [13] is generally known as medium access in the communications
literature. Carrier sense multiple access with collision detection (CSMA/CD)
is by far the most widely used medium access protocol by virtue of the sheer
volume of Ethernet and Ethernet-like networking devices shipped and manu-
factured each year.

CSMA/CD is a simple protocol: Links listen for transmissions on the chan-
nel. A link wanting to transmit acquires the channel when it senses that the
channel is idle. When more than one link senses that the channel is idle and
begins transmission, a collision occurs. At this point, all transmissions are
immediately aborted. There are several variants of CSMA/CD that prescribe
how transmissions are rescheduled and how links initially acquire the channel.

With slotted p-persistent CSMA, rather than have links transmit when-
ever the channel is idle, links are only permitted to transmit at prescribed
transmission slots that occur every ts > 0 seconds in slotted protocols. At
the start of slot sk, links S = {i, . . . , j} intending to transmit acquire the
channel with a probability of p. If a collision occurs, links Sc are permitted to
transmit in the next slot and links S reschedule their transmissions at slots
{sk+di

, . . . , sk+dj
}.

As alluded to earlier, the primary reason that CSMA protocols and indeed,
all contention protocols work in practice is that the access patterns of com-
puter and voice networks are “bursty” in nature. The assumption is that a link
will occasionally transmit a burst of information and remain otherwise idle.
Transmissions are expected to eventually succeed as links are “infrequently”
contending for the channel.

The situation is quite different for control networks with the implication
that medium access patterns are constant rather than bursty and for slotted
p-persistent CSMA, we assume that every slot will be in contention. Another
key difference between computer networks and NCS is in the treatment of col-
lisions and dropouts. NCS should not buffer failed transmissions of controller
or sensor values but rather, attempt to transmit the latest values when a slot
is free. As the maximum number of links contending slots is constant for every
slot, there is no reason for a link to delay transmission for more than one slot
after a collision.
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With these assumptions, consider an �-link NCS with the p-persistent
CSMA protocol. The probability P {Qi = Mj} that a particular link j trans-
mits successfully during the ith slot is given by

P {Qi = Mj} = p(1− p)�−1.

It is clear that P {Qi = Mj} is maximized when p = 1/�. We will henceforth
set p = 1/� and have that

P {Qi = Mj} =
1
�

(
1− 1

�

)�−1

=
(�− 1)�−1

��
.

Notice that in this “optimal” case,

P {Qi = Mj} = P {Qi = Mk} = (�− 1)�−1/�� for j, k �= 0

and the probability of a collision is given by P {Qi = M0} = 1−(�−1)�−1/��−1.
Finally, we assume that slots occur every ts > 0 seconds and hence, p-
persistent CSMA is a contention protocol in the sense of Definition 3.4 where
inter-arrival times τi are deterministic.

3.3.7 CSMA with Random Waits

Whereas the use of fixed slots tends to improve throughput and reduce col-
lisions with computer networks, e.g., slotted versus pure ALOHA, the con-
tention by every link at every slot forces transmissions to happen in lock-step
with NCS network access patterns with the potential for a collision at every
slot.

Suppose that instead of immediately acquiring the channel with proba-
bility p after sensing the channel to be idle or after a new slot arrives, links
instead wait for a random amount of time before transmitting. In partic-
ular, if a particular link j waits for a random time η′j ∼ Exp(λ/�), then,
P {Qi = Mj} = (1− p0)/�, j �= 0. The actual wait time before any particular
transmission will be given by

τ = min{η′1, . . . , η′�};

that is, the link that waits the least gets to transmit first. Hence, τ ∼ Exp(λ).
Assuming the wait times are i.i.d. for each link, this is the prototypical example
of what we mean by a stochastic protocol and a stochastic channel.

In the presence of transmission errors, p0 is generally nonzero and con-
ceptually, p-persistent CSMA and CSMA with random waits are essentially
the same apart from the fact that the transmission process is truly random
with the latter. While CSMA with random waits can be thought of as a pro-
tocol in its own right when the random waits are enforced explicitly in the
implementation, it can also be thought of as a model of medium access with
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NCS access patterns while using a class of CSMA wireless protocols. Delays
in signal detection, multi-path effects and varying processor loads mean that
links are only prepared to transmit after some delay upon sensing the channel
being idle and although the cumulative effects of these delays may not be
exponentially distributed, the principle remains the same.

3.4 NCS Stability

The notion of robustness of various stability properties plays a fundamental
role in practical design and implementation of control systems as evidenced
by the extensive literature discussing, for example, input-to-state stability
(ISS), H2, H∞ design and variants of robust stability. To that end, [8] and
[9] have examined Lp and input-to-state stability of NCS, respectively and it
was shown in [13] that persistently exciting scheduling protocols lead to Lp

stable NCS when appropriate conditions are imposed on transmission rates
and the nominal system and similar results were provided for UGES and
UGAS protocols in [8] and [9], respectively. While the proof techniques and
settings are substantially different, the novel use of various small-gain the-
orems is a unifying theme throughout these results and a powerful tool for
quantifying robustness. See [7, Chapter 5.4] for an introduction to the notion
of input/output stability gain and [6] for general ISS small-gain results.

We outline several NCS stability results in the ensuing sections and refer
the reader to [8], [9] and [13] where the results are stated and proved in
greater generality. Finally, while these results are ISS or input–output stability
(IOS) type results, whenever exogenous perturbations are removed, UGES and
UGAS can be recovered under additional mild technical assumptions. See [8,
Section II-B], for instance.

We first recall the definition of Lp stability and detectability for a system
Σz with jumps:

Σz : ż = f(t, z, w), t ∈ [ti, ti+1] , (3.55)

output y(t) = g(t, z) and with jump equation

z(t+i ) = h(i, z(ti)). (3.56)

Let f : R → Rn be a (Lebesgue) measurable function and define ‖f‖p :=(∫
R
|f(s)|pds)1/p for 1 ≤ p < ∞ and define ‖f‖∞ := ess. supt∈R |f(t)|. We

say that f ∈ Lp for p ∈ [1,∞] whenever ‖f‖p < ∞. Let f : R → Rn and let
[a, b] ⊂ R. We use the notation

‖f [a, b]‖p :=

(∫
[a,b]

|f(s)|pds
)1/p

to denote the Lp norm of f when restricted to the interval [a, b].
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Definition 3.8. Let p ∈ [1,∞] and γ ≥ 0 be given. We say that Σz is Lp

stable from w to y with gain γ if ∃K ≥ 0: ‖y[t0, t]‖p ≤ K|z0|+ γ‖w[t0, t]‖p.�
Definition 3.9. Let p, q ∈ [1,∞] and γ ≥ 0 be given. The state z of Σz is said
to be Lp to Lq detectable from output y with gain γ if ∃K ≥ 0: ‖z[t0, t]‖q ≤
K|z0|+ γ‖y[t0, t]‖p + γ‖w[t0, t]‖p. �

An exposition of these ideas as they pertain to NCS can be found in [8,
Section II-B].

3.4.1 Lp Stability of NCS with Lyapunov UGES Protocols

A more general version of the following result was first presented in [8] and
asserts that Lyapunov UGES scheduling protocols preserve Lp stability of the
network-free system under appropriate conditions and for small enough values
of MATI.

Theorem 3.1. Consider NCS (3.29)–(3.31b) and suppose that:

(i) the NCS scheduling protocol (3.31a) is Lyapunov UGES with Lyapunov
function W that is locally Lipschitz in e and uniformly in i, and there
exists L ≥ 0 such that:〈

∂W (i, e)
∂e

, g(t, x, e, w)
〉
≤ LW (i, e) + |ỹ|, (3.57)

for almost all e ∈ Rne , for all (x,w) ∈ Rnx ×Rnw , for all t ∈ (ti, ti+1), for
all i ∈ N, where ỹ : Rne × Rnw → R is a continuous function of (x,w);

(ii) System (3.29) is Lp stable from (W,w) to ỹ with gain γ for some p ∈ [1,∞];
(x,w) is Lp to Lp detectable from ỹ; (e, w) is Lp to Lp detectable from
W ; and

(iii) MATI satisfies τ ∈ (ε, τ∗), ε ∈ (0, τ∗), where

τ∗ =
1
L

ln
(

L + γ

θL + γ

)
, (3.58)

and θ comes from (3.41).

Then, the NCS is Lp-stable from w to (x, e) with linear gain. �

Remark 3.4. Within the framework of hybrid systems presented in [4], results
analogous to Theorem 3.1 are developed in [1] where τ∗ is given by

τ∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Lr

arctan

⎛
⎜⎝ r(1− θ)

2
θ

1 + θ

( γ

L
− 1

)
+ 1 + θ

⎞
⎟⎠ , γ > L,

1− θ

L(1 + θ)
, γ = L,

1
Lr

arctanh

⎛
⎜⎝ r(1− θ)

2
θ

1 + θ

( γ

L
− 1

)
+ 1 + θ

⎞
⎟⎠ , γ < L,

(3.59)
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where

r =

√∣∣∣∣( γ

L

)2

− 1
∣∣∣∣ . (3.60)

This bound is shown to improve upon (3.58) in [1] when verifying UGES. The
results therein are stated for UGAS, UGES and semi-global practical ISS and
can, in principle, be extended to apply to Lp IOS. �

3.4.2 Lp Stability of NCS with PET Protocols

The following theorem asserts that PE protocols lead to Lp stability of the
NCS for sufficiently small MATI. While we do not provide a closed-form ex-
pression for MATI bounds, the bounds are readily obtained in examples by
numerically solving for τ∗ in (3.59). Note that we only consider stability of e
and x. The decision-vector, if used in the protocol being analyzed, may fail to
verify any stability properties but as ê has no physical significance as a state
vector whose evolution is governed by the protocol, this is generally not an
issue. Let An denote the set of all n× n matrices and let A+

n denote the sub-
set of all matrices that are positive semi-definite, symmetric and have positive
entries and let Rn

+ denote the nonnegative orthant.

Theorem 3.2. Consider NCS (3.29)–(3.31b) and suppose that:

(i) the NCS scheduling protocol (3.31b) is uniformly persistently exciting in
time T and there exists A ∈ A+

ne
and a continuous ỹ : Rnx × Rnw → R

ne
+

so that the error dynamics (3.30) satisfy19

g(t, x, e, w) � Ae + ỹ(x,w) (3.61)

for all (x, e, w) ∈ Rnx × Rne × Rnw , for all t ∈ (ti, ti+1), for all i ∈ N,
where ỹ = G(x) + H(w);

(ii) System (3.29) is Lp stable from (e, w) to G(x) with gain γ for some p ∈
[1,∞]; (x,w) is Lp to Lp detectable from ỹ;

(iii) and MATI satisfies τ ∈ (ε, τ∗), ε ∈ (0, τ∗), where τ∗ =
ln(z)
|A|T and z solves

z(|A|+ γT )− γTz1−1/T − 2|A| = 0, (3.62)

where A comes from (3.61).

Then, the NCS is Lp-stable from w to (x, e) with linear gain. �

19 Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn. The vector partial order �
is given by x � y ⇐⇒ (x1 ≤ y1) ∧ · · · ∧ (xn ≤ yn) and e and g are given

by e := (|e1|, . . . , |ene |)T and t
g�→ g(t), respectively. That is, e is the vector

that results from taking the absolute value of each scalar component of e and g
operates analogously on the image of g.
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Remark 3.5. Suppose that g(t, x, e, w) = Bx + Ce + Dw and let A = [aij ],
where aij = max{|cij |, |cji|} and ỹ(x,w) = Bx + Dw. We immediately have
that A and ỹ(x,w) satisfy Condition 2 of Theorem 3.2 and ‖ỹ(x,w)‖p =
‖Bx + Dw‖p ≤ ‖Bx‖p + ‖Dw‖p. Whenever g satisfies a linear growth bound
of the form |g(t, x, e, w)| ≤ L(|x|+ |e|+ |w|), it is straightforward to construct
an appropriate A and ỹ. �

Remark 3.6. Suppose that the network-free system is Lp stable from w to x
with gain γ and the NCS satisfies the hypotheses of Theorem 3.2. Then for
any γ∗ > γ, it is possible to show that there exists a MATI τ such that the
NCS is Lp stable from w to x with gain γ∗. This corollary of Theorem 3.2 is
particularly useful in the design of optimal/robust controllers. �

3.4.3 Lp Stability of NCS with Random Protocols

The following result analyzes the input–output Lp stability (IOS) of NCS (in
expectation), the essence of which is that outputs (or state) of an NCS verify
a robustness property with respect to exogenous disturbances. We stress that
it is only the network protocol and channel that induces randomness in our
models and that the exogenous disturbances are Lp signals as in [8] and [13].

Although link cover times and inter-transmission are now random, and
hence, not uniform, if the network-free system is Lp stable, the NCS remains
so with any contention protocol, in the sense of our definition, whenever at-
tempted transmissions occur “fast enough.” By “fast enough” we mean that
there exists a choice of intensity λ of the transmission process parameterized
by properties of the protocol and the NCS dynamics such that the NCS is Lp

stable-in-expectation from disturbance to NCS state with a finite expected
gain.

Intuitively, and despite the presence of collisions, random packet dropouts
and random inter-arrival times, it seems natural to expect that the stability
of the NCS (3.24)–(3.28a) for high enough “average” transmission rates and
in light of the a.s. cover times of contention protocols and in analogy with
persistently exciting scheduling protocols, this stability ought to be robust in
an Lp sense. In fact, if we relax our notion of “Lp stability” to “Lp stability-in-
expectation,” we can prove a positive result in that direction. The definition of
these properties is obtained, essentially, by using expected norms E‖ ·‖ in lieu
of ‖ · ‖ in Definitions 3.8 and 3.9. We stress that, as developed in this chapter,
these notions only apply to hybrid systems of the form (3.55) and (3.56), i.e.,
we insist that w is “essentially” an Lp signal and not a Lèvy process (cf. [5])
specifically because we are concerned with robustness of stability in the sense
of, e.g., [3], whereas a Lèvy process characterization of disturbances may be
more appropriate in modeling sensor noise and quantization phenomena.

While the following results are stated for the delay and inter-arrival pro-
cesses presented in Definition 3.4, it is straightforward to extend them to a
more general class of processes.
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Theorem 3.3. Consider an �-link NCS (3.29)–(3.31b) and suppose that:

(i) the NCS employs a contention scheduling protocol with i.i.d. cover times
Ti and the inter-arrival process is Poisson with intensity λ and also suppose
that the NCS error dynamics satisfy

g(t, x, e, w) � Ae + ỹ(x,w) (3.63)

for all (x, e, w) ∈ Rnx × Rne × Rnw and almost all t, where A is a
nonnegative symmetric ne × ne matrix with nonnegative entries and
ỹ = G(x) + H(w);

(ii) System (3.29) is Lp stable-in-expectation from (e, w) to G(x) with ex-
pected gain γ for some p ∈ [1,∞]; (3.30) is Lp to Lp detectable-in-
expectation from ỹ.

Then, there exists λ <∞ depending on (�, |A|, γ,E[T ], p0) such that the NCS
is Lp stable-in-expectation from w to (x, e) with a finite linear expected gain
1/(1− γγ∗). Specifically, λ solves γ∗γ < 1 with

γ∗ =
E[T ](1 + ρ)

(λ− |A|)(1− ρ)
,

where,

ρ = (α(1− p0))�
�∏

k=1

�− (k − 1)
�(1− p0α)− (k − 1)(1− p0)α

− 1,

and α =
λ

λ− |A| and λ >
|A|

1− p0
. �

Remark 3.7. While no bounds for λ are given, the requisite intensity can be
found numerically. �

3.4.4 Lp Stability of NCS with a.s. Lyapunov Protocols

The following result is a natural extension to Theorem 3.1 for channels that
have a non-zero probability of packet dropout and is intended to be used in
much the same way as the latter result. While [8] presents sufficient condi-
tions for Lp stability in the presence of deterministically characterized packet
dropouts for Lyapunov UGES protocols, we believe the following result is a
more natural treatment of dropouts and the conditions are directly verifiable.

Theorem 3.4. Consider NCS (3.29)–(3.31b) and suppose that:

(i) the NCS scheduling protocol (3.31a) is a.e. Lyapunov U GES with Lya-
punov function W that is locally Lipschitz in e and uniformly in i, and
there exists L ≥ 0 such that:
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∂W (i, e)

∂e
, g(t, x, e, w)

〉
≤ LW (i, e) + |ỹ|, (3.64)

for almost all e ∈ Rne , for all (x,w) ∈ Rnx ×Rnw , all t ∈ (ti, ti+1), for all
i ∈ N, where ỹ : Rne × Rnw → R is a continuous function of (x,w);

(ii) System (3.29) is Lp stable from (W,w) to ỹ with finite expected gain γ for
some p ∈ [1,∞]; (x,w) is Lp to Lp detectable from ỹ with finite expected
gain; e is Lp detectable from W with finite expected gain;

(iii) the channel packet dropout probability is given by p0 ≥ 0 and (3.36) is
satisfied with an i.i.d. sequence {κi} such that the intensity of the inter-
transmission process λ satisfies

λ >
γ + L

1−E[κ]
. (3.65)

Then, the NCS is Lp-stable from w to (x, e) with finite expected linear gain.
�

Remark 3.8. As the motivation for studying a.s. Lyapunov UGES comes from
the use of Lyapunov UGES protocols on non-ideal channels, we can restate
several of the conditions of Theorem 3.4 in light of Proposition 3.1. Let θ be
as in (3.41) and let the probability of packet dropout p0 satisfy (3.42). The
requisite intensity in (3.65) becomes

λ >
γ + L

(1− p0)(1− θ)
. (3.66)

�

Remark 3.9. As in [8] and [13], in both this and the preceding section, several
generalizations and specializations of the stability results are possible. With
additional technical assumptions on the NCS dynamics, one can conclude
uniform global exponential stability (in expectation) and the assumptions on
the various reset maps can be relaxed so as to infer ISS-like properties in lieu
of Lp stability as discussed in [9]. If we forgo the detectability assumptions
in the hypotheses of Theorems 3.3 and 3.4 we can only infer input-to-output
stability-in-expectation. �

3.5 Case Studies and Comparisons

The aim of this section is to examine the various results presented in this chap-
ter and compare them to results presented in the literature. For simplicity we
will focus on the following linear time-invariant systems where the simplified
equations for an �-link NCS are given by (3.6) together with jump equations
(3.31a) or (3.31b).
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Example 3.6 (Batch Reactor). The linearized model of an unstable batch re-
actor is a two-input-two-output NCS that can be written as:

ẋP = APxP + BPu, y = CPxP ,

where CP =
[

1 0 1 −1
0 1 0 0

]
,

AP =

⎡
⎢⎢⎣

1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

⎤
⎥⎥⎦ , BP =

⎡
⎢⎢⎣

0 0
5.679 0
1.136 −3.146
1.136 0

⎤
⎥⎥⎦ .

The system is controlled by a PI controller with a state-space realization
prescribed by

ẋC = ACxC + BCy, u = CCxC + DCy,

and

AC =
[

0 0
0 0

]
, BC =

[
0 1
1 0

]
, CC = −

[
2 0
0 8

]
, DC = −

[
0 2
−5 0

]
.

Assuming that only the outputs are transmitted via the network, we have
a two-link NCS (� = 2, l1 = l2 = 1) with error and state equations prescribed
by (3.6) where

A11 =
[
AP + BPDCCP BPCC

BCCP AC

]
, A12 =

[
BPDC

BC

]
,

A21 = − [CP 0
]
A11, A22 = − [CP 0

]
A12.

The error equation is given by

ė = A22e + A21x. (3.67)

�

This example is used as the benchmark in comparing the inter-transmission
bounds with the stability analysis frameworks outlined in this chapter and in
[16, 18, 19].

3.5.1 Comparison of Analytical Inter-transmission Bounds

Prior to making numerical comparisons with respect to the bounds obtained
for Example 3.6, we provide a brief summary of the analytical bounds in
Table 3.1 as they apply in general. The various constants used are defined
and explained in the respective referenced sections and details can be found
in the respective sources cited in the table. These are analytical bounds that
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Table 3.1. Summary of inter-transmission bounds for various classes of protocols

MATI – Section 3.2.2, [16, 18, 19] (Worst Case Analysis)

RR & TOD Protocol τWC
3.2.2 =

c3

M�(� + 1)khkfc4

Silent-time Protocols τST
3.2.2 = min

(
ln(2)

khT
,
S

8
,

S

16c1

p
c1/c2kh

)
, where

silent-time T S = [kh

p
c1/c2

P�
i=1(i + T − �)]−1

MATI – Section 3.4.1, [8] (Lyapunov UGES Analysis)

RR Protocol τRR
3.4.1 =

1

kh

√
�

ln

 √
�(kh + γ)

kh

√
� − 1 + γ

√
�

!

TOD Protocol τTOD
3.4.1 =

1

L
ln

 
L
√

� + γ
√

�

L
√

� − 1 + γ
√

�

!

MATI – Section 3.4.2, [13] (PET Analysis)

PET Protocols τPE
3.4.2 =

ln(z)

|A|T , where z solves

(including RR) z(|A| + γT ) − γTz1−1/T − 2|A| = 0

Reciprocal-Intensity – Section 3.4.3, [11] (a.s. Cover Time Analysis)

Stochastic Protocols τSTO
3.4.3 <

(1 − p0)

|A| ,

P {dropout} = p0 solved numerically via Theorem 3.3

Reciprocal-Intensity – Section 3.4.4, [11] (a.s. Lyapunov UGES Analysis)

RR Protocol τRR
3.4.4 =

(1 − p0)(
√

� −√
� − 1)

�(γ + kh)

TOD Protocol τTOD
3.4.4 =

(1 − p0)(
√

� −√
� − 1)√

�(γ + L)
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guarantee stability. For all bounds presented, stability is in the sense of Lp

(in-expectation) except for those derived in [16, 18, 19], where UGES is the
applicable notion of stability.

Table 3.2 compares a selection of these MATI bounds as they apply to TOD
and RR. It is shown in [13, Section VI-C] that for LTI systems employing RR
scheduling, MATI bounds obtained within the framework outlined in Section
3.4.2 are asymptotically larger by a factor of O(�1/2) than the MATI obtained
in [8] which are, in turn, shown to be analytically superior to the bounds in
[15] for both TOD and RR. As indicated in Remark 3.4, for protocols that are
Lyapunov UGES or UGAS, [1] may offer improved MATI bounds over [8] and,
for the batch reactor example, these were demonstrated to be an improvement
of approximately 10%.

Table 3.2. Summary of analytic comparisons for NCS without dropouts for an
�-link NCS with constants as in (3.13)–(3.15)

Linear Systems

RR Protocol
τRR
3.4.1

τWC
3.2.2

≥ 2
� + 1√

�

r
c2

c1

„r
c2

c1
+ 1

«

τPE
3.4.2

τRR
3.4.1

≥ O(�1/2) as � → ∞

TOD Protocol
τTOD
3.4.1

τWC
3.2.2

≥ 2(� + 1)

r
c2

c1

„r
c2

c1
+ 1

«

Nonlinear Systems

RR Protocol
τRR
3.4.1

τWC
3.2.2

≥ 8
� + 1√

�

„
c2

c1

« 3
2
„r

c2

c1
+ 1

«

TOD Protocol
τTOD
3.4.1

τWC
3.2.2

≥ 8(� + 1)

„
c2

c1

« 3
2
„r

c2

c1
+ 1

«

3.5.2 Comparison of Numerical Inter-transmission Bounds
(p0 = 0)

For simplicity, and since Lp stability results are not provided in [18], we will
largely restrict our discussion without exogenous disturbances and examine
bounds that verify UGES and related properties. Much of the focus will be
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on RR scheduling as it is the only scheduling protocol that can be mutually
treated by the analysis frameworks in this chapter, [8] and [18] but several
other protocols will be examined as well.

We present and compare various results for the batch reactor example,
Example 3.6, following [8], [13], [15]. The comparison results are summarized
below:

(a) The MATI bounds are shown in Table 3.3 with the bounds computed via
the PE framework larger than those obtained using the results of [18]
by a factor of 107 and larger than the bound obtained by the results of
[8] by a factor of 1.5. The bounds τPE

3.4.2 and τWC
3.2.2 apply to any PET

protocol for the original two-link system. The bound τRR
3.4.1 only applies to

RR (T = � = 2).
(b) When using RR, τPE

3.4.2 that achieves UGES is equivalent to a network
throughput of 84 kbps (assuming 128 byte frames), achievable on cur-
rent 802.11g and 802.11b wireless networks and τRR

3.4.4 requires an effective
network throughput of approximately 125 kbps.

(c) We formally fix the constants used to compute the respective bounds and
plot τPE

3.4.2 and τRR
3.4.4 with T = � ∈ [1, 1000] in Fig. 3.6 to examine the

behavior of the bounds as the number of links grow. We also fix � = 2
and allow T ≥ 2 to vary for τST

3.2.2 and τPE
3.4.2. Despite the relatively modest

improvements for the nominal two-link system using RR, the differences
are significant on the log10(T )× log10(τ∗) scale used in Fig. 3.6 when we
formally increase T or, equivalently, the number of links.

Simulations and alternative techniques for calculating MATI are a key test
of the practicality of the MATI bounds and stability results produced in this
chapter and in the literature. For linear systems with equidistant transmis-
sion times employing RR scheduling, an actual analytic MATI bound can be
computed as discussed in [8, Section VII-A]. For general protocols, however,

Theorem 5.2
[1, Section III] T=N
[2, Theorem 1] N=2, T  2 
[2, Theorem 1] T=N

log10HTL
log10(t )*

1.25 1.5 1.75 2.25 2.5 2.75 3

- 14

- 12

- 10

- 8

- 6

- 4

- 2

τPE
3.4.2

τRR
3.4.1

τST
3.2.2, � = 2, T ≥ 2

τST
3.2.2, � = T

Fig. 3.6. Batch reactor MATI bounds comparison for PET protocols, T ∈ [1, 1000]
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Table 3.3. MATI bounds achieving UGES for Example 3.6 with PET and Lyapunov
UGES protocols

T = 2 T = 6 T = 50

τPE
3.4.2 0.0123 0.004 4.75 × 10−4

τRR
3.4.4 0.0082 N/A N/A

τWC
3.2.2 1.05 × 10−9 2.86 × 10−10 3.18 × 10−11

τTOD
3.4.4 0.01 N/A N/A

τPE
3.4.2/τWC

3.2.2 1.18 × 107 1.40 × 107 1.49 × 107

τPE
3.4.2/τRR

3.4.4 1.50 N/A N/A

τPE
3.4.2/τTOD

3.4.4 1.23 N/A N/A

simulations are the only resort, and as such, no firm conclusions can be drawn
vis-a-vis the theoretical bounds for arbitrary NCS.

3.5.3 Comparison of Numerical Inter-transmission Bounds
(p0 > 0)

Finally, we examine Example 3.6 for channels where p0 > 0. In particular, we
look at the CSMA protocol described in Section 3.3.7 and hence,

E[T ] = 2 ·H2/(1− p0) = 3/(1− p0). (3.68)

By Theorem 3.3, the batch reactor system will be Lp stable-in-expectation
from w to x if

E[T ](1 + ρ)
(λ− |A|)(1− ρ)

γ < 1, (3.69)

where γ is the Lp gain of x subsystem from the input e to an “auxiliary”
output ỹ = A21x.

By solving for λ numerically in (3.69), subject to the constraint λ >
|A|/(1− p0), we are able to establish expected transmission rate bounds as a
function of p0 that ensure Lp stability of the batch reactor system. The batch
reactor system with the CSMA protocol was also simulated using expected
transmission rates of [1,∞) transmissions per second for p0 ∈ [0.1, 0.8]. A
bisection heuristic was used to find the intensities that resulted in stability
with the ensemble average of multiple simulations with fixed initial conditions
to yield the simulation-derived intensity bound.

The expected transmission rate bounds and expected inter-transmission
times are shown in Table 3.4 as a function of dropout/collision probability p0

and plotted in Fig. 3.7. Simulation-derived bounds are also listed in Table 3.4.
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Fig. 3.7. Batch reactor expected transmission rate bounds for stochastic protocols
as a function of dropout/collision probability p0 with identical initial conditions

For the initial condition used, the bounds obtained via Theorem 3.3 are
within a factor of 4 of simulation-based bounds, and for example, demonstrate
that with a 50% probability of dropout/collision, the network must deliver
approximately 922 kbps (116 × 8 bits) of network throughput to maintain
Lp stability. This is well within the realm of ordinary Ethernet and 802.11
wireless technology.

We can also consider the example within the context of a.s. Lyapunov
UGES. Suppose that the TOD scheduling is employed. From Table 3.1, the
requisite intensity for the conditions of Theorem 3.4 to be verified is

Table 3.4. Transmission rate and inter-transmission time bounds λ and τSTO
3.4.3 = 1/λ

are derived via Theorem 3.3; λ∗ and τSTO∗
3.4.3 = 1/λ∗ are derived via simulation

p0 λ τSTO
3.4.3 = 1/λ (s) λ∗ τSTO∗

3.4.3 = 1/λ∗ (s)

0 50.19 0.02 14.77 0.0677

0.1 57.46 0.017 16.05 0.0623

0.2 66.52 0.015 18.38 0.0544

0.3 78.15 0.013 21.37 0.0468

0.4 93.63 0.011 25.00 0.0400

0.5 115.27 0.0087 31.65 0.0316

0.6 147.71 0.0068 37.74 0.0265

0.7 201.74 0.0049 61.35 0.0163

0.8 309.74 0.0032 145.77 0.00686
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λ >
108.07
1− p0

.

For an ideal channel (p0 = 0), this corresponds to a transmission at least
once every 9.25 ms compared to a MATI of 0.01 s for the deterministic results
presented in [8] – a factor of 1.08 improvement in favor of the deterministic
results. The notion of MATI implies that every inter-transmission time is
uniformly bounded whereas the intensity (or reciprocal) is an “average MATI”
– individual inter-transmission times can individually exceed or fall short of
the average. Notably, both values fall short of the figure obtained for the
CSMA protocol of 0.02 s. As the characterization of dropouts in [8] is markedly
different from that presented here, we do not pursue a comparison for p0 > 0.
We can, however, compare CSMA and TOD in the presence of dropouts as
presented in this section and we see that the trend is continued for p0 > 0,
e.g., the requisite intensity for p0 = 0.5 is over 216 for TOD and less than 116
for CSMA.

3.6 Conclusions

This chapter presented several general frameworks for emulation-based de-
sign of a general nonlinear control systems with disturbances that rely upon
properties of the network-free system and various properties of the scheduling
protocol used. Our guiding philosophy in the approach is the following qual-
itative statement that intuition suggests: for high enough transmission rates,
a scheduling protocol that is guaranteed to reduce the network-induced error
within a finite amount of time ought to preserve stability properties of the
network-free system. In particular, this is the case for (a.s.) Lyapunov UGES
and UGAS protocols as well as PET and a.s. covering protocols.

Quantitatively, the results outlined provide the sharpest bounds for MATI
and expected transmission rate currently known in the literature for the classes
of systems and protocols analyzed, and in some cases, are the only known
results for certain classes of systems and scheduling protocols.

We qualify this observation by noting that the various protocol properties,
namely, PET , Lyapunov UGES and UGES and their stochastic analogs are
not necessarily the finest characterization possible of any particular protocol.
This is reflected in the disparity between theoretical MATI and transmission
rate values and those obtained by simulations. For example, it is known that
for LTI systems employing RR with equidistant inter-transmission times, an-
alytic MATI bounds that achieve UGES can be computed and, indeed, are
as sharp or sharper than those obtained by any result in this chapter. The
aim of this chapter, however, was to present emulation-type results and de-
sign procedures for the largest class of systems for which results are currently
known and which are useful in practice. To that end, we believe that this
work serves as a useful starting point from which there is still much scope for
improvement.



94 M. Tabbara, D. Nešić, and A.R. Teel
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1. Carnevale D, Teel AR, Nešić D (2007) A Lyapunov proof of an improved
maximum allowable transfer interval for networked control systems. IEEE Trans
Automat Control 52(5):892–897

2. Coyle E, Liu B (1985) A matrix representation of CSMA/CD networks. IEEE
Trans Commun 33(1):53–64

3. Dullerud GE, Paganini F (2000) A course in robust control theory. Springer,
New York

4. Goebel R, Teel AR (2006) Solutions to hybrid inclusions via set and graphical
convergence with stability theory applications. Automatica 42(4):573–587

5. Hespanha JP, Teel AR (2006) Stochastic impulsive systems driven by renewal
processes. In: Proc 17th International Symposium on Mathematical Theory of
Networks and Systems, Kyoto, Japan

6. Jiang ZP, Teel AR, Praly L (1994) Small gain theorem for ISS systems and
applications. Math Control Signals Syst 7:95–120

7. Khalil HK (2002) Nonlinear systems, 3rd edition. Prentice Hall, Englewood
Cliffs, NJ
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Analysis and Design of Networked Predictive
Control Systems

Guo-Ping Liu

University of Glamorgan, Pontypridd, CF37 1DL, UK gpliu@glam.ac.uk

Abstract. This chapter considers the analysis and design of networked con-
trol systems with random communication time delay, which is known to highly
degrade the control performance of the control system. It introduces a novel
control strategy of networked control systems, which is termed networked pre-
dictive control. The stability of the closed-loop networked predictive control
system is analysed. The analytical criteria are obtained for both fixed and ran-
dom communication time delays. The off-line and real-time simulation of the
networked predictive control systems is detailed. Also, this control strategy is
applied to a servo control system through the Ethernet. Various simulation
and experimental results demonstrate the operation of the networked predic-
tive control systems.

Keywords. Networked predictive control, networked system stability, ran-
dom communication delay.

4.1 Introduction

With the emergence of high speed network technology that allows a cluster of
devices to be linked together economically to form distributed networks which
are capable of remote data transmission and data exchanges, distributed con-
trol systems based on networks are increasing rapidly in various applications
(IEEE, 2002). Owing to the use of networks, the complexity and cost of dis-
tributed control systems are reduced greatly and the maintenance of the sys-
tems becomes much easier (Zhang et al., 2001). Because of these attractive
benefits, many industrial companies and institutions have shown great inter-
est in applying various networks to remote control systems and manufacturing
automation.

A feedback control system wherein the control loop is closed through a real-
time network is known as a networked control system (NCS), which includes
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fieldbus control systems constructed on the base of bus technology (e.g., De-
viceNet, ControlNet and LonWorks) and Internet based control systems using
general computer networks. NCS is a completely distributed real-time feed-
back control system that is an integration of sensors, controllers, actuators
and communication networks. It provides data transmission between devices
in order that users at different sites can realize resource sharing and coordi-
nating manipulation.

As there are more and more applications of networked control systems in
industry, such as traffic, communication, aviation and spaceflight, more atten-
tion in this area has been paid to design and analysis of NCS (Zhivoglyadov,
2003). Generally speaking, there are three types of NCS methods: Type 1 –
scheduling methods that guarantee network QoS (quality of service); Type
2 – control methods that guarantee system QoP (quality of performance);
and Type 3 – integrated scheduling and control methods that consider both
QoS and QoP. For Type 1, the following scheduling methods have been devel-
oped: scheduling method MEF (Maximum-Error-First) based on the MATI
(Maximal-Allowable-Transfer-Interval) (Walsh et al., 1999), and a sampling
time scheduling method of network bandwidth allocation and sampling pe-
riod decision for multi-loop NCSs by virtue of the notion “window”, namely
the service window of each transmission data in the network (Hong, 1995).
For Type 2, there are many control methods developed for NCS, for example,
augmented deterministic discrete-time model method (Halevi, 1988), queuing
method (Luck and Ray, 1994), optimal stochastic control method (Nilsson,
1998), perturbation method (Walsh, 1999), fuzzy logic modulation method
(Almutairi, 2001), event-based method (Tarn and Xi, 1998) and predictive
control (Liu et al., 2004). For Type 3, the following problems have been stud-
ied: the optimal sampling period selection problem for a set of digital con-
trollers (Seto et al., 1996), the sampling period optimization problem under
the schedulability constraints (Ryu and Hong, 1997), and the NCS analysis
and simulation problem solved by two MATLAB r©-based toolboxes: Jitterbug
and TrueTime (http://www.control.lth.se/∼anton, 2003). Internet based con-
trol has also been considered for practical applications, for example, Internet-
based process control (Yang et al., 2003), Internet based control systems as
a control device (Cushing, 2000), Internet robots (Taylor, 2000) and Internet
based multimedia education (Nemoto et al., 1997).

Although various control approaches have been developed for networked
control systems, an approach to actively compensate for the random network
delay is not available. This chapter first introduces a new control strategy to
compensate for the network delay in networked control systems in an active
way, which is named as the networked predictive control. Then, the stability
analysis of closed-loop networked predictive control systems is discussed. Af-
ter this, it details the off-line and real-time simulation and implementation
of networked predictive control systems. Finally this strategy is applied to
control a servo control system through the Ethernet.
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4.2 Networked Predictive Control

Since there is an unknown network transmission delay, a networked predictive
control scheme is proposed by Liu et al. (2004, 2005, 2006). It consists of two
main parts: the control prediction generator (CPG) and the network delay
compensator (NDC). The former is designed to generate a set of future control
predictions. The latter is used to compensate for the unknown random network
delay. To make use of the network advantage of transmitting data packages,
a set of consecutive control predictions in the forward channel are packed
and transmitted through the network at time t. So, this networked predictive
control system (NPCS) structure is shown in Fig. 4.1.

 r(t) 
Networked predictive controller 

Control 
Prediction 
Generator 

Network 
Delay 
Compensator 

 

  Plant 

Network 

u(t) y(t) 

 Fig. 4.1. The networked predictive control system

4.2.1 Design of the Control Prediction Generator

For the sake of simplicity, the following assumptions are made:

(a) The network time delay k in the forward channel is random but bounded
by k̄.

(b) The network time delay f in the backward channel is constant.
(c) The number of consecutive data package drops in the forward channel of

the network is not greater than Nc.
(d) The data transmitted through the network are with a time stamp.

Let �[z−1, p] denote the set of polynomials in the indeterminate z−1 with
coefficients in the field of real numbers and with the order p in a set of non-
negative integer numbers. For example, the polynomial Ak(z−1) ∈ �[z−1, n]
is given by

Ak(z−1) = ak,0 + ak,1z
−1 + ak,2z

−2 + · · ·+ ak,nz
−n.

Consider a SISO (single-input single-output) discrete-time plant described
by the following:
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A(z−1)y(t + d) = B(z−1)u(t) (4.1)

where y(t) and u(t) are the output and control input of the plant, d is the
time delay, and A(z−1) ∈ �[z−1, n] and B(z−1) ∈ �[z−1,m] are the system
polynomials. If there is no network transmission delay, many control design
methods are available for plant (4.1), for example, PID, LQG, MPC, etc. Here,
it assumes that the controller of the system without network delay is given by

C(z−1)u(t) = D(z−1)e(t + d) (4.2)

where the polynomials C(z−1) ∈ �[z−1, nc] and D(z−1) ∈ �[z−1, nd] and
e(t+d) = r(t+d)− ŷ(t+d|t) is the error between the future reference r(t+d)
and the output prediction ŷ(t + d|t).

To compensate for the network transmission delay, the control prediction
sequence u(t + i|t) at time t, for i = 0, 1, 2, . . ., is generated by

C(z−1)u(t + i|t) = D(z−1)e(t + d + i|t) (4.3)

and the error prediction e(t + d + i|t) at time t is defined as

e(t + d + i|t) = r(t + d + i)− ŷ(t + d + i|t) (4.4)

where ŷ(t + d + i|t) is the output prediction at time t and r(t + d + i) is the
future reference input. For the sake of simplicity, the following operations on
predictions are used:

z−1v(i|j) = v(i− 1|j), if i > j > 0 (4.5)

z−1v(i|i) = v(i− 1|i− 1) (4.6)

where v(·|·) represents the control prediction u(·|·) and output prediction
ŷ(·|·). For example,

z−3v(t + 2|t) = z−2v(t + 1|t) = z−1v(t|t) = v(t− 1|t− 1).

For i = 0, 1, 2, . . . , N , there exists the following Diophantine equation:

A(z−1)Ei(z−1) + z−i−fFi(z−1) = 1 (4.7)

where the polynomials Ei(z−1) ∈ �[z−1, i+f−1] and Fi(z−1) ∈ �[z−1, n−1].
It is clear from Assumption (b) that the past outputs up to time t−f are
available on the control prediction generator side. Combining the above and
the controlled plant yields the following output predictions at t:

ŷ(t + d|t) = Fd(z−1)y(t− f) + B(z−1)Ed(z−1)u(t|t)
ŷ(t + d + 1|t) = Fd+1(z−1)y(t− f) + B(z−1)Ed+1(z−1)u(t + 1|t)

... (4.8)

ŷ(t + d + N |t) = Fd+N (z−1)y(t− f) + B(z−1)Ed+N (z−1)u(t + N |t)
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which can be rewritten as⎡
⎢⎢⎢⎣

ŷ(t + d|t)
ŷ(t + d + 1|t)

...
ŷ(t + d + N |t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Fd(z−1)
Fd+1(z−1)

...
Fd+N (z−1)

⎤
⎥⎥⎥⎦ y(t− f)

+

⎡
⎢⎢⎢⎣

B(z−1)Ed(z−1)u(t|t)
B(z−1)Ed+1(z−1)u(t + 1|t)

...
B(z−1)Ed+N (z−1)u(t + N |t)

⎤
⎥⎥⎥⎦ . (4.9)

Considering Assumptions (a), (b), and (c), there should be N ≥ f + k̄+Nc

so that the issue of the random network delay and data dropout can be solved.
The second term on the right side of the above can be separated into two

parts: the first part contains the control sequence before time t and the second
part the future control prediction sequence. So, let⎡

⎢⎢⎢⎣
B(z−1)Ed(z−1)u(t|t)

B(z−1)Ed+1(z−1)u(t + 1|t)
...

B(z−1)Ed+N (z−1)u(t + N |t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Gd(z−1)
Gd+1(z−1)

...
Gd+N (z−1)

⎤
⎥⎥⎥⎦u(t− 1|t− 1)

+ M1

⎡
⎢⎢⎢⎣

u(t|t)
u(t + 1|t)

...
u(t + N |t)

⎤
⎥⎥⎥⎦ (4.10)

where the polynomial Gk(z−1) ∈ �[z−1,m + f + d− 2] and the matrix M1 ∈
�(N+1)×(N+1). Thus,

Ŷ (t + d|t) = F (z−1)y(t− f) + G(z−1)u(t− 1|t− 1) + M1U(t|t) (4.11)

where

Ŷ (t + d|t) =
[
ŷ(t + d|t), ŷ(t + d + 1|t), · · ·, ŷ(t + d + N |t) ]T (4.12)

U(t|t) =
[
u(t|t), u(t + 1|t), · · ·, u(t + N |t) ]T (4.13)

G(z−1) =
[
Gd(z−1), Gd+1(z−1), · · ·, Gd+N (z−1)

]T (4.14)

F (z−1) =
[
Fd(z−1), Fd+1(z−1), · · ·, Fd+N (z−1)

]T
. (4.15)

From the controller designed for the system without network delay, it is
clear that the future control sequence can be expressed by

C(z−1)U(t|t) = D(z−1)
(
R(t + d)− Ŷ (t + d|t)

)
(4.16)
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where R(t + d) =
[
r(t + d), r(t + d + 1), · · ·, r(t + d + N)

]T .
The term C(z−1)U(t|t) can also be separated into two parts: the first part

contains the control sequence before time t and the second part the predicted
future control sequence. Then, let

C(z−1)U(t|t) = H(z−1)u(t− 1|t− 1) + LU(t|t) (4.17)

where H(z−1) =
[
H0(z−1), H1(z−1), · · ·, HN (z−1)

]T , the polynomial

Hi(z−1) ∈ �[z−1,max{nc − i− 1, 0}]

and the matrix L ∈ �(N+1)×(N+1). Combining (4.11), (4.16) and (4.17) gives

H(z−1)u(t− 1|t− 1) + LU(t|t) = D(z−1)R(t + d)−D(z−1)F (z−1)y(t− f)
−D(z−1)G(z−1)u(t− 1|t− 1)−D(z−1)M1U(t|t)

(4.18)
Let

Γ (z−1)u(t− 1|t− 1) + MU(t|t) = D(z−1)
(
G(z−1)u(t− 1|t− 1) + M1U(t|t))

(4.19)
where Γ (z−1) =

[
Γ0(z−1), Γ1(z−1), · · ·, ΓN (z−1)

]T , the polynomial

Γi(z−1) ∈ �[z−1,max{nd + m + f + d− 2, 0}]

and the matrix M ∈ �(N+1)×(N+1). It is assumed that matrix L + M is not
singular, which can be achieved through the design of polynomials C(z−1)
and D(z−1). As a result,

U(t|t) = (L + M)−1
[
D(z−1)R(t + d)−D(z−1)F (z−1)y(t− f)

− (
Γ (z−1) + H(z−1)

)
u(t− 1|t− 1)

]
. (4.20)

Therefore, the control prediction sequence can be determined by the fol-
lowing predictive controller:⎡

⎢⎢⎢⎣
u(t|t)

u(t + 1|t)
...

u(t + N |t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P0(z−1)
P1(z−1)

...
PN (z−1)

⎤
⎥⎥⎥⎦ r(t + d + N)−

⎡
⎢⎢⎢⎣

Q0(z−1)
Q1(z−1)

...
QN (z−1)

⎤
⎥⎥⎥⎦ y(t− f)

−

⎡
⎢⎢⎢⎣

S0(z−1)
S1(z−1)

...
SN (z−1)

⎤
⎥⎥⎥⎦u(t− 1|t− 1) (4.21)

where
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[P0(z−1) P1(z−1) · · ·PN (z−1)]T = (L + M)−1

× [z−N z−N+1 · · · 1]TD(z−1)

[Q0(z−1) Q1(z−1) · · ·QN (z−1)]T = (L + M)−1F (z−1)D(z−1)

[S0(z−1) S1(z−1) · · ·SN (z−1)]T = (L + M)−1
(
Γ (z−1) + H(z−1)

)
and the polynomial Pi(z−1) ∈ �[z−1, nd + N ], Qi(z−1) ∈ �[z−1, nd + n− 1],
and Si(z−1) ∈ �[z−1,max{nc − i− 1, nd + m + f + d− 2, 0}].

4.2.2 Design of the Network Delay Compensator

In order to compensate for the network transmission delay, a network delay
compensator is proposed. A very important characteristic of communication
networks is that they can transmit a set of data at the same time. Thus, it is
assumed that all control predictions at time t are packed and sent to the plant
side through the network. The network delay compensator chooses the latest
control value from the control prediction sequences available on the plant side.
For example, if the following predictive control sequences are received on the
plant side: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t− k1|t− k1)
u(t− k1 + 1|t− k1)

...
u(t|t− k1)

...
u(t + N − k1|t− k1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t− k2|t− k2)
u(t− k2 + 1|t− k2)

...
u(t|t− k2)

...
u(t + N − k2|t− k2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t− kt|t− kt)
u(t− kt + 1|t− kt)

...
u(t|t− kt)

...
u(t + N − kt|t− kt)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.22)

where the control values u(t|t−ki) for i = 1, 2, . . . , t, are available to be chosen
as the control input of the plant at time t, the output of the network delay
compensator will be

u(t) = u(t|t− k ) (4.23)

where k = min{k1, k2, · · · , kt}, and u(t) is the latest predictive control value
for time t. Actually, it is clear from Assumption (d) that only one control
prediction sequence needs to be kept in the network delay compensator and
updated by the latest one received from the control prediction generator.
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4.2.3 Algorithm of Networked Predictive Control

Following the above subsections, an algorithm of the networked predictive
control scheme is proposed as follows:

Step 1: Design a controller for the system without network transmission
delay to satisfy the requirements using conventional control methods, for ex-
ample, PID, LQG, model predictve control, etc.

Step 2: Calculate the output sequence of the control prediction generator
using (4.21).

Step 3: Transmit the output sequence of the control prediction generator
to the controlled plant through a network each time.

Step 4: Apply the network delay compensator to choose the control input
for the plant using (4.23).

4.3 Stability of Networked Predictive Control Systems

The stability of a closed-loop system is the most important issue in the design
of control systems. This section considers the stability of networked control
systems for two cases: the first one is the case of fixed network transmission
delay and the second one is the case of random network transmission delay.

4.3.1 Fixed Network Transmission Delay

It is assumed that the network transmission delays k and f in the forward
and backward channels are constant. From the control prediction sequence
derived in the previous section, it can be obtained that

u(t|t) = P0(z−1)r(t+d+N)−Q0(z−1)y(t−f)−S0(z−1)u(t−1|t−1). (4.24)

Then

u(t|t) =
P0(z−1)r(t + d + N)−Q0(z−1)y(t− f)

1 + S0(z−1)z−1
. (4.25)

Using (4.21) and (4.25), the k-step-ahead predictive control at time t is
expressed by

u(t + k|t) = Pk(z−1)r(t + d + N)−Qk(z−1)y(t− f)− Sk(z−1)u(t− 1|t− 1)

=
Pk(z−1)+Pk(z−1)S0(z−1)z−1−P0(z−1)Sk(z−1)z−1

1 + S0(z−1)z−1
r(t + d + N)

− Qk(z−1)+Qk(z−1)S0(z−1)z−1−Q0(z−1)Sk(z−1)z−1

1 + S0(z−1)z−1
y(t−f).

(4.26)

As the network transmission delay is assumed to be fixed (say k), the
transmission delay compensator is taken as



4 Analysis and Design of Networked Predictive Control Systems 103

u(t + k) = u(t + k|t). (4.27)

Thus, the closed-loop system becomes

A(z−1)y(t + d + k) = B(z−1)u(t + k) = B(z−1)u(t + k|t)

= B(z−1)
Pk(z−1)+Pk(z−1)S0(z−1)z−1−P0(z−1)Sk(z−1)z−1

1 + S0(z−1)z−1
r(t+d+N)

−B(z−1)
Qk(z−1)+Qk(z−1)S0(z−1)z−1−Q0(z−1)Sk(z−1)z−1

1 + S0(z−1)z−1
y(t−f).

(4.28)

The closed-loop characteristic equation is

A(z−1)
(
1 + S0(z−1)z−1

)
+ z−d−f−kB(z−1)

(
Qk(z−1) + Qk(z−1)S0(z−1)z−1

−Q0(z−1)Sk(z−1)z−1
)

= 0. (4.29)

Therefore, the stability criterion of the closed-loop networked predictve
control system with constant network delay is that the system is stable if and
only if the roots of the above polynomial are within the unit circle.

4.3.2 Random Network Communication Time Delay

Without losing the generality of the stability analysis, it is assumed that the
reference input R(t) is zero. Let

Q(z−1) =
[
Q0(z−1) Q1(z−1) · · · QN (z−1)

]T
S(z−1) =

[
S0(z−1) S1(z−1) · · · SN (z−1)

]T
.

Let G1 and F1 be the coefficient matrices of polynomial vectors S(z−1)
and Q(z−1), respectively, n̄ and m̄ be the highest order of the polynomials in
vectors S(z−1) and Q(z−1), respectively, In×m denote an n×m unit matrix
and 0n×m denote an n ×m zero matrix. Then, it is clear that (4.21) can be
rewritten in the following form:

Ū(t) = G1Ũ(t− 1) + F1Ỹ (t− f) (4.30)

where
Ū(t)

	
=
[
u(t|t) u(t + 1|t) · · · u(t + N − 1|t) ]T ,

Ỹ (t− f)
	
=
[
y(t− f) y(t− f − 1) · · · y(t− f − m̄)

]T
,

Ũ(t− 1)
	
=
[
u(t− 1|t− 1) u(t− 2|t− 2) · · · u(t− n̄− 1|t− n̄− 1)

]T
,

G1 ∈ �(N+1)×(n̄+1), F1 ∈ �(N+1)×(m̄+1).

Since the control sequences are transmitted to the plant side via a com-
munication network, several control prediction sequences may arrive at the
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plant side at the same time with different time delays k1, k2, · · · , kp. Let the
smallest delay at time t be k = min{k1, k2, · · · , kp}. Then, the latest control
prediction sequence on the plant side is

Ū(t− k) = G1Ũ(t− 1− k) + F1Ỹ (t− f − k)

=
[
0(N+1)×k G1 0(N+1)×(k̄−k)

]
Û(t− 1)

+
[
0(N+1)×(f+k) F1 0(N+1)×(k̄−k)

]
Y (t− 1) (4.31)

where
Û(t) =

[
u(t|t) u(t− 1|t− 1) · · · u(t− n̄− k̄|t− n̄− k̄)

]
Y (t) =

[
y(t) y(t− 1) · · · y(t− f − m̄− k̄)

]
.

According to (4.23), the control input of the plant is the (k+1)th element
in vector Ū(t− k), that is,

u(t) = u(t|t− k)

=
[
01×k 1 01×(N−k)

]
Ū(t− k)

=
[
01×k 1 01×(N−k)

] ( [
0(N+1)×k G1 0(N+1)×(k̄−k)

]
Û(t− 1)

+
[
0(N+1)×(f+k) F1 0(N+1)×(k̄−k)

]
Y (t− 1)

)
= c(k)Û(t− 1) + d(k)Y (t− 1) (4.32)

where

c(k) =
[
01×k 1 01×(N−k)

] [
0(N+1)×k G1 0(N+1)×(k̄−k)

]
d(k) =

[
01×k 1 01×(N−k)

] [
0(N+1)×(f+k) F1 0(N+1)×(k̄−k)

]
.

Thus, based on (4.32), the control vector on the plant side can be expressed
by

U(t) = EU(t− 1) + C(k)Û(t− 1) + D(k)Y (t− 1) (4.33)

where
U(t)

	
=
[
u(t) u(t− 1) · · · u(t−m− d + 1)

]T
C(k) =

[
c(k)
0(m+d−1)×(n̄+k̄+1)

]

D(k) =
[
d(k)
0(m+d−1)×(m̄+f+k̄+1)

]

E =
[

01×(m+d−1) 01×1

I(m+d−1)×(m+d−1) 0(m+d−1)×1

]
.

Actually, it is clear from (4.1) that the output vector of the plant can be
described by

Y (t) = A1Y (t− 1) + B1U(t− 1) (4.34)
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where

A1 =

[[−a1 −a2 · · · −an 01×(m̄+f+k̄+1−n)

]
[
I(m̄+f+k̄)×(m̄+f+k̄) 0(m̄+f+k̄)×1

]
]
∈ �(m̄+f+k̄+1)×(m̄+f+k̄+1)

B1 =
[ [

01×(d−1) b0 b1 · · · bm

]
0(m̄+f+k̄)×(m+d)

]
∈ �(m̄+f+k̄+1)×(m+d).

In addition, since u(t|t) is the first row of Ū(t) in (4.17), it can be calculated
by

u(t|t) =
[
1 0 · · · 0 ]G1Ũ(t− 1) +

[
1 0 · · · 0 ]F1Ỹ (t− f). (4.35)

Let [
ḡ0 ḡ1 · · · ḡn̄

] 	
=
[
1 0 · · · 0 ]G1[

f̄0 f̄1 · · · f̄m̄

] 	
=
[
1 0 · · · 0 ]F1.

Using (4.35), the vector Û(t) can be constructed by

Û(t) = G2Û(t− 1) + F2Y (t− 1) (4.36)

where

G2 =

[ [
ḡ0 ḡ1 · · · ḡn̄ 01×k̄

][
I(n̄+k̄)×(n̄+k̄)0(n̄+k̄)×1

]] ∈ �(n̄+k̄+1)×(n̄+k̄+1)

F2 =
[ [

01×(f−1) f̄0 f̄1 · · · f̄m̄ 01×k̄

]
0(n̄+k̄)×(m̄+f+k̄+1)

]
∈ �(n̄+k̄+1)×(m̄+f+k̄+1).

As a result, combining (4.33), (4.34) and (4.36) yields the following closed-
loop system:

Xt = Λ(k)Xt−1 (4.37)

where

Xt =

⎡
⎣Y (t)

U(t)
Û(t)

⎤
⎦ ,

Λ(k) =

⎡
⎣ A1 B1 0(m̄+f+k̄+1)×(n̄+k̄+1)

D(k) E C(k)
F2 0(n̄+k̄+1)×(m+d) G2

⎤
⎦ .

As time delay k changes randomly between 0 and the upper bound k̄, the
above system is a switched system. Thus, the following theorem provides a
sufficient condition for the closed-loop networked predictive control system.

Theorem 4.1. If there exists a positive definite matrix P such that

ΛT (k)PΛ(k)− P < 0 (4.38)

for all k ∈ {
0, 1, · · ·, k̄}, then the closed-loop system (4.37) is stable for all

random delays.
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Proof. Let the Lyapunov function be

Vt = XT
t PXt. (4.39)

Then

Vt+1 − Vt = XT
t+1PXt+1 −XT

t PXt = XT
t (ΛT (k)PΛ(k)− P )Xt. (4.40)

If (4.38) is satisfied, then Vt+1 − Vt < 0 for any Xt �= 0. Therefore the
closed-loop system is stable for random time delay k in the forward channel
and constant time delay f in the feedback channel. �

4.4 Simulation of Networked Predictive Control
Systems

As the MATLAB/Simulink r© simulation environment provides various pow-
erful tools for control system design, the simulation of networked predictive
control systems is carried out using MATLAB r© and Simulink r©. This section
illustrates the simulation strategy of NPCS using a particular control system
– a servo control system.

4.4.1 Estimation of Network Transmission Delay

In networked control systems, one important issue is the network transmission
delay. Here, the following assumptions are made:

(a) The network delays in the forward channel and feedback channel are the
same.

(b) The network delays do not change very rapidly.

In the networked predictive control system, a signature signal (e.g., a sine
wave signal) with time stamp is used to measure the network delay. This
signal is continuously looped in the whole networked control system, which
starts from the plant side, goes through the feedback channel and comes back
from the forward channel. Using the current signal value, the total network
delay in both the forward and feedback channels can be calculated. So, the
forward and feedback time delays are half the total network delay, which can
be calculated on the plant side and controller side, respectively.

4.4.2 Off-line Simulation

To simulate the network delay, a set of unit-delay blocks are connected in a
series path and one of their outputs will be randomly switched to the network
delay compensator on the actuator side if it is not transmitted before. So, an
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Fig. 4.2. Off-line simulation of NPCS

off-line simulation structure is presented for the networked predictive control
system, as shown in Fig. 4.2.

To show the operation of the off-line simulation of NPCS, the following
model of a servo control system is considered:

G(z−1) =
1.2782z−1 − 0.0087

0.6581z−2 − 1.6617z−1 + 1
. (4.41)

The above transfer function model is estimated from the measured input–
output (i.e., voltage–angle) data of the servo control test rig using the least
squares algorithm.

Two cases for the network delay are simulated: one is constant delay and
the other is random delay. The step responses of the networked predictive
control system for the cases of 1-step, 2-step and 3-step constant network
delays in both forward and feedback channels are shown in Fig. 4.3. It is clear
from the results that the control performance of the closed-loop system for the
three different network delays is the same and their plots overlap each other.
This means that the networked predictive control scheme can compensate for
the network delay actively.

For the case of a random network delay, a random sequence is generated
to simulate the network delay. The response of the closed-loop NPCS with
random delay is given in Fig. 4.4. Clearly, the NPCS with random delay also
has very similar control performance to the one without time delay.

4.4.3 Real-time Simulation

The real-time simulation was carried out, where the control program runs in
a real-time embedded microprocessor system and the plant to be controlled
is a mathematical model. A real-time simulation structure for the networked
predictive control system is designed, which is shown in Fig. 4.5. It is composed
of the controller part and the simulated plant part, which run in two separate
embedded microprocessor systems that are linked through Ethernet, i.e., the
networked control board (NCB) and the networked implement board (NIB).
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For the implementation of real-time simulation, uClinux, which is equipped
with a full TCP/IP stack and is an internet-ready operating system (OS)
for embedded systems, is chosen as the operating system of the real-time
embedded microprocessor system. The networked predictive control strategy
is realized in Simulink r©. The communication protocol is UDP/IP. The con-
troller part and simulated plant part are designed in two individual Simulink r©

blocks. Then the real-time workshop in MATLAB r© is adopted to generate
two individual executable codes for the controller and simulated plant parts.
Finally, the executable codes are uploaded to two real-time embedded micro-
processor systems, respectively, which are connected by Ethernet.

For the real-time simulation, the plant and controller are exactly the same
as those for the off-line simulation. The real-time simulation results of the
networked predictive control system are shown in Fig. 4.6. Because the net-
work delays in the forward and feedback channels are not the same in the
real network, there exists an estimation error for those two delays using the
proposed estimation method of the network delay. This makes it difficult for
the NPC to compensate for the network delay completely. However, the NPC
can still achieve a similar control performance to the one without network
delay.

Fig. 4.6. Step responses of NPCS in real-time simulation
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4.5 Implementation of Networked Predictive Control
Systems

In order to implement networked predictive control systems in practice, some
specific software and hardware were designed. They mainly include the soft-
ware of supervisory, device driver library and interface library, and the hard-
ware of embedded microprocessor systems and control system test rig.

4.5.1 Software of Networked Control Systems

MATLAB/Simulink r© software package provides the user with a convenient
way to model, simulate and analyse a control system through a visual graphic
interface. Real-time workshop (RTW) can generate optimized ANSI C code
from control system blocks in Simulink r©. uClinux is a concise operating sys-
tem for embedded systems. How to make full use of the characteristics of
Simulink r©/RTW and uClinux for NPCS is introduced below.

Supervisory Software

The supervisory software of networked control systems through the Internet
can be divided into two parts, one on the client side and the other on the
server side, which is composed of a client/server architecture. The client side
mainly provides an interface for the user and the server side includes the
control and data acquisition programs to fulfil the control task. The overall
system architecture is depicted in Fig. 4.7.

 

Server ARM7TDMI with uClinux OSClient PC with Windows OS

Data flow

Real-time 
curve

Real-time 
database

Internet

Fig. 4.7. Structure of the supervisory software
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The software on the client side is programmed in Visual C++ language. It
includes two functions; one is the control function and the other is the mon-
itoring function. The control function primarily responses to the interaction
from the user. With this function, the user can send commands and change the
parameters of the controller via the Internet. The client first establishes the
connection with the server (here, the server runs in an embedded platform)
through the TCP/IP protocol. It can not only send messages to the server
but also receive messages from the server. As to the monitoring function, the
client side can save all acquirable parameters and/or process variables to a
real-time database, and at the same time can display the real-time trend of
the corresponding variables, which enables the user to know the current status
of controlled processes. The curve displays are refreshed automatically at a
fixed interval.

The server side has two embedded microprocessor systems that run the
control prediction generator algorithm and the network delay compensator
algorithm, respectively. The server program is designed in C language and
must use a C library subject to uClinux, i.e., uclibc. The server mainly deals
with the commands from the client, transfers the received requests, then takes
relevant actions, such as starting/stopping the program running, sending the
real-time data of the required process variables to the client, or changing the
parameters of the controller on-line in real time. As a result, the client can
either receive the data from the server or obtain an instantaneous response
results for the changes of the control parameters.

Interface Library for Simulink r©

In order to avoid encountering such a circumstance that some blocks in
Simulink r© library are not available while the user creates a control system
block diagram, the S-function is employed to develop and mask some general
purpose blocks. With those blocks, the user can access the expanded pe-
ripheral units of the embedded system board, such as network data receiver,
network data sender, analog input, analog output, digital input, digital out-
put, timer interrupt and external interrupt, and adopt some advanced control
algorithms, for instance, generalized predictive control and adaptive control.
Those customized blocks are added to Simulink r© as a library and the user
can use them freely as if they were built-in Simulink r© blocks.

Device Driver Library

From the point of view of the operating system theory, the customized I/O
interface blocks can only implement the user’s specific program. The access
to physical peripheral units is essentially achieved by their respective device
drivers which are created in the kernel layer. Several programmed device
drivers in the uClinux kernel are developed, which form the device driver
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Fig. 4.8. Relationship between the Simulink r© customized library and the device
driver

library that renders users the ability to manipulate I/O interfaces. The rela-
tionship between the customized Simulink r© library in the user layer and the
device driver library in the kernel layer is shown in Fig. 4.8.

Generation of Application Programs with Simulink r©/RTW

As an embedded system has limited system sources, it does not have the
ability to develop application programs itself. In order to generate executable
codes for embedded systems, the master–slave mode is adopted, that is, pro-
gramming, compiling and linking of an application program are performed on
a host PC which usually has a Linux OS whereas the created executable codes
are uploaded through a network to the target embedded system and finally
run on it, which is called the cross-compilation.
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4.5.2 Networked Control System Test Rig

To apply the networked predictive control strategy to practical systems, a
networked control system test rig is built, as shown in Fig. 4.9. This rig consists
of a networked control board, networked implementation board and a servo
control plant.

The networked predictive control scheme is implemented in an embed-
ded platform, which is the fundamental structure of the networked con-
trol board and networked implementation board. The architecture of the
platform is shown in Fig. 4.10. In this platform, there is a Samsung’s
ARM7TDMI S3C4510B 32-bit RISC microcontroller, which is a cost-effective,
high-performance microcontroller solution for Ethernet-based systems. It is
designed for use in managed communication hubs and routers and is built
around an outstanding CPU core, ARM7TDMI, which is a low-power and
general purpose microcontroller and developed for use in application-specific
and custom-specific integrated circuits. Two HY29LV160 FLASH chips pro-
vide 1M×32bits program memory and two HY57V641620 SDRAM chips for
4M×32bits data memory. Such architecture makes full use of the S3C4510B
32bit address bus and 32 bit data bus. 2-channel 12-bit high speed digital-
to-analog (D/A) converters and 8-channel 16-bit high speed analog-to-digital
converters in the controller board provide I/O interfaces for controlled plants.
4×4 keyboard and LED render users ability to debug on the spot. uClinux is

Fig. 4.9. The networked servo control system
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Fig. 4.10. Hardware architecture of the platform

a derivation of Linux 2.0 kernel intended for microcontrollers without mem-
ory management units (MMUs). It has a small kernel about 600 kB, while
retaining the main advantages of the standard Linux, such as the excellent
file system and powerful network capability. In view of ARM7TDMI with
non-MMU, uClinux is naturally adopted as OS in embedded systems.

4.5.3 Practical Experiments

For the practical application, the block diagram of the networked predictive
servo control system is shown in Fig. 4.11. The difference from the real-time
simulation is that the plant to be controlled is a real servo control system.
The network connecting the networked control board and the networked im-
plementation board is the Intranet on the university campus.

The responses of the real closed-loop servo control system with a PI con-
troller are shown in Fig. 4.12, where the NPC is not used. They indicate that
the response of the closed loop in the case of network delay is different from
that in the case of no network delay. It is clear that the network delay makes
the control performance poor.

The control performance of the networked predictive control strategy is
given in Fig. 4.13, using the same PI controller as above but including the
network delay compensator. To have a long network time delay, extra artificial
time-delay (e.g., 1-step, 2-step and 3-step delays) was added to the network. It
is clearly shown from the experimental results for various network delay cases
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 Fig. 4.12. Response of the closed-loop networked PI control system
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that the NPC for a system with network delay has similar control performance
to the PI control for the system without network delay. This confirms that
the NPC can compensate for the network delay effectively.

4.6 Conclusions

This chapter has given an introduction to analysis, design, simulation and im-
plementation of networked predictive control systems. The networked predic-
tive control strategy has been detailed to compensate for network delays. The
stability of the closed-loop networked predictive control system has been anal-
ysed. Networked predictive control was simulated in the off-line and real-time
simulation environment and also implemented in a networked predictive servo
control test rig. It has been illustrated that the NPC is an active network delay
compensation method. In this chapter, a fast, convenient, and cost-effective
scheme for implementing networked predictive control in embedded systems
using Simulink r©/real-time workshop has been discussed. On-line tuning of
control parameters and analysing the response of the system can be realized
easily via the Internet, and consequently an optimal control solution can be
obtained in a short time. The networked servo control experiment through
the Intranet has successfully demonstrated the effectiveness of networked pre-
dictive control.
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Abstract. This chapter is concerned with the design of robust H∞ controllers
and H∞ filters for uncertain networked control systems (NCS) with the effects
of both the network-induced delay and data dropout taken into consideration.
A new analysis method for H∞ performance of NCS is provided by introduc-
ing some slack matrix variables and employing the information of the lower
bound of the network-induced delay. The criteria derived for the design of H∞
controller and H∞ filter are expressed as a set of linear matrix inequalities.
Finally, numerical examples and simulation results are given to illustrate the
effectiveness of the method.

Keywords. Networked control systems, stability, filtering, Lyapunov func-
tional.

5.1 Introduction

As is well known, in modern industrial systems, sensors, controllers and plants
are often connected over a network medium [1], and are called networked con-
trol systems (NCS). There are many advantages of NCS, such as low cost,
reduced weight and power requirements, simple installation and maintenance,
and high reliability. Thus, increasing research interest has recently been fo-
cused on the study of the stability, stabilization and signal estimation of
NCS [1, 14, 20, 24, 29]. However, since the sampling data and output and
controller signals are transmitted through a network, network-induced delays
and data dropout in NCS are inevitable. For NCS with different scheduling
protocols, the network-induced delay may be constant, time-varying, or even
random [29]. Recently, the stability analysis and stabilization controller design
for NCS have been investigated by researchers, with the effects of network-
induced delay and/or data dropouts taken into account. In these studies,
analysis and synthesis methods are provided based on discrete-time models
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[4, 14], continuous-time models [20] or hybrid system models [29]. Consider-
ing the effects of external disturbance on the system, stability analysis and
disturbance attenuation analysis are carried out in [9] based on a framework
of discrete-time switched systems. However, only the case when there are no
parameter uncertainties in the system is considered and no controller synthe-
sis method is given in [9]. Moreover, the effects of controller-to-actuator delay
is neglected in [9].

For the case when statistical information about external noise may not be
known exactly and uncertainties may exist in the system model due to mod-
elling errors, the signal estimate problem has been investigated based on an
H∞ filtering technique. Compared with the Kalman filter, the advantage of
H∞ filtering is that noise sources can be arbitrary signals with bounded en-
ergy, or bounded average power instead of being Gaussian. When considering
the presence of time delay in the system state and/or output measurement,
the H∞ filter design problem of time delay systems has been studied based
on a delay-independent approach [2, 21, 23, 25] or delay-dependent approach
[3]. However, it is assumed in all these references that the time delay existing
in the state or the output is either constant or slowly time-varying. Here, by
“slowly time-varying” we mean that the derivative of the time-varying delay
exists and the bound on the derivative is less than 1. It will be seen from
the next section that the system over a network connection is essentially a
system with fast time-varying delay. Therefore, the methods in the existing
references [2, 3, 23, 25] cannot be used for H∞ filtering purposes in such a
class of systems.

In this chapter we are concerned with the design of a robust H∞ controller
and H∞ filter for uncertain networked control systems. Both network-induced
delay and data dropout are considered in the model. The network-induced
delay considered in the model is composed of sensor-to-controller delay and
controller-to-actuator delay, as well as computation delay. In our method,
discretization of the system model and the assumption that the controller
dynamics is continuous are not needed for design of the controller and filter.
In contrast with methods based on discrete-time models, our method is for-
mulated in the continuous-time domain; that is, the inter-sampling behavior
is taken into account. Through introducing some slack matrix parameters,
we first give some criteria for guaranteeing the H∞ performance of the NCS
and then present control and filter design conditions based on the criteria.
Since the lower bound of the network-induced delay is employed to derive the
criteria, considerably less conservative results can be obtained by using the
criteria in this chapter, especially for the case where the lower bound of the
network-induced delay is nonzero. The criteria for H∞ performance analysis,
H∞ control synthesis and H∞ filter design are derived based on a linear ma-
trix inequality (LMI) approach. To illustrate the effectiveness of the methods,
numerical examples and simulation results are given. Some of the results given
in this chapter have appeared in [26, 28].
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Notation: Rn denotes the n-dimensional Euclidean space, Rn×m is the set
of n × m real matrices, I is the identity matrix of appropriate dimensions,
‖·‖ stands for the Euclidean vector norm or the induced matrix 2-norm as
appropriate. The notation X > 0 (respectively, X ≥ 0), for X ∈ Rn×n means
that the matrix X is a real symmetric positive definite (respectively, positive
semi-definite) matrix. λmax(P ) (λmin(P )) denotes the maximum (minimum)
eigenvalue of a real symmetric matrix P . For an arbitrarily real matrix B

and two real symmetric matrices A and C,

[
A ∗
B C

]
denotes a real symmetric

matrix, where ∗ denotes the entries implied by symmetry.

5.2 Robust H∞ Control of NCS

5.2.1 System Description and Preliminaries

Consider the following system with parameter uncertainties given by⎧⎨
⎩

ẋ(t) = [A + ΔA(t)]x(t) + [B + ΔB(t)]u(t) + Bww(t),
x(t0) = x0,
z(t) = Cx(t) + Du(t),

(5.1)

where x(t) ∈ Rn, u(t) ∈ Rm and z(t) ∈ Rq are the state vector, control
input vector and controlled output, respectively; x0 ∈ Rn denotes the initial
condition; A, B, Bw, C and D are some constant matrices of appropriate
dimensions; ΔA(t) and ΔB(t) denote the parameter uncertainties satisfying
the following condition:[

ΔA(t) ΔB(t)
]

= GF (t)
[
Ea Eb

]
, (5.2)

where G, Ea and Eb are constant matrices of appropriate dimensions and
F (t) is an unknown time-varying matrix, which is Lebesque measurable in t
and satisfies FT (t)F (t) ≤ I. w(t) ∈ L2 [t0,∞) denotes the external perturba-
tion. Throughout this chapter, we assume that the system (5.1) is controlled
through a network.

As pointed out in [1, 29], the presence of the network may often lead to sig-
nal transmitting delay and data dropout, which can degrade the performance
of the closed-loop system. In the presence of the control network, under a
linear control law, the control system (5.1) can be expressed as

ẋ(t) = [A + ΔA(t)]x(t) + [B + ΔB(t)]u(t) + Bww(t), (5.3)
z(t) = Cx(t) + Du(t), t ∈ [ikh + τk, ik+1h + τk+1) (5.4)

u(t+) = Kx(t− τk), t ∈ {ikh + τk, k = 1, 2, . . .} , (5.5)

where h is the sampling period, ik (k = 1, 2, 3, . . .) are some integers and
{i1, i2, i3, . . .} ⊂ {1, 2, 3, . . .}. The time delay τk denotes the time from the
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instant ikh when sensor nodes sample sensor data from a plant to the instant
when actuators transfer data to the plant. Obviously, ∪∞k=1

[
ikh + τk, ik+1h+

τk+1

)
= [t0,∞) , t0 ≥ 0. In this chapter, we assume that u(t) = 0 before the

first control signal reaches the plant.

Remark 5.1. In (5.3)–(5.5), {i1, i2, i3, . . .} is a subset of {1, 2, 3, . . .} . Moreover,
it is not required that ik+1 > ik. When {i1, i2, i3, . . .} = {1, 2, 3, . . .} , it means
that no packet dropout occurs in the transmission. If ik+1 = ik + 1, it implies
that h + τk+1 > τk, which includes τk = τ̂ and τk < h as special cases, where
τ̂ is a constant. In addition, the effects of the network-induced delay, data
packet dropout and external perturbation are simultaneously considered in
(5.3)–(5.5). �

Assumption 5.1. The sensor is clock-driven, the controller and actuator are
event-driven. �

Assumption 5.2. Two constants η > 0 and τm ≥ 0 exist such that

(ik+1 − ik)h + τk+1 ≤ η, k = 1, 2, . . . , (5.6)
τm ≤ τk, k = 1, 2, . . . , (5.7)

where η ≥ τm. �

Remark 5.2. It is assumed in Assumption 5.1 that the controller and actuator
are event-driven, such as a zero-order hold. This means that the controller and
actuator will be updated when the new data packet comes. From the physical
point of view, to guarantee the stability of NCS, only a finite amount of data
dropout can be tolerated. Moreover, in a real NCS, a data packet that has
expired in a limited transmission time will be lost based on the commonly
used network protocols. Thus, τk should be bounded. In Condition (5.6), η
can be used to reflect the allowable bound on the amount of data dropout and
network-induced delays. It is known that the network-induced delay consists of
waiting time delay, frame time delay and propagation delay. Since propagation
delay always exists when data is transmitted through a network and can be
monitored, it is reasonable to assume that τm exists and is a number larger
than zero, i.e., τm > 0. It is noted that the introduction of lower bound τm

on the time delay is important, and may lead to less conservative result than
would be obtained based on the assumption τm = 0. This observation will be
shown in numerical examples. �

Under Assumption 5.1, System (5.3)–(5.5) can be rewritten using an equiv-
alent form as follows:

ẋ(t) = [A + ΔA(t)]x(t) + [B + ΔB(t)]Kx(ikh) + Bww(t), (5.8)

x(t) = Φ(t, t0 − η)x(t0 − η)
	
= φ(t), t ∈ [t0 − η, t0] , (5.9)

z(t) = Cx(t) + DKx(ikh), t ∈ [ikh + τk, ik+1h + τk+1) , (5.10)
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where Φ(t, t0 − η) is a solution of Φ̇(t, t0 − η) = [A + ΔA(t)]Φ(t, t0 − η),
t ∈ [t0 − η, t0] .

Remark 5.3. Since ikh = t− (t− ikh), define τ(t) = t− ikh, which denotes the
time-varying delay in the control signal. Obviously,

τk ≤ τ(t) ≤ (ik+1 − ik)h + τk+1, t ∈ [ikh + τk, ik+1h + τk+1) . �

Remark 5.4. (5.8)–(5.10) can be used to express the mathematical model of
networked control systems when the transmitted data is single-packet. For the
multiple-packet transmission case, since the arrival time of sensor messages
at the controller or the arrival time of controller messages at the actuator
may be different, especially for the case when the sampling time of sensors is
different, a buffer before the controller and actuator is needed. By employing
the buffer technology on the network, the model (5.8)–(5.10) can also be used
to express the NCS with multiple-packet transmission. �

Definition 5.1. System (5.8)–(5.10) is said to be robustly exponentially sta-
ble with an H∞ norm bound γ, if the following hold:

(i) System (5.8)–(5.10) with w(t) ≡ 0 is robustly exponentially stable; that
is, there exist constants α > 0 and β > 0 such that

‖x(t)‖ ≤ α sup
t0−η≤s≤t0

‖φ(s)‖ e−βt,

t ≥ t0, for all admissible uncertainties ΔA(t) and ΔB(t); and
(ii) under the assumption of zero initial condition, the controlled output z(t)

satisfies ‖z(t)‖2 ≤ γ ‖w(t)‖2 for any nonzero w(t) ∈ L2 [0,∞) . �

5.2.2 H∞ Performance Analysis

Define
τ0 =

η + τm

2
, δ =

η − τm

2
.

For any matrices Ni, Si and Mi (i = 1, 2, 3, 4) of appropriate dimensions, it
can be seen that[

xT (t)N1 + xT (ikh)N2 + xT (t− τ0)N3 + ẋT (t)N4

]
×
[
x(t)− x(ikh)−

∫ t

ikh

ẋ(s)ds
]

= 0, (5.11)

[
xT (t)S1 + xT (ikh)S2 + xT (t− τ0)S3 + ẋT (t)S4

]
×
[
x(ikh)− x(t− τ0)−

∫ ikh

t−τ0

ẋ(s)ds

]
= 0, (5.12)
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and [
xT (t)M1 + xT (ikh)M2 + xT (t− τ0)M3 + ẋT (t)M4

]
× [− [A + ΔA(t)]x(t)− [B + ΔB(t)]Kx(ikh)
−Bww(t) + ẋ(t)] = 0. (5.13)

Next, based on a Lyapunov–Krasovskii functional and combining (5.11)–
(5.13), we prove the following result.

Lemma 5.1. For given scalars τm, η and γ and a matrix K, if there exist
matrices Pk (k = 1, 2, 3),Wj > 0, Tj > 0, Rj > 0 (j = 1, 2) and any matrices
Ni, Si and Mi (i = 1, 2, 3, 4) of appropriate dimensions such that[

Ξ11 + diag
[
W1 0 0 W2

] ∗
Ξ21 Ξ22

]
< 0, (5.14)

[
P1 P2

PT
2 P3

]
> 0, (5.15)

where

Ξ11 =

⎡
⎢⎢⎣
Γ11 ∗ ∗ ∗
Γ21 Γ22 ∗ ∗
Γ31 Γ32 Γ33 ∗
Γ41 Γ42 Γ43 Γ44

⎤
⎥⎥⎦ ,

Ξ21 =

⎡
⎢⎢⎢⎢⎣

τ0P3 0 −τ0P3 τ0P
T
2

ηNT
1 ηNT

2 ηNT
3 ηNT

4

δST
1 δST

2 δST
3 δST

4

C DK 0 0
−BT

wMT
1 −BT

wMT
2 −BT

wMT
3 −BT

wMT
4

⎤
⎥⎥⎥⎥⎦ ,

Ξ22 = diag
(−τ0T2, −ηR1, −δR2, −I, −γ2I

)
,

Γ11 = P2 + PT
2 + T1 + τ0T2 + N1 + NT

1

−M1 [A + ΔA(t)]− [A + ΔA(t)]T MT
1 ,

Γ21 = N2 −NT
1 + ST

1 −M2 [A + ΔA(t)]−KT [B + ΔB(t)]T MT
1 ,

Γ31 = N3 − PT
2 − ST

1 −M3 [A + ΔA(t)] ,
Γ41 = MT

1 + N4 + P1 −M4 [A + ΔA(t)] ,
Γ22 = −N2 −NT

2 + S2 + ST
2 −M2 [B + ΔB(t)]K

−KT [B + ΔB(t)]T MT
2 ,

Γ32 = −N3 + S3 − ST
2 −M3 [B + ΔB(t)]K,

Γ42 = −N4 + S4 + MT
2 −M4 [B + ΔB(t)]K,

Γ33 = −T1 − S3 − ST
3 ,

Γ43 = −S4 + MT
3 ,

Γ44 = M4 + MT
4 + ηR1 + 2δR2,
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then, System (5.8)–(5.10) with a control network satisfying Assumption 5.2
is robustly exponentially stable with an H∞ norm bound γ.

Proof. Construct a Lyapunov–Krasovskii functional as

V (t) = xT (t)P1x(t) + 2xT (t)P2

(∫ t

t−τ0

x(s)ds
)

+
(∫ t

t−τ0

x(s)ds
)

P3

(∫ t

t−τ0

x(s)ds
)

+
∫ t

t−τ0

xT (s)T1x(s)ds +
∫ t

t−τ0

∫ t

s

xT (v)T2x(v)dvds

+
∫ t

t−η

∫ t

s

ẋT (v)R1ẋ(v)dvds + 2δ
∫ t

t−τ0+δ

ẋT (s)R2ẋ(s)ds

+
∫ t−τ0+δ

t−τ0−δ

∫ t−τ0+δ

s

ẋT (v)R2ẋ(v)dvds, (5.16)

where
[
P1 P2

PT
2 P3

]
> 0, Ti > 0 and Ri > 0 (i = 1, 2). Taking the time derivative

of V (t) along the trajectory of (5.8) yields that, for t ∈ [ikh + τk, ik+1h + τk+1),

V̇ (t) = 2xT (t)P1ẋ(t) + 2ẋT (t)P2

∫ t

t−τ0

x(s)ds

+2xT (t)P2 (x(t)− x(t− τ0))

+2 (x(t)− x(t− τ0))P3

∫ t

t−τ0

x(s)ds

+xT (t) (T1 + τ0T2)x(t)− xT (t− τ0)T1x(t− τ0)

−
∫ t

t−τ0

xT (s)T2x(s)ds + ẋT (t) (ηR1 + 2δR2) ẋ(t)

−
∫ t

t−η

ẋT (s)R1ẋ(s)ds−
∫ t−τ0+δ

t−τ0−δ

ẋT (s)R2ẋ(s)ds

+2eT (t)N
[
x(t)− x(ikh)−

∫ t

ikh

ẋ(s)ds
]

+2eT (t)S

[
x(ikh)− x(t− τ0)−

∫ ikh

t−τ0

ẋ(s)ds

]

+2eT (t)M [− [A + ΔA(t)]x(t)
− [B + ΔB(t)]Kx(ikh)−Bww(t) + ẋ(t)]

+ [Cx(t) + DKx(ikh)]T [Cx(t) + DKx(ikh)]
−γ2wT (t)w(t)− zT (t)z(t) + γ2wT (t)w(t), (5.17)

where
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eT (t) =
[
xT (t) xT (ikh) xT (t− τ0) ẋT (t)

]
,

NT =
[
NT

1 NT
2 NT

3 NT
4

]
,

ST =
[
ST

1 ST
2 ST

3 ST
4

]
,

MT =
[
MT

1 MT
2 MT

3 MT
4

]
.

Since ikh = t− (t− ikh), define τ(t) = t− ikh. Then

τk ≤ τ(t) ≤ (ik+1 − ik)h + τk+1, t ∈ [ikh + τk, ik+1h + τk+1) . (5.18)

It is easy to see that, for t ∈ [ikh + τk, ik+1h + τk+1) ,

−2eT(t)N
∫ t

ikh

ẋ(s)ds ≤ ηeT (t)NR−1
1 NTe(t) +

∫ t

ikh

ẋT(s)R1ẋ(s)ds, (5.19)

and

−2eT (t)S
∫ ikh

t−τ0

ẋ(s)ds ≤ δeT (t)SR−1
2 ST e(t)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ikh

t−τ0

ẋT (s)R2ẋ(s)ds, t < τ0 + ikh,∫ t−τ0

ikh

ẋT (s)R2ẋ(s)ds, t ≥ τ0 + ikh.

(5.20)

From (5.18), one can easily show that, for t ∈ [ikh + τk, ik+1h + τk+1),∫ t

ikh

ẋT (s)R1ẋ(s)ds ≤
∫ t

t−η

ẋT (s)R1ẋ(s)ds, (5.21)

and for t < τ0 + ikh,∫ ikh

t−τ0

ẋT (s)R2ẋ(s)ds ≤
∫ t−τ0+δ

t−τ0−δ

ẋT (s)R2ẋ(s)ds, (5.22)

and for t ≥ τ0 + ikh,∫ t−τ0

ikh

ẋT (s)R2ẋ(s)ds ≤
∫ t−τ0+δ

t−τ0−δ

ẋT (s)R2ẋ(s)ds. (5.23)

Then, combining (5.17)–(5.23), we can show that, for
t ∈ [ikh + τk, ik+1h + τk+1) ,

V̇ (t) ≤
[
eT (t)

∫ t

t−τ0
xT (s)ds wT (t)

]{[Ξ11 ∗
Ξ̃21 Ξ̃22

]
+ ηÑR−1

1 ÑT

+ δS̃R−1
2 S̃T + C̃C̃T

}⎡
⎣ e(t)∫ t

t−τ0
x(s)ds

w(t)

⎤
⎦ (5.24)
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where

Ξ̃21 =
[

P3 0 −P3 PT
2

−BT
wMT

1 −BT
wMT

2 −BT
wMT

3 −BT
wMT

4

]
,

Ξ̃22 = diag
(
− 1

τ0
T2, −γ2I

)
, ÑT =

[
NT 0 0

]
,

S̃T =
[
ST 0 0

]
, C̃T =

[
C DK 0 0 0 0

]
.

By Schur complement and combining (5.14) and (5.24) we obtain for t ∈
[ikh + τk, ik+1h + τk+1),

V̇ (t) ≤ −zT (t)z(t) + γ2wT (t)w(t). (5.25)

Integrating both sides of (5.25) from ikh+τk to t ∈ [ikh+τk, ik+1h+τk+1),
we have

V (t)− V (ikh + τk) ≤ −
∫ t

ikh+τk

zT (s)z(s)ds

+
∫ t

ikh+τk

γ2wT (s)w(s)ds. (5.26)

Since ∪∞k=1 [ikh + τk, ik+1h + τk+1) = [t0,∞) and V (t) is continuous in t (since
x(t) is continuous in t), from (5.26), we can see that

V (t)− V (t0) ≤ −
∫ t

t0

zT (s)z(s)ds

+
∫ t

t0

γ2wT (s)w(s)ds. (5.27)

Then, letting t→∞ and under zero initial condition, we can show from (5.27)
that ∫ ∞

t0

zT (s)z(s)ds ≤ γ2

∫ ∞

t0

wT (s)w(s)ds, (5.28)

thus, ‖z(t)‖2 ≤ γ ‖w(t)‖2 .
Next, we prove the exponential stability of System (5.8). In this case, the

external perturbation w(t) is assumed to be zero. Then, using the Lyapunov–
Krasovskii functional (5.16), for t ∈ [ikh + τk, ik+1h + τk+1) , one can obtain
that

V̇ (t) ≤
[
eT (t)

∫ t

t−τ0
xT (s)ds

]{[Ξ11 ∗
Ξ̂21 − 1

τ0
T2

]

+η

[
N
0

]
R−1

1

[
NT 0

]
+δ

[
S
0

]
R−1

2

[
ST 0

]}[
e(t)∫ t

t−τ0
x(s)ds

]
, (5.29)
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where Ξ̂21 =
[
P3 0 −P3 PT

2

]
.

Using (5.14) and Schur complements, we can conclude from (5.29) that for
t ∈ [ikh + τk, ik+1h + τk+1),

V̇ (t) ≤ −λ ‖x(t)‖2 − λ ‖ẋ(t)‖2 , (5.30)

where λ = min {λmin (W1) , λmin (W2)} .
Defining a new function as

W (t) = eεtV (t) (5.31)

and taking its time derivative for t ∈ [ikh + τk, ik+1h + τk+1) yields

Ẇ (t) = εeεtV (t) + eεtV̇ (t)

≤ εeεtV (t)− λeεt ‖x(t)‖2 − λeεt ‖ẋ(t)‖2 . (5.32)

Integrating both sides of (5.32) from ikh + τk to t, we obtain

W (t)−W (ikh + τk) ≤
∫ t

ikh+τk

εeεsV (s)ds− λ

∫ t

ikh+τk

eεs ‖x(s)‖2 ds

−λ
∫ t

ikh+τk

eεs ‖ẋ(s)‖2 ds. (5.33)

Since V (t) is continuous on [t0,∞), W (t) is also continuous on [t0,∞) .
Then, from (5.33), it is easy to see that

W (t)−W (t0) ≤
∫ t

t0

εeεsV (s)ds− λ

∫ t

t0

eεs ‖x(s)‖2 ds

−λ
∫ t

t0

eεs ‖ẋ(s)‖2 ds. (5.34)

By using a similar analysis method to that in [10], it can be seen from (5.16),
(5.31) and (5.34) that, if ε > 0 is chosen small enough, a constant ρ > 0 can
be found such that

V (t) ≤ ρ sup
t0−η≤s≤t0

‖φ(s)‖2 e−εt, t ≥ t0, (5.35)

which can further imply from (5.16) that

‖x(t)‖ ≤
√

λ−1
min(P )ρ sup

t0−η≤s≤t0

‖φ(s)‖ e−εt/2, t ≥ t0, (5.36)

where P =
[
P1 P2

PT
2 P3

]
. Then, by Definition 5.1, the result is established. �
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Remark 5.5. If we do not consider the effects of network-induced delay and
sampling rate on the system, (5.8) becomes

ẋ(t) = A0(t)x(t) + Bww(t), (5.37)

where A0(t) = A + ΔA(t) + BK + ΔB(t)K. In this case, τm = 0 and η = 0.
Thus, V (t) in (5.16) reduces to

V (t) = xT (t)P1x(t).

The derivative of V (t), i.e., (5.17), becomes

V̇ (t) = 2xT (t)P1ẋ(t)
+2eT (t)M [−A0(t)x(t)−Bww(t) + ẋ(t)]

+ [Cx(t) + DKx(ikh)]T [Cx(t) + DKx(ikh)]
−γ2wT (t)w(t)− zT (t)z(t) + γ2wT (t)w(t). (5.38)

Letting M1 = −P1 and M2 = 0, we have from (5.38) that

V̇ (t) = 2xT (t)P1 [A0(t)x(t) + Bww(t)]

+ [Cx(t) + DKx(ikh)]T [Cx(t) + DKx(ikh)]
−γ2wT (t)w(t)− zT (t)z(t) + γ2wT (t)w(t). (5.39)

Then, from (5.39), we can obtain the H∞ performance criterion commonly
used for the system without considering the effects of network-induced delay
and sampling rate on the system. Since M1 and M2 in our criterion can be any
matrices, it is easy to see that using our criterion we can obtain better (that
is, less conservative) results than those by other methods even for the case
where the effects of network-induced delay and sampling rate on the system
are not considered. �

The parameter uncertainties ΔA(t) and ΔB(t) are contained in (5.14).
Therefore, Lemma 5.1 cannot directly be used to determine the performance
of the closed-loop System (5.8)–(5.10). The following result is given to pro-
vide a sufficient condition for guaranteeing the feasibility of (5.14) (its proof
can easily be established by combining (5.14), (5.15) and (5.2), and hence is
omitted).

Theorem 5.1. For given scalars τm, η and γ and a matrix K, if there exist
matrices Pk (k = 1, 2, 3), Tj > 0, Rj > 0 (j = 1, 2) and any matrices Ni, Si

and Mi (i = 1, 2, 3, 4) of appropriate dimensions and a scalar ε > 0 such that[
Ψ11 ∗
Ψ21 Ψ22

]
< 0, (5.40)

[
P1 P2

PT
2 P3

]
> 0, (5.41)
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where

Ψ11 =

⎡
⎢⎢⎣
Γ ′

11 ∗ ∗ ∗
Γ ′

21 Γ ′
22 ∗ ∗

Γ ′
31 Γ ′

32 Γ ′
33 ∗

Γ ′
41 Γ ′

42 Γ ′
43 Γ ′

44

⎤
⎥⎥⎦ ,

Ψ21 =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ0P3 0 −τ0P3 τ0P
T
2

ηNT
1 ηNT

2 ηNT
3 ηNT

4

δST
1 δST

2 δST
3 δST

4

C DK 0 0
−BT

wMT
1 −BT

wMT
2 −BT

wMT
3 −BT

wMT
4

GTMT
1 GTMT

2 GTMT
3 GTMT

4

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

Ψ22 = diag
(−τ0T2, −ηR1, −δR2, −I, −γ2I, −εI) ,

Γ ′
11 = P2 + PT

2 + T1 + τ0T2 + N1 + NT
1 −M1A−ATMT

1 + εET
a Ea,

Γ ′
21 = N2 −NT

1 + ST
1 −M2A−KTBTMT

1 + εKTET
b Ea,

Γ ′
31 = N3 − PT

2 − ST
1 −M3A,

Γ ′
41 = MT

1 + N4 + P1 −M4A,

Γ ′
22 = −N2 −NT

2 + S2 + ST
2 −M2BK −KTBTMT

2 + εKTET
b EbK,

Γ ′
32 = −N3 + S3 − ST

2 −M3BK,

Γ ′
42 = −N4 + S4 + MT

2 −M4BK,

Γ ′
33 = −T1 − S3 − ST

3 ,

Γ ′
43 = −S4 + MT

3 ,

Γ ′
44 = M4 + MT

4 + ηR1 + 2δR2,

then, System (5.8)–(5.10) with a control network satisfying Assumption 5.2
is robustly exponentially stable with an H∞ norm bound γ. �

Remark 5.6. For given τm, η and γ and a matrix K, if the solvability of LMIs
(5.40)–(5.41) is feasible, we know that as long as Assumption 5.2 is satisfied,
System (5.8)–(5.10) is robustly exponentially stable with an H∞ norm bound
γ. If there is no data dropout in the network, (5.6) becomes

h + τk+1 ≤ η. (5.42)

For a chosen sampling rate h, we can find that the upper bound of time delay
τk+1 that guarantees the H∞ performance of System (5.8)–(5.10) is η − h.
Moreover, the allowable amount of data dropout that guarantees the H∞
performance of System (5.8)–(5.10) can also be determined by (5.6). �

5.2.3 Robust H∞ Controller Design

Based on Theorem 5.1, we are now in a position to design the feedback gain
K, which can make the System (5.1) robustly exponentially stable with an
H∞ norm bound γ.
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Theorem 5.2. For given scalars ρl (l = 2, 3, 4), τm, η and γ, if there exist
matrices P̃k (k = 1, 2, 3), T̃j > 0, R̃j > 0 (j = 1, 2), a nonsingular matrix X

and any matrices Ñi and S̃i (i = 1, 2, 3, 4) of appropriate dimensions and a
scalar μ > 0 such that [

Φ11 ∗
Φ21 Φ22

]
< 0, (5.43)

[
P̃1 P̃2

P̃T
2 P̃3

]
> 0, (5.44)

where

Φ11 =

⎡
⎢⎢⎣
Σ11 ∗ ∗ ∗
Σ21 Σ22 ∗ ∗
Σ31 Σ32 Σ33 ∗
Σ41 Σ42 Σ43 Σ44

⎤
⎥⎥⎦ ,

Φ21 =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ0P̃3 0 −τ0P̃3 τ0P̃
T
2

ηÑT
1 ηÑT

2 ηÑT
3 ηÑT

4

δS̃T
1 δS̃T

2 δS̃T
3 δS̃T

4

CXT DY 0 0
−BT

w −ρ2B
T
w −ρ3B

T
w −ρ4B

T
w

EaX
T EbY 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

Φ22 = diag
(
−τ0T̃2, −ηR̃1, −δR̃2, −I, −γ2I, −μI

)
,

Σ11 = P̃2 + P̃T
2 + T̃1 + τ0T̃2 + Ñ1 + ÑT

1 −AXT −XAT + μGGT ,

Σ21 = Ñ2 − ÑT
1 + S̃T

1 − ρ2AXT − Y TBT + μρ2GGT ,

Σ31 = Ñ3 − P̃T
2 − S̃T

1 − ρ3AXT + μρ3GGT ,

Σ41 = X + Ñ4 + P̃1 − ρ4AXT + μρ4GGT ,

Σ22 = −Ñ2 − ÑT
2 + S̃2 + S̃T

2 − ρ2BY − ρ2Y
TBT + μρ2

2GGT ,

Σ32 = −Ñ3 + S̃3 − S̃T
2 − ρ3BY + μρ3ρ2GGT ,

Σ42 = −Ñ4 + S̃4 + ρ2X − ρ4BY + μρ4ρ2GGT ,

Σ33 = −T̃1 − S̃3 − S̃T
3 + μρ2

3GGT ,

Σ43 = −S̃4 + ρ3X + μρ4ρ3GGT ,

Σ44 = ρ4X + ρ4X
T + ηR̃1 + 2δR̃2 + μρ2

4GGT ,

then, under the controller u(t) = Kx(t) with K = Y X−T , System (5.1)
with a control network satisfying Assumption 5.2 is robustly exponentially
stabilizable with an H∞ norm bound γ.

Proof. Define M1 = M0, M2 = ρ2M0, M3 = ρ3M0, M4 = ρ4M0 and ρ4 �=
0 in (5.40) and refer it to as (5.40)′. Obviously, (5.40)′ implies that M0 is
nonsingular. Pre- and post-multiplying both sides of (5.40)′ with
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diag(X,X,X,X,X,X,X, I, I, I)

and its transpose, and (5.41) with diag(X,X) and its transpose, where
X = M−1

0 , and introducing new variables P̃k = XPkX
T (k = 1, 2, 3),

Ñi = XNiX
T , S̃i = XSiX

T (i = 1, 2, 3, 4), T̃j = XTjX
T , R̃j = XRjX

T

(j = 1, 2) , Y = KXT and μ = ε−1, we can obtain (5.43) and (5.44) by using
Schur complements. It is easy to see that (5.43) and (5.44), respectively imply
(5.40)′ and (5.41). Therefore, from Theorem 5.1, we complete the proof. �

5.2.4 Numerical Examples

Example 5.1. Consider the following system borrowed from [29]:

ẋ(t) =
[

0 1
0 −0.1

]
x(t) +

[
0

0.1

]
u(t). (5.45)

When considering the effect of external perturbation on the system, (5.45)
can be expressed as

ẋ(t) =
[

0 1
0 −0.1

]
x(t) +

[
0

0.1

]
u(t) +

[
0.1
0.1

]
w(t), (5.46)

z(t) =
[
0 1

]
x(t) + 0.1u(t). (5.47)

For this example, we will employ the same feedback controller as in [29],
that is, u(t) =

[−3.75 −11.5
]
x(t). This controller is designed without con-

sidering the presence of the network. Under an assumption that the controller
dynamics in (5.45) is continuous and/or the communication medium is error-
free [20], the maximum allowable transfer intervals (MATI), also called MADB
[8], that guarantees the stability of System (5.45) controlled over a network
are given in Table 5.1 which were obtained based on different methods. It
has been pointed out in [27] that the method in [27] can be applicable to
systems when the controller is computer-based and the control input signal
arrives at the plant through a network. In this case, it has been found in [27]
that the maximum allowable value of ηmax is 0.8695. Choosing τm = 0 and
using Theorem 5.1, we compute that the maximum allowable value of ηmax

can be 0.8871. When the lower bound of the time delay τk exists, for brevity,
we consider the constant delay case, that is, τk = τ̂ , and no data dropout (in

Table 5.1. MATIs based on different methods

Methods MATI

Zhang et al., 2001 [29] 4.5 × 10−4

Park et al., 2002 [16] 0.0538

Kim et al., 2003 [8] 0.7805

Yue et al., 2004 [27] 0.8695
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this case, τm = τ̂ and η = τ̂ + h). From [27], we have ηmax = 0.8695. Then,
the maximum allowable value of τ̂max is 0.8695 − h. For the case h = 0.3,

τ̂max = 0.5695. Using Theorem 5.1 with τ0 = τ̂ +
h

2
and δ =

h

2
, we find that

τ̂max is 0.6916 when h = 0.3. In this case, ηmax = 0.9916. Obviously, from
these figures, it can be found that the present method can obtain a much less
conservative result than that by the method in [27], especially for the case
when a lower bound on time delay τk exists.

Next, we consider the H∞ performance of System (5.46)–(5.47) under the
given controller. For the case τm = 0 we find that a minimum allowable value
of γmin is 6.82 for η = 0.8695. For the case h = 0.3 and constant time delay,
that is, τk = τ̂ , a minimum allowable value of γmin is 1.26 when τ̂ = 0.5695.�

Example 5.2. Consider the following uncertain system controlled over a net-
work:

ẋ(t) =

⎛
⎝
⎡
⎣−1 0 −0.5

1 −0.5 0
0 0 0.5

⎤
⎦+ ΔA(t)

⎞
⎠x(t)

+

⎡
⎣ 0

0
1

⎤
⎦u(t) +

⎡
⎣ 1

1
1

⎤
⎦w(t), (5.48)

z(t) =
[
1 0 1

]
x(t) + 0.1u(t), (5.49)

where ‖ΔA(t)‖ ≤ 0.01. For brevity, it is assumed in this example that ik = k,
that is, no data dropout occurs in the network. It is also assumed that τm =
0.1, which is the lower bound of the network-induced delay. In the following
discussion, the sampling rate is chosen as 0.2, that is, h = 0.2.

Using Theorem 5.2 with ρ2 = ρ3 = 0.2 and ρ4 = 2, it is found that, for
η = 0.5, the values of the minimum allowable value of γmin is 1.9 with X and
Y respectively given by

X =

⎡
⎣−4.8685 −1.6898 4.5822

1.4794 −130.3345 −0.3929
2.4762 0.0790 −4.7527

⎤
⎦ , Y =

⎡
⎣−3.7066
−0.0765
5.2430

⎤
⎦T

.

Then, the feedback gain K can be computed as

K = [−0.5425 − 0.0014 − 1.3858] .

By (5.6), it can be found that the allowable upper value of the network-induced
delay is 0.3. Simulation results of System (5.48)–(5.49) with controller u(t) =[−0.5425 −0.0014 −1.3858

]
x(t) is shown in Fig. 5.1. For this simulation,
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Fig. 5.1. Simulation of System (5.48)–(5.49)

initial values of the states are x1(0) = 0.5, x2(0) = −0.5 and x3(0) = 1.2, the
disturbance signal w(t) is defined by

w(t) =
{

0.3, 2s ≤ t ≤ 4s,
0, otherwise. �

5.3 Robust H∞ Filter Design of NCS

5.3.1 Modeling a Network-based Filter

Consider an uncertain linear system

ẋ(t) = [A + ΔA(t)]x(t) + Bw(t), (5.50)
y(t) = [C1 + ΔC1(t)]x(t) + Dw(t), (5.51)
z(t) = Lx(t), (5.52)

where x(t) ∈ Rn is the state, y(t) ∈ Rr is the measurement, z(t) ∈ Rq is the
signal that will be estimated, and w(t) ∈ Rp is the disturbance input; A, B,
C1, D, and L are some constant matrices of appropriate dimensions; ΔA(t)
and ΔC1(t) denote the parameter uncertainties.
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In this chapter, we consider the filter of the following form for the estimate
of z(t)

ẋf (t) = Afxf (t) + Bf ŷ(t), (5.53)
zf (t) = Lfxf (t), (5.54)

where xf (t) ∈ Rn, ŷ(t) ∈ Rr are the inputs of the filter, Af , Bf , and Lf will
be determined later.

Remark 5.7. For a traditional filtering problem, the effect of the transmission
network is neglected. In this case, ŷ(t) = y(t). �

Different from the traditional filtering problem, the data of measurement
y(t) of System (5.50) is sampled and transmitted through a common network
medium. Considering the effect of the common network on data transmission,
(5.53) can be expressed as

ẋf (t) = Afxf (t) + Bf [C1 + ΔC1(ikh)]x(ikh) + BfDw(ikh), (5.55)
t ∈ [ikh + τk, ik+1h + τk+1) , k = 1, 2, 3, . . .

where h is the sampling period, ik (k = 1, 2, 3, . . .) are as defined in (5.3)–(5.5).
As in Remark 5.3, defining τ(t) = t − ikh, t ∈ [ikh + τk, ik+1h + τk+1) ,

(5.55) can be further written as

ẋf (t) = Afxf (t) + Bf [C1 + ΔC1(t− τ(t))]x(t− τ(t))
+BfDw(t− τ(t)), (5.56)

where τk ≤ τ(t) ≤ (ik+1 − ik)h+ τk+1 for t ∈ [ikh + τk, ik+1h + τk+1), τk and
(ik+1 − ik)h + τk+1 satisfy Assumption 5.2.

Remark 5.8. If the effect of the network is not considered, i.e., τk = 0, then
(5.56) reduces to a traditional sampled-data system. �

Define ΔC̃1(t) = ΔC1(t−τ(t)) and v(t) = w(t−τ(t)). Then (5.56) becomes

ẋf (t) = Afxf (t) + Bf

[
C1 + ΔC̃1(t)

]
x(t− τ(t)) + BfDv(t). (5.57)

Remark 5.9. It is found that the network-based filter is very different from the
traditional filter. In the former case, there exist a network-induced delay and
data dropout at the input of the filter. Moreover, the delay belongs to a class
of fast time-varying delays. In other words, we cannot find a positive scalar
less than 1, which is an upper bound of the derivative of τ(t). Therefore, for
the design of filters (5.54) and (5.57), the methods in [2, 3, 23, 25] cannot be
applied since the upper bound of the derivative of the time delay is required
to be less than 1 in these references. �
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In this section, we propose a design method for filter (5.57) and (5.54).
Without loss of generality, consider the filtering problem for the following
system:

ẋ(t) = [A + ΔA(t)]x(t) + [A1 + ΔA1(t)]x(t− τ(t))
+Bw(t), (5.58)

y(t) = [C + ΔC(t)]x(t) + [C1 + ΔC1(t)]x(t− τ(t))
+Dv(t), (5.59)

z(t) = Lx(t), (5.60)
x(t) = ψ(t), t ∈ [t0 − η, t0], (5.61)

where τ(t) is the time delay satisfying

τm ≤ τ(t) ≤ η, (5.62)

τm and η are two known constants, and ΔA(t), ΔA1(t), ΔC(t), and ΔC1(t)
denote the parameter uncertainties satisfying[

ΔA(t) ΔA1(t)
ΔC(t) ΔC1(t)

]
=
[
G1

G2

]
F (t)

[
E1 E2

]
. (5.63)

The filter that will be designed is of the following form:

ẋf (t) = Afxf (t) + Bfy(t), (5.64)
zf (t) = Lfxf (t), (5.65)
xf (t) = 0, t ≤ t0. (5.66)

Define ζ(t) =
[
xT (t) xT

f (t)
]T

, e(t) = z(t) − zf (t) and β(t) =
[
w(t)
v(t)

]
.

Combining (5.58)–(5.61) and (5.64)–(5.66), we can obtain the filtering-error
system

ζ̇(t) =
[
Ã + ΔÃ(t)

]
ζ(t) +

[
Ã1 + ΔÃ1(t)

]
×ζ(t− τ(t)) + B̃β(t), (5.67)

e(t) = L̃ζ(t), (5.68)

ζ(t) = φ(t)
	
=
[
ψ(t)
0

]
, t ∈ [t0 − η, t0], (5.69)

where

Ã =
[

A 0
BfC Af

]
, Ã1 =

[
A1 0

BfC1 0

]
,

B̃ =
[
B 0
0 BfD

]
, L̃ =

[
L −Lf

]
,

ΔÃ(t) =
[

ΔA(t) 0
BfΔC(t) 0

]
, ΔÃ1(t) =

[
ΔA1(t) 0

BfΔC1(t) 0

]
.
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In light of (5.63), ΔÃ(t) and ΔÃ1(t) can be expressed as

ΔÃ(t) =
[

G1

BfG2

]
F (t)

[
E1 0

] 	
= GF (t)Ẽ1,

ΔÃ1(t) =
[

G1

BfG2

]
F (t)

[
E2 0

] 	
= GF (t)Ẽ2.

Remark 5.10. When [A1 + ΔA1(t)] = 0, [C + ΔC(t)] = 0, and τ(t) = t− ikh,
for t ∈ [ikh + τk, ik+1h + τk+1) , combining (5.64) and (5.59) yields (5.57),
which becomes the design problem of network-based filter. More specifically,
suppose that ΔA(t) and ΔC1(t) in (5.50) and (5.51) can be expressed as

ΔA(t) = GaF (t)Ea, ΔC1(t) = GcF (t)Ec.

For System (5.50)–(5.52) with the network-based filter (5.53)–(5.54), we can
obtain the corresponding network-based filtering-error System (5.67)′–(5.69)′,
which is derived from System (5.67)–(5.69) with the following system matrices

Ã =
[
A 0
0 Af

]
, Ã1 =

[
0 0

BfC1 0

]
,

B̃ =
[
B 0
0 BfD

]
, L̃ =

[
L −Lf

]
,

ΔÃ(t) =
[
ΔA(t) 0

0 0

]
, ΔÃ1(t) =

[
0 0

BfΔC1(t) 0

]
, (5.70)

and ΔÃ(t) and ΔÃ1(t) can be expressed as

ΔÃ(t) =
[

G1

BfG2

]
F (t)

[
E1 0

] 	
= GF (t)Ẽ1,

ΔÃ1(t) =
[

G1

BfG2

]
F (t)

[
E2 0

] 	
= GF (t)Ẽ2, (5.71)

with G1 =
[
Ga 0

]
, G2 =

[
0 Gc

]
, E1 =

[
Ea

0

]
, and E2 =

[
0
Ec

]
. �

5.3.2 H∞ Performance Analysis of Filtering-error System

In this section, we will give an H∞ performance analysis result for the filtering-
error System (5.67)–(5.68). The following definition is first introduced.

Definition 5.2. System (5.67)–(5.68) is said to be robustly exponentially sta-
ble with an H∞ norm bound γ, if the following hold:

(i) System (5.67)–(5.68) with β(t) ≡ 0 is robustly exponentially stable; that
is, there exist constants α > 0 and β > 0 such that ‖ζ(t)‖ ≤
α supt0−η≤s≤t0 ‖φ(s)‖ e−βt, t ≥ t0, for all admissible uncertainties ΔÃ(t)
and ΔÃ1(t);
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(ii) under the assumption of zero initial condition, the controlled output e(t)
satisfies ‖e(t)‖2 ≤ γ ‖β(t)‖2 for any nonzero β(t) ∈ L2 [t0,∞) . �

By using the same method mentioned in Lemma 5.1, we can conclude the
following result.

Lemma 5.2. For given scalars τm, η, and γ, if there exist matrices Pk (k =
1, 2, 3), Wj > 0, Tj > 0, Rj > 0 (j = 1, 2), and any matrices Ni, Si, and Mi

(i = 1, 2, 3, 4) of appropriate dimensions such that[
Ξ11 + diag (W1, 0, 0, W2) ∗

Ξ21 Ξ22

]
< 0, (5.72)

[
P1 P2

PT
2 P3

]
> 0, (5.73)

where

Ξ11 =

⎡
⎢⎢⎣
Γ11 ∗ ∗ ∗
Γ21 Γ22 ∗ ∗
Γ31 Γ32 Γ33 ∗
Γ41 Γ42 Γ43 Γ44

⎤
⎥⎥⎦ ,

Ξ21 =

⎡
⎢⎢⎢⎢⎣

τ0P3 0 −τ0P3 τ0P
T
2

ηNT
1 ηNT

2 ηNT
3 τMNT

4

δST
1 δST

2 δST
3 δST

4

L̃ 0 0 0
−B̃TMT

1 −B̃TMT
2 −B̃TMT

3 −B̃TMT
4

⎤
⎥⎥⎥⎥⎦ ,

Ξ22 = diag
(−τ0T2, −ηR1, −δR2, −I, −γ2I

)
,

with

Γ11 = P2 + PT
2 + T1 + τ0T2 + N1 + NT

1 −M1

[
Ã + ΔÃ(t)

]
−
[
Ã + ΔÃ(t)

]T

MT
1 ,

Γ21 = N2 −NT
1 + ST

1 −M2

[
Ã + ΔÃ(t)

]
−
[
Ã1 + ΔÃ1(t)

]T

MT
1 ,

Γ31 = N3 − PT
2 − ST

1 −M3

[
Ã + ΔÃ(t)

]
,

Γ41 = MT
1 + N4 + P1 −M4

[
Ã + ΔÃ(t)

]
,

Γ22 = −N2 −NT
2 + S2 + ST

2 −M2

[
Ã1 + ΔÃ1(t)

]
−
[
Ã1 + ΔÃ1(t)

]T

MT
2 ,
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Γ32 = −N3 + S3 − ST
2 −M3

[
Ã1 + ΔÃ1(t)

]
,

Γ42 = −N4 + S4 + MT
2 −M4

[
Ã1 + ΔÃ1(t)

]
,

Γ33 = −T1 − S3 − ST
3 ,

Γ43 = −S4 + MT
3 ,

Γ44 = M4 + MT
4 + ηR1 + 2δR2,

then, System (5.67)–(5.69) is robustly exponentially stable with an H∞ norm
bound γ. �

The parameter uncertainties ΔÃ(t) and ΔÃ1(t) are contained in (5.72).
Therefore, Lemma 5.2 cannot directly be used to determine the performance
of System (5.67)–(5.68). The following result is given to provide a sufficient
condition for guaranteeing the feasibility of (5.72) (its proof can easily be
established, and hence is omitted).

Lemma 5.3. For given scalars τm, η, and γ, if there exist matrices Pk (k =
1, 2, 3), Tj > 0, Rj > 0 (j = 1, 2) and any matrices Ni, Si and Mi (i = 1, 2, 3, 4)
of appropriate dimensions and a scalar ε > 0 such that (5.73) and[

Ξ ′
11 ∗

Ξ ′
21 Ξ ′

22

]
< 0, (5.74)

where

Ξ ′
11 =

⎡
⎢⎢⎣
Γ ′

11 ∗ ∗ ∗
Γ ′

21 Γ ′
22 ∗ ∗

Γ ′
31 Γ ′

32 Γ ′
33 ∗

Γ ′
41 Γ ′

42 Γ ′
43 Γ ′

44

⎤
⎥⎥⎦ ,

Ξ ′
21 =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ0P3 0 −τ0P3 τ0P
T
2

ηNT
1 ηNT

2 ηNT
3 τMNT

4

δST
1 δST

2 δST
3 δST

4

L̃ 0 0 0
−B̃TMT

1 −B̃TMT
2 −B̃TMT

3 −B̃TMT
4

GTMT
1 GTMT

2 GTMT
3 GTMT

4

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

Ξ ′
22 = diag

(−τ0T2, −ηR1, −δR2, −I, −γ2I, −εI) ,
Γ ′

11 = P2 + PT
2 + T1 + τ0T2 + N1 + NT

1 −M1Ã− ÃTMT
1 + εẼT

1 Ẽ1,

Γ ′
21 = N2 −NT

1 + ST
1 −M2Ã− ÃT

1 MT
1 + εẼT

2 Ẽ1,

Γ ′
31 = N3 − PT

2 − ST
1 −M3Ã,

Γ ′
41 = MT

1 + N4 + P1 −M4Ã,

Γ ′
22 = −N2 −NT

2 + S2 + ST
2 −M2Ã1 − ÃT

1 MT
2 + εẼT

2 Ẽ2,

Γ ′
32 = −N3 + S3 − ST

2 −M3Ã1,

Γ ′
42 = −N4 + S4 + MT

2 −M4Ã1,

Γ ′
33 = −T1 − S3 − ST

3 ,
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Γ ′
43 = −S4 + MT

3 ,

Γ ′
44 = M4 + MT

4 + ηR1 + 2δR2,

then, System (5.67)–(5.69) is robustly exponentially stable with an H∞ norm
bound γ. �

Remark 5.11. Combining Remark 5.10 and Lemma 5.3, we can obtain an H∞
performance analysis result, referred to as Lemma 5.3′, for System (5.67)′–
(5.69)′ just by substituting the matrices Ã, Ã1, B̃ and L̃ in (5.74) with those
in (5.70)–(5.71). �

Remark 5.12. If we substitute the components of Ξ ′
11, Ξ

′
21, and Ξ ′

22 into (5.74),
we have a 10×10 block matrix on the left-hand side of (5.74). By deleting the
eighth and ninth rows and the corresponding eighth and ninth columns from
the 10×10 block matrix, we can obtain a delay-dependent stability condition,
referred to as (5.74)′′, for System (5.67) with β(t) = 0. It should be pointed
out that when we use this stability condition to check the stability of a system
with interval time-varying delay, the matrices Ã and Ã1 should be replaced
with the corresponding system matrices. �

5.3.3 H∞ Filter Design

Based on Lemma 5.3, we are in a position to derive a criterion for filter design.

Theorem 5.3. For given ρ2, ρ3, ρ4 > 0, τm, η, and γ, if there exist matrices
Pik (i = 1, 2, 3), Njk, Sjk (j = 1, 2, 3, 4; k = 1, 2, 3, 4), Tpq, Rpq (p = 1, 2; q =
1, 2, 3), Um (m = 1, 2, 3), X, and Y of appropriate dimensions and a scalar
ε > 0 such that [

Ω11 ∗
Ω21 Ω22

]
< 0, (5.75)

X + XT − Y − Y T < 0, (5.76)[
P̃1 P̃2

P̃T
2 P̃3

]
> 0, T̃p > 0, R̃p > 0, (5.77)

where

Ω11 =

⎡
⎢⎢⎣
Π11 ∗ ∗ ∗
Π21 Π22 ∗ ∗
Π31 Π32 Π33 ∗
Π41 Π42 Π43 Π44

⎤
⎥⎥⎦ ,

Ω21 =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ0P̃3 0 −τ0P̃3 τ0P̃2

ηÑT
1 ηÑT

2 ηÑT
3 ηÑT

4

δS̃T
1 δS̃T

1 δS̃T
1 δS̃T

1

L 0 0 0
B ρ2B ρ3B ρ4B
G ρ2G ρ3G ρ4G

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

Ω22 = diag
(
−τ0T̃2, −ηR̃1, −δR̃2, −I, −γ2I, −εI

)
,
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with the definition of Πij (i, j = 1, 2, 3, 4) given in Section 5.4, and

Ñj =
[
Nj1 Nj2

Nj3 Nj4

]
, S̃j =

[
Sj1 Sj2

Sj3 Sj4

]
, j = 1, 2, 3, 4,

T̃p =
[
Tp1 Tp2

TT
p2 Tp3

]
, R̃p =

[
Rp1 Rp2

RT
p2 Rp3

]
, p = 1, 2,

P̃i =
[
Pi1 Pi2

Pi3 Pi4

]
, i = 1, 2, 3,L =

[
L− U3 L

]
,

B = −
[
BTY BTX

0 DTUT
2

]
, G =

[
GT

1 Y GT
1 X + GT

2 UT
2

]
,

then, the H∞ filtering problem is solvable. Furthermore, the parameter ma-
trices of the filter (5.64)–(5.65) is given as follows

Af = J−1U1Y
−1W−T , Bf = J−1U2, Lf = U3Y

−1W−T , (5.78)

where J and W are the nonsingular matrix solutions to

JWT = I −XY −1. (5.79)

Proof. From (5.75) and noting that ρ4 > 0, it can be seen that X + XT and
Y + Y T satisfy

X + XT < 0, Y + Y T < 0. (5.80)

Since (5.80) implies X and Y are nonsingular, from (5.76), we have(
XY −1 − I

)
Y + Y T (XY −1 − I)T < 0, (5.81)

which further implies that XY −1 − I is nonsingular. Therefore, there exist
nonsingular matrices J and W such that (5.79) holds.

Define

Φ1 =
[
Y −1 I
WT 0

]
and Φ2 =

[
I X
0 JT

]
. (5.82)

Then,

MT = Φ2Φ
−1
1 =

[
X J
JT Ψ

]
, (5.83)

where Ψ = W−1Y −T
(
XT − Y T

)
Y −1W−T .

For (5.74) in Lemma 5.3, letting M1 = M, M2 = ρ2M, M3 = ρ3M,
and M4 = ρ4M, and substituting them into (5.74), we can obtain a sufficient
condition, referred to as (5.74)′, whose solvability can guarantee that of (5.74).

Next, we will show that (5.74) withMT =
[
X J
JT Ψ

]
is equivalent to (5.75).

Pre- and post-multiplying (5.74)′ with

diag
(
Ỹ TΦT

1 , Ỹ TΦT
1 , Ỹ TΦT

1 , Ỹ TΦT
1 , Ỹ TΦT

1 , Ỹ TΦT
1 , Ỹ TΦT

1 , I, I, I
)
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and its transpose, where Ỹ =
[
Y 0
0 I

]
. By using some routine matrix manipu-

lations and defining Ñi = Ỹ TΦT
1 NiΦ1Ỹ , S̃i = Ỹ TΦT

1 SiΦ1Ỹ (i = 1, 2, 3, 4),
T̃j = Ỹ TΦT

1 TjΦ1Ỹ , R̃j = Ỹ TΦT
1 RjΦ1Ỹ (j = 1, 2), P̃k = Ỹ TΦT

1 PkΦ1Ỹ
(k = 1, 2, 3), U1 = JAfW

TY, U2 = JBf , and U3 = LfW
TY, it can be shown

that (5.74)′ is equivalent to (5.75). Pre- and post-multiplying
[
P1 P2

PT
2 P3

]
> 0

with diag
(
Ỹ TΦT

1 , Ỹ TΦT
1

)
and diag

(
Φ1Ỹ , Φ1Ỹ

)
, we can show that the

equivalence between
[
P1 P2

PT
2 P3

]
> 0 and

[
P̃1 P̃2

P̃T
2 P̃3

]
> 0. Finally, by (5.75)–

(5.77) and Lemma 5.3, we can complete the proof. �

Remark 5.13. From (5.74)′ with MT =
[
X J
JT Ψ

]
, it is easy to see that

Γ ′
44 = ρ4

[
X + XT J + JT

J + JT Ψ + ΨT

]
+ ηR1 + 2δR2. (5.84)

Obviously, if ρ4 is chosen as a positive scalar, in order to guarantee (5.74)′, it
is required that Ψ + ΨT < 0, which is equivalent to X + XT − Y − Y T < 0.
Therefore, if the tuning scalar parameter ρ4 is chosen as a positive number,
the condition X + XT − Y − Y T < 0 in (5.76) must be used. On the other
hand, when ρ4 < 0 is chosen, it is required to use X + XT − Y − Y T > 0 in
(5.76). �

Remark 5.14. Similar to Theorem 5.3, from Lemma 5.3′ and Remark 5.11,
we can obtain a network-based filter design result for System (5.50)–(5.52),
referred to as Theorem 5.3′, which can be established by deleting the terms
containing A1 and C in Πij (i, j = 1, 2, 3, 4) in Theorem 5.3. �

5.3.4 Numerical Examples

Example 5.3. Consider the following system [7]:

ẋ(t) =
[

0 1
−1 −2

]
x(t) +

[
0 0
−1 1

]
x(t− 1), (5.85)

and

ẋ(t) =
[

0 1
−1 −2

]
x(t) +

[
0 0
−1 1

]
x(t− 1) + η(t)), (5.86)

where η(t) satisfies the condition that |η(t)| ≤ η0 and |η̇(t)| ≤ η̇0, where
η0 and η̇0 as defined in [7]. It was found in [7] that System (5.86) remains

stable if η0 <
1

640
μ0 and η̇0 < 1 − 8μ0, where μ0 ∈

(
0,

1
40

)
. Now we study

the stability of System (5.86) when the restriction on the derivative of η(t) is
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removed. Using Lemma 5.3 and Remark 5.12, it was found that the maximum
allowable value of η0 is 0.27. It is clear to see that for this example the result
using the present method is much better than that in [7]. Furthermore, η(t)
is allowed to be a fast time-varying function. �

Example 5.4. Consider the network-based robust H∞ filtering problem for the
following system:

ẋ(t) = [A + ΔA(t)]x(t) + Bw(t),
y(t) = [C1 + ΔC1(t)]x(t) + Dw(t),
z(t) = Lx(t), (5.87)

where A =
[

0 3
−4 −5

]
, B =

[−0.5
0.9

]
, C1 =

[
0 1

]
, D = 1, L =

[
1 1

]
, ΔA(t)

and ΔC1(t) can be expressed as ΔA(t) =
[

0.3
0.3

]
F (t)

[
1 1

]
and ΔC1(t) =

0.1F (t)
[
1 1

]
. In terms of Remark 5.10, we choose G1 =

[
0.3 0
0.3 0

]
, E1 =[

1 1
0 0

]
, G2 =

[
0 0.1

]
and E2 =

[
0 0
1 1

]
.

The designed filter is of the form (5.53) and (5.54). The measurement y(t)
is sampled and transmitted through a common network media. It is assumed
that the propagation delay in the network to be monitored is 0.2 s. Therefore,
we can choose τm = 0.2.

Applying Theorem 5.3′ and Remark 5.14 with ρ2 = ρ3 = 0.2 and ρ4 = 5
and choosing the H∞ performance level γ = 1.5, it is found that the maximum
allowable value of η is 0.48, and

X =
[−1.5150 −0.5616
−0.6199 −0.4832

]
, Y =

[−0.4817 −0.1938
−0.2926 −0.2196

]
,

U1 =
[−2.4776 1.4792
−2.0235 −0.7505

]
, U2 =

[
0.0032
−0.0361

]
,

U3 =
[
1.2796 0.9780

]
. To derive the parameter matrices of the filter (5.53)

and (5.54), we choose the matrix J as J =
[

2 1
1 1

]
. Then, from (5.79), we

can solve that W =
[−2.5382 2.6461

1.7656 −3.0617

]
. Furthermore, from (5.78), we can

finally obtain the parameter matrices of the filter as

Af =
[

5.0775 10.6633
−9.0693 −12.7620

]
, Bf =

[
0.0393
−0.0754

]
,

Lf =
[
3.7782 3.6644

]
. (5.88)

�
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From the solutions of Example 5.4, it can be concluded that, as long as
the network condition satisfies

(ik+1 − ik)h + τk+1 ≤ 0.48, k = 1, 2, 3, . . . (5.89)

the filter (5.53) and (5.54) with parameter matrices in (5.88) can obtain an
estimate zf (t) of the signal z(t) of the System (5.87) that provides small
estimation error e(t) = z(t) − zf (t) for all w(t) ∈ L2 [t0,∞) and allowable
uncertainties in the System (5.87).

In Example 5.4, for the case of τm = 0.2, it was solved that the maximum
allowable value of η is 0.48. If setting τm = 0, we found that the maximum
allowable value of η is 0.45. Obviously, the former is less conservative than
the latter.

Example 5.5. Consider the System (5.87) with

A =
[−0.6 4
−4 −0.6

]
, B =

[
0 0

1.5 0

]
C1 =

[
0 1

]
, D =

[
0 1

]
, L =

[
1 1

]
, (5.90)

and the uncertainties ΔA(t) =
[

0.4
0

]
F (t)

[
0 1

]
and ΔC1(t) = 0. For this ex-

ample, a filter with an optimal H∞ performance of γopt = 0.7624 was designed
based on the method in [5].

Considering the effect of the network conditions on the system, we will
propose the design method of a network-based H∞ filter for the system (5.90).
The assumption on the network conditions is the same as that in Example
5.4.

Applying Theorem 5.3′ and Remark 5.14 with ρ2 = ρ3 = 0.2, and ρ4 = 5
and choosing the H∞ performance level γ = 0.7624, it is found that the
maximum allowable value of η is 0.40, and similar to Example 5.4, we can
obtain the parameter matrices Af , Bf and Lf of the filter as

Af =
[

15.7425 11.4138
−29.2242 −18.3093

]
, Bf =

[−0.0002
−0.0014

]
,

Lf =
[
11.6265 16.2950

]
. (5.91)

From the solutions of this example, it can be shown that for the same
H∞ performance γ = 0.7624, the designed filter in this chapter can tolerate
transmission delay in the measurement y(t) as long as the delay is less than
0.40. Obviously, the filter given in this chapter is more robust to the variation
in network conditions. Setting τm = 0, we found that the maximum allowable
value of η is 0.38. �



5 Robust H∞ Control and Filtering of Networked Control Systems 147

5.4 Definition of Πij

We provide in this section the definition of Πij for i, j = 1, 2, 3, 4.

Π11 =

[
Π

(1,1)
11 ∗

Π
(2,1)
11 Π

(2,2)
11

]
;

where

Π
(1,1)
11 = P21 + PT

21 + T11 + τ0T21 + N11 + NT
11

+ATY + Y TA + εET
1 E1,

Π
(2,1)
11 = P23 + PT

22 + TT
12 + τ0T

T
22 + N13 + NT

12

+XTA + U2C + U1 + Y + εET
1 E1,

Π
(2,2)
11 = P24 + PT

24 + T13 + τ0T23 + N14 + NT
14

+XTA + ATX + U2C + CTUT
2 + εET

1 E1.

Π21 =

[
Π

(1,1)
21 Π

(1,2)
21

Π
(2,1)
21 Π

(2,2)
21

]
;

where

Π
(1,1)
21 = N21 −NT

11 − ST
11 − ρ2Y

T −AT
1 Y + εET

2 E1,

Π
(1,2)
21 = N22 −NT

13 − ST
13 − ρ2Y

T −A1X

−CT
1 UT

2 + εET
2 E1,

Π
(2,1)
21 = N23 −NT

12 − ST
12 − ρ2X

TA− ρ2U2C

−ρ2U1 −AT
1 Y + εET

2 E1,

Π
(2,2)
21 = N24 −NT

14 − ST
14 − ρ2X

TA− ρ2U2C

−AT
1 X − CT

1 UT
2 + +εET

2 E1.

Π31 =

[
Π

(1,1)
31 Π

(1,2)
31

Π
(2,1)
31 Π

(2,2)
31

]
;

where

Π
(1,1)
31 = N31 − PT

21 − ST
11 − ρ3Y

T ,

Π
(1,2)
31 = N32 − PT

23 − ST
13 − ρ3Y

T ,

Π
(2,1)
31 = N33 − PT

22 − ST
12 − ρ3X

TA− ρ3U2C − ρ3U1,

Π
(2,2)
31 = N34 − PT

24 − ST
14 − ρ3X

TA− ρ3U2C.
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Π41 =

[
Π

(1,1)
41 Π

(1,2)
41

Π
(2,1)
41 Π

(2,2)
41

]
;

where

Π
(1,1)
41 = N41 + P11 + Y − ρ4Y

T ,

Π
(1,2)
41 = N42 + P12 + X −XT + Y T − ρ4Y

T ,

Π
(2,1)
41 = N43 + P13 + Y − ρ4X

TA− ρ4U2C − ρ4U1,

Π
(2,2)
41 = N44 + P14 + X − ρ4X

TA− ρ4U2C.

Π22 =

[
Π

(1,1)
22 ∗

Π
(2,1)
22 Π

(2,2)
22

]
;

where

Π
(1,1)
22 = −N21 −NT

21 + S21 + ST
21 − ρ2Y

TA1

−ρ2A
T
1 Y + εET

2 E2,

Π
(2,1)
22 = −N23 −NT

22 + S23 + ST
22 − ρ2X

TA1

−ρ2U2C1 − ρ2A
T
1 Y + εET

2 E2,

Π
(2,2)
22 = −N24 −NT

24 + S24 + ST
24 − ρ2X

TA1

−ρ2A
T
1 X − ρ2U2C1 − ρ2C

T
1 UT

2 + εET
2 E2.

Π32 =

[
Π

(1,1)
32 Π

(1,2)
32

Π
(2,1)
32 Π

(2,2)
32

]
;

where

Π
(1,1)
32 = −N31 + S31 − ST

21 − ρ3Y
TA1,

Π
(1,2)
32 = −N32 + S32 − ST

23 − ρ3Y
TA1,

Π
(2,1)
32 = −N33 + S33 − ST

22 − ρ3XA1 − ρ3U2C1,

Π
(2,2)
32 = −N34 + S34 − ST

24 − ρ3X
TA1 − ρ3U2C1.

Π42 =

[
Π

(1,1)
42 Π

(1,2)
42

Π
(2,1)
42 Π

(2,2)
42

]
;
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where

Π
(1,1)
42 = −N41 + S41 + ρ2Y − ρ4Y

TA1,

Π
(1,2)
42 = −N42 + S42 + ρ2X + ρ2Y

T

−ρ2X
T − ρ4Y

TA1,

Π
(2,1)
42 = −N43 + S43 + ρ2Y − ρ4X

TA1 − ρ4U2C1,

Π
(2,2)
42 = −N44 + S44 + ρ2X − ρ4X

TA1 − ρ4U2C1.

Π33 =
[−T11 − S31 − ST

31 ∗
−TT

12 − S33 − ST
32 −T13 − S34 − ST

34

]
;

Π43 =

⎡
⎣−S41 + ρ3Y

−S42 + ρ3X + ρ3Y
T

−ρ3X
T

−S43 + ρ3Y −S44 + ρ3X

⎤
⎦ ;

Π44 =

[
Π

(1,1)
44 ∗

Π
(2,1)
44 Π

(2,2)
44

]
;

where

Π
(1,1)
44 = ρ4Y + ρ4Y

T + ηR11 + 2δR21,

Π
(2,1)
44 = 2ρ4Y + ρ4X

T − ρ4X + ηRT
12 + 2δRT

22,

Π
(2,2)
44 = ρ4X + ρ4X

T + ηR13 + 2δR23.

5.5 Conclusions

The disturbance attenuation problem for NCSs has been investigated based on
a Lyapunov–Krasovskii functional method. The criteria for H∞ performance
analysis and H∞ control synthesis have been derived by introducing some
free-weighting matrices and exploiting the information concerning the lower
bound of variation of the network-induced delay, which has been shown by
the examples to be effective.

In Sections 5.3 and 5.4, we have addressed the problem of robust H∞ fil-
tering for a class of uncertain systems with interval time-varying delay. A new
analysis method for H∞ performance of the filtering error systems has been
proposed based on the lower and upper bounds of the time-varying delay. In
terms of the derived criteria, which are expressed as a set of linear matrix
inequalities, solvability of the considered filtering problem can be obtained.
Then the derived results have been applied to network-based robust H∞ fil-
tering for uncertain linear systems over a common network connection. Some
numerical examples have been given to show the effectiveness and less conser-
vativeness of the proposed method. As a special case, if we do not consider the
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effect of a network, we can easily obtain the results for sampled systems. It
should be pointed out that the methodology in this chapter can be extended
to handle the problem of robust H∞ control for systems with fast time-varying
delay.
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Abstract. In this chapter a switched output feedback control scheme for
networked systems will be presented. The control scheme is applied on client–
server architectures where the feedback control loop is closed over a general
purpose wireless communication channel between the plant (server) and the
controller (client). The inserted delays from the communication network in
general are time-varying and degrade the system dynamic performance, while
forcing it to instabilities. To deal with these changes a linear quadratic regu-
lator (LQR)–output feedback control scheme is introduced, whose parameters
are tuned accordingly to the variation of the measured round trip latency
times. The weights of the LQR controllers are subsequently tuned using the
theory of linear matrix inequalities (LMIs) to ensure a prescribed stability
margin despite the variable latency time. The overall scheme resembles a
gain scheduler controller with the latency times playing the role of schedul-
ing parameter. The proposed control scheme is applied in experimental and
simulation studies to a networked control system over different communica-
tion channels including: (a) the GPRS, (b) the IEEE 802.11b, and (c) the
IEEE 802.11b over a mobile ad hoc sensor network (MANET). The underly-
ing mechanisms that generate the time-varying latency times in each case will
also be presented and analyzed prior to the control scheme development.

Keywords. Networked control systems, switching control, 802.11b, GPRS,
mobile ad hoc networks (MANETs), quality of service (QoS).

6.1 Introduction

Remote client–server architectures are becoming dominant due to develop-
ments in communication capabilities and improvements in network infras-
tructures. These networks are susceptible to various issues [22, 27] stem-
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ming from the need to exchange information over a common communication
link [10, 11, 23, 24].

The utilization of a wired or wireless communication network [6, 12, 18, 25]
in control applications where the end user has no control over the provided
communication link leads to problems associated with data packet inter-
change. The main difficulty with the design of such a control loop is the
presence of the sensing and actuation delays introduced by the communi-
cation networks. Unlike conventional time delay systems, the type of delays
introduced by the network are time-varying, since they depend on the traffic
currently on the network. For wireless communication channels, the problem is
further complicated by the mobility of clients (controllers) and servers (plant)
which induces structural changes in the packet routing procedure.

The resulting networked control system (NCS) should be able to adjust
the settings of the transmission scheme to account for the possible peculiari-
ties encountered in typical real-time control application problems. The most
common problems that can be encountered are related to the need for: (a)
maintaining an effective bit-rate [19], (b) synchronizing heterogeneous com-
puters with varying computing power, (c) utilizing a large bandwidth for the
sampling applications [30], (d) accounting for loss-of-packets in classical wire-
less transmissions, (e) using the unreliable UDP rather than the TCP protocol
for control related purposes [22], and (f) stabilizing the resulting time-delayed
systems (TDS) [28].

The main focus of this chapter is to present a methodology in order to
design linear quadratic regulator (LQR)–output feedback controllers for NCS
systems that are characterized by time-varying latency times in the utilized
transmission channels. The inserted delays will be appropriately embedded
in the system representation and the overall system will result in a model
of a jump system. The controller proposed to deal with the switching of the
controlled system will adapt the weights of the LQR-scheme by the utilization
of an algorithm that was initially presented in [27] where the tuning is based
on: (a) linear matrix inequalities (LMIs), and (b) a prescribed stability margin
approach that will be invariant of the latency times.

The overall scheme resembles a gain scheduler controller with the latency
times playing the role of the scheduling parameter. With respect to the uti-
lization of the communication channel for data packet transmission the under-
lying mechanisms that generate the time-varying latency times at each case
will also be presented and analyzed prior to the control scheme development.
This presentation extends by providing examples for the network cases of:
(a) GPRS [3], (b) IEEE standard 802.11b [6, 12], and (c) the IEEE 802.11b
over a mobile ad hoc sensor network (MANET) [21]. Relying on the presented
approach for the switching rule among the system’s transitions, experimental
and simulation results will be presented.

This chapter is structured as follows. In Section 6.2, the modeling of an LTI
system, with time delays in the feedforward and the feedback control loop, as
a switching (jump) system is presented. In Section 6.3, the proposed controller
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design approach for the LQR–output feedback controller is presented. In Sec-
tion 6.4, the stability investigation of the proposed scheme and the tuning
algorithm of the LQR’s gains are covered. Finally, in Section 6.5, experimen-
tal and simulation results on NCSs over three communication channels are
presented.

6.2 Mathematical Modeling of NCS as a Switched
System

In the general case the control process is modeled as a linear time-invariant
(LTI) system of the following form:

x(k + 1) = Ax(k) + Bu(k) (6.1)
y(k) = Cx(k) (6.2)

while the controller is time varying and is represented as:

F ũ(k) = Gy(k − d2) + Hr(k) (6.3)
u(k) = ũ(k − d1) (6.4)

and with d1, d2 the time delays that are inserted from the communication
network in: (a) the feedforward loop (d1–delay in the transmission of the
control signal), and (b) the feedback loop (d2–delay in the transmission of the
system’s output). These delays are assumed to be time varying, or d1, d2 ∈ Z+

0 .
The existence of these delays, as it is going to be presented in this section,
result in the transformation of the LTI–closed loop system into a jump system,
with the delay factor (round-trip latency time), to be the switching rule among
the various models and the respective controllers.

In Fig. 6.1 the block structure of the system presented in (6.1)–(6.4) is
presented, where r is the reference signal, e is the error signal, H is a pre-
compensator to the reference, ũ and u are the non-delayed and the delayed
versions of the control signal and y is the system output.

r

System

z
-d

z
-d1

2

ue
~
u y

G

H
1

F
Σ

Fig. 6.1. Generic model of a delayed control plant
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If we simplify the case presented in Fig. 6.1, by setting H = G = 1 the
previous model of the system can be represented by the utilization of difference
equations from (6.1)–(6.2) where x(k) ∈ Rn and u(k) ∈ R. The block diagram
representation of this simplified case is presented in Fig. 6.2 and is the one that
will be adopted in this presentation and usually encountered in the literature
of NCS. Let r(k) = 0 and rs(k) = d1 + d2 be the overall delay (measured

r

Controller System

z
-d

z
-d1

2

ue
~u y

Fig. 6.2. Simplified block diagram of an NCS

round trip latency time) at time instant k. In this case rs(k) is a random
bounded sequence of integers rs(k) ∈ [0, 1, . . . , D] and D is the upper bound
of the delay term. In order to embed the time delays in the system model the
state vector x̃(k) is augmented in order to include all the delayed terms as:

x̃ = [x(k)T , x(k − 1)T , . . . , x(k −D)T ]T .

The dynamics of the open-loop system, at time k, with the augmented state
vector take the following form

x̃(k + 1) = Ãx̃(k) + B̃u(k),
y(k) = C̃rs

(k)x̃(k),

where

Ã =

⎡
⎢⎢⎢⎢⎢⎣
A 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦ , B̃ =

⎡
⎢⎢⎢⎢⎢⎣
B
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

C̃rs
(k) =

[
0 · · · 0 C 0 · · · 0

]
,

and the vector C̃rs
(k) has all of its elements zeroed, except the rs(k)th one

whose value corresponds to the initial C matrix. As we can see from the
structure of Ã, B̃, and C̃ matrices their dimensions remain constant as the
latency time varies and the dimensions are given only as a function of the
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maximum anticipated time delay D. The transformation to a switching system
is caused by the C̃ matrix, where its sub-vector C is translated horizontally,
depending on the value of the current delay rs(k). An alternative switching
representation of the C̃ matrix’s row elements can be given as:

C̃rs
(1, i) =

{
0, i �= rs(k),
C, i = rs(k), (6.5)

for i = 1, . . . , D. As it will be presented in the next section, these switchings
of the C̃ matrix causes the overall closed-loop system to make switchings with
respect to the rs(k)-switching rule.

6.3 Optimal Output Feedback Control

Let the control objective be the computation of an LQR–output feedback
controller, u(k) = Ky(k), that minimizes the following cost [29]:

min
K

∞∑
i=0

[
yT (i)Ry(i) + uT (i)Qu(i)

]
eσi , (6.6)

with σ ≥ 1. Upon computation of this controller the resulting closed-loop
system has its poles eig(A + BKC) located inside a disk of radius 1/σ.

In an NCS the delays that are inserted in the loop affect the anticipated
control command u(k) = KCx(k) that is applied to the plant and is given by:

u(k) = KCx(k − rs(k)). (6.7)

The overall closed-loop system is

x̃(k + 1) =
(
Ã + B̃KC̃rs

(k)
)
x̃(k), (6.8)

y(k) = C̃rs
(k)x̃(k). (6.9)

Notice that the closed-loop system is switched [9, 17], since the rs(k) (and
thus the feedback term KC̃rs

(k)) is time varying. The closed-loop matrix
Ã + B̃KC̃rs

(k) can switch in any of the (D + 1)-vertices Ai = Ã + B̃KC̃i.
To ensure stability of the closed-loop system, conditions are sought for the

stabilization of the switched system

x̃(k + 1) = Aix̃(k), i = 0, . . . , D.

Under the assumption that at every time instance k the bounds of the round-
trip latency time rs(k) can be measured, and therefore the index of the
switched-state is known, the system can be described as:

x(k + 1) =
D∑

i=0

ξi(k)Aix(k), (6.10)
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where ξi(k) = [ξ0(k), . . . , ξD(k)]T and ξi =
{

0, mode �= Ai,
1, mode = Ai.

It can be shown [7] that the switched system in (6.10) is stable if D + 1
positive definite matrices Pi, i = 0, . . . , D, can be found that satisfy the
following LMI: [

Pi AT
i Pj

PjAi Pj

]
> 0, ∀(i, j) ∈ I × I, (6.11)

Pi > 0, ∀i ∈ I = {0, 1, . . . , D} . (6.12)

Based on these Pi-matrices, it is feasible to calculate a positive Lyapunov
function of the form:

V (k, x(k)) = x(k)T

(
D∑

i=0

ξi(k)Pi

)
x(k) (6.13)

whose difference ΔV (k, x(k)) = V (k+1, x(k+1))−V (k, x(k))) decreases along
all x(k) solutions of the switched system, thus ensuring the asymptotic sta-
bility of the system. It should be noted that the bounds of the corresponding
set can be arbitrary as I = {Dmin, Dmax}, while Dmin, Dmax ∈ Z+.

6.3.1 Gain Tuning of Output Feedback Parameter

The computation of the output feedback controller u(k) = Ky (k − rs(k)), re-
sults in a stable system that can tolerate a communication delay of D-samples
(rs(k) ∈ {0, 1, . . . , D}). It should be noted that the controller design proce-
dure was posed in the following manner: (a) select the cost-weight matrices R
and Q and σ-parameter, (b) compute K from the LQR-output minimization
problem, and (c) compute the maximum delay D that can be tolerated with
this given gain K.

In most cases, the communication factors that produce the communica-
tion delay of a typical NCS does not vary rapidly, and remain within certain
bounds over large periods of time. With regard to the delay term, we can
state that rs(k) ∈ {D1, . . . , D2} over a large time window, where D1 and D2

are predefined lower and upper delay bounds. In this case, the control design
problem can be restated as: At sample period k, given rs, select the weight
matrices Q(k), R(k), and compute the largest prescribed stability factor σ(k)
in order to maintain stability despite the communication delays.

Rather than adjusting in an ad hoc manner the weight matrices, we fo-
cus on the σ(k)-quantity. A closed-loop system derived via the usage of a
small radius 1/σ(k) in the optimization step, has a fast system response,
since all its poles have small magnitude |eig(A + BKC)| ≤ 1/σ(k). However,
this system cannot tolerate large delay variations D2 −D1 and the suggested
gain-adjustment relies on this anticipated observation. The σ(k)-scheduling
amounts to computing the largest value, while at the same time justifying the
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LMIs of (6.11), (6.12) for a given index set I = {D1, . . . , D2}. This design phi-
losophy provides the fastest system while tolerating the given delay bounds.
The computation of this optimum σ(k) and K(k) is based on the following
algorithm:

(1) Set σ = 1.
(2) Compute K from (6.6).
(3) Check whether the LMIs of (6.11) and (6.12) are verified.
(4) If no, then there is no solution with the given Q, R and σ. Go to Step 7.
(5) If yes, then increase σ by σ = σ + Δσ.
(6) Repeat Step (2), unless satisfied with the obtained bound of prescribed

stability.
(7) Algorithm is stopped.

The output of the computation is a pair (σ(k),K(k)) for each measured
time delay rs(k) that ensures stability of the closed-loop switching system
for all the communication delays within the bounds [D1, D2]. In this pre-
sentation, the controller’s design is focused on the calculation of the greater
set I = {Imin, Imin + 1, . . . , Imax}, where 0 ≤ Imin < Imax ≤ D, that the con-
troller’s gain could stabilize the control plant upon every pattern of switchings
contained in the previous set.

Theoretically an upper bound of the calculated D-limit can be found from
the solution of the continuous system with time delays. We assume that the
state space representation of the control system can be given as:

ẋc(t) = Acx(t) + Bcu(t), y(t) = Ccx(t). (6.14)

For the case of delayed control law u(t) = Ky(t − d1 − d2) the closed-loop
system takes the following form:

ẋc(t) = Acx(t) + BcKCcx(t− τ) = Acx(t) + Adx(t− τ),

where τ = d1 +d2. The maximum allowable time delay τmax can be computed
from the solution of the following optimization problem, presented here in the
form of LMIs:

τmax = max τ, under the constraints: (6.15)⎡
⎣ (Ac+Ad)Q1+Q1(Ac+Ad)T +τAd(Q2+Q3)AT

d τAcQ
T
1 τAdQ

T
1

τAcQ1 −τQ2 0
τAdQ1 0 −τQ3

⎤
⎦ < 0,

Qi > 0, i = 1, 2, 3.

Given τmax the maximum time delay D could be calculated as D =
⌈
τmax

Ts
, 1
⌉
.
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Fig. 6.3. Stability bounds for continuous TDS

6.3.2 Stability Investigation: Numerical Results

In order to investigate the application of the proposed set of LMIs in conjunc-
tion with the proposed stability criteria, we consider a prototype SISO-system
with a transfer function

G(s) =
0.13

(s + 0.1)3
.

Application of a controller u(t) = Ky(t− τ), yields the following TDS:

ẋ(t) =

2
4−0.3 −0.03 −0.001

1 0 0
0 1 0

3
5x(t) +

2
4 0 0 0.001K

0 0 0
0 0 0

3
5x(t − τ). (6.16)

In Fig. 6.3 we present the maximum allowable time delay τmax that preserves
the stability as a function of the controller-gain K for the continuous time
case. For example, for the case where K = 1 the maximum tolerable constant
delay is τmax = 23 s. It should be noted that this value stems from the
solution of the optimization problem (6.15), and by no means is the largest
one that can be computed using other relevant theorems (see [32]). Assuming
a sampling period of Ts = 1 s, the discrete equivalent of the continuous system
is (accounting for the ZOH)
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Fig. 6.4. Stability bounds for discrete TDS (Ts = 1 s)

x((k + 1)Ts) =

⎡
⎣ 3.316 −3.6640 1.35

1 0 0
0 1 0

⎤
⎦x(kTs) +

⎡
⎣1

0
0

⎤
⎦u(kTs)

y(kTs) =
[
0.1797 0.7748 0.2088

]× 10−3x(kTs)

where, for brevity in the ensuing text, the notation x(k) will be used instead
of x(kTs). Assume that a discrete controller u(k) = Ky(k− rs(k)) is inserted
in the loop; in the sequel the stability bounds (delay vs. controller gain) that
the system can sustain are examined.

In Fig. 6.4, we present the amplitude of the maximum eigenvalue of Ars

as a function of the time delay rsTs for three different gain values K = 1, 1.5
and 2.

We should note that, for example, for K = 2 (1.5) the system becomes
unstable (|λmaxArs

| ≥ 1) for rsTs ≥ 15 (28) s, while for K = 1 the system
remains stable for delays smaller than 50 s. A direct comparison with the
results from the previous Fig. 6.3 indicates that the results obtained from
the discrete domain are not as conservative as the ones from the continuous
domain.

A different discretization using Ts = 5 s and a similar graph appears in
Fig. 6.5, where as expected the results are similar to the aforementioned ones
with the only difference set in the size (quantization step) of the sample period
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Ts. Similarly, the system becomes unstable for rsTs ≥ 15 and 30 s for K = 1
and K = 5, respectively.

6.4 Experimental and Simulation Results

The presented methodology for the LQR–tuned gain scheduler controller will
be applied in experimental and simulation studies to a networked control
system over different communication channels including: (a) the GPRS, (b)
the IEEE 802.11b, and (c) the IEEE 802.11b over an MANET. These cases
will be presented in the following subsections in parallel with the presentation
of the underlying mechanisms that generate the time-varying latency times in
each case.

6.4.1 Switched Feedback Control Over GPRS

Introduction

The mobile (wireless) telephony (GSM, CDMA) sector embraces a set of char-
acteristics that are detrimental to the stability of closed-loop remote control
systems. Its narrowband attribute (GSM 14.4 Kbps, CDMA 19.2 Kbps) along
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with the communication overhead for data retransmission due to packet losses,
when coupled with the time-varying latency times severely affect the perfor-
mance of the system. These critical issues are caused by the voice rather than
data-oriented transmission tuning attributes of the mobile telephony sector.
The 2G-mobile network infrastructure was designed to primarily carry voice,
while its charging policy depends on the duration of each call. Bi-directional
GSM-based data transfer is still considered a relatively expensive scheme,
since charging is time-dependent rather than volume-dependent. HSCSD-
enabled GSM-phones can multiplex up to three available channels reaching a
maximum transmission speed of 43.2 Kbps; however, the time-charging nature
prohibits its widespread usage.

In order to overcome the time-dependent pricing structure, 2.5G-mobile
phones relying on the GPRS-protocol [3] transmit data at bursty-modes
employing a data volume-dependent charging strategy. Although the max-
imum achievable bandwidth over GPRS is 115.2 Kbps (upload and down-
load) (Class-29), most mobile operators offer up to a 43.2 Kbps-upload (14.4
Kbps-download) (Class-4) available bandwidth to their customers. It should
be noted that this bandwidth is not guaranteed but can be offered as long
as there are available time-slots at a mobile-cell; this occurs when there is no
congestion from voice-calls. Since a higher priority is placed on GSM-based
voice-calls, the available bandwidth for GPRS-based data transmission can
fluctuate significantly over periods of time (0 to 43.2 Kbps in increments of
14.4 Kbps). Subsequently, this affects the stability and performance of the
remote-control system. Situations, where the GPRS-service is interrupted for
a limited period of time (a maximum interval of 45 s was observed over a
period of six months in our experimental evaluation) can be quite harmful
to the control scheme, and proper actions need to be taken. Driven mostly
by security reasons, mobile-phone service providers (m-psp) do not offer an
extended set of privileges to their customers for data transmission purposes.
Classical protocols (i.e., ftp and http) and corresponding actions can be issued
from a client with a GPRS-enabled phone to access a remote (server) site with
a valid IP-address. However, a server-based initiation of a transmission back
to the client (GPRS-phone) is blocked from the firewall of the m-psp. This is
necessary to ensure termination of data calls back to the customers of m-psp
from untrustworthy sites. Subsequently, there is a need for a “client-centric”
remote-control framework, where all actions in the feedback loop (transmit-
ting the command signal u(k) and receiving the system’s response y(k)) are
initiated from the client. Henceforth, the scheme must be “centered” on the
client’s actions and the supporting software for remote communication should
be modified accordingly.

In a mobile networked control system (moNCS) [16], shown in Fig. 6.6,
the client computes the control command u(k) and transmits it through a
wireless link to a server site. The server receives the data after a certain delay,
transfers them to the plant, samples the plant’s output y(k) and transmits
it back to the client for future processing. The client receives the delayed
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Fig. 6.6. Mobile networked control system architecture

output and repeats the aforementioned process. Due to the inherent delays
in the formulation and transmission of signals between the client and server
sides [5, 28], there is a need to investigate the stability of this TDS. For this
reason, recent theoretical results stemming from LMI theory [4] will be used
in this chapter.

Client-centric Mobile NCS Architecture

Within the moNCS architecture presented in Fig. 6.6, the control law is com-
puted remotely at a client computer with the control/response signals trans-
mitted towards/from a server computer located near the plant. The assumed
plant’s continuous transfer function is G(s), while the latency intervals from
the client site to the server and reverse are Δ1

L and Δ2
L, respectively. Assum-

ing a sampling period Ts and an embedded ZOH-device in transferring the
discrete signals to the plant, let the discrete control systems’ transfer function
be

G(z−1) =
(
1− z−1

)Z {G(s)
s

}
and di =

⌈(
Δi

L

Ts
, 1
)⌉

, i = 1, 2.

Essentially, di correspond to the “inserted” delays from the GPRS-network
infrastructure during the data-packet exchange.

Within this architecture, the wireless segment poses the most complicated
problems to the overall development, since appropriate software drivers must
be designed to account for the signaling between the mobile device and the
GPRS-network.

Mobile-networked Communication Issues

The client-centric nature of the remote control scheme dictates that the client
initiates all data transmissions. Accordingly, the client transmits the control
command using the UDP-protocol and records the system’s output by issuing
an “FTP-get” command. To accommodate the client’s requests the server
must run locally an FTP-server and have its corresponding UDP-port opened.
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In Figs. 6.7 and 6.8 we present procedures governing the data packet ex-
change between the client and the server. The UDP-latency and FTP-latency
times are denoted LUDP and LFTP , respectively.

The highlighted issues in Figs. 6.7 and 6.8 display a set of six cases covering
possible problems that can be encountered in the data exchange procedure.

In Fig. 6.7 the top portion (first case) exhibits ideal characteristics: (a)
the client uses the UDP-protocol and transmits the control signal, (b) the
server receives this packet and converts the digital format of the signal to an
analog (voltage) and applies it to the plant, (c) after a certain time, the client
initiates the FTP-get command and requests to receive through the server, the
digitized value of the system’s output, (d) the server samples the output and
sends it back to the client through the opened FTP-connection. In the ideal
case, this four-step sequence is completed within one sampling period Ts. The
second case (middle portion) describes the situation where an instantaneous
loss of a UDP-based packet transmission occurs. In this case the server applies
to the plant the last (previous) transmitted signal u(k) from the client. In the
third case we describe the packet reordering situation, where the UDP-based
transmission is delayed and FTP-based reception has already been initiated
by the client.

The fourth case (top portion of Fig. 6.8) corresponds to the situation of an
instantaneous loss of FTP-based data acquisition. The UDP transmission is
performed correctly, but the client’s request for the FTP-get command fails.
In this case the client computes the next control signal u(k + 1) based on the
previously recorded (and outdated) y(k − 1) output. The fifth case (middle
portion) stands for an instantaneous loss of the communication link. During
this phase the UDP and FTP data packet are lost. The client computes the
next control signal u(k + 1) based on the last correctly received, from the
FTP-protocol, system output. In the sixth case (bottom portion) we have high
latency times due to traffic congestion and the sequence cannot be completed
within one sampling period.

In the sequel, we introduce an application of the presented methodology
for switched LQR–output feedback controllers for the Cases 1, 5 and 6 where
there is either a normal data exchange (Case 1), or a mutual loss of packets on
the client and server side (Case 5), or a mutual delay related to the data trans-
mission (Case 6). The cases of (a) packet-reordering, and (b) unidirectional
(UDP, or FTP) loss of packets is not covered in this study.

The suggested scheme is applied to an experimental prototype SISO-
system with a transfer function

G(s) =
0.13

(s + 0.1)3
.

Application of a controller u(t) = Ky(t−τ), yields the same TDS as in (6.16),
while the stability analysis of the system has been presented in Figs. 6.4
and 6.5 for fixed delays and for sampling periods of 1 and 5 s, respectively.
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For the case of time-varying delays (quantized with a step size Ts) within
subspaces Ii

D =
[
Di

minTs, D
i
maxTs

]
, the problem of computing positive definite

matrices in the LMI-related problem in (6.11) for different Ii is sought, where
Ii =

[
Di

min, D
i
max

]
. If the maximum anticipated delay is DTs (in our case

50 s was the maximum round-trip delay that has been measured), then in the
ideal case if the problem (6.11) is solved for Ii = [0, D], then the controller can
tolerate any delay up to DTs. In Fig. 6.9 we provide, with shaded areas, the
limits of different Ii sets for which the LMI-related problem could be solved.
In the left (right) portion, the sampling period was set at Ts = 10 (5) s. For
the largest period, the maximum attainable “time sets” were I1

D = [0, 40]
and I2

D = [10, 50], while for Ts = 5 s, the corresponding sets were I1
D =

[0, 30] , I2
D = [20, 40] , I3

D = [25, 45], and I4
D = [40, 50]. It is apparent that from

the LMI-posed problem there exists no controller that can tolerate delays up to
50 s. Instead, for Ts = 10 (5) the maximum tolerable latency time is 40 (30) s.
However, if the latency time varies slowly, then from the overlapping property
of these sets, the whole region can be covered. The definition of this “slow-
variation” is a topic for future research within this overlapping decomposition
context. It should be noted that from the experimental section the observed
latency time exhibited a reasonably slow variation and the provided controller
proved stable up to a 50 s delay.

The suggested controller was applied to experimental studies over a private
network’s mobile service provider. A GPRS-enabled phone (Motorola Time-
Port T189) was used for the data transmission, while the necessary interface
and drivers were written using as a kernel of the National Instruments’ Lab-
VIEW environment. The software was executed at the client and server sides
on Pentium-4 systems, equipped with proper software to measure the latency
time and the transmission speed (NetPerSec by Ziff Davis) in bps achieved
during the experimentation. In Fig. 6.10 we present the response of the system
when excited with a reference pulse signal. The control signal is presented in
Fig. 6.11 where the effects of the time delays are evident. For the packet-loss
cases, or when there is a temporary malfunction in the communication link
and the server does not accept data through the UDP port, the last recorded
control command is transmitted to the plant. The latency times due to the
transmission: (a) through the UDP-port from the client to the server, and (b)
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through the FTP-agent from the server to the client are shown in Figs. 6.12
and 6.13, respectively. From the recorded data the transmission delays have
a mean value of 18 s with a worst case of 35 s.

6.4.2 Switched Feedback Control Over IEEE 802.11b

Introduction

In WiNCS, the communication delays (latency times) cause significant dete-
rioration in the system’s performance. Other factors like the reordering and
loss of data packets as well as the attainable communication bit-rate impede
the controller design process [26].

The last factors are of paramount importance in congested networks, typ-
ical in a clustered WNCS, where the transmitter cannot easily find a free
time-slot to transmit its data packet. In this case, the transmitter detects a
collision and re-attempts its transmission. This increases the communication
load and the overhead associated with the transmission. To avoid continuous
attempts of packet retransmissions using the UDP-protocol via a wireless link,
after a certain time the transmitter quits, and flags that attempt as a failed
one (loss-of-packet). However, a large number (percentage) of packet losses
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can significantly affect the performance of the system and reduce stability
margins.

The need to retransmit the data packet results in a pure increase of the
overall delay d(k) at the kth instant. From a control point of view, the d(k)-
latency time needs to be as small as possible; at the same time this increases
the load (bit-rate) on the communication network due to the fast transmissions
of control commands.

A compromise is sought to balance the bit-rate on the wireless link and
the need to reduce the latency time for control purposes. Low bit-rates will
result in large latency times and the system can be destabilized. Small latency
times may cause bottleneck on the queues of transceivers and the link may
collapse for short periods of time.

In this subsection, in a prototype WNCS a QoS-module is inserted in each
unidirectional communication link to account for the loss-of-packet as shown
in Fig. 6.14. This module monitors the recorded lost packets over a sliding win-
dow, and assigns a certain time interval prior to the next retransmission. This
pre-timed delayed retransmission results in a reduced communication load
(traffic) at the expense of applying the control signal to the plant with a large
delay. To account for these artificially induced delays (by the QoS-module),
rather than maintaining a fixed (time-invariant) controller we utilize a tuning
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scheme for the controller parameters in order to maintain a certain degree of
stability. In this manner, when the latency time is small the controller gains
are indirectly adjusted so as to increase the closed-loop system bandwidth.
Furthermore, to avoid continuous tuning of the controller parameters and
an increase in the overhead this process takes place at certain time intervals
(batch-tuning).

Strictly, from an experimental point-of-view, the results presented in the
sequel indicate the need for the development and deployment of such a QoS-
module and a simplified controller tuning scheme in congested WNCS. An
ad hoc procedure for tuning the parameters of such a module is examined in
the sequel by: (1) observing the intricacies of the communication protocols
(802.11b and user datagram protocol (UDP)), and (2) obtaining statistical
data regarding the behavior of wireless transmission scheme in lieu of certain
parameters (signal strength, distance between receiver/transmitter, line-of-
sight variations, etc.). The batch-tuning procedure is examined in the follow-
ing sections and the experimental results indicate the need to couple this with
the developed QoS-module.
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Communication Protocols

The protocols used in this study are: (a) the IEEE 802.11b for the data link
and physical layers, and (b) the IP and UDP for the network and transport
layers, respectively, as shown in Fig. 6.15.

The IEEE 802.11b standard [12] is a protocol for RF-communication. The
standard covers the lower levels (physical layer and medium access control
sub-layer) in the OSI model. By using high rate DSSS for data transmission
through the wireless network, 802.11b operates at the 2.4 GHz ISM band
frequency, while it offers four transmission data rates: 1 Mbps, 2 Mbps, 5.5
Mbps and 11 Mbps. The MAC layer utilizes the carrier sense multiple access
with collision avoidance (CSMA\CA) protocol for accessing the communica-
tion medium. Compared with the CSMA with collision detection (CSMA\CD)
protocol, which is widely used in local area networks, the CSMA\CA protocol
provides a better prediction method in accessing the transmission medium.
CSMA\CA’s main advantage is the ability to predict the network’s response
time for data packets transmission, although it cannot provide certain bounds
for the delays in the transmission, nor prevent collisions of the data packets.
The 802.11b (also known as Wi-Fi) is primarily a data transmission protocol,
having its QoS focused on the network’s bandwidth and the utilization of high
transmission data-rate. The 802.11b is not considered a real-time communi-
cation protocol and the inserted communication delays can deteriorate the
performance of a WNCS system.
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In a client–server topology, the use of 802.11b protocol for system stabiliza-
tion is challenging due to the behavior of the wireless medium. The protocol’s
performance depends on the distance between the client and the server sides,
the data rate and the signal strength. Referring to indoor environments, the
transmitted signal will be propagated through the medium by different mech-
anisms (such as reflection and diffraction), will experience path loss due to
obstacles (e.g., walls, floors, ceilings) and will reach its destination via multiple
paths.

Experimental Wi-Fi Network Behavior

Prior to the tuning of the QoS-module, a study is performed to test the
attributes of the client–server communication link. Each side is equipped with
a Wi-Fi (802.11b) WLAN media access controller and operates in a “peer-to-
peer” environment.

Proper software has been developed for monitoring the various aspects
that characterize the performance of the communication link, without the
overhead of a control application such as: (a) latency times, (b) network traffic,
and (c) transmission speed. The client–server model utilized for this primitive
quantitative testing of the communication link is presented in Fig. 6.16. In this
scheme, the client exchanges data from the server using the UDP-transport
protocol. The system operates in an open-loop configuration and there is no
handshake to account for loss-of-packets.

Under the assumption of line-of-sight transmission between the client and
the server sides, we present in Fig. 6.17 a typical observed channel throughput
(in Mbps) over time (four cases). The distinguishing factor in these cases is the
distance L between the receiver-transmitter sides, for the following four cases:
(1) [top-left] L = 1 m, (2) [top-right] L = 10 m, (3) [bottom-left] L = 30 m,
(4) [bottom-right] L = 30 m with no line-of-sight. From the presented results,
it appears that the distance factor does not play a considerable role in the
recorded throughput, whereas the line-of-sight absence affects significantly
the observed results ([bottom-right] case). Essentially, the lack of line-of-sight
corresponds to a reduction of the received signal strength leading either to:
(a) packet-losses, or (b) automatic fallback [20] of the 802.11b transmission

ServerClient
UDP

Wireless LAN
Device

Wireless LAN
Device

Feedback

r u ut

yyt

Fig. 6.16. Client–server network model architecture
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Fig. 6.17. Typical 802.11b throughput parameterized w.r.t. communication link
distance

speed at lower data rates 11 → 5.5 → 2 → 1 Mbps. The percentage of the
packet losses appear in Fig. 6.18, where in spurious time instants we obtain
percentages as high as 20% in the lost packets over the transmitted packets
for the aforementioned third case (L = 30 m, line-of-sight transmission). It
should be noted that in the previous test-runs, the system was operating in an
open-loop manner and the client was essentially streaming data to the server,
as shown in Fig. 6.19 (left part) without the need to synchronize both sides
typically found in a closed-loop configuration.

Closed-loop Controller Tuning with Wireless-link QoS
Optimization

The suggested supervisory scheme, as shown in Fig. 6.14, contains two dis-
tinct modules: (a) the QoS-optimization module, and (b) the controller-tuning
portion. The need for synchronization between the client and the server sides
in a wireless environment poses additional problems compared to the case of
unidirectional data-streaming, presented in the previous section. The neces-
sary experimental setup was developed in National Instruments’ LabVIEW
graphical environment.

From a packet-transversal point of view, consider the case presented in
Fig. 6.20. Over a “data packet batch”, consisting of a specific amount (F
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Fig. 6.20. Data packet timing diagram with QoS optimization

bytes) of data segmented in N UDP packets (with P bytes per packet), the
client transmits these packets with a fixed inner-packet delay of d1 = ΔM .
The “batch” period M (s) depends on the value of the inner-packet delay,
according to M = N · (Δ0 +ΔM ), where Δ0 is the packet’s transmission time
delay. The QoS-module on each side records the arrived packets and keeps
statistical data relevant to the channel’s quality of service (QoS). The link’s
QoS is measured in terms of the lost packets recorded in the server’s side.
Essentially, the latter records the arrived “tagged” packets and maintains in
its memory a counter for the percentage of lost packets. When the packet loss
exceeds a certain level (on a percentage scale), a supervisory scheme decides
on the adjustment of the inner packet delay (ΔM → ΔM+1) throughout the
duration of the next batch-period.

This supervisory scheme is implemented at the OSI’s session layer, as
shown in Fig. 6.19 (right part), while the experimental parameters are out-
lined in Table 6.1. This artificially induced delay affects the rate of transmitted
packets over the wireless link, since the packet delay-insertion reduces the traf-
fic on the channel (measured in Mbps). Since the network’s traffic is reduced,
the collision avoidance probability increases (based on the CSMA\CA proto-
col) during the packet transmission process. Therefore, the percentage of the
received packets versus the transmitted packets increases at the expense of
reducing the channel’s throughput.

For the experimental verification, an F = 5 MB file is used, fragmented
into P = 516 B-UDP packets. We present the percentage of the received pack-
ets in open-loop operation versus a constant inserted delay that varies from 0
to 50 ms by the supervisory QoS-handler, as shown in Fig. 6.21. From the re-
ported results, note the small percentage (< 30%) of packet reception when no
delay is inserted, compared to the simple network evaluation case (Fig. 6.18)
where we had spurious spikes of 20% maximum of lost data. Furthermore, as
expected, the recorded percentage increases when the delay is inserted and
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Table 6.1. Experimental parameters

Experimental parameters values

Amount of data (MB) 5

Bytes per UDP packet 516

Inner-packet delay (ms) 0–50

Distance (m) 1–30

Line of sight supported

Nodal motion no
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Fig. 6.21. Received packet percentage in open-loop wireless control

reaches a maximum of 99.89% for the case of a QoS-based inserted delay
greater than 10 ms.

To emphasize the compromise in the channel throughput when the QoS-
module inserts delays, we present in Figs. 6.22 and 6.23 the measured “suc-
cessful bit rate” (recorded in Mbps) and total transmission delay, respectively.
For the best case (i.e., for ΔM = 0 s) the measured mean value of transmission
delay is 4.23 s. For the aforementioned values of F and P , the file’s segmen-
tation into UDP packets, corresponds to Δ0 = 436.68 μs. The value of Δ0 is
too small to affect the overall transmission delay, especially as the loop de-
lay becomes significant (Fig. 6.23). Clearly, there should be a compromise in
the insertion of the delay and the bit-rate that the link can provide. Larger
QoS-delays lead to higher percentages of received packets (Fig. 6.21) and in-
creased transmission delays (Fig. 6.23) at the expense of reducing the bit rate
(Fig. 6.22).



6 Switched Feedback Control for Wireless Networked Systems 179

0 5 10 20 50
10

4

10
5

10
6

10
7

Loop Inner-Packet Delay (msec)

S
u
c
c
e
s
s
fu

l
B

it
R

a
te

(b
p
s
)

Distance 1m

Distance 5m

Distance 10m

Distance 20m

Distance 30m

Fig. 6.22. Recorded channel bit-rate in open-loop wireless control
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Closed-loop Controller Tuning and Transmission Mechanism

For the case where the lost packets exceeds a certain large percentage, the
delay-insertion by the QoS-module cannot be used as a stand-alone coun-
termeasure to: (a) ensure the network’s stability (bottleneck avoidance), and
(b) maintain certain stability margins in the closed-loop system. Here, a re-
transmission mechanism is proposed coupled to the QoS-module. The QoS-
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module records the ratio αM , (0 ≤ αM ≤ 1) of the arrived packets over
a “batch-period”. Let the received packets be HM at the Mth period, then
αM = HM/N . In this case, the client: (1) adjusts the inner packet delay ΔM+1

and (2) retransmits each packet λ = �1/αM�-times, as shown in Fig. 6.24 for
λ = 2. Due to the retransmission policy the sampling period of the closed-loop
system should be updated to avoid destabilizing phenomena. More specifically,
if Ts is the nominal sampling period, at the end of each batch tuning the period
is updated according to:

TM+1
s = λ× Ts. (6.17)

From a statistical point of view, based on this retransmission the receiving
side should receive almost all transmitted packets (λ× αM � 1) over the (M+
1)st batch. However, this occurs over a larger time span of

λ× (Δ0 + ΔM+1) .

Indirectly, this time-extension that each side receives the control command
or the system output is equivalent to prolonging the d1 and d2 latency times,
as shown in the general framework depicted in Fig. 6.14. Subsequently, the
maximum delay d(k) can increase drastically and there is a chance that the
controller designed for smaller delays may not be able to stabilize the system.
This dictates the tuning of controller parameters in order to accommodate
the new inserted delays.

This tuning with the QoS module described above occurs at the end of each
“batch”, while an estimation for the network’s performance for the same pe-
riod is also provided. This procedure alleviates the traffic load since the delays
introduced in the transmission process reduce the requirements in bandwidth.
On the other hand, the retransmission scheme decelerates the control process,
increasing the possibility of leading the system into instability. Therefore the
tuning needs to be simplified in order to balance the overhead introduced in
the control procedure and the alleviation of the network’s status. Towards
this goal, an ad hoc procedure is employed that will be presented next and is
slightly different from the one that has been presented in Section 6.3; at the
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Fig. 6.24. Data packet timing diagram with QoS optimization and retransmission
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Table 6.2. Simplified feasibility search algorithm

1 KM+1(j + 1) = KM+1(j) − Δ(KM+1)
2 If (6.11)–(6.12) are satisfied with KM+1(j + 1), go to 1

3 Δ(KM+1) = −Δ(KM+1)

2
4 If Δ(KM+1) ≤ ε � 0 stop, else go to 1

end of a “batch” tuning period, the controller’s gain KM is adapted according
to the network performance metrics at the Mth batch, in order to guarantee
a certain degree of stability at the (M + 1)st batch. More specifically, under
the assumption of a TM+1

s -sampling interval, this stability should be ensured
over

I =
{
d + λ× (Δ0 + ΔM+1)

Ts
− γ, . . . ,

d + λ× (Δ0 + ΔM+1)
Ts

+ γ

}
, (6.18)

where γ is a parameter related to the width of time-delay uncertainty that
the controller can tolerate. In this scheme, the gain KM is tuned according
to the inserted time delay ΔM . The objective is to find an optimal value for
the controller’s gain that will satisfy the LMI posed in (6.11) for a nominal
gain K in the delay-set I stated in (6.18). For a given plant and an output
feedback controller with an initial gain K, a gain scheduling step Kstep with
maximum precission threshold, the problem is transformed to:

Compute KM+1 such that,

KM+1 : max
KM+1<0

C(sI −A)−1BKM+1, (6.19)

subject to the LMI-constraints of (6.11)–(6.12). Since the cost in (6.19) can
be made arbitrarily large by decreasing KM+1, the only restriction to the
selection of KM+1 is the satisfaction of (6.11)–(6.12). Henceforth, the problem
is similarly restated as:

Select the minimum KM+1 that satisfies the set of LMIs in (6.11)–(6.12).
Because of K is a scalar, a simplified feasibility search algorithm can be

employed for this problem. A typical pseudocode of this algorithm appears
in Table 6.2. Let KM+1(j) be the value of KM+1 at the jth iteration of the
algorithm, assuming that this value satisfies the LMIs (6.11)–(6.12).

Experimental Closed-loop Studies

The aforementioned controller is applied in a prototype WNCS. The plant
that is controlled corresponds to a sampled (Ts = 150 ms) continuous system
with a transfer function of

103

(s + 10)3
.
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However, due to the QoS module and the retransmission mechanism adopted,
the actual value of the closed-loop sampling period TM

s is updated at the end
of each batch tuning period according to Equation (6.20)

TM+1
s = λ× Ts. (6.20)

Our research goal focuses on the study of the proposed optimization scheme
in near-congestion conditions. The experiment consists of two nodes only, that
under normal operation would exchange small, periodical amount of control
data and consequently would have limited bandwidth requirements. Therefore,
in order to examine the behavior of the control process in a highly competitive
environment, exogenous traffic of size F = 5 MB is inserted artificially on the
Wi-Fi link. For the specified amount of data F the mean total transmission
delay, as shown in Fig. 6.23, equals 4.2314 s for the best case scenario, which
corresponds to: (

5 (MB)
4.2314 (s)

)
× 8 (bits) = 9.45 Mbps,

a value near the nominal transmission rate of the technology utilized (i.e, 11
Mbps). The control-related information is randomly mixed up with useless
packets. The message created is sent to the plant within a closed-loop period.
The plant separates the useful information from the rest of the data received,
which are discarded. The observed latency time appears in Fig. 6.25, where
two delay-sets are revealed; I1 = {1, 2, 3, 4} for λ = 1, i.e., TM

s = Ts and
I2 = {2, 4, 6, 8} for λ = 2, i.e., TM

s = 2× Ts.
The QoS-gain scheduling optimization algorithm is applied in order to

examine the stability of the plant in delay-sets I1 and I2. In order to expand
the delay-sets into a wider region, the delay set I3, where I3 = {3, 6, 9, 12}
is also examined. The original controller’s gain is set to K = −0.5, while the
scheduling step Kstep varies from 0.002 up to 0.125. Solutions of the algorithm
are shown in Fig. 6.26.

The optimal values derived are:

I1 = {1, 2, 3, 4} , K1 = −1.0234,
I2 = {2, 4, 6, 8} , K2 = −0.76172,
I3 = {3, 6, 9, 12} , K3 = −0.65625.

The optimal values K1, K2 and K3 are applied to the WNCS prototype,
where two cases are examined; (1) the datagram containing the control com-
mand is uniformly distributed among the overall exogenously generated traffic
(F bytes) and (2) the useful information is uniformly distributed among the
second half of the artificial traffic F . The appended system’s response appears
in Fig. 6.27. The effect of the controller tuning is evident on the system’s re-
sponse. The sudden deviations observed in the system’s response are a result
of the controller’s gain adaptation, according to the network’s performance.
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Fig. 6.25. Experimental communication latency time (a) in seconds (top) and (b)
quantized (bottom)

In Fig. 6.28 the observed latency time is outlined for each experimental
case. The dependence of system’s response on the network performance for the
second case is dominant since as the reception conditions worsen the system
has to switch its operation from I2 to I3, whereas in the first case examined,
the system typically operates into the delay set I1.

For comparison purposes, a similar system response is provided in Fig. 6.29
with fixed gain K = −1, where there are no provisions for handling the QoS-
issue. It should be noted the destabilization effect that takes place after the
500th sample, where there is considerable loss of packets. Since there are no
retransmissions nor any artificial inserted delays the two sides (client and
server) struggle to obtain a free time-slot to exchange their data packets. This
causes additional traffic on the link, leading to the noted destabilization effect.
A direct comparison of these results with those presented in Fig. 6.29 indicates
the advantages enjoyed by our suggested approach.
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Fig. 6.26. Solutions of the QoS optimization algorithm for delay-sets I1, I2, and I3

1st case
2nd case

Fig. 6.27. Experimental WNCS appended optimal response for the two cases ex-
amined
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Fig. 6.28. The observed latency time for the first (left) and second (right) experi-
mental cases examined
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Fig. 6.29. Experimental fixed WNCS response

6.4.3 Switched Optimal Feedback Control Over IEEE 802.11b in
MANETs

Introduction

Among NCS, wireless NCS (WiNCS), and in particular WiNCS built around
wireless sensor networks (WSN) [1, 2] is a rapidly evolving area at the mo-
ment. Recent technological advances have resulted in small, integrated sens-
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Fig. 6.30. Client–server architecture based on a WSN

ing devices, capable of running a complete protocol stack. These devices have
been optimized for communication with limited resources (transmission power,
memory, no support for floating point calculations). The ease of deploying net-
works comprised of such sensor nodes, due to their low prices and their small
size, have made such networks very popular.

From the control point of view, WiNCS in general and sensor networks
in particular pose additional problems for the designer, stemming from the
mobility of the nodes, which often leads to structural changes in the topology
of the network. The main aim of this subsection is to utilize the technology and
the characteristics of a sensor network based on the IEEE 802.11b protocol to
construct and study a client-centric control application. In the standard client–
server WiNCS [27, 16] architecture, shown in Fig. 6.30, the client computes
the control command u(t) and transmits it via a wireless link to a server. The
server receives the data-packet after a certain delay, transfers it to the plant,
samples the plant’s output y(t) and transmits the measurement back to the
client through the same sensor network. The client receives the output after
some delay and repeats the process.

The main difficulty with the design of such a control loop is the presence
of the sensing and actuation delays introduced by the communication net-
work. Unlike conventional time delay systems, the delays introduced by the
network are time varying [5, 28], since these depend on the traffic currently
on the network. For wireless communication channels, the problem is further
complicated by the mobility of the nodes, which induces structural changes in
the packet routing procedure. Accordingly, the number of hops necessary for
a packet to reach from the client to the server (and reverse) varies in a step
manner introducing an additional source of varying delays by the network.

As was presented in the previous sections, we will utilize the LMIs to
select the parameters of the LQR problem to ensure that poles of the closed
loop system maintains a prescribed stability margin despite the variability of
network delays. In this case we will extend this approach to investigate the
effect of multi-hopping in the process. Based on results of the maximum delay
that the control system can tolerate, obtained for the peer-to-peer system, a
gain scheduling controller, which uses the number of hops to select appropriate
LQR gains is developed and tested in simulation.
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Properties of Wireless Sensor Networks

Although WSN maintain several characteristics of conventional networks, they
also have key differences [2]. WSNs combine three important components:
sensing, data processing and communication [1]. The nodes that comprise
a sensor network are spatially distributed, energy-constrained, self configur-
ing and self-aware. WSNs can provide quite effective performance in noisy
environments, since they allow sensors to be placed close to signal sources,
therefore yielding high signal to noise ratios. Moreover, the scalability of sen-
sor networks permits the monitoring of phenomena widely distributed across
space and time, and their versatility makes them an ideal infrastructure for
robust, reliable and self-repairing systems.

An important issue related to scalability [15] is the fact that after some
point, communication becomes more expensive than computation. The re-
quirements for collaboration and adaptation to “stochastic networking” fea-
tures (usually due to exogenous factors) impose the need for the development
of novel protocols dedicated to sensor networks, such as [33]. Another major
concern is energy consumption, which requires a compromise between node
collaboration and energy constraints [8] and affects the maximum active com-
munication area. These features that affect the routing of communication
packets sent over a WSN which requires multiple hops to complete the origin-
destination travel. The dynamic nature of the network further implies that
the number of hops may be variable. In our case we investigate how these fea-
tures affect the design of controllers that attempt to close the loop over such
a network. Towards this goal, an MANET in a noisy, crowded environment
is simulated, as the communication medium that transfers the data packets
between a remote controller and the plant.

WiNCS Simulation

The network scenarios are tested with the NS-2 [13] simulator for the physi-
cal, MAC and network layers of each node. Providing a variety of networking
protocols, several scenarios can be simulated, based on the cases examined.
The parameters that have been utilized for our test case are outlined in Ta-
ble 6.3. The simulated WSN consists of n-mobile nodes, communicating over
a wireless link based on the IEEE 802.11b standard. For the examined case we
assume that all nodes “wake up” at the same instant. While every node in the
network may potentially exchange information with other nodes, two nodes
are of particular interest: the node attached to the plant (server) and the node
attached to the controller (client). The routing protocol assumed is the dy-
namic source routing protocol (DSR) [14]. In the transport layer information
exchange is based on the user datagram protocol (UDP).

Due to node mobility, routing is not fixed [31]. Therefore, the number of
hops during the transmission of a packet changes as the node moves from
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Table 6.3. Simulation parameters

Network characteristics values

Simulation time (s) 500

Number of nodes 20

Number of connections 20

Maximum number of packets transmitted per connection No 10000

UDP transmission interval per connection (s) 0.2

Maximum speed per node (m/s) 20

Coverage area 670×670

Agent type UDP

Routing protocol DSR

Client

#1 ... #K+n ... #K .... #N #M+ì ...

Failure

#1 ... #K ... #K+n ... #K ... #M ... #M+ v ...ì ... #Í ... #Í+

Dropped

Server

Simulation Time

Fig. 6.31. Phenomena observed during a UDP data transmission from client to
server

one position to another. Moreover, due to the connectionless services pro-
vided by the transport layer, other interesting phenomena are also observed.
For example a packet that fails to reach its destination or an intermediate
node, may be dropped, or sent back to its source node. The retroactivity
phenomenon observed, as a consequence of the unreliable services that UDP
provides, is becoming even more dominant as a delay factor in heavy network
traffic conditions. Some of the observed events are described in the cases that
are presented in Fig. 6.31.

Simulation Studies

The suggested scheme was applied in the same simulated prototype SISO-
system as before, with the following transfer function:

G(s) =
0.13

(s + 0.1)3
.
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Assuming a sampling period of Ts = 5 s, the discrete equivalent of the con-
tinuous system is (accounting for the ZOH)

x(k + 1) =

⎡
⎣ 1.82 −1.104 0.2231

1 0 0
0 1 0

⎤
⎦x(k) +

⎡
⎣1

0
0

⎤
⎦u(k),

y(k) = [0.001439 0.003973 0.006794]x(k).

Assume that a discrete controller u(k) = Ky(k − rs(k)) is inserted in the
loop.

Theoretical Results

In this case the controller’s gain values are K ∈ {−1.1927,−1.4439,−1.7225}
and were computed from the suggested algorithm minimization of (6.6), where
Q = R = 1 and σmax = 1/0.85. As an example we should note for K =
−1.7225 (−1.4439) the system is stable (|λmax (Ars

)| ≤ 1) for rsTs ≤ 20 (30)
sec.

Based on exhaustive simulation of data packets traffic in the sensor net-
work, the dependence among the number of hops and bounds in the commu-
nication latency times that are introduced is presented in Fig. 6.32 for the
MANET-parameters presented in Table 6.1.

Based on these worst case bounds on the communication latency times
with respect to the number of hops, L, the switched controller’s gains are
determined as:

I1 = 0, 1, 2, 3, K1 = −1.7225, 0 ≤ L ≤ 2,
I2 = 1, 2, 3, 4, 5, K2 = −1.4439, 3 ≤ L ≤ 9,
I3 = 4, 5, 6, K3 = −1.1927, 10 ≤ L ≤ 15.
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Fig. 6.32. Communication latency time dependence on the number of hops
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Fig. 6.33. Stability limits of a discrete control TDS, Ts = 5 s

It can be shown that the LMIs in (6.11) and (6.12) are satisfied with these
gains.

Next, we try to maximize the range of delays Ii =
[
Dmin

i , Dmax
i

]
for which

solutions to the LMI problem (6.11) exist for each gain. In Fig. 6.33 the
shaded areas show the ranges Ii sets for which the LMI problem could be
solved for each Ki. The corresponding sets were I1

D = [0, 15] , I2
D = [5, 25],

and I3
D = [20, 30].

It is apparent that from the LMI problem there exists no controller that can
tolerate delays up to 30 s. However, if the latency time varies slowly, then from
the overlapping property of these sets, the whole region can be covered and
stability can be guaranteed by minimum dwell time arguments. The details
of this argument are a topic for future research. It should be noted, that from
the experimental section the observed latency time exhibited a reasonably
slow variation and the switching controller provided proved stable up to a 30
s delay.

Simulation Results

The suggested output feedback controller was applied over the WiFi (802.11b)
network. The NS-2 was used for simulating the packet transmission process.
Typical round-trip communication delays versus the transmitted packet in-
dex appear in Fig. 6.34. From the recorded values, packet delays up to 30 s
(equivalent to 6 delayed samples) are possible. The mean value of the packet
round-trip delay was 2.5586 s.

Each packet is tagged with the number of hops that were used to complete
its travel; the number of hops that corresponds to each packet-travel appear
in Fig. 6.35. From the recorded values when the number of hops L was less
than 3 (0 ≤ L ≤ 3) the maximum packet delay was less than 15 s (DTs ≤ 15).
Similarly 3 ≤ L ≤ 9 corresponds to 5+ ≤ DTs ≤ 25 and 9 ≤ L ≤ 15→ 20+ ≤
DTs ≤ 30.

The response of the system is presented in Fig. 6.36, while the switching
of the LQR-output feedback controller’s gains are presented in Fig. 6.37. It
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should be noted that the delay-classification into these three distinct packet-
hop classes L ∈ {0, . . . , 3} or {3, . . . , 9} or {9, . . . , 15} is arbitrary and more
efficient clustering techniques can be used.

With regard to controller design, the parameters used in optimization
cost were Q = R = 1 while the initial value of the prescribed stabil-
ity radius σ was set to one (σ = 1). For each one of the three classes
I1 = {0, . . . , 3}, I2 = {1, . . . , 5} and I3 = {4, . . . , 6} the output feedback
gain was computed according to the aforementioned scheduling procedure. In
this scheme, Δσ = 0.01 and this process was terminated when σ ≤ 0.95.

6.5 Conclusions

The development of controllers for networked systems requires particular at-
tention due to the inherent delays encountered in the network. Subsequently,
conventional control schemes should be modified in order to be robust against
these time-varying delays. In this chapter, theoretical and experimental results
are presented for networked control systems over: (a) GPRS, (b) 802.11b, and
(c) 802.11b in MANETs. It is shown that the user should focus on the QoS,
while at the same time ensuring the scheme’s robustness. In summary, con-
trol development of networked systems, necessitate the design of customized
solutions with a careful selection of controller’s parameters.

References

1. Akyildiz I, Su W, Sankarasubramamian Y, Cayirci E (2002) Wireless sensor
networks: a survey. Computer Networks 38:393–422

2. Akyildiz I, Wang X, Wang W (2005) Wireless mesh networks: a survey. Com-
puter Networks 47:445–487

3. Bettstetter C, Vogel H, Eberspecher J (1999) GSM phase 2+ general packet
radio service (GPRS): architecture, protocols, and air interface. IEEE Commu-
nications Surveys 2, 3rd Quarter

4. Boyd S, Balakrishnan V, Feron E, Ghaoui L (1993) Control system analysis and
synthesis via linear matrix inequalities. In: Proc American Control Conference,
San Francisco, CA, 2:2147–2154

5. Branicky M, Phillips S, Zhang W (2000) Stability of networked control systems:
explicit analysis of delay. In: Proc American Control Conference, Urbana, IL,
2352–2357

6. Crow B, Widjaja I, Kim J, Sakai P (1997) IEEE 802.11 wireless local area
networks. IEEE Communications Magazine 35:116–126

7. Daafouz J, Riedinger P, Iung C (2002) Stability analysis and control synthe-
sis for switched systems: a switched lyapunov function approach. IEEE Trans
Automatic Control 47:1883–1887

8. Duarte-Melo EJ, Liu M (2003) Data gathering wireless sensor networks: orga-
nization and capacity. Computer Networks 43:393–422



194 G. Nikolakopoulos, A. Panousopoulou, and A. Tzes

9. Ge S, Sun Z, Lee T (2001) Reachability and controllability of switched linear
discrete-time systems. IEEE Trans Automatic Control 46:1437–1441

10. Goodwin GC, Haimovich H, Quevendo DE, Welsh JS (2004) A moving hori-
zon approach to networked controlled systems design. IEEE Trans Automatic
Control 49:1427–1445

11. Halevi Y, Ray A (1988) Integrated communication and control systems: part
I-analysis. J Dynamic Systems, Measurement and Control 110:367–373

12. IEEE Std 802.11 (2001) IEEE standard for local and metropolitan area net-
works: wireless lan medium access control (MAC) and physical layer (PHY)
specification

13. Information science institute network simulator:
http://www.isi.edu/nsnam/ns/

14. Jonhson DB, Maltz DA, Broch J (2001) Ad-hoc networking. Addison-Wesley,
Reading, MA

15. Langendoen K, Reijers N (2003) Distributed localization in wireless sensor net-
works: a quantitive comparison. Computer Networks 43:499–518

16. Lian F, Moyne J, Tilbury D (2002) Network design consideration for distributed
control systems. IEEE Trans Control Systems Technology 10:297–307

17. Liou L, Ray A (1990) Integrated communication and control systems: part III-
nonidentical sensor and controller sampling. J Dynamic Systems, Measurement
and Control 112:357–364

18. Moller N, Johansson KH, Jalmarsson H (2004) Making retransmission delays
in wireless links friendlier to TCP. In: Proc 43rd IEEE Conference on Decision
and Control, Paradise Island, Bahamas, 5134–5139

19. Nair G, Evans R, Mareels I, Moran W (2003) Feedback data rates for nonlinear
systems. In: Proc European Control Conference, Cambridge, UK, 731–736

20. Natkaniec M, Pach AR (2000) An analysis of the backoff mechanism used in
IEEE 802.11 networks. In: Proc IEEE Symposium on Computer and Commu-
nications, Antibes-Juan les Pins, France, 444–449

21. Nikolakopoulos G, Panousopoulou A, Tzes A, Lygeros J (2007) Multihopping
induced gain scheduling for wireless networked controlled systems. Asian J Con-
trol, to appear; a shorter version appears in Proc 44th IEEE Conf Decision and
Control, Seville, Spain, 470–475

22. Overstreet J, Tzes A (1999) An internet-based real time control engineering
laboratory. IEEE Control Systems Magazine 99:19–34

23. Ray A, Halevi Y (1988) Integrated communication and control systems: part II-
design considerations. J Dynamic Systems, Measurement and Control 110:374–
381

24. Recht B, Andrea R (2004) Distributed control of systems over discrete groups.
IEEE Trans Automatic Control 49:1446–1542

25. Sweet C, Sidhu D (1999) Perfomance Analysis of the IEEE 802.11 wireless stan-
dard. In: Proc IEEE Global Telecommunications Conference, Rio de Janeiro,
Brazil

26. Tipsuwan Y, Chow M (2003) Control methodologies in networked control sys-
tems. Control Engineering Practice 11:1099–1111

27. Tzes A, Nikolakopoulos G, Koutroulis I (2005) Development and experimental
verification of a mobile client-centric networked controlled system. European J
Control 11:229–241

28. Walsh GC, Ye H, Bushnell L (2002) Stability analysis of networked control
systems. IEEE Trans Control Systems Technology 10:438–446



6 Switched Feedback Control for Wireless Networked Systems 195

29. Weinmann A (1991) Uncertain models and robust control. Springer Verlag New
York

30. Wong WS, Brockett R (1999) Systems with finite communication bandwidth
constraints-II: stabilization with limited information feedback. IEEE Trans Au-
tomatic Control 44:1049–1053

31. Yoon J, Liu M, Noble B (2003) Random waypoint model considered harmful.
In: Proc International Conference on Mobile Computing and Networking, San
Diego, CA, 1312–1321

32. Zhang J, Knopse C, Tsiotras P (2001) Stability of time-delay systems: equiv-
alence between Lyapunov and scaled small gain conditions. IEEE Trans Auto-
matic Control 46:482–486

33. Zheng J, Lee M (2004) A comprehensive study of IEEE 802.15.4. IEEE Press,
New York



7

Networked Control for T–S Fuzzy Systems
with Time Delay

Dedong Yang and Huaguang Zhang

Northeastern University, Shenyang 110004, P. R. China
ydd12677@163.com, zhanghuaguang@ise.neu.edu.cn

Abstract. In this chapter, we first develop a guaranteed cost networked con-
trol (GCNC) method for Takagi–Sugeno (T–S) fuzzy systems with time delay.
State feedback controller is designed via the networked control system (NCS)
theory. The stability of the overall fuzzy system using GCNC is established.
Some deductions are also extended to uncertain systems. Simulation results
show the validity of this control scheme. Second, a robust H∞ networked
control method for T–S fuzzy systems with uncertainty and time delay is
presented. Sufficient conditions for robust stability with H∞ performance are
obtained. An example is included to illustrate the effectiveness of the proposed
method.

Keywords. Guaranteed cost control, networked control systems, robust H∞
control, T–S fuzzy systems.

7.1 Introduction

In the real world, nonlinear dynamic systems with time delays exist exten-
sively in industrial control fields. Because of nonlinear and time-delay char-
acteristics, the design of a closed-loop controller is difficult. Aimed at these
problems, many intelligent control methods are developed for complex indus-
trial plants. In these methods, fuzzy control is a well-known way to solve the
control problems of nonlinear systems. In the last few years, the stability anal-
ysis and synthesis problem of fuzzy system as an important issue was studied
by many researchers [3, 4, 6, 7, 9, 10, 17, 19, 24, 25]. The T–S fuzzy system
proposed in [15] is widely applied to industrial control fields because of its
simple structure with local dynamics. In the T–S fuzzy model, local dynamics
in different state-space regions is represented by many linear models such that
the linear system theory can conveniently be employed to analyze the stability
of the overall closed-loop system and to design the feedback controller. The
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typical design approach is carried out based on a fuzzy model via the so-called
parallel distributed compensation (PDC) method [18]. In recent years, some
controller design methods based on the linear matrix inequality (LMI) tech-
nique are also used for the stability analysis and controller design of the T–S
fuzzy system.

Considering the time-delay characteristic of nonlinear systems, a straight-
forward idea is that the traditional T–S fuzzy model can be extended to a fuzzy
model with time delay term. Recently, many results for the T–S fuzzy model
with time delay term have been obtained to deal with stability and stabiliza-
tion problems of nonlinear systems with time delays [3, 4, 6, 7, 9, 10, 17, 19].
The analysis and synthesis problem for continuous and discrete-time nonlinear
systems via the PDC approach was considered in [3, 4]. Based on the Lyapunov
criterion and the Razumikhin theorem, some sufficient conditions were derived
under which parallel-distributed fuzzy control can stabilize the whole uncer-
tain fuzzy time-delay system asymptotically [17]. The guaranteed cost control
for a T–S fuzzy system with time delays was also presented in [6] and [9].
In [9], a delay-dependent guaranteed cost control method was introduced and
the proposed generalized output feedback controller via the so-called general-
ized PDC (GPDC) technique was developed within the framework of the dual
indexed controller. The time-varying delay cases were also generalized from
general time delay cases with state feedback, and an observer-based output
feedback controller was obtained in [6]. A delay-dependent robust fuzzy H∞
controller was designed via state feedback in [7]. Robust H∞ control via an
output feedback controller was designed for a class of uncertain discrete-time
fuzzy systems with time delays in [19]. The output feedback robust H∞ con-
trol problem for a class of uncertain fuzzy dynamic systems with time-varying
delayed state was presented in [10].

It is well known that a traditional isolated control system may be replaced
by a networked control system (NCS) as computer network technology is being
developed rapidly. Much attention to stability analysis and controller design
of NCS has been paid in [1, 11, 12, 13, 14, 16, 21, 22, 23]. The most popular
method is to model the NCS as a system with time-varying delays. So the sta-
bility of an NCS is equivalent to the stability of a system with time-varying
delays. Moreover the sampling behavior also has an important impact on the
design of NCS controller because the states of feedback controller are not
continuous as a result of the existence of zeroth-order-hold (ZOH). In [23], a
detailed summary was given of a review of existing works, and the relation-
ship between the sampling rate and the network-induced delay was captured
using a stability region plot. In [21], a model of NCS was provided considering
the network-induced delay and the packet dropout in the transmission. Us-
ing Lyapunov theory, the designed parameters of the feedback controller and
the maximum allowable value of the network-induced delay can be derived
by solving a set of LMIs. Robust controllers for uncertain NCS were also ob-
tained in [22]. How to analyze the stability of nonlinear NCS is a challenging
and interesting topic. Some results about the stability of nonlinear NCS were
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obtained in [13, 14, 16]. Input-to-state stability (ISS) and input-to-output sta-
bility (IOS) were analyzed in [13, 14]. The nonlinear NCS can be stabilized
under certain assumptions [16]. However, these methods often require some
strict assumptions for the system model so practical applications are difficult
to achieve.

In the following sections, we propose a novel control scheme which will
be called guaranteed cost networked control (GCNC) method for the T–S
fuzzy system with time delays in a network situation. Utilizing a fuzzy con-
trol method and considering quality of service (QoS) in network systems,
the corresponding state feedback control law is obtained. Comparing with [6]
and [9], we consider the stabilization problem of the T–S fuzzy system with
time delays in the network situation. Some results are obtained for the T–S
fuzzy model with multiple time delays and both network-induced delay and
packet dropout in network transmission are addressed in our analysis. Fur-
ther, some sufficient stability conditions of GCNC law are proposed by solving
a set of LMIs. We also propose another control scheme called the robust H∞
networked control method for T–S fuzzy systems with uncertainty and time
delay under network conditions. The robust H∞ performance index of the
controlled model after considering network action is satisfied. We consider the
robust stability problem of the T–S fuzzy system with uncertainty and time
delay under network conditions. Further, some sufficient stability conditions
of this control scheme are proposed by solving a set of LMIs.

In this chapter, matrices are assumed to have compatible dimensions. The
identity matrix and zero matrix are denoted by I and 0, respectively. The
notation ∗ always denotes the symmetric block in a symmetric matrix. The
standard notation > (<) is used to denote the positive (negative)-definite
ordering of matrices. Inequality X > Y shows that the matrix X − Y is
positive definite.

7.2 Guaranteed Cost Networked Control for T–S Fuzzy
Systems with Time Delay

In general, a nonlinear time-delay system can be represented by the T–S fuzzy
system with time delays, which expresses the nonlinear system as a weighted
sum of linear systems. The ith rule of such a fuzzy system is of the following
format:

Rule i :
IF θ1(t) is Fi1, · · · , and θn̄(t) is Fin̄

THEN
ẋ(t) = Aix(t) + Adi

x(t− d) + Biu(t),
y(t) = Cix(t),
x(t) = ϕ(t), −τ̄ ≤ t < 0,
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where i = 1, 2, · · · , r is the index number of the fuzzy rule, x(t) ∈ Rn and
y(t) ∈ Rs denote the state vector and the output vector, respectively, u(t) ∈
Rm is the control input, Ai and Adi

∈ Rn×n are known system matrices,
Bi ∈ Rn×m is the input matrix, Ci ∈ Rs×n is the output matrix, d is the
constant bounded time delay in the state and is assumed to be 0 < d ≤ τ̄ ,
θ1(t), θ2(t), · · · , θn̄(t) are premise variables, the initial condition ϕ(t) is a
differentiable function or constant vector, Fig is a fuzzy set (g = 1, 2, · · · , n̄).
The inferred system is described by

ẋ(t) =
r∑

i=1

hi(θ(t))[Aix(t) + Adi
x(t− d) + Biu(t)],

where

μi(θ(t)) =
n̄∏

g=1

Fig(θg(t)),

hi(θ(t)) =
μi(θ(t))

r∑
i=1

μi(θ(t))
,

and Fig(θg(t)) is the grade of membership of θg(t) in the fuzzy set Fig. Notice
the following facts:

μi(θ(t)) ≥ 0 and
r∑

i=1

μi(θ(t)) > 0,

for all t . Then, we can see that

hi(θ(t)) ≥ 0, for i = 1, 2, · · · , r,

and
r∑

i=1

hi(θ(t)) = 1.

While considering network action, the state feedback controller is

u(t) =
r∑

i=1

hi(θ(t))Kix(tk), for t ∈ [tk + τk, tk+1 + τk+1),

where tk is the sampling instant, and x(tk) is the state vector of plant at the
instant tk, which is a piecewise constant function obtained using a ZOH. The
inferred fuzzy system is reconstructed using the following form:
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ẋ(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))[Aix(t) + Adi
x(t− d)

+ BiKjx(tk)], for t ∈ [tk + τk, tk+1 + τk+1), (7.1)

where τk denotes the network-induced delay, k = 0, 1, 2, · · · .
Remark 7.1. The packet is transmitted at the instant tk, which contains the
measured value of the plant state vector, x(tk). Note that x(tk) remains con-
stant in the interval t ∈ [tk + τk, tk+1 + τk+1) until the next update. It is
assumed that no controller-to-actuator delay exists, so u(t) can be sent to the
plant as control input instantaneously. Obviously,

lim
N→∞

N⋃
k=0

[tk + τk, tk+1 + τk+1) = [t0 + τ0,∞), t0 ≥ 0. �

In this section, the GCNC via state feedback will be designed according to
(7.1). Before giving controller design method, we make the following assump-
tions.

Assumption 7.1. The sensor is time-driven. The controller and actuator are
event-driven. The clocks among them are synchronized. �

Assumption 7.2. The signal transmission is with a single packet. Also the
computational delay is negligible. �

Assumption 7.3. The local dynamics is controllable. �

Assumption 7.4. We introduce the notion of a maximum allowable transfer
interval δ > 0. The maximum allowable transfer interval is a deadline; if a
transmission of packet takes place at time tk and the control signal will reach
the plant at the instant tk +τk, then the next control signal must arrive within
the time interval (tk, tk + δ]. It is explicit that the next control signal will
arrive at the instant tk+p +τk+p if the packet dropout in network transmission
is considered. The following condition is assumed

tk+p − tk + τk+p ≤ δ, k = 0, 1, 2, · · · , p = 1, 2, · · · , pmax, (7.2)

where p, pmax are positive integers, which denote the sampling index number
and the maximum sampling number within δ, and in fact δ has an upper bound
in order to guarantee the stability of the closed-loop system. We assume that
the upper bound is smaller than τ̄ . �

Remark 7.2. We should notice that the network-induced delay is different from
the system delays, because it is time varying and unknown. When the trans-
mission time of a packet exceeds a threshold designed by the common net-
work protocols, the packet is to be regarded as a data dropout. For example,
tk+2 + τk+2 < tk+1 + τk+1 means that the new data packet may reach the
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plant before the old one. In fact, we first suppose that δ exists. From (7.2),
i.e., p = 2, it is required that tk+2 − tk + τk+2 ≤ δ. Thus, the old data packet
containing x(tk+1) will be discarded. Therefore, when p > 1, some packets
may be discarded while the whole closed-loop system is still stable under the
condition (7.2). From the point of view of the QoS, the network resource is
saved by decreasing the network-induced delay or discarding the old packet,
based on δ, which can be realized by a suitable network scheduling method.
It is explicit that if p = 1, (7.2) becomes

tk+1 − tk + τk+1 ≤ δ, k = 0, 1, 2, . . . . (7.3)

It means that packet dropout is not allowed in the transmission. �

For simplicity, we assume p = 1, t0 = 0 and τ0 = 0 in the following
discussion.

Lemma 7.1 ([8]). For any constant symmetric matrix M ∈ Rn×n, M =
MT > 0, scalar α > 0, vector function ξ : [0, α]→ Rn, such that the integra-
tions in the following are well defined, we have

α

∫ α

0

ξT (β)Mξ(β)dβ≥
(∫ α

0

ξ(β)dβ
)T

M

(∫ α

0

ξ(β)dβ
)

. (7.4)

�

Theorem 7.1. If there exist matrices P1,1 = PT
1,1 > 0, P1,2 = PT

1,2 > 0, T1 =
TT

1 > 0, matrices Ki and matrices Y1,1, Y1,2, Y1,3 of appropriate dimensions,
and for given constant matrices Y1,4, Y1,5, Y1,6 of appropriate dimensions,
matrices X1 = XT

1 > 0, X2 = XT
2 > 0, X3 = XT

3 > 0, and a scalar δ > 0,
where δ satisfies the condition (7.3), the following LMIs hold

Ξii < 0, 1 ≤ i ≤ r,

Θij < 0, 1 ≤ i < j ≤ r, (7.5)

then the closed-loop system (7.1) is asymptotically stable with guaranteed
cost bound W1, where

Ξii =
[
Γii Υ1

∗ Υ2

]
, Γij =

⎡
⎢⎢⎢⎢⎣
Φ1,1 Φ1,2 Φ1,3 Φ1,4 Φ1,5

∗ Φ2,2 Φ2,3 Φ2,4 Φ2,5

∗ ∗ Φ3,3 Φ3,4 0
∗ ∗ ∗ Φ4,4 Φ4,5

∗ ∗ ∗ ∗ Φ5,5

⎤
⎥⎥⎥⎥⎦ ,

Υ1 =
[
0 0 0 Ki 0

]T , Υ2 = −X3,
Φ1,1 = P1,2 + Y1,1 + Y T

1,1 − Y1,4Ai −AT
i Y T

1,4 + X1,
Φ1,2 = P1,1 + Y T

1,3 + Y1,4 −AT
i Y T

1,6,
Φ1,3 = −Y1,4Adi

,
Φ1,4 = −Y1,1 + Y T

1,2 − Y1,4BiKj −AT
i Y T

1,5,
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Φ1,5 = δY1,1,
Φ2,2 = δT1 + Y1,6 + Y T

1,6,
Φ2,3 = −Y1,6Adi

,
Φ2,4 = −Y1,3 + Y T

1,5 − Y1,6BiKj ,
Φ2,5 = δY1,3,
Φ3,3 = −P1,2 + X2,
Φ3,4 = −AT

di
Y T

1,5,
Φ4,4 = −Y1,2 − Y T

1,2 − Y1,5BiKj −KT
j BT

i Y T
1,5,

Φ4,5 = δY1,2,
Φ5,5 = −δT1,

Θij =
[
Γij + Γji Ῡ1

∗ Ῡ2

]
, Ῡ1 =

[
0 0 0 Ki 0
0 0 0 Kj 0

]T

, Ῡ2 =
[−X3 0

0 −X3

]
,

X1 = Q1, X2 = Q2, X3 = Q−1
3 .

The guaranteed cost bound is described by:

W1 = ϕT (0)P1,1ϕ(0) +
∫ 0

−τ̄

ϕT (s)P1,2ϕ(s)ds +
∫ 0

−δ

∫ 0

s

ϕ̇T (v)T1ϕ̇(v)dvds.

�

We require the following definition in our proof for Theorem 7.1.

Definition 7.1. For (7.1), if there exists a fuzzy control law u(t) and a scalar
ψ0 such that the closed-loop system is asymptotically stable and the closed-
loop value of the cost function (7.14) satisfies J ≤ ψ0, then ψ0 is said to be
a guaranteed cost and the control law u(t) is said to be a guaranteed cost
control law. �

Proof of Theorem 7.1. Consider a Lyapunov functional given by

V (t) = xT (t)P1,1x(t) +
∫ t

t−d

xT (s)P1,2x(s)ds +
∫ t

t−δ

∫ t

s

ẋT (v)T1ẋ(v)dvds,

where P1,1 = PT
1,1 > 0, P1,2 = PT

1,2 > 0 and T1 = TT
1 > 0. Because the

following equations hold for matrices Y1,l (l = 1, 2, 3, 4, 5, 6) of appropriate
dimensions,

[
xT (t)Y1,1 + xT (tk)Y1,2 + ẋT (t)Y1,3

]× [
x(t)− x(tk)−

∫ t

tk

ẋ(s)ds
]

= 0,

(7.6)

[
xT (t)Y1,4 + xT (tk)Y1,5 + ẋT (t)Y1,6

]× [
−

r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t))[Aix(t)

+ Adi
x(t− d) + BiKjx(tk)] + ẋ(t)

]
= 0. (7.7)
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Combining (7.1), (7.6) and (7.7), the corresponding time derivative of V (t),
for t ∈ [tk + τk, tk+1 + τk+1) is given by

V̇ (t) = 2ẋT (t)P1,1x(t) + xT (t)P1,2x(t)− xT (t− d)P1,2x(t− d) + 2(xT (t)Y1,1

+ xT (tk)Y1,2 + ẋT (t)Y1,3)
[
x(t)− x(tk)−

∫ t

tk

ẋ(s)ds
]

+ 2(xT (t)Y1,4

+ xT (tk)Y1,5 + ẋT (t)Y1,6)×
(
−

r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t))[Aix(t)

+ Adi
x(t− d) + BiKjx(tk)] + ẋ(t)

)
+ δẋT (t)T1ẋ(t)

−
∫ t

t−δ

ẋT (s)T1ẋ(s)ds, (7.8)

where Y1,l (l = 1, 2, 3, 4, 5, 6) are matrices of appropriate dimensions.
We can obtain the following fact similar to the proof in [20]. Let Q be

any l̄ × n matrix, we have for any constant ε > 0 and any positive-definite
symmetric matrix T that

2ζT Qη ≤ εζT QT−1QT ζ +
1
ε
ηT Tη (7.9)

for all ζ ∈ Rl̄, η ∈ Rn and T ∈ Rn×n.
We notice that the first integration term in (7.8) will satisfy the following

inequality according to (7.9),

− 2(xT (t)Y1,1 + xT (tk)Y1,2 + ẋT (t)Y1,3)
∫ t

tk

ẋ(s)ds ≤

δΛT (t)Ȳ T−1
1 Ȳ TΛ(t) +

1
δ

[ ∫ t

tk

ẋ(s)ds
]T

T1

[ ∫ t

tk

ẋ(s)ds
]
,

where Ȳ = [Y T
1,1 Y T

1,3 0 Y T
1,2]

T and Λ(t) = [xT (t) ẋT (t) xT (t− d) xT (tk)]T .
Utilizing (7.4), the following result will be obtained:

δΛT (t)Ȳ T−1
1 Ȳ TΛ(t) +

1
δ

[∫ t

tk

ẋ(s)ds
]T

T1

[∫ t

tk

ẋ(s)ds
]
≤

δΛT (t)Ȳ T−1
1 Ȳ TΛ(t) +

t− tk
δ

∫ t

tk

ẋT (s)T1ẋ(s)ds. (7.10)

From (7.3), we obtain, for t ∈ [tk + τk, tk+1 + τk+1),∫ t

tk

ẋT (s)T1ẋ(s)ds ≤
∫ t

t−δ

ẋT (s)T1ẋ(s)ds. (7.11)
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According to (7.3) and (7.11), (7.10) can be expressed as

δΛT (t)Ȳ T−1
1 Ȳ TΛ(t) +

t− tk
δ

∫ t

tk

ẋT (s)T1ẋ(s)ds ≤

δΛT (t)Ȳ T−1
1 Ȳ TΛ(t) +

∫ t

t−δ

ẋT (s)T1ẋ(s)ds. (7.12)

Now given positive-definite symmetric matrices Q1, Q2 and Q3, we con-
sider the guaranteed cost function related to global dynamic fuzzy system in
(7.1):

Jk =
∫ tk+1+τk+1

tk+τk

[xT (t)Q1x(t) + xT (t− d)Q2x(t− d)

+ uT (t)Q3u(t)]dt, t ∈ [tk + τk, tk+1 + τk+1), (7.13)

and the sum of guaranteed cost function is described by

J = lim
N→∞

N∑
k=0

Jk. (7.14)

After the second integration term in (7.8) is counteracted through (7.12),
and utilizing the inequality KT

i Q3Kj +KT
j Q3Ki ≤ KT

i Q3Ki+KT
j Q3Kj , (7.8)

can be described as follows:

V̇ (t) ≤
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))[ΛT (t)ΨijΛ(t)]

−
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))[xT (t)Q1x(t)

+ xT (t− d)Q2x(t− d) + xT (tk)KT
i Q3Kjx(tk)]

≤
r∑

i=1

hi(θ(t))hi(θ(t))[ΛT (t)ΨiiΛ(t)]

+
r−1∑
i=1

r∑
j>i

hi(θ(t))hj(θ(t))[ΛT (t)ΩijΛ(t)]

−
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))[xT (t)Q1x(t)

+ xT (t− d)Q2x(t− d) + xT (tk)KT
i Q3Kjx(tk)] (7.15)

where

Ψij =

⎡
⎢⎢⎣
Π1,1 Π1,2 Π1,3 Π1,4

∗ Π2,2 Π2,3 Π2,4

∗ ∗ Π3,3 Π3,4

∗ ∗ ∗ Π4,4

⎤
⎥⎥⎦+ δȲ T−1

1 Ȳ T ,
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Ωij =

⎡
⎢⎢⎣
Π̄1,1 Π̄1,2 Π̄1,3 Π̄1,4

∗ Π̄2,2 Π̄2,3 Π̄2,4

∗ ∗ Π̄3,3 Π̄3,4

∗ ∗ ∗ Π̄4,4

⎤
⎥⎥⎦+ 2δȲ T−1

1 Ȳ T ,

Π1,1 = P1,2 + Y1,1 + Y T
1,1 − Y1,4Ai −AT

i Y T
1,4 + Q1,

Π1,2 = P1,1 + Y T
1,3 + Y1,4 −AT

i Y T
1,6,

Π1,3 = −Y1,4Adi
,

Π1,4 = −Y1,1 + Y T
1,2 − Y1,4BiKj −AT

i Y T
1,5,

Π2,2 = δT1 + Y1,6 + Y T
1,6,

Π2,3 = −Y1,6Adi
,

Π2,4 = −Y1,3 + Y T
1,5 − Y1,6BiKj ,

Π3,3 = −P1,2 + Q2,
Π3,4 = −AT

di
Y T

1,5,
Π4,4 = −Y1,2 − Y T

1,2 − Y1,5BiKj −KT
j BT

i Y T
1,5 + KT

i Q3Kj ,
Π̄1,1 = 2P1,2 + 2Y1,1 + 2Y T

1,1 − Y1,4Ai − Y1,4Aj −AT
i Y T

1,4 −AT
j Y T

1,4 + 2Q1,
Π̄1,2 = 2P1,1 + 2Y T

1,3 + 2Y1,4 −AT
i Y T

1,6 −AT
j Y T

1,6,
Π̄1,3 = −Y1,4Adi

− Y1,4Adj
,

Π̄1,4 = −2Y1,1 + 2Y T
1,2 − Y1,4BiKj − Y1,4BjKi −AT

i Y T
1,5 −AT

j Y T
1,5,

Π̄2,2 = 2δT1 + 2Y1,6 + 2Y T
1,6,

Π̄2,3 = −Y1,6Adi
− Y1,6Adj

,
Π̄2,4 = −2Y1,3 + 2Y T

1,5 − Y1,6BiKj − Y1,6BjKi,
Π̄3,3 = −2P1,2 + 2Q2,
Π̄3,4 = −AT

di
Y T

1,5 −AT
dj
Y T

1,5,
Π̄4,4 = −2Y1,2 − 2Y T

1,2 − Y1,5BiKj − Y1,5BjKi −KT
j BT

i Y T
1,5 −KT

i BT
j Y T

1,5

+KT
i Q3Ki + KT

j Q3Kj .
From (7.13)–(7.15), we can obtain that if Ψii < 0 and Ωij < 0 hold for

any 1 ≤ i < j ≤ r, then V̇ (t) < 0 for any nonzero Λ(t) and Vk+1 − Vk ≤ −Jk.
As t → ∞, V (∞) − V (0) ≤ −J can be derived. Moreover J ≤ V (0) can be
inferred as the closed-loop system to be asymptotically stable. It is easy to
see that the guaranteed cost function satisfies

J ≤ V (0) ≤W1 = ϕT (0)P1,1ϕ(0) +
∫ 0

−τ̄

ϕT (s)P1,2ϕ(s)ds

+
∫ 0

−δ

∫ 0

s

ϕ̇T (v)T1ϕ̇(v)dvds.

Notice that there exist nonlinear terms δȲ T−1
1 Ȳ T and KT

i Q3Ki in Ψii.
And there also exist nonlinear terms 2δȲ T−1

1 Ȳ T , KT
i Q3Ki and KT

j Q3Kj in
Ωij . Utilizing the Schur complement [2], the conditions in Theorem 7.1 can
be obtained and the proof is completed. �

Multiple time delays often exist in practical plants. Now, we consider the
following form of T–S fuzzy model with multiple time delays:
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ẋ(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))
[
Aix(t)+

q∑
m̃=1

Adim̃
x(t−dm̃)

+ BiKjx(tk)
]
, for t ∈ [tk + τk, tk+1 + τk+1), (7.16)

where d1, d2, . . ., dq (0 < dm̃ ≤ τ̄ , m̃ = 1, . . . , q) are assumed to be known
bounded time delays of the state, and q denotes the number of terms with
time delays.

Further, we establish the following stability results for T–S fuzzy systems
with multiple time delays.

Theorem 7.2. If there exist matrices P2,1 = PT
2,1 > 0, P2,2 = PT

2,2 > 0, T2 =
TT

2 > 0, matrices Ki and matrices Y2,1, Y2,2, Y2,3 of appropriate dimensions
such that for given constant matrices Y2,4, Y2,5, Y2,6 of appropriate dimensions,
matrices X ′

1 = X
′T
1 > 0, X ′

2 = X
′T
2 > 0, X ′

3 = X
′T
3 > 0, and a scalar δ > 0,

where δ satisfies the condition (7.3), the following LMIs hold,

ΞM
ii < 0, 1 ≤ i ≤ r,

ΘM
ij < 0, 1 ≤ i < j ≤ r, (7.17)

then the closed-loop system (7.16) is asymptotically stable with guaranteed
cost bound W ′

1, where

ΞM
ii =

[
ΓM

ii ΥM
1

∗ ΥM
2

]
,

ΓM
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΦM
1,1 ΦM

1,2 ΦM
1,3 · · · ΦM

1,m̄ · · · ΦM
1,q+2 ΦM

1,q+3 ΦM
1,q+4

∗ ΦM
2,2 ΦM

2,3 · · · ΦM
2,m̄ · · · ΦM

2,q+2 ΦM
2,q+3 ΦM

2,q+4

∗ ∗ ΦM
3,3 · · · 0 · · · 0 ΦM

3,q+3 0
∗ ∗ ∗ · · · · · · · · · · · · · · · · · ·
∗ ∗ ∗ ∗ ΦM

m̄,m̄ · · · 0 ΦM
m̄,q+3 0

∗ ∗ ∗ ∗ ∗ · · · · · · · · · · · ·
∗ ∗ ∗ ∗ ∗ ∗ ΦM

q+2,q+2 ΦM
q+2,q+3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ΦM
q+3,q+3 ΦM

q+3,q+4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ΦM
q+4,q+4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΥM
1 =

[
0 0 0 · · · 0 · · · 0 Ki 0

]T , ΥM
2 = −X ′

3,
ΦM

1,1 = qP2,2 + Y2,1 + Y T
2,1 − Y2,4Ai −AT

i Y T
2,4 + X ′

1,
ΦM

1,2 = P2,1 + Y T
2,3 + Y2,4 −AT

i Y T
2,6,

ΦM
1,3 = −Y2,4Adi1 ,

...
ΦM

1,m̄ = −Y2,4Adi(m̄−2) (3 < m̄ < q + 2),
...

ΦM
1,q+2 = −Y2,4Adiq

,
ΦM

1,q+3 = −Y2,1 + Y T
2,2 − Y2,4BiKj −AT

i Y T
2,5,
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ΦM
1,q+4 = δY2,1,

ΦM
2,2 = δT2 + Y2,6 + Y T

2,6,
ΦM

2,3 = −Y2,6Adi1 ,
...

ΦM
2,m̄ = −Y2,6Adi(m̄−2) (3 < m̄ < q + 2),

...
ΦM

2,q+2 = −Y2,6Adiq
,

ΦM
2,q+3 = −Y2,3 + Y T

2,5 − Y2,6BiKj ,
ΦM

2,q+4 = δY2,3,
ΦM

3,3 = ΦM
4,4 = · · · = ΦM

q+2,q+2 = −P2,2 + X ′
2,

ΦM
3,q+3 = −AT

di1
Y T

2,5,
...

ΦM
m̄,q+3 = −AT

di(m̄−2)
Y T

2,5 (3 < m̄ < q + 2),
...

ΦM
q+2,q+3 = −AT

diq
Y T

2,5,
ΦM

q+3,q+3 = −Y2,2 − Y T
2,2 − Y2,5BiKj −KT

j BT
i Y T

2,5,
ΦM

q+3,q+4 = δY2,2,
ΦM

q+4,q+4 = −δT2,

ΘM
ij =

[
ΓM

ij + ΓM
ji ῩM

1

∗ ῩM
2

]
,

ῩM
1 =

[
0 0 0 · · · 0 · · · 0 Ki 0
0 0 0 · · · 0 · · · 0 Kj 0

]T

, ῩM
2 =

[−X ′
3 0

0 −X ′
3

]
,

X ′
1 = Q′

1, X ′
2 = Q′

2, X ′
3 = Q

′−1
3 .

The guaranteed cost bound is described by:

W ′
1 = ϕT (0)P2,1ϕ(0) + q

∫ 0

−τ̄

ϕT (s)P2,2ϕ(s)ds +
∫ 0

−δ

∫ 0

s

ϕ̇T (v)T2ϕ̇(v)dvds.

Proof. Consider a Lyapunov functional given by

V (t) = xT (t)P2,1x(t)+
q∑

m̃=1

∫ t

t−dm̃

xT (s)P2,2x(s)ds +
∫ t

t−δ

∫ t

s

ẋT (v)T2ẋ(v)dvds,

where P2,1 = PT
2,1 > 0, P2,2 = PT

2,2 > 0 and T2 = TT
2 > 0.

The guaranteed cost function related to the global dynamic fuzzy system
in (7.16) is described by the following form:

J ′
k =

∫ tk+1+τk+1

tk+τk

[
xT (t)Q′

1x(t)+
q∑

m̃=1

xT (t−dm̃)Q′
2x(t−dm̃)+uT (t)Q′

3u(t)

]
dt,

t ∈ [tk + τk, tk+1 + τk+1).
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And the sum of guaranteed cost functions is described by

J ′ = lim
N→∞

N∑
k=0

J ′
k. (7.18)

Following similar lines to those in the proof of Theorem 7.1, the results in
Theorem 7.2 can be obtained. �

In addition, some sufficient conditions can be derived with applications to
uncertain systems. After considering the uncertain property, the fuzzy system
model (7.1) takes the following form:

ẋ(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))[(Ai + ΔAi)x(t) + (Adi
+ ΔAdi

)x(t− d)

+ (Bi + ΔBi)Kjx(tk)], (7.19)

where ΔAi, ΔAdi
and ΔBi denote the uncertainties in the system.

Assumption 7.5. We assume that the admissible uncertainties satisfy ΔAi =
M1iF (t)N1i, ΔAdi

= M2iF (t)N2i, ΔBi = M3iF (t)N3i, where Mk1i (k1 =
1, 2, 3), Nk2i (k2 = 1, 2, 3) and FT (t) are real matrices with appropriate di-
mensions, and satisfy FT (t)F (t) ≤ I. �

Lemma 7.2 ([17]). For any two matrices X and Y , we have

XTY + Y TX ≤ εXTX + ε−1Y TY, (7.20)

where X ∈ Rl̃×n and Y ∈ Rl̃×n, and ε is any positive constant. �

Theorem 7.3. If there exist matrices P3,1 = PT
3,1 > 0, P3,2 = PT

3,2 > 0, T3 =
TT

3 > 0, matrices Ki, and matrices Y3,1, Y3,2, Y3,3 of appropriate dimensions
such that the following LMIs

Ξ ′
ii < 0, 1 ≤ i ≤ r,

Θ′
ij < 0, 1 ≤ i < j ≤ r, (7.21)

hold for given constant matrices Y3,4, Y3,5, Y3,6 of appropriate dimensions,
matrices X1 = XT

1 > 0, X2 = XT
2 > 0, X3 = XT

3 > 0, scalars ε > 0 and
δ > 0, where δ satisfies the condition (7.3), then the uncertain system (7.19)
is asymptotically stable with guaranteed cost bound W2, where

Ξ ′
ii =

[
Γ ′

ii Υ ′
1

∗ Υ ′
2

]
, Γ ′

ij =

⎡
⎢⎢⎢⎢⎣
Φ′

1,1 Φ′
1,2 Φ′

1,3 Φ′
1,4 Φ′

1,5

∗ Φ′
2,2 Φ′

2,3 Φ′
2,4 Φ′

2,5

∗ ∗ Φ′
3,3 Φ′

3,4 0
∗ ∗ ∗ Φ′

4,4 Φ′
4,5

∗ ∗ ∗ ∗ Φ′
5,5

⎤
⎥⎥⎥⎥⎦,
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Υ ′
1 =

[
0 0 0 Ki 0
0 0 0

√
3ε−1N3iKi 0

]T

, Υ ′
2 =

[−X3 0
0 −I

]
,

Φ′
1,1 = P3,2 + Y3,1 + Y T

3,1 − Y3,4Ai −AT
i Y T

3,4 + X1 + εY3,4(M1iM
T
1i

+M2iM
T
2i + M3iM

T
3i)Y

T
3,4 + (ε−1 + 2ε)NT

1iN1i,
Φ′

1,2 = P3,1 + Y T
3,3 + Y3,4 −AT

i Y T
3,6,

Φ′
1,3 = −Y3,4Adi

,
Φ′

1,4 = −Y3,1 + Y T
3,2 − Y3,4BiKj −AT

i Y T
3,5,

Φ′
1,5 = δY3,1,

Φ′
2,2 = δT3+Y3,6+Y T

3,6+ε−1Y3,6M1iM
T
1iY

T
3,6+εY3,6(M2iM

T
2i+M3iM

T
3i)Y

T
3,6,

Φ′
2,3 = −Y3,6Adi

,
Φ′

2,4 = −Y3,3 + Y T
3,5 − Y3,6BiKj ,

Φ′
2,5 = δY3,3,

Φ′
3,3 = −P3,2 + X2 + (2ε−1 + ε)NT

2iN2i,
Φ′

3,4 = −AT
di
Y T

3,5,
Φ′

4,4 = −Y3,2 − Y T
3,2 − Y3,5BiKj −KT

j BT
i Y T

3,5

+ε−1Y3,5(M1iM
T
1i + M2iM

T
2i)Y

T
3,5 + εY3,5M3iM

T
3iY

T
3,5,

Φ′
4,5 = δY3,2,

Φ′
5,5 = −δT3,

Θ′
ij =

[
Γ ′

ij + Γ ′
ji Ῡ ′

1

∗ Ῡ ′
2

]
,

Ῡ ′
1 =

⎡
⎢⎢⎣

0 0 0 Ki 0
0 0 0

√
3ε−1N3iKi 0

0 0 0 Kj 0
0 0 0

√
3ε−1N3jKj 0

⎤
⎥⎥⎦

T

, Ῡ ′
2 =

⎡
⎢⎢⎣
−X3 0 0 0

0 −I 0 0
0 0 −X3 0
0 0 0 −I

⎤
⎥⎥⎦ ,

X1 = Q1, X2 = Q2, X3 = Q−1
3 .

The guaranteed cost bound is described by:

W2 = ϕT (0)P3,1ϕ(0) +
∫ 0

−τ̄

ϕT (s)P3,2ϕ(s)ds +
∫ 0

−δ

∫ 0

s

ϕ̇T (v)T3ϕ̇(v)dvds.

Proof. Similar to the proof of Theorem 7.1, selecting guaranteed cost function
(7.14) and the Lyapunov functional

V (t) = xT (t)P3,1x(t) +
∫ t

t−d

xT (s)P3,2x(s)ds +
∫ t

t−δ

∫ t

s

ẋT (v)T3ẋ(v)dvds,

where P3,1 = PT
3,1 > 0, P3,2 = PT

3,2 > 0 and T3 = TT
3 > 0. We can obtain the

following results:

Ψ ′
ii < 0, 1 ≤ i ≤ r,

Ω′
ij < 0, 1 ≤ i < j ≤ r,

where
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Ψ ′
ii =

⎡
⎢⎢⎣
Π ′

1,1 Π ′
1,2 Π ′

1,3 Π ′
1,4

∗ Π ′
2,2 Π ′

2,3 Π ′
2,4

∗ ∗ Π ′
3,3 Π ′

3,4

∗ ∗ ∗ Π ′
4,4

⎤
⎥⎥⎦+ δȲ T−1

3 Ȳ T ,

Π ′
1,1 = P3,2 + Y3,1 + Y T

3,1 − Y3,4(Ai + ΔAi)− (Ai + ΔAi)TY T
3,4 + Q1,

Π ′
1,2 = P3,1 + Y T

3,3 + Y3,4 − (Ai + ΔAi)TY T
3,6,

Π ′
1,3 = −Y3,4(Adi

+ ΔAdi
),

Π ′
1,4 = −Y3,1 + Y T

3,2 − Y3,4(Bi + ΔBi)Ki − (Ai + ΔAi)TY T
3,5,

Π ′
2,2 = δT3 + Y3,6 + Y T

3,6,
Π ′

2,3 = −Y3,6(Adi
+ ΔAdi

),
Π ′

2,4 = −Y3,3 + Y T
3,5 − Y3,6(Bi + ΔBi)Ki,

Π ′
3,3 = −P3,2 + Q2,

Π ′
3,4 = −(Adi

+ ΔAdi
)TY T

3,5,
Π ′

4,4 = −Y3,2−Y T
3,2−Y3,5(Bi +ΔBi)Ki−KT

i (Bi +ΔBi)TY T
3,5 +KT

i Q3Ki,

Ω′
ij =

⎡
⎢⎢⎣
Π̄ ′

1,1 Π̄ ′
1,2 Π̄ ′

1,3 Π̄ ′
1,4

∗ Π̄ ′
2,2 Π̄ ′

2,3 Π̄ ′
2,4

∗ ∗ Π̄ ′
3,3 Π̄ ′

3,4

∗ ∗ ∗ Π̄ ′
4,4

⎤
⎥⎥⎦+ 2δȲ T−1

3 Ȳ T ,

Π̄ ′
1,1 = 2P3,2 + 2Y3,1 + 2Y T

3,1 − Y3,4(Ai + ΔAi)− Y3,4(Aj + ΔAj)
−(Ai + ΔAi)TY T

3,4 − (Aj + ΔabcdeAj)TY T
3,4 + 2Q1,

Π̄ ′
1,2 = 2P3,1 + 2Y T

3,3 + 2Y3,4 − (Ai + ΔAi)TY T
3,6 − (Aj + ΔAj)TY T

3,6,
Π̄ ′

1,3 = −Y3,4(Adi
+ ΔAdi

)− Y3,4(Adj
+ ΔAdj

),
Π̄ ′

1,4 = −2Y3,1 + 2Y T
3,2 − Y3,4(Bi + ΔBi)Kj − Y3,4(Bj + ΔBj)Ki

−(Ai + ΔAi)TY3,5 − (Aj + ΔAj)TY T
3,5,

Π̄ ′
2,2 = 2δT3 + 2Y3,6 + 2Y T

3,6,
Π̄ ′

2,3 = −Y3,6(Adi
+ ΔAdi

)− Y3,6(Adj
+ ΔAdj

),
Π̄ ′

2,4 = −2Y3,3 + 2Y T
3,5 − Y3,6(Bi + ΔBi)Kj − Y3,6(Bj + ΔBj)Ki,

Π̄ ′
3,3 = −2P3,2 + 2Q2,

Π̄ ′
3,4 = −(Adi

+ ΔAdi
)TY T

3,5 − (Adj
+ ΔAdj

)TY T
3,5,

Π̄ ′
4,4 = −2Y3,2 − 2Y T

3,2 − Y3,5(Bi + ΔBi)Kj − Y3,5(Bj + ΔBj)Ki

−KT
j (Bi + ΔBi)TY T

3,5 −KT
i (Bj + ΔBj)TY T

3,5 + KT
i Q3Ki

+KT
j Q3Kj .

Utilizing (7.20), Assumption 7.5 and the Schur complement, the conditions in
Theorem 7.3 can be obtained and the proof is completed. �

Next, some results are given for the uncertain T–S fuzzy system with
multiple time delays. We consider the following form for the uncertain T–S
fuzzy model with multiple time delays,
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ẋ(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))
[
(Ai + ΔAi)x(t) +

q∑
m̃=1

(Adim̃
+ ΔAdim̃

)

× x(t− dm̃) + (Bi + ΔBi)Kjx(tk)
]
, for t ∈ [tk + τk, tk+1 + τk+1).

(7.22)

Theorem 7.4. If there exist matrices P4,1 = PT
4,1 > 0, P4,2 = PT

4,2 > 0, T4 =
TT

4 > 0, matrices Ki, and matrices Y4,1, Y4,2, Y4,3 of appropriate dimensions
such that the following LMIs

ΞM ′
ii < 0, 1 ≤ i ≤ r,

ΘM ′
ij < 0, 1 ≤ i < j ≤ r, (7.23)

hold for given matrices X ′
1 = X

′T
1 > 0, X ′

2 = X
′T
2 > 0, X ′

3 = X
′T
3 > 0,

constant matrices Y4,4, Y4,5, Y4,6 of appropriate dimensions, scalars ε > 0 and
δ > 0, where δ satisfies the condition (7.3), then the uncertain system (7.22)
is asymptotically stable with guaranteed cost bound W ′

2, where

ΞM ′
ii =

[
ΓM ′

ii ΥM ′
1

∗ ΥM ′
2

]
,

ΓM ′
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΦM ′
1,1 ΦM ′

1,2 ΦM ′
1,3 · · · ΦM ′

1,m̄ · · · ΦM ′
1,q+2 ΦM ′

1,q+3 ΦM ′
1,q+4

∗ ΦM ′
2,2 ΦM ′

2,3 · · · ΦM ′
2,m̄ · · · ΦM ′

2,q+2 ΦM ′
2,q+3 ΦM ′

2,q+4

∗ ∗ ΦM ′
3,3 · · · 0 · · · 0 ΦM ′

3,q+3 0
∗ ∗ ∗ · · · · · · · · · · · · · · · · · ·
∗ ∗ ∗ ∗ ΦM ′

m̄,m̄ · · · 0 ΦM ′
m̄,q+3 0

∗ ∗ ∗ ∗ ∗ · · · · · · · · · · · ·
∗ ∗ ∗ ∗ ∗ ∗ ΦM ′

q+2,q+2 ΦM ′
q+2,q+3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ΦM ′
q+3,q+3 ΦM ′

q+3,q+4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ΦM ′
q+4,q+4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΥM ′
1 =

[
0 0 · · · 0 · · · 0 Ki 0
0 0 · · · 0 · · · 0

√
3ε−1N3iKi 0

]T

, ΥM ′
2 =

[−X ′
3 0

0 −I
]
,

ΦM ′
1,1 = qP4,2+Y4,1+Y T

4,1−Y4,4Ai−AT
i Y T

4,4+X ′
1+εY4,4(M1iM

T
1i+qM2iM

T
2i

+M3iM
T
3i)Y

T
4,4 + (ε−1 + 2ε)NT

1iN1i,
ΦM ′

1,2 = P4,1 + Y T
4,3 + Y4,4 −AT

i Y T
4,6,

ΦM ′
1,3 = −Y4,4Adi1 ,

...
ΦM ′

1,m̄ = −Y4,4Adi(m̄−2) (3 < m̄ < q + 2),
...

ΦM ′
1,q+2 = −Y4,4Adiq

,
ΦM ′

1,q+3 = −Y4,1 + Y T
4,2 − Y4,4BiKj −AT

i Y T
4,5,

ΦM ′
1,q+4 = δY4,1,
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ΦM ′
2,2 = δT4 + Y4,6 + Y T

4,6 + ε−1Y4,6M1iM
T
1iY

T
4,6

+εY4,6(qM2iM
T
2i + M3iM

T
3i)Y

T
4,6,

ΦM ′
2,3 = −Y4,6Adi1 ,

...
ΦM ′

2,m̄ = −Y4,6Adi(m̄−2) (3 < m̄ < q + 2),
...

ΦM ′
2,q+2 = −Y4,6Adiq

,
ΦM ′

2,q+3 = −Y4,3 + Y T
4,5 − Y4,6BiKj ,

ΦM ′
2,q+4 = δY4,3,

ΦM ′
3,3 = · · · = ΦM ′

q+2,q+2 = −P4,2 + X ′
2 + (2ε−1 + ε)NT

2iN2i,
ΦM ′

3,q+3 = −AT
di1

Y T
4,5,

...
ΦM ′

m̄,q+3 = −AT
di(m̄−2)

Y T
4,5 (3 < m̄ < q + 2),

...
ΦM ′

q+2,q+3 = −AT
diq

Y T
4,5,

ΦM ′
q+3,q+3 = −Y4,2 − Y T

4,2 − Y4,5BiKj −KT
j BT

i Y T
4,5 + ε−1Y4,5(M1iM

T
1i

+qM2iM
T
2i)Y

T
4,5 + εY4,5M3iM

T
3iY

T
4,5,

ΦM ′
q+3,q+4 = δY4,2,

ΦM ′
q+4,q+4 = −δT4,

ΘM ′
ij =

[
ΓM ′

ij + ΓM ′
ji ῩM ′

1

∗ ῩM ′
2

]
,

ῩM ′
1 =

⎡
⎢⎢⎣

0 0 · · · 0 · · · 0 Ki 0
0 0 · · · 0 · · · 0

√
3ε−1N3iKi 0

0 0 · · · 0 · · · 0 Kj 0
0 0 · · · 0 · · · 0

√
3ε−1N3jKj 0

⎤
⎥⎥⎦

T

, ῩM ′
2 =

⎡
⎢⎢⎣
−X ′

3 0 0 0
0 −I 0 0
0 0 −X ′

3 0
0 0 0 −I

⎤
⎥⎥⎦,

X ′
1 = Q′

1, X ′
2 = Q′

2, X ′
3 = Q

′−1
3 .

The guaranteed cost bound is described by

W ′
2 = ϕT (0)P4,1ϕ(0) + q

∫ 0

−τ̄

ϕT (s)P4,2ϕ(s)ds +
∫ 0

−δ

∫ 0

s

ϕ̇T (v)T4ϕ̇(v)dvds.

Proof. We assume that the admissible uncertainties in multiple time delays
satisfy ΔAdim̃

= M2iF (t)N2i (m̃ = 1, . . . , q). Similar to the proof of Theorem
7.2, selecting guaranteed cost function (7.18) and Lyapunov functional

V (t) = xT (t)P4,1x(t) +
q∑

m̃=1

∫ t

t−dm̃

xT (s)P4,2x(s)ds

+
∫ t

t−δ

∫ t

s

ẋT (v)T4ẋ(v)dvds,
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where P4,1 = PT
4,1 > 0, P4,2 = PT

4,2 > 0 and T4 = TT
4 > 0, the results of

Theorem 7.4 can be obtained. �

If each ΔAdim̃
in time delay terms is different, a similar proof can also be

obtained.

7.3 Simulation Results

In this section, some examples are presented to show the validity of our control
scheme.

Example 7.1. Consider the unstable nonlinear system with the following dif-
ferential equation [9]:

s̈(t) + f(s(t), ṡ(t))− 0.1s(t) = u(t)

where

f(s(t), ṡ(t)) = 0.5s(t) + 0.75 sin
ṡ(t)
0.5

.

Choose the state variable x(t) = [s(t) ṡ(t)]T . The delay state matrix is

Ad =
[

0.1 0
0.1 −0.2

]
.

It can be represented by the following fuzzy model consisting of two rules [9]:

Rule (1) IF (x2(t)/0.5) is about 0, THEN
ẋ(t) = A1x(t) + Ad1x(t− d) + B1u(t);

Rule (2) IF (x2(t)/0.5) is about π or − π, THEN
ẋ(t) = A2x(t) + Ad2x(t− d) + B2u(t);

where

A1 =
[

0 1
0.1 −2

]
, A2 =

[
0 1

0.1 −0.5− 1.5β

]
, B1 = B2 =

[
0
1

]
,

Ad1 = Ad2 = Ad, β = 0.01/π, d = 0.5 and β is used to avoid system matrices
being singular. The membership functions of “about 0” and “about π or −π”
are selected as

F1(t) =

⎡
⎣1− 1

1 + exp
{
−3

( x2

0.5
− π

2

)}
⎤
⎦× 1

1 + exp
{
−3

( x2

0.5
+

π

2

)} ,

F2(t) = 1− F1(t),

respectively.
Next, we select
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Y1,4 =
[−19.65 −8.52
−4.95 −11.26

]
, Y1,5 =

[−4.35 −7.26
−9.65 −6.18

]
, Y1,6 =

[−9.15 −10.54
−4.36 −8.65

]
,

and X1 = X2 = diag[1, 1], X3 = 1, δ = 0.18.
The following parameters are obtained by solving the LMIs in (7.5):

P1,1 =
[

40.2199 30.0436
30.0436 34.3470

]
, P1,2 =

[
31.8167 27.3989
27.3989 36.1007

]
,

T1 =
[

52.0190 42.4215
42.4215 51.1644

]
, Y1,1 =

[−46.3069 −19.0438
−28.1585 −43.0121

]
,

Y1,2 =
[

15.1552 −5.7793
−8.7843 21.6638

]
, Y1,3 =

[−24.7519 −25.2701
−24.1274 −19.8668

]
,

K1 =
[−2.5485 −1.4118

]
, K2 =

[−2.2405 −2.4131
]
.

The initial value of the system is ϕ(t) = (1.8 0.5)T for t ∈ [−0.5, 0].
Fig. 7.1 presents the simulation results of the present GCNC method and

illustrates the validity of Theorem 7.1. The trajectories of x(t) are shown in
Fig. 7.1. From the present method, we know that the state feedback controller
is effective when the sum of sampling time and network-induced delay are less
than δ. In this example, the sampling time is ts = 0.05 and the network-
induced delay is τD = 0.03× rand, where rand is a random number between 0
and 1. The condition (7.3) is satisfied. When t → ∞, the closed-loop system
is stabilized with guaranteed cost performance.

If the above control system contains multiple time delays, we consider the
following fuzzy model consisting of two rules:

0 5 10 15 20
1

0.5

0

0.5

1

1.5

2

t(s)

x

x1
x2

Fig. 7.1. Response of state x in the case (d = 0.5, ts = 0.05, τD ≤ 0.03)
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Rule (1) IF (x2(t)/0.5) is about 0, THEN

ẋ(t) = A1x(t) +
q∑

m̃=1

Ad1m̃
x(t− dm̃) + B1u(t);

Rule (2) IF (x2(t)/0.5) is about π or − π, THEN

ẋ(t) = A2x(t) +
q∑

m̃=1

Ad2m̃
x(t− dm̃) + B2u(t);

where we assume that q = 2, Ad11 = Ad12 = Ad21 = Ad22 = Ad, d1 = 0.5 and
d2 = 0.2, and other parameters in this system are the same as in the above
model. Furthermore, we also assume that the membership functions and the
initial value of the system will be the same as in the above model.

Next, we select

Y2,4 =
[−19.56 −5.36
−4.51 −18.26

]
, Y2,5 =

[−10.23−5.85
−4.48 −4.65

]
, Y2,6 =

[−5.19 −4.37
−4.11 −4.89

]
,

and X ′
1 = X ′

2 = diag[1, 1], X ′
3 = 1, δ = 0.130.

The following parameters are obtained by solving the LMIs in (7.17):

P2,1 =
[

39.3544 21.4661
21.4661 37.0110

]
, P2,2 =

[
16.2859 23.5709
23.5709 61.0953

]
,

T2 =
[

44.1279 35.2036
35.2036 42.3502

]
, Y2,1 =

[−193.0917 −139.0116
−158.4406 −211.5975

]
,

Y2,2 =
[

177.2587 124.6491
127.3184 182.6014

]
, Y2,3 =

[−11.8147 −11.1031
−10.9848 −10.8312

]
,

K1 =
[−3.4280 −3.8977

]
, K2 =

[−3.3901 −5.0946
]
.

Fig. 7.2 presents the simulation results for the present GCNC method for
systems with multiple time delays and illustrates the validity of Theorem 7.2.
The trajectories of x(t) are shown in Fig. 7.2. From the present method, we
know that the state feedback controller is effective when the sum of sampling
time and network-induced delay is less than δ. In this example, ts = 0.05 and
τD = 0.03 × rand, where rand is a random number between 0 and 1. The
condition (7.3) is satisfied. �

Example 7.2. Consider the nonlinear system proposed in [6], which is a non-
linear system with time delays expressed by the following T–S fuzzy model:

Rule (1) IF x2(t) is G11, THEN
ẋ(t) = (A1 + ΔA1)x(t) + Ad1x(t− d) + B1u(t);

Rule (2) IF x2(t) is G12, THEN
ẋ(t) = (A2 + ΔA2)x(t) + Ad2x(t− d) + B2u(t);

where x(t) =
[
x1(t) x2(t)

]T , the grade of membership function G11(x2(t)) =
1− x2

2(t)/2.25, G12(x2(t)) = 1−G11(x2(t)) = x2
2(t)/2.25, and d = 0.5.

We have
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Fig. 7.2. Response of state x in the case (d1 = 0.5, d2 = 0.2, ts = 0.05, τD ≤ 0.03)

A1 =
[−0.1125 −0.02

1 0

]
, Ad1 =

[−0.0125 −0.005
0 0

]
,

A2 =
[−0.1125 −1.527

1 0

]
, Ad2 =

[−0.0125 −0.23
0 0

]
,

ΔA1 = ΔA2 =
[−0.1125

0

]
F (t)

[
1 0

]
,

B1 = B2 =
[
1 0

]T , ΔAdi
= 0, ΔBi = 0, F (t) = sin(t).

Next, we select

Y3,4 =
[−5.65 1.23
−5.19 −6.57

]
, Y3,5 =

[−2.46 −1.37
−6.05 −6.23

]
, Y3,6 =

[−10.26 8.46
−9.16 −7.89

]
,

and ε = 1, X1 = X2 = diag[1, 1], X3 = 1, δ = 0.34.
Applying Theorem 7.3, the feasible solutions of (7.21) are given as follows:

P3,1 =
[

21.1872 9.4223
9.4223 17.5293

]
, P3,2 =

[
2.7158 0.1562
0.1562 3.8771

]
,

T3 =
[

26.6336 −0.5859
−0.5859 15.1782

]
, Y3,1 =

[−78.6574 1.7293
1.7639 −44.8555

]
,

Y3,2 =
[

78.6616 −1.5901
−1.7608 44.8578

]
, Y3,3 =

[
0.0222 0.0074
0.0298 0.0712

]
,

K1 =
[−1.2811 −0.5676

]
, K2 =

[−1.3391 0.7855
]
.

The initial value of the system is ϕ(t) = (0.5,−1)T for t ∈ [−0.5, 0].
Fig. 7.3 presents the simulation results for the present GCNC method

under uncertain conditions and illustrates the validity of Theorem 7.3. The
trajectories of x(t) are shown in Fig. 7.3. From the present method, we know



218 D. Yang and H. Zhang

0 2 4 6 8 10
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

t(s)

x

x1
x2

Fig. 7.3. Response of state x in the case (d = 0.5, ts = 0.05, τD ≤ 0.03)

that the state feedback controller is effective when the sum of sampling time
and network-induced delay is less than δ. In this example, the sampling time
is ts = 0.05 and the network-induced delay is τD = 0.03 × rand, where rand
is a random number between 0 and 1. The condition (7.3) is satisfied. When
t→∞, the closed-loop system is stabilized with guaranteed cost performance.

If in the above control system there exist multiple time delays, we consider
the following fuzzy model consisting of two rules:

Rule (1) IF x2(t) is G11, THEN

ẋ(t) = (A1 + ΔA1)x(t) +
q∑

m̃=1

Ad1m̃
x(t− dm̃) + B1u(t);

Rule (2) IF x2(t) is G12, THEN

ẋ(t) = (A2 + ΔA2)x(t) +
q∑

m̃=1

Ad2m̃
x(t− dm̃) + B2u(t);

where we assume that q = 2, Ad11 = Ad21 = Ad1 , Ad12 = Ad22 = Ad2 ,
ΔAdim̃

= 0, d1 = 0.5 and d2 = 0.3, and other parameters in this system
are the same as in the above model. Furthermore, we also assume that the
membership functions and the initial value of the system are the same as in
the above model.

Next, we select

Y4,4 =
[−5.21 1.12
−4.26 −6.27

]
, Y4,5 =

[−3.46 −1.09
−5.38 −4.89

]
, Y4,6 =

[−9.16 8.64
−9.31 −6.85

]
,
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Fig. 7.4. Response of state x in the case (d1 = 0.5, d2 = 0.3, ts = 0.05, τD ≤ 0.03)

ε = 1, X ′
1 = X ′

2 = diag[1, 1], X ′
3 = 1, and δ = 0.21.

Applying Theorem 7.4, the feasible solutions to (7.23) are given as follows:

P4,1 =
[

20.3294 9.8239
9.8239 20.9635

]
, P4,2 =

[
2.9968 0.8524
0.8524 4.3160

]
,

T4 =
[

29.3726 3.6414
3.6414 20.0449

]
, Y4,1 =

[−139.9368 −17.7953
−17.9992 −95.9921

]
,

Y4,2 =
[

140.0012 17.9368
18.0651 96.1143

]
, Y4,3 =

[
0.0351 0.0536
−0.0449 −0.0497

]
,

K1 =
[−1.3971 −1.0254

]
, and K2 =

[−1.4113 0.4490
]
.

Fig. 7.4 presents the simulation results for the present GCNC method
under uncertain and multiple time delay conditions and illustrates the validity
of Theorem 7.4. The trajectories of x(t) are shown in Fig. 7.4. From the present
method, we know that the state feedback controller is effective when the sum
of sampling time and network-induced delay is less than δ. In this example,
ts = 0.05 and τD = 0.03 × rand, rand is a random number between 0 and 1.
The condition (7.3) is satisfied.

It is clear that the fuzzy system is asymptotically stable, which implies that
the feature of guaranteed cost control in the fuzzy system can be guaranteed.
Moreover, utilizing our scheme, under various network conditions, satisfactory
results can be obtained. �
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7.4 Robust H∞ Networked Control for T–S Fuzzy
Systems with Time Delay

In this section, we will consider the robust H∞ control problem for T–S fuzzy
systems with time delay after considering network conditions. Generally, the
control gain does not precisely operate in the controlled object so we assume
that the designed controller exists in the disturbance gain output. An uncer-
tain nonlinear time-delay system can be described by the T–S fuzzy system
with uncertainty and time delay, which expresses the nonlinear system as a
weighted sum of linear systems. The ith rule is of the following format:

Rule i :
IF θ1(t) is Fi1, . . . , and θn̄(t) is Fin̄

THEN
ẋ(t) = (Ai + ΔAi)x(t) + (Adi

+ ΔAdi
)x(t− τ) + (Bi + ΔBi)u(t) + Ciw(t),

z(t) = Dix(t) + Eiu(t),
x(t) = ϕ(t), −τ̄ ≤ t < 0, for i = 1, 2, . . . , r,

where i = 1, 2, . . . , r is the number of fuzzy rules, x ∈ Rn and z ∈ Rq de-
note the state vector and measurement output vector, w(t) ∈ Rp is distur-
bance input vector, u(t) ∈ Rm is the control input, Ai and Adi

∈ Rn×n

are the known system matrix, Bi ∈ Rn×m is the input matrix, Ci ∈ Rn×p

is the disturbance input matrix, Di ∈ Rq×n, Ei ∈ Rq×m, respectively,
of the ith subsystem, We assume that the admissible uncertainties sat-
isfy ΔAi = M1iF (t)N1i, ΔAdi

= M2iF (t)N2i, ΔBi = M3iF (t)N3i, where
Mk1i (k1 = 1, 2, 3), Nk2i (k2 = 1, 2, 3) and FT (t) are real matrices with ap-
propriate dimensions, and satisfy FT (t)F (t) ≤ I. τ is the constant bounded
time delay in the state and it is assumed to be 0 < τ ≤ τ̄ , θ1(t), θ2(t),
. . ., θn̄(t) are premise variables, and Fig is a fuzzy set (g = 1, 2, . . . , n̄). The
inferred system is described by

ẋ(t) =
r∑

i=1

hi(θ(t))[(Ai + ΔAi)x(t) + (Adi
+ ΔAdi

)x(t− τ)

+ (Bi + ΔBi)u(t) + Ciw(t)],

where

μi(θ(t)) =
n̄∏

g=1

Fig(θg(t)), hi(θ(t)) =
μi(θ(t))

r∑
i=1

μi(θ(t))
,

and Fig(θg(t)) is the grade of membership of θg(t) in the fuzzy set Fig. Notice
the following facts:
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μi(θ(t)) ≥ 0 and
r∑

i=1

μi(θ(t)) > 0,

for all t. Then, we can see that

hi(θ(t)) ≥ 0 for i = 1, 2, . . . , r, and
r∑

i=1

hi(θ(t)) = 1.

While considering network action, the state feedback controller is

u(t) =
r∑

i=1

hi(θ(t))(Ki + ΔKi)x(tk),

where ΔKi is disturbance control gain and ΔKi = D̄iF (t)Ēi. We assume that
D̄i, Ēi and FT (t) are real matrices with appropriate dimensions, and satisfy
FT (t)F (t) ≤ I. The inferred fuzzy system is reconstructed in the following
form:

ẋ(t) =
r∑

i=1

r∑
j=1

hi(θ(t))hj(θ(t))[(Ai + ΔAi)x(t) + (Adi
+ ΔAdi

)x(t− τ)+

(Bi + ΔBi)(Kj + ΔKj)x(tk) + Ciw(t)], for t ∈ [tk + τk, tk+1 + τk+1),
(7.24)

where tk is the sampling instant, and x(tk) is the state vector of plant at
the instant tk, which is a piecewise constant function, by using the ZOH, τk

denotes the network-induced delay k = 0, 1, 2, . . . (τ0 = 0). ts = tk+1 − tk is
the sampling period.

The robust H∞ networked control via state feedback will be designed
according to (7.24). It is necessary that Assumptions 7.1–7.4 besides the fol-
lowing assumption will still hold in this section and the condition p = 1 is
assumed.

Assumption 7.6. The overall closed-loop system is under zero initial condi-
tion. �

Lemma 7.3 ([5]). For any matrices D ∈ Rn×nf , E ∈ Rnf×n and F ∈ Rnf×nf ,
with ‖F‖ ≤ 1, and scalar ε > 0, the following inequality holds:

DFE + ET FT DT ≤ ε−1DDT + εET E. (7.25)

�

Theorem 7.5. If there exist matrices P1 = PT
1 > 0, P2 = PT

2 > 0, T =
TT > 0, matrices Kj (j = 1, 2, · · · , r), matrices Yl (l = 1, 2, 3) of appropriate
dimensions and constant matrices Yl (l = 4, 5, 6) of appropriate dimensions
such that the following LMIs hold for given scalars δ > 0 and ε > 0, where δ
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satisfies the condition (7.3), then the closed-loop system (7.24) with w(t) ≡ 0
is asymptotically stable,

Ωii < 0 for any 1 ≤ i ≤ r,

Ωij + Ωji < 0 for any 1 ≤ i < j ≤ r, (7.26)

where

Ωij =

⎡
⎢⎢⎢⎢⎢⎢⎣

Π1,1 Π1,2 Π1,3 Π1,4 Π1,5 0
∗ Π2,2 Π2,3 Π2,4 Π2,5 0
∗ ∗ Π3,3 Π3,4 0 0
∗ ∗ ∗ Π4,4 Π4,5 Π4,6

∗ ∗ ∗ ∗ Π5,5 0
∗ ∗ ∗ ∗ ∗ Π6,6

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

Π1,1 = P2 + Y1 + Y T
1 − Y4Ai −AT

i Y T
4 + ε−1Y4(M1iM

T
1i + M2iM

T
2i

+M3iM
T
3i)Y

T
4 + (ε + 2ε−1)NT

1iN1i + εY4BiD̄jD̄
T
j BT

i Y T
4 ,

Π1,2 = P1 + Y T
3 + Y4 −AT

i Y T
6 ,

Π1,3 = −Y4Adi
,

Π1,4 = −Y1 + Y T
2 − Y4BiKj −AT

i Y T
5 ,

Π1,5 = δY1,
Π2,2 = δT + Y6 + Y T

6 + εY6M1iM
T
1iY

T
6 + ε−1Y6(M2iM

T
2i + M3iM

T
3i)Y

T
6

+εY6BiD̄jD̄
T
j BT

i Y T
6 ,

Π2,3 = −Y6Adi
,

Π2,4 = −Y3 + Y T
5 − Y6BiKj ,

Π2,5 = δY3,
Π3,3 = −P2 + (2ε + ε−1)NT

2iN2i,
Π3,4 = −AT

di
Y T

5 ,
Π4,4 = −Y2 − Y T

2 − Y5BiKj −KT
j BT

i Y T
5 + εY5(M1iM

T
1i + M2iM

T
2i)Y

T
5

+ε−1Y5M3iM
T
3iY

T
5 + (3ε−1 + 3)ĒT

j Ēj + εY5BiD̄jD̄
T
j BT

i Y T
5 ,

Π4,5 = δY2,
Π4,6 =

√
3εKT

j NT
3i,

Π5,5 = −δT ,
Π6,6 = −I + εN3iD̄jD̄

T
j NT

3i.

Proof. Consider a Lyapunov functional

V (t) = xT (t)P1x(t) +
∫ t

t−τ

xT (s)P2x(s)ds +
∫ t

t−δ

∫ t

s

ẋT (v)T ẋ(v)dvds,

where P1 = PT
1 > 0, P2 = PT

2 > 0 and T = TT > 0.
We can see that the following equations hold for matrices Yl (l =

1, 2, 3, 4, 5, 6) of appropriate dimensions where w(t) = 0.
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(
xT (t)Y1 + xT (tk)Y2 + ẋT (t)Y3

)×[x(t)− x(tk)−
∫ t

tk

ẋ(s)ds
]

= 0, (7.27)

(
xT (t)Y4 + xT (tk)Y5 + ẋT (t)Y6

)×[− r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t))[Āix(t)

+Ādi
x(t− τ)+ B̄i(Kj + ΔKj)x(tk)] + ẋ(t)

]
= 0, (7.28)

where Āi = Ai + ΔAi, Ādi
= Adi

+ ΔAdi
and B̄i = Bi + ΔBi.

Combining (7.24), (7.27) and (7.28), the corresponding time derivative of
V (t), for t ∈ [tk + τk, tk+1 + τk+1), is given by

V̇ (t) = 2ẋT (t)P1x(t) + xT (t)P2x(t)− xT (t− τ)P2x(t− τ) + 2(xT (t)Y1

+ xT (tk)Y2 + ẋT (t)Y3)(x(t)− x(tk)−
∫ t

tk

x(s)ds) + 2(xT (t)Y4

+ xT (tk)Y5 + ẋT (t)Y6)
(
−

r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t))[Āix(t)

+ Ādi
x(t− τ) + B̄i(Kj + ΔKj)x(tk)] + ẋ(t)

)
+ δẋT (t)T ẋ(t)

−
∫ t

t−δ

ẋT (s)T ẋ(s)ds, (7.29)

where Yl (l = 1, 2, 3, 4, 5, 6) are matrices of appropriate dimensions.
From (7.3), (7.4) and (7.9), we obtain, for t ∈ [tk + τk, tk+1 + τk+1),∫ t

tk

ẋT (s)T ẋ(s)ds ≤
∫ t

t−δ

ẋT (s)T ẋ(s)ds, (7.30)

and

−2(xT (t)Y1 + xT (tk)Y2 + ẋT (t)Y3)
∫ t

tk

x(s)ds

≤ δΛT (t)Ȳ T−1Ȳ TΛ(t) +
1
δ

[ ∫ t

tk

x(s)ds
]T

T

[ ∫ t

tk

x(s)ds
]

≤ δΛT (t)Ȳ T−1Ȳ TΛ(t) +
t− tk

δ

∫ t

tk

ẋT (s)T ẋ(s)ds

≤ δΛT (t)Ȳ T−1Ȳ TΛ(t) +
∫ t

t−δ

ẋT (s)T ẋ(s)ds, (7.31)

where Ȳ T = [Y T
1 Y T

3 0 Y T
2 ]T and ΛT = [xT (t) ẋT (t) xT (t− τ) xT (tk)]T .

Combining (7.29)–(7.31), we obtain
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V̇ (t) ≤
r∑

i=1

r∑
j=1

hihj

[
xT (t) ẋT (t) xT (t− τ) xT (tk)

]
Ξij

× [
xT (t) ẋT (t) xT (t− τ) xT (tk)

]T
, t ∈ [tk + τk, tk+1 + τk+1)

(7.32)

where

Ξij =

⎡
⎢⎢⎣
Φ1,1 Φ1,2 Φ1,3 Φ1,4

∗ Φ2,2 Φ2,3 Φ2,4

∗ ∗ Φ3,3 Φ3,4

∗ ∗ ∗ Φ4,4

⎤
⎥⎥⎦+ δȲ T−1Ȳ T ,

Φ1,1 = P2 + Y1 + Y T
1 − Y4Āi − ĀT

i Y T
4 ,

Φ1,2 = P1 + Y T
3 + Y4 − ĀT

i Y T
6 ,

Φ1,3 = −Y4Ādi
,

Φ1,4 = −Y1 + Y T
2 − Y4B̄i(Kj + ΔKj)− ĀT

i Y T
5 ,

Φ2,2 = δT + Y6 + Y T
6 ,

Φ2,3 = −Y6Ādi
,

Φ2,4 = −Y3 + Y T
5 − Y6B̄i(Kj + ΔKj),

Φ3,3 = −P2,
Φ3,4 = −ĀT

di
Y T

5 ,
Φ4,4 = −Y2 − Y T

2 − Y5B̄i(Kj + ΔKj)− (Kj + ΔKj)T B̄T
i Y T

5 .
Utilizing (7.25), the following result will hold,

Ξij ≤

⎡
⎢⎢⎢⎣
Φ

′
1,1 Φ

′
1,2 Φ

′
1,3 Φ

′
1,4

∗ Φ
′
2,2 Φ

′
2,3 Φ

′
2,4

∗ ∗ Φ
′
3,3 Φ

′
3,4

∗ ∗ ∗ Φ
′
4,4

⎤
⎥⎥⎥⎦+ δȲ T−1Ȳ T (7.33)

where
Φ

′
1,1 = P2 + Y1 + Y T

1 − Y4Ai −AT
i Y T

4 + ε−1Y4(M1iM
T
1i + M2iM

T
2i

+M3iM
T
3i)Y

T
4 + (ε + 2ε−1)NT

1iN1i,
Φ

′
1,2 = P1 + Y T

3 + Y4 −AT
i Y T

6 ,
Φ

′
1,3 = −Y4Adi

,
Φ

′
1,4 = −Y1 + Y T

2 − Y4Bi(Kj + ΔKj)−AT
i Y T

5 ,
Φ

′
2,2 = δT + Y6 + Y T

6 + εY6M1iM
T
1iY

T
6 + ε−1Y6(M2iM

T
2i + M3iM

T
3i)Y

T
6 ,

Φ
′
2,3 = −Y6Adi

,
Φ

′
2,4 = −Y3 + Y T

5 − Y6Bi(Kj + ΔKj),
Φ

′
3,3 = −P2 + (2ε + ε−1)NT

2iN2i,
Φ

′
3,4 = −AT

di
Y T

5 ,
Φ

′
4,4 = −Y2 − Y T

2 − Y5Bi(Kj + ΔKj)− (Kj + ΔKj)TBT
i Y T

5

+ εY5(M1iM
T
1i + M2iM

T
2i)Y

T
5 + ε−1Y5M3iM

T
3iY

T
5

+ 3ε(Kj + ΔKj)TNT
3iN3i(Kj + ΔKj).
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From (7.32), we can see V̇ < 0 for any nonzero Λ(t) if the right side in
(7.33) is negative. According to the Schur complement [2], the conditions in
Theorem 7.5 can be obtained and the proof is completed. �

In the following derivation process, we will consider the robust stability of
(7.24) with H∞ performance index.

In order to attenuate the external disturbance of the fuzzy system (7.24),
we introduce the H∞ performance index∫ ∞

t0

zT (t)z(t)dt ≤ γ2

∫ ∞

t0

wT (t)w(t)dt, (7.34)

where γ > 0 denotes the prescribed attenuation level.

Theorem 7.6. If there exist matrices P̄1 = P̄T
1 > 0, P̄2 = P̄T

2 > 0, T̄ =
T̄T > 0, matrices Kj (j = 1, 2, · · · , r), matrices Ȳl (l = 1, 2, 3) of appropriate
dimensions and constant matrices Ȳl (l = 4, 5, 6) of appropriate dimensions
such that the following LMIs hold, for given scalars δ > 0, ε > 0 and γ > 0,
where δ satisfies the condition (7.3), then the closed-loop system (7.24) is
robustly stable with H∞ performance index (7.34),

Ω
′
ii < 0 for any 1 ≤ i ≤ r,

Ω
′
ij + Ω

′
ji < 0 for any 1 ≤ i < j ≤ r, (7.35)

where

Ω
′
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π
′
1,1 Π

′
1,2 Π

′
1,3 Π

′
1,4 Π

′
1,5 Π

′
1,6 0 0

∗ Π
′
2,2 Π

′
2,3 Π

′
2,4 Π

′
2,5 Π

′
2,6 0 0

∗ ∗ Π
′
3,3 Π

′
3,4 0 0 0 0

∗ ∗ ∗ Π
′
4,4 Π

′
4,5 Π

′
4,6 Π

′
4,7 Π

′
4,8

∗ ∗ ∗ ∗ Π
′
5,5 0 0 0

∗ ∗ ∗ ∗ ∗ Π
′
6,6 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π
′
7,7 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π
′
8,8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Π
′
1,1 = P̄2 + Ȳ1 + Ȳ T

1 − Ȳ4Ai −AT
i Ȳ T

4 + ε−1Ȳ4(M1iM
T
1i + M2iM

T
2i

+M3iM
T
3i)Ȳ

T
4 + (ε + 2ε−1)NT

1iN1i + DT
i Di + εȲ4BiD̄jD̄

T
j BT

i Ȳ T
4

+εDT
i EiD̄jD̄

T
j ET

i Di,
Π

′
1,2 = P̄1 + Ȳ T

3 + Ȳ4 −AT
i Ȳ T

6 ,
Π

′
1,3 = −Ȳ4Adi

,
Π

′
1,4 = −Ȳ1 + Ȳ T

2 − Ȳ4BiKj −AT
i Ȳ T

5 + DT
i EiKj ,

Π
′
1,5 = δȲ1,

Π
′
1,6 = −Ȳ4Ci,

Π
′
2,2 = δT̄ + Ȳ6 + Ȳ T

6 + εȲ6M1iM
T
1iȲ

T
6 + ε−1Ȳ6(M2iM

T
2i + M3iM

T
3i)Ȳ

T
6
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+εȲ6BiD̄jD̄
T
j BT

i Ȳ T
6 ,

Π
′
2,3 = −Ȳ6Adi

,
Π

′
2,4 = −Ȳ3 + Ȳ T

5 − Ȳ6BiKj ,
Π

′
2,5 = δȲ3,

Π
′
2,6 = −Ȳ6Ci,

Π
′
3,3 = −P̄2 + (2ε + ε−1)NT

2iN2i,
Π

′
3,4 = −AT

di
Ȳ T

5 ,
Π

′
4,4 = −Ȳ2 − Ȳ T

2 − Ȳ5BiK̄j − K̄T
j BT

i Ȳ T
5 + εȲ5(M1iM

T
1i + M2iM

T
2i)Ȳ

T
5

+ε−1Ȳ5M3iM
T
3iȲ

T
5 + (5ε−1 + 3)ĒT

j Ēj + εȲ5BiD̄jD̄
T
j BT

i Ȳ T
5 ,

Π
′
4,5 = δȲ2,

Π
′
4,6 = −Ȳ5Ci,

Π
′
4,7 = KT

j ET
i ,

Π
′
4,8 =

√
3εKT

j NT
3i,

Π
′
5,5 = −δT̄ ,

Π
′
6,6 = −γ2I,

Π
′
7,7 = −I + εEiD̄jD̄

T
j ET

i ,
Π

′
8,8 = −I + εN3iD̄jD̄

T
j NT

3i.

Proof. Consider a Lyapunov functional given by

V (t) = xT (t)P̄1x(t) +
∫ t

t−τ

xT (s)P̄2x(s)ds +
∫ t

t−δ

∫ t

s

ẋT (v)T̄ ẋ(v)dvds,

where P̄1 = P̄T
1 > 0, P̄2 = P̄T

2 > 0 and T̄ = T̄T > 0. The corresponding time
derivative of V (t) after considering the disturbance term in the system, for
t ∈ [tk + τk, tk+1 + τk+1) is given by

V̇ (t) = 2ẋT (t)P̄1x(t) + xT (t)P̄2x(t)− xT (t− τ)P̄2x(t− τ) + 2(xT (t)Ȳ1

+ xT (tk)Ȳ2 + ẋT (t)Ȳ3)(x(t)− x(tk)−
∫ t

tk

ẋ(s)ds) + 2(xT (t)Ȳ4

+ xT (tk)Ȳ5 + ẋT (t)Ȳ6)
(
−

r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t))[Āix(t)

+ Ādi
x(t− τ) + B̄i(Kj + ΔKj)x(tk) + Ciw(t)] + ẋ(t)

)

+ δẋT (t)T̄ ẋ(t)−
∫ t

t−δ

ẋT (s)T̄ ẋ(s)ds,

where Ȳl (l = 1, 2, 3, 4, 5, 6) are matrices of appropriate dimensions.
We let
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Jk =
∫ tk+1+τk+1

tk+τk

(
zT (t)z(t)− γ2wT (t)w(t)

)
dt

=
∫ tk+1+τk+1

tk+τk

(
zT (t)z(t)− γ2wT (t)w(t) + V̇ (t)

)
dt− V (t)|tk+1+τk+1

tk+τk
, (7.36)

and

J = lim
N→∞

N∑
k=0

Jk

= lim
N→∞

N∑
k=0

∫ tk+1+τk+1

tk+τk

(
zT (t)z(t)− γ2wT (t)w(t)

)
dt

=
∫ ∞

t0

(
zT (t)z(t)− γ2wT (t)w(t) + V̇ (t)

)
dt− V (t)|∞t0 . (7.37)

Similar to the proof of Theorem 7.5, (7.36) becomes

Jk ≤
∫ tk+1+τk+1

tk+τk

[ r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t))
(
ΓT (t)Ξ

′
ijΓ (t)

+ δΓT (t)Ỹ T̄−1Ỹ TΓ (t)
)]

dt− V (t)
∣∣∣tk+1+τk+1

tk+τk

, (7.38)

where

Ξ
′
ij =

⎡
⎢⎢⎢⎢⎣
Φ̄1,1 Φ̄1,2 Φ̄1,3 Φ̄1,4 Φ̄1,5

∗ Φ̄2,2 Φ̄2,3 Φ̄2,4 Φ̄2,5

∗ ∗ Φ̄3,3 Φ̄3,4 0
∗ ∗ ∗ Φ̄4,4 Φ̄4,5

∗ ∗ ∗ ∗ Φ̄5,5

⎤
⎥⎥⎥⎥⎦ ,

Φ̄1,1 = P2 + Y1 + Y T
1 − Y4Āi − ĀT

i Y T
4 + DT

i Di,
Φ̄1,2 = P1 + Y T

3 + Y4 − ĀT
i Y T

6 ,
Φ̄1,3 = −Y4Ādi

,
Φ̄1,4 = −Y1 + Y T

2 − Y4B̄i(Kj + ΔKj)− ĀT
i Y T

5 + DT
i Ei(Kj + ΔKj),

Φ̄1,5 = −Ȳ4Ci,
Φ̄2,2 = δT + Y6 + Y T

6 ,
Φ̄2,3 = −Y6Ādi

,
Φ̄2,4 = −Y3 + Y T

5 − Y6B̄i(Kj + ΔKj),
Φ̄2,5 = −Ȳ6Ci,
Φ̄3,3 = −P2,
Φ̄3,4 = −ĀT

di
Y T

5 ,
Φ̄4,4 = −Y2 − Y T

2 − Y5B̄i(Kj + ΔKj)− (Kj + ΔKj)T B̄T
i Y T

5

+(Kj + ΔKj)TET
i Ei(Kj + ΔKj),

Φ̄4,5 = −Ȳ5Ci,
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Φ̄5,5 = −γ2I,
Ỹ T = [Ȳ T

1 Ȳ T
3 0 Ȳ T

2 0],
ΓT = [xT (t) ẋT (t) xT (t− τ) xT (tk) wT (t)].
According to (7.38), the following inequality can be shown,

J = lim
N→∞

N∑
k=0

Jk

≤ lim
N→∞

N∑
k=0

[ ∫ tk+1+τk+1

tk+τk

[ r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t))

× (
ΓT (t)Ξ

′
ijΓ (t) + δΓT (t)Ỹ T̄−1Ỹ TΓ (t)

)]
dt− V (t)|tk+1+τk+1

tk+τk

]
. (7.39)

Combining (7.37) and (7.39), the following result is obtained,∫ ∞

t0

(
zT (t)z(t)− γ2wT (t)w(t) + V̇ (t)

)
dt ≤

lim
N→∞

N∑
k=0

∫ tk+1+τk+1

tk+τk

[ r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(t))ΓT (t)(Ξ
′
ij +δỸ T̄−1Ỹ T )Γ (t)

]
dt.

(7.40)

It is explicit that zT (t)z(t) − γ2wT (t)w(t) + V (∞) − V (t0) ≤ 0 if Ξ
′
ij +

δỸ T̄−1Ỹ T < 0 for any nonzero Γ (t). According to the zero initial condition,
we know that the H∞ performance index is satisfied. According to the Schur
complement [2], the conditions in Theorem 7.6 can be obtained and the proof
is completed. �

7.5 Simulation Results

In this section, an example is presented to show the validity of our control
scheme. We apply the above method to design a robust H∞ networked con-
troller for the following nonlinear systems.

Example 7.3. Consider the following nonlinear system proposed in [6].
The nonlinear system with time delay can be expressed by the following

T–S fuzzy model,

Rule (1) IF x2(t) is N11, THEN ẋ(t) = (A1 + ΔA1)x(t)
+ Ad1x(t− τ) + B1u(t) + C1w(t);

z(t) = D1x(t) + E1u(t);
Rule (2) IF x2(t) is N12, THEN ẋ(t) = (A2 + ΔA2)x(t)

+ Ad2x(t− τ) + B2u(t) + C1w(t);
z(t) = D2x(t) + E2u(t);
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where x(t) =
[
x1(t) x2(t)

]T , N11(x2(t)) = 1 − x2
2(t)/2.25 and N12(x2(t)) =

1−N11(x2(t)) = x2
2(t)/2.25.

Similar to [6], we have

A1 =
[−0.1125 −0.02

1 0

]
, Ad1 =

[−0.0125 −0.005
0 0

]
,

A2 =
[−0.1125 −1.527

1 0

]
, Ad2 =

[−0.0125 −0.23
0 0

]
,

ΔA1 = ΔA2 =
[−0.1125

0

]
F(t)

[
1 0

]
, ΔK1 = ΔK2 =

[
0.1 0.1

]
F(t)× 0.1,

B1 = B2 =
[
1 0

]T , C1 = C2 =
[
0.01 0

]T , D1 = D2 =
[
0 1

]
,

E1 = E2 = 0, ΔAdi
= 0, ΔBi = 0, F(t) = sin(t), w(t) = 0.1 sin(t)e−0.1t.

Next, we select

Ȳ4 =
[−12.3 −4.3
−3.8 −6.3

]
, Ȳ5 =

[−3.4 −4.3
−3.0 −3.6

]
, Ȳ6 =

[−4.7 −3.7
−3.3 −3.7

]
,

ε = 1, γ = 0.65, δ = 0.15.
Applying Theorem 7.6, the feasible solutions to (7.35) are given as follows:

P̄1 =
[

13.2898 9.6762
9.6762 13.4112

]
, P̄2 =

[
1.2242 0.5533
0.5533 1.0490

]
,

T̄ =
[

11.7451 4.9364
4.9364 6.4083

]
, Ȳ1 =

[−78.3072 −32.9036
−32.9034 −42.7124

]
,

Ȳ2 =
[

78.3042 32.9059
32.9039 42.7126

]
, Ȳ3 =

[
0.0018 −0.0004
0.0037 −0.0012

]
,

K1 =
[−1.7797 −0.5432

]
, K2 =

[−3.1463 0.0921
]
.
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Fig. 7.5. Response of state x in Case I (τ = 0.5, ts = 0.05, τD ≤ 0.03)
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Fig. 7.6. Response of state x in Case II (τ = 1, ts = 0.1, τD ≤ 0.01)
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Fig. 7.7. Response of state x in Case III (τ = 3, ts = 0.1, τD ≤ 0.01)

Next, under the same initial value ϕ(t) = (0.5 − 1)T for t ∈ [−0.5, 0], we
show the results with different network conditions.
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Case I: Sampling period ts = 0.05, network-induced delay τD ≤ 0.03 and
system state delay time τ = 0.5 are given according to system demand.

Fig. 7.5 presents the simulation result for the proposed robust H∞ net-
worked control method with uncertain condition. The trajectory of x is shown
in Fig. 7.5. From the method presented, we know that the state feedback con-
troller is effective when the sum of the sampling period and network-induced
delay is less than δ. In this example, ts = 0.05 and τD ≤ 0.03, the above
condition is satisfied. When t → ∞, the state of this system can be robustly
stabilized.

Case II: Sampling period ts = 0.1, network-induced delay τD ≤ 0.01 and
system state delay time τ = 1 are given according to system demand.

The trajectory of x is shown in Fig. 7.6. In this example, ts = 0.1 and
τD ≤ 0.01, the condition is satisfied. When t → ∞, the state of this system
can be robustly stabilized.

Case III: Sampling period ts = 0.1, network-induced delay τD ≤ 0.01 and
system state delay time τ = 3 are given according to system demand.

The trajectory of x is shown in Fig. 7.7. In this example, ts = 0.1 and
τD ≤ 0.01, the condition is satisfied. When t → ∞, the state of this system
can be robustly stabilized.

It is very explicit that the uncertain fuzzy system is robustly stable with
H∞ performance after considering network action. A satisfactory result can
be obtained. �

7.6 Conclusions

In this chapter, we propose the GCNC method and robust H∞ networked
control method for T–S fuzzy systems with time delays, respectively. NCS
theory is used to design system controller. Both network-induced delay and
packet dropout are addressed in a uniform framework. Simulation results show
the validity of the control schemes presented.
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Abstract. A discrete-time jump fuzzy system is proposed in this chapter
for the modeling and control of a class of nonlinear networked control sys-
tems (NCS) with random but bounded communication delays and packets
dropout. Above all, a guaranteed cost control with state feedback is devel-
oped by constructing a sub-optimal performance controller for the discrete-
time jump fuzzy systems in such a way that a piecewise quadratic Lyapunov
function (PQLF) can be used to establish the global stability of the result-
ing closed-loop fuzzy control system. A homotopy-based iterative algorithm
solving for linear matrix inequality (LMI) is developed to get the feedback
gains. When not all states are available, an output feedback controller is de-
signed. For the NCS based on the mixed networks, a neuro-fuzzy controller is
develped, which is composed of three parts: a guaranteed cost state-feedback
controller, an adaptive neuro-fuzzy inference system (ANFIS) predictor and a
fuzzy controller. The ANFIS predictor is used to improve the performance of
the NCS when network delay is longer. Simulation examples are carried out
to show the effectiveness of the proposed approaches.

Keywords. Discrete-time jump fuzzy systems, guaranteed cost control, LMI,
Markovian jumping parameters, networked control systems.

8.1 Introduction

Over the past five years, networked control systems (NCSs) with feedback
loops closed through networks, have received considerable attention in the
literature, as illustrated by recent articles [1, 7, 8, 12, 14, 15, 17, 21, 23, 24,
27, 29], due to the enormous advantages, such as low cost, reduced power,
simple maintenance and wide applications to novel teleoperating areas.
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8.1.1 Fundamental Issues in NCS

An NCS exhibits issues which traditionally have not been taken into account
in control system design because control loops are closed through a real-time
network. Regardless of the type of network used, these special issues degrade
the system dynamic performance and are a source of potential instability. So
NCS issues should be investigated.

(i) A network-induced delay occurs while exchanging data among devices
connected to the shared medium. The sensor data or control signal arrive
at the controller or actuator of the NCS randomly due to network-induced
delays.

(ii) The node of the network may discard some of the received packets if it is
overloaded. Packets dropout renders the NCS data incomplete.

Compared with traditional control systems, an NCS does not possess data
with two different characteristics, namely fixity and integrality. As a result,
network delay and packets dropout should be considered simultaneously rather
than separately when an NCS is modeled. Most researchers regarded an NCS
as a time-delay control system or control system with packet dropout [1, 7, 12,
15, 29]. In addition, most existing literature reports consider only stabilization
of linear NCSs whereas nonlinear NCSs have received little attention [1, 8].
Therefore, advanced approaches for nonlinear NCSs are required.

8.1.2 Previous Work

Usually, distributed linear feedback control systems with random network in-
duced delay are modeled as Markovian jump linear control systems [8, 17, 21,
23], in which random variation of system delays corresponds to randomly vary-
ing structure of the state-representation. When the Markovian jump system
changes abruptly from one mode to another [6, 16, 19, 22, 23, 28], the switch-
ing between modes is governed by a Markov process with discrete and finite
state space. Markovian jump systems have been studied extensively because
jumping systems have been a subject of great practical importance.

Fuzzy systems have been used in recent years for the control of nonlin-
ear processes [5, 10, 11, 18, 20]. Fuzzy system theory enables us to utilize
qualitative, linguistic information about a highly complex nonlinear system
to construct a mathematical model. And a fuzzy linear model can be used
to approximate global behaviors of a highly complex nonlinear system. Local
dynamics in different state space regions are represented by local linear sys-
tems in this fuzzy linear model. The overall model of the system is obtained by
“blending” these linear models through nonlinear fuzzy membership functions.
Unlike conventional modeling, which uses a single model to describe the global
behavior of a system, fuzzy modeling is essentially a multi-model approach
in which simple submodels (a set of linear models) are combined to describe
the global behavior of the system. From the middle of the 1980s, there have
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appeared a number of analysis/synthesis problems for Takagi–Sugeno (T–S)
fuzzy systems [18]. Based on the T–S fuzzy systems, Palm and Driankov [16],
Choi and Park [6], and Tanaka [19] introduced new switching fuzzy systems
for more complicated nonlinear systems.

Motivated by these approaches, a discrete-time jump fuzzy system is pro-
posed to model NCS with random but bounded delay and packet dropout in
this chapter. Then new stability theorems and new controller design methods
are developed for discrete-time jump fuzzy systems. The chapter is organized
as follows. The discrete-time jump fuzzy system and the modeling of NCS are
proposed in Section 8.2. In Section 8.3, the LMI-based design of a guaranteed
cost state feedback fuzzy controller is presented. The fuzzy output feedback
controller is developed in Section 8.4. The neuro-fuzzy controller is provided
in Section 8.5. Finally, Section 8.6 summarizes some conclusions.

In this chapter, Z, Rn and Rm×n denote, respectively, the set of integer
numbers, the n-dimensional Euclidean space and the set of all m × n real
matrices. As usual, P > 0 (�, <, �, respectively) will denote that the matrix
P is symmetric and positive definite (positive semi-definite, negative definite,
negative semi-definite). In represents n × n identity matrix and diag{· · ·}
represents block diagonal matrix. The symmetric items in symmetric matrices
are represented by “ ∗ ”. E[·] stands for the mathematical expectation.

8.2 Modeling NCS

The general NCS configuration is illustrated in Fig. 8.1, which is composed
of a controller and a remote system containing a physical plant, sensors and
actuators. The controller and the plant are physically located at different
locations and are directly linked by a data network in order to perform remote
closed-loop control. Most networked control methodologies use the discrete-
time formulation [22].

Actuator Plant Sensor

Controller

Random Delay 

and/or

Packet Loss

Random Delay 

and/or

Packet Loss

x(k)

y(k)

u(k)

Fig. 8.1. The general NCS configuration
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8.2.1 Markov Characteristics of NCS

Suppose that r(k) is the network induced delay at time k with 0 � r(k) �
d <∞, and d is the finite delay bound. When the data is transmitted in turn
from sensor to controller or from controller to actuator through the network,
the transition probability of r(k + 1) is determined only by r(k) and not by
r(0), r(1), . . . , r(k−1) or the time at which it reached the present state. Hence
{r(k), k ∈ Z} is a homogeneous Markov chain. The transition probability is
defined as follows:

prij = Prob{r(k + 1) = j|r(k) = i},
pri = Prob(r(k) = i), (8.1)
i, j ∈ S = {0, 1, . . . , d}.

Here prij � 0 for i, j ∈ S, and

d∑
j=0

prij = 1.

In real-time control systems, the newest data is the best data [27]. The
assumption here means that the controller will always use the most recent
data. That is, the data at step k is available for feedback when there is no
new information coming in at step k+1 (data could be lost or there is a longer
delay). So in the model of the NCS, the delay r(k) can increase at most by 1
each step [17]. We develop a new controller for the set S denoting the possible
jump state. In this case, we have

Prob{r(k + 1) > r(k) + 1} = 0. (8.2)

Hence the structured transition probability matrix Pr is

Pr =

⎡
⎢⎢⎢⎢⎢⎢⎣

pr00 pr01 0 0 · · · 0
pr10 pr11 pr12 0 · · · 0

...
...

...
...

. . .
...

...
...

...
...

... prd−1,d

prd0 prd1 prd2 prd3 · · · prd,d

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(8.3)

with 0 � prij � 1 and
d∑

j=0

prij = 1.

Each row represents the transition probabilities from a fixed state to all
states. The diagonal elements are the probabilities of data coming in sequence
with equal delays. The elements above the diagonal indicate that data en-
counter longer delays, and the elements below the diagonal describe packet
dropout.
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8.2.2 Discrete-time Jump Fuzzy System

Many nonlinear dynamic systems can be represented by T–S fuzzy models. In
fact, it is proved that T–S fuzzy models are universal approximators. So we
shall introduce a discrete-time jump fuzzy system to model a class of nonlinear
NCSs such as:

xk+1 = fr(k)(xk, uk), (8.4)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector. Here fr(k) is
a local fuzzy function. The models in two-level forms are inferred as follows:

IF r(k) = i

THEN local plant rule l :
IF zk,1 is Mil,1 and · · · and zk,p is Mil,p, (8.5)
THEN xk+1 = Ailxk + Biluk,

x0 = x(0), l = 1, . . . , t(i).

Here, zk,1, . . . , zk,p are the local premise variables, Mil,1, . . . ,Mil,p are the local
fuzzy sets, t(i) is the number of IF-THEN rules when r(k) = i, {r(k), k ∈ Z}
is a discrete-time homogeneous Markov chain taking values in a finite set
S = 0, 1, . . . , d, with the transition probability from mode i at time k to mode
j at time k + 1, i, j ∈ S, k ∈ Z.

By the following local fuzzy weighting functions hil(zk), which are deter-
mined by a local premise variable vector zk = [zk,1 zk,2 . . . zk,p]T , the final
representation of the discrete-time jump fuzzy system is as follows:

xk+1 =
t(i)∑
l=1

hil(zk){Ailxk + Biluk}, (8.6)

where

hil(zk) =

p∏
j=1

Mil,j(zk,j)

t(i)∑
l=1

p∏
j=1

Mil,j(zk,j)

, (8.7)

and Mil,j(zk,j) is the grade of membership of zk,j in Mil,j .
To simplify the presentation, the discrete-time jump fuzzy system (8.5)

can be represented as follows:

xk+1 = Ai(Hi(zk))xk + Bi(Hi(zk))uk, (8.8)

where

[Ai(Hi(zk)) Bi(Hi(zk))]
	
=

t(i)∑
l=1

hil(zk)[Ail Bil]. (8.9)
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8.3 State-feedback Controller Design

8.3.1 The Closed-loop Model of an NCS

According to the direction of data transfers, network delays and packets
dropout in the NCS can be categorized as sensor-to-controller and controller-
to-actuator. When the control or sensor data travel across one type of network,
the data has the same transmission characteristic. So the simple NCS config-
uration in which the network exists only between the sensors and controller
is illustrated in Fig. 8.2.

When r(k) = i, the mode-dependent jump state feedback control law is:

uk = Ki(Hi(zk))xk−i, (8.10)

where

Ki(Hi(zk)) =
t(i)∑
l=1

hil(zk)Kil.

If we augment the state variable

Xk = [xT
k xT

k−1 · · · xT
k−d]

T , (8.11)

where Xk ∈ R(d+1)n, then the closed-loop system is:

Xk+1 =
(
Ãi (Hi (zk)) + B̃i (Hi (zk))Ki (Hi (zk)) G̃r(k)

)
Xk,

(8.12)
X0 = [xT

0 xT
−1 · · · xT

−d]
T ,

where

x(k)u(k)

Fig. 8.2. The simple NCS configuration
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Ãi(Hi(zk)) =

⎡
⎢⎢⎢⎢⎢⎣
Ai(Hi(zk)) 0 · · · 0 0

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦ ,

B̃i(Hi(zk)) =

⎡
⎢⎢⎢⎢⎢⎣
Bi(Hi(zk))

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

G̃r(k) =
[
0 · · · 0 I 0 · · · 0

]
,

and G̃r(k) has all elements zero except for the r(k)th block, which is an
identity matrix. Equation (8.12) corresponds to a discrete-time jump fuzzy
system.

8.3.2 Guaranteed Cost Controller Design

Now we will consider a guaranteed cost controller. For the performance cri-
terion, an upper bound of LQ cost associated with states and inputs in the
global systems called guaranteed cost is described as follows:

min max
hi(zk)∈H

E
{ ∞∑

k=0

(XT
k Qr(k)Xk + uT

k Rr(k)uk)

}
, (8.13)

where Qr(k) > 0, Rr(k) > 0, and H is defined as a set of all possible fuzzy
weighting functions. In this chapter, the LQ cost is a function of the grades
hi(zk).

Definition 1.1 of [3] is extended, and we have the following definitions.

Definition 8.1. For System (8.6) with uk ≡ 0 and r(k) = i ∈ S, the equi-
librium point 0 is said to be stochastically stable, if for every initial state
(X0, r(0)), there exists a finite W > 0 such that the following holds:

E
{ ∞∑

k=0

‖Xk(X0, r(0))‖2
∣∣∣ X0, r(0)

}
< XT

0 WX0. (8.14)

�

Lemma 8.1. The closed-loop system in (8.12) is stochastically stable if and
only if there exists a set of symmetric matrices Pi > 0, i ∈ S satisfying the
following coupled matrix inequalities:
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Li =
d∑

j=0

prij [Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)]TPj

(8.15)× [Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)]− Pi < 0.

Proof. Sufficiency. For the closed-loop system in (8.6), consider piece-
wise quadratic Lyapunov stability with the following PQLF candidate V (Xk)
mapping from Rn to R:

V (Xk, r(k) = i) = V (Xk, i) = XT
k PiXk > 0. (8.16)

The weak infinitesimal operator ÃV (X, i) [2, 4] of the stochastic process
(X, i) is defined by:

ÃV (X, i) = E{V (Xk+1, r(k + 1)) |Xk, r(k) = i} − V (Xk, i)

= XT
k

{
[Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)]T

×
[ d∑

j=0

prijPj

] [
Ãi(Hi(zk)) + B̃i(Hi(zk)) (8.17)

× Ki(Hi(zk))G̃r(k)

]
−Pi

}
Xk.

Thus, if Li < 0, then:

ÃV (X, i) = E{V (Xk+1, r(k + 1)) |Xk, r(k) = i}
− V (Xk, i) � −λmin(Li)XT

k Xk � −βXT
k Xk (8.18)

=− β‖Xk‖2,

where
β = inf{λmin(−Li), i ∈ S} > 0.

From (8.18), we can see that for any T � 1

E{V (XT+1, r(T + 1))} − E{V (X0, r(0))} � −βE
{

T∑
t=0

‖Xt‖2
}

.

Then,

E
{

T∑
t=0

‖Xt‖2
}

� 1
β

(E{V (X0, r(0))} − E{V (XT+1, r(T + 1))})

� 1
β
E{V (X0, r(0))}.
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From Definition 8.1, the stochastic stability is obtained.
Necessity. Let us assume that the closed-loop system in (8.18) is stochas-

tically stable. That is, we have

E
{ ∞∑

k=0

‖Xk(X0, r(0))‖2 |X0, r(0)

}
< XT

0 WX0. (8.19)

Consider the following function:

XT
t P̃T−t,r(t)Xt

	
= E

{
T∑

k=t

XT
k Or(k)Xk |Xt, r(t)

}
, (8.20)

with Or(k) > 0. Assume that Xk �= 0. Since Or(k) > 0, as T increases, either
XT

t P̃T−t,r(t)Xt is monotonically increasing or it increases monotonically until

E {XT
k Or(k)Xk |Xk, r(k)

}
= 0

for all k � k1 � t. It is shown in (8.19) that XT
t P̃T−t,r(t)Xt is bounded above,

and thus, its limit is given by

XT
t PiXt

	
= lim

T→∞
XT

t P̃T−t,r(t)Xt

(8.21)
	
= lim

T→∞
E
{

T∑
k=t

XT
k Or(k)Xk |Xt, r(t) = i

}
.

Since this is valid for any Xt, we have

Pi = lim
T→∞

P̃T−t,r(t). (8.22)

According to (8.21), Pi > 0 since Or(k) > 0. We get

E
{
XT

t P̃T−t,r(t)Xt −XT
t+1P̃T−t−1,r(t+1)Xt+1

∣∣∣Xt, r(t) = i
}

(8.23)
= XT

t OiXt.

Note that:

E
{
XT

t+1P̃T−t−1,r(t+1)Xt+1

∣∣∣Xt, r(t) = i
}

= XT
t

d∑
j=0

prij

(
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

)T

(8.24)

× P̃T−t−1,j

(
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

)
Xt.

This, together with (8.23), implies that for any Xt,
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XT
t

⎡
⎣P̃T−t,r(t) −

d∑
j=0

prij

(
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

)T

× P̃T−t−1,j

(
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

)]
Xt

= XT
t OiXt.

Letting T →∞ and noticing that (8.22) and Oi > 0, we obtain:

Pi −
d∑

j=0

prij

[
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

]T

× Pj

[
Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)

]
> 0.

�

Lemma 8.2. The closed-loop jump fuzzy system(8.12) is stochastically stable
in the large and the cost (8.13) will be bounded by xT

0 Pix0 for any nonzero
initial state x0 ∈ Ri, if there exist Pi > 0, i ∈ S, and Ki(Hi(zk)) satisfying
the following conditions:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̄i ∗ · · · ∗ ∗ ∗⎛
⎜⎜⎝

Ãi (Hi (zk)) P̄i

+B̃i (Hi (zk))
×Ki (Hi (zk))
×G̃r(k)P̄i

⎞
⎟⎟⎠
(− (pri0)

−1

×P̄0

)
· · · 0 0 0

...
...

. . .
...

...
...⎛

⎜⎜⎝
Ãi (Hi (zk)) P̄i

+B̃i (Hi (zk))
×Ki (Hi (zk))
×G̃r(k)P̄i

⎞
⎟⎟⎠ 0 · · ·

(− (prid)
−1

×P̄d

)
0 0

P̄i 0 · · · 0 −Q−1
i 0(

Ki (Hi (zk))
×G̃r(k)P̄i

)
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (8.25)

Furthermore, a sub-optimal guaranteed cost controller can be obtained via
the following semi-definite programming:

Minimize γ subject to (8.25) and
[
γ xT

0

x0 P̄i

]
� 0. (8.26)

Proof. Consider the cost (8.13) associated with states as follows:
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min max
hi(zk)∈H

∞∑
k=0

{
XT

k QiXk + XT
k (Ki(Hi(zk))G̃r(k))T

(8.27)
×RiKi (Hi (zk)) G̃r(k)Xk

}
.

Then, the closed-loop system is stable via the guaranteed cost controller, if
there exists positive-definite symmetric Pi and Pj such that for all Xk and
i, j ∈ S, the following condition holds:

ÃV (X, i)XT
k QiXk+XT

k

(
Ki(Hi(zk))G̃r(k)

)T

(8.28)
×RiKi(Hi(zk))G̃r(k)Xk < 0.

We obtain:

[ABK]T
d∑

j=0

prijPj × [ABK]− Pi + Qi

+ (Ki(Hi(zk))G̃r(k))TRiKi(Hi(zk))G̃r(k)Xk < 0,

where
ABK = Ãi(Hi(zk)) + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k).

Using Schur complements, we have the following matrix inequality:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pi ∗ · · · ∗ ∗ ∗
ABK −(pri0P0)−1 0 0 0

...
...

. . .
...

...
...

ABK 0 · · · −(pridPd)−1 0 0
In 0 · · · 0 −Q−1

i 0(
Ki(Hi(zk))
×G̃r(k)

)
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (8.29)

The left-hand side of the inequality (8.29) can be pre- and post-multiplied by
JT and J , respectively, where

J = blockdiag
{
P−1

i , In, In, Im

}
,

which yields the following:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P−1
i ∗ · · · ∗ ∗ ∗

ABKP −(pri0P0)−1 · · · 0 0 0
...

...
. . .

...
...

...
ABKP 0 · · · −(pridPd)−1 0 0
P−1

i 0 · · · 0 −Q−1
i 0(

Ki (Hi (zk))
×G̃r(k)P

−1
i

)
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (8.30)
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with

ABKP = Ãi(Hi(zk))P−1
i + B̃i(Hi(zk))Ki(Hi(zk))G̃r(k)P

−1
i .

Let P̄i
	
= Pi

−1. We obtain:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̄i ∗ · · · ∗ ∗ ∗⎛
⎜⎜⎝

Ãi (Hi (zk)) P̄i

+B̃i (Hi (zk))
×Ki (Hi (zk))
×G̃r(k)P̄i

⎞
⎟⎟⎠ − (pri0)

−1
P̄0 · · · 0 0 0

...
...

. . .
...

...
...⎛

⎜⎜⎝
Ãi (Hi (zk)) P̄i

+B̃i (Hi (zk))
×Ki (Hi (zk))
×G̃r(k)P̄i

⎞
⎟⎟⎠ 0 · · · − (prid)

−1
P̄d 0 0

P̄i 0 · · · 0 −Q−1
i 0(

Ki (Hi (zk))
×G̃r(k)P̄i

)
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

(8.31)
So, if the condition (8.25), P̄i > 0, Pj > 0 hold for all i, j ∈ S, then

ÃV (X, i) < 0 at xk �= 0.

Owing to continuity, there exists Mi > 0 such that

ÃV (X, i)−Mi < 0.

Based on Lemma 8.1, the closed-loop jump fuzzy system is stochastically
stable.

When the condition (8.25) holds, the cost (8.13) will be bounded for any
nonzero initial state X0 ∈ Ri:

max
hl(zk)∈H

∞∑
k=0

{
XT

k QiXk + uT
k Riuk

}
< XT

0 PiX0.

Since any feasible solutions γ, P̄i, Pj , and Ki(Hi(zk)) yielding (8.25) will also
satisfy

max
hl(zk)∈H

∞∑
k=0

{XT
k QiXk + uT

k Riuk} < XT
0 PiX0 ≤ γ,

for any hl and nonzero X0 ∈ Rd+1
i , we can use (8.26) to minimize XT

0 PiX0

for known nonzero initial states. The proof is completed. �
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8.3.3 Homotopy Algorithm

The design problem to determine the state feedback gains Ki for (8.26) can
be defined as follows: Find P with the constraints (8.25) and Ki such that
(8.26) are satisfied.

However, in general, the inequalities (8.25) cannot be transformed equiva-
lently to LMIs and we will utilize the homotopy method [13] to solve it in an
iterative manner.

The homotopy algorithm uses a continuous deformation to embed difficult
problems into a family of related problems. As a result, once the solution
to an “easy to solve” problem in this family is obtained, a continuous path
may be followed in solution space to obtain the desired solution to the original
problem. To construct a homotopy path, we introduce a real number λ varying
from 0 to 1, and define:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̄i(
Ãi (Hi (zk)) P̄i + B̃i (Hi (zk)) ((1− λ)K0 + λKi (Hi (zk))) G̃r(k)P̄i

)
...(

Ãi (Hi (zk)) P̄i + B̃i (Hi (zk)) ((1− λ)K0 + λKi (Hi (zk))) G̃r(k)P̄i

)
P̄i

((1− λ)K0 + λKi (Hi (zk))) G̃r(k)P̄i

∗ · · · ∗ ∗ ∗
− (pri0)

−1
P̄0 · · · 0 0 0

...
. . .

...
...

...
0 · · · − (prid)

−1 0 0
0 · · · 0 −Q−1

i 0
0 · · · 0 0 −R−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, i, j ∈ S. (8.32)

Then the homotopy algorithm can be summarized as follows:
Step 1: Initialization: set k = 0, select N and Nmax. Compute the initial

values K0 and P0.
Step 2: Set k = k + 1 and k = k/N , set P to Pk−1.

If the LMIs (8.32) are feasible,
Then denote the feasible solution as Ki

k, set Pk = Pk−1, and go to
Step 4,

Else go to Step 3.

Step 3: Set Ki to Ki
k−1,

If the LMIs (8.32) are feasible,
Then solve the minimization problem:

min trace(P ) subject to (8.32),
denote the feasible solutions as Pk, and set Ki = Ki

k−1, then
go to Step 4,
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Else set N = 2N ,
If N > Nmax, then the algorithm fails in giving feasible solution,
Else set k = 0, go to Step 2.

Step 4: If k < N , go to Step 2. If k = N , the obtained solutions Ki
k and

Pk are a set of feasible solutions of (8.25) and (8.26). �

8.4 Output Feedback Controller Synthesis of an NCS

8.4.1 Fuzzy Observer Design

Suppose not all state variables are available, the following fuzzy observer is
considered:

x̂k+1 = Ai(Hi(zk))x̂k + Bi(Hi(zk))uk

+ L̂i(Hi(zk))(ŷk − yk), (8.33)
ŷk = Ci(Hi(zk))x̂k + Di(Hi(zk))uk.

We wish to find observer gains L̂i (Hi (zk)) such that ek = x̂k − xk → 0
asymptotically as k →∞. Define the fuzzy error system as:

ek+1 = x̂k+1 − xk+1 = AcL
i (Hi (zk)) ek, (8.34)

where AcL
i (Hi(zk)) = Ai (Hi(zk)) + L̂i (Hi(zk))Ci (Hi(zk)) .

Then we come to the result for piecewise fuzzy jump observer synthesis.

Lemma 8.3. The closed-loop fuzzy error system (8.34) is stochastically sta-
ble, if for any given set of matrices Ni > 0, i ∈ S, there exists a set of matrices
Ei, Fi, and a set of symmetric matrices Xi > 0, i ∈ S, satisfying the following
matrix inequality:⎡

⎢⎢⎢⎣
−Xi + Ni ∗ · · · ∗

Oi pri0X0 − Ei − Ei
T · · · 0

...
...

. . .
...

Oi 0 . . . pridXd − Ei − Ei
T

⎤
⎥⎥⎥⎦ < 0, (8.35)

where
Oi = EiAi (Hi (zk)) + FiCi (Hi (zk)) , i ∈ S.

In addition, the observer gain for each subspace is given by:

L̂i = E−1
i Fi, i ∈ S. (8.36)
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Proof. Based on Definition 8.1 and Lemma 8.1, the closed-loop fuzzy error
system (8.34) is stochastically stable if there exists a set of symmetric positive
definite matrices Pi > 0, satisfying the following inequalities,

d∑
j=0

prij

[
AcL

i (Hi (zk))
]T

Pj ×
[
AcL

i (Hi (zk))
]− Pi + Ni < 0. (8.37)

With Fi = EiL̂i, the LMI (8.35) is equivalent to:⎡
⎢⎢⎢⎣
−Xi + Ni ∗ · · · ∗

EiA
cL
i (Hi (zk)) pri0X0 − Ei − ET

i · · · 0
...

...
. . .

...
EiA

cL
i (Hi (zk)) 0 . . . pridXd − Ei − ET

i

⎤
⎥⎥⎥⎦ < 0. (8.38)

The left-hand side of the inequality (8.38) can be pre-multiplied by T1 and
post-multiplied by T2 = TT

1 to yield the inequality (8.37), where

T1 =
[
I

(
AcL

i (Hi(zk))
)T · · · (AcL

i (Hi (zk))
)T︸ ︷︷ ︸

d+1

]
.

Thus, LMI (8.35) implies the inequality (8.37). It can be concluded that
the fuzzy error system (8.34) is stochastically stable. �

8.4.2 Output Feedback Controller Design

The output feedback fuzzy controller design presented above with sub-optimal
guaranteed cost performance is based on the sub-optimal state feedback fuzzy
controller and fuzzy observer in each subspace. When r(k) = i, the observer
equation is defined in (8.33) and the output feedback jump fuzzy control law
is:

uk = K̂i (Hi (zk)) x̂k−i, (8.39)

where

K̂i (Hi (zk)) =
t(i)∑
l=1

hil (zk) K̂il.

If we augment the variable as

˜̂xk =
[
x̂T

k x̂T
k−1 · · · x̂T

k−d

]T
, ˜̂x (k) ∈(d+1)n,

(8.40)
ẽk =

[
eT

k eT
k−1 · · · eT

k−d

]T
,

then the closed-loop system becomes
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˜̂xk+1 =
(
Ãi (Hi (zk)) + B̃i (Hi (zk)) K̂i (Hi (zk)) G̃r(k)

)
˜̂xk

+ L̂i (Hi (zk)) C̃i (Hi (zk)) ẽk, (8.41)

ẽk+1 =
(
Ãi (Hi (zk)) + L̂i (Hi (zk)) C̃i (Hi (zk))

)
ẽk,

where

C̃i (Hi (zk)) =
[
Ci (Hi (zk)) 0 · · · 0

]
,

L̃i (Hi (zk)) =

⎡
⎢⎢⎢⎢⎢⎣
Li (Hi (zk))

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦.

Here for simplicity, the closed-loop output feedback jump fuzzy system
dynamics can be described by

x̄k+1 = Āi (Hi (zk)) x̄k (8.42)

where

x̄k =
[˜̂xk ẽk

]T
,

Āi (Hi (zk)) =

[
ÃCK

i L̂i (Hi (zk)) C̃i (Hi (zk))

0 Ãi (Hi (zk)) + L̂i (Hi (zk)) C̃i (Hi (zk))

]
,

ÃCK
i = Ãi (Hi (zk)) + B̃i (Hi (zk)) K̂i (Hi (zk)) G̃r(k).

Then the output feedback fuzzy controller is obtained.

Lemma 8.4. The closed-loop output feedback jump fuzzy system (8.39) is
stochastically stable if for any given set of symmetric matrices Wi > 0, i ∈ S,
there exists a set of symmetric matrices P̃i > 0, i ∈ S satisfying the following
matrix inequality:

d∑
j=0

prijĀ
T
i (Hi (zk)) P̃jĀi (Hi (zk))− P̃i + Wi < 0. (8.43)

Proof. The result directly follows from Lemma 8.1. �

Lemma 8.4 is only useful for checking the closed-loop stability of the
discrete-time jump fuzzy control system when the output feedback fuzzy con-
troller is already available. Note that the matrix inequality (8.43) contains
product terms involving K̂i, L̂i, P̃i and Wi. Nonlinear matrix inequality (NMI)
technique is required to generate the output feedback jump fuzzy controller.
Luckily, we have the following theorem by extending Theorem 5 of [25].
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Lemma 8.5. The matrix inequality (8.43) has feasible solutions if LMIs
(8.25)–(8.26) and ( 8.35)–(8.36) do.

Proof. Based on Theorem 5 of [25], we will show that if the feasible solutions
to LMIs (8.25)–(8.26) and (8.35)–(8.36) can be found then there always exists
a positive scalar α, such that:

P̃i =
[
P̄i 0
0 αXi

]
, i ∈ S, (8.44)

satisfies (8.43). And α can be obtained from the following inequality:

α

⎡
⎣ d∑

j=0

prij

(
AcL

i

)T
XiA

cL
i −Xi

⎤
⎦ <

(
Bi (Hi (zk)) K̂i (Hi (zk))

)T

×
⎡
⎣ d∑

j=0

prij

(
ACK

i

)T
P̄−1

i ACK
i −P̄−1

i

⎤
⎦−1

×
(
Bi (Hi (zk)) K̂i (Hi (zk))

)
, (8.45)

where
ACK

i = Ai (Hi (zk)) + Bi (Hi (zk)) K̂i (Hi (zk)) .

�

Based on Lemmas 8.4 and 8.5, the output feedback jump fuzzy controller
can be designed.

8.4.3 Simulation Example

To illustrate the proposed theoretical results, a numerical example is consid-
ered.

Different networks vary in network-induced delay bounds and the rate of
data loss. The induced delays and data dropout of typical networks are shown
in Figs. 8.3 and 8.4 by simulations using OPNET software.

In our example, local area network (LAN) including Ethernet, token ring,
etc., in which the induced delay is low and rate of data dropout is nearly
zero, is used as the communication network in the NCS. With the purpose
of defining v(r(k)), NCS experiments with fixed constant delays bounded by
the LAN delay are presented. If the low delay is considered, a good output
result is shown in Fig. 8.5 when delay is less than 0.001. On the contrary, if
the delay is high, the system is out of control when delay is larger than 0.007.

Based on the experiment, the states r(k) = 0, 1, 2 denote that the network
induced-delay is low, medium and high, respectively, and have the following
transition probability matrix:
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Fig. 8.3. Induced delay of typical networks
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Fig. 8.4. Data dropout rate of typical networks

Pr =

⎡
⎣0.5 0.5 0

0.3 0.6 0.1
0.3 0.6 0.1

⎤
⎦.

The delays v(r(k)) corresponding to the three states are:⎧⎪⎨
⎪⎩

v(r(k)) ∈ [0, 0.001], r (k) = 0,
v(r(k)) ∈ [0.001, 0.007], r (k) = 1,
v(r(k)) ∈ [0.007, 0.01], r (k) = 2.

Consider the discrete-time jump fuzzy system given by
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Fig. 8.5. System outputs under different fixed delays

Fig. 8.6. The local fuzzy weighting functions of the example

xk+1 =
2∑

l=1

hil (τk (r (k))) {Ailxk + Biluk},

yk+1 =
2∑

l=1

hil

(
i + pr(i−1)i

) {Cilxk + Diluk},

with

A01 =
[

0.8 0.1
−0.5 0.8

]
, A02 =

[
0.5 0.1
−0.4 0.5

]
, A11 =

[
0.7 0.1
−0.3 0.7

]
,

A12 =
[

0.5 0.1
−0.1 0.5

]
, A21 =

[
1 0.1
−0.4 1

]
, A22 =

[
0.5 0.1
−0.3 0.5

]
,

B01 =
[

0 0.1
0.2 0

]
, B02 =

[
0 −0.2

0.2 0

]
, B11 =

[
0 0.1

0.2 0

]
,
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B12 =
[

0 −0.1
0.4 0

]
, B21 =

[
0 −0.2
−0.5 0

]
, B22 =

[
0 0.3

0.2 0

]
,

C01 =
[

0 0.1
0.2 0

]
, C02 =

[
0 −0.2

0.2 0

]
, C11 =

[
0.1 0
0.2 0

]
,

C12 =
[
0.2 0
0 −0.4

]
, C21 =

[−0.2 0
0 0.3

]
, C22 =

[
0.1 0
0 0.2

]
,

D01 =
[
1 0
0 1

]
, D02 =

[
1 0.1
0 1

]
, D11 =

[−1 0
0 −1

]
,

D12 =
[−1 0.1

0 −1

]
, D21 =

[
1 0
0 1

]
, D22 =

[
1 0.12
0 1

]
,

where the local fuzzy weighting function hil(r(k)) followed the local fuzzy
weighting functions of Fig. 8.6. Figure 8.7 shows one simulation run of the
Markovian jump delays according to the given transition probability matrix.

By using mincx() in MATLAB r© LMI Toolbox, the minimal α for the
closed-loop output feedback fuzzy control system to be asymptotically stable
is 0.5438.

For the initial condition:

x0 = [3, 2]T , x1 = [2.5, 2]T , x2 = [1, 1]T ,

x̂0 = [0, 0]T , x̂1 = [1.5, 0]T , x̂2 = [1, 1]T .

The response behaviors of the closed-loop system are presented in Figs. 8.8
and 8.9 using the output feedback fuzzy controller. Fig. 8.8 shows the system
state responses and their estimates, while Fig. 8.9 shows outputs and control
variables curves and their corresponding estimates. It is shown from these
two figures that the estimated variables can converge to the original ones
asymptotically such that good system performance can be guaranteed.
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Fig. 8.7. Random delays
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Fig. 8.8. The system state responses and their estimates

0 5 10 15 20 25 30
1

0

1

U

 

 

0 5 10 15 20 25 30
1

0

1

y

 

 

0 5 10 15 20 25 30
1

0

1

Time(step)

th
e 

es
tim

at
ed

 y

 

 

u1
u2

y1
y2

y1
y2

Fig. 8.9. The output and control variables curves and their corresponding estimates

8.5 Neuro-fuzzy Controller Design

Network type has a great effect on the characteristic of NCS. Fig. 8.5 shows
the system is out of control when the delay is high. Satellite network [26] is
a typical network with longer induced delay shown in Fig. 8.10 by simulation
using OPNET software.

A new neuro-fuzzy controller is presented for the NCS based on the mixed
network including terrestrial networks and satellite networks. It is constructed
of three parts: the guaranteed cost controller, the ANFIS predictor and the
fuzzy controller, presented in Fig. 8.11.
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Fig. 8.11. The neuro-fuzzy controller of NCS
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8.5.1 Neuro-fuzzy Predictor

In this subsection, a new method is proposed to improve the performance
of the NCS by adding a predictor to estimate the plant state. The neuro-
fuzzy predictor is computationally straightforward and has shown excellent
prediction capabilities. So the decision is made to use the ANFIS [18]. The
ANFIS predictor has two inputs: system states at time k and k − d, and
produce the predicted state value at time k+d. The architecture of the ANFIS
predictor is shown in Fig. 8.12, where d is the delay bound.

In the following description, ui
k denotes the ith input of a node in the kth

layer, oi
k denotes the ith node output in layer k, and there are n input values.

The ANFIS predictor uses Gaussian functions for fuzzy sets. The reason is
that a multidimensional Gaussian membership function can easily be decom-
posed into the product of one-dimensional membership functions. With this
choice, the operation performed in this layer is

o2
ij = exp

{
−
(
u2

i −m2
ij

)
(
δ2
ij

)2
}

, i = 1, 2, j = 1, 2, . . . , m, (8.46)

where u2
i and δ2

ij are, respectively, the center and the width of the Gaussian
membership function. The ANFIS predictor uses Gaussian functions for fuzzy
sets, linear functions for the outputs, and Sugeno’s inference mechanism [16].
The parameters of the network are the mean and standard deviation of the
membership functions and the coefficients of the output linear functions. The
ANFIS predictor learning algorithm is then used to obtain these parameters.

input inputmf outputoutputmfrule

x(k)

x(k-d)

x(k+d)

Logical Operations

and

Fig. 8.12. The structure of the ANFIS predictor
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Fig. 8.13. State responses

The learning algorithm is a hybrid algorithm consisting of the gradient descent
and the least squares estimate.

8.5.2 Fuzzy Controller

The fuzzy controller has two rules:

Rule 1: IF r (k) < d, THEN uk = Ki (Hi (zk)) = xg;
Rule 2: IF r (k) = d, THEN uk = Ki (Hi (zk)) = xp.

When r (k) < d, the guaranteed cost controller controls the system. When
network delay is longer, the ANFIS predictor provides the predicted state at
time k+d. In this way, the impact of network’s longer delay can be moderated.

With the same example as in Section 8.4, better control performance of
the neuro-fuzzy controller is illustrated in Figs. 8.13 and 8.14 for state and
control inputs compared with the guaranteed cost controller.

8.6 Conclusions

In this chapter, we studied the problem of modeling and controller design for
networked control systems, where a discrete-time jump fuzzy system is devel-
oped to model networked control systems with random but bounded delays
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and packets dropout. On the basis of the assumption that all state variables of
an NCS are available, a state feedback controller is developed for the discrete-
time jump system with sub-optimal guaranteed cost performance based on a
piecewise quadratic Lyapunov function. It is shown that the state feedback
sub-optimal fuzzy controller can be obtained by solving a set of LMIs using
the homotopy approach. Because not all state variables are available in many
practical cases, an output feedback fuzzy controller is proposed, which cannot
only stabilize the system, but also meet certain desired sub-optimal system
performance criteria. The LMI technique is used to effectively minimize the
overall cost function and thus achieve the sub-optimal system. When the net-
work is in a poor condition, a novel neuro-fuzzy controller including an ANFIS
predictor is designed to deal with the problem. Finally, the effectiveness of the
proposed approaches are verified by a numerical example.
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Networked Boundary Control of Damped
Wave Equations

YangQuan Chen

Utah State University, Logan, UT 84322, USA yqchen@ece.usu.edu

Abstract. This chapter considers the boundary control of damped wave equa-
tions using a boundary measurement in a networked control system (NCS)
setting. In this networked boundary control system, the induced delays can
be lumped as the boundary measurement delay. The Smith predictor is ap-
plied to the networked boundary control problem and the instability problem
due to large delays is solved and the scheme is proved to be robust against a
small difference between the assumed delay and the actual delay. In addition,
we analyze the robustness of the time-fractional order wave equation with a
fractional order boundary controller subject to delayed boundary measure-
ment. Conditions are given to guarantee stability when the delay is small. For
large delays, again the Smith predictor is applied to solve the instability prob-
lem and the scheme is proved to be robust against a small difference between
the assumed delay and the actual delay. The analysis shows that fractional
order controllers are better than integer order controllers in the robustness
against delays in the boundary measurement.

Keywords. Boundary control, distributed parameter system, fractional order
calculus, robustness, wave equation.

9.1 Introduction

In recent years, boundary control of flexible systems has become an active re-
search area, due to the increasing demand on high precision control of many
mechanical systems, such as spacecraft with flexible attachments or robots
with flexible links, which are governed by PDEs (partial differential equations)
rather than ODEs (ordinary differential equations) [2, 3, 4, 7, 8, 18, 19, 20, 21].
In this research area, the robustness of controllers against delays is an impor-
tant topic and has been studied by many researchers [5, 6, 14, 15, 17], due to
the fact that delays are unavoidable in practical engineering. All the available
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publications focus on the analysis of systems against a small delay, i.e., under
what conditions a very small delay will not cause instability problems and
can therefore be neglected. An equally important and very practical issue is,
how to synthesize a boundary controller when the delay is large and makes
the system unstable. To the best of our knowledge, publications studying this
problem are very few. In this chapter, we solve the instability problem caused
by large delays by applying the Smith predictor to the boundary control of
the damped wave equation. The control scheme is shown to be stable and
robust against a small difference between the actual delay and the assumed
delay.

Fractional diffusion and wave equations are obtained from the classical
diffusion and wave equations by replacing the first and second order time
derivative term by a fractional derivative of an order satisfying 0 < α ≤ 1 and
1 < α ≤ 2, respectively. Since many of the universal phenomena can be mod-
eled accurately using the fractional diffusion and wave equations (see [22]),
there has been growing interest in investigating the solutions and properties of
these evolution equations. Compared with the publications on control of inte-
ger order PDEs, results on control of fractional wave equations are relatively
few [10, 11, 16].

In this chapter, we will also investigate two robust stabilization problems
of the fractional wave equations subject to delayed boundary measurement.
First, under what conditions a very small delay in boundary measurement
will not cause instability problems. Second, how to stabilize the system when
the delay is large and makes the system unstable.

9.2 A Brief Introduction to the Smith Predictor

The Smith predictor was proposed by Smith in [24] and is probably the most
famous method for control of systems with time delays; see [9] and [25]. Con-
sider a typical feedback control system with a time delay in Fig. 9.1, where
C(s) is the controller and P (s)e−θs is the plant with a time delay θ.

With the presence of the time delay, the transfer function of the closed-loop
system relating the output y(s) to the reference r(s) becomes

C(s) P (s)e−θs+

-

yr

Fig. 9.1. A feedback control system with a time delay
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y(s)
r(s)

=
C(s)P (s)e−θs

1 + C(s)P (s)e−θs
. (9.1)

Obviously, the time delay θ directly changes the closed-loop poles. Usually,
the time delay reduces the stability margin of the control system, or more
seriously, destabilizes the system.

The classical configuration of a system containing a Smith predictor is
depicted in Fig. 9.2, where P̂ (s) is the assumed model of P (s) and θ̂ is the
assumed delay. The block C(s) combined with the block P̂ (s) − P̂ (s)e−θ̂s

is called “the Smith predictor”. If we assume perfect model matching, i.e.,
P̂ (s) = P (s) and θ = θ̂, the closed-loop transfer function becomes

y(s)
r(s)

=
C(s)P (s)e−θs

1 + C(s)P (s)
. (9.2)

Now, it is clear what the underlying idea of the Smith predictor is. With
perfect model matching, the time delay can be removed from the denominator
of the transfer function, making the closed-loop stability independent of the
time delay.

C(s) P (s)e−θs

P̂ (s)− P̂ (s)e−θ̂s

+ +

- -

yr

Fig. 9.2. The Smith predictor

9.3 Boundary Control of Damped Wave Equations with
Large Delays

Consider a string clamped at one end and free at the other end. We denote
the displacement of the string by u(x, t), where x ∈ [0, 1] and t ≥ 0. The
string is controlled by a boundary control force at the free end. The governing
equations are given as

utt(x, t)− uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, (9.3)

u(0, t) = 0, (9.4)

ux(1, t) = f(t), (9.5)
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where a > 0 is the damping constant and f(t) is the boundary control force
applied at the free end of the string.

It is known that the following boundary feedback controller stabilizes the
system [2],

f(t) = −kut(1, t), (9.6)

where k > 0 is the constant boundary control gain.
Now, we consider the presence of a time delay in the feedback loop, which

is shown as follows:
f(t) = −kut(1, t− θ), (9.7)

where θ is the time delay.
In [6] and [15], it was shown that if k and a satisfy

k
e2a + 1
e2a − 1

< 1, (9.8)

then the delayed feedback systems is stable for all sufficiently small delays.
In this chapter, we will solve the following problem: what if the time delay

θ is large enough to make the system unstable? We will apply the Smith
predictor to solve this problem.

Comparing Equation (9.7) with Fig. 9.2, we can see that in our case, the
plant output y is the tip end displacement u(1, t); the controller C(s) is a
derivative controller with the transfer function ks; and P (s) is the transfer
function from the control force f(t) to the undelayed displacement of the tip
end. If we assume P̂ (s) = P (s) and the time delay θ is known, the remaining
problem is how to get P (s), which is shown as follows.

Assuming zero initial conditions of u(x, 0) and ut(x, 0), take the Laplace
transform of (9.3), (9.4), and (9.5) with respect to t, the original PDE of u(x, t)
with initial and boundary conditions can be transformed into the following
ODE of U(x, s) with boundary conditions:

d2U(x, s)
dx2

− (s + a)2U(x, s) = 0, (9.9)

U(0, s) = 0, (9.10)

Ux(1, s) = F (s), (9.11)

where U(x, s) is the Laplace transform of u(x, t) and F (s) is the Laplace
transform of f(t).

Solving the ODE (9.9), we have the following solution of U(x, s) with two
arbitrary constants C1 and C2 (s can be treated as a constant in this step),

U(x, s) = C1e
−(s+a)x + C2e

(s+a)x. (9.12)

Substitute (9.12) into (9.10) and (9.11), we have the following two equa-
tions:

C1 + C2 = 0, (9.13)
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(−C1e
−(s+a) + C2e

s+a)(s + a) = F (s). (9.14)

Solving (9.13) and (9.14) simultaneously, we can obtain the exact values
of C1 and C2

C1 =
−F (s)

(s + a)(e−(s+a) + es+a)
, (9.15)

C2 =
F (s)

(s + a)(e−(s+a) + es+a)
. (9.16)

Now we have obtained the solution of U(x, s). Substituting x = 1 into
U(x, s), we obtain the following Laplace transform of the tip end displacement.

U(1, s) =
F (s)(1− e−2(s+a))

(s + a)
(
1 + e−2(s+a)

) . (9.17)

So the transfer function of the plant, which is P (s) in Fig. 9.2, is obtained
as

P (s) =
U(1, s)
F (s)

=
1− e−2(s+a)

(s + a)
(
1 + e−2(s+a)

) . (9.18)

Finally, we have the following expression for the boundary controller (the
Smith predictor), denoted as Csp(s):

Csp(s) =
ks

1 + ksP (s)(1− e−θ̂s)
. (9.19)

Notice that the controller (9.19) is physically implementable.

9.4 Stability and Robustness Analysis

In [2], the stability of the controller (9.6) was proved for the boundary control
of the damped wave equation without delays. If the assumed delay is equal to
the actual delay, the Smith predictor removes the delay term completely from
the denominator of the closed-loop transfer function. This means the stability
of the controller (9.19) is already proved.

Since the actual delay θ and the assumed delay θ̂ cannot be exactly the
same, another important issue is the robustness of the controller (9.19), i.e.,
what if an unknown small difference ε between the assumed delay and the
actual delay is introduced to the system, as shown in Fig. 9.3.

To study the robustness of the controller (9.19), we will first introduce a
theorem presented in [14, 15].

Theorem 9.1. Let H(s) be the open-loop transfer function as illustrated in
Fig. 9.4, and DH the set of all its poles. Define two closed-loop transfer func-
tions G0(s) and Gε(s) as
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C(s) P (s)e−θ̂s

e−εs

P̂ (s)− P̂ (s)e−θ̂s

+ +

- -

yr

Fig. 9.3. System with mis-matched delays

G0(s) =
H(s)

1 + H(s)
,

and

Gε(s) =
H(s)

1 + e−εsH(s)
.

Define again
C0 = {s ∈ C|�(s) > 0},

and
γ(H(s)) = lim sup

|s|→∞,s∈C0\DH

|H(s)|.

Suppose G0 is L2-stable. If γ(H) < 1, then there exists ε∗ such that Gε is
L2-stable for all ε ∈ (0, ε∗). �

The underlying idea of the above theorem is that the robustness of the
closed-loop transfer function G0(s) against a small unknown delay can be
determined by studying the open-loop transfer function H(s). Now we can
prove the robustness of the controller (9.19).

Claim. If θ̂ is chosen as the minimum value of the possible delay and k is
chosen to satisfy

k
e2a + 1
e2a − 1

≤ 1
3
, (9.20)

then the controller (9.19) is robust against a small difference ε between the
assumed delay θ̂ and the actual delay θ = θ̂ + ε.

H(s)

e−εs

+

-

yr

Fig. 9.4. Feedback system with delay
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Proof. For
H(s) = Csp(s)P (s)e−θ̂s

=
ksP (s)e−θs

1 + ksP (s)(1− e−θs)
.

Let T (s) = ksP (s). Then

|H(s)| = 1∣∣∣∣
(

1
T (s)

+ 1
)

eθ̂s − 1
∣∣∣∣
. (9.21)

Let Q(s) =
(

1
T (s)

+ 1
)

eθ̂s − 1. Then

|Q(s)| =
∣∣∣∣
(

1
T (s)

+ 1
)

eθ̂s − 1
∣∣∣∣

≥
∣∣∣∣
∣∣∣∣
(

1
T (s)

+ 1
)

eθ̂s

∣∣∣∣− 1
∣∣∣∣

≥
∣∣∣∣
∣∣∣∣ 1
T (s)

+ 1
∣∣∣∣ ∣∣eθ̂s

∣∣− 1
∣∣∣∣ . (9.22)

In [15], it was proved that

lim sup
|s|→∞,s∈C0

|T (s)| = k
e2a + 1
e2a − 1

.

So, if

k
e2a + 1
e2a − 1

≤ 1
3
,

for |s| large enough, ∣∣∣∣ 1
T (s)

+ 1
∣∣∣∣ ≥

∣∣∣∣
∣∣∣∣ 1
T (s)

∣∣∣∣− 1
∣∣∣∣ ≥ 2. (9.23)

Considering |eθ̂s| > 1, we have

|Q(s)| > 1. (9.24)

So
lim sup

|s|→∞,s∈C0

|H(s)| < 1. (9.25)

�

Remark 9.1. In Theorem 9.1, ε is positive. To satisfy this condition, θ̂ should
be chosen as the minimal value of the possible delay.

The damping constant a plays a key role in making the controllers (both
the original derivative controller ks and the Smith predictor) robust. if a =
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0, the damped wave equation becomes the conservative wave equation, the
transfer function of which is

P (s) =
1− e−2s

s(1 + e−2s)
. (9.26)

We can see that P (s) has an infinite number of poles on the imaginary axis.
In order to make γ(H(s)) < 1, controllers must cancel these poles completely,
which is impossible due to the uncertainty of the plant parameters. This means
both the original derivative controller ks and the Smith predictor are not
robust when applied to the boundary control of conservative wave equation. �

9.5 Fractional Order Case – Problem Formulation

We consider a cable made with special smart materials governed by the frac-
tional wave equation, fixed at one end, and stabilized by a boundary controller
at the other end. Omitting the mass of the cable, the system can be repre-
sented by

∂αu

∂tα
=

∂2u

∂x2
, 1 < α ≤ 2, x ∈ [0, 1], t ≥ 0 (9.27)

u(0, t) = 0, (9.28)
ux(1, t) = f(t), (9.29)
u(x, 0) = u0(x), (9.30)
ut(x, 0) = v0(x), (9.31)

where u(x, t) is the displacement of the cable at x ∈ [0, 1] and t ≥ 0, f(t) is
the boundary control force at the free end of the cable, u0(x) and v0(x) are
the initial conditions of displacement and velocity, respectively.

The control objective is to stabilize u(x, t), given the initial conditions
(9.30) and (9.31).

We adopt the following Caputo definition for fractional derivative of order
α of any function f(t), because the Laplace transform of the Caputo derivative
allows utilization of initial values of classical integer-order derivatives with
known physical interpretations [1, 23]

dαf(t)
dtα

=
1

Γ (α− n)

∫ t

0

f (n)(τ)dτ
(t− τ)α+1−n

, (9.32)

where n is an integer satisfying n − 1 < α ≤ n and Γ is Euler’s Gamma
function.

In this chapter, we study the robustness of the controllers in the following
format:

f(t) = −kdμu(1, t)
dtμ

, 0 < μ ≤ 1 (9.33)
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where k is the controller gain, μ is the order of fractional derivative of the
displacement at the free end of the cable.

Based on the definition in (9.32), the Laplace transform of the fractional
derivative is [1, 23]:

L
{

dαf

dtα

}
= sαF (s)−

n−1∑
k=0

fk(0+)sα−1−k. (9.34)

In the following, the transfer function from the boundary controller f(t)
to the tip end displacement will be derived for later use.

Assuming zero initial conditions of u(x, 0) and ut(x, 0), take the Laplace
transform of (9.27), (9.28), and (9.29) with respect to t, making use of (9.34),
the original PDE of u(x, t) with initial and boundary conditions can be trans-
formed into the following ODE of U(x, s) with boundary conditions,

d2U(x, s)
dx2

− sαU(x, s) = 0, (9.35)

U(0, s) = 0, (9.36)

Ux(1, s) = F (s), (9.37)

where U(x, s) is the Laplace transform of u(x, t) and F (s) is the Laplace
transform of f(t).

Solving the ODE (9.35), we have the following solution of U(x, s) with two
arbitrary constants C1 and C2 (s can be treated as a constant in this step),

U(x, s) = C1e
xsα/2

+ C2e
−xsα/2

. (9.38)

Substituting (9.38) into (9.36) and (9.37), we have the following two equations,

C1 + C2 = 0, (9.39)

sα/2(C1e
sα/2 − C2e

−sα/2
) = F (s). (9.40)

Solving (9.39) and (9.40) simultaneously, we can obtain the exact value of C1

and C2

C1 = −C2 =
F (s)esα/2

sα/2(e2sα/2 + 1)
. (9.41)

Now we have obtained the solution of U(x, s). Substituting x = 1 into
U(x, s) and dividing U(x, s) by F (s), we obtain the following transfer function
of the fractional wave equation P (s):

P (s) =
U(1, s)
F (s)

=
1− e−2sα/2

sα/2
(
1 + e−2sα/2

) . (9.42)



270 Y.Q. Chen

9.6 Fractional Order Case – Robustness of Boundary
Stabilization

We consider the presence of a very small time delay θ in boundary measure-
ment, shown as follows

f(t) = −ku(μ)
t (1, t− θ), (9.43)

where θ is the time delay.
The situation is also illustrated in Fig.9.1, where P (s) is the transfer func-

tion of the plant and C(s) is the Laplace transform of the controller. In our
case, P (s) is (9.42) and C(s) is

C(s) = k sμ. (9.44)

In [5, 6, 14, 15], it was shown that an arbitrarily small delay in bound-
ary measurement causes the instability problem in boundary control of wave
equations using integer order controllers f(t) = −kut(1, t). Does this problem
exist in boundary control of the fractional wave equation? Since fractional
order controllers are chosen in this chapter, will this additional tuning knob
bring us any benefits of robustness against the small delay? To answer these
questions, we will use Theorem 9.1 in Section 9.4 [14, 15].

Again, the underlying idea of the above theorem is that the robustness
of the closed-loop transfer function G0(s) against a small unknown delay can
be determined by studying the open-loop transfer function H(s). Notice that
H(s) = C(s)P (s) in our case.

Claim. If the derivative order μ of controller (9.33) and the fractional order
α in the fractional wave equation (9.27) satisfy

μ <
α

2
, (9.45)

then the system is stable for a delay θ small enough in boundary measurement.

Proof. For s ∈ C0,

|H(s)| = |C(s)P (s)| (9.46)

=

∣∣∣∣∣ ksμ(1− e−2sα/2
)

sα/2
(
1 + e−2sα/2

)
∣∣∣∣∣

=

∣∣∣∣∣ k(1− e−2sα/2
)

s(α/2−μ)
(
1 + e−2sα/2

)
∣∣∣∣∣

≤ k|1− e−2sα/2 |
|s(α/2−μ)||1 + e−2sα/2 | .

Since
α

2
> μ, |s(α/2−μ)| → ∞ for |s| → ∞.
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Since
1
2

<
α

2
< 1, for |s| large enough, |1− e−2sα/2 | is bounded and

|1− e−2sα/2 | > η > 0,

where η is a positive number.
So

lim sup
|s|→∞,s∈C0

|H(s)| = 0 < 1. �

Following the above proof, it can easily be proved that an integer order
controller f(t) = −kut(1, t) is not robust against an arbitrarily small delay.

9.7 Fractional Order Case – Compensation of Large
Delays in Boundary Measurement

In the last section, it is shown that a fractional order controller is robust
against a small delay under the condition (9.45). In this section, we investigate
the problem that the delay is large and makes the system unstable. We will
apply the Smith predictor to solve this problem.

In Section 9.2, it is shown that if the assumed delay is equal to the actual
delay, the Smith predictor removes the delay term completely from the de-
nominator of the closed-loop. However, the actual delay is not exactly known.
In this section, we will investigate what happens if an unknown small differ-
ence ε between the assumed delay and the actual delay is introduced to the
system, as shown in Fig. 9.3.

Claim. If θ̂ is chosen as the minimum value of the possible delay and μ is
chosen to satisfy (9.45), then the controller (9.19) is robust against a small
difference ε between the assumed delay θ̂ and the actual delay θ = θ̂ + ε.

Proof. For s ∈ C0,

|H(s)| =
∣∣∣∣∣ ksμP (s)e−θ̂s

1 + ksμP (s)(1− e−θ̂s)

∣∣∣∣∣
≤ k|1− e−2sα/2 ||e−θs|
|s(α/2−μ)(1 + e−2sα/2) + k(1− e−2sα/2)(1− e−θs)|

<
k|1− e−2sα/2 |∣∣|s(α/2−μ)(1 + e−2sα/2)| − k|(1− e−2sα/2)(1− e−θs)|∣∣ .

When |s| → ∞,
|s(α/2−μ)(1 + e−2sα/2

)| → ∞,

while both |1− e−2sα/2 | and |(1− e−2sα/2
)(1− e−θs)| are bounded.

So
lim sup

|s|→∞,s∈C0

|H(s)| = 0 < 1. �
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Remark 9.2. In Theorem 9.1, ε is positive. To satisfy this condition, θ̂ should
be chosen as the minimal value of the possible delay. �

9.8 Conclusions

For both integer order and fractional order cases, this chapter considers the
boundary control of damped wave equations using a boundary measurement
in a networked control system (NCS) setting. In this networked boundary
control system, the induced delays can be lumped as the boundary measure-
ment delay. The Smith predictor is applied to the networked boundary con-
trol problem and the instability problem due to large delays is solved and the
scheme is proved to be robust against a small difference between the assumed
delay and the actual delay. Our analysis shows that fractional order bound-
ary controllers are better than integer order boundary controllers in terms of
robustness against delays in the boundary measurement.

Future work includes studying the robustness of the controller against
plant modeling errors and the controller performance of the Smith predictor.
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Abstract. Collective behaviors of biological swarms have attracted significant
interest in recent years, but much attention and correlative effort has been fo-
cused on constant speed models in which all agents are assumed to move with
the same constant speed. One limitation of the constant speed models without
attraction functions is that it is quite difficult or even practically impossible
for the swarm to form large biological cluster(s) if the speed is relatively fast
or the sensory radius is small. In this chapter, we propose an adaptive veloc-
ity model with more reasonable assumptions in which every agent not only
adjusts its moving direction but also adjusts its speed based on the degree
of direction consensus among its local neighbors. It is also a nearest neighbor
rule but much easier for swarm agents to form a giant cluster or only one
cluster in the adaptive velocity model if each agent moves with a speed that
is proportional to its local direction consensus, even though the steady-state
speed is still fast. The adaptive velocity strategy also shows that attraction
actions or dominant leaders of swarms are not necessities for swarm cohesion.
Therefore, the adaptive velocity model provides a powerful mechanism for co-
ordinated motion in biological and technological multi-agent systems.

Keywords. Graph, multi-agent, power-law, swarm.

10.1 Introduction

The emergence of biological swarms is a beauty and wonder of nature [3, 23,
24]. It is common to see huge herds of animals or flocks of birds or schools
of fish moving as if they were a single living creature. These swarms often
travel in the absence of any leader/leaders or external stimuli, and agents in
these swarms usually do not share any global information. How do they form
a congregation and move? What collective behaviors and properties do they
have? In recent years efforts have been devoted to modeling and exploring the
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dynamic properties of such systems which can roughly be divided into three
approaches: Lagrangian approach [4, 9, 10, 11, 12, 17, 22], Eulerian approach
[18, 27, 28, 29], and discrete approach [2, 5, 6, 8, 13, 15, 16, 19, 25, 30].

In 1987, Reynolds introduced three heuristic rules - cohesion, separation
and alignment - to create the first computer simulated model of flocking [25].
Later on, Vicsek et al. proposed a simplified minimal model, which focused
mainly on the emergence of directional alignment in self-driven particle sys-
tems [30]. In recent years, the Vicsek model has been one of the most fre-
quently investigated swarm models using nearest neighbor rules to imitate
swarming behaviors. For example, effects of noise and scaling behavior of the
model were considered in [8]. Intermittency and clustering in self-driven par-
ticles [15] and the onset of collective motion [13] were also studied. Stability
analysis of swarms revealed the relationship between network connectivity
and the stability property [16, 19]. There are some other models that capture
the important rule of the directional alignment used in the Vicsek model. For
example, Couzin et al. showed that the alignment actions together with at-
traction/repulsion functions between neighboring agents can lead to complex
patterns of swarms and revealed the existence of major group-level behavioral
transitions [5]. Effective leadership was investigated in [6], which indicated
that information owned by a few agents can be transferred within the whole
group. Self-driven many-particle systems with general network topologies such
as the vectorial network model (VNM) were investigated in [2].

All these researchers assumed that all agents in a swarm move with the
same constant speed (i.e., absolute value of the velocity). However, we believe
that in natural swarms, it is a more reasonable assumption that agents may
not only adjust their moving directions in the swarming evolution but also
adjust their speed according to the behavior of their neighbors. Indeed, when
an agent finds itself surrounded by scattered moving agents, it may naturally
feel at a loss to follow any direction, and may hesitate to move; in this dilemma,
it is safer for the agent to move with a slower speed. On the other hand, if
a certain moving direction is dominant, the agent may take this direction
without hesitation and thus moves relatively fast. Similar analogies are often
found in human lives and politics: when several different proposals or choices
have nearly the same support or weights, individuals (or organizations) may
find themselves embarrassed to decide on and thus little progress will be made
in this situation; but when consensus is reached by dominant or all individuals,
rapid progress tends to be made immediately. Another human-scale example
is the rhythmic clapping in a concert hall after a good performance, which
is suggested to be formed by each individual who tend to adjust the natural
clapping frequency lower or higher according to his/her hearing [20], just as
biological swarms, humans sometimes tend to do what their neighbors do.

In this chapter, we propose an adaptive velocity model in which each agent
adjusts its velocity (i.e., both direction and speed) simultaneously according to
the behavior of its neighbors. The direction adjustment consideration follows
the same rule that used in the Vicsek model. To design our speed adjustment
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rule, we introduce the concept of local order parameter to measure the local
degree of direction consensus (or local polarity) among the neighbors of an
agent. At each time step, each agent will move along the average direction
of its neighbors with a speed which is taken as the maximum possible speed
scaled by a power-law function of the magnitude of its local order parameter.
The power-law exponent α ≥ 0 reflects the willingness of each agent to move
faster or slower based on the local degree of direction consensus among its
neighbors. If α = 0, then the adaptive velocity model reduces to the constant
speed Vicsek model and each agent always moves with the maximum constant
speed. However, if α > 0, then an agent will move with the maximum speed if
and only if complete local direction consensus is achieved among its neighbors.
A larger value of α implies that an agent will move with a slower speed in the
face of a given level of non-complete local direction consensus, which results in
higher convergence probability that a group of initially randomly distributed
agents will finally move along a global consensus direction.

This chapter is organized as follows. In Section 10.2, we describe briefly
the constant speed model proposed by Vicsek et al. and compare two order pa-
rameters to measure the phase transition phenomena of the swarm. In Section
10.3, we propose an adaptive velocity model with a tunable parameter α based
on the concept of local order parameter. Simulation results and discussions
are given in Section 10.4. Conclusions are given in Section 10.5.

10.2 The Constant Speed Vicsek Model

We first describe the original constant speed Vicsek model [30]. Consider
N agents, labeled from 1 through N , all moving synchronously in a square
shaped cell of linear size L with periodic boundary conditions. Each agent
has the same absolute velocity v0 but with different direction at different time
steps. Originally, all agents’ positions are randomly distributed in the cell with
randomly distributed directions in [0, 2π). At each time step, agent i adjusts
its direction as the average moving direction 〈θi(k)〉R of its neighbors with
some random perturbation Δθ added:

θi(k + 1) = 〈θi(k)〉R + Δθ. (10.1)

Here, the neighbors of agent i are defined as those agents who fall in a circle
of predefined sensory radius R centered at the current position of agent i.
One characteristic of this homogeneous model is that only by local interac-
tions it shows phase transition through spontaneous symmetry breaking of
the rotational symmetry. The different pattern behaviors, such as large-scale
emergence, convergence and disordered disperse motion, can be observed un-
der different parameters using simulation [30]. This directional rule of local
interactions together with constant speed motion of agents has considerable
influences [2, 5, 6, 8, 13, 15, 16, 19, 25, 30]. The swarm model in [5] is an-
other important constant speed model that consists of homogeneous agents
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with directional alignment, attraction and repulsion rules, the emergences are
generated by spontaneous symmetry breaking. Certainly, attraction action
between agents is another reasonable consideration to form gathering and
to have considerable influence. We will show that attraction action is not a
necessity for large swarm clusters.

The following order parameter has been widely adopted to measure the
phase transition phenomena of the constant speed model from the initial zero
net transport to emergence [2, 5, 7, 14, 15, 30]:

Φv(k) =
1

Nv0

∣∣∣∣∣
N∑

i=1

⇀
vi(k)

∣∣∣∣∣ , 0 ≤ Φv(k) ≤ 1. (10.2)

Here
⇀
vi(k) is the velocity of agent i with direction θi(k) and the constant speed

v0 = |⇀vi(k)| for all i = 1, 2, . . . , N at all steps k. Φv(k) is a univocal physical
parameter by definition – a scaled average momentum of the whole system and
emergent behavior can be observed if Φv(k) � 0. Φv(k) = 0 corresponds to
the isotropy state of directional distribution and Φv(k) = 1 implies convergent
or linear coherent motion of all agents only on the prerequisite that all agents
have the same fixed speed v0.

Now suppose that different agents may have generally different speed at
different time steps. Let v0 be the average value of all agents’ possible max-

imum speeds, that is, v0 =
1
N

∣∣∣∣∣
N∑

i=1

vi0

∣∣∣∣∣, where vi0 is the maximum possible

speed of agent i. In this general case, it is possible that Φv(k) > 1 even if
the moving directions of all agents are isotropic which corresponds to a non-
emergence state. And Φv(k) = 1 does not necessarily mean linear coherence,
unless vi0 is the same value for all agents. Thus Φv(k) is not appropriate to
measure the level of emergence.

Another order parameter that has been widely adopted, especially for syn-
chronous characteristic in the networked phase oscillators, is defined as follows
[13, 26]

Φθ(k) =
1
N

∣∣∣∣∣
N∑

i=1

eiθi(k)

∣∣∣∣∣ , 0 ≤ Φθ(k) ≤ 1. (10.3)

This order parameter eliminates the influence of the agent’s speed, but at
the expense of having no physical meaning of scaled average momentum. For
the constant speed Vicsek model, it is obvious that the two order parameters
defined above are the same, i.e., Φv = Φθ.

10.3 The Adaptive Velocity Model

In this section, we propose an adaptive velocity model in which each agent
adjusts its direction and speed at different time steps simultaneously. To do
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so, we first define the complex-valued local order parameter of agent i at step
k + 1 as follows:

φi(k + 1)eiθi(k+1) =
1

ni(k + 1)

∑
j∈Γi(k+1)

eiθj(k), i = 1, 2, . . . , N ; k = 0, 1, . . . ,

(10.4)
where eiθj(k) is the unit directional vector and Γi(k+1) is the set of ni(k+1)
neighbors of agent i at step (k + 1). Magnitude (or local polarity) φi(k + 1)
of the local order parameter measures the local degree of direction consensus
among the neighbors of agent i at step (k + 1). Obviously, φi(k + 1) is a local
form of the global order parameter (10.3) and 0 ≤ φi(k + 1) ≤ 1. A larger
value of φi(k + 1) implies a higher degree of local direction consensus among
neighbors of agent i (Fig. 10.1). Angle θi(k + 1) is the corresponding moving
direction of agent i at step (k+1), which is the average directions of agents in
set Γi(k). Computations using this expression can also avoid some undesired
directional problems mentioned in [16].

Denote Xi(k) as the position of agent i on the complex plane at step k. In
our adaptive velocity model, each agent not only adjusts its moving direction,
but also adjusts its speed according to the degree of local direction consensus
among its neighbors, which is represented by its local polarity. Specifically,
the speed of agent i at step k is scaled by a power-law function of its local
polarity, i.e.,

cα(φi(k))
	
= φα

i(k), (10.5)
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Fig. 10.1. Illustration of local polarity φi of agent i. The arrows show the moving
directional vectors of neighboring agents of agent i. For simplicity, these modular
vectors are plotted with the same starting points located in the center of a circle. (a)
The collection of agents moving scattered in the plane with no dominant direction,
the order parameter φi ≈ 0 for this situation. (b) The agents with a relatively strong
dominant direction, φi �= 0 for this situation. The polarity φi = 0 if and only if all
the agents in set Γi(k) move in the same direction.
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Fig. 10.2. Scaled speed coefficient cα(φ) as a power function of local polarity φ.
For any value of α, cα(φ) = 1 if φ = 1. For α = 0, cα(φ) ≡ 1. For 0 < α < ∞,
0 < cα(φ) < 1 if 0 < φ < 1. For α = ∞, cα(φ) = 0 if 0 < φ < 1.

with an power-law exponent α ≥ 0 (Fig. 10.2).
The adaptive velocity model can then be described mathematically as

follows: ⎧⎪⎪⎨
⎪⎪⎩

Xi(k + 1) = Xi(k) + v0 × φα
i (k)eiθi(k) ×Δt

φi(k + 1)eiθi(k+1) =
1

ni(k + 1)

∑
j∈Γi(k+1)

eiθj(k)
(10.6)

i = 1, 2, . . . , N ; k = 0, 1, 2, . . . , where Δt is the discrete time interval, and here
without loss of generality, we take Δt = 1.

⇀
vi(k) ≡ v0×φα

i (k)eiθi(k) represents
the velocity of agent i at step k with its moving direction θi(k). Since 0 ≤
φα

i (k) ≤ 1 for any value of α ≥ 0, the corresponding speed |⇀vi(k)| = v0×φα
i (k)

satisfies 0 ≤ ⇀
vi ≤ v0.

This adaptive speed is another important factor that contributes to emer-
gence or swarming clusters that has been previously overlooked, especially for
swarms in three or higher dimensions. This adaptive speed model also satisfies
fundamental swarm’s characteristics: no any leader/leaders, no external stim-
uli, only homogeneous agents, and only local interactions, but induces more
intensified phase transition and symmetry-broken from disordered to ordered
state than the constant speed model.
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The power-law exponent α ≥ 0 reflects the willingness of each agent to
move faster or lower along the average direction of its neighbors based on the
local degree of direction consensus. If α = 0, then cα(φ) ≡ 1. The adaptive
velocity model (10.6) reduces to the constant speed Vicsek model and each
agent always moves with the maximum constant speed v0 without any consid-
erations about its local polarity. However, if α > 0, then an agent will move
with the maximum speed if and only if complete local direction consensus is
achieved among its neighbors. In the case of α = 1, the local order parameter
of agent i is just the direct sum of directional vectors of agent i’s neighbors.
A larger value of α implies that an agent will move with a slower speed in the
face of a given level of local direction consensus. In the limit case that α =∞,
we have

c∞(φ) = φ+∞ =
{

0, 0 ≤ φ ≤ 1,
1, φ = 1. (10.7)

It means that each agent will not move unless complete local direction con-
sensus is achieved among its neighbors.

The 2-dimensional adaptive velocity model (10.6) can easily be generalized
to general M -dimensional Euclidean space case. Let Pi = [pi1, pi2, . . . , piM ]T

represent position of agent i, i = 1, 2, . . . , N . The motion direction of agent i
is represented by a unitary vector di = [di1, di2, . . . , diM ]T which satisfies

‖di‖ = 1, −1 ≤ dij ≤ 1, j = 1, 2, . . . ,M, (10.8)

for all i. Agent i and agent j are neighbors if ‖pi(k)− pj(k)‖ ≤ R.
Define the order parameter as

ri(k + 1) =
1

ni(k + 1)

∥∥∥∥ ∑
j∈Γi(k+1)

dj(k)
∥∥∥∥. (10.9)

Of cause, 0 ≤ ri(k + 1) ≤ 1. The M -dimensional adaptive velocity model can
be described as:

Pi(k + 1) = Pi(k) + v0 × rα
i (k)× di(k)×Δt, k = 0, 1, 2, . . . , (10.10)

di(k + 1) =
( ∑

j∈Γi(k+1)

dj(k)
)/∥∥∥∥ ∑

j∈Γi(k+1)

dj(k)
∥∥∥∥, k = 0, 1, 2, . . . . (10.11)

10.4 Simulations and Discussions

It is a more natural assumption for swarms moving in the plane to ensure
that they can evolve freely and sufficiently. To illustrate the effect of adap-
tive velocity strategy, we consider N agents moving in the complex plane for
simulation instead of in a rectangle of open boundary or periodic boundary
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Fig. 10.3. Illustration of initially random distribution of positions and directions
of agents, the arrows point to the initial directions of agents, the ends of arrows
(denoted by blue circles) are positions of agents. Here the rectangle is 5×5 cell. The
swarm evolves in the whole 2D plane.

conditions [30]. The N agents’ positions and directions are initially randomly
distributed on a rectangle of linear size L (Fig. 10.3). Denote the initially
distributed directions and positions of agent i as θi and Pi(0), respectively,
i = 1, 2, . . . , N . Note that the initial distribution of direction θi is not the
initial moving direction θi(0). We compute the initial moving direction θi(0)
and initial polarity φi(0) of agent i according to local order parameter formula

φi(0)eiθi(0) =
1

ni(0)

∑
j∈Γi(0)

eiθj .

This means that each agent moves with adaptive velocity strategy in the very
beginning of its evolution. This beginning step is denoted as step k = 0 with
the corresponding initial speed v0 × φi(0).

In simulations, we take the parameters N = 300, L = 5 and R = 2. All
estimates are the results of averaging over 400 realizations, if without special
mention. We first investigate the influence of power-law exponent α in the
adaptive velocity model on the convergence probability p, which is defined as
the probability that a group of N initially randomly distributed agents will
finally all move along a global consensus direction with the same maximum
speed v0.



10 Coordination of Multi-agent Systems Using Adaptive Velocity Strategy 283

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

v
0

<
p>

 

 

 =0
 =1
 =8
 =64
 =

Fig. 10.4. Convergent probability p as a function of the maximum speed v0 for five
different values of α
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Fig. 10.5. Convergent probability p as a function of the exponent α for five different
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Fig. 10.6. Transient time step as a function of the exponent α. The termination
condition for steady state of the swarms is that, the standard deviation of N vectors
that consist of the conterminous directional differences of every agent is less than
0.0001. The quantities are averaged over 200 realizations.

Fig. 10.4 shows that for any given value of α, the convergence probability
p is a decreasing function of the maximum speed v0, but it decreases more
slowly for larger value of α; while Fig. 10.5 shows that for any given value
of v0, the convergence probability p is an increasing function of the exponent
α, and smaller v0 leads to higher convergence probability. Therefore, if the
constant speed v0 is large enough, even though it is very difficult or even
practically impossible to achieve global convergence in the original Vicsek
model which corresponds to α = 0, the convergence probability can still be
high for the adaptive velocity model with a sufficiently large α. In particular,
the convergence probability approaches 1 in the case α = ∞ for the present
system parameters, even without any leader or other global information in
the adaptive velocity model.

Note that the dynamic speeds of all agents will always reach the same
maximal value v0 in steady state whether the swarm can finally converge or
not; but directions of agents will reach global consensus only under certain
conditions. Generally, speeds of agents in the adaptive velocity model are
varied over transient time and the average speed vave(k) of all agents in the
swarm increases monotonically until steady state is achieved. Since a larger
value of α implies that an agent will move with a slower speed in the face of a



10 Coordination of Multi-agent Systems Using Adaptive Velocity Strategy 285

0

2

4

6

8

10

12

14

16

18

<
>

 

 

v
0
 =0.6

v
0
 =0.7

v
0
 =0.8

v
0
 =0.9

v
0
 =1.0

10 3        10 2 102         10310 1        100            101

Fig. 10.7. The time step τ required for the average speed of all agents to reach 98%
of maximum speed v0 as a function of the exponent α. All estimates are the results
of averaging over 200 realizations.
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Fig. 10.8. MCSG in steady state as a function of the maximum speed v0 for five
different values of α
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Fig. 10.9. MCSG in steady state as a function of the exponent α for six different
values of v0
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Fig. 10.10. The global order parameter Φθ of swarm as a function of noise amplitude
η. For large η and α, Φθ decreases linearly. All estimates are the results of averaging
over 200 realizations.
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Fig. 10.11. The average speed coefficient Cα decreases to zero as the noise ampli-
tude η increases. All estimates are the results of averaging over 200 realizations.

given level of local direction consensus, one may wonder if the transient time
may be longer even though the convergence probability is higher. However, as
can be seen from Fig. 10.6, the value of α does not have a significant influence
on the transient time. Denote τ as the time step required for the average
speed of all agents to reach 98% of maximum speed v0. We find that τ obeys
a simple log scaling law of the form (Fig. 10.7):

τ ≈ 4 + β [log10 α] , α ≥ 1, (10.12)

where β ≈ 4.67. Therefore, even for a high value of α = 1000, most agents
will move with nearly the maximum speed in just less than 18 steps. This
behavior looks somewhat like the applause phenomenon which turns suddenly
into synchronized clapping [20].

Why is the convergence probability enhanced as the exponent α increases
in the adaptive velocity model? This is because the adaptive velocity strategy
with large value of α tends to hold the local agents together to form large
cluster. When in the approximate isotropy region, φ ≈ 0 which implies agents
move in scattered directions, the speeds of agents are relatively small according
to adaptive velocity strategy with positive value of α. Even for 0 φ < 1, the
speeds of agents are still small for large values of α. Thus transformations of
those agents’ positions are indistinctive, so neighbors tend to be also neighbors
in the next step or even later, and communications between them continue to
be held, which are beneficial to directional consensus.
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From the perspective of the complex network theory [1, 21], swarm topol-
ogy can also be expressed as a graph G = (V,E): every agent i is represented
by a vertex vi; an undirected edge between agent i and agent j means that
they are neighbors and vice versa. The component of a graph to which a
vertex belongs is that set of vertices that can be reached from it by paths
running along edges of the graph [21]. As time evolves, topology of the graph
G(k) = (V,E(k)) varies. We are interested in the maximal component of the
swarm graph (MCSG) in the steady state. Recent analysis shows that for a
swarm which moves in the plane instead of in a rectangle of periodic con-
ditions, convergence or emergence is due to the connectivity between agents
[16, 19], instead of long-range interactions [30, 31].

Denote S as the ratio of the number of vertices in MCSG in steady state
versus the total number of vertices in the whole graph of the underlying swarm.
Clearly, 0 < S ≤ 1 and global convergence is achieved if and only if S = 1. In
this case, the whole graph consists of only one component (swarming cluster).
S ≈ 0 means all the agents disperse without any apparent clusters. For S � 0,
there exists a dominate or giant cluster in the swarm.

For any given value of α, MCSG is understandably a decreasing function of
the maximum speed v0, and it decreases much more slowly for larger values of
α (Fig. 10.8); while for any given value of v0, MCSG is an increasing function
of the exponent α and smaller values of v0 result in higher values of MCSG
(Fig. 10.9). Thus, in the case of a large maximum speed v0, although it is quite
difficult or even impossible to form a giant cluster in the constant speed Vicsek
model which corresponds to α = 0, it is much easier to form a giant cluster
for the adaptive velocity model if α is large enough. This also indicates that
attractive actions between agents is not a necessity for swarm aggregations.

Figs. 10.10 and 10.11 show the influence of uniformly distributed noise
added to the moving direction of each agent with noise amplitude η based
on the global order parameter Φθ defined in (10.3) and the average speed
coefficient Cα defined as:

Cα
	
=

1
N

N∑
i=1

cα (φi) =
1
N

N∑
i=1

φα
i . (10.13)

We can see from Fig. 10.10 that for large noise amplitude η and large
exponent α, the global order parameter Φθ decreases along the same straight
line, which deserves further investigation.

Comparing Figs. 10.10 and 10.11, one finds that the more robust the speed,
the less emergence the swarm in the exposure of noise. The value α = 0
corresponds to constant speed and it is the least anti-noise case of the swarm.

10.5 Conclusions

We propose an adaptive velocity model in which each agent not only adjusts
its moving direction but also adjusts its speed based on the local degree of
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(a)

(d)(c)

(b)

Fig. 10.12. Some interesting shapes that swarms take on. These are all coherent
moving cases. The arrows denote the coherent moving direction of swarms. The
parameters here are N = 200, R = 1.2, v0 = 0.4, α = 0.

direction consensus among its neighbors at every time step. Each agent takes
its moving direction as the average angle of its local order parameter with
its speed proportional to the power function of the magnitude of its local
complex-valued order parameter at each step. The adaptive velocity model
reduces to the constant speed Vicsek model when the power-law exponent
α = 0. A larger value of α implies that an agent will move with a slower speed
in the face of a given level of non-complete local direction consensus, which
results in higher convergence probability and larger swarm clusters.

Some difficult yet important problems about the adaptive velocity model
remain to be further investigated. For example, under what conditions can we
guarantee the existence of a critical value of α such that above the value, a
given convergence probability or average MCSG can be guaranteed? Further-
more, stability analysis about the linearized Vicsek’s model has been focused
on the topology of swarms in the process of evolution [16], but the question
of what initial distribution condition of the underlying swarm can guarantee
this topology restriction remains unsolved. More practical stability analysis
for the adaptive velocity model needs to be explored.

The properties of evolutional graphs of swarms over time may serve as a
promising topic for further research. Unlike regular (or quasi-regular) geomet-
ric shape the attraction–repulsion models [5, 14, 22] take on (see the figures
in the reference papers), what shapes (for example, see Fig. 10.12) the non-
attraction-repulsion models, such as adaptive velocity model, will take in the
coherent moving state also remains elusive. These questions remain interesting
and challenging for further investigation.
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Abstract. This chapter studies the robust synthesis problem for strictly pos-
itive real (SPR) transfer functions. The concepts of SPR regions and weak
SPR regions are introduced. By using the complete discrimination system
(CDS) for polynomials, complete characterization of the (weak) SPR regions
for transfer functions in coefficient space is given. It is shown that the weak
monic SPR region associated with a fixed polynomial is bounded and the
intersection of several weak monic SPR regions associated with different poly-
nomials cannot be a single point. Furthermore, we show how to construct
a point in the SPR region from a point in the weak SPR region. Based on
these theoretical development, we propose an algorithm for robust design of
SPR transfer functions. This algorithm works well for both low-order and
high-order polynomial families. Especially, the derived conditions are neces-
sary and sufficient for robust SPR design of polynomial segment or low-order
(n ≤ 4) interval polynomials. Illustrative examples are provided to show the
effectiveness of this algorithm.

Keywords. Robustness, strictly positive realness (SPR), synthesis method,
transfer functions, weak strictly positive realness (WSPR), WSPR regions.

11.1 Introduction

The strict positive realness (SPR) of transfer functions is an important perfor-
mance specification which plays a critical role in various fields such as absolute
stability/hyperstability theory [29, 36], network realizability theory/passivity
analysis [8, 21], quadratic optimal control [7] and adaptive system theory [31].
Since there always exist uncertainties in real systems, it is imperative to study
the robust SPR. In recent years, stimulated by the parametrization method
in robust stability analysis [1, 9, 13], the study of robust SPR systems has
received much attention, and great progress has been made. However, most
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results belong to the category of robust strictly positive real analysis. Much
work remains to be done in robust strictly positive real synthesis.

Generally speaking, the synthesis problem is mathematically more diffi-
cult than the analysis problem, since the proof is usually constructive, i.e.,
the proof not only proves the existence of the solution, but also provides a
constructive procedure to find it. The synthesis problem is of more practical
significance from the engineering application viewpoint.

The basic statement of the robust SPR synthesis problem is as follows:
Given an nth-order robustly stable polynomial set F , does there exist, and
how to construct a (fixed) polynomial b(s) such that, ∀a(s) ∈ F, b(s)/a(s) is
strictly positive real? If such a polynomial b(s) exists, then we say that F is
synthesizable.

In this chapter, we summarize some of our recently-obtained results on
the design of robust SPR transfer functions. We first introduce the concepts
of SPR regions and weak SPR regions and give a complete characterization
of them. We show that the monic SPR region associated with a fixed polyno-
mial is unbounded, whereas the weak monic SPR region is bounded. We then
prove that the intersection of several weak monic SPR regions associated with
different polynomials cannot be a single point. Furthermore, we show how to
construct a point in the SPR region from a point in the weak SPR region.
Based on these theoretical development, we propose an algorithm for robust
design of SPR transfer functions. This algorithm works well for both low-order
and high-order polynomial families. The derived conditions are necessary and
sufficient for robust SPR design of polynomial segment or low-order (n ≤ 4)
interval polynomials. Illustrative examples are provided to show the effective-
ness of this algorithm.

11.2 Definitions and Notation

The concept of strict positive realness stems from different area such as control
systems, network analysis, etc. There are some slightly different definitions in
the literature [55]. In this chapter, we will employ the following definitions.

Denote Rn as an n dimensional real field, Pn as the set of all nth-order
polynomials of s with real coefficients. Denote Hn ⊂ Pn as the set of all
nth-order Hurwitz stable polynomials (all roots lie within the left half of the
complex plane).

In the following definitions, b(·) ∈ Pm, a(·) ∈ Pn, and p(s) = b(s)/a(s) is
a rational function.

Definition 11.1. p(s) is said to be strictly positive real (SPR), denoted by
p(s) ∈ SPR, if b(s) ∈ Pn, a(s) ∈ Hn, and ∀ω ∈ R, Re[p(jω)] > 0. �

Definition 11.2. p(s) is said to be weak strictly positive real (WSPR),
denoted by p(s) ∈ WSPR, if b(s) ∈ Pn−1, a(s) ∈ Hn, and ∀ω ∈ R,
Re[p(jω)] > 0. �
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Definition 11.3. Given a(s) ∈ Hn, the set of the coefficients (in Rn+1) of all

the b(s)’s in Pn such that p(s) :=
b(s)
a(s)

∈ SPR is said to be the SPR region

associated with a(s), denoted by Ωa. �

Definition 11.4. Given a(s) ∈ Hn, the set of the coefficients (in Rn) of all

the b(s) ∈ Pn−1 such that p(s) :=
b(s)
a(s)

∈ WSPR is said to be the WSPR

region associated with a(s), denoted by ΩW
a . �

For notational convenience, Ωa (ΩW
a ) sometimes also stands for the set of

all the polynomials b(s) in Pn (Pn−1) such that p(s) :=
b(s)
a(s)

∈ SPR (WSPR).

From the definitions above, it is easy to get the following properties:

Proposition 11.1 ([5, 27]). If p(s) ∈ SPR (WSPR), then

|arg(b(jω))− arg(a(jω))| < π

2
,

∀ω ∈ R, where arg(·) stands for the argument of the complex number, and
the difference of two arguments can differ by an integer number of 2π. �

Proposition 11.2 ([27]). Given a(s) ∈ Hn and Ωa is a non-empty, open,
convex cone in Rn+1. �

Proposition 11.3 ([17]). Given a(s) ∈ Hn, we have Ωa ⊂ Hn and ΩW
a ⊂

Hn−1. �

Proposition 11.4 ([5, 36, 55]). Given a(s) ∈ Hn and b(s) ∈ Pm, if ∀ω ∈ R,
Re[p(jω)] > 0, then |m− n| ≤ 1. �

The problem we are interested in is: Given a family of Hurwitz stable
polynomials, how can we find a fixed polynomial such that their ratios will be
SPR-invariant? In what follows, will first give some characterization of SPR
(WSPR) regions, and then propose an efficient synthesis procedure for this
problem.

11.3 Some Properties of SPR (WSPR) Regions

By definition, an SPR (WSPR) transfer function multiplied by a positive
integer is still SPR (WSPR). Thus, without loss of generality, let

a(s) = sn + a1s
n−1 + · · ·+ an ∈ Hn.

Denote as Ω1a the set of the coefficients of all the b(s) = sn + x1s
n−1 +

· · · + xn ∈ Pn, i.e., (x1, x2, . . . , xn) ∈ Rn, such that p(s) =
b(s)
a(s)

∈ SPR; and
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denote as ΩW
1a the set of the coefficients of all the b(s) = sn−1 + x1s

n−2 +

· · · + xn−1 ∈ Pn−1, i.e., (x1, x2, . . . , xn−1) ∈ Rn−1, such that p(s) =
b(s)
a(s)

∈
WSPR. Obviously, we have

{1} ×Ω1a =
{(

1,
b1
b0

,
b2
b0

, . . . ,
bn

b0

) ∣∣∣∣ ∀(b0, b1, b2, . . . , bn) ∈ Ωa

}
,

{1} ×ΩW
1a =

{(
1,

b1
b0

,
b2
b0

, . . . ,
bn−1

b0

) ∣∣∣∣ ∀(b0, b1, b2, . . . , bn−1) ∈ ΩW
a

}
.

For notational convenience, Ω1a (ΩW
1a ) sometimes also stands for the cor-

responding polynomial set.
As we know [26, 27], Ωa is a non-empty, open, convex cone in Rn+1. Thus,

Ωa is an unbounded set in Rn+1. In what follows, we will show that Ω1a is
also an unbounded set in Rn.

Theorem 11.1. Given a(s) ∈ Hn, Ω1a is a non-empty, open, unbounded
convex set in Rn.

Proof. Obviously, we have a(s) ∈ Ωa. If the leading coefficient of a(s) is a0,
then (

a1

a0
,
a2

a0
, . . . ,

an

a0

)
∈ Ω1a.

Thus, Ω1a is not empty.
Moreover, ∀(x1, x2, . . . , xn) ∈ Ω1a, then (1, x1, x2, . . . , xn) ∈ Ωa. By

Proposition 11.2, Ωa is open. Thus, there exists δ > 0, such that, when√
(1− y0)2 + (x1 − y1)2 + · · ·+ (xn − yn)2 < δ,

we have (y0, y1, y2, . . . , yn) ∈ Ωa.
For this δ, if (z1, z2, . . . , zn) ∈ Rn satisfying√

(x1 − z1)2 + · · ·+ (xn − zn)2 < δ,

then, obviously√
(1− 1)2 + (x1 − z1)2 + · · ·+ (xn − zn)2 < δ,

thus (1, z1, z2, . . . , zn) ∈ Ωa. Furthermore (z1, z2, . . . , zn) ∈ Ω1a. Hence, Ω1a

is open.
The convexity of Ω1a is a direct consequence of the definition.
In what follows, we will prove that Ω1a is unbounded. For this purpose,

we first introduce some notation, which will be used also in other proofs later.
Let

a(s) = sn + a1s
n−1 + · · ·+ an ∈ Hn,

b(s) = x0s
n + x1s

n−1 + · · ·+ xn ∈ Pn ∪ Pn−1.
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Then, ∀ω ∈ R, we have

Re
[
b(jω)
a(jω)

]
=

1
|a(jω)|2 Re[b(jω)a(−jω)]

=
1

|a(jω)|2
n∑

l=0

(
n∑

k=0

akx2l−k(−1)l+k)ω2(n−l)

=
1

|a(jω)|2
n∑

l=0

clω
2(n−l),

where cl :=
n∑

k=0

akx2l−k(−1)l+k, and a0 = 1; and let ai = 0, xi = 0, when

i < 0 or i > n, l = 0, 1, . . . , n.
Define the matrices

Ha :=

⎡
⎢⎢⎢⎢⎢⎣

a1 1 0 0 0 · · · 0
a3 a2 a1 1 0 · · · 0
a5 a4 a3 a2 a1 · · · 0
...

...
...

...
...

. . .
...

a2n−1 a2n−2 a2n−3 a2n−4 a2n−5 · · · an

⎤
⎥⎥⎥⎥⎥⎦ ,

En :=

⎡
⎢⎢⎢⎢⎢⎣

1
−1

1
−1

. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

A :=

⎡
⎢⎢⎢⎣

1 0 · · · 0
−a2

a4 EnHaEn

...

⎤
⎥⎥⎥⎦ , b :=

⎡
⎢⎢⎢⎣
x0

x1

...
xn

⎤
⎥⎥⎥⎦ , c :=

⎡
⎢⎢⎢⎣
c0
c1
...
cn

⎤
⎥⎥⎥⎦ ,

where ai = 0 when i > n. Then it is easy to verify that

c = Ab. (11.1)

Divide the matrices in (11.1) as follows⎡
⎢⎢⎢⎢⎢⎣

1 | 0 · · · 0
−− | −− −− −−
−a2 |
a4 | EnHaEn

... |

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x0

−−
x1

...
xn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

c0
−−
c1
...
cn

⎤
⎥⎥⎥⎥⎥⎦ .

Since a(s) ∈ Hn, we know that EnHaEn is invertible. Now take any d =
[d1, d2, . . . , dn]T ∈ Rn, such that all elements of d are positive. Denote ā =
[−a2, a4, −a6, a8, . . . , (−1)na2n]T , where ai = 0 if i > n.
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Let b̄ = (EnHaEn)−1(d − ā) := [b1, b2, . . . , bn]T . Then obviously, we have

[1, d1, d2, . . . , dn]T = A[1, b1, b2, . . . , bn]T , and bn =
dn

an
. By (11.1), we have

(b1, b2, . . . bn) ∈ Ω1a.
On the other hand, due to the arbitrariness of d, dn can be taken arbitrarily

large. Thus bn can also be arbitrarily large. Therefore, Ω1a is unbounded. This
completes the proof. �

Since Ωa and Ω1a are both unbounded sets, when considering the robust
SPR synthesis problem, we must check if two (or more) SPR regions intersect
or not, which is hardly tractable when operating on unbounded sets. This is
the reason that we introduce the concept of WSPR regions, which are bounded
as shown below.

Theorem 11.2. Given a(s) ∈ Hn, ΩW
1a is a non-empty, bounded convex set

in Rn−1.

Proof. Let Ha, En and A be the same as in the proof of Theorem 11.1. Divide
the matrices in (11.1) as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 | 0 · · · 0
−− −− | −− −− −−
−a2 a1 |
a4 −a3 | B
...

... |
−− −− | −− −− −−
0 0 | 0 · · · an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

−−
x2

...
xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
−−
c1
...

cn−1

−−
cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where B is an (n− 1)× (n− 1) matrix formed by the first n− 1 row and last
n− 1 column of the matrix EnHaEn. Obviously, B is also invertible. Denote
ā := [a1,−a3, a5,−a7, . . . , (−1)n−1a2(n−1)+1]T , and let ai = 0 when i > n.

Let b̄ := −B−1ā = [b1, b2, . . . , bn−1]T . Since a(s) ∈ Hn, it is easy to verify
that bn−1 > 0. Denote b = [0, 1, b1, b2, . . . , bn−1]T . Take c0 = c1 = · · · =
cn−1 = 0, cn = anbn−1 in c := [c0, c1, . . . , cn], it is easy to see that (11.1) is
true. Thus we have (b1, b2, . . . , bn−1) ∈ ΩW

1a , namely, ΩW
1a is not empty.

The convexity of ΩW
1a is a direct consequence of the definition.

In what follows, we will prove that ΩW
1a is bounded.

Take any (x1, x2, . . . , xn−1) ∈ ΩW
1a . Then we have

sn−1 + x1s
n−2 + · · ·+ xn−1

sn + a1sn−1 + · · ·+ an
∈WSPR.

By Proposition 11.3, we have sn−1 + x1s
n−2 + · · ·+ xn−1 ∈ Hn−1. Moreover,

∀ω ∈ R, we have

Re
(
sn−1 + x1s

n−2 + · · ·+ xn−1

sn + a1sn−1 + · · ·+ an

∣∣∣
s=jω

)
> 0.
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Hence,

Re
(

sn + a1s
n−1 + · · ·+ an

sn−1 + x1sn−2 + · · ·+ xn−1

∣∣∣
s=jω

)
> 0, ∀ω ∈ R.

Obviously

sn + a1s
n−1 + · · ·+ an

sn−1 + x1sn−2 + · · ·+ xn−1

= s +
(a1 − x1)sn−1 + (a2 − x2)sn−2 + · · ·+ (an−1 − xn−1)s + an

sn−1 + x1sn−2 + · · ·+ xn−1
.

Thus

Re
(

(a1 − x1)sn−1 + (a2 − x2)sn−2 + · · ·+ (an−1 − xn−1)s + an

sn−1 + x1sn−2 + · · ·+ xn−1

∣∣∣
s=jω

)

= Re
(

sn + a1s
n−1 + · · ·+ an

sn−1 + x1sn−2 + · · ·+ xn−1

∣∣∣
s=jω

)
− Re(jω)

= Re
(

sn + a1s
n−1 + · · ·+ an

sn−1 + x1sn−2 + · · ·+ xn−1

∣∣∣
s=jω

)
> 0, ∀ω ∈ R.

By Proposition 11.4, we have

(a1 − x1)sn−1 + (a2 − x2)sn−2 + · · ·+ (an−1 − xn−1)s + an

sn−1 + x1sn−2 + · · ·+ xn−1

∈ {SPR} ∪ {WSPR}.

Again, by Proposition 11.3, we have

(a1 − x1)sn−1 + (a2 − x2)sn−2 + · · ·+ (an−1 − xn−1)s + an

∈ Hn−1 ∪Hn−2.

Hence,
0 < x1 ≤ a1, 0 < x2 < a2, . . . , 0 < xn−1 < an−1.

Namely,

ΩW
1a ⊂ {(x1, x2, . . . , xn−1)|α(s) :=

n∑
i=1

(ai − xi)sn−i ∈ Hn−1 ∪Hn−2, xn = 0}

⊂ {(x1, x2, . . . , xn−1)|0 < x1 ≤ a1, 0 < x2 < a2, . . . , 0 < xn−1 < an−1}.

Thus, ΩW
1a is bounded. This completes the proof. �
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It should be pointed out that ΩW
1a is not an open set in Rn−1. In fact, from

the proof of Theorem 11.2, we know that ΩW
1a is tangent to the hyperplane

x1 = a1 in Rn−1. And there exist some points of ΩW
1a in this hyperplane. Thus,

ΩW
1a cannot be an open set. Obviously, ΩW

a is a non-empty, convex cone in
Rn−1. Thus, ΩW

a is also unbounded. It is easy to know that ΩW
a is not an

open set either.
Though ΩW

1a is not an open set, the following theorem guarantees such a
fact: when the intersection of two or more WSPR regions is not empty, then
the intersection must be a region, not a single point.

Theorem 11.3. Given a(s) ∈ Hn, if (x1, x2, . . . , xn−1) ∈ ΩW
1a , then for suffi-

ciently small ε > 0, we have (x1 − ε, x2 − ε, . . . , xn−1 − ε) ∈ ΩW
1a .

Proof. ∀(x1, x2, . . . , xn−1) ∈ ΩW
1a , and ∀ω ∈ R, we have

Re
(
sn−1 + x1s

n−2 + · · ·+ xn−1

sn + a1sn−1 + · · ·+ an

∣∣∣
s=jω

)
> 0,

∀ε > 0, since

Re
(
sn−1 + (x1 − ε)sn−2 + · · ·+ (xn−1 − ε)

sn + a1sn−1 + · · ·+ an

∣∣∣
s=jω

)

= Re
[(

sn−1 + x1s
n−2 +· · ·+ xn−1

sn + a1sn−1 + · · ·+ an
+

(−ε)(sn−2 + sn−3 +· · ·+ 1)
sn + a1sn−1 + · · ·+ an

)∣∣∣
s=jω

]

= Re
(
sn−1 + x1s

n−2 + · · ·+ xn−1

sn + a1sn−1 + · · ·+ an

∣∣∣
s=jω

)
+

(−ε)
|a(jω)|2 (−ω2(n−1) + c̃(ω)),

where c̃(ω) is a real polynomial with order not greater than 2(n − 2). Thus,
when |ω| is sufficiently large, the sign of (−ε)(−ω2(n−1) + c̃(ω)) is positive.
Namely, there exists ω1 > 0 such that, for all|ω| ≥ ω1,

Re
(
sn−1 + (x1 − ε)sn−2 + · · ·+ (xn−1 − ε)

sn + a1sn−1 + · · ·+ an
|s=jω

)
> 0.

Denote

M1 = inf
|ω|≤ω1

Re
(
sn−1 + x1s

n−2 + · · ·+ xn−1

sn + a1sn−1 + · · ·+ an

∣∣∣
s=jω

)
,

N1 = sup
|ω|≤ω1

∣∣∣∣Re
(

1
|a(jω)|2 (ω2(n−1) − c̃(ω))

)∣∣∣∣.
Then M1 > 0 and N1 > 0. Choosing 0 < ε <

M1

N1
, then it is easy to see that

Re
(
sn−1 + (x1 − ε)sn−2 + · · ·+ (xn−1 − ε)

sn + a1sn−1 + · · ·+ an

∣∣∣
s=jω

)
> 0, ∀ω ∈ R.
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Therefore,
sn−1 + (x1 − ε)sn−2 + · · ·+ (xn−1 − ε)

sn + a1sn−1 + · · ·+ an
∈ WSPR, namely,

(x1 − ε, x2 − ε, . . . , xn−1 − ε) ∈ ΩW
1a .

This completes the proof. �

The following theorem shows the relationship between ΩW
1a and Ωa, and

plays an important role in robust SPR synthesis.

Theorem 11.4. Given a(s) ∈ Hn, if (x1, x2, . . . , xn−1) ∈ ΩW
1a , then ∀(1, α1,

α2, . . . , αn) ∈ Rn+1, we can take sufficiently small ε > 0 such that

(0, 1, x1, x2, . . . , xn−1) + ε(1, α1, α2, . . . , αn) ∈ Ωa.

Proof. Denote b(s) = sn−1+x1s
n−2+· · ·+xn−1, α(s) = sn+α1s

n−1+· · ·+αn,
and b̃(s) = b(s) + εα(s). Since (x1, x2, . . . , xn−1) ∈ ΩW

1a , we have

Re
[
b(jω)
a(jω)

]
> 0, ∀ω ∈ R.

We only need to show that, for sufficiently small ε > 0,

Re

[
b̃(jω)
a(jω)

]
> 0, ∀ω ∈ R.

Obviously, b̃(s) and a(s) have the same order n. Thus, there exists ω2 > 0

such that, for all |ω| ≥ ω2, we have Re

[
b̃(jω)
a(jω)

]
> 0.

Denote

M2 = inf
|ω|≤ω2

Re
[
b(jω)
a(jω)

]
,

N2 = sup
|ω|≤ω2

∣∣∣∣Re
α(jω)
a(jω)

∣∣∣∣.
Then M2 > 0 and N2 > 0. Choosing 0 < ε <

M2

N2
, by simple computation, we

have

Re

[
b̃(jω)
a(jω)

]
> 0, ∀ω ∈ R.

This completes the proof. �
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11.4 Characterization of SPR (WSPR) Regions

In this section, we will consider the following problem.

Problem 11.1. Given a(s) ∈ Hn, how can we find all b(s), such that p(s) =
b(s)
a(s)

∈ SPR (WSPR)? �

This problem is important in robust SPR analysis and synthesis. Express-
ing b(s) explicitly based on the coefficients of a(s) is an unsolved problem
proposed by Huang, Hollot and Xu [27] in 1990.

Verification of SPR (WSPR) of transfer functions can, in principle, be
transformed into checking the real roots of polynomials. The classical Sturm
method can be used to check the distribution of real roots of polynomials [22,
52], but it is not efficient for polynomials with symbolic coefficients [50, 52].

Recently, Yang et al. established the complete discrimination system
(CDS) for polynomials [22, 52], which can express the roots distribution ex-
plicitly based on the coefficients of polynomials. Using the CDS, we can give
a complete characterization of SPR (WSPR) regions.

Given
f(x) = a0x

n + a1x
n−1 + · · ·+ an ∈ Pn.

The Sylvester matrix of f(x) and its derivative f ′(x) [50, 52]⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1

a0 a1 · · · an−1 an

0 na0 · · · 2an−1 an−1

· · · · · ·
· · · · · ·

a0 a1 · · · an

0 na0 · · · an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is called the discrimination matrix of f(x), denoted by Discr(f).
The n-tuple

[D1(f), D2(f), . . . , Dn(f)],

which are the determinants of the first n even-order main submatrices of
Discr(f), formed by the first 2k row and first 2k column, k = 1, 2, . . . , n, are
called the discriminant sequence of f(x).

Furthermore
[sign(D1), sign(D2), . . . , sign(Dn)]

is called the sign list of the discriminant sequence [D1, D2, . . . , Dn], where
sign(·) is the sign function, namely

sign(x) =

⎧⎨
⎩

1, if x > 0,
0, if x = 0,
−1, if x < 0.
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Given a sign list [s1, s2, . . . , sn], we can construct a revised sign list

[ε1, ε2, . . . , εn]

as follows:

(i) If [si, si+1, . . . , si+j ] is a section of the given list, where si �= 0; si+1 =
si+2 = · · · = si+j−1 = 0; si+j �= 0, then, we replace the subsection

[si+1, si+2, . . . , si+j−1]

by
[−si,−si, si, si,−si,−si, si, si,−si, . . . ],

namely, εi+r = (−1)[
r+1
2 ]si, r = 1, 2, . . . , j−1, where the notation

[
r + 1

2

]
stands for the largest integer that is smaller than or equal to the real

number
r + 1

2
.

(ii) Otherwise, let εk = sk, i.e., no changes for other terms.

Lemma 11.1 ([50, 52]). Given a real polynomial f(x) = a0x
n + a1x

n−1 +
· · · + an ∈ Pn, if the number of sign changes in the revised sign list of its
discriminant sequence is ν, and the number of non-zero elements in the revised
sign list of its discriminant sequence is μ, then the number of distinct real roots
of f(x) is μ− 2ν. �

The discriminant sequence of the polynomial f(x) can also be constructed
by the main submatrices of the Bezout matrix of f(x) and f ′(x) [50, 52]; the
number of distinct real roots of the polynomial f(x) can also be determined
by the sign differences of the Bezout matrix of f(x) and f ′(x) [50, 52].

The original complete discrimination system of polynomials [50, 52] is more
general than Lemma 11.1, which can also be used to determine the number
of complex roots and the multiplicities of repeated roots [50, 52].

We are now in a position to give a complete characterization of SPR
(WSPR) regions. As in the last section, let

a(s) = sn + a1s
n−1 + · · ·+ an ∈ Hn,

b(s) = x0s
n + x1s

n−1 + · · ·+ xn ∈ ∪Pn ∪ Pn−1.

Consider the polynomial

f(ω) =
n∑

l=0

clω
2(n−l)

where cl :=
n∑

k=0

akx2l−k(−1)l+k, a0 = 1, and let ai = 0, xi = 0, when i < 0 or

i > n, l = 0, 1, . . . , n. Then, we have the following theorem.
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Theorem 11.5. Given a(s) = sn + a1s
n−1 + · · · + an ∈ Hn, suppose that

b(s) = x0s
n + x1s

n−1 + · · ·+ xn ∈ Pn ∪ Pn−1, then p(s) :=
b(s)
a(s)

∈ {SPR} ∪
{WSPR} if and only if the number of sign changes ν in the revised sign list

of the discriminant sequence of f(ω) =
n∑

l=0

clω
2(n−l) and its number of non-

zero elements μ satisfy μ = 2ν when c0 = c1 = · · · = ci = 0, ci+1 > 0
(i = 0, 1, . . . , n− 1).

Proof. From the proof of Theorem 11.1, we know that

Re
[
b(jω)
a(jω)

]
=

1
|a(jω)|2

n∑
l=0

clω
2(n−l), ∀ω ∈ R,

where cl :=
n∑

k=0

akx2l−k(−1)l+k, where a0 = 1, when i < 0 or i > n. Let

ai = 0, xi = 0, l = 0, 1, . . . , n.
By introducing En,Ha, A, b and c as before, it is easy to verify that

c = Ab.

By the definition of SPR (WSPR), in order to have p(s) :=
b(s)
a(s)

∈ {SPR}∪
{WSPR}, we must have

f(ω) =
n∑

l=0

clω
2(n−l) > 0, ∀ω ∈ R,

which is equivalent to the following condition: when c0 = c1 = · · · = ci = 0,
ci+1 > 0 (i = 0, 1, . . . , n − 1), f(ω) has no real roots. (Notice that we are
considering a sequence of polynomials with positive leading coefficients.) Thus,
by Lemma 11.1, we complete the proof. �

Necessary and sufficient conditions are obtained in Theorem 11.5. By using
a computer, it is easy to get the sign list of the discriminant sequence for a
polynomial with symbolic coefficients [50, 52]. Thus, Theorem 11.5 provides
an efficient on-line algorithm for robust SPR synthesis.

Recently, Yang and Xia obtain a new criterion for the distribution of pos-
itive roots or negative roots of a polynomial [51]. It is similar to Lemma 11.1,
but is more efficient in computation.

The conditions in Theorem 11.5 are very complicated when expressed ex-
plicitly. Since a(s) and b(s) are both Hurwitz stable, by some simplification, we
can get simpler expressions. In what follows, we will present some simplified
expressions for SPR (WSPR) regions corresponding to third- and fourth-order
Hurwitz polynomials.
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Corollary 11.1. Given a(s) = s3 + a1s
2 + a2s + a3 ∈ H3, suppose that

b(s) = s2 + xs + y, (x, y) ∈ R2. Then p(s) :=
b(s)
a(s)

∈ WSPR if and only if

(x, y) ∈ ΩW
1a := {(x, y)| a2

2x
2 + 2(2a3 − a1a2)xy + a2

1y
2

− 2a2a3x− 2a1a3y + a2
3 < 0}

∪ {(x, y)|x ≤ a1, a2x− a1y − a3 ≥ 0, y > 0}.

�

Corollary 11.2. Given a(s) = s3 + a1s
2 + a2s + a3 ∈ H3, suppose that

b(s) = s3 + xs2 + ys + z, (x, y, z) ∈ R3. Then p(s) :=
b(s)
a(s)

∈ SPR if and only

if

(x, y, z) ∈ Ω1a := {(x, y, z)|z > 0,Δ3 < 0}
∪ {(x, y, z)|z > 0, p > 0,Δ1 > 0,Δ2 > 0,Δ3 ≥ 0}
∪ {(x, y, z)|p > 0,Δ1 = 0,Δ2 = 0,Δ3 = 0},

where
p = a1x− y − a2, r = a2y − a3x− a1z, t = a3z,

Δ1 = p2 − 3r, Δ2 = rp2 + 3tp− 4r2,

Δ3 = −4r3 + 18rtp + p2r2 − 4p3t− 27t2,

[D1, D2, D3, D4, D5, D6] = [1,−p,−pΔ1,Δ1Δ2,Δ2Δ3,−tΔ2
3]. �

Corollary 11.3. Given a(s) = s4 +a1s
3 +a2s

2 +a3s+a4 ∈ H4, suppose that

b(s) = s3 + xs2 + ys + z, (x, y, z) ∈ R3. Then p(s) :=
b(s)
a(s)

∈ WSPR if and

only if

(x, y, z) ∈ ΩW
1a := {(x, y, z)| x < a1, z > 0,Δ3 < 0}

∪ {(x, y, z)| x < a1, z > 0, p > 0,Δ1 > 0,Δ2 > 0,Δ3 ≥ 0}
∪ {(x, y, z)| x < a1, p > 0,Δ1 = 0,Δ2 = 0,Δ3 = 0}
∪ {(x, y, z)| x = a1, a1a2−a3−a1y+z > 0, z > 0,Δ′< 0}
∪ {(x, y, z)| x = a1, a1a2 − a3 − a1y + z > 0,

z > 0, p′ > 0, Δ′ ≥ 0}
∪ {(x, y, z)| x = a1, a1a2 − a3 − a1y + z = 0,

z > 0, a3y − a2z − a1a4 ≥ 0}.

where
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p =
a2x− a1y − a3 + z

a1 − x
, r =

a3y − a4x− a2z

a1 − x
, t =

a4z

a1 − x
,

Δ1 = p2 − 3r, Δ2 = rp2 + 3tp− 4r2,

Δ3 = −4r3 + 18rtp + p2r2 − 4p3t− 27t2,

[D1, D2, D3, D4, D5, D6] = [1,−p,−pΔ1,Δ1Δ2,Δ2Δ3,−tΔ2
3],

p′ =
a3y − a2z − a1a4

a1a2 − a3 − a1y + z
, r′ =

a4z

a1a2 − a3 − a1y + z
, Δ′ = p′2 − 4r′.

[D′
1, D

′
2, D

′
3, D

′
4] = [1,−p′,−p′Δ′, r′Δ′2]. �

The expressions in the corollaries above are complete for high-order sys-
tems. In principle, we can derive explicit expressions for higher-order systems.
But the resulting expressions become more and more complicated, and the
number of expressions also increase quickly. In the following corollary, the
so-called “lazy strategy” is employed to express the conditions [50, 52].

Corollary 11.4. Given a(s) = s4 + a1s
3 + a2s

2 + a3s + a4 ∈ H4, suppose

that b(s) = s4 + xs3 + ys2 + zs + u, (x, y, z, u) ∈ R4. Then p(s) :=
b(s)
a(s)

∈
SPR if and only if the number of sign changes ν in the revised sign list of
[D1, D2, D3, D4, D5, D6, D7, D8] and the number of non-zero elements μ sat-
isfy μ = 2ν, where

p = a1x− a2 − y, q = a4 + u + a2y − a3x− a1z,

r = a3z − a2u− a4y, t = a4u,

Δ1 = −8q + 3p2, Δ2 = 3rp + qp2 − 4q2,

Δ3 = 28qrp− 8q3 + 32tq − 6p3r + 2p2q2 − 12p2t− 36r2,

Δ4 = 18qpr2 − 7rp2t + q2p2r + 3qp3t− 16t2p− 4p3r2

− 4rq3 − 12q2pt + 48rtq − 27r3,

Δ5 = 144qt2p2 + 144qtr2 − 192rt2p + 18qr3p− 6p2tr2 − 4p2q3t

+ p2q2r2 + 18p3rtq − 80rptq2 − 128t2q2 − 4p3r3 − 27p4t2

− 27r4 − 4q3r2 + 16q4t + 256t3,

[D1, D2, D3, D4, D5, D6, D7, D8]

= [1,−p,−pΔ1,Δ1Δ2,Δ2Δ3,−Δ3Δ4,−Δ4Δ5, tΔ
2
5].

�
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11.5 Robust SPR Synthesis: Intersection of WSPR
Regions

Generally speaking, the design problem is more difficult than the analysis
problem, since it is usually constructive, i.e., it not only shows the existence
of the solution, but also provides a constructive procedure to find it. In this
section, we will propose an algorithm for robust design of SPR transfer func-
tions. This algorithm works well for both low-order and high-order polynomial
families. Illustrative examples are provided to show the effectiveness of this
algorithm.

Suppose that

F = {ai(s) = sn +
n∑

l=1

a
(i)
l sn−l, i = 1, 2, . . . ,m}.

How do we find a polynomial b(s), such that

pi(s) :=
b(s)
ai(s)

∈ SPR, i = 1, 2, . . . ,m?

As observed earlier, the existence of such a polynomial b(s) boils down to
the condition that the intersection of the SPR regions associated with ai(s)
is not empty. From the results in the previous section, we know that SPR
regions are unbounded, whereas monic WSPR regions are bounded. Thus,
from computational considerations, we first consider the intersection of monic
WSPR regions, and then construct a polynomial b(s) by using the technique
presented in the previous section.

Since SPR (WSPR) transfer functions with fixed numerator (or denomina-
tor) enjoy convexity property, namely, if there exists a polynomial c(s), such

that
c(s)
a(s)

and
c(s)
b(s)

are both SPR (WSPR), then, it is easy to verify that, for

any α ≥ 0, β ≥ 0 and (α, β) �= (0, 0), we have
c(s)

αa(s) + βb(s)
∈ SPR (WSPR).

Therefore, the assumptions made on F do not lose any generality. Actually,
the method proposed in this chapter also applies to convex combinations of
polynomials, interval polynomials, and more generally, polytopic polynomials
and multilinearly perturbed polynomials.

By the results presented in the last two sections, the problem above can
be transformed into checking first whether

⋂m
i=1 ΩW

1ai
is empty or not. If⋂m

i=1 ΩW
1ai
�= φ, then by Theorem 11.4, we can find a b(s). If

⋂m
i=1 ΩW

1ai
�= φ, it

is easy to see that
⋂m

i=1 ΩW
1ai

must be a bounded convex set, and it cannot be an
isolated point (see Theorems 11.2 and 11.3). Moreover, ΩW

1ai
, i = 1, 2, . . . ,m,

can be characterized by Theorem 11.5.
In fact, by the discussions in the last two sections, we can get some more

information about
⋂m

i=1 ΩW
1ai

. For example,
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(i)
⋂m

i=1 ΩW
1ai
⊂ {(x1, x2, . . . , xn−1)| 0 < x1 ≤ α1, 0 < x2 < α2, . . . , 0 <

xn−1 < αn−1}, where αl = min{a(i)
l , i = 1, 2, . . . ,m}, l = 1, 2, . . . , n − 1

(by Theorem 11.2 and its proof).
(ii) If b := (b1, b2, . . . , bn−1) ∈

⋂m
i=1 ΩW

1ai
, then the (n− 1)st-order polynomial

with coefficients (1, b1, b2, . . . , bn−1) is in Hn−1 (by Proposition 11.3).
(iii) If b := (b1, b2, . . . , bn−1) ∈

⋂m
i=1 ΩW

1ai
, then for i = 1, 2, . . . ,m, the polyno-

mials with coefficients (a(i)
1 − b1, a

(i)
2 − b2, . . . , a

(i)
n−1 − bn−1, a

(i)
n ), respec-

tively, are in Hn−1 ∪Hn−2 (by Theorem 11.2 and its proof).

The three points above are very useful in checking if
⋂m

i=1 ΩW
1ai

is empty
or not, and in effectively finding the elements of

⋂m
i=1 ΩW

1ai
.

By the results presented in the previous section, we propose the following
design procedure.

Step 1. Test the robust stability of the convex hull of F , i.e., F . If F is
robustly stable, then go to Step 2; otherwise, print “there does not exist such
a b(s)” (by Definition 11.1 and Definition 11.2).

Step 2. Let αl = min{a(i)
l , i = 1, 2, . . . ,m}, l = 1, 2, . . . , n − 1. Grid the

hyperrectangle

D := {(x1, x2, . . . , xn−1) | 0 < xl < αl, l = 1, 2, . . . , n− 1}
according to the precision required (by Theorem 11.2 and its proof).

Step 3. Take b := (b1, b2, . . . , bn−1) at each gridding point. Test whether
b belongs to

⋂m
i=1 ΩW

1ai
by the following steps:

(i) Test if the (n−1)st-order polynomial with coefficients (1, b1, b2, . . . , bn−1)
belongs to Hn−1 (by Proposition 11.3).

(ii) For i = 1, 2, . . . ,m, test if the polynomial with coefficients (a(i)
1 −b1, a

(i)
2 −

b2, . . . , a
(i)
n−1 − bn−1, a

(i)
n ) belongs to Hn−1 ∪Hn−2, respectively (by The-

orem 11.2 and its proof).
(iii) Test if b belongs to ΩW

1ai
, i = 1, 2, . . . ,m.

If all three points above are satisfied, go to the next step; otherwise, move
to the next gridding point and test the three points again (If all gridding points
have been tested, then print “there does not exist such a b in

⋂m
i=1 ΩW

1ai
with

the given precision”).
Step 4. Take a sufficiently small ε > 0 such that

(ε, 1, b1, b2, . . . , bn−1) ∈
m⋂

i=1

Ωai
.

Hence, the nth-order polynomial with coefficients (ε, 1, b1, b2, . . . , bn−1) satis-
fies the design requirement (by Theorem 11.4).

In the next two sections, we will show that for the low-order stable inter-
val polynomial family (n ≤ 4) or arbitrary order stable convex combination,
existence of the solution to the design problem is always guaranteed. Given
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adequate precision, our method will surely find a polynomial that satisfies the
design requirement. As shown by numerous examples below, our method is
also effective for higher-order polynomial families.

Example 11.1. Suppose that F = {a1(s) = s4 +11s3 +56s2 +88s+1, a2(s) =
s4 + 11s3 + 56s2 + 88s + 50, a3(s) = s4 + 89s3 + 56s2 + 88s + 1, a4(s) =
s4 + 89s3 + 56s2 + 88s + 50}. It is easy to see that the convex hull F of F is
robustly stable [30]. Using our method, it is easy to get b(s) = s3 + 3.3s2 +
2.24s + 1.76 ∈ ⋂4

i=1 ΩW
1ai

(Note also that, in this example, b(s) is not unique.
Using our method, we can get all such b(s)’s with given precision. This is also
true for the examples below.) Thus, let c(s) := εs4 + b(s), ε > 0, ε sufficiently
small, e.g., take ε ≤ 0.3 (ε is determined by Theorem 11.4), then the design
requirement has been met. �

In this example, if we take F = {a1(s) = s4 + 11s3 + 56s2 + 88s + 50,
a2(s) = s4 + 89s3 + 56s2 + 88s+ 50}, then it is just the counterexample given
in [12]. It can be verified that the sufficient conditions presented in [5, 18] are
not satisfied. But we can use the methods in [26, 27, 35] to do SPR synthesis.
When F is enlarged to be the set of four polynomials as in this example, the
methods in [26, 27, 35] do not work either. Using our method, it is easy to get
the design done.

In what follows, we will provide some more examples for higher-order poly-
nomial families.

Example 11.2. Suppose that F = {a1(s) = s6 + 3.5s5 + 26.5s4 + 60.5s3 +
61s2 + 27.5s + 4.5, a2(s) = s6 + 8.5s5 + 33.5s4 + 59.5s3 + 59s2 + 32.5s + 7.5,
a3(s) = s6 + 8.5s5 + 26.5s4 + 59.5s3 + 61s2 + 32.5s+ 4.5, a4(s) = s6 + 3.5s5 +
33.5s4 + 60.5s3 + 59s2 + 27.5s + 7.5}. It is easy to see that the convex hull F
of F is robustly stable [30]. Using our method, it is easy to get b(s) = s5 +
3.15s4 +13s3 +19.83s2 +14.75s+5.5 ∈ ⋂4

i=1 ΩW
1ai

. Thus, let c(s) := εs6 +b(s),
ε > 0, ε sufficiently small, e.g., take ε ≤ 0.003, then the design requirement
has been met. �

Example 11.3. Suppose that F = {a1(s) = s6 +12s5 +70s4 +300s3 +500s2 +
600s + 300, a2(s) = s6 + 14s5 + 70s4 + 240s3 + 500s2 + 700s + 300, a3(s) =
s6 + 12s5 + 80s4 + 300s3 + 450s2 + 600s + 400, a4(s) = s6 + 14s5 + 80s4 +
240s3 + 500s2 + 700s + 400}. It is easy to see that the convex hull F of F
is robustly stable [30]. Using our method, it is easy to get b(s) = s5 + 6s4 +
35s3 + 80s2 + 120s + 120 ∈ ⋂4

i=1 ΩW
1ai

. Thus, let c(s) := εs6 + b(s), ε > 0, ε
sufficiently small, e.g., take ε ≤ 0.03, then the design requirement has been
met. �

Example 11.4. Suppose that F = {a1(s) = s7 +9s6 +31s5 +71.5s4 +111.5s3 +
109s2+76s+12.5, a2(s) = s7+9.5s6+31s5+71s4+111.5s3+109.5s2+76s+12,
a3(s) = s7 + 9s6 + 31.5s5 + 71.5s4 + 111s3 + 109s2 + 76.5s + 12.5, a4(s) =
s7 +9.5s6 +31.5s5 +71s4 +111s3 +109.5s2 +76.5s+12}. It is easy to see that
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the convex hull F of F is robustly stable [30]. Using our method, it is easy to
get b(s) = s6 + 7.2s5 + 18.6s4 + 42.6s3 + 44.4s2 + 43.6s + 15.2 ∈ ⋂4

i=1 ΩW
1ai

.
Then let c(s) := εs7 + b(s), where ε > 0 is sufficiently small, e.g., let ε ≤ 0.1,
it is easy to check that the design requirement has been met. �

The three examples above are taken from [9], where only Hurwitz stability
was discussed. Robust SPR synthesis was not discussed there.

Example 11.5. Let F = {a1(s) = s9 + 11s8 + 52s7 + 145s6 + 266s5 + 331s4 +
280s3 + 155s2 + 49s+ 6, a2(s) = s9 + 11s8 + 52s7 + 146s6 + 265.5s5 + 332s4 +
278.5s3 + 151s2 + 48s + 2}. It can be verified that a2(s) − a1(s) = s6 −
0.5s5 + s4 − 1.5s3 − 4s2 − s − 4 satisfies the extended alternating Hurwitz
minor condition [10, 37], namely, it is a convex direction for Hurwitz stability
[10, 37]. Moreover, it is easy to see that a1(s) and a2(s) are both Hurwitz
stable polynomials. Thus, the convex hull F of F is robustly stable [10, 37].
Using our method, it is easy to get b(s) = s8+8.8s7+41.6s6+87s5+159.3s4+
132.4s3 + 111.4s2 + 30.2s + 9.6 ∈ ΩW

1a1
∩ ΩW

1a2
. Thus, let c(s) := εs9 + b(s),

ε > 0, ε sufficiently small, e.g., take ε ≤ 0.07, then the design requirement has
been met. �

Note that our design method is also effective when dealing with discrete
time systems. Note also that, in Examples 11.1–11.5, b(s) is not unique. Using
our method, we can get all such b(s)s with given precision.

It should be pointed out that there is hardly any example with order higher
than 4 in the literature. In 1998, a sixth-order example of interval family was
given in [32] as follows. Unfortunately, that example is incorrect.

Example 11.6. Suppose that F = {a1(s) = s6 + 0.8s5 + 58.06s4 + 50.9s3 +
1028.5s2 +163.82s+1042.5, a2(s) = s6 +1.5s5 +58.06s4 +28.3s3 +1028.5s2 +
376.36s+1042.5, a3(s) = s6 +0.8s5 +68.62s4 +50.9s3 +755.47s2 +163.82s+
3286.7, a4(s) = s6 + 1.5s5 + 68.62s4 + 28.3s3 + 755.47s2 + 376.36s + 3286.7}.
Find a polynomial b(s), such that pi(s) :=

b(s)
ai(s)

∈ SPR, i = 1, 2, 3, 4.

By Definitions 11.1 and 11.2 and Proposition 11.3, a prerequisite of the
robust SPR design problem is that the convex hull F of F is robustly stable.
But it is easy to check that F is not robustly stable. In fact, (1.0446±5.8969i)
are roots of a1(s) with positive real part; (1.037± 4.9835i) are roots of a2(s)
with positive real part; (0.03291±7.5026i) and (0.68089±2.4933i) are roots of
a3(s) with positive real part; (0.87123±2.867i) are roots of a4(s) with positive
real part. Thus, it does not make sense to consider robust SPR design in this
case. �

11.6 Applications to Robust SPR Synthesis for
Low-order Systems

In this section, it is shown that the derived conditions presented in the pre-
vious sections are necessary and sufficient for robust SPR design of low-order
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(n ≤ 4) polynomial segment or interval polynomials. For low-order (n ≤ 4)
robustly stable polynomial segments and interval polynomial families, it is
verified that there always exists a fixed polynomial such that their ratio is
SPR-invariant. A rigorous proof is given for Anderson’s claim [5, 12] on SPR
synthesis of the fourth-order stable interval polynomials. Moreover, the close
relationship between SPR synthesis for low-order polynomial segment and
SPR synthesis for low-order interval polynomials is also discussed.

Denote that F = {ai(s) = sn+
∑n

l=1 a
(i)
l sn−l, i = 1, 2} as the two endpoint

polynomials of a polynomial segment F (convex combination), it is easy to
prove the following lemma.

Lemma 11.2 ([5]). If F = {ai(s) = sn +
∑n

l=1 a
(i)
l sn−l, i = 1, 2} is the

set of the two endpoint polynomials of a segment of polynomials F (convex
combination), then there exists a fixed polynomial b(s) such that ∀a(s) ∈ F ,
b(s)
a(s)

is strictly positive real, if and only if
b(s)
ai(s)

, i = 1, 2, are strictly positive

real. �

Consider an interval polynomial family

K = {a(s) = sn +
n∑

i=1

ais
n−i, ai ∈ [a−i , a+

i ], i = 1, 2, . . . , n}.

Denote
a1(s) = sn + · · ·+ a+

n−3s
3 + a+

n−2s
2 + a−n−1s + a−n ,

a2(s) = sn + · · ·+ a−n−3s
3 + a−n−2s

2 + a+
n−1s + a+

n ,

a3(s) = sn + · · ·+ a+
n−3s

3 + a−n−2s
2 + a−n−1s + a+

n ,

a4(s) = sn + · · ·+ a−n−3s
3 + a+

n−2s
2 + a+

n−1s + a−n ,

and F = {ai(s) = sn +
∑n

l=1 a
(i)
l sn−l, i = 1, 2, 3, 4} as the set of the four

Kharitonov vertex polynomials of the interval polynomial family K [30].

Lemma 11.3 ([30]). If F = {ai(s) = sn +
∑n

l=1 a
(i)
l sn−l, i = 1, 2, 3, 4} is

the set of the four Kharitonov vertex polynomials of the interval polynomial
family K, then K is robustly stable if and only if ai(s) ∈ Hn, i = 1, 2, 3, 4. �

The following result was proved by Dasgupta and Bhagwat [18].

Lemma 11.4 ([18]). If F = {ai(s) = sn +
∑n

l=1 a
(i)
l sn−l, i = 1, 2, 3, 4} is

the set of the four Kharitonov vertex polynomials of the interval polynomial

family K, then there exists a fixed polynomial b(s) such that ∀a(s) ∈ K,
b(s)
a(s)

is strictly positive real, if and only if
b(s)
ai(s)

, i = 1, 2, 3, 4, are strictly positive

real. �
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11.6.1 The Third-order SPR Synthesis

First, for a low-order (n ≤ 3) stable convex combination of polynomials, we
have the following lemmas.

Lemma 11.5. Let a(s) = s3 + a1s
2 + a2s + a3 ∈ H3. Then the following

quadratic curve

a2
2x

2 + 2(2a3 − a1a2)xy + a2
1y

2 − 2a2a3x− 2a1a3y + a2
3 = 0

is an ellipse lying in the first quadrant of the x-y plane. Moreover, this elliptic

curve is tangent to lines x = 0, y = 0, x = a1, and y = a2 at
(

0,
a3

a1

)
,(

a3

a2
, 0
)

,

(
a1, a2 − a3

a1

)
, and

(
a1 − a3

a2
, a2

)
, respectively.

Proof. Since a(s) = s3 + a1s
2 + a2s + a3 ∈ H3, it is straightforward to verify

the above conclusions. �

Lemma 11.6. Assume that a(s) = s3 + a1s
2 + a2s + a3 ∈ H3. Let c(s) =

s2 + xs + y, (x, y) ∈ R2. Then ∀ω ∈ R, Re
[
c(jω)
a(jω)

]
> 0 if and only if

(x,y) ∈ Ω

= {(x, y)
∣∣ a2

2x
2 + 2(2a3 − a1a2)xy + a2

1y
2 − 2a2a3x− 2a1a3y + a2

3 < 0}
∪ {(x, y)|x ≤ a1, a2x− a1y − a3 ≥ 0, y > 0}.

Proof. Since a(s) = s3 + a1s
2 + a2s + a3 ∈ H3 and c(s) = s2 + xs + y,

(x, y) ∈ R2, for all ω ∈ R,

Re
[
c(jω)
a(jω)

]
> 0

⇔ Re
[
c(jω)
a(jω)

]
=

1
|a(jω)|2 [(a1 − x)ω4 + (a2x− a1y − a3)ω2 + a3y] > 0

⇔ (i) a1 − x > 0, a3y > 0, [a2x − a1y − a3]2 − 4(a1 − x)a3y < 0, or (ii)
a1 − x ≥ 0, a2x− a1y − a3 ≥ 0, y > 0
⇔ (x, y) ∈ Ω (see Lemma 11.5). �

Lemma 11.6 is consistent with Corollary 11.1.
Denote

Ωa
e := {(x, y)

∣∣ a2
2x

2 + 2(2a3 − a1a2)xy + a2
1y

2 − 2a2a3x− 2a1a3y + a2
3 < 0},

Ωa
t :=

{
(x, y)

∣∣ x ≤ a1, a2x− a1y − a3 ≥ 0, 0 < y ≤ a2 − a3

a1

}
,

Ωb
e := {(x, y)

∣∣ b22x2 + 2(2b3 − b1b2)xy + b21y
2 − 2b2b3x− 2b1b3y + b23 < 0},

Ωb
t :=

{
(x, y)

∣∣ x ≤ b1, b2x− b1y − b3 ≥ 0, 0 < y ≤ b2 − b3
b1

}
.
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Lemma 11.7. Let a(s) = s3 + a1s
2 + a2s + a3 ∈ H3 and b(s) = s3 + b1s

2 +
b2s+b3 ∈ H3. Then Ωa

t ∩Ωb
t �= φ⇒ Ωa

e ∩Ωb
e �= φ; Ωa

t ∩Ωb
e �= φ⇒ Ωa

e ∩Ωb
e �= φ;

Ωa
e ∩Ωb

t �= φ⇒ Ωa
e ∩Ωb

e �= φ.

Proof. Without loss of generality, let b1 ≥ a1.

If Ωa
t ∩ Ωb

t �= φ, then
b3
b2
≤ a1. When

b3
b2
≥ a3

a2
, the open straight line

segment B1B2 linking the points B1

(
b3
b2

, 0
)

and B2

(
0,

b3
b1

)
must intersect

with Ωa
e , since B1B2 ⊂ Ωb

e (see Lemma 11.5). We conclude that Ωa
e ∩ Ωb

e �=
φ. When

b3
b2
≤ a3

a2
, the open straight line segment B1B′

2 linking the points

B1

(
b3
b2

, 0
)

and B′
2

(
b1, b2 − b3

b1

)
must intersect with Ωa

e , since B1B′
2 ⊂ Ωb

e

(see Lemma 11.5). We conclude that Ωa
e ∩Ωb

e �= φ.
If Ωa

t ∩ Ωb
e �= φ, by the definitions of Ωa

t and Ωb
e and the propositions of

Ωa
e and Ωb

e (see Lemma 11.5), the open straight line segment A1A2 linking

the points A1

(
a3

a2
, 0
)

and A2

(
a1, a2 − a3

a1

)
must intersect with Ωb

e, since

A1A2 ⊂ Ωa
e . We conclude that Ωa

e ∩ Ωb
e �= φ. Similarly, we can prove that

Ωa
e ∩Ωb

t �= φ⇒ Ωa
e ∩Ωb

e �= φ. �

Lemma 11.8. Assume that a(s) = s3 + a1s
2 + a2s + a3 ∈ H3 and b(s) =

s3+b1s
2+b2s+b3 ∈ H3. Let c(s) = s2+xs+y. Then ∀ω ∈ R,Re

[
c(jω)
a(jω)

]
> 0

and Re
[
c(jω)
b(jω)

]
> 0 if and only if Ωa

e ∩Ωb
e �= φ.

Proof. Denote Ωa := Ωa
e ∪ Ωa

t and Ωb := Ωb
e ∪ Ωb

t . Since a(s) = s3 + a1s
2 +

a2s + a3 ∈ H3, b(s) = s3 + b1s
2 + b2s + b3 ∈ H3, and c(s) = s2 + xs + y, for

all ω ∈ R,

Re
[
c(jω)
a(jω)

]
> 0 and Re

[
c(jω)
b(jω)

]
> 0

⇔ Ωa ∩Ωb �= φ (see Lemma 11.6)
⇔ Ωa ∩Ωb = (Ωa

e ∪Ωa
t ) ∩ (Ωb

e ∪Ωb
t ) �= φ

⇔ (Ωa
e ∪Ωa

t )∩(Ωb
e∪Ωb

t ) = (Ωa
e ∩Ωb

e)∪(Ωa
t ∩Ωb

e)∪(Ωa
e ∩Ωb

t )∪(Ωa
t ∪Ωb

t ) �= φ

⇔ Ωa
e ∩Ωb

e �= φ (see Lemma 11.7). �

Lemma 11.9. If a(s) = s3+a1s
2+a2s+a3 ∈ H3, b(s) = s3+b1s

2+b2s+b3 ∈
H3, c(s) = s2 + xs + y,∀ω ∈ R, Re

[
c(jω)
a(jω)

]
> 0 and Re

[
c(jω)
b(jω)

]
> 0, let

c̃(s) := c(s) + r · a(s), r > 0, r small enough, or

c̃(s) := c(s) + r · b(s), r > 0, r small enough.
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Then both
c̃(s)
a(s)

and
c̃(s)
b(s)

are SPR.

Proof. See the proof of Theorem 11.4.

Lemma 11.10. Let a(s) = s3 + a1s
2 + a2s+ a3 ∈ H3 and b(s) = s3 + b1s

2 +
b2s+ b3 ∈ H3. Then Ωa

e ∩Ωb
e �= φ if and only if λb(s) + (1− λ)a(s) ∈ H3, λ ∈

[0, 1].

Proof. Necessity. If Ωa
e ∩ Ωb

e �= φ, by Lemma 11.8, there exists a polynomial

c(s) = s2 +xs+y such that ∀ω ∈ R,Re
[
c(jω)
a(jω)

]
> 0 and Re

[
c(jω)
b(jω)

]
> 0. By

Lemma 11.9, we can obtain a polynomial c̃(s) such that both
c̃(s)
a(s)

and
c̃(s)
b(s)

are SPR. It is easy to verify that λ ∈ [0, 1],
c̃(s)

λb(s) + (1− λ)a(s)
is also SPR.

From the Proposition 11.3, we can conclude that λb(s) + (1 − λ)a(s) ∈ H3,
λ ∈ [0, 1].

Sufficiency. ∀λ ∈ [0, 1], λb(s)+(1−λ)a(s) ∈ H3, this implies ai > 0, bi > 0,
i = 1, 2, 3, and for all λ ∈ [0, 1]

[(b1−a1)(b2−a2)]λ2+[a1(b2−a2)+a2(b1−a1)−(b3−a3)]λ+[a1a2−a3] > 0. (11.2)

Assume that Ωa
e ∩Ωb

e = φ. Without loss of generality, let b1 >
b3
b2

> a1 >

a3

a2
, b2 >

b3
b1

> a2 >
a3

a1
. Therefore, ∃u ∈ [a1, b1], v ∈ [a2, b2] such that the

following straight line l

l :
x

u
+

y

v
= 1

is tangent to Ωa
e and Ωb

e simultaneously.
Since l is tangent to Ωa

e , consider the following equations{ x

u
+

y

v
= 1,

a2
2x

2 + 2(2a3 − a1a2)xy + a2
1y

2 − 2a2a3x− 2a1a3y + a2
3 = 0.

(11.3)

Notice that the Hurwitzness of the polynomial a(s), via a lengthy but straight-
forward computation, can be verified so that the following equation holds:

uv − a2u + a3 − a1v = 0. (11.4)

Since l is tangent to Ωb
e, for the same reasons, we have

uv − b2u + b3 − b1v = 0. (11.5)

Combining (11.4) and (11.5), we take u1 = u− a1, v1 = v − a2, and obtain
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u1v1 = a1a2 − a3,
u1v1 + [a2 − b2]u1 + [a1 − b1]v1 + [a1a2 − a1b2 − a2b1 + b3] = 0, (11.6)

which yields

(b2−a2)
u2

1

(b1−a1)
+[a1(b2−a2)+a2(b1−a1)−(b3−a3)]

u1

(b1−a1)
+[a1a2−a3] = 0.

Let λ̃ =
u1

(b1 − a1)
. Obviously, λ̃ ∈ [0, 1]. It follows that

[(b1−a1)(b2−a2)]λ̃2+[a1(b2−a2)+a2(b1−a1)− (b3−a3)]λ̃+[a1a2−a3] = 0.
(11.7)

This equation contradicts (11.2), which completes the proof.

Then we can obtain the following theorem.

Theorem 11.6. Let a(s) = s3 + a1s
2 + a2s+ a3 ∈ H3 and b(s) = s3 + b1s

2 +
b2s + b3 ∈ H3. A necessary and sufficient condition for the existence of c(s)
such that both c(s)/a(s) and c(s)/b(s) are SPR is

λb(s) + (1− λ)a(s) ∈ H3, λ ∈ [0, 1].

Proof. Combining Lemmas 11.5–11.10, one can easily complete the proof of
the theorem. �

The cases of n < 3 are trivial. The conditions of Lemma 11.8 can easily
be checked by plotting of Ωa

e and Ωb
e in the x-y plane with a computer.

Given an interval stable polynomial of nth degree, n ≤ 3, using the above
method, one can easily find a fixed polynomial which SPR stabilizes the whole
interval polynomials. In fact, we have the following theorem.

Theorem 11.7. If

F = {ai(s) = sn +
n∑

l=1

a
(i)
l sn−l, i = 1, 2, 3, 4}

is the set of the four Kharitonov vertex polynomials of a low-order (n ≤ 3)
stable interval polynomial family, then we have

⋂4
i=1 ΩW

1ai
�= φ.

Proof. The statement is obviously true for the cases when n = 1 or n = 2.
We will prove it for the case when n = 3.

Suppose that F is the set of the four Kharitonov vertex polynomials of
the 3rd-order interval polynomial family s3 + αs2 + βs + γ, α ∈ [a1, a1],
β ∈ [a2, a2], γ ∈ [a3, a3], and F ⊂ H3. Obviously, we have a1a2−a3 > 0. Now
take x, y in such a way that y > 0 is sufficiently small, 0 < x < a1, and x is
sufficiently close to a1, such that a2x− a3 − a1y > 0. It is easy to verify that
(x, y) ∈ ⋂4

i=1 ΩW
1ai

. This completes the proof. �
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11.6.2 The Fourth-order SPR Synthesis

For a fourth-order stable interval polynomial family, or stable convex combi-
nation of two polynomials, does there exist a polynomial such that their ratios
are SPR-invariant? This section gives this problem a positive answer.

Consider the fourth-order interval polynomials given by

K = {a(s) = s4 + a1s
3 + a2s

2 + a3s + a4, ai ∈ [a−i , a+
i ], i = 1, 2, 3, 4}.

Denote
a1(s) = s4 + a+

1 s3 + a+
2 s2 + a−3 s + a−4 ,

a2(s) = s4 + a−1 s3 + a−2 s2 + a+
3 s + a+

4 ,

a3(s) = s4 + a+
1 s3 + a−2 s2 + a−3 s + a+

4 ,

a4(s) = s4 + a−1 s3 + a+
2 s2 + a+

3 s + a−4 ,

as the four Kharitonov vertex polynomials of K [30].

Lemma 11.11. Suppose that a(s) = s4 + a1s
3 + a2s

2 + a3s+ a4 ∈ H4. Then
the following quadratic curve is an ellipse in the first quadrant of the x-y
plane:

(a2
2 − 4a4)x2 + 2(2a3 − a1a2)xy + a2

1y
2

−2(a2a3 − 2a1a4)x− 2a1a3y + a2
3 = 0

and this ellipse is tangent to the y axis at (0,
a3

a1
), tangent to the lines x =

a1 and a3y − a4x = 0 at
(
a1, a2 − a3

a1

)
and

(
a2
3

a2a3 − a1a4
,

a3a4

a2a3 − a1a4

)
,

respectively.

Proof. Since a(s) is Hurwitz stable, Lemma 11.11 is proved by a direct calcu-
lation. �

Let a(s) = s4 + a1s
3 + a2s

2 + a3s + a4 ∈ H4. For notational simplicity,
denote

Ωa
e := {(x, y)| (a2

2 − 4a4)x2 + 2(2a3 − a1a2)xy + a2
1y

2

−2(a2a3 − 2a1a4)x− 2a1a3y + a2
3 < 0}

Ωa
t := {(x, y)| a1 − x ≥ 0, a2x− a1y − a3 ≥ 0,

a3y − a4x ≥ 0}
Ωa := Ωa

e ∪Ωa
t .

Apparently, Ωa is a bounded convex set in the x-y plane.

Lemma 11.12. Suppose that a(s) = s4 + a1s
3 + a2s

2 + a3s + a4 ∈ H4 and
(x, y) ∈ Ωa. Let c(s) := s3 + xs2 + ys + ε, where ε is positive and sufficiently

small, then ∀ω ∈ R, Re
[
c(jω)
a(jω)

]
> 0, namely, (x, y, ε) ∈ ΩW

1a .
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Proof. Suppose that (x, y) ∈ Ωa. Let c(s) := s3 + xs2 + ys + ε, where ε > 0
and ε is sufficiently small.
∀ω ∈ R, consider

Re
[
c(jω)
a(jω)

]
=

1
|a(jω)|2 [(a1 − x)ω6

+ (a2x− a1y − a3)ω4 + (a3y − a4x)ω2

+ ε(ω4 − a2ω
2 + a4)].

In order to prove that ∀ω ∈ R, Re
[
c(jω)
a(jω)

]
> 0, let t = ω2. We only need

to prove that, for any ε > 0, ε sufficiently small,

f(t) := t[(a1 − x)t2 + (a2x− a1y − a3)t + (a3y − a4x)]
+ε(t2 − a2t + a4) > 0, ∀t ∈ [0,+∞).

Since (x, y) ∈ Ωa, by definition of Ωa and Lemma 11.11, (x, y) satisfies
a1 − x > 0, a3y − a4x > 0, and

[a2x− a1y − a3]2 − 4(a1 − x)(a3y − a4x) < 0,

or
a1 − x ≥ 0, a2x− a1y − a3 ≥ 0, a3y − a4x ≥ 0.

Since a(s) ∈ H4, a1 − x, a2x− a1y − a3 and a3y − a4x cannot be 0 simulta-
neously. Thus, ∀t ∈ (0,+∞)

(a1 − x)t2 + (a2x− a1y − a3)t + (a3y − a4x) > 0.

On the other hand, we have f(0) > 0, and for any ε > 0, if t is a sufficiently
large or a sufficiently small positive number, we have f(t) > 0. Namely, there
exist 0 < t1 < t2 such that, for all ε > 0, t ∈ [0, t1] ∪ [t2,+∞), f(t) > 0.

Denote

M = inf
t∈[t1,t2]

t[(a1 − x)t2 + (a2x− a1y − a3)t + (a3y − a4x)],

N = sup
t∈[t1,t2]

|t2 − a2t + a4|.

Then M > 0 and N > 0. Choosing 0 < ε <
M

N
, by a direct calculation, we

have

f(t) = t[(a1 − x)t2 + (a2x− a1y − a3)t + (a3y − a4x)]

+ ε(t2 − a2t + a4) > 0, ∀t ∈ [0,+∞).

Namely

∀ω ∈ R, Re
[
b(jω)
a(jω)

]
> 0.

This completes the proof. �
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Lemma 11.13. Suppose that a(s) = s4 + a1s
3 + a2s

2 + a3s + a4 ∈ H4,
b(s) = s4 + b1s

3 + b2s
2 + b3s+ a4 ∈ H4, if λb(s)+ (1−λ)a(s) ∈ H4, λ ∈ [0, 1],

then Ωa
e

⋂
Ωb

e �= φ.

Proof. If ∀λ ∈ [0, 1], λb(s) + (1 − λ)a(s) ∈ H4, by Lemma 11.11, for any
λ ∈ [0, 1],

Ωaλ
e := {(x, y)|(a2

λ2 − 4aλ4)x2 + 2(2aλ3 − aλ1aλ2)xy + a2
λ1y

2

− 2(aλ2aλ3 − 2aλ1aλ4)x− 2aλ1aλ3y + a2
λ3 < 0}

is also an elliptic region in the first quadrant of the x-y plane, where aλi :=
ai + λ(bi − ai), i = 1, 2, 3, 4. Apparently, when λ changes continuously from 0
to 1, Ωaλ

e will change continuously from Ωa
e to Ωb

e.
Now assume Ωa

e ∩ Ωb
e = φ, by Lemma 11.11 (without loss of generality,

suppose that b3/b1 > a3/a1), ∃v ∈
[
a3

a1
,
b3
b1

]
and u �= 0, such that the following

line l
l :

x

u
+

y

v
= 1

is tangent to Ωa
e and Ωb

e simultaneously.
Since l is tangent to Ωa

e , consider⎧⎪⎨
⎪⎩

x

u
+

y

v
= 1,

(a2
2 − 4a4)x2 + 2(2a3 − a1a2)xy + a2

1y
2

−2(a2a3 − 2a1a4)x− 2a1a3y + a2
3 = 0.

(11.8)

Since a(s) is Hurwitz stable and u �= 0, by a direct calculation, we know that
the necessary and sufficient condition for l being tangent to Ωa

e is

uv2 − a1v
2 − a2uv + a3v + a4u = 0. (11.9)

Since l is tangent to Ωb
e, for the same reason, we have:

uv2 − b1v
2 − b2uv + b3v + b4u = 0. (11.10)

From (11.9) and (11.10), we obviously have ∀λ ∈ [0, 1],

uv2 − aλ1v
2 − aλ2uv + aλ3v + aλ4u = 0. (11.11)

Equation (11.11) shows that l is also tangent to Ωaλ
e (∀λ ∈ [0, 1]), but l

separates Ωa
e and Ωb

e, and when λ changes continuously from 0 to 1, Ωaλ
e

will change continuously from Ωa
e to Ωb

e, which is obviously impossible. This
completes the proof. �
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Lemma 11.14. If F = {ai(s), i = 1, 2, 3, 4} is the set of the four Kharitonov
vertex polynomials of a fourth-order stable interval polynomial family, then
Ωa2 ⊂ Ωa4 and Ωa3 ⊂ Ωa1 .

Proof. By the definition of Ωa, it is easy to see that

Ωa1 ={(x, y)|(a+
1 −x)t2 +(a+

2 x−a+
1 y−a−3 )t+(a−3 y−a−4 x) > 0,∀t ∈ [0,∞)},

Ωa2 ={(x, y)|(a−1 −x)t2 +(a−2 x−a−1 y−a+
3 )t+(a+

3 y−a+
4 x) > 0,∀t ∈ [0,∞)},

Ωa3 ={(x, y)|(a+
1 −x)t2 +(a−2 x−a+

1 y−a−3 )t+(a−3 y−a+
4 x) > 0,∀t ∈ [0,∞)},

Ωa4 ={(x, y)|(a−1 −x)t2 +(a+
2 x−a−1 y−a+

3 )t+(a+
3 y−a−4 x) > 0,∀t ∈ [0,∞)}.

Obviously, we have Ωa2 ⊂ Ωa4 and Ωa3 ⊂ Ωa1 . This completes the proof. �

Lemma 11.15. If F = {ai(s), i = 1, 2, 3, 4} is the set of the four Kharitonov
vertex polynomials of a fourth-order stable interval polynomial family, then⋂4

i=1 Ωai �= φ. �

Lemma 11.15 plays an important role in proving Anderson’s claim on
robust SPR synthesis for the fourth-order stable interval polynomial family.
For a complete understanding of it, we give three different proofs in the sequel.

Proof. Method 1. By Lemma 11.14, we only need to prove that Ωa2∩Ωa3 �= φ,
By Lemma 11.13, we know that Ωa2

e ∩ Ωa3
e �= φ, but Ωa2 = Ωa2

e ∪ Ωa2
t and

Ωa3 = Ωa3
e ∪Ωa3

t . Thus, Ωa2 ∩Ωa3 �= φ. This completes the proof. �

Proof. Method 2. Since F is the set of the four Kharitonov vertex polyno-
mials of a fourth-order stable interval polynomial family, by Lemma 11.11,

in the x-y plane, Ωa2
e and Ωa4

e are both tangent to x = 0 at
(

0,
a+
3

a−1

)
(de-

note this tangent point as A24); Ωa1
e and Ωa3

e are both tangent to x = 0

at
(

0,
a−3
a+
1

)
(denote this tangent point as A13). Denote the tangent point of

Ωa2
e (Ωa4

e ) and x = a−1 as A2(a−1 , a−2 − a+
3 /a−1 ) (A4(a−1 , a+

2 − a+
3 /a−1 )); and

denote the tangent point of Ωa1
e ( Ωa3

e ) and x = a+
1 as A1(a+

1 , a+
2 − a−3 /a+

1 )
(A3(a+

1 , a−2 −a−3 /a+
1 )). Furthermore, denote the intersection points of x = a−1

and the straight lines a+
3 y − a+

4 x = 0, a+
3 y − a−4 x = 0 as B2

(
a−1 ,

a−1 a+
4

a+
3

)
,

B4

(
a−1 ,

a−1 a−4
a+
3

)
, respectively; and denote the intersection points of x = a+

1

and the straight lines a−3 y − a−4 x = 0, a−3 y − a+
4 x = 0 as B1

(
a+
1 ,

a+
1 a−4
a−3

)
,

B3

(
a+
1 ,

a+
1 a+

4

a−3

)
, respectively.

In what follows, [A,B] stands for the set of points in the line segment
connecting the point A and the point B, including the endpoints A and B,
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(A,B] stands for the set of points in the line segment connecting the point A
and the point B, including the endpoint B, but not A. Then it is easy to see
that [A2, B2] ⊂ Ωa2 , [A2, B2] ⊂ [A4, B4] ⊂ Ωa4 , [A3, B3] ⊂ Ωa3 , [A3, B3] ⊂
[A1, B1] ⊂ Ωa1 , and (A24, A2] ⊂ Ωa2 , (A24, A2] ⊂ Ωa4 , (A13, A3] ⊂ Ωa3 ,
(A13, A3] ⊂ Ωa1 .

Denote A�
3 as

(
a−1 ,

(
a−2
a+
1

− 2
a−3
a+
1

2

)
a−1 +

a−3
a+
1

)
. Then, A�

3 ∈ (A13, A3].

If
a+
3

a−1
=

a−3
a+
1

, i.e., a−1 = a+
1 and a−3 = a+

3 . Then, take δ > 0, δ sufficiently

small. By Lemma 11.11, it is easy to verify that
(
δ,

a+
3

a−1

)
∈ ⋂4

i=1 Ωai
e . Thus,⋂4

i=1 Ωai �= φ.

Now, suppose that
a+
3

a−1
>

a−3
a+
1

and

a−2 −
a+
3

a−1
≥
(

a−2
a+
1

− 2
a−3
a+
1

2

)
a−1 +

a−3
a+
1

.

It is easy to verify that(
a−2
a+
1

− 2
a−3
a+
1

2

)
a−1 +

a−3
a+
1

>
a−1 a+

4

a+
3

.

Thus, we have A�
3 ∈ [A2, B2]. Hence A�

3 ∈ [A2, B2]
⋂

(A13, A3]. Therefore
A�

3 ∈
⋂4

i=1 Ωai . Thus
⋂4

i=1 Ωai �= φ.

Finally, with
a+
3

a−1
>

a−3
a+
1

, if

a−2 −
a+
3

a−1
<

(
a−2
a+
1

− 2
a−3
a+
1

2

)
a−1 +

a−3
a+
1

,

then it is easy to see that (A13, A3]∩(A24, A2] �= φ and (A13, A3]∩(A24, A2] ⊂⋂4
i=1 Ωai . Thus, we also have

⋂4
i=1 Ωai �= φ. This completes the proof. �

Proof. Method 3. A13

(
0,

a−3
a+
1

)
, A24

(
0,

a+
3

a−1

)
, B2

(
a−1 ,

a−1 a+
4

a+
3

)
, and B3

(
a+
1 ,

a+
1 a+

4

a−3

)
are defined identically as in the Method 2 above. (A,B) stands for

the set of points in the line segment connecting the point A and the point B,
but not including the endpoints A and B.

If
a+
3

a−1
=

a−3
a+
1

, i.e., a−1 = a+
1 and a−3 = a+

3 . Then, take δ > 0, δ sufficiently

small. By Lemma 11.11, it is easy to verify that
(
δ,

a+
3

a−1

)
∈ ⋂4

i=1 Ωai
e . Thus,⋂4

i=1 Ωai �= φ.
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Now, suppose that
a+
3

a−1
>

a−3
a+
1

. Then, it is easy to see that (A13, B3) ∩
(A24, B2) �= φ and (A13, B3) ∩ (A24, B2) ⊂

⋂4
i=1 Ωai . Thus, we also have⋂4

i=1 Ωai �= φ. This completes the proof. �

Lemma 11.16. If a(s) = s4 + a1s
3 + a2s

2 + a3s+ a4 ∈ H4, b(s) = s3 +xs2 +

ys + z, and ∀ω ∈ R, Re
[
b(jω)
a(jω)

]
> 0, take

b̃(s) := b(s) + rc(s), r > 0, r small enough,

where c(s) is an arbitrarily fixed fourth-order monic polynomial. Then
b̃(s)
a(s)

is SPR.

Proof. See the proof of Theorem 11.4. �

Now we are in a position to establish the following theorem.

Theorem 11.8. If F = {ai(s), i = 1, 2} is the set of the two endpoint polyno-
mials of a fourth-order stable segment of polynomials (convex combination),

then there always exists a fixed polynomial b(s) such that
b(s)
a1(s)

and
b(s)
a2(s)

are strictly positive real.

Proof. The theorem is proved by simply combining Lemmas 11.11–11.13 and
11.16. �

Theorem 11.9. If F = {ai(s), i = 1, 2, 3, 4} is the set of the four Kharitonov
vertex polynomials of a fourth-order stable interval polynomial family K, then

there always exists a fixed polynomial b(s) such that ∀a(s) ∈ K,
b(s)
a(s)

is strictly

positive real.

Proof. The theorem is proved by simply combining Lemmas 11.11–11.12 and
Lemmas 11.15–11.16. �

Note that in Theorem 11.8,
b(s)
a1(s)

and
b(s)
a2(s)

being strictly positive implies

∀λ ∈ [0, 1],
b(s)

λa1(s) + (1− λ)a2(s)
being strictly positive real (by Lemma 11.2);

similarly, in Theorem 11.9, ∀a(s) ∈ F,
b(s)
a(s)

being strictly positive real implies

∀a(s) ∈ K,
b(s)
a(s)

being strictly positive real (by Lemma 11.4).

Robust stability of a polynomial segment can be checked by many efficient
methods, e.g., eigenvalue method, root locus method, value set method [1, 9,
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13]. Robust stability of K in Theorem 11.9 can be ascertained by checking
only two Kharitonov vertex polynomials [6].

From the proofs of Lemma 11.15, we can establish the relationship between
SPR synthesis for the fourth-order polynomial segments and SPR synthesis for
the fourth-order interval polynomials. In fact, it is easy to see that Theorem
11.8 implies Theorem 11.9. Similarly, Theorem 11.6 implies Theorem 11.7.
However, we do not know whether similar results is true for higher-order
(n ≥ 5) systems. This subject is currently under investigation.

By Theorems 11.8 and 11.9, for the low-order stable interval polynomial
family or low-order stable convex combination, existence of the solution to the
synthesis problem is always guaranteed. As shown by numerous examples, our
method is very effective.

Let us consider Example 11.1 again.

Example 11.7. Suppose that F = {a1(s) = s4 +11s3 +56s2 +88s+1, a2(s) =
s4+11s3+56s2+88s+50, a3(s) = s4+89s3+56s2+88s+1, a4(s) = s4+89s3+
56s2+88s+50}. It is easy to see that the convex hull F of F is robustly stable.
By our method as in the constructive proof of Theorem 11.9, it is easy to get
(11, 7.6657) ∈ ⋂4

i=1 Ωai . Thus, choosing b(s) = s3 + 11s2 + 7.76657s + ε,
where ε is a sufficiently small positive number (ε is determined by Lemma
11.12, in this example, 0 < ε ≤ 3), and taking ε = 2, by Lemma 11.12,

∀ω ∈ R, Re
[
b(jω)
ai(jω)

]
> 0, i = 1, 2, 3, 4. Finally, let b̃(s) := b(s) + rs4, where

r > 0, r sufficiently small (r is determined by Lemma 11.16, in this example,

0 < r ≤ 0.5). It is easy to check that
b̃(s)
ai(s)

, i = 1, 2, 3, 4, are strictly positive

real (note that b(s) and b̃(s) are not unique). �

In what follows, we will provide some more examples for fourth-order in-
terval polynomial families.

Example 11.8. Suppose that a1(s) = s4+5s3+6s2+4s+0.5, a2(s) = s4+2s3+
6s2+6s+1, a3(s) = s4+5s3+6s2+4s+1, a4(s) = s4+2s3+6s2+6s+0.5 are
the four Kharitonov vertex polynomials of a fourth-order interval polynomial
set K. It is easy to check using Kharitonov’s Theorem (Lemma 11.3) that K is
robustly stable. By our method as in the constructive proof of Theorem 11.9,
it is easy to get (2, 2.56) ∈ ⋂4

i=1 Ωai . Thus, choosing b(s) = s3+2s2+2.56s+ε,
where ε is a sufficiently small positive number (in this example, 0 < ε ≤ 1),

and taking ε = 0.5, by Lemma 11.12, ∀ω ∈ R, Re
[
b(jω)
ai(jω)

]
> 0, i = 1, 2, 3, 4.

Finally, let b̃(s) := b(s)+rs4, where r > 0, r sufficiently small (in this example,

0 < r ≤ 0.5). It is easy to check that
b̃(s)
ai(s)

, i = 1, 2, 3, 4, are strictly positive

real. �
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Example 11.9. Suppose that a1(s) = s4 + 2.5s3 + 6s2 + 4s + 0.5, a2(s) =
s4 + 2s3 + 5s2 + 6s + 5, a3(s) = s4 + 2.5s3 + 5s2 + 4s + 5, a4(s) = s4 + 2s3 +
6s2 + 6s + 0.5 are the four Kharitonov vertex polynomials of a fourth-order
interval polynomial set K, it is easy to check using Kharitonov’s Theorem
(Lemma 11.3) that K is robustly stable. By our method as in the constructive
proof of Theorem 11.9, it is easy to get (1.1475, 2.4262) ∈ ⋂4

i=1 Ωai . Thus,
choosing b(s) = s3 + 1.1475s2 + 2.4262s + ε, where ε is a sufficiently small
positive number (in this example, 0 < ε ≤ 1), and taking ε = 0.5, by Lemma

11.12, ∀ω ∈ R, Re
[
b(jω)
ai(jω)

]
> 0, i = 1, 2, 3, 4. Finally, let b̃(s) := b(s) + rs4,

where r > 0, r sufficiently small (in this example, 0 < r ≤ 0.2). It is easy to

check that
b̃(s)
ai(s)

, i = 1, 2, 3, 4, are strictly positive real. �

Finally, it should also be pointed out that, for the vertex set F = {ai(s) =
sn +

∑n
l=1 a

(i)
l sn−l, i = 1, 2, . . . ,m} of a general polytopic polynomial family

F , even if F is robustly stable, it is still possible that there does not exist
a polynomial c(s) ∈ Hn−1 such that c(s)/a(s) ∈ WSPR, for all a(s) ∈ F .
Therefore,

⋂m
i=1 ΩW

1ai
= φ.

To see this, let us look at an example of a third-order triangle polynomial
family.

Example 11.10. Let F = {a1(s) = s3+2.6s2+37s+64, a2(s) = s3+17s2+83s+
978, a3(s) = s3 + 15s2 + 28s + 415}. It is easy to verify that ai(s), i = 1, 2, 3,
are Hurwitz stable. Moreover, all edges of F , i.e., λai(s) + (1 − λ)aj(s), λ ∈
[0, 1], i, j = 1, 2, 3, are also Hurwitz stable. Therefore, by the Edge Theorem
[1, 9, 13, 11], F is robustly stable. On the other hand, by a direct computation
using Corollary 11.1, we can easily see that ΩW

1a1
∩ΩW

1a2
∩ΩW

1a3
= φ. Henceforth,

there does not exist a polynomial c(s) ∈ H2, such that c(s)/ai(s) ∈ WSPR,
i = 1, 2, 3 (although ΩW

1a1
∩ΩW

1a2
�= φ, ΩW

1a1
∩ΩW

1a3
�= φ, and ΩW

1a2
∩ΩW

1a3
�= φ).

Note that, in this example, though we have ΩW
1a1
∩ΩW

1a2
∩ΩW

1a3
= φ, but it

is easy to check (6, 73, 68) ∈ Ω1a1∩Ω1a2∩Ω1a3 . Let c̃(s) := s3+6s2+73s+68.

It is easy to check that
c̃(s)
ai(s)

, i = 1, 2, 3, are strictly positive real. �

The above Example 11.10 shows some intrinsic differences between the
SPR synthesis of interval polynomial families and the SPR synthesis of poly-
topic polynomial families. This problem deserves further investigation.

In the next section, we will show that there always exists a polynomial
such that their ratios are SPR-invariant for an arbitrary order stable con-
vex combination of two polynomials. But for a higher-order stable interval
polynomial family, does there exist a polynomial such that their ratios are
SPR-invariant? This is still an open problem. From our numerous examples,
given a stable interval polynomial family, it seems that such a polynomial can
always be found. No counterexample has been found. Thus, we conjecture
that this problem has a positive answer.
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11.7 Robust SPR Synthesis for Polynomial Segment of
Arbitrary Order

This section presents a constructive proof of the following statement: for any
two nth-order polynomials a(s) and b(s), the Hurwitz stability of their convex
combination is necessary and sufficient for the existence of a polynomial c(s)
such that c(s)/a(s) and c(s)/b(s) are both SPR.

11.7.1 Main Results

The following theorem is the main result of this section.

Theorem 11.10. Suppose that a(s) = sn + a1s
n−1 + · · · + an ∈ Hn and

b(s) = sn + b1s
n−1 + · · ·+ bn ∈ Hn. The necessary and sufficient condition for

the existence of a polynomial c(s) such that c(s)/a(s) and c(s)/b(s) are both
strictly positive real, is

λb(s) + (1− λ)a(s) ∈ Hn, λ ∈ [0, 1]. �

We first introduce some lemmas.

Lemma 11.17. Suppose that a(s) = sn + a1s
n−1 + · · · + an ∈ Hn. Then,

for every k ∈ {1, 2, . . . , n − 2}, the following quadratic curve is an ellipse
in the first quadrant (i.e., xi ≥ 0, i = 1, 2, . . . , n − 1) of the Rn−1 space
(x1, x2, . . . , xn−1)3:

3 When n = 3, the ellipse equation is:

(a2x1 − a1x2 − a3)
2 − 4(a1 − x1)a3x2 = 0.

When n = 4, the two ellipse equations are:j
(a2x1 + x3 − a1x2 − a3)

2 − 4(a1 − x1)(a3x2 − a2x3 − a4x1) = 0,
a4x3 = 0,j
(a3x2 − a2x3 − a4x1)

2 − 4(a2x1 + x3 − a1x2 − a3)a4x3 = 0,
a1 − x1 = 0.

When n = 5, the three ellipse equations are:j
(a2x1 + x3 − a1x2 − a3)

2−4(a1 − x1)(a5 + a3x2 + a1x4 − a2x3 − a4x1) = 0,
a4x3 − a3x4 − a5x2 = 0, a5x4 = 0,8<

:
(a5 + a3x2 + a1x4 − a2x3 − a4x1)

2 − 4(a2x1 + x3 − a1x2

−a3)(a4x3 − a3x4 − a5x2) = 0,
a1 − x1 = 0, a5x4 = 0,j
(a4x3 − a3x4 − a5x2)

2 − 4(a5 + a3x2 + a1x4 − a2x3 − a4x1)a5x4 = 0,
a1 − x1 = 0, a2x1 + x3 − a1x2 − a3 = 0.

When n = 6, the four ellipse equations are:8<
:

(a2x1 + x3 − a1x2 − a3)
2 − 4(a1 − x1)(a5 + a3x2 + a1x4 − x5 − a2x3

−a4x1) = 0,
a6x1 + a4x3 + a2x5 − a3x4 − a5x2 = 0, a5x4 − a4x5 − a6x3 = 0, a6x5 = 0,
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c2k+1 − 4ckck+2 = 0,
cl = 0,
l ∈ {1, 2, . . . , n}, l �= k, k + 1, k + 2,

and this ellipse is tangent to the line{
cl = 0,
l ∈ {1, 2, . . . , n}, l �= k + 1, k + 2,

and the line {
cl = 0,
l ∈ {1, 2, . . . , n}, l �= k, k + 1,

respectively, where cl :=
n∑

j=0

(−1)l+jajx2l−j−1, l = 1, 2, . . . , n, a0 = 1, x0 = 1,

ai = 0 if i < 0 or i > n, and xi = 0 if i < 0 or i > n− 1.

Proof. Since a(s) is Hurwitz stable, by using mathematical induction, the
lemma is proved by a direct calculation (see the appendix for details).

For notational simplicity, for a(s) = sn + a1s
n−1 + · · ·+ an ∈ Hn, b(s) =

sn + b1s
n−1 + · · ·+ bn ∈ Hn, ∀k ∈ {1, 2, . . . , n− 2}, denote

Ωa
ek := {(x1, x2, . . . , xn−1)| c2k+1 − 4ckck+2 < 0,

cl = 0, l ∈ {1, 2, . . . , n}, l �= k, k + 1, k + 2},
and

Ωb
ek := {(x1, x2, . . . , xn−1)| d2

k+1 − 4dkdk+2 < 0,
dl = 0, l ∈ {1, 2, . . . , n}, l �= k, k + 1, k + 2},

where cl :=
n∑

j=0

(−1)l+jajx2l−j−1, dl :=
n∑

j=0

(−1)l+jbjx2l−j−1, l = 1, 2, . . . , n,

a0 = 1, b0 = 1, x0 = 1, ai = 0 and bi = 0 if i < 0 or i > n, and xi = 0 if i < 0
or i > n− 1.

In what follows, (A,B) stands for the set of points in the line segment
connecting the point A and the point B in the Rn−1 space (x1, x2, . . . , xn−1),
not including the endpoints A and B. Denote

8<
:

(a5 + a3x2 + a1x4 − x5 − a2x3 − a4x1)
2

−4(a2x1 + x3 − a1x2 − a3)(a6x1 + a4x3 + a2x5 − a3x4 − a5x2) = 0,
a1 − x1 = 0, a5x4 − a4x5 − a6x3 = 0, a6x5 = 0,8<

:
(a6x1 + a4x3 + a2x5 − a3x4 − a5x2)

2

−4(a5 + a3x2 + a1x4 − x5 − a2x3 − a4x1)(a5x4 − a4x5 − a6x3) = 0,
a1 − x1 = 0, a2x1 + x3 − a1x2 − a3 = 0, a6x5 = 0,8<

:
(a5x4 − a4x5 − a6x3)

2 − 4(a6x1 + a4x3 + a2x5 − a3x4 − a5x2)a6x5 = 0,
a1 − x1 = 0, a2x1 + x3 − a1x2 − a3 = 0, a5 + a3x2 + a1x4

−x5 − a2x3 − a4x1 = 0.
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Ωa := {(x1, x2, . . . , xn−1)| (x1, x2, . . . , xn−1) ∈
⋃n−3

i=1,i<j≤n−2(Ai, Aj),
∀Ai ∈ Ωa

ei, i ∈ {1, 2, . . . , n− 2}}
and

Ωb := {(x1, x2, . . . , xn−1)| (x1, x2, . . . , xn−1) ∈
⋃n−3

i=1,i<j≤n−2(Bi, Bj),
∀Bi ∈ Ωb

ei, i ∈ {1, 2, . . . , n− 2}}.
Lemma 11.18. Suppose that a(s) = sn + a1s

n−1 + · · · + an ∈ Hn, b(s) =
sn +b1s

n−1+ · · ·+bn ∈ Hn. If Ωa∩Ωb �= φ, take (x1, x2, . . . , xn−1) ∈ Ωa∩Ωb,
and let c(s) := sn−1 + (x1 − ε)sn−2 + x2s

n−3 + · · · + xn−2s + (xn−1 + ε) (ε

is a sufficiently small positive number). Then, for
c(s)
a(s)

and
c(s)
b(s)

, we have

∀ω ∈ R,Re
[
c(jω)
a(jω)

]
> 0 and Re

[
c(jω)
b(jω)

]
> 0.

Proof. Suppose that (x1, x2, . . . , xn−1) ∈ Ωa
⋂

Ωb, and let c(s) := sn−1 +
(x1 − ε)sn−2 + x2s

n−3 + · · ·+ xn−2s + (xn−1 + ε), ε > 0, ε sufficiently small.
∀ω ∈ R, consider

Re
[
c(jω)
a(jω)

]
=

1
|a(jω)|2 [c1ω2(n−1) + c2ω

2(n−2) + · · ·+ cn−1ω
2 + cn]

+Re
[−ε(jω)n−2 + ε

a(jω)

]
=

1
|a(jω)|2 [c1ω2(n−1) + c2ω

2(n−2) + · · ·+ cn−1ω
2 + cn]

+
(−ε)
|a(jω)|2

(
−ω2(n−1) + c̃(ω2)

)
,

where cl :=
n∑

j=0

(−1)l+jajx2l−j−1, l = 1, 2, . . . , n, a0 = 1, x0 = 1, ai = 0 if

i < 0 or i > n, and xi = 0 if i < 0 or i > n− 1, and c̃(ω2) is a real polynomial
with order not greater than 2(n− 2).

In order to prove that ∀ω ∈ R,Re
[
c(jω)
a(jω)

]
> 0, let t = ω2. We only need

to prove that, for any ε > 0, ε sufficiently small, the following polynomial
f1(t) satisfies

f1(t) := c1t
n−1 + c2t

n−2 + · · ·+ cn−1t + cn

+ε(tn−1 − c̃(t)) > 0, ∀t ∈ [0,+∞).

Since (x1, x2, . . . , xn−1) ∈ Ωa, by the definition of Ωa, it is easy to know
that

g1(t) := c1t
n−1 + c2t

n−2 + · · ·+ cn−1t + cn > 0, ∀t ∈ (0,+∞).

Moreover, we obviously have f1(0) > 0, and for any ε > 0, when t is a
sufficiently large or sufficiently small positive number, we have f1(t) > 0;
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namely, there exist 0 < t1 < t2 such that, for all ε > 0, t ∈ [0, t1] ∪ [t2,+∞),
we have f1(t) > 0.

Denote
M1 = inf

t∈[t1,t2]
g1(t),

N1 = sup
t∈[t1,t2]

|tn−1 − c̃(t))|.

Then M1 > 0 and N1 > 0. Choosing 0 < ε <
M1

N1
, by a direct calculation, we

have
f1(t) := c1t

n−1 + c2t
n−2 + · · ·+ cn−1t + cn

+ε(tn−1 − c̃(t)) > 0, ∀t ∈ [0,+∞).

Therefore,

∀ω ∈ R, Re
[
c(jω)
a(jω)

]
> 0.

Similarly, since (x1, x2, . . . , xn−1) ∈ Ωb, there exist 0 < t3 < t4 such that,
for all ε > 0, t ∈ [0, t3]

⋃
[t4,+∞), we have f2(t) > 0,where

f2(t) := d1t
n−1 + d2t

n−2 + · · ·+ dn−1t + dn

+ε(tn−1 − d̃(t)),

dl :=
n∑

j=0

(−1)l+jbjx2l−j−1, l = 1, 2, . . . , n,

b0 = 1, x0 = 1, bi = 0 if i < 0 or i > n, and xi = 0 if i < 0 or i > n − 1,
and d̃(ω2) is a real polynomial with order not greater than 2(n− 2), which is
determined by the following equation:

Re
[−ε(jω)n−2 + ε

b(jω)

]
=

(−ε)
|b(jω)|2 (−ω2(n−1) + d̃(ω2)).

Denote
g2(t) := d1t

n−1 + d2t
n−2 + · · ·+ dn−1t + dn,

M2 = inf
t∈[t3,t4]

g2(t),

N2 = sup
t∈[t3,t4]

|tn−1 − d̃(t))|.

Then M2 > 0 and N2 > 0. Choosing 0 < ε <
M2

N2
, we have

∀ω ∈ R, Re
[
c(jω)
b(jω)

]
> 0.

Thus, by choosing 0 < ε < min
{
M1

N1
,
M2

N2

}
, the lemma is proved. �
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Lemma 11.19. Suppose that a(s) = sn + a1s
n−1 + · · · + an ∈ Hn, b(s) =

sn + b1s
n−1 + · · · + bn ∈ Hn. If λb(s) + (1 − λ)a(s) ∈ Hn, λ ∈ [0, 1], then

Ωa ∩Ωb �= φ.

Proof. If ∀λ ∈ [0, 1], aλ(s) := λb(s) + (1− λ)a(s) ∈ Hn, by Lemma 11.17, for
any λ ∈ [0, 1], Ωaλ

ek , k = 1, 2, . . . , n− 2, are n− 2 ellipses in the first quadrant
of the Rn−1 space (x1, x2, . . . , xn−1).
∀λ ∈ [0, 1], denote

Ωaλ := {(x1, x2, . . . , xn−1)| (x1, x2, . . . , xn−1) ∈
⋃n−3

i=1,i<j≤n−2(Aλi, Aλj),
∀Aλi ∈ Ωaλ

ei , i ∈ {1, 2, . . . , n− 2}}.
Apparently, when λ changes continuously from 0 to 1, Ωaλ will change

continuously from Ωa to Ωb, and Ωaλ

ek will change continuously from Ωa
ek to

Ωb
ek, k = 1, 2, . . . , n− 2.

Now assume that Ωa ∩ Ωb = φ. By the definitions of Ωa and Ωb and
Lemma 11.7.1, ∃u1 > 0, u2 > 0, u1 �= a1, u1 �= b1, and ∃k̃ ∈ {1, 2, . . . , n− 2},
such that the following hyperplane L in the Rn−1 space (x1, x2, . . . , xn−1)

L :
x1

u1
+

x2

u2
+ · · ·+ xn−1

un−1
= 1

separates Ωa and Ωb. Meanwhile, L is tangent to Ωa
e1, Ω

a
e2, . . . , Ω

a
e(n−2) and

Ωb
ek̃

simultaneously (or tangent to Ωb
e1, Ω

b
e2, . . . , Ω

b
e(n−2) and Ωa

ek̃
simultane-

ously).
Without loss of generality, suppose that L is tangent to Ωa

e1, Ω
a
e2, . . . ,

Ωa
e(n−2) and Ωb

ek̃
simultaneously.

In what follows, the notation [x] stands for the largest integer that is
smaller than or equal to the real number x, and 〈y〉z stands for the remainder
of the nonnegative integer y divided by the positive integer z.4

Since L is tangent to Ωa
e1, Ω

a
e2, . . . , Ω

a
e(n−2) and Ωb

ek̃
simultaneously, note

that a(s) is Hurwitz stable and u1 > 0, u1 �= a1, u2 > 0, using mathematical
induction, by a lengthy calculation, we know that the necessary and sufficient
condition for L being tangent to Ωa

e1, Ω
a
e2, . . . , Ω

a
e(n−2) simultaneously is5

4 For example, [1.5] = 1, [0.5] = 0, [−1.5] = −2, and 〈0〉2 = 0, 〈1〉2 = 1, 〈11〉3 = 2.
5 When n = 3, we have:

u1u2 − a1u2 − a2u1 + a3 = 0.

When n = 4, we have:j
u1u

2
2 − a1u

2
2 − a2u1u2 + a3u2 + a4u1 = 0,

u3 = −u1u2.

When n = 5, we have:j
u1u

2
2 − a1u

2
2 − a2u1u2 + a3u2 + a4u1 − a5 = 0,

u3 = −u1u2, u4 = −u2
2.
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n∑
i=0

(−1)[
i+1
2 ]aiu

〈i+1〉2
1 u

[n
2 ]−[ i

2 ]
2 = 0, (11.12)

and
uj = (−1)[

j−1
2 ]u〈j〉2

1 u
[ j
2 ]

2 , j = 3, 4, . . . , n− 1, (11.13)

where a0 = 1.

Since uj = (−1)[
j−1
2 ]u〈j〉2

1 u
[ j
2 ]

2 , j = 3, 4, . . . , n− 1, L is tangent to Ωb
ek̃

, by
a direct calculation. We have

n∑
i=0

(−1)[
i+1
2 ]biu

〈i+1〉2
1 u

[n
2 ]−[ i

2 ]
2 = 0, (11.14)

where b0 = 1.
From (11.12) and (11.14), we obviously have ∀λ ∈ [0, 1],

n∑
i=0

(−1)[
i+1
2 ]aλiu

〈i+1〉2
1 u

[n
2 ]−[ i

2 ]
2 = 0, (11.15)

where aλi := ai + λ(bi − ai), a0 = 1, b0 = 1, i = 0, 1, 2, . . . , n. Equations
(11.15) and (11.13) show that L is also tangent to Ωaλ

ek̃
(∀λ ∈ [0, 1]), but L

separates Ωa
ek̃

and Ωb
ek̃
, and when λ changes continuously from 0 to 1, Ωaλ

ek̃

will change continuously from Ωa
ek̃

to Ωb
ek̃
, which is obviously impossible. This

completes the proof. �

Lemma 11.20. Suppose that a(s) = sn + a1s
n−1 + · · · + an ∈ Hn, b(s) =

sn + b1s
n−1 + · · · + bn ∈ Hn, c(s) = sn−1 + x1s

n−2 + · · · + xn−1. If ∀ω ∈ R,

Re
[
c(jω)
a(jω)

]
> 0 and Re

[
c(jω)
b(jω)

]
> 0, take

c̃(s) := c(s) + δ · h(s), δ > 0, δ sufficiently small,

where h(s) is an arbitrarily given monic nth order polynomial, then
c̃(s)
a(s)

and

c̃(s)
b(s)

are both strictly positive real.

Proof. See the proof of Theorem 11.4.

When n = 6, we have:j
u1u

3
2 − a1u

3
2 − a2u1u

2
2 + a3u

2
2 + a4u1u2 − a5u2 − a6u1 = 0,

u3 = −u1u2, u4 = −u2
2, u5 = u1u

2
2.
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Proof of Theorem 11.10. The statement is obviously true for the cases when
n = 1 or n = 2. We will prove it for the case when n ≥ 3.

Since SPR transfer functions enjoy convexity property, we get the neces-
sary part of the theorem.

The sufficiency of Theorem 11.10 is now proved by simply combining Lem-
mas 11.17– 11.20. �

Remark 11.1. From the proof of Theorem 11.10, we can see that this section
not only proves the existence, but also provides a design method. In fact,
based on the main idea, we have developed a geometric algorithm with or-
der reduction for robust SPR synthesis which is very efficient for high-order
polynomial segments [47]. �

Remark 11.2. The method provided in this section is constructive, and is in-
sightful and helpful in solving more general robust SPR synthesis problems
for polynomial polytopes, multilinear families, etc. �

Remark 11.3. Our main results in this section can also be extended to discrete-
time case. In fact, by using the bilinear transformation, we can transform the
unit circle into the left half plane. Hence, Theorem 11.10 can be generalized
to the discrete-time case. Moreover, in the discrete-time case, the order of
the polynomial obtained by our method is bounded by the order of the given
polynomial segment [53, 55]. �

Remark 11.4. If
c(s)
a(s)

and
c(s)
b(s)

are both SPR, it is easy to show that ∀λ ∈ [0, 1],

c(s)
λa(s) + (1− λ)b(s)

is also SPR. �

Remark 11.5. The stability of a polynomial segment can be checked by many
efficient methods, e.g., eigenvalue method, root locus method, value set
method, etc. [1, 9, 13]. �

11.7.2 Design Procedure and Some Examples

As observed earlier, the method provided in this section is constructive. By
our theoretical analysis, we propose the following design procedure.

Step 1. Test the robust Hurwitz stability of the convex combination of the
two polynomials a(s) and b(s). If the convex combination is robustly stable,
then go to the next step. Otherwise, print “there does not exist such a c(s)”
(by Definition 11.1 and Proposition 11.1).

Step 2. Construct Ωa
ek, Ω

b
ek, k = 1, 2, . . . , n− 2, and find a point
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(x1, x2, . . . , xn−1 ∈
(

n−2⋃
k=1

Ωa
ek

)⋃(
n−2⋃
k=1

Ωb
ek

)

such as c̄(s) := sn−1 +x1s
n−2 +x2s

n−3 + · · ·+xn−2s+xn−1 and ∀ω ∈ R\{0},
Re

[
c̄(jω)
a(jω)

]
> 0 and Re

[
c̄(jω)
b(jω)

]
> 0 (by the Lemmas 11.18 and 11.19).

Step 3. Let c(s) := sn−1+(x1−ε)sn−2+x2s
n−3+· · ·+xn−2s+(xn−1+ε),

ε is a sufficiently small positive number, then for
c(s)
a(s)

and
c(s)
b(s)

, we have

∀ω ∈ R,Re
[
c(jω)
a(jω)

]
> 0 and Re

[
c(jω)
b(jω)

]
> 0 (by the Lemmas 11.18 and

11.19).
Step 4. Take c̃(s) := δsn + c(s), δ > 0, δ sufficiently small, then this c̃(s)

satisfies the design requirement (by Lemma 11.20). �

There is hardly any example with order higher than 6 in the literature. In
what follows, let us consider Examples 11.4 and 11.5 again. As shown by the
examples below, our method is very effective.

Example 11.11. Suppose that a(s) = s7 + 9s6 + 31s5 + 71.5s4 + 111.5s3 +
109s2 + 76s + 12.5, b(s) = s7 + 9.4s6 + 31.2s5 + 71.3s4 + 111s3 + 109.2s2 +
76.4s + 12. It is easy to see that the convex combination of the two poly-
nomials a(s) and b(s) is robustly Hurwitz stable. Using our method, we can
get (9, 14.9409, 34.08, 26.5088, 4.36, 0) ∈ Ωa

e2 = {(x1, x2, x3, x4, x5, x6)| c1 =
c5 = c6 = c7 = 0, c23 − c2c4 = 5.4505 − 2.704x3 + 18.501x5 + 0.99999x2

3 −
15.295x3x5 + 58.723x2

5 < 0} such as c̄(s) := s6 + 9s5 + 14.9409s4 + 34.08s3 +

26.5088s2 + 4.36s and ∀ω ∈ R\{0},Re
[
c̄(jω)
a(jω)

]
> 0 and Re

[
c̄(jω)
b(jω)

]
> 0.

Let c(s) = s6 + (9 − ε)s5 + 14.9409s4 + 34.08s3 + 26.5088s2 + 4.36s + ε, ε is
a sufficiently small positive number (in this example, 0 < ε ≤ 1), and take

ε = 0.1. Then for
c(s)
a(s)

and
c(s)
b(s)

, we have ∀ω ∈ R, Re
[
c(jω)
a(jω)

]
> 0 and

Re
[
c(jω)
b(jω)

]
> 0. Thus, let c̃(s) := c(s) + δs6, δ > 0, δ sufficiently small, e.g.,

δ ≤ 0.4. Then, the design requirement has been met. �

Example 11.12. Suppose that a(s) = s9+11s8+52s7+145s6+266s5+331s4+
280s3 + 155s2 + 49s + 6, b(s) = s9 + 11s8 + 52s7 + 146s6 + 265.5s5 + 332s4 +
278.5s3 +151s2 +48s+2. It is easy to see that the convex combination of the
two polynomials a(s) and b(s) is robustly Hurwitz stable. Using our method,
we can get (11, 24.2122, 70.5046, 87.3862, 56.27, 18.4975, 2.265, 0) ∈ Ωa

e2 =
{(x1, x2, x3, x4, x5, x6, x7, x8)| c1 = c5 = c6 = c7 = c8 = c9 = 0, c23 − c2c4 =
(−1982.9+2713.2x5− 67345.x7)2− 4(378.97− 267.89x5 +6590.0x7)(1607.3−
3682.0x5 +92407.x7) < 0} such as c̄(s) := s8 +11s7 +24.2122s6 +70.5046s5 +

87.3862s4 + 56.27s3 + 18.4975s2 + 2.265s and ∀ω ∈ R\{0}, Re
[
c̄(jω)
a(jω)

]
> 0
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and Re
[
c̄(jω)
b(jω)

]
> 0. Let c(s) = s8 + (11 − ε)s7 + 24.2122s6 + 70.5046s5 +

87.3862s4 + 56.27s3 + 18.4975s2 + 2.265s + ε, ε is a sufficiently small positive

number (in this example, 0 < ε ≤ 0.001), and take ε = 0.0005. Then for
c(s)
a(s)

and
c(s)
b(s)

, we have ∀ω ∈ R, Re
[
c(jω)
a(jω)

]
> 0 and Re

[
c(jω)
b(jω)

]
> 0. Thus, letting

c̃(s) := c(s) + δs6, δ > 0, δ sufficiently small, e.g., taking δ ≤ 0.3, the design
requirement has been met. �

Note that, in our Examples 11.11 and 11.12, c(s) is not unique.

11.7.3 Appendix: Proof of Lemma 11.17

We only need consider the case when n ≥ 3.
In what follows, the notation 〈y〉z stands for the remainder of the nonneg-

ative integer y divided by the positive integer z.
To prove Lemma 11.17, for convenience, we also introduce some lemmas.

Lemma 11.21. Suppose that a(s) = sn + a1s
n−1 + · · · + an ∈ Hn. Then,

α(s) = sn−1 + α1s
n−2 + · · ·+ αn−1 ∈ Hn−1, where6

αi = a
〈n−i〉2
i

(
aian−1 − ai−1an

an−1

)〈n−1−i〉2
,

i = 1, 2, . . . , n− 1, a0 = 1, al = 0 if l < 0 or l > n.

Proof. The lemma is proved by direct use of the Hurwitz criterion. �

6 For example, when n = 3, we have:

α1 =
a1a2 − a3

a2
, α2 = a2.

When n = 4, we have:

α1 = a1, α2 =
a2a3 − a1a4

a3
, α3 = a3.

When n = 5, we have:

α1 =
a1a4 − a5

a4
, α2 = a2, α3 =

a3a4 − a2a5

a4
, α4 = a4.

When n = 6, we have:

α1 = a1, α2 =
a2a5 − a1a6

a5
, α3 = a3, α4 =

a4a5 − a3a6

a5
, α5 = a5.
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Lemma 11.22. Suppose that a(s) = sn + a1s
n−1 + · · · + an ∈ Hn. Then,

β(s) = sn−1 + β1s
n−2 + · · ·+ βn−1 ∈ Hn−1, where7

βi = (a1ai+1 − ai+2)〈i〉2
(
ai+1

a1

)〈i+1〉2
,

i = 1, 2, . . . , n− 1, a0 = 1, al = 0 if l < 0 or l > n.

Proof. The lemma is proved by direct use of the Hurwitz criterion. �

Lemma 11.23. Suppose that a(s) = s3 + a1s
2 + a2s + a3 ∈ H3. Then, the

following quadratic curve is an ellipse in the first quadrant (i.e., xi ≥ 0,
i = 1, 2) of the R2 space (x1, x2):

(a2x1 − a1x2 − a3)2 − 4(a1 − x1)a3x2 = 0,

and this ellipse is tangent to the line

a1 − x1 = 0,

and the line
a3x2 = 0,

respectively.

Proof. Since a(s) is Hurwitz stable, the lemma is proved by direct calculation
(see Corollary 11.1 and Lemma 11.5).

We are now in a position to prove Lemma 11.17 using mathematical in-
duction.

Proof of Lemma 11.17. First, the conclusion of Lemma 11.17 is true when
n = 3 (Lemma 11.23).
7 For example, when n = 3, we have:

β1 = a1a2 − a3, β2 =
a3

a1
.

When n = 4, we have:

β1 = a1a2 − a3, β2 =
a3

a1
, β3 = a1a4.

When n = 5, we have:

β1 = a1a2 − a3, β2 =
a3

a1
, β3 = a1a4 − a5, β4 =

a5

a1
.

When n = 6, we have:

β1 = a1a2 − a3, β2 =
a3

a1
, β3 = a1a4 − a5, β4 =

a5

a1
, β5 = a1a6.
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Second, we suppose that Lemma 11.17 holds for the nth-order polynomial
case, and we show that Lemma 11.17 is true for (n + 1)st-order polynomial
case.

Suppose that a(s) = sn+1 + a1s
n + · · · + ans + an+1 ∈ Hn+1, by Lemma

11.21 and Lemma 11.22, we have

α(s) = sn + α1s
n−1 + · · ·+ αn ∈ Hn,

and
β(s) = sn + β1s

n−1 + · · ·+ βn ∈ Hn,

where

αi = a
〈n+1−i〉2
i

(
aian − ai−1an+1

an

)〈n−i〉2
,

and

βi = (a1ai+1 − ai+2)〈i〉2
(
ai+1

a1

)〈i+1〉2
,

i = 1, 2, . . . , n, a0 = 1, al = 0 if l < 0 or l > n + 1.
Since we suppose that Lemma 11.17 holds for the nth-order polynomial

case, for every k ∈ {1, 2, . . . , n− 2}, the following quadratic curve is an ellipse
in the first quadrant (i.e., yi ≥ 0, i = 1, 2, . . . , n − 1) of the Rn−1 space
(y1, y2, . . . , yn−1): ⎧⎨

⎩
c2α,k+1 − 4cα,kcα,k+2 = 0,
cα,l = 0,
l ∈ {1, 2, . . . , n}, l �= k, k + 1, k + 2,

(11.16)

and this ellipse is tangent to the line{
cα,l = 0,
l ∈ {1, 2, . . . , n}, l �= k + 1, k + 2,

and the line {
cα,l = 0,
l ∈ {1, 2, . . . , n}, l �= k, k + 1,

respectively, where cα,l :=
n∑

j=0

(−1)l+jαjy2l−j−1, l = 1, 2, . . . , n, α0 = 1, y0 =

1, αi = 0 if i < 0 or i > n, and yi = 0 if i < 0 or i > n− 1.
Meanwhile, for every k ∈ {1, 2, . . . , n − 2}, the following quadratic curve

is an ellipse in the first quadrant (i.e., zi ≥ 0, i = 1, 2, . . . , n− 1) of the Rn−1

space (z1, z2, . . . , zn−1):⎧⎨
⎩

c2β,k+1 − 4cβ,kcβ,k+2 = 0,
cβ,l = 0,
l ∈ {1, 2, . . . , n}, l �= k, k + 1, k + 2,

(11.17)

and this ellipse is tangent to the line
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cβ,l = 0,
l ∈ {1, 2, . . . , n}, l �= k + 1, k + 2,

and the line {
cβ,l = 0,
l ∈ {1, 2, . . . , n}, l �= k, k + 1,

respectively, where cβ,l :=
n∑

j=0

(−1)l+jβjz2l−j−1, l = 1, 2, . . . , n, β0 = 1, z0 = 1,

βi = 0 if i < 0 or i > n, and zi = 0 if i < 0 or i > n− 1.
Now, for every k ∈ {1, 2, . . . , n − 1}, we consider the following quadratic

curve in the Rn space (x1, x2, . . . , xn):⎧⎨
⎩

c2k+1 − 4ckck+2 = 0,
cl = 0,
l ∈ {1, 2, . . . , n + 1}, l �= k, k + 1, k + 2,

(11.18)

where cl :=
n+1∑
j=0

(−1)l+jajx2l−j−1, l = 1, 2, . . . , n + 1, a0 = 1, x0 = 1, ai = 0 if

i < 0 or i > n + 1, and xi = 0 if i < 0 or i > n.
For notational simplicity, introduce the following matrices

Ha :=

⎡
⎢⎢⎢⎣

a1 −1 0 0 · · ·
−a3 a2 −a1 1 · · ·
a5 −a4 a3 −a2 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎦

(n+1)×(n+1)

,

Hα :=

⎡
⎢⎢⎢⎣

α1 −1 0 0 · · ·
−α3 α2 −α1 1 · · ·
α5 −α4 α3 −α2 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎦

n×n

,

Hβ :=

⎡
⎢⎢⎢⎣

β1 −1 0 0 · · ·
−β3 β2 −β1 1 · · ·
β5 −β4 β3 −β2 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎦

n×n

,

Xx :=

⎡
⎢⎢⎢⎣

1
x1

...
xn

⎤
⎥⎥⎥⎦ , Xy :=

⎡
⎢⎢⎢⎣

1
y1

...
yn−1

⎤
⎥⎥⎥⎦ , Xz :=

⎡
⎢⎢⎢⎣

1
z1

...
zn−1

⎤
⎥⎥⎥⎦ ,

Cc :=

⎡
⎢⎢⎢⎣

c1
c2
...

cn+1

⎤
⎥⎥⎥⎦ , Ccα :=

⎡
⎢⎢⎢⎣
cα,1

cα,2

...
cα,n

⎤
⎥⎥⎥⎦ , Ccβ :=

⎡
⎢⎢⎢⎣
cβ,1

cβ,2

...
cβ,n

⎤
⎥⎥⎥⎦ ,
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where ai = 0 if i > n+1, αi = 0 and βi = 0 if i > n. Then, it is easy to verify
that

Cc = HaXx, Ccα = HαXy, Ccβ = HβXz.

Denote by Haα the n×n matrix formed by the first n rows and the first n
columns of the matrix Ha, Haβ the n× n matrix formed by withdrawing the
first row and the second column of the matrix Ha, and haβ the n × 1 vector
formed by the last n rows and the second column of the matrix Ha.

Denote Xxα := [1, x1, x2, . . . , xn−1]T , Xxβ := [1, x2, x3, . . . , xn]T , Cc :=
[c1, c2, . . . , cn]T , and Cc := [c2, c3, . . . , cn+1]T .

If cn+1 = 0, i.e., xn = 0, let us take the following transformation

xi = y
〈n+1−i〉2
i

(
an+1

an
yi−1 + yi

)〈n−i〉2
, i = 1, 2, . . . , n− 1, (11.19)

where y0 = 1.8 Then it can be verified that

Cc = HaαXxα = HαXy = Ccα.

Thus, for every k ∈ {1, 2, . . . , n − 2}, the quadratic curve (11.18) in the
Rn−1 space (x1, x2, . . . , xn−1, 0) can be obtained by using the above trans-
form (11.19) for the ellipse curve (11.16) in the Rn−1 space (y1, y2, . . . , yn−1).

If c1 = 0, i.e., x1 = a1, let us take the following transformation

xi = (a1zi−1)〈i〉2
(

1
a1

zi−1 + zi

)〈i+1〉2
, i = 2, 3, . . . , n, (11.20)

where zn = 0.9 Then, it can be verified that

Cc = HaβXxβ + a1haβ = HβXz = Ccβ .

8 For example, when n + 1 = 4, we have:

x1 = y1, x2 =
a4

a3
y1 + y2.

When n + 1 = 5, we have:

x1 =
a5

a4
+ y1, x2 = y2, x3 =

a5

a4
y2 + y3.

When n + 1 = 6, we have:

x1 = y1, x2 =
a6

a5
y1 + y2, x3 = y3, x4 =

a6

a5
y3 + y4.

When n + 1 = 7, we have:

x1 =
a7

a6
+ y1, x2 = y2, x3 =

a7

a6
y2 + y3, x4 = y4, x5 =

a7

a6
y4 + y5.

9 For example, when n + 1 = 4, we have:
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Thus, for every k ∈ {2, 3, . . . , n − 1}, the quadratic curve (11.18) in the
Rn−1 space (a1, x2, . . . , xn) can be obtained by using the above transformation
(11.20) for the ellipse curve (11.17) in the Rn−1 space (z1, z2, . . . , zn−1).

Since we suppose that Lemma 11.17 holds for nth-order polynomials α(s)
and β(s), combining the discussions above, we know that Lemma 11.17 also
holds for (n + 1)st-order polynomial a(s). Thus, by using mathematical in-
duction, we complete the proof of Lemma 11.17. �

11.8 Conclusions

In this chapter, we have studied the robust synthesis problem for strictly posi-
tive real (SPR) transfer functions. The concepts of SPR regions and weak SPR
regions have been introduced and their properties have been discussed. We
show that the SPR region associated with a fixed polynomial is unbounded,
whereas the weak monic SPR region is bounded. We then prove that the in-
tersection of several weak SPR regions associated with different polynomials
cannot be a single point. Furthermore, we show how to construct a point in
the SPR region from a point in the weak SPR region. By using the com-
plete discrimination system for polynomials, complete characterization of the
(weak) strictly positive real regions for transfer functions in coefficient space
is given, which answers an unsolved problem proposed by Huang, Hollot and
Xu in 1990 [27]. Based on these theoretical development, we have proposed an
algorithm for the synthesis of robust SPR transfer functions. This algorithm
works well for both low-order and high-order polynomial families. Especially,
the derived conditions are necessary and sufficient for robust SPR design of
polynomial segment or low-order (n ≤ 4) interval polynomials. Illustrative
examples are provided to show the effectiveness of this algorithm. The SPR
synthesis problem for high-order interval polynomials is currently under in-
vestigation.

x2 =
z1

a1
+ z2, x3 = a1z2.

When n + 1 = 5, we have:

x2 =
z1

a1
+ z2, x3 = a1z2, x4 =

z3

a1
.

When n + 1 = 6, we have:

x2 =
z1

a1
+ z2, x3 = a1z2, x4 =

z3

a1
+ z4, x5 = a1z4.

When n + 1 = 7, we have:

x2 =
z1

a1
+ z2, x3 = a1z2, x4 =

z3

a1
+ z4, x5 = a1z4, x6 =

z5

a1
.
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