
Chapter 2

Statistical Models of Shape and
Appearance

As was explained in the Introduction, our aim is to start with a set of example
shapes (the training set), and learn from this the patterns of variability of the
shape of the class of objects for which the training set can be considered a
representative sample. We will first consider this problem in a rather abstract
sense, and illustrate how the question of correspondence between different
shapes is inextricably linked to the question of representing a set of shapes.

Mathematically, the usual approach is to construct a mapping from an
example shape to a point in some shape space. This is the process of con-
structing a representation of shape. The idea is that every physical shape cor-
responds to a point in shape space, and conversely, each point in shape space
corresponds to some physical shape. There are many ways of constructing
such representations, but whichever method is chosen, what is then obtained
is a mapping from our training set of shapes to a set of points in shape space.

Modelling can then be considered as the process of modelling the distri-
bution of our training points in shape space. However, before we can begin
to talk about the distribution of such points, we first need to define a notion
of distance on shape space.

A definition of a distance on shape space then leads directly to the no-
tion of correspondence between the physical shapes themselves. Consider two
distinct physical shapes, and the two points in shape space which represent
those two shapes. We can then imagine a continuous path between the two
points in shape space, and, given that we have a definition of distance, the
shortest such path between the two shapes. When we map this construction
back to the space of physical shapes, what we obtain is a continuous sequence
of physical shapes that interpolates between our two original shapes. If we
now consider a single point on one shape, we can then follow it through this
continuous sequence of shapes, and hence locate the physical point on the
other shape to which this point corresponds. This is what is meant by a
dense correspondence between shapes.

Let us now return to our physical shapes, and imagine translating and
rotating a physical shape (that is, altering the pose of the shape). In many

R. Davies et al., Statistical Models of Shape, 9
DOI: 10.1007/978-1-84800-138-1 2, c© Springer-Verlag London Limited 2008

10 2 Statistical Models of Shape and Appearance

cases, the pose of the physical shape is unimportant, and what we mean by
change of shape is not such a transformation.

But there is another transformation we could consider. Suppose we imag-
ine two distinct points in shape space, which give the same physical shape,
but different correspondence when compared to some other (reference) shape
(using the construction defined above). If such a construction is possible, we
see that it is possible (at least in theory) to manipulate the correspondence
between shapes (moving the point in shape space), whilst leaving the physical
shape unaltered. Which then means that we have to answer the question as
to what correspondence we should use for our analysis of shape variability
(the correspondence problem – see also Sect. 3.1).

We hence see that the issue of shape correspondence naturally arises as
soon as we consider the steps necessary to represent a set of shapes, and
analyse their distribution. Some methods of shape representation do not al-
low correspondence to be manipulated independently of shape, and in these
cases, the correspondence they generate can be considered as implicit (for ex-
ample, the SPHARM method [76], or early M-Rep methods [137]). However,
there are other methods of shape representation for which the correspondence
is explicit, which allow correspondence to be manipulated independently of
physical shape.

In the remainder of this book, we will restrict ourselves to such a shape rep-
resentation, the shape representation which leads to the class of deformable
models known as Statistical Shape Models1 (SSMs). We will now describe this
shape representation in detail, beginning with the finite-dimensional case.

2.1 Finite-Dimensional Representations of Shape

Let us consider first building a finite-dimensional representation of a single
shape S. The most intuitive and simplest way to represent such a shape is a
join-the-dots approach.

We take a set of nP points which lie on the shape S, with positions:

x(i) ∈ S, i = 1, . . . nP . (2.1)

The coordinates of each point position can be concatenated to give a single
shape vector x = {x(i)}. For example:

x .= (x(1), y(1), z(1), x(2), y(2), z(2), . . . , x(nP), y(nP), z(nP)), S ⊂ R
3, (2.2)

1 Note that these were initially called Point Distribution Models (PDMs). However, due

to a clash with nomenclature in the statistics literature, they were later re-christened

Statistical Shape Models (SSMs). Both terms can be found in the literature.

2.1 Finite-Dimensional Representations of Shape 11

where (x(i), y(i), z(i)) are the Cartesian coordinates of the ith point on the
shape. For a shape S in R

d, this gives a d × nP -dimensional representation.
In most cases, Cartesian coordinates are sufficient, but in cases where parts
of shapes can rotate, it may be useful to instead use angular coordinates [87].

The final representation of the shape is then generated from the shape
vector by interpolation. For shapes in R

2 (curves), this is a simple join-the-
dots approach, using either straight-line segments (polygonal representation),
or by spline interpolants if a smoother shape is preferred. For shapes in R

3

(surfaces), interpolants can similarly also be linear (planes), or a higher-order
spline interpolant.

What we have not considered so far is the connectivity of the points, and
the topology of the shape. For the case of shapes in R

2, the simplest case
is where the shape has only one connected component, with the topology of
either an open or closed line. The points are usually numbered so that they
are connected consecutively – for the closed shapes, we must also form a loop
by connecting the last point to the first. For more complicated multi-part
shapes, the points which are members of each part, and the connectivity
within each part have to be specified separately.

Similar considerations holds for shapes in R
3. The simplest case is then

single-part shapes in R
3, with the topology of either open surfaces or spheres,

with the points being part of a triangulated mesh.
Once we have a finite-dimensional representation of a single shape S, we

can easily see how this can be extended to form a common representation of
a set of shapes. To be specific, let us take a set of nS shapes:

Si : i = 1, . . . nS . (2.3)

We suppose that each shape is then represented by a set of nP points, such
that the individual points are placed in corresponding positions across the set
of shapes. This then gives us a set of initial shape vectors {xi : i = 1, . . . nS}
which form a representation of the whole set of shapes in a common shape
space R

dnP .

2.1.1 Shape Alignment

In many cases, the size, placement, and orientation of an object is arbitrary,
and has nothing to do with the actual variation of shape that we are interested
in. In mathematical terms, there are degrees of freedom (scaling, translation,
and rotation) associated with each shape example, which we wish to factor
out of our shape analysis.

Consider a fixed shape y, and a second moving shape x, which we wish
to align with the first by means of a similarity transformation. A general
similarity transformation acting on x can be written as:

12 2 Statistical Models of Shape and Appearance

x �→ sR(x − t), (2.4)

where t represents a translation in R
d, R is a dnP × dnP representation of

a rotation in R
d, and s ∈ R

+ is a scaling. Note that these elements of the
representation of a similarity transformation are such that they act on the
concatenated set of shape points in the shape vector. They are constructed
from a representation that acts on single points in the obvious way, although
the exact details depend on the way in which the coordinates of the shape
points have been concatenated.

We wish to find the similarity transformation which brings the moving
shape x as close as possible to the fixed shape y. The simplest way to de-
fine proximity is just the magnitude of the Euclidean norm of the difference
between the two shape vectors in R

dnP :

L .= ‖y − sR(x − t)‖2, (2.5)

which is the square of the Procrustes distance between the shapes [78]. In
terms of the positions of individual points, this expression can be rewritten
as:

L =
nP∑

i=1

‖y(i) − sR(x(i) − t)‖2, (2.6)

where t is now just a vector in R
d, and R is a d × d rotation matrix.

If we define our origin so that it lies at the centre of mass of the fixed
shape:

1
nP

nP∑

i=1

y(i) = 0, (2.7)

with rotation defined about this origin, the optimal translation can then be
calculated as:

∂L
∂t

∣∣∣∣
s,R

= 0 =⇒ ∂

∂t

∣∣∣∣
s,R

nP∑

i=1

‖sR(x(i) − t)‖2 = 0, (2.8)

=⇒ ∂

∂t

∣∣∣∣
s,R

nP∑

i=1

‖(x(i) − t)‖2 = 0, (2.9)

=⇒ t =
1

nP

nP∑

i=1

x(i) =
1

nP

nP∑

i=1

(
x(i) − y(i)

)
. (2.10)

That is, the centroid/centre of mass of the original moving shape is translated
so that it coincides with the centre of mass of the fixed shape.

Once the shapes have been centred, we can then calculate the combined
scaling and rotation:

2.1 Finite-Dimensional Representations of Shape 13

∂L
∂sR

= 0 =⇒
nP∑

i=1

y(i)
μ x

(i)
β = sRμα

nP∑

j=1

x(j)
α x

(j)
β , (2.11)

where x(i) = {x(i)
α : α = 1, . . . d} and y(i) = {y(i)

α : α = 1, . . . d} are the
Cartesian components of the point positions. This can then be solved for the
matrix sR (for example, see [102] for further details).

Rather than aligning just a pair of shapes, we wish to mutually align
an entire set of shapes {Si : i = 1, . . . nS}, Si = {x(i)

j : j = 1, . . . nP }.
We use a similar criterion to that considered above, either by considering
the squared Procrustes distances between all pairs of shapes, or between all
shapes and the mean shape. This is known as generalized Procrustes analysis.
The translations are obtained as before, centering each shape on the origin.
However, the general problem of finding the optimal rotations and scalings
is not well-posed unless further constraints are placed on the mean [174], as
will be explained below.

For statistical shape analysis and statistical shape models, a simple it-
erative approach is usually sufficient. After first centering all the shapes, a
typical algorithm then proceeds [38] as Algorithm 2.1.

Algorithm 2.1 : Mutually Aligning a Set of Shapes.

Initialize:

• Choose one shape as the reference frame, call it xref, and retain this.
• Normalize the scale so that ‖xref‖ = 1.
• Set the initial estimate of the mean shape to be xref.

Repeat:

• Perform pairwise alignment of all shapes to the current estimate of the mean shape.
• Recompute the mean of the set of shapes:

x̄
.
= {x̄(i) : i = 1, . . . nP }, x̄

.
=

1

nS

nS∑

j=1

xj.

• Align x̄ to the initial reference frame xref.
• Normalize the mean so that ‖x̄‖ = 1.

Until convergence.

Note that it is necessary to retain the initial reference frame to remove
the global degree of freedom corresponding to rotating all the shapes by
the same amount. Setting ‖x̄‖ = 1 similarly removes the degree of freedom
associated with scaling all the shapes by the same factor. The degrees of
freedom associated with a uniform translation have already been removed by
centering all the shapes before we began the rest of the alignment.

14 2 Statistical Models of Shape and Appearance

There remains the question of what transformations to allow during the it-
erative refinement. A common approach is to scale all shapes so that ‖xi‖ = 1,
and allow only rotations during the alignment stage. This means that from
the original shape space R

dnP , all shapes have been projected onto the surface
of a hypersphere ‖x‖ = 1. This means that the submanifold of R

dnP on which
the aligned shapes lie is curved, and if large shape changes occur, significant
non-linearities can appear. This may be problematic when we come to the
next stage of building a statistical model of the distribution of shapes. An
alternative is to allow both scaling and rotation during alignment, but this
can also introduce significant non-linearities. If this is a problem, the non-
linearity can be removed by projecting the aligned shapes onto the tangent
hyperplane to the hypersphere at the mean shape. That is:

xi �→ sixi, si ∈ R
+ such that (x̄ − sixi) · x̄ = 0. (2.12)

See [38] for further details and explicit examples.

2.1.2 Statistics of Shapes

To summarize our progress so far, we have mapped our initial shape vectors
(2.2) in R

dnP to a new set of mutually aligned shape vectors, by factoring
out uninteresting degrees of freedom corresponding to pose (scale, orientation,
and position). We now wish to analyse the statistics of this distribution of
shape vectors. To do this, we first need to find a set of axes specific to the
particular set of shapes. We have in some sense already started to perform
this, since we have a mean shape x̄ that can be used as an origin.

To see that this is a necessary procedure, consider the extreme case where
there is a shape point, x(i) say, which does not change its position across the
set of examples. Since this point does not vary, there is no value in retaining
the axes corresponding to the coordinates of this point {x(i)

α : α = 1, . . . d}.
We wish instead to find a new set of axes in R

dnP that span the subspace
which contains the (aligned) shapes. One simple procedure for performing
this task is Principal Component Analysis (PCA).

2.1.3 Principal Component Analysis

We start from our set of shape vectors {xi : i = 1, . . . nS} (we will assume
from now on that we are only considering sets of shape vectors which have
been aligned), with components relative to our original axes:

xi = {xiμ : μ = 1, . . . d × nP }. (2.13)

2.1 Finite-Dimensional Representations of Shape 15

These are the components and axes defined by those in R
d, the original space

in which the input shapes reside.
We wish to find a new set of orthogonal axes in R

dnP that better reflects
the actual distribution of the set. The origin of this new set of axes will be set
to the mean shape x̄. Let these new axes be described by a set of orthonormal
vectors:

{n(a)} such that n(a) · n(b) = δab, (2.14)

where δab is the Kronecker delta.
We then have the following theorem:

Theorem 2.1. PCA.
The set of orthonormal directions {n(a)} that maximises the quantity:

L .=
∑

a

nS∑

i=1

(
(xi − x̄) · n(a)

)2

, (2.15)

are given by the eigenvectors of the data covariance matrix D for the shapes,
where we define D of size dnP × dnP with components:

Dμν
.=

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν . (2.16)

Then the eigenvectors are defined by:

Dn(a) = λan(a), a = 1, . . . nS − 1. (2.17)

Proof. Suppose we are extracting these vectors in some sequential manner, so
that having found an acceptable subset {n(a) : a = 1, . . . b − 1}, we now wish
to make the optimum choice of the next vector n(b). Optimality is then given
by maximising:

L .=
nS∑

i=1

(
(xi − x̄) · n(b)

)2

, (2.18)

with respect to n(b), subject to the orthonormality constraints:

n(a) · n(b) = δab, a = 1, . . . b. (2.19)

Using Lagrange multipliers {cba : a = 1, . . . b}, the solution to this constrained
optimisation problem corresponds to the stationary point of the function:

16 2 Statistical Models of Shape and Appearance

L =
nS∑

i=1

(
(xi − x̄) · n(b)

)2

+
b−1∑

a=1

cban(a) · n(b) + cbb

(
n(b) · n(b) − 1

)
. (2.20)

∂L
∂cba

= 0 =⇒ n(a) · n(b) = δab, which are the required constraints. (2.21)

∂L
∂n(b)

= 0 =⇒ 2
nS∑

i=1

(xi − x̄)ν(xi − x̄)μn(b)
μ +

b−1∑

a=1

cban(a)
ν + 2cbbn

(b)
ν = 0,

(2.22)

where we use the Einstein summation convention2 that the repeated index μ
is summed from μ = 1 to dnP . Using the definition of the covariance matrix
D (2.16), we can rewrite the condition as:

2Dn(b) +
b−1∑

a=1

cban(a) + 2cbbn(b) = 0. (2.23)

For the case b = 1 (the first direction we choose), this reduces to:

Dn(1) + c11n(1) = 0 (2.24)

=⇒ Dn(1) = λ1n(1) & n(1)D = λ1n(1), c11
.= λ1. (2.25)

That is, the vector n(1) is a left and right eigenvector of the (symmetric)
shape covariance matrix D, with eigenvalue λ1. The condition for the second
axis can then be written as:

2Dn(2) + c21n(1) + 2c22n(2) = 0. (2.26)

Taking the dot product of this expression with n(1), we obtain:

2n(1)Dn(2) + c21 = 0 (2.27)
=⇒ 2λ1n(1) · n(2) + c21 = 0 =⇒ c21 = 0. (2.28)

∴ Dn(2) + c22n(2) = 0 =⇒ Dn(2) = −c22n(2) .= λ2n(2).

(2.29)

It then follows by induction that the required set of axes {n(a)} are the or-
thonormal set of eigenvectors of the shape covariance matrix D. �	

The sum of the squares of the components of the shape vectors along each
of the PCA directions n(a) is then given by:

2 Note that, in general, indices that appear in brackets ·(a) will not be summed over unless
explicitly stated. See Glossary.

2.1 Finite-Dimensional Representations of Shape 17

nS∑

i=1

(
(xi − x̄) · n(a)

)2

= n(a)
μ Dμνn(a)

ν = λa ≥ 0. (2.30)

This means that the set of axes can be ordered in terms of relative impor-
tance by sorting the eigenvalues in terms of decreasing size. Since there are
nS shapes, there are at most nS−1 non-zero eigenvalues. This means that for
the case nS −1 < dnP , we have performed dimensionality reduction by locat-
ing the directions with zero eigenvalue that are orthogonal to the subspace
spanned by the data.

In practice, we retain not just the directions corresponding to non-zero
eigenvalues, but instead that ordered set which encompasses a certain amount
of the total variance of the data.

Ordered set of eigenvalues: λ1 ≥ λ2, . . . ≥ λdnP
, (2.31)

Total variance:
nS−1∑

a=1

λa, (2.32)

Variance up to nm :
nm∑

a=1

λa. (2.33)

The number of modes nm retained is then chosen to be the lowest value such
that the variance up to nm is some specified fraction of the total variance.

We can also transform coordinates to the system defined by the directions
{n(a)}, with origin x̄. For each shape xi this then defines a new vector of
shape parameters b(i) ∈ R

nm thus:

b(i) = {b(i)
a : a = 1, . . . nm}, b(i)

a
.=
(
n(a) · (xi − x̄)

)
, (2.34)

where the covariance in this frame is now given by the diagonal matrix:

Dab
.=

nS∑

i=1

(n(a) · b(i))(n(b) · b(i)) = λaδab. (2.35)

We define the matrix of eigenvectors:

N, Nμa
.= n(a)

μ , (2.36)

which is then of size dnP × nm. We can then form an approximate recon-
struction of the shape vector xi from the corresponding parameter vector b(i)

thus:
xi ≈ x̄ + Nb(i). (2.37)

The reconstruction is only approximate, since we have only retained the first
nm eigenvectors, rather than all eigenvectors with non-zero eigenvalue.

18 2 Statistical Models of Shape and Appearance

The matrix N performs a mapping from the coordinate axes defined in
(shape) parameter space to the original shape space. The mean shape simply
performs a translation of the origin, since the origin of parameter space is
taken to correspond to the mean shape. The corresponding backwards map-
ping, from shape space to parameter space, is performed by the matrix NT .
For a general parameter vector b ∈ R

nm and shape vector x ∈ R
dnP :

b �→ x̄ + Nb, x �→ NT (x − x̄) . (2.38)

Note however that the mappings are not the inverse of each other, even if all
the variance is retained, since the dimensionality of parameter space is less
than the dimensionality of shape space. For a shape vector x which is not part
of the original training set, the action of NT first projects the shape vector
into the subspace spanned by the training set, then forms an (approximate)
representation of this using the nm available modes.

If we suppose that the parameter vectors for our original set of shapes are
drawn from some probability distribution p(b), then we can sample parame-
ter vectors b from this distribution. We can then construct the corresponding
shapes for each parameter vector b as above (2.38). This gives us an arbitrar-
ily large set of generated shapes, sharing the same distribution as the original
set. This is usually referred to as applying the SSM in a generative mode.

The remaining task is to learn this distribution p(b), given our original
set of shapes – in this context, we refer to this set as a training set.

2.2 Modelling Distributions of Sets of Shapes

For a simple unimodal distribution of shapes in shape space, PCA generates
a coordinate system centred on the distribution, whose axes are aligned with
the significant directions of the distribution, and represent modes of varia-
tion of that data. If the distribution is not simple, PCA will still enable us to
discard dimensions which are orthogonal to the data, that is, perform dimen-
sional reduction. The individual directions n(a) will not however necessarily
correspond to modes of variation of the data.

In the following sections, we consider various methods for studying and
representing the distribution of the training data in shape space. We start
with the simplest case of a single multivariate Gaussian, where the data is
unimodal and the PCA axes do correspond to real modes of variation of the
input data. For the case of multimodal or non-linear data distributions, we
discuss two types of kernel methods, the classical method of kernel density
estimation, and the more recent technique of kernel principal component
analysis.

2.2 Modelling Distributions of Sets of Shapes 19

2.2.1 Gaussian Models

We will consider modelling the distribution of the data by a multivariate
Gaussian. Having already applied PCA, we now model the parameter space
containing the vectors {b(i)} defined above (2.34).

We consider a multivariate Gaussian distribution centred on the origin in
parameter space, that is, centred on the mean of the data in shape space.

Theorem 2.2. Maximum Likelihood Method.
Consider a centred Gaussian probability density function (pdf) of the form:

p(b) ∝
(

nm∏

c=1

1
σc

)
exp

(
−1

2

nm∑

a=1

(
b · m(a)

σa

)2
)

, (2.39)

where {m(a) : a = 1, . . . nm} are some orthonormal set of directions:

m(a) · m(b) = δab, (2.40)

and {σa} are the set of width parameters. The fitted Gaussian which max-
imises the quantity:

nS∏

i=1

p(b(i)), (2.41)

is then given by {m(a)} equal to the eigenvectors of the covariance matrix of
{b(i)}. If these eigenvectors have corresponding eigenvalues {λa}, then the
optimum width parameters are:

σ2
a =

1
nS

λa. (2.42)

Proof. We are required to maximise:

nS∏

i=1

p(b(i)). (2.43)

Equivalently, we can maximise instead the logarithm of this:

L = −nS

nm∑

c=1

ln σc −
1
2

nS∑

i=1

nm∑

a=1

(
b(i) · m(a)

σa

)2

+ (constant terms), (2.44)

with the orthonormality constraints as above. For the case of the directions
{m(a)}, if we compare this to (2.20), we see that it is essentially the same
optimisation problem as the one we encountered previously. Hence we can
deduce that the directions {ma} are just the eigenvectors of the covariance

20 2 Statistical Models of Shape and Appearance

matrix of the {b(i)}. And since this covariance matrix is diagonal in the PCA
coordinate frame (2.35), we finally have that m(a) = n(a) ∀ a = 1, . . . nm.

For the parameters {σa}, we then have to optimise:

L = −nS

nm∑

c=1

ln σc −
1
2

nm∑

a=1

λa

σ2
a

+ (constant terms), (2.45)

=⇒ ∂L
∂σa

= −nS

σa
+

λa

σ3
a

, (2.46)

∴ ∂L
∂σa

= 0 =⇒ σ2
a =

1
nS

λa =
1

nS

nS∑

i=1

(
(xi − x̄) · n(a)

)2

, (2.47)

which is just the mean variance across the set of shapes in the direction n(a).
�	

In many cases, where the shape variation is linear, a multivariate Gaussian
density model is sufficient. A single Gaussian cannot however adequately
represent cases where there is significant non-linear shape variation, such as
that generated when parts of an object rotate, or where there are changes to
the viewing angle in a two-dimensional representation of a three-dimensional
object. The case of rotating parts of an object can be dealt with by using polar
coordinates for these parts, rather than the Cartesian coordinates considered
previously [87]. However, such techniques do not deal with the case where
the probability distribution is actually multimodal, and in these cases, more
general probability distribution modelling techniques must be used. In what
follows, we consider kernel-based techniques, the first being classical kernel
density estimation, and the second based on the technique of kernel principal
component analysis.

2.2.2 Kernel Density Estimation

As before, we start from the set of nS centred points {b(i)} in shape space
R

nm . Kernel density estimation [165] estimates a pdf from data points by
essentially smearing out the effect of each data point, by means of a kernel
K:

p(b) =
1

nShnm

nS∑

i=1

K

(
b − b(i)

h

)
, (2.48)

where h is a scaling parameter. In the trivial case where the kernel K is a
Dirac δ-function, we obtain the empirical distribution of the data, a pdf p(b)
which is zero everywhere except at a data point. A non-trivial choice of kernel
would be a multivariate Gaussian:

2.2 Modelling Distributions of Sets of Shapes 21

K(b) .= N (b;0,D), (2.49)

where the covariance D of the kernel can be chosen to match the covariance
of the data {b(i)}.

A slightly more sophisticated approach is the sample smoothing estima-
tor [15, 175]. Rather than a single global scale parameter h, there is now a
local scale parameter, which reflects the local density about each data point,
allowing wider kernels in areas where data points are sparse, and narrower
kernels in more densely populated areas. Similarly, the kernel covariance can
also vary locally [152].

Such kernel methods can give good estimates of the shape distribution.
However, the large number of kernels can make them too computationally ex-
pensive in an application such as the Active Shape Model (ASM) (Sect. 2.4.1).
Cootes et al. [35, 36] developed a method of approximating the full kernel
density estimate using a smaller number of Gaussians within a Gaussian
mixture model:

pmix(b) .=
nmix∑

i=1

wiN (b;μi,Di), (2.50)

where nmix is the number of Gaussians within the mixture model, wi is the
weight of the ith Gaussian, with center μi and covariance Di. The fitting
of the parameters can be achieved using a modification [36] to the standard
Expectation Maximisation (EM) algorithm method [117].

2.2.3 Kernel Principal Component Analysis

The previous method aims to fit a non-linear or multimodal shape distri-
bution by constructing a parametric non-linear and multimodal distribution
within the original shape space.

The Kernel Principal Component Analysis (KPCA) method takes a differ-
ent approach. KPCA [156, 157] is a technique for non-linear feature extrac-
tion, closely related to methods applied in Support Vector Machines [194, 188]
(SVMs). Rather than working within the original data space with non-linear
and multimodal distributions, KPCA seeks to construct a non-linear mapping
of input space I to a new feature space.

Let b represent a point in our input data space3 I = R
nm , which is mapped

to a feature space F :

Φ : R
nm �→ F , R

nm � b �→ Φ(b) ∈ F , (2.51)

3 Here, we start from the dimensionally reduced space R
nm rather than the original shape

space R
dnP in order to also include the infinite-dimensional case nP �→ ∞ that is considered

in Sect. 2.3.

22 2 Statistical Models of Shape and Appearance

where F is typically of very high (even infinite) dimensionality. Rather than
constructing the mapping Φ explicitly, we instead employ the kernel trick,
that dot products of mapped points, and hence the implicit mapping Φ, can
be specified by giving the Mercer kernel function [122] K, where:

K : I × I �→ R, (2.52)
Φ(b) · Φ(c) .= K(b, c) ≡ K(c,b) ∀ b, c ∈ I. (2.53)

If we recall the definition of PCA given earlier (Theorem 2.1), we see that
computation of the PCA axes depends on our being able to compute dot
products between data points and the PCA axis vectors. We hence deduce
that since we can compute dot products in the feature space (2.53) by use of
the kernel trick, we can then perform PCA in the feature space F without
having to explicitly construct the kernel mapping Φ. And since the kernel
mapping is a non-linear mapping, PCA in the feature space F then corre-
sponds to a method of non-linear components analysis in the original data
space I.

Suppose we have nS data points {b(i)} in our data space I. The non-linear
KPCA components are then given by the following theorem.

Theorem 2.3. KPCA: Centred Components.
Suppose we have data points {b(i) : i = 1, . . . nS} in a data space I, and that
there exists a mapping Φ to a feature space F , the mapping being defined by
a Mercer kernel K as follows:

Φ : b �→ Φ(b) ∀ b ∈ I, Φ(b) · Φ(c) .= K(b, c) ∀ b, c ∈ I. (2.54)

We define the following:

Φ(i) .= Φ(b(i)), i = 1, . . . nS (2.55)

Φ̃(i) .= Φ(i) − 1
nS

nS∑

j=1

Φ(j). (2.56)

Kij
.= Φ(i) · Φ(j) ≡ K(b(i),b(j)), (2.57)

K̃ij
.= Φ̃(i) · Φ̃(j). (2.58)

The centred KPCA components {Φ̃(i)
α : α = 1, . . . nK , nK ≤ nS − 1} of a

data point b(i) are then extracted from the set of solutions of the eigenproblem:

λαn
(α)
i = K̃ijn

(α)
j , Φ̃(i)

α = n
(α)
i . (2.59)

Proof. As stated above, KPCA applied to the data points {b(i)} is just or-
dinary linear PCA applied to the mapped data points {Φ(i)}. Centering the
mapped data points then gives the {Φ̃(i)} as defined above.

2.2 Modelling Distributions of Sets of Shapes 23

In Theorem 2.1, linear PCA was defined by maximising the quantity given
in (2.15). For KPCA, we define a set of orthogonal (but not necessarily or-
thonormal) direction vectors {n(α) : α = 1, . . . nK} which lie in the subspace
of F spanned by the nS vectors {Φ̃(i)}, and maximise the analogous quantity:

L =
1

2nS

nS∑

i=1

(
n(α) · Φ̃(i)

)2

− cα

2

(
n(α) · n(α) − (a(α))2

)
, (2.60)

where cα > 0 is a Lagrange multiplier for maximisation under the normal-
ization constraint:

n(α) · n(α) ≡ ‖n(α)‖2 = (a(α))2. (2.61)

We solve this problem by setting the first derivative of L with respect to n(α)to
zero as follows:

∂L
∂n(α)

=
1

nS

nS∑

i=1

(
n(α) · Φ̃(i)

)
Φ̃(i) − cαn(α). (2.62)

∴ ∂L
∂n(α)

= 0 =⇒ 1
nS

nS∑

i=1

Φ̃(i)
(
n(α) · Φ̃(i)

)
= cαn(α). (2.63)

Taking the dot product with Φ̃(j):

=⇒ 1
nS

nS∑

i=1

(
Φ̃(j) · Φ̃(i)

)(
n(α) · Φ̃(i)

)
= cα

(
n(α) · Φ̃(j)

)
, (2.64)

=⇒
nS∑

i=1

K̃ji

(
n(α) · Φ̃(i)

)
= (nScα)

(
n(α) · Φ̃(j)

)
. (2.65)

The interpretation of
(
n(α) · Φ̃(j)

)
is that it is the PCA component of Φ̃(j)

along the direction n(α), hence the αth centred KPCA component of b(j). If
we define:

n
(α)
j

.=
(
n(α) · Φ̃(j)

)
, (2.66)

then PCA in feature space reduces to the eigenproblem:

K̃jin
(α)
i = (nScα)n(α)

j = λαn
(α)
j . (2.67)

�	

Note that as in linear PCA, we choose the define the index α so that the
eigenvalues are ordered in decreasing order.

If we recall the definitions of the kernel matrices K (2.57) and K̃ (2.58),
and rewrite K̃ in terms of K, we have that:

24 2 Statistical Models of Shape and Appearance

Kij
.= K(b(i),b(j)),

K̃ij = Kij −
1

nS

∑

p

Kpj −
1

nS

∑

q

Kiq +
1

n2
S

∑

p,q

Kpq. (2.68)

Looked at in this way, in terms of kernels involving the input data points, the
significance of K̃ and its eigenvectors is obscured. It is only the identification
between Mercer kernels and mappings that enables K̃ to be seen as just the
covariance matrix for the mapped data points.4

We can also define non-centred KPCA components {Φ(i)
α }, where:

Φ(i)
α

.= n(α) · Φ(i). (2.69)

Theorem 2.4. KPCA: Non-centred Components.
With definitions as above, the non-centred KPCA components of a data point
b(j) are given by:

Φ(j)
α

.= n(α) · Φ(j) =
1
λα

n
(α)
i Kij . (2.70)

Proof. Remember that the {Φ̃(i)} are centred points, hence:

ns∑

i=1

Φ̃(i) ≡ 0 ⇒
ns∑

i=1

n(α) · Φ̃(i) = 0 ⇒
ns∑

i=1

n
(α)
i = 0. (2.71)

For all λα �= 0 (2.59), the corresponding eigenvector n(α) lies in the space
spanned by the set {Φ̃(i)}, hence n(α) can be expanded in this basis:

n(α) =
nS∑

i=1

w
(α)
i Φ̃(i). (2.72)

∴ n(α) · Φ̃(j) .= n
(α)
j = w

(α)
i K̃ij (2.73)

⇒ λαn
(α)
j = λαw

(α)
i K̃ij . (2.74)

Comparison with the eigenvector equation gives that:

w
(α)
i =

1
λα

n
(α)
i ⇒ n(α) =

1
λα

nS∑

i=1

n
(α)
i Φ̃(i). (2.75)

Substituting Φ(i) − 1
nS

nS∑
k=1

Φ(k) for Φ̃(i) and using (2.71) then gives:

4 Note that this result, and the definition of a finite-dimensional covariance matrix K̃ij

in a space F that is possibly infinite-dimensional is actually an application of a result for

covariance matrices that is presented later in this chapter (Theorems 2.6 and 2.7).

2.2 Modelling Distributions of Sets of Shapes 25

n(α) =
1
λα

nS∑

i=1

n
(α)
i Φ̃(i) =

1
λα

nS∑

i=1

n
(α)
i Φ(i). (2.76)

Hence:

Φ(j)
α

.= n(α) · Φ(j) =
1
λα

n
(α)
i Kij . (2.77)

�	

As well as the centred and non-centred components for data points, we
can now also compute the centred and non-centred KPCA components for
an arbitrary point b in the input space.

Theorem 2.5. KPCA: Components of a Test Point.
A general point b in the input space maps to a point Φ(b) in feature space,
with non-centred KPCA components:

Φα(b) .= n(α) · Φ(b) =
1
λα

nS∑

i=1

n
(α)
i K(b(i),b), (2.78)

and centred KPCA components:

Φ̃(b) .= Φ(b) − 1
nS

nS∑

j=1

Φ(j),

Φ̃α(b) .= n(α) · Φ̃(b) = Φα(b) − 1
λαnS

nS∑

i,j=1

n
(α)
i Kij . (2.79)

Proof. This follows straightforwardly from the previous results, and is left as
an exercise for the reader.

2.2.4 Using Principal Components to Constrain Shape

We now need to consider the ways that PCA and KPCA components are
used in shape applications, and consider in detail the significant differences
between them.

For shape spaces R
nm , it is obvious that PCA components can increase

without limit, since the mapping from shape parameters to shapes (2.38) is

26 2 Statistical Models of Shape and Appearance

defined for any point in the parameter space. Hence we can always exclude
test shapes b far from the training data by setting an upper bound on each
of the PCA components, creating a bounding parallelepiped. This does not
necessarily exclude all shapes which are unlike the training data for cases
where the training set shape variation is non-linear or multimodal.

For the case of Gaussian distributions of shapes (2.39), when the PCA
axes are appropriately scaled, the pdf becomes spherically symmetric:

p(b) ∝ exp

(
−1

2

nm∑

a=1

(
b · m(a)

σa

)2
)

, m(a) · m(b) = δab, (2.80)

ba
.= m(a) · b, a = 1, . . . nm. (2.81)

b̃a
.=

ba

σa
, (2.82)

∴ p(b̃) ∝ exp

(
−1

2

nm∑

a=1

(
b̃ · m(a)

)2
)

= exp
(
−1

2
‖b̃‖2

)
, (2.83)

where:

‖b̃‖2 .=
nm∑

a=1

(
ba

σa

)2

, (2.84)

is the squared Mahalanobis distance [110] between the point b and the origin
(mean shape). Hence surfaces of constant Mahalanobis distance correspond
to probability isosurfaces, with a simple monotonic relationship between Ma-
halanobis distance and probability density, and we can create bounding el-
lipsoids by placing an upper bound on the Mahalanobis distance.

Our initial trivially obvious observation that PCA components can in-
crease without limit is not however generally true for KPCA components.

Consider Theorem 2.5, (2.78):

Φα(b) =
1
λα

nS∑

i=1

n
(α)
i K(b(i),b). (2.85)

We see that the way the non-centred or centred components of a test point
behave as the test point moves away from the data depends on the way the
kernel function K(b(i),b) behaves. As was noted by Schölkopf et al. [156]:

Φα(b) .= n(α) · Φ(b) ≤ ‖n(α)‖ ‖Φ(b)‖ = a(α) (K(Φ(b),Φ(b)))
1
2 , (2.86)

where the normalization of the vector n(α) is as defined in (2.61).
In Table 2.1, we give examples of some commonly used kernels, and the

range of allowed values of ‖Φ(b)‖.
We see that for the polynomial kernels (which of course contain linear

PCA as a limiting case when m = 1), the values of the KPCA components

2.2 Modelling Distributions of Sets of Shapes 27

Table 2.1 Examples of Mercer kernels.

Kernel Type K(b, c) ‖Φ(b)‖

Polynomial (b · c)m, 0 ≤ ‖Φ(b)‖2 < ∞.

(b · c + r)m rm ≤ ‖Φ(b)‖2 < ∞.

Radial Basis Function (RBF) exp

(
− 1

2σ2
‖b − c‖2

)
‖Φ(b)‖2 ≡ 1.

Sigmoid tanh (b · c + r) 0 ≤ ‖Φ(b)‖2 ≤ 1.

are unlimited. However, for both the sigmoid and RBF kernels, ‖Φ(b)‖ and
hence the values of the components are strictly bounded.

The RBF kernel is particularly interesting. Note that the modulus of the
mapped vector Φ(b) in feature space is identically one. This means that the
mapped input space Φ(I) is an embedded submanifold of feature space F . If
we consider the modulus of the difference vector between two mapped points,
we have:

‖Φ(b) − Φ(c)‖2 ≡ 2
(

1 − exp
(
− 1

2σ2
‖b − c‖2

))
. (2.87)

We hence see that as b moves away from c in input space:

‖Φ(b) − Φ(c)‖2 → 2 as Φ(b) · Φ(c) → 0,

which is what we would expect for orthogonal points on a unit hypersphere.
Consider now the projection from this embedded submanifold to KPCA

space, which is the space of KPCA components.5 The explicit expression for
the non-centred KPCA components (2.78) for the case of an RBF kernel is:

Φα(b) =
1
λα

nS∑

i=1

n
(α)
i exp

(
− 1

2σ2
‖b(i) − b‖2

)
,

ns∑

i=1

n
(α)
i = 0. (2.88)

The first trivially obvious point to note is that all the KPCA components
tend to zero for any test point far from all the data. Let us now focus on the
case where the kernel width σ is sufficiently small, and for a fixed value of α.
Because of the summation constraint on {n(α)

i }, at least one of the elements
{n(α)

i } must be of opposite sign to the others. The set of {Φ(i)
α = Φα(b(i))}

(the non-centred KPCA components of the data points), will hence take
both negative and positive values across the data. We can hence conclude
that for sufficiently small values of σ, the extrema of any KPCA component

5 It should be noted that whilst we can always move from input space (the point b) to
KPCA space (the space of KPCA components) using (2.78), we cannot necessarily do the
inverse. So, it is not necessarily the case that an arbitrary point in KPCA space (defined
by a set of KPCA components) possesses a pre-image in input space (although various
approximation methods do exist, see [156] Sect. 4.5 for further details).

28 2 Statistical Models of Shape and Appearance

will tend to lie in the vicinity of the data points, taking both negative and
positive values, and that these values bracket the values obtained for points
far from the data (that is, zero). Since this is an ordering property, it persists
if we switch to centred KPCA components, since this just corresponds to a
translation in KPCA space.

Consider a path in input space which starts at infinity, then approaches
some part of the data, then moves out to infinity again. At first, all KPCA
components will have vanishingly small modulus. As the point approaches
the data, some component(s) acquire a value of larger modulus, which then
shrinks again as we move away from all the data. In linear PCA, proximity
to data was described by placing an upper bound to the modulus of each
component, but such a procedure will not be generally valid for KPCA com-
ponents.6 This argument rests on the kernel width σ being in some sense
small, but this behaviour persists for some finite range of σ (indeed, if it did
not, RBF KPCA would be of no use as a non-linear feature extractor).

It hence suggests that an appropriate proximity-to-data measure for
KPCA components would involve a sum over the moduli of non-centred
KPCA components. This was the approach taken by Twining and Taylor [185]
as follows.

We first define the normalization of the eigenvectors. In contrast to Mika
et al. [124] and Schölkopf et al. [156], the eigenvectors are normalized (2.61)
with respect to the data:

nS∑

i=1

(
Φ̃

(α)
i

)2

≡
nS∑

i=1

(
n

(α)
i

)2 .= 1 ⇒ ‖n(α)‖2 =
(
a(α)
)2

=
1
λα

∀ α, (2.89)

which hence gives an orthogonal but not orthonormal basis {n(α)}. We then
introduce scaled non-centred components:

Ψα(b) .= λαΦα(b) =
nS∑

i=1

n
(α)
i exp

(
− 1

2σ2
‖b(i) − b‖2

)
. (2.90)

As to why scaled components are used rather than the original components,
consider the following. For a general test point, we have the usual definition
of non-centred components (2.78):

Φα
.= n(α) · Φ(b). (2.91)

We can hence expand the vector Φ(b) in terms of the eigenvectors thus:

6 This point was not sufficiently appreciated by Romdhani et al. [148] when they considered
shape spaces for faces. They defined their valid shape region by placing an upper bound on
their KPCA components, by analogy with the case of linear PCA. In the limit of large σ,
RBF KPCA does indeed approach linear PCA (see [185] Appendix A for details), but this
behaviour and hence the analogy is not generally valid for RBF KPCA (nor for KPCA in
general, as noted in the text).

2.2 Modelling Distributions of Sets of Shapes 29

Φ(b) =
nK∑

α=1

λαΦα(b)n(α) + V(b), (2.92)

where nK denotes that we have chosen only the nK largest eigenvalues to
include, and V(b) is some vector perpendicular to the set of eigenvectors so
chosen. We can then deduce that since ‖Φ(b)‖ ≡ 1 for all test points, we
have that:

‖Φ(b)‖2 =
nK∑

α=1

λα|Φα(b)|2 + ‖V(b)‖2 ≡ 1 ⇒
nK∑

α=1

λα|Φα(b)|2 ≤ 1. (2.93)

This hence places a strict upper bound on the modulus of the components,
with the larger the eigenvalue the smaller the maximum allowed value of
|Φα(b)|. For the purposes of proximity-to-data estimation using sums of
squares of components, this is not an ideal situation, since we feel intu-
itively that the modes with larger eigenvalues should make the largest con-
tribution. Hence the use of the scaled components Ψα(b) .= λαΦα(b), since
|Ψα(b)|2 ≤ λα.

A general proximity-to-data measure is then of the form:

f (m)(b) ∝
(

nK∑

α=1

Ψα(b)Ψα(b)

)m
2

, m = 1, 2, . . .∞. (2.94)

Of particular interest is the simplest case where m = 2, where the proximity-
to-data measure can be exactly normalized, giving the pseudo-density:

p̂(b) =
1
A

nS∑

i,j=1

nK∑

α=1

n
(α)
i n

(α)
j K(b,b(i))K(b,b(j)) (2.95)

Normalization factor: A = σnmπ
nm
2 Tr(K

1
2 B)

where K
1
2
ij

.=
√

Kij and Bij
.=

nK∑

α=1

n
(α)
i n

(α)
j .

It has been shown, with the aid of exactly-solvable data distributions ([185]
Appendix B), that this does indeed provide a smoothed estimate of the data
density, with the kernel width σ acting as a smoothing parameter. On ar-
tificial noisy data, it was also shown to give quantitatively better estimates
of the density than either näıve or adaptive kernel density methods such as
those described in Sect. 2.2.2.

In [183], Twining and Taylor used a lower bound on the pseudo-density
to define the class of allowed shapes for statistical shape models, and showed
that this gave improved performance when compared to standard linear mod-
els.

30 2 Statistical Models of Shape and Appearance

From a theoretical point of view, the above density estimate is interest-
ing since it differs from those described earlier (Sect. 2.2.2) in that it is a
quadratic rather than a linear combination of kernel functions. The kernel
width plays the same sort of rôle in both types of kernel methods. The KPCA
pseudo-density possesses a further advantage, in that the number of KPCA
components nK included in the summation can be varied. This means that
for noisy data, the higher modes (which tend to contain the noise) can be
neglected in the density estimate by truncating the summation. As noted
above, this has been shown to produce superior results on noisy input data
to the standard kernel methods which do not possess such a feature.

However, the basic algorithm as summarized here is still computationally
intensive, in that we have to calculate the kernel function between a test
point and all data points. We note that several authors (e.g., [128, 166]) have
already addressed the problem of optimising KPCA as applied to large data
sets (nS > 3000). The question of constructing reduced-set approximations
to the exact KPCA results [155] has also been addressed, so we anticipate
that considerable improvement on this basic algorithm is possible.

So far, we have considered training sets of shapes represented by a finite
number of points, and shown how various methods of principal component
analysis and density estimation can be used to describe the distribution of
such shapes in shape space. However, in the real world, natural shapes we
encounter are continuous. We hence proceed to discuss how the analysis can
be extended to the case of continuous shapes.

2.3 Infinite-Dimensional Representations of Shape

In Sect. 2.1, we considered finite-dimensional representations of shape, and
saw that both PCA and Gaussian modelling rests on the properties of the
covariance matrix D.

However, our input shapes are actually continuous, so we are interested in
the limit where nP → ∞. The problem with our original covariance matrix
D (2.16) is that it is of size dnP ×dnP , hence becomes infinitely large in this
limit. However, the number of non-zero eigenvalues is at most nS − 1. These
eigenvalues can be calculated even in the limit by considering the following
known result for covariance matrices [51].

Theorem 2.6. Equivalence of Eigenvectors: Finite-Dimensional
Case.
Consider a set of shapes {xi : i = 1, . . . nS} with shape covariance matrix
D (2.16) with elements:

Dμν
.=

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν , (2.96)

2.3 Infinite-Dimensional Representations of Shape 31

and the corresponding eigenvectors and eigenvalues:

Dn(a) .= λan(a), n(a) · n(b) = δab, (2.97)

where there are at most nS − 1 non-zero eigenvalues.
Also consider the matrix D̃ with components:

D̃ij
.= (xi − x̄) · (xj − x̄). (2.98)

There then exists a one-to-one mapping between the eigenvectors of D with
non-zero eigenvalue, and the eigenvectors of D̃ with non-zero eigenvalues,
and the eigenvalues for corresponding eigenvectors are equal.

Proof. We start from the eigenvector equation for D, and the definition of
D (2.16)7:

Dμνn(a)
ν = λan(a)

μ ⇒ (xj − x̄)μ(xj − x̄)νn(a)
ν = λan(a)

μ , λa �= 0. (2.99)

Multiplying both sides by (xi − x̄)μ, and summing over μ gives:

(xi − x̄)μ(xj − x̄)μ(xj − x̄)νn(a)
ν = λa(xi − x̄)μn(a)

μ , (2.100)

⇒ (xi − x̄) · (xj − x̄)
[
(xj − x̄) · n(a)

]
= λa

[
(xi − x̄) · n(a)

]
. (2.101)

Define: ñ(a) .= {n(a)
i = (xi − x̄) · n(a) : i = 1, . . . nS}. (2.102)

∴ D̃ij ñ
(a)
j = λañ

(a)
i , D̃ñ(a) = λañ(a). (2.103)

So either ñ(a) = 0, or ñ(a) is an eigenvector of D̃ with eigenvalue λa. If
ñ(a) = 0, it then follows from the definition (2.102) that the corresponding
n(a) would be orthogonal to the data, with λa = 0, which contradicts our
original condition that λa �= 0.

We can hence conclude that all eigenvectors of D with non-zero eigen-
value have a corresponding eigenvector of D̃ with the same eigenvalue. What
remains is the converse claim, that all eigenvectors of D̃ correspond to an
eigenvector of D.

The proof follows in an exactly similar fashion. We start from the eigen-
vector equation:

D̃ñ(a) = λañ(a), (2.104)

where ñ(a) is any eigenvector of D̃ with a non-zero eigenvalue, λa �= 0.
Inserting the definition of D̃ (2.98):

D̃ij ñ
(a)
j = λañ

(a)
i ⇒ (xi − x̄)μ(xj − x̄)μñ

(a)
j = λañ

(a)
i . (2.105)

7 Note our summation convention (see Glossary) that repeated indices are summed over,

except where indices appear in brackets ·(a), which are only summed over if explicitly
stated.

32 2 Statistical Models of Shape and Appearance

Multiplying by (xi − x̄)ν and summing over i:

(xi − x̄)ν(xi − x̄)μ(xj − x̄)μñ
(a)
j = λañ

(a)
i (xi − x̄)ν (2.106)

⇒ (xi − x̄)ν(xi − x̄)μ

[
(xj − x̄)μñ

(a)
j

]
= λa

[
ñ

(a)
i (xi − x̄)ν

]
.

(2.107)

Define: n(a) = {n(a)
μ = ñ

(a)
i (xi − x̄)μ}, (2.108)

∴ Dνμn(a)
μ = λan(a)

ν , Dn(a) = λan(a). (2.109)

The solution n(a) = 0 can be excluded: if we consider (2.105), this can be
rewritten as:

(xi − x̄)μ(xj − x̄)μñ
(a)
j = λañ

(a)
i ⇒ (xi − x̄)μn(a)

μ = λañ
(a)
i . (2.110)

So if ñ(a) �= 0 and λa �= 0, it then follows that n(a) �= 0.
We hence see that all eigenvectors of D̃ with non-zero eigenvalue corre-

spond to eigenvectors of D with the same eigenvalue. And since the corre-
spondence has now been established in both directions, it then follows that all
the eigenvectors of D̃ and D with non-zero eigenvalues can be placed into a
one-to-one correspondence, and the eigenvalues are the same. �	

Earlier (2.34), we defined shape parameter vectors b, where:

b(i) = {b(i)
a : a = 1, . . . nm}, b(i)

a
.=
(
n(a) · (xi − x̄)

)
. (2.111)

If we consider the eigenvectors {ñ(a)} defined above (2.102):

ñ
(a)
i = n(a) · (xi − x̄), (2.112)

we see that:
b(i)
a ≡ ñ

(a)
i . (2.113)

That is, it seems that we can obtain the parameter vectors for the train-
ing set of shapes directly from the eigenvectors of D̃. There is a final point
that needs to be noted. The eigenvectors {ñ(a)} defined in (2.102) inherited
their normalization from the orthonormal set of eigenvectors {n(a)}. It hence
follows that:

‖ñ(a)‖2 = λa. (2.114)

This means that we can indeed extract the needed eigenvalues and the shape
parameter vectors directly from D̃.

As regards the shape generated from an arbitrary parameter vector b, we
have:

x .= x̄ + Nb, N = {Nμa = n(a)
μ }. (2.115)

2.3 Infinite-Dimensional Representations of Shape 33

This can then be re-written as:

x .= x̄ +
nS∑

i=1

(b(i) · b)(xi − x̄). (2.116)

This means that a generated shape is to be considered as a linear combination
of the training shapes, where the weight for each shape is related to the
parameter vectors for the training shape and the generated shape.

2.3.1 Parameterised Representations of Shape

Let us consider for the moment the simple case of shapes in R
2. The finite

set of nP points that describe such a shape can be indexed by an integer
{x(j) : j = 1, . . . nP , x(j) ∈ S.}. For (single-part) shapes with the simplest
topology (open or closed lines), we can include the connectivity information
in with the indexing, so that x(j−1) is joined to x(j) and so on. The same
indexing is applied across a set of shapes, so that the jth point on any one
shape corresponds with the jth point on any other shape.

The subset of the integers {j : j = 1, . . . nP } can then be considered as the
parameter space for our shape representation, a parameter space consisting
of just a set of discrete points. To construct an infinite-dimensional shape
representation, we just need to consider a continuous parameter space.8

For our simple one-dimensional shapes, we have a continuous shape Si

which is then sampled at nP points. Si is then represented by a finite-
dimensional shape vector:

xi
.= {x(j)

i : j = 1, . . . nP }.

The associated discrete parameter space is:

{1, 2, 3, . . . nP } ≡
{

1
nP

,
2

nP
, . . . , 1

}
,

with the associated mapping:

{1, 2, 3, . . . nP } � j �→ x(j)
i ∈ Si.

The mapping respects the topology of the shape, so that the ordering of the
integers respects the ordering of points along the shape.

8 Note that the reader should not confuse this usage of parameter space in terms of para-
meterised shape with the space of shape parameters b (2.34). Parameter space, when used

in this latter context, should be understood as a convenient shorthand for shape-parameter
space.

34 2 Statistical Models of Shape and Appearance

The continuous analog of this parameter space is just the real line between
0 and 1. For an arbitrary point on this line, with parameter value x ∈ [0, 1],
we then have the mapping to the shape:

[0, 1] � x �→ Si(x) ∈ Si.

Si(·) is then the vector-valued shape function associated with shape Si. The
mapping between the real line and the shape has to respect the topology of
the shape. This means that if we traverse the shape in one direction, the
parameter value then either strictly decreases or strictly increases. The only
exception is if the shape has the topology of a circle. This means that the
point x = 0 in parameter space is connected to x = 1, so that the ends of the
real line between 0 and 1 have now been joined to form a circle. In general,
the mapping from the parameter space to the shape has to be continuous,
and one-to-one, so that each parameter value corresponds to a single point
on the shape, and each point on the shape has a single associated parameter
value. In mathematical terms, such a mapping is a homeomorphism.9

In the general case, we have a vector-valued parameter x ∈ X, where the
topology of the parameter space X matches the topology of the shapes. So,
for example, simple shapes in R

3 might have the topology of a sphere, where
the parameter space is then the appropriate topological primitive – that is, a
sphere. For each shape in the training set, there is a continuous, one-to-one
mapping Xi from the parameter space to the shape Si.

X
Xi�−→ Si, x Xi�−→ Si(x). (2.117)

The continuity of the mapping means that as the point x moves on some
continuous path around the parameter space, the point Si(x) similarly moves
in a continuous path on the surface of the shape Si, with no sudden jumps
allowed.

In the finite-dimensional shape representation, shape correspondence is
between points with the same index, so that x(j)

i ∼ x(j)
k , ∀ i, k, where · ∼ ·

denotes correspondence. In the continuous case, correspondence is defined
analogously:

Sj(x) ∼ Sk(x), (2.118)

which gives a dense correspondence between any pair of shapes. It is the
details of the set of mappings {Xi} which defines the dense correspondence
across the set of shapes.

The covariance matrix D̃ for finite-dimensional shape representations is
given by (2.98):

D̃jk
.= (xj − x̄) · (xk − x̄). (2.119)

9 Technically, a mapping which is one-to-one and continuous in both directions. If the

mapping and its inverse is also constrained to be differentiable to some order, then this
mapping is a diffeomorphism.

2.3 Infinite-Dimensional Representations of Shape 35

The continuous analog of the mean shape vector x̄ is the mean shape:

S̄(x) .=
1

nS

nS∑

i=1

Si(x). (2.120)

To take the limit nP → ∞, we imagine sampling the shapes ever more densely.
To make sure this limit is well-defined, we take the nP points to be equally
spaced on the mean shape. This then gives the infinite-dimensional limit of
the covariance matrix:

D̃jk
.= (xj − x̄) ·(xk− x̄) →

∫
(Sj(x)− S̄(x)) ·(Sk(x)− S̄(x))dA(x), (2.121)

where dA(x) is the length/area element on the mean shape at the point S̄(x).
In order to have a smooth transition as regards eigenvalues, it is convenient

to introduce the normalized covariance matrices, so that:

Dμν
.=

1
nP

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν , (2.122)

D̃ij
.=

1
nP

(xi − x̄) · (xj − x̄), (2.123)

⇒ D̃ij
.=

1
A

∫
(Si(x) − S̄(x)) · (Sj(x) − S̄(x))dA(x), (2.124)

where A is the total surface area/length of the mean shape. In practice, such
integrals can be evaluated by numerical integration techniques. We have cho-
sen a common normalization for D and D̃ so that the equivalence of eigenval-
ues is maintained (Theorem 2.6). The connection between this common set
of eigenvalues for the normalized covariance matrices and the variance along
the PCA axes is now given by:

1
nP

nS∑

i=1

(
(xi − x̄) · n(a)

)2

= λa. (2.125)

We would like to maintain the mapping from shape parameter vectors to
shapes as just the generalization of (2.116):

S(x) .= S̄(x) +
nS∑

i=1

(b(i) · b)(Si(x) − S̄(x)). (2.126)

However, to do this we need to look at the covariance matrix D and the
meaning of the PCA directions {n(a)} and the parameter vectors {b(i)} in

36 2 Statistical Models of Shape and Appearance

the infinite-dimensional limit, and construct the infinite-dimensional analog
of Theorem 2.6.

Theorem 2.7. Equivalence of Eigenvectors/Eigenfunctions: Infinite-
Dimensional Case.
Consider the covariance matrix (2.124):

D̃ .= {D̃ij : i, j = 1, . . . nS}, (2.127)

D̃ij
.=

1
A

∫
(Si(x) − S̄(x)) · (Sj(x) − S̄(x))dA(x), (2.128)

with eigenvectors and (non-zero) eigenvalues:

D̃ñ(a) = λañ(a), λa �= 0. (2.129)

Consider also the matrix-valued shape covariance function D(y,x) with ele-
ments:

Dνμ(y,x) .=
1
A

(Siν(y) − S̄ν(y))(Siμ(x) − S̄μ(x)) (2.130)

and the general integral eigenproblem:
∫

Dνμ(y,x)n(a)
μ (x)dA(x) = λan(a)

ν (y) (2.131)

⇒
∫

D(y,x)n(a)(x)dA(x) = λan(a)(y), λa �= 0. (2.132)

There then exists a one-to-one mapping between the eigenvectors of D̃ with
non-zero eigenvalue, and the eigenfunctions of D(y,x) with non-zero eigen-
values, and the eigenvalues for corresponding eigenvectors/functions are
equal.

Proof. For parameterised shapes {Si} in R
d, we define:

S̃i(x) .= Si(x) − S̄(x), S̃i(x) .= {S̃iμ(x) : μ = 1, . . . d}. (2.133)

Then the eigenvector equation for D̃ can be written as:

1
A

∫
S̃iμ(x)S̃jμ(x)ñ(a)

j dA(x) = λañ
(a)
i . (2.134)

If we multiply by S̃iν(y) and sum over i, we obtain:

1
A

∫
S̃iμ(x)S̃iν(y)

(
S̃jμ(x)ñ(a)

j

)
= λa

(
S̃iν(x)ñ(a)

i

)
. (2.135)

2.3 Infinite-Dimensional Representations of Shape 37

If we define the vector-valued function:

n(a)(x) = {n(a)
μ (x) : μ = 1, . . . d}, n(a)

μ (x) .=
(
S̃iμ(x)ñ(a)

i

)
, (2.136)

and using the definition of the matrix-valued covariance function:

D(y,x) .= {Dνμ(y,x) : ν, μ = 1, . . . d}, Dνμ(y,x) .=
1
A

S̃iν(y)S̃iμ(x),

(2.137)
then the eigenvector equation can be rewritten as:

∫
Dνμ(y,x)n(a)

μ (x)dA(x) = λan(a)
ν (y) (2.138)

⇒
∫

D(y,x)n(a)(x)dA(x) = λan(a)(y). (2.139)

Hence n(a)(y) is a solution of the required eigenproblem, with matching eigen-
value λa.

Similarly, if we start from a solution to this eigenproblem, and take the
dot product of both sides with S̃i(y) and integrate over dA(y), we obtain:

1
A

∫
S̃jν(y)S̃jμ(x)n(a)

μ (x)S̃iν(y)dA(x)dA(y) = λa

∫
n(a)

ν (y)S̃iν(y)dA(y).

(2.140)
If we define:

ñ(a) .= {ñ(a)
i : i = 1, . . . nS}, ñ

(a)
i

.=
∫

n(a)
ν (y)S̃iν(y)dA(y), (2.141)

then we have:

1
A

∫
S̃jν(y)S̃iν(y)ñ(a)

j dA(y) = λañ
(a)
i , (2.142)

⇒ D̃ij ñ
(a)
j = λañ

(a)
i ⇒ D̃ñ(a) = λañ(a), (2.143)

which gives a solution to the other eigenproblem. We hence have a one-to-
one mapping between the solutions of the two eigenproblems with non-zero
eigenvalues. �	

We hence have shown the equivalence of the two eigenproblems in the
infinite-dimensional case, just as Theorem 2.6 showed their equivalence in
the finite-dimensional case.

The integral eigenproblem (2.130) is just the infinite-dimensional analog of
the finite-dimensional eigenvector problem for the normalized covariance ma-
trix D (2.122). The eigenfunctions {n(a)(x)} are then the infinite-dimensional

38 2 Statistical Models of Shape and Appearance

analog of the eigenvectors {n(a)} that we introduced when we considered
PCA ((2.17) and Theorem 2.1). As in the finite-dimensional case, these eigen-
functions are both left and right eigenfunctions (since D(y,x) is symmetric),
and it then follows that eigenfunctions belonging to different eigenvalues are
orthogonal, where we define the equivalent of the dot product between these
vector-valued eigenfunctions as follows:

∫
n(a)(x) · n(b)(x)dA(x). (2.144)

We can hence define an orthonormal set of eigenfunctions, so that:

∫
n(a)(x) · n(b)(x)dA(x) .= δab. (2.145)

Following the finite-dimensional case (2.34), we introduce parameter vec-
tors {b(i) : i = 1, . . . nm}, which are defined as:

b(i) .= {b(i)
a : a = 1, . . . nS}, b(i)

a
.=
∫

n(a)(x) · S̃i(x)dA(x). (2.146)

From (2.141), we see that as before (2.113):

ñ
(a)
i = b(i)

a . (2.147)

The size of the vectors ñ(a) is however slightly different:

‖ñ(a)‖2 = Aλa. (2.148)

Putting all this together, it means that rather than trying to solve the integral
eigenproblem, we can instead solve for the eigenvalues and eigenvectors of
the covariance matrix D̃ (2.124). The integral over the mean shape in the
covariance matrix can be solved using a numerical approximation. We then
apply the above normalization to the vectors ñ(a), and hence obtain the shape
parameter vectors b(i).

In the finite-dimensional case, the shapes vectors could be expanded in
terms of the PCA eigenvector basis, the coefficients being the shape param-
eter vectors. In the infinite-dimensional case, the shape functions can be
expanded in terms of the eigenfunctions. If we define:

S̃i(x) ≈
nm∑

a=1

cian(a)(x), (2.149)

then by taking the dot product with n(a)(x) we find that:

2.3 Infinite-Dimensional Representations of Shape 39

cia =
∫

S̃i(x) · n(a)(x)dA(x) = b(i)
a , (2.150)

S̃i(x) ≈
nm∑

a=1

b(i)
a n(a)(x) ⇒ Si(x) ≈ S̄(x) +

nm∑

a=1

b(i)
a n(a)(x). (2.151)

This shape representation is only approximate since we are not necessarily
using all the eigenvectors, but only the first nm (note that, as before, we
assume the eigenvalues are arranged in decreasing order).

For a general shape generated by a parameter vector:

b .= {ba : a = 1, . . . nm},

we have that:

S(x) .= S̄(x) +
nm∑

a=1

ban(a)(x). (2.152)

As in (2.116), this can also be rewritten as follows:

From (2.136:) n(a)(x) = {n(a)
μ (x) : μ = 1, . . . d}, (2.153)

n(a)
μ (x) .=

(
S̃iμ(x)ñ(a)

i

)
=

nS∑

i=1

(
S̃iμ(x)b(i)

a

)
. (2.154)

∴ S(x) .= S̄(x) +
nm∑

a=1

ban(a)(x) (2.155)

= S̄(x) +
nm∑

a=1

ba

nS∑

i=1

(
S̃i(x)b(i)

a

)
(2.156)

⇒ S(x) = S̄(x) +
nS∑

i=1

(
b · b(i)

)
S̃i(x). (2.157)

To summarize, in the infinite-dimensional case, we have the infinite-dimen-
sional parameterised shapes {Si(x)}, and we can perform PCA on these as
is given in Algorithm 2.2.

The point to note is that here we have used PCA to perform a radical di-
mensional reduction, taking us from the space of infinite-dimensional shapes,
to the finite-dimensional space of shape parameter vectors. The use of the al-
ternative covariance matrix means that the only infinite-dimensional objects
we need to consider are the input shapes themselves, since all further objects
are finite-dimensional. The only approximation required is in the initial cal-
culation of the covariance matrix, where we have to use numerical methods
to perform the area integral. The previous statements about the link between
the shape parameter vectors and variance in the various PCA directions still
hold, given the definition we have already used for vector dot products in the

40 2 Statistical Models of Shape and Appearance

Algorithm 2.2 : PCA for Infinite-Dimensional Shapes.

• Construct the finite-dimensional covariance matrix D̃ (2.124) by performing numerical in-
tegration over the mean shape.

• Solve for the finite-dimensional eigenvectors {ñ(a)} and eigenvalues {λa} of D̃.
• Normalize the eigenvectors so that ‖ñ(a)‖2 = Aλa.

• Construct the shape parameter vectors, where ñ
(a)
i = b

(i)
a .

• We then can generate shapes from a shape vector b:

S(x) = S̄(x) +

nS∑

i=1

(
b · b(i)

)
S̃i(x). (2.158)

infinite-dimensional space (2.144). Specifically, the mean variance per shape
in the direction n(a)(x) is given by:

S̃i · n(a) .=
∫

S̃i(x) · n(a)(x)dA(x) = b(i)
a . (2.159)

∴
nS∑

i=1

(
S̃i · n(a)

)2

=
nS∑

i=1

(
b(i)
a

)2

=
nS∑

i=1

(
ñ

(a)
i

)2

= ‖ñ(a)‖2 = Aλa.

⇒ 1
A

nS∑

i=1

(
(Si − S̄) · n(a)

)2

= λa. (2.160)

Previously (2.125), we had that λa represented the summed variance for all
shapes about the mean shape in the direction n(a), normalized by the number
of shape points nP . Here we see that we have the corresponding expression,
but normalized to give the variance per unit area of the mean shape.

Since we have now projected our original data from the infinite-dimensional
space of shapes to the finite-dimensional space of shape parameter vectors,
the modelling of the distribution of parameter vectors proceeds as before.

The notation used for finite and infinite-dimensional shape representations,
and the details of the PCA eigenproblems are summarized in Table 2.2.

2.4 Applications of Shape Models

In the previous sections (Sects. 2.1 and 2.3), we have shown how statistical
shape models can be built from training sets of shapes, and how principal
component and density estimation techniques can be applied to characterize
the distribution of shapes. If all we wish to do is analyse the distribution of

2.4 Applications of Shape Models 41

T
a
b
le

2
.2

S
u
m

m
a
ry

o
f
th

e
n
o
ta

ti
o
n

a
n
d

co
n
v
en

ti
o
n
s

u
se

d
in

th
e

te
x
t

fo
r

fi
n
it
e

a
n
d

in
fi
n
it
e-

d
im

en
si

o
n
a
l
sh

a
p
e

re
p
re

se
n
ta

ti
o
n
s,

co
v
a
ri

a
n
ce

m
a
tr

ic
es

,
a
n
d

P
C

A
ei

g
en

p
ro

b
le

m
s.

C
o
n
ti
n
u
es

o
n

n
ex

t
p
a
g
e.

F
in

it
e

D
im

e
n
si

o
n
a
l

In
fi
n
it
e

D
im

e
n
si

o
n
a
l

S
h
a
p
e
s

a
n
d

S
h
a
p
e

R
e
p
r
e
s
e
n
t
a
t
i
o
n

{S
i
⊂

R
d

:
i
=

1
,.

..
n

S
}

{S
i
⊂

R
d

:
i
=

1
,.

..
n

S
}

{1
,2

,.
..

n
P
}

X
i

�−→
S

i
,

j
X

i
�−→

x
(j

)
i

∈
S

i
X

X
i

�−→
S

i
,

x
X

i
�−→

S
i
(x

)

S
i
→

x
i

. =
{x

(j
)

i
:
j

=
1
,.

..
n

P
}

S
i
→

S
i

. =
{S

i
(x

)
:
x
∈

X
}

x̄
. =

1 n
S

n
S
∑ i=

1

x
i

S̄
(x

)
. =

1 n
S

n
S
∑ i=

1

S
i
(x

)

S̃
i
(x

)
. =

S
i
(x

)
−

S̄
(x

)

C
o
v
a
r
i
a
n
c
e

M
a
t
r
i
c
e
s

D
,

D
,

D
(y

,x
),

D
μ

ν
. =

(x
i
−

x̄
) μ

(x
i
−

x̄
) μ

D
μ

ν
. =

1 n
P

(x
i
−

x̄
) μ

(x
i
−

x̄
) μ

D
μ

ν
(x

,y
)

. =
1 A

(S
iμ

(x
)
−

S̄
μ
(x

))
(S

iν
(y

)
−

S̄
ν
(y

))

D̃
,

D̃
,

D̃
,

D̃
ij

. =
(x

i
−

x̄
)
·(

x
j
−

x̄
)

D̃
ij

. =
1 n
P

(x
i
−

x̄
)
·(

x
j
−

x̄
)

D̃
ij

. =
1 A

∫
(S

i
(x

)
−

S̄
(x

))
·(

S
j
(x

)
−

S̄
(x

))
d
A

(x
)

E
i
g
e
n
p
r
o
b
l
e
m
s

D
n

(a
)

=
λ

a
n

(a
)

∫
D

(y
,x

)n
(a

)
(x

)d
A

(x
)

=
λ

a
n

(a
)
(y

)

D̃
ñ

(a
)

=
λ

a
ñ

(a
)

42 2 Statistical Models of Shape and Appearance

T
a
b
le

2
.2

S
u
m

m
a
ry

o
f
th

e
n
o
ta

ti
o
n

a
n
d

co
n
v
en

ti
o
n
s

u
se

d
in

th
e

te
x
t

fo
r

fi
n
it
e

a
n
d

in
fi
n
it
e-

d
im

en
si

o
n
a
l
sh

a
p
e

re
p
re

se
n
ta

ti
o
n
s,

co
v
a
ri

a
n
ce

m
a
tr

ic
es

,
a
n
d

P
C

A
ei

g
en

p
ro

b
le

m
s.

C
o
n
ti
n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
g
e.

F
in

it
e

D
im

e
n
si

o
n
a
l

In
fi
n
it
e

D
im

e
n
si

o
n
a
l

E
i
g
e
n
v
e
c
t
o
r
s

a
n
d

E
i
g
e
n
v
a
l
u
e
s

n
(a

)
·n

(b
)

=
δ a

b

∫
n

(a
)
(x

)
·n

(b
)
(x

)d
A

(x
)
=

δ a
b

λ
a

=

n
S
∑ i=

1

((x
i
−

x̄
)
·n

(a
)
) 2

λ
a

=
1 n
P

n
S
∑ i=

1

((x
i
−

x̄
)
·n

(a
)
) 2

λ
a

=
1 A

n
S
∑ i=

1

((S
i
−

S̄
)
·n

(a
)
) 2

(S
i
−

S̄
)
·n

(a
)

. =

∫
(S

i
(x

)
−

S̄
(x

))
·n

(a
)
(x

)d
A

(x
)

ñ
(a

)
. =
{ñ

(a
)

i
:
i
=

1
,.

..
n

S
}

ñ
(a

)
i

. =
n

(a
)
·(

x
i
−

x̄
)

ñ
(a

)
i

. =

∫
n

(a
)
·(

S
i
(x

)
−

S̄
(x

))
d
A

(x
)

‖ñ
(a

)
‖2

. =
λ

a
‖ñ

(a
)
‖2

. =
n

P
λ

a
‖ñ

(a
)
‖2

. =
A

λ
a

P
a
r
a
m
e
t
e
r

V
e
c
t
o
r
s

b
(i

)
=

{b
(i

)
a

:
a

=
1
,.

..
n

m
}

b(i
)

a
. =

n
(a

)
·(

x
i
−

x̄
)

b(i
)

a
. =

∫
n

(a
)
(x

)
·(

S
i
(x

)
−

S̄
(x

))
d
A

(x
)

x
i
≈

x̄
+

n
S
∑ a
=

1

b(i
)

a
n

(a
)
,

x
. =

x̄
+

n
S
∑ a
=

1

b a
n

(a
)

=
x̄

+

n
S
∑ i=

1

(b
(i

)
·b
)

(x
i
−

x̄
)

S
(x

)
=

S̄
(x

)
+

n
S
∑ i=

1

(b
(i

)
·b
)

(S
i
(x

)
−

S̄
(x

))

2.4 Applications of Shape Models 43

shapes across the training set, this is often sufficient. For example, we can use
the shape of the estimated density or information from principal components
to classify subsets of shapes within the training set. Principal component
analysis can also tell us about the major and minor modes of shape variation
seen across the training set, and provide an intuitive picture of the way the
shapes vary.

If we are given an unseen shape, one which was not included in our training
set, we can use the same techniques to analyse this new shape. For example,
we can decide whether it is like or unlike those seen previously, to what
category of shape it belongs, or describe in what way it varies from what
we have already seen. We can hence describe this new shape within a wider
context of learnt information about this type of shape.

This however presumes that we already have our unseen shape. In many
computer vision or medical imaging applications that study shape, the shapes
themselves are obtained from images. The most intuitive, and the simplest,
way of extracting the shape from the image is to use manual annotation.
However, when there are a large number of examples to process, this can be-
come extremely time-consuming. For the case of images in three dimensions,
such as those encountered in medical imaging, this annotation can become
very difficult.

There are many basic methods for automatically segmenting images [169].
These typically use information such as the colour/greyscale values and tex-
ture in the image to identify regions of the image, and information about
edge structures in the image to try to delineate the boundaries of such re-
gions or sets of regions that constitute the shape of the imaged object. This
can work well provided the shapes are relatively simple, or have good tex-
ture/colour cues, or where we do not know what shapes we expect to see in an
image. However, for cases where we are looking for a particular known object,
the most promising approaches are those which adopt a learning framework.
Such systems proceed in much the same way that a human annotator would
proceed. The trainee human annotator or computer system is first presented
with a set of training examples which have been previously annotated by
some expert. Based on what has been learnt from these examples as to the
shape which is required, and how it varies, the trainee system or human then
annotates examples, possibly with some continuing feedback from an expert
to correct mis-annotation.

Such a system can be constructed using a statistical shape model to encode
the learnt information about shape. Two algorithms which use such a system
for automatic image annotation are the Active Shape Model (ASM) [29, 39]
and Active Appearance Model (AAM) [26, 25, 27].

44 2 Statistical Models of Shape and Appearance

2.4.1 Active Shape Models

Suppose we have an image that contains an example of an object we are
trying to annotate with a set of shape points. In general terms, there are sev-
eral components that help us differentiate a successful from an unsuccessful
annotation.

First, we have the global constraint that the set of points should describe
a shape which is, according to what we have learnt about shape, a valid
example of that object. Secondly, we also have the local constraint that the
shape points should lie on edges or structures in the image that look like
the locations where such points have been placed in the annotated training
examples.

Given an initial guess as to the shape, these two constraints can be used
in tandem to home in on the correct position of the shape. Essentially, for
each current shape point, we search in the neighbourhood of that point to see
if there is a candidate position which better fits the expected appearance of
the image. Given such a set of candidate positions, we then apply the global
constraint, by replacing the candidate shape by a shape which is as close
as possible to the candidate shape (hence fits the local constraints), yet is a
valid shape as far as the global constraint is concerned. The process is then
iterated until it converges on a final answer. This is the basic Active Shape
Model search algorithm.

The global constraint is applied by quantifying the training information
about shape and shape variation in terms of a statistical shape model. For a
candidate shape, the positions of the candidate points are encoded in terms
of a shape vector x as described previously (2.2). This shape is then Pro-
crustes aligned (Sect. 2.1.1) with the mean shape x̄ from the SSM, to remove
unimportant details such as the precise scale and orientation of the object.
We then project this shape vector into the subspace of shape space described
by the SSM, and evaluate its proximity to the training set of shapes. The
first stage typically means extracting the PCA components of the candidate
shape as in (2.38), which gives us an approximation representation of the
candidate shape in terms of a set of shape parameters b.

We then have to evaluate the proximity of the point b to the training set
of shapes. For PCA components, we can constrain each component individ-
ually, forcing the shape to lie within a bounding parallelepiped as described
in Sect. 2.2.4. Alternatively, for cases where a density estimate is available
(e.g., as in Sects. 2.2.1–2.2.3), we can restrict the minimum allowed value of
p(b). For points that do not initially satisfy the constraint, we can evolve the
point b through gradient ascent of p(b) until the constraint is satisfied. For
Gaussian density models, this process is considerably simplified, given the
monotonic relationship of Mahalanobis distance and the probability density
as described in Sect. 2.2.4, and it is sufficient to move the point b inwards
along the ray connecting b to the origin of parameter space until the con-
straint is satisfied. It should be noted that setting the appropriate limits is

2.4 Applications of Shape Models 45

important. Setting them too high at the beginning of the search can overly
constrain the shape, and not allow enough freedom in moving through the
search space to locate the optimum fitted shape, or allow only solutions which
are very close to the training shapes. Whereas too loose a constraint can al-
low the search process to get stuck in local minima, fitting to shapes far from
optimum.

The local part of the ASM search is built on learning about the local image
appearance in the neighbourhood of the shape points. For each example of
a specific shape point on each training example, the normal to the shape at
that point is constructed. The image intensity values are then sampled along
this normal to form an image profile. This set of image profiles from each
example is then combined into a statistical profile model in the same general
manner as for shape models. When searching for a new candidate position
for a shape point on an unseen image during search, profiles are sampled in
the vicinity, and the profile that best fits the profile model for that point is
selected as the new candidate position.

There is an extensive and still growing research literature as regards Active
Shape Models, with various variations on the basic ASM described above
(e.g., see [40, 33, 39, 28, 34], and the reader should consult the appropriate
literature for full details (see [32, 37] for reviews).

2.4.2 Active Appearance Models

The ASM search performs extremely well on some types of data. However,
the model uses only limited image information to locate the shape. In the
Active Appearance Model (AAM) [26, 25, 27], the training process incorpo-
rates information about the expected appearance within the entire interior
of the annotated shape, rather than just samples of image information in the
neighbourhood of the shape points.

For the annotated training images, the shape part of the model is con-
structed as before. We obviously cannot just combine the raw image infor-
mation from the interiors of all the training shapes, but have first to convert
this information into a common frame of reference. This is done using the
shape information, since this tells us the varying positions of corresponding
shape points across the whole set of training examples. If we interpolate the
interior of each shape, based on the shape points, this then gives us, by in-
terpolation, a correspondence between the interiors of each shape across the
whole set. We then map each training shape to the mean shape, and resample
the image information from each shape into the frame of the mean shape.
This gives us a set of shape-free texture examples, one from each training
image. The pixel-value information for each shape-free texture example is
then concatenated into a vector, with the entire training set then giving us a
set of data points in a shape-free texture space. The distribution of points in

46 2 Statistical Models of Shape and Appearance

shape-free texture space can then be analysed and modelled using the same
techniques as those used for modelling shape spaces. We then have both a
statistical model of shape, and a statistical model of texture (essentially a
type of shape-free eigenface model [179]). Using these statistical models in
generative mode, we can then create shape-free variations of texture and
modes of variation of texture. Using the reverse of the initial mapping from
texture on a shape to texture on the mean shape, we can also vary shape
whilst leaving texture unchanged.

For many imaging examples, there is a significant correlation between
shape and texture. One obvious example is two-dimensional images of faces.
It is obvious that, for a fixed illumination, as the pose of the subject changes,
the texture (i.e., the positions of highlights and shadows) changes, and is cor-
related with the changes in shape. Even without change of pose, the shape
of the face changes under changes of expression, and the texture changes in
a correlated fashion.

These correlations can be modelled by concatenating the shape vector and
the texture vector of each training example into a single vector. A statistical
model of appearance is then built in the usual manner in this combined
space of shape and texture, and generates modes of variation that capture
the correlations noted above.

The search algorithm for the AAM is slightly more complicated than for
the ASM (and we refer readers to the literature for the details [26, 25, 27]).
However, the basic rationale is the same as for the ASM, where the learnt
information about permissable levels of variation is incorporated into and
constrains the search process.

The statistical appearance model, like the statistical shape model, can
also be applied in a generative mode. By sampling the space of parameters
according to the modelled pdf, we can generate an arbitrarily large number
of artificial examples of the modelled object.

For the case of faces, these artificially generated examples can be al-
most photo-realistic. Analysis of the space of the model can separate out
the subspaces corresponding to varying lighting, pose, identity, and expres-
sion [44, 42]. This means that given an image of an unseen individual, we can
generate examples of this same individual, but apply different expressions. If
information about the gender of subjects across the training set is available,
it is also possible to manipulate the perceived gender, making a face appear
more masculine or more feminine according to what has been learnt from the
training set about the way faces tend to differ with gender [43]. Similarly, it
is also possible to simulate ageing [104] (see Chap. 1).

The power and flexibility of the ASM/AAM approach has led to their
usage in a large (and still growing) number of applications in computer vision
and medical imaging. Both approaches require an initial statistical shape
model for their implementation, and the quality of this initial model is a
prime determining factor in ensuring the quality of the final system. Hence

2.4 Applications of Shape Models 47

establishing a suitable correspondence is a key step in the model-building
process, and one that we address in greater detail in the next chapter.

	Statistical Models of Shape and Appearance
	Finite-Dimensional Representations of Shape
	Shape Alignment
	Statistics of Shapes
	Principal Component Analysis

	Modelling Distributions of Sets of Shapes
	Gaussian Models
	Kernel Density Estimation
	Kernel Principal Component Analysis
	Using Principal Components to Constrain Shape

	Infinite-Dimensional Representations of Shape
	Parameterised Representations of Shape

	Applications of Shape Models
	Active Shape Models
	Active Appearance Models

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

