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Chapter 1

Introduction

The goal of image interpretation is to convert raw image data into mean-
ingful information. Images are often interpreted manually. In medicine, for
example, a radiologist looks at a medical image, interprets it, and trans-
lates the data into a clinically useful form. Manual image interpretation is,
however, a time-consuming, error-prone, and subjective process that often
requires specialist knowledge. Automated methods that promise fast and ob-
jective image interpretation have therefore stirred up much interest and have
become a significant area of research activity.

Early work on automated interpretation used low-level operations such as
edge detection and region growing to label objects in images. These can pro-
duce reasonable results on simple images, but the presence of noise, occlusion,
and structural complexity often leads to erroneous labelling. Furthermore, la-
belling an object is often only the first step of the interpretation process. In
order to perform higher-level analysis, a priori information must be incorpo-
rated into the interpretation process. A convenient way of achieving this is to
use a flexible model to encode information such as the expected size, shape,
appearance, and position of objects in an image.

The use of flexible models was popularized by the active contour model,
or ‘snake’ [98]. A snake deforms so as to match image evidence (e.g., edges)
whilst ensuring that it satisfies structural constraints. However, a snake lacks
specificity as it has little knowledge of the domain, limiting its value in image
interpretation.

More sophisticated models based on the physical properties of an object
have also been proposed (e.g., [134]). However, the expected patterns of vari-
ation of the model are usually estimated from only a single prototype, which
requires many assumptions to be made. A more promising approach – and
that followed in this book – is to use statistical models that attempt to learn
the actual patterns of variability found in a class of objects, rather than mak-
ing arbitrary assumptions. The idea is to estimate the population statistics
from a set of examples instead of using a single prototype. The pattern of
variation for a given class of object is established from a training set and

R. Davies et al., Statistical Models of Shape, 1
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2 1 Introduction

statistical analysis is used to give an efficient parameterisation of this vari-
ability, providing a compact and efficient representation.

The starting point in the construction of a statistical model is usually a
training set of segmented images. In order to calculate statistics across the
training set, a correspondence must be established between each member. It
is important to choose the correct correspondence, otherwise a poor repre-
sentation of the modelled object will result.

Correspondence is often established manually, but this is a time-consuming
process that presents a major bottleneck in model construction. The manual
definition of correspondence is also restricted to two-dimensional objects,
which limits their use in interpreting medical images, since many of these
are three dimensional. Other approaches to model-building have also been
proposed, but these do not produce correspondences that are correct in any
obvious way and the models that they produce are of limited utility.

This book presents a generic solution to this correspondence problem by
treating it as part of the learning process. We will see that the key is to
treat model construction as an optimisation problem, thus automating the
process and guaranteeing the effectiveness of the resulting models. The other
subject covered in this book is the evaluation of statistical models. This is
also an important aspect of modelling since it allows us to quantify the likely
utility of the model in practical applications. Model evaluation methods are
established for cases with ground truth or in its absence.

In the remainder of this first chapter, we will take a look at some practical
problems where statistical models have been applied before an overview of
the rest of the book is presented.

1.1 Example Applications of Statistical Models

Statistical models have been used to successfully solve a wide range of prac-
tical problems, from Chinese character recognition [163] to cardiac modelling
[72]. The number of applications is vast, but here we will focus on a few
interesting examples and concentrate on the properties of statistical models
that have allowed them to be successfully applied.

1.1.1 Detecting Osteoporosis Using Dental Radiographs

Statistical shape models were originally conceived as a basis for automatic
image segmentation [31] – the process of labelling an image so that the labels
correspond to real-world objects. A big advantage of using a shape model for
this task is that it can produce extremely accurate and objective segmenta-
tions. They can therefore be used to detect changes that might otherwise be
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Fig. 1.1 An example of a segmentation of the inferior mandibular cortex on a panoramic
dental radiograph using the method described in [1]. Top: a panoramic radiograph, where
the red lines represent the segmentation of the left and right inferior mandibular cortex
using a shape model. Bottom: Detail of the segmentation on the right side of the patient’s
mandible. Figure courtesy of P.D. (Danny) Allen, University of Manchester.

missed by human annotation. An example of where this additional accuracy
has proved to be critical is in detecting osteoporosis in dental radiographs
[1, 59].

Osteoporosis is a common disorder that causes a reduction in bone tissue
density, leading to brittle bones that are prone to fracture. The standard
method of diagnosis involves a dual energy x-ray absorbiometry (DXA) scan-
ner, but these are dedicated machines with limited accessibility. Although
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access is improving, only patients with a high index of clinical suspicion are
referred for DXA scans, resulting in missed diagnoses.

It has been reported that osteoporosis can also be detected by careful
measurement of the width of the inferior mandibular cortex on panoramic
dental radiographs – a common investigation in dental practice. However, if
the cortical width is measured manually, the time taken impedes the dental
practitioner from performing the test during a routine consultation. Manual
measurement also introduces considerable inter- and intra-operator variabil-
ity, resulting in reduced sensitivity and specificity of detection. However, it
has been shown [1, 59] that this variability can be reduced by using a sta-
tistical shape model for segmentation – an example of a segmentation of the
inferior mandibular cortex using a statistical shape model is shown in Fig. 1.1.
The accuracy of the resulting segmentations was shown to be sufficient to di-
agnose skeletal osteoporosis with good diagnostic ability and reliability [59].
Furthermore, measurement was performed in real time with minimal human
interaction. This application thus promises another means of detecting osteo-
porosis, or at least of flagging high-risk cases for referral to DXA scanning.

1.1.2 Detecting Vertebral Fractures

Statistical models provide a compact and efficient basis for describing the
variation of a class of object. Model parameter values can therefore be used
as effective features in classifier systems. We already know a bit about osteo-
porosis from the previous section, so we will now look at an example of where
complications of the disease can be detected using a model-based classifier.

A common complication of osteoporosis is a fractured vertebra. Although
many of these fractures are asymptomatic, they are an important indicator of
more harmful fractures in the future. Diagnosis of a fracture is usually made
by a radiologist, but, as with any human operator, they are liable to report
subjective results. Also, vertebral fracture assessment by DXA scanners is be-
coming common in places other than radiology units (e.g., general practice),
and may not be carried out by an expert radiologist. Therefore, it is desirable
to establish quantitative criteria that capture some of the subtle information
used by an expert, since current (vertebral) height-based quantitative meth-
ods are insufficiently specific, especially in diagnosing the mild fractures that
occur in the early stages of the disease. These height-based measures do not
capture subtle shape information, nor other features present in the image. A
recent body of work [167, 145, 146] has shown that using statistical models
of shape and appearance can offer substantial improvements in diagnostic
accuracy over conventional quantitative methods.

The first step in the system is to segment the vertebrae of interest using
a statistical model – an example of a typical segmentation result is given
in Fig. 1.2. As with the example of the inferior mandibular cortex given
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Fig. 1.2 An example of a segmentation of human vertebrae using the method described
in [146]. Left: a DXA image showing the spine from the seventh thoracic vertebra (T7)
down to the fourth lumbar vertebra (L4). Right: the segmentation achieved by the model,
overlaid on the image. Figure courtesy of Martin Roberts, ISBE, University of Manchester.

above, this segmentation is quick, requires minimal user interaction, and,
most importantly, produces more objective and reproducible results than
manual segmentation.

The model parameters found in segmentation can then be fed into a trained
classifier, which will return a positive or negative diagnosis of vertebral frac-
ture. The advantage of using the model parameters, rather than other estab-
lished measures (such as vertebral height), is that they capture much more
information about the state of the vertebrae such as their shape, appearance,
and pose. This information forms a much stronger basis for the classifier
system.



6 1 Introduction

1.1.3 Face Identification, Tracking, and Simulation of
Ageing

We have said in the introduction that many non-statistical modelling ap-
proaches infer object properties from a single prototype. This approach has
several disadvantages over the statistical approach – one of these is that it
lacks the flexibility to model objects that exhibit significant variability. An
example of where this is particularly evident is in human face analysis.

Face analysis, which includes tasks such as finding, identifying, and track-
ing someone’s face in an image, has application in many fields – from aiding
human-computer interaction to security surveillance monitoring. However,
face analysis is a difficult task, not least because of the huge inherent variabil-
ity of a face – not just between individuals, but variation in the appearance
of the same person’s face due to changes in expression, pose, lighting, etc.

A statistical model has the ability to learn this variability from a set of
examples – as long as enough examples are presented the model will be generic
enough to deal with these variations. Such a model of facial appearance was
presented in [64] and was shown to perform well in finding, identifying, and
tracking faces in images.

Statistical models can also be used in generative mode, where the model
is used to synthesize new examples of the class of object. This opens the
possibility of using the models in different types of applications to those
that we have seen so far. A good example is described in [104], which shows
how facial ageing can be simulated artificially. So, given a photograph of a

Fig. 1.3 Simulated ageing using the method described in [104]. The figure shows the effect

of simulating ageing in photographs of two individuals. Figure reproduced from Fig. 4 in

[104] with permission ( c©2002 IEEE).
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person’s face, the model can generate impressions of that person at different
ages – some examples are shown in Fig. 1.3. This has application in ageing
photographs of missing or wanted persons as well as improving robustness of
face analysis to ageing.

1.2 Overview

The organization of the remainder of this book is as follows.
We start with a theoretical treatment of statistical shape models in

Chap. 2. This contains a comprehensive description of model-building, and
considers both discrete and continuous representations of shape. Several other
aspects of model-building, such as shape alignment and practical applications,
are also covered.

Chapter 3 covers a fundamental problem in shape modelling in greater
detail: that of establishing a correspondence between a set of shapes. The
chapter begins by illustrating the importance of establishing a suitable corre-
spondence, before looking at various ways in which this can be achieved. The
last part of the chapter introduces our approach of model-building within
an optimisation framework. This allows correspondence to be established by
viewing it as an integral part of the learning process.

One essential component of this optimisation approach to model-building
is an objective function that quantifies what is meant by the quality of a
model. The subject of objective functions is covered in Chap. 4; we look
at various objective functions that can be used to establish correspondence,
including a full derivation of the Minimum Description Length objective func-
tion (and various approximations to it).

In order to minimise our chosen objective function, we must be able to ma-
nipulate correspondence across the set of shapes. At the same time, we must
ensure that only valid correspondences are generated. In Chap. 5, we show
how this can be achieved by re-parameterising each shape. Several represen-
tations of curve re-parameterisation are described in Chap. 5. The extension
to surface re-parameterisation is complicated by the need for explicit surface
parameterisation, but a generic method of achieving this along with several
representations of re-parameterisation for surfaces is given in Chap. 6.

The final component of the optimisation approach is a method of finding
the configuration of re-parameterisation functions that lead to the optimal
value of the objective function. This problem is explored in Chap. 7, which
presents a generic optimisation approach, as well as looking at how it can be
tailored for certain situations.

Chapter 8 explores an alternative approach to representing and manipu-
lating correspondence, using a non-parametric approach – the goal being to
produce more robust results in less time. A fluid-based regularizer is described
as well as an efficient method of optimisation.
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Finally, Chap. 9 considers the question of how we should evaluate models
of shape or models of appearance. In particular, we address the question of
whether ground truth data should be used for evaluation, and how models
can be evaluated in the absence of such ground truth data.



Chapter 2

Statistical Models of Shape and
Appearance

As was explained in the Introduction, our aim is to start with a set of example
shapes (the training set), and learn from this the patterns of variability of the
shape of the class of objects for which the training set can be considered a
representative sample. We will first consider this problem in a rather abstract
sense, and illustrate how the question of correspondence between different
shapes is inextricably linked to the question of representing a set of shapes.

Mathematically, the usual approach is to construct a mapping from an
example shape to a point in some shape space. This is the process of con-
structing a representation of shape. The idea is that every physical shape cor-
responds to a point in shape space, and conversely, each point in shape space
corresponds to some physical shape. There are many ways of constructing
such representations, but whichever method is chosen, what is then obtained
is a mapping from our training set of shapes to a set of points in shape space.

Modelling can then be considered as the process of modelling the distri-
bution of our training points in shape space. However, before we can begin
to talk about the distribution of such points, we first need to define a notion
of distance on shape space.

A definition of a distance on shape space then leads directly to the no-
tion of correspondence between the physical shapes themselves. Consider two
distinct physical shapes, and the two points in shape space which represent
those two shapes. We can then imagine a continuous path between the two
points in shape space, and, given that we have a definition of distance, the
shortest such path between the two shapes. When we map this construction
back to the space of physical shapes, what we obtain is a continuous sequence
of physical shapes that interpolates between our two original shapes. If we
now consider a single point on one shape, we can then follow it through this
continuous sequence of shapes, and hence locate the physical point on the
other shape to which this point corresponds. This is what is meant by a
dense correspondence between shapes.

Let us now return to our physical shapes, and imagine translating and
rotating a physical shape (that is, altering the pose of the shape). In many

R. Davies et al., Statistical Models of Shape, 9
DOI: 10.1007/978-1-84800-138-1 2, c© Springer-Verlag London Limited 2008
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cases, the pose of the physical shape is unimportant, and what we mean by
change of shape is not such a transformation.

But there is another transformation we could consider. Suppose we imag-
ine two distinct points in shape space, which give the same physical shape,
but different correspondence when compared to some other (reference) shape
(using the construction defined above). If such a construction is possible, we
see that it is possible (at least in theory) to manipulate the correspondence
between shapes (moving the point in shape space), whilst leaving the physical
shape unaltered. Which then means that we have to answer the question as
to what correspondence we should use for our analysis of shape variability
(the correspondence problem – see also Sect. 3.1).

We hence see that the issue of shape correspondence naturally arises as
soon as we consider the steps necessary to represent a set of shapes, and
analyse their distribution. Some methods of shape representation do not al-
low correspondence to be manipulated independently of shape, and in these
cases, the correspondence they generate can be considered as implicit (for ex-
ample, the SPHARM method [76], or early M-Rep methods [137]). However,
there are other methods of shape representation for which the correspondence
is explicit, which allow correspondence to be manipulated independently of
physical shape.

In the remainder of this book, we will restrict ourselves to such a shape rep-
resentation, the shape representation which leads to the class of deformable
models known as Statistical Shape Models1 (SSMs). We will now describe this
shape representation in detail, beginning with the finite-dimensional case.

2.1 Finite-Dimensional Representations of Shape

Let us consider first building a finite-dimensional representation of a single
shape S. The most intuitive and simplest way to represent such a shape is a
join-the-dots approach.

We take a set of nP points which lie on the shape S, with positions:

x(i) ∈ S, i = 1, . . . nP . (2.1)

The coordinates of each point position can be concatenated to give a single
shape vector x = {x(i)}. For example:

x .= (x(1), y(1), z(1), x(2), y(2), z(2), . . . , x(nP ), y(nP ), z(nP )), S ⊂ R
3, (2.2)

1 Note that these were initially called Point Distribution Models (PDMs). However, due

to a clash with nomenclature in the statistics literature, they were later re-christened

Statistical Shape Models (SSMs). Both terms can be found in the literature.
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where (x(i), y(i), z(i)) are the Cartesian coordinates of the ith point on the
shape. For a shape S in R

d, this gives a d × nP -dimensional representation.
In most cases, Cartesian coordinates are sufficient, but in cases where parts
of shapes can rotate, it may be useful to instead use angular coordinates [87].

The final representation of the shape is then generated from the shape
vector by interpolation. For shapes in R

2 (curves), this is a simple join-the-
dots approach, using either straight-line segments (polygonal representation),
or by spline interpolants if a smoother shape is preferred. For shapes in R

3

(surfaces), interpolants can similarly also be linear (planes), or a higher-order
spline interpolant.

What we have not considered so far is the connectivity of the points, and
the topology of the shape. For the case of shapes in R

2, the simplest case
is where the shape has only one connected component, with the topology of
either an open or closed line. The points are usually numbered so that they
are connected consecutively – for the closed shapes, we must also form a loop
by connecting the last point to the first. For more complicated multi-part
shapes, the points which are members of each part, and the connectivity
within each part have to be specified separately.

Similar considerations holds for shapes in R
3. The simplest case is then

single-part shapes in R
3, with the topology of either open surfaces or spheres,

with the points being part of a triangulated mesh.
Once we have a finite-dimensional representation of a single shape S, we

can easily see how this can be extended to form a common representation of
a set of shapes. To be specific, let us take a set of nS shapes:

Si : i = 1, . . . nS . (2.3)

We suppose that each shape is then represented by a set of nP points, such
that the individual points are placed in corresponding positions across the set
of shapes. This then gives us a set of initial shape vectors {xi : i = 1, . . . nS}
which form a representation of the whole set of shapes in a common shape
space R

dnP .

2.1.1 Shape Alignment

In many cases, the size, placement, and orientation of an object is arbitrary,
and has nothing to do with the actual variation of shape that we are interested
in. In mathematical terms, there are degrees of freedom (scaling, translation,
and rotation) associated with each shape example, which we wish to factor
out of our shape analysis.

Consider a fixed shape y, and a second moving shape x, which we wish
to align with the first by means of a similarity transformation. A general
similarity transformation acting on x can be written as:
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x �→ sR(x − t), (2.4)

where t represents a translation in R
d, R is a dnP × dnP representation of

a rotation in R
d, and s ∈ R

+ is a scaling. Note that these elements of the
representation of a similarity transformation are such that they act on the
concatenated set of shape points in the shape vector. They are constructed
from a representation that acts on single points in the obvious way, although
the exact details depend on the way in which the coordinates of the shape
points have been concatenated.

We wish to find the similarity transformation which brings the moving
shape x as close as possible to the fixed shape y. The simplest way to de-
fine proximity is just the magnitude of the Euclidean norm of the difference
between the two shape vectors in R

dnP :

L .= ‖y − sR(x − t)‖2, (2.5)

which is the square of the Procrustes distance between the shapes [78]. In
terms of the positions of individual points, this expression can be rewritten
as:

L =
nP∑

i=1

‖y(i) − sR(x(i) − t)‖2, (2.6)

where t is now just a vector in R
d, and R is a d × d rotation matrix.

If we define our origin so that it lies at the centre of mass of the fixed
shape:

1
nP

nP∑

i=1

y(i) = 0, (2.7)

with rotation defined about this origin, the optimal translation can then be
calculated as:

∂L
∂t

∣∣∣∣
s,R

= 0 =⇒ ∂

∂t

∣∣∣∣
s,R

nP∑

i=1

‖sR(x(i) − t)‖2 = 0, (2.8)

=⇒ ∂

∂t

∣∣∣∣
s,R

nP∑

i=1

‖(x(i) − t)‖2 = 0, (2.9)

=⇒ t =
1

nP

nP∑

i=1

x(i) =
1

nP

nP∑

i=1

(
x(i) − y(i)

)
. (2.10)

That is, the centroid/centre of mass of the original moving shape is translated
so that it coincides with the centre of mass of the fixed shape.

Once the shapes have been centred, we can then calculate the combined
scaling and rotation:
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∂L
∂sR

= 0 =⇒
nP∑

i=1

y(i)
μ x

(i)
β = sRμα

nP∑

j=1

x(j)
α x

(j)
β , (2.11)

where x(i) = {x(i)
α : α = 1, . . . d} and y(i) = {y(i)

α : α = 1, . . . d} are the
Cartesian components of the point positions. This can then be solved for the
matrix sR (for example, see [102] for further details).

Rather than aligning just a pair of shapes, we wish to mutually align
an entire set of shapes {Si : i = 1, . . . nS}, Si = {x(i)

j : j = 1, . . . nP }.
We use a similar criterion to that considered above, either by considering
the squared Procrustes distances between all pairs of shapes, or between all
shapes and the mean shape. This is known as generalized Procrustes analysis.
The translations are obtained as before, centering each shape on the origin.
However, the general problem of finding the optimal rotations and scalings
is not well-posed unless further constraints are placed on the mean [174], as
will be explained below.

For statistical shape analysis and statistical shape models, a simple it-
erative approach is usually sufficient. After first centering all the shapes, a
typical algorithm then proceeds [38] as Algorithm 2.1.

Algorithm 2.1 : Mutually Aligning a Set of Shapes.

Initialize:

• Choose one shape as the reference frame, call it xref, and retain this.
• Normalize the scale so that ‖xref‖ = 1.
• Set the initial estimate of the mean shape to be xref.

Repeat:

• Perform pairwise alignment of all shapes to the current estimate of the mean shape.
• Recompute the mean of the set of shapes:

x̄
.
= {x̄(i) : i = 1, . . . nP }, x̄

.
=

1

nS

nS∑

j=1

xj.

• Align x̄ to the initial reference frame xref.
• Normalize the mean so that ‖x̄‖ = 1.

Until convergence.

Note that it is necessary to retain the initial reference frame to remove
the global degree of freedom corresponding to rotating all the shapes by
the same amount. Setting ‖x̄‖ = 1 similarly removes the degree of freedom
associated with scaling all the shapes by the same factor. The degrees of
freedom associated with a uniform translation have already been removed by
centering all the shapes before we began the rest of the alignment.
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There remains the question of what transformations to allow during the it-
erative refinement. A common approach is to scale all shapes so that ‖xi‖ = 1,
and allow only rotations during the alignment stage. This means that from
the original shape space R

dnP , all shapes have been projected onto the surface
of a hypersphere ‖x‖ = 1. This means that the submanifold of R

dnP on which
the aligned shapes lie is curved, and if large shape changes occur, significant
non-linearities can appear. This may be problematic when we come to the
next stage of building a statistical model of the distribution of shapes. An
alternative is to allow both scaling and rotation during alignment, but this
can also introduce significant non-linearities. If this is a problem, the non-
linearity can be removed by projecting the aligned shapes onto the tangent
hyperplane to the hypersphere at the mean shape. That is:

xi �→ sixi, si ∈ R
+ such that (x̄ − sixi) · x̄ = 0. (2.12)

See [38] for further details and explicit examples.

2.1.2 Statistics of Shapes

To summarize our progress so far, we have mapped our initial shape vectors
(2.2) in R

dnP to a new set of mutually aligned shape vectors, by factoring
out uninteresting degrees of freedom corresponding to pose (scale, orientation,
and position). We now wish to analyse the statistics of this distribution of
shape vectors. To do this, we first need to find a set of axes specific to the
particular set of shapes. We have in some sense already started to perform
this, since we have a mean shape x̄ that can be used as an origin.

To see that this is a necessary procedure, consider the extreme case where
there is a shape point, x(i) say, which does not change its position across the
set of examples. Since this point does not vary, there is no value in retaining
the axes corresponding to the coordinates of this point {x(i)

α : α = 1, . . . d}.
We wish instead to find a new set of axes in R

dnP that span the subspace
which contains the (aligned) shapes. One simple procedure for performing
this task is Principal Component Analysis (PCA).

2.1.3 Principal Component Analysis

We start from our set of shape vectors {xi : i = 1, . . . nS} (we will assume
from now on that we are only considering sets of shape vectors which have
been aligned), with components relative to our original axes:

xi = {xiμ : μ = 1, . . . d × nP }. (2.13)
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These are the components and axes defined by those in R
d, the original space

in which the input shapes reside.
We wish to find a new set of orthogonal axes in R

dnP that better reflects
the actual distribution of the set. The origin of this new set of axes will be set
to the mean shape x̄. Let these new axes be described by a set of orthonormal
vectors:

{n(a)} such that n(a) · n(b) = δab, (2.14)

where δab is the Kronecker delta.
We then have the following theorem:

Theorem 2.1. PCA.
The set of orthonormal directions {n(a)} that maximises the quantity:

L .=
∑

a

nS∑

i=1

(
(xi − x̄) · n(a)

)2

, (2.15)

are given by the eigenvectors of the data covariance matrix D for the shapes,
where we define D of size dnP × dnP with components:

Dμν
.=

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν . (2.16)

Then the eigenvectors are defined by:

Dn(a) = λan(a), a = 1, . . . nS − 1. (2.17)

Proof. Suppose we are extracting these vectors in some sequential manner, so
that having found an acceptable subset {n(a) : a = 1, . . . b − 1}, we now wish
to make the optimum choice of the next vector n(b). Optimality is then given
by maximising:

L .=
nS∑

i=1

(
(xi − x̄) · n(b)

)2

, (2.18)

with respect to n(b), subject to the orthonormality constraints:

n(a) · n(b) = δab, a = 1, . . . b. (2.19)

Using Lagrange multipliers {cba : a = 1, . . . b}, the solution to this constrained
optimisation problem corresponds to the stationary point of the function:
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L =
nS∑

i=1

(
(xi − x̄) · n(b)

)2

+
b−1∑

a=1

cban(a) · n(b) + cbb

(
n(b) · n(b) − 1

)
. (2.20)

∂L
∂cba

= 0 =⇒ n(a) · n(b) = δab, which are the required constraints. (2.21)

∂L
∂n(b)

= 0 =⇒ 2
nS∑

i=1

(xi − x̄)ν(xi − x̄)μn(b)
μ +

b−1∑

a=1

cban(a)
ν + 2cbbn

(b)
ν = 0,

(2.22)

where we use the Einstein summation convention2 that the repeated index μ
is summed from μ = 1 to dnP . Using the definition of the covariance matrix
D (2.16), we can rewrite the condition as:

2Dn(b) +
b−1∑

a=1

cban(a) + 2cbbn(b) = 0. (2.23)

For the case b = 1 (the first direction we choose), this reduces to:

Dn(1) + c11n(1) = 0 (2.24)

=⇒ Dn(1) = λ1n(1) & n(1)D = λ1n(1), c11
.= λ1. (2.25)

That is, the vector n(1) is a left and right eigenvector of the (symmetric)
shape covariance matrix D, with eigenvalue λ1. The condition for the second
axis can then be written as:

2Dn(2) + c21n(1) + 2c22n(2) = 0. (2.26)

Taking the dot product of this expression with n(1), we obtain:

2n(1)Dn(2) + c21 = 0 (2.27)
=⇒ 2λ1n(1) · n(2) + c21 = 0 =⇒ c21 = 0. (2.28)

∴ Dn(2) + c22n(2) = 0 =⇒ Dn(2) = −c22n(2) .= λ2n(2).

(2.29)

It then follows by induction that the required set of axes {n(a)} are the or-
thonormal set of eigenvectors of the shape covariance matrix D. �	

The sum of the squares of the components of the shape vectors along each
of the PCA directions n(a) is then given by:

2 Note that, in general, indices that appear in brackets ·(a) will not be summed over unless
explicitly stated. See Glossary.
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nS∑

i=1

(
(xi − x̄) · n(a)

)2

= n(a)
μ Dμνn(a)

ν = λa ≥ 0. (2.30)

This means that the set of axes can be ordered in terms of relative impor-
tance by sorting the eigenvalues in terms of decreasing size. Since there are
nS shapes, there are at most nS−1 non-zero eigenvalues. This means that for
the case nS −1 < dnP , we have performed dimensionality reduction by locat-
ing the directions with zero eigenvalue that are orthogonal to the subspace
spanned by the data.

In practice, we retain not just the directions corresponding to non-zero
eigenvalues, but instead that ordered set which encompasses a certain amount
of the total variance of the data.

Ordered set of eigenvalues: λ1 ≥ λ2, . . . ≥ λdnP
, (2.31)

Total variance:
nS−1∑

a=1

λa, (2.32)

Variance up to nm :
nm∑

a=1

λa. (2.33)

The number of modes nm retained is then chosen to be the lowest value such
that the variance up to nm is some specified fraction of the total variance.

We can also transform coordinates to the system defined by the directions
{n(a)}, with origin x̄. For each shape xi this then defines a new vector of
shape parameters b(i) ∈ R

nm thus:

b(i) = {b(i)
a : a = 1, . . . nm}, b(i)

a
.=
(
n(a) · (xi − x̄)

)
, (2.34)

where the covariance in this frame is now given by the diagonal matrix:

Dab
.=

nS∑

i=1

(n(a) · b(i))(n(b) · b(i)) = λaδab. (2.35)

We define the matrix of eigenvectors:

N, Nμa
.= n(a)

μ , (2.36)

which is then of size dnP × nm. We can then form an approximate recon-
struction of the shape vector xi from the corresponding parameter vector b(i)

thus:
xi ≈ x̄ + Nb(i). (2.37)

The reconstruction is only approximate, since we have only retained the first
nm eigenvectors, rather than all eigenvectors with non-zero eigenvalue.
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The matrix N performs a mapping from the coordinate axes defined in
(shape) parameter space to the original shape space. The mean shape simply
performs a translation of the origin, since the origin of parameter space is
taken to correspond to the mean shape. The corresponding backwards map-
ping, from shape space to parameter space, is performed by the matrix NT .
For a general parameter vector b ∈ R

nm and shape vector x ∈ R
dnP :

b �→ x̄ + Nb, x �→ NT (x − x̄) . (2.38)

Note however that the mappings are not the inverse of each other, even if all
the variance is retained, since the dimensionality of parameter space is less
than the dimensionality of shape space. For a shape vector x which is not part
of the original training set, the action of NT first projects the shape vector
into the subspace spanned by the training set, then forms an (approximate)
representation of this using the nm available modes.

If we suppose that the parameter vectors for our original set of shapes are
drawn from some probability distribution p(b), then we can sample parame-
ter vectors b from this distribution. We can then construct the corresponding
shapes for each parameter vector b as above (2.38). This gives us an arbitrar-
ily large set of generated shapes, sharing the same distribution as the original
set. This is usually referred to as applying the SSM in a generative mode.

The remaining task is to learn this distribution p(b), given our original
set of shapes – in this context, we refer to this set as a training set.

2.2 Modelling Distributions of Sets of Shapes

For a simple unimodal distribution of shapes in shape space, PCA generates
a coordinate system centred on the distribution, whose axes are aligned with
the significant directions of the distribution, and represent modes of varia-
tion of that data. If the distribution is not simple, PCA will still enable us to
discard dimensions which are orthogonal to the data, that is, perform dimen-
sional reduction. The individual directions n(a) will not however necessarily
correspond to modes of variation of the data.

In the following sections, we consider various methods for studying and
representing the distribution of the training data in shape space. We start
with the simplest case of a single multivariate Gaussian, where the data is
unimodal and the PCA axes do correspond to real modes of variation of the
input data. For the case of multimodal or non-linear data distributions, we
discuss two types of kernel methods, the classical method of kernel density
estimation, and the more recent technique of kernel principal component
analysis.
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2.2.1 Gaussian Models

We will consider modelling the distribution of the data by a multivariate
Gaussian. Having already applied PCA, we now model the parameter space
containing the vectors {b(i)} defined above (2.34).

We consider a multivariate Gaussian distribution centred on the origin in
parameter space, that is, centred on the mean of the data in shape space.

Theorem 2.2. Maximum Likelihood Method.
Consider a centred Gaussian probability density function (pdf) of the form:

p(b) ∝
(

nm∏

c=1

1
σc

)
exp

(
−1

2

nm∑

a=1

(
b · m(a)

σa

)2
)

, (2.39)

where {m(a) : a = 1, . . . nm} are some orthonormal set of directions:

m(a) · m(b) = δab, (2.40)

and {σa} are the set of width parameters. The fitted Gaussian which max-
imises the quantity:

nS∏

i=1

p(b(i)), (2.41)

is then given by {m(a)} equal to the eigenvectors of the covariance matrix of
{b(i)}. If these eigenvectors have corresponding eigenvalues {λa}, then the
optimum width parameters are:

σ2
a =

1
nS

λa. (2.42)

Proof. We are required to maximise:

nS∏

i=1

p(b(i)). (2.43)

Equivalently, we can maximise instead the logarithm of this:

L = −nS

nm∑

c=1

ln σc −
1
2

nS∑

i=1

nm∑

a=1

(
b(i) · m(a)

σa

)2

+ (constant terms), (2.44)

with the orthonormality constraints as above. For the case of the directions
{m(a)}, if we compare this to (2.20), we see that it is essentially the same
optimisation problem as the one we encountered previously. Hence we can
deduce that the directions {ma} are just the eigenvectors of the covariance
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matrix of the {b(i)}. And since this covariance matrix is diagonal in the PCA
coordinate frame (2.35), we finally have that m(a) = n(a) ∀ a = 1, . . . nm.

For the parameters {σa}, we then have to optimise:

L = −nS

nm∑

c=1

ln σc −
1
2

nm∑

a=1

λa

σ2
a

+ (constant terms), (2.45)

=⇒ ∂L
∂σa

= −nS

σa
+

λa

σ3
a

, (2.46)

∴ ∂L
∂σa

= 0 =⇒ σ2
a =

1
nS

λa =
1

nS

nS∑

i=1

(
(xi − x̄) · n(a)

)2

, (2.47)

which is just the mean variance across the set of shapes in the direction n(a).
�	

In many cases, where the shape variation is linear, a multivariate Gaussian
density model is sufficient. A single Gaussian cannot however adequately
represent cases where there is significant non-linear shape variation, such as
that generated when parts of an object rotate, or where there are changes to
the viewing angle in a two-dimensional representation of a three-dimensional
object. The case of rotating parts of an object can be dealt with by using polar
coordinates for these parts, rather than the Cartesian coordinates considered
previously [87]. However, such techniques do not deal with the case where
the probability distribution is actually multimodal, and in these cases, more
general probability distribution modelling techniques must be used. In what
follows, we consider kernel-based techniques, the first being classical kernel
density estimation, and the second based on the technique of kernel principal
component analysis.

2.2.2 Kernel Density Estimation

As before, we start from the set of nS centred points {b(i)} in shape space
R

nm . Kernel density estimation [165] estimates a pdf from data points by
essentially smearing out the effect of each data point, by means of a kernel
K:

p(b) =
1

nShnm

nS∑

i=1

K

(
b − b(i)

h

)
, (2.48)

where h is a scaling parameter. In the trivial case where the kernel K is a
Dirac δ-function, we obtain the empirical distribution of the data, a pdf p(b)
which is zero everywhere except at a data point. A non-trivial choice of kernel
would be a multivariate Gaussian:



2.2 Modelling Distributions of Sets of Shapes 21

K(b) .= N (b;0,D), (2.49)

where the covariance D of the kernel can be chosen to match the covariance
of the data {b(i)}.

A slightly more sophisticated approach is the sample smoothing estima-
tor [15, 175]. Rather than a single global scale parameter h, there is now a
local scale parameter, which reflects the local density about each data point,
allowing wider kernels in areas where data points are sparse, and narrower
kernels in more densely populated areas. Similarly, the kernel covariance can
also vary locally [152].

Such kernel methods can give good estimates of the shape distribution.
However, the large number of kernels can make them too computationally ex-
pensive in an application such as the Active Shape Model (ASM) (Sect. 2.4.1).
Cootes et al. [35, 36] developed a method of approximating the full kernel
density estimate using a smaller number of Gaussians within a Gaussian
mixture model:

pmix(b) .=
nmix∑

i=1

wiN (b;μi,Di), (2.50)

where nmix is the number of Gaussians within the mixture model, wi is the
weight of the ith Gaussian, with center μi and covariance Di. The fitting
of the parameters can be achieved using a modification [36] to the standard
Expectation Maximisation (EM) algorithm method [117].

2.2.3 Kernel Principal Component Analysis

The previous method aims to fit a non-linear or multimodal shape distri-
bution by constructing a parametric non-linear and multimodal distribution
within the original shape space.

The Kernel Principal Component Analysis (KPCA) method takes a differ-
ent approach. KPCA [156, 157] is a technique for non-linear feature extrac-
tion, closely related to methods applied in Support Vector Machines [194, 188]
(SVMs). Rather than working within the original data space with non-linear
and multimodal distributions, KPCA seeks to construct a non-linear mapping
of input space I to a new feature space.

Let b represent a point in our input data space3 I = R
nm , which is mapped

to a feature space F :

Φ : R
nm �→ F , R

nm � b �→ Φ(b) ∈ F , (2.51)

3 Here, we start from the dimensionally reduced space R
nm rather than the original shape

space R
dnP in order to also include the infinite-dimensional case nP �→ ∞ that is considered

in Sect. 2.3.
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where F is typically of very high (even infinite) dimensionality. Rather than
constructing the mapping Φ explicitly, we instead employ the kernel trick,
that dot products of mapped points, and hence the implicit mapping Φ, can
be specified by giving the Mercer kernel function [122] K, where:

K : I × I �→ R, (2.52)
Φ(b) · Φ(c) .= K(b, c) ≡ K(c,b) ∀ b, c ∈ I. (2.53)

If we recall the definition of PCA given earlier (Theorem 2.1), we see that
computation of the PCA axes depends on our being able to compute dot
products between data points and the PCA axis vectors. We hence deduce
that since we can compute dot products in the feature space (2.53) by use of
the kernel trick, we can then perform PCA in the feature space F without
having to explicitly construct the kernel mapping Φ. And since the kernel
mapping is a non-linear mapping, PCA in the feature space F then corre-
sponds to a method of non-linear components analysis in the original data
space I.

Suppose we have nS data points {b(i)} in our data space I. The non-linear
KPCA components are then given by the following theorem.

Theorem 2.3. KPCA: Centred Components.
Suppose we have data points {b(i) : i = 1, . . . nS} in a data space I, and that
there exists a mapping Φ to a feature space F , the mapping being defined by
a Mercer kernel K as follows:

Φ : b �→ Φ(b) ∀ b ∈ I, Φ(b) · Φ(c) .= K(b, c) ∀ b, c ∈ I. (2.54)

We define the following:

Φ(i) .= Φ(b(i)), i = 1, . . . nS (2.55)

Φ̃(i) .= Φ(i) − 1
nS

nS∑

j=1

Φ(j). (2.56)

Kij
.= Φ(i) · Φ(j) ≡ K(b(i),b(j)), (2.57)

K̃ij
.= Φ̃(i) · Φ̃(j). (2.58)

The centred KPCA components {Φ̃(i)
α : α = 1, . . . nK , nK ≤ nS − 1} of a

data point b(i) are then extracted from the set of solutions of the eigenproblem:

λαn
(α)
i = K̃ijn

(α)
j , Φ̃(i)

α = n
(α)
i . (2.59)

Proof. As stated above, KPCA applied to the data points {b(i)} is just or-
dinary linear PCA applied to the mapped data points {Φ(i)}. Centering the
mapped data points then gives the {Φ̃(i)} as defined above.
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In Theorem 2.1, linear PCA was defined by maximising the quantity given
in (2.15). For KPCA, we define a set of orthogonal (but not necessarily or-
thonormal) direction vectors {n(α) : α = 1, . . . nK} which lie in the subspace
of F spanned by the nS vectors {Φ̃(i)}, and maximise the analogous quantity:

L =
1

2nS

nS∑

i=1

(
n(α) · Φ̃(i)

)2

− cα

2

(
n(α) · n(α) − (a(α))2

)
, (2.60)

where cα > 0 is a Lagrange multiplier for maximisation under the normal-
ization constraint:

n(α) · n(α) ≡ ‖n(α)‖2 = (a(α))2. (2.61)

We solve this problem by setting the first derivative of L with respect to n(α)to
zero as follows:

∂L
∂n(α)

=
1

nS

nS∑

i=1

(
n(α) · Φ̃(i)

)
Φ̃(i) − cαn(α). (2.62)

∴ ∂L
∂n(α)

= 0 =⇒ 1
nS

nS∑

i=1

Φ̃(i)
(
n(α) · Φ̃(i)

)
= cαn(α). (2.63)

Taking the dot product with Φ̃(j):

=⇒ 1
nS

nS∑

i=1

(
Φ̃(j) · Φ̃(i)

)(
n(α) · Φ̃(i)

)
= cα

(
n(α) · Φ̃(j)

)
, (2.64)

=⇒
nS∑

i=1

K̃ji

(
n(α) · Φ̃(i)

)
= (nScα)

(
n(α) · Φ̃(j)

)
. (2.65)

The interpretation of
(
n(α) · Φ̃(j)

)
is that it is the PCA component of Φ̃(j)

along the direction n(α), hence the αth centred KPCA component of b(j). If
we define:

n
(α)
j

.=
(
n(α) · Φ̃(j)

)
, (2.66)

then PCA in feature space reduces to the eigenproblem:

K̃jin
(α)
i = (nScα)n(α)

j = λαn
(α)
j . (2.67)

�	

Note that as in linear PCA, we choose the define the index α so that the
eigenvalues are ordered in decreasing order.

If we recall the definitions of the kernel matrices K (2.57) and K̃ (2.58),
and rewrite K̃ in terms of K, we have that:
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Kij
.= K(b(i),b(j)),

K̃ij = Kij −
1

nS

∑

p

Kpj −
1

nS

∑

q

Kiq +
1

n2
S

∑

p,q

Kpq. (2.68)

Looked at in this way, in terms of kernels involving the input data points, the
significance of K̃ and its eigenvectors is obscured. It is only the identification
between Mercer kernels and mappings that enables K̃ to be seen as just the
covariance matrix for the mapped data points.4

We can also define non-centred KPCA components {Φ(i)
α }, where:

Φ(i)
α

.= n(α) · Φ(i). (2.69)

Theorem 2.4. KPCA: Non-centred Components.
With definitions as above, the non-centred KPCA components of a data point
b(j) are given by:

Φ(j)
α

.= n(α) · Φ(j) =
1
λα

n
(α)
i Kij . (2.70)

Proof. Remember that the {Φ̃(i)} are centred points, hence:

ns∑

i=1

Φ̃(i) ≡ 0 ⇒
ns∑

i=1

n(α) · Φ̃(i) = 0 ⇒
ns∑

i=1

n
(α)
i = 0. (2.71)

For all λα �= 0 (2.59), the corresponding eigenvector n(α) lies in the space
spanned by the set {Φ̃(i)}, hence n(α) can be expanded in this basis:

n(α) =
nS∑

i=1

w
(α)
i Φ̃(i). (2.72)

∴ n(α) · Φ̃(j) .= n
(α)
j = w

(α)
i K̃ij (2.73)

⇒ λαn
(α)
j = λαw

(α)
i K̃ij . (2.74)

Comparison with the eigenvector equation gives that:

w
(α)
i =

1
λα

n
(α)
i ⇒ n(α) =

1
λα

nS∑

i=1

n
(α)
i Φ̃(i). (2.75)

Substituting Φ(i) − 1
nS

nS∑
k=1

Φ(k) for Φ̃(i) and using (2.71) then gives:

4 Note that this result, and the definition of a finite-dimensional covariance matrix K̃ij

in a space F that is possibly infinite-dimensional is actually an application of a result for

covariance matrices that is presented later in this chapter (Theorems 2.6 and 2.7).
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n(α) =
1
λα

nS∑

i=1

n
(α)
i Φ̃(i) =

1
λα

nS∑

i=1

n
(α)
i Φ(i). (2.76)

Hence:

Φ(j)
α

.= n(α) · Φ(j) =
1
λα

n
(α)
i Kij . (2.77)

�	

As well as the centred and non-centred components for data points, we
can now also compute the centred and non-centred KPCA components for
an arbitrary point b in the input space.

Theorem 2.5. KPCA: Components of a Test Point.
A general point b in the input space maps to a point Φ(b) in feature space,
with non-centred KPCA components:

Φα(b) .= n(α) · Φ(b) =
1
λα

nS∑

i=1

n
(α)
i K(b(i),b), (2.78)

and centred KPCA components:

Φ̃(b) .= Φ(b) − 1
nS

nS∑

j=1

Φ(j),

Φ̃α(b) .= n(α) · Φ̃(b) = Φα(b) − 1
λαnS

nS∑

i,j=1

n
(α)
i Kij . (2.79)

Proof. This follows straightforwardly from the previous results, and is left as
an exercise for the reader.

2.2.4 Using Principal Components to Constrain Shape

We now need to consider the ways that PCA and KPCA components are
used in shape applications, and consider in detail the significant differences
between them.

For shape spaces R
nm , it is obvious that PCA components can increase

without limit, since the mapping from shape parameters to shapes (2.38) is
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defined for any point in the parameter space. Hence we can always exclude
test shapes b far from the training data by setting an upper bound on each
of the PCA components, creating a bounding parallelepiped. This does not
necessarily exclude all shapes which are unlike the training data for cases
where the training set shape variation is non-linear or multimodal.

For the case of Gaussian distributions of shapes (2.39), when the PCA
axes are appropriately scaled, the pdf becomes spherically symmetric:

p(b) ∝ exp

(
−1

2

nm∑

a=1

(
b · m(a)

σa

)2
)

, m(a) · m(b) = δab, (2.80)

ba
.= m(a) · b, a = 1, . . . nm. (2.81)

b̃a
.=

ba

σa
, (2.82)

∴ p(b̃) ∝ exp

(
−1

2

nm∑

a=1

(
b̃ · m(a)

)2
)

= exp
(
−1

2
‖b̃‖2

)
, (2.83)

where:

‖b̃‖2 .=
nm∑

a=1

(
ba

σa

)2

, (2.84)

is the squared Mahalanobis distance [110] between the point b and the origin
(mean shape). Hence surfaces of constant Mahalanobis distance correspond
to probability isosurfaces, with a simple monotonic relationship between Ma-
halanobis distance and probability density, and we can create bounding el-
lipsoids by placing an upper bound on the Mahalanobis distance.

Our initial trivially obvious observation that PCA components can in-
crease without limit is not however generally true for KPCA components.

Consider Theorem 2.5, (2.78):

Φα(b) =
1
λα

nS∑

i=1

n
(α)
i K(b(i),b). (2.85)

We see that the way the non-centred or centred components of a test point
behave as the test point moves away from the data depends on the way the
kernel function K(b(i),b) behaves. As was noted by Schölkopf et al. [156]:

Φα(b) .= n(α) · Φ(b) ≤ ‖n(α)‖ ‖Φ(b)‖ = a(α) (K(Φ(b),Φ(b)))
1
2 , (2.86)

where the normalization of the vector n(α) is as defined in (2.61).
In Table 2.1, we give examples of some commonly used kernels, and the

range of allowed values of ‖Φ(b)‖.
We see that for the polynomial kernels (which of course contain linear

PCA as a limiting case when m = 1), the values of the KPCA components
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Table 2.1 Examples of Mercer kernels.

Kernel Type K(b, c) ‖Φ(b)‖

Polynomial (b · c)m, 0 ≤ ‖Φ(b)‖2 < ∞.

(b · c + r)m rm ≤ ‖Φ(b)‖2 < ∞.

Radial Basis Function (RBF) exp

(
− 1

2σ2
‖b − c‖2

)
‖Φ(b)‖2 ≡ 1.

Sigmoid tanh (b · c + r) 0 ≤ ‖Φ(b)‖2 ≤ 1.

are unlimited. However, for both the sigmoid and RBF kernels, ‖Φ(b)‖ and
hence the values of the components are strictly bounded.

The RBF kernel is particularly interesting. Note that the modulus of the
mapped vector Φ(b) in feature space is identically one. This means that the
mapped input space Φ(I) is an embedded submanifold of feature space F . If
we consider the modulus of the difference vector between two mapped points,
we have:

‖Φ(b) − Φ(c)‖2 ≡ 2
(

1 − exp
(
− 1

2σ2
‖b − c‖2

))
. (2.87)

We hence see that as b moves away from c in input space:

‖Φ(b) − Φ(c)‖2 → 2 as Φ(b) · Φ(c) → 0,

which is what we would expect for orthogonal points on a unit hypersphere.
Consider now the projection from this embedded submanifold to KPCA

space, which is the space of KPCA components.5 The explicit expression for
the non-centred KPCA components (2.78) for the case of an RBF kernel is:

Φα(b) =
1
λα

nS∑

i=1

n
(α)
i exp

(
− 1

2σ2
‖b(i) − b‖2

)
,

ns∑

i=1

n
(α)
i = 0. (2.88)

The first trivially obvious point to note is that all the KPCA components
tend to zero for any test point far from all the data. Let us now focus on the
case where the kernel width σ is sufficiently small, and for a fixed value of α.
Because of the summation constraint on {n(α)

i }, at least one of the elements
{n(α)

i } must be of opposite sign to the others. The set of {Φ(i)
α = Φα(b(i))}

(the non-centred KPCA components of the data points), will hence take
both negative and positive values across the data. We can hence conclude
that for sufficiently small values of σ, the extrema of any KPCA component

5 It should be noted that whilst we can always move from input space (the point b) to
KPCA space (the space of KPCA components) using (2.78), we cannot necessarily do the
inverse. So, it is not necessarily the case that an arbitrary point in KPCA space (defined
by a set of KPCA components) possesses a pre-image in input space (although various
approximation methods do exist, see [156] Sect. 4.5 for further details).
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will tend to lie in the vicinity of the data points, taking both negative and
positive values, and that these values bracket the values obtained for points
far from the data (that is, zero). Since this is an ordering property, it persists
if we switch to centred KPCA components, since this just corresponds to a
translation in KPCA space.

Consider a path in input space which starts at infinity, then approaches
some part of the data, then moves out to infinity again. At first, all KPCA
components will have vanishingly small modulus. As the point approaches
the data, some component(s) acquire a value of larger modulus, which then
shrinks again as we move away from all the data. In linear PCA, proximity
to data was described by placing an upper bound to the modulus of each
component, but such a procedure will not be generally valid for KPCA com-
ponents.6 This argument rests on the kernel width σ being in some sense
small, but this behaviour persists for some finite range of σ (indeed, if it did
not, RBF KPCA would be of no use as a non-linear feature extractor).

It hence suggests that an appropriate proximity-to-data measure for
KPCA components would involve a sum over the moduli of non-centred
KPCA components. This was the approach taken by Twining and Taylor [185]
as follows.

We first define the normalization of the eigenvectors. In contrast to Mika
et al. [124] and Schölkopf et al. [156], the eigenvectors are normalized (2.61)
with respect to the data:

nS∑

i=1

(
Φ̃

(α)
i

)2

≡
nS∑

i=1

(
n

(α)
i

)2 .= 1 ⇒ ‖n(α)‖2 =
(
a(α)
)2

=
1
λα

∀ α, (2.89)

which hence gives an orthogonal but not orthonormal basis {n(α)}. We then
introduce scaled non-centred components:

Ψα(b) .= λαΦα(b) =
nS∑

i=1

n
(α)
i exp

(
− 1

2σ2
‖b(i) − b‖2

)
. (2.90)

As to why scaled components are used rather than the original components,
consider the following. For a general test point, we have the usual definition
of non-centred components (2.78):

Φα
.= n(α) · Φ(b). (2.91)

We can hence expand the vector Φ(b) in terms of the eigenvectors thus:

6 This point was not sufficiently appreciated by Romdhani et al. [148] when they considered
shape spaces for faces. They defined their valid shape region by placing an upper bound on
their KPCA components, by analogy with the case of linear PCA. In the limit of large σ,
RBF KPCA does indeed approach linear PCA (see [185] Appendix A for details), but this
behaviour and hence the analogy is not generally valid for RBF KPCA (nor for KPCA in
general, as noted in the text).
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Φ(b) =
nK∑

α=1

λαΦα(b)n(α) + V(b), (2.92)

where nK denotes that we have chosen only the nK largest eigenvalues to
include, and V(b) is some vector perpendicular to the set of eigenvectors so
chosen. We can then deduce that since ‖Φ(b)‖ ≡ 1 for all test points, we
have that:

‖Φ(b)‖2 =
nK∑

α=1

λα|Φα(b)|2 + ‖V(b)‖2 ≡ 1 ⇒
nK∑

α=1

λα|Φα(b)|2 ≤ 1. (2.93)

This hence places a strict upper bound on the modulus of the components,
with the larger the eigenvalue the smaller the maximum allowed value of
|Φα(b)|. For the purposes of proximity-to-data estimation using sums of
squares of components, this is not an ideal situation, since we feel intu-
itively that the modes with larger eigenvalues should make the largest con-
tribution. Hence the use of the scaled components Ψα(b) .= λαΦα(b), since
|Ψα(b)|2 ≤ λα.

A general proximity-to-data measure is then of the form:

f (m)(b) ∝
(

nK∑

α=1

Ψα(b)Ψα(b)

)m
2

, m = 1, 2, . . .∞. (2.94)

Of particular interest is the simplest case where m = 2, where the proximity-
to-data measure can be exactly normalized, giving the pseudo-density:

p̂(b) =
1
A

nS∑

i,j=1

nK∑

α=1

n
(α)
i n

(α)
j K(b,b(i))K(b,b(j)) (2.95)

Normalization factor: A = σnmπ
nm
2 Tr(K

1
2 B)

where K
1
2
ij

.=
√

Kij and Bij
.=

nK∑

α=1

n
(α)
i n

(α)
j .

It has been shown, with the aid of exactly-solvable data distributions ([185]
Appendix B), that this does indeed provide a smoothed estimate of the data
density, with the kernel width σ acting as a smoothing parameter. On ar-
tificial noisy data, it was also shown to give quantitatively better estimates
of the density than either näıve or adaptive kernel density methods such as
those described in Sect. 2.2.2.

In [183], Twining and Taylor used a lower bound on the pseudo-density
to define the class of allowed shapes for statistical shape models, and showed
that this gave improved performance when compared to standard linear mod-
els.
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From a theoretical point of view, the above density estimate is interest-
ing since it differs from those described earlier (Sect. 2.2.2) in that it is a
quadratic rather than a linear combination of kernel functions. The kernel
width plays the same sort of rôle in both types of kernel methods. The KPCA
pseudo-density possesses a further advantage, in that the number of KPCA
components nK included in the summation can be varied. This means that
for noisy data, the higher modes (which tend to contain the noise) can be
neglected in the density estimate by truncating the summation. As noted
above, this has been shown to produce superior results on noisy input data
to the standard kernel methods which do not possess such a feature.

However, the basic algorithm as summarized here is still computationally
intensive, in that we have to calculate the kernel function between a test
point and all data points. We note that several authors (e.g., [128, 166]) have
already addressed the problem of optimising KPCA as applied to large data
sets (nS > 3000). The question of constructing reduced-set approximations
to the exact KPCA results [155] has also been addressed, so we anticipate
that considerable improvement on this basic algorithm is possible.

So far, we have considered training sets of shapes represented by a finite
number of points, and shown how various methods of principal component
analysis and density estimation can be used to describe the distribution of
such shapes in shape space. However, in the real world, natural shapes we
encounter are continuous. We hence proceed to discuss how the analysis can
be extended to the case of continuous shapes.

2.3 Infinite-Dimensional Representations of Shape

In Sect. 2.1, we considered finite-dimensional representations of shape, and
saw that both PCA and Gaussian modelling rests on the properties of the
covariance matrix D.

However, our input shapes are actually continuous, so we are interested in
the limit where nP → ∞. The problem with our original covariance matrix
D (2.16) is that it is of size dnP ×dnP , hence becomes infinitely large in this
limit. However, the number of non-zero eigenvalues is at most nS − 1. These
eigenvalues can be calculated even in the limit by considering the following
known result for covariance matrices [51].

Theorem 2.6. Equivalence of Eigenvectors: Finite-Dimensional
Case.
Consider a set of shapes {xi : i = 1, . . . nS} with shape covariance matrix
D (2.16) with elements:

Dμν
.=

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν , (2.96)
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and the corresponding eigenvectors and eigenvalues:

Dn(a) .= λan(a), n(a) · n(b) = δab, (2.97)

where there are at most nS − 1 non-zero eigenvalues.
Also consider the matrix D̃ with components:

D̃ij
.= (xi − x̄) · (xj − x̄). (2.98)

There then exists a one-to-one mapping between the eigenvectors of D with
non-zero eigenvalue, and the eigenvectors of D̃ with non-zero eigenvalues,
and the eigenvalues for corresponding eigenvectors are equal.

Proof. We start from the eigenvector equation for D, and the definition of
D (2.16)7:

Dμνn(a)
ν = λan(a)

μ ⇒ (xj − x̄)μ(xj − x̄)νn(a)
ν = λan(a)

μ , λa �= 0. (2.99)

Multiplying both sides by (xi − x̄)μ, and summing over μ gives:

(xi − x̄)μ(xj − x̄)μ(xj − x̄)νn(a)
ν = λa(xi − x̄)μn(a)

μ , (2.100)

⇒ (xi − x̄) · (xj − x̄)
[
(xj − x̄) · n(a)

]
= λa

[
(xi − x̄) · n(a)

]
. (2.101)

Define: ñ(a) .= {n(a)
i = (xi − x̄) · n(a) : i = 1, . . . nS}. (2.102)

∴ D̃ij ñ
(a)
j = λañ

(a)
i , D̃ñ(a) = λañ(a). (2.103)

So either ñ(a) = 0, or ñ(a) is an eigenvector of D̃ with eigenvalue λa. If
ñ(a) = 0, it then follows from the definition (2.102) that the corresponding
n(a) would be orthogonal to the data, with λa = 0, which contradicts our
original condition that λa �= 0.

We can hence conclude that all eigenvectors of D with non-zero eigen-
value have a corresponding eigenvector of D̃ with the same eigenvalue. What
remains is the converse claim, that all eigenvectors of D̃ correspond to an
eigenvector of D.

The proof follows in an exactly similar fashion. We start from the eigen-
vector equation:

D̃ñ(a) = λañ(a), (2.104)

where ñ(a) is any eigenvector of D̃ with a non-zero eigenvalue, λa �= 0.
Inserting the definition of D̃ (2.98):

D̃ij ñ
(a)
j = λañ

(a)
i ⇒ (xi − x̄)μ(xj − x̄)μñ

(a)
j = λañ

(a)
i . (2.105)

7 Note our summation convention (see Glossary) that repeated indices are summed over,

except where indices appear in brackets ·(a), which are only summed over if explicitly
stated.
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Multiplying by (xi − x̄)ν and summing over i:

(xi − x̄)ν(xi − x̄)μ(xj − x̄)μñ
(a)
j = λañ

(a)
i (xi − x̄)ν (2.106)

⇒ (xi − x̄)ν(xi − x̄)μ

[
(xj − x̄)μñ

(a)
j

]
= λa

[
ñ

(a)
i (xi − x̄)ν

]
.

(2.107)

Define: n(a) = {n(a)
μ = ñ

(a)
i (xi − x̄)μ}, (2.108)

∴ Dνμn(a)
μ = λan(a)

ν , Dn(a) = λan(a). (2.109)

The solution n(a) = 0 can be excluded: if we consider (2.105), this can be
rewritten as:

(xi − x̄)μ(xj − x̄)μñ
(a)
j = λañ

(a)
i ⇒ (xi − x̄)μn(a)

μ = λañ
(a)
i . (2.110)

So if ñ(a) �= 0 and λa �= 0, it then follows that n(a) �= 0.
We hence see that all eigenvectors of D̃ with non-zero eigenvalue corre-

spond to eigenvectors of D with the same eigenvalue. And since the corre-
spondence has now been established in both directions, it then follows that all
the eigenvectors of D̃ and D with non-zero eigenvalues can be placed into a
one-to-one correspondence, and the eigenvalues are the same. �	

Earlier (2.34), we defined shape parameter vectors b, where:

b(i) = {b(i)
a : a = 1, . . . nm}, b(i)

a
.=
(
n(a) · (xi − x̄)

)
. (2.111)

If we consider the eigenvectors {ñ(a)} defined above (2.102):

ñ
(a)
i = n(a) · (xi − x̄), (2.112)

we see that:
b(i)
a ≡ ñ

(a)
i . (2.113)

That is, it seems that we can obtain the parameter vectors for the train-
ing set of shapes directly from the eigenvectors of D̃. There is a final point
that needs to be noted. The eigenvectors {ñ(a)} defined in (2.102) inherited
their normalization from the orthonormal set of eigenvectors {n(a)}. It hence
follows that:

‖ñ(a)‖2 = λa. (2.114)

This means that we can indeed extract the needed eigenvalues and the shape
parameter vectors directly from D̃.

As regards the shape generated from an arbitrary parameter vector b, we
have:

x .= x̄ + Nb, N = {Nμa = n(a)
μ }. (2.115)
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This can then be re-written as:

x .= x̄ +
nS∑

i=1

(b(i) · b)(xi − x̄). (2.116)

This means that a generated shape is to be considered as a linear combination
of the training shapes, where the weight for each shape is related to the
parameter vectors for the training shape and the generated shape.

2.3.1 Parameterised Representations of Shape

Let us consider for the moment the simple case of shapes in R
2. The finite

set of nP points that describe such a shape can be indexed by an integer
{x(j) : j = 1, . . . nP , x(j) ∈ S.}. For (single-part) shapes with the simplest
topology (open or closed lines), we can include the connectivity information
in with the indexing, so that x(j−1) is joined to x(j) and so on. The same
indexing is applied across a set of shapes, so that the jth point on any one
shape corresponds with the jth point on any other shape.

The subset of the integers {j : j = 1, . . . nP } can then be considered as the
parameter space for our shape representation, a parameter space consisting
of just a set of discrete points. To construct an infinite-dimensional shape
representation, we just need to consider a continuous parameter space.8

For our simple one-dimensional shapes, we have a continuous shape Si

which is then sampled at nP points. Si is then represented by a finite-
dimensional shape vector:

xi
.= {x(j)

i : j = 1, . . . nP }.

The associated discrete parameter space is:

{1, 2, 3, . . . nP } ≡
{

1
nP

,
2

nP
, . . . , 1

}
,

with the associated mapping:

{1, 2, 3, . . . nP } � j �→ x(j)
i ∈ Si.

The mapping respects the topology of the shape, so that the ordering of the
integers respects the ordering of points along the shape.

8 Note that the reader should not confuse this usage of parameter space in terms of para-
meterised shape with the space of shape parameters b (2.34). Parameter space, when used

in this latter context, should be understood as a convenient shorthand for shape-parameter
space.
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The continuous analog of this parameter space is just the real line between
0 and 1. For an arbitrary point on this line, with parameter value x ∈ [0, 1],
we then have the mapping to the shape:

[0, 1] � x �→ Si(x) ∈ Si.

Si(·) is then the vector-valued shape function associated with shape Si. The
mapping between the real line and the shape has to respect the topology of
the shape. This means that if we traverse the shape in one direction, the
parameter value then either strictly decreases or strictly increases. The only
exception is if the shape has the topology of a circle. This means that the
point x = 0 in parameter space is connected to x = 1, so that the ends of the
real line between 0 and 1 have now been joined to form a circle. In general,
the mapping from the parameter space to the shape has to be continuous,
and one-to-one, so that each parameter value corresponds to a single point
on the shape, and each point on the shape has a single associated parameter
value. In mathematical terms, such a mapping is a homeomorphism.9

In the general case, we have a vector-valued parameter x ∈ X, where the
topology of the parameter space X matches the topology of the shapes. So,
for example, simple shapes in R

3 might have the topology of a sphere, where
the parameter space is then the appropriate topological primitive – that is, a
sphere. For each shape in the training set, there is a continuous, one-to-one
mapping Xi from the parameter space to the shape Si.

X
Xi�−→ Si, x Xi�−→ Si(x). (2.117)

The continuity of the mapping means that as the point x moves on some
continuous path around the parameter space, the point Si(x) similarly moves
in a continuous path on the surface of the shape Si, with no sudden jumps
allowed.

In the finite-dimensional shape representation, shape correspondence is
between points with the same index, so that x(j)

i ∼ x(j)
k , ∀ i, k, where · ∼ ·

denotes correspondence. In the continuous case, correspondence is defined
analogously:

Sj(x) ∼ Sk(x), (2.118)

which gives a dense correspondence between any pair of shapes. It is the
details of the set of mappings {Xi} which defines the dense correspondence
across the set of shapes.

The covariance matrix D̃ for finite-dimensional shape representations is
given by (2.98):

D̃jk
.= (xj − x̄) · (xk − x̄). (2.119)

9 Technically, a mapping which is one-to-one and continuous in both directions. If the

mapping and its inverse is also constrained to be differentiable to some order, then this
mapping is a diffeomorphism.
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The continuous analog of the mean shape vector x̄ is the mean shape:

S̄(x) .=
1

nS

nS∑

i=1

Si(x). (2.120)

To take the limit nP → ∞, we imagine sampling the shapes ever more densely.
To make sure this limit is well-defined, we take the nP points to be equally
spaced on the mean shape. This then gives the infinite-dimensional limit of
the covariance matrix:

D̃jk
.= (xj − x̄) ·(xk− x̄) →

∫
(Sj(x)− S̄(x)) ·(Sk(x)− S̄(x))dA(x), (2.121)

where dA(x) is the length/area element on the mean shape at the point S̄(x).
In order to have a smooth transition as regards eigenvalues, it is convenient

to introduce the normalized covariance matrices, so that:

Dμν
.=

1
nP

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν , (2.122)

D̃ij
.=

1
nP

(xi − x̄) · (xj − x̄), (2.123)

⇒ D̃ij
.=

1
A

∫
(Si(x) − S̄(x)) · (Sj(x) − S̄(x))dA(x), (2.124)

where A is the total surface area/length of the mean shape. In practice, such
integrals can be evaluated by numerical integration techniques. We have cho-
sen a common normalization for D and D̃ so that the equivalence of eigenval-
ues is maintained (Theorem 2.6). The connection between this common set
of eigenvalues for the normalized covariance matrices and the variance along
the PCA axes is now given by:

1
nP

nS∑

i=1

(
(xi − x̄) · n(a)

)2

= λa. (2.125)

We would like to maintain the mapping from shape parameter vectors to
shapes as just the generalization of (2.116):

S(x) .= S̄(x) +
nS∑

i=1

(b(i) · b)(Si(x) − S̄(x)). (2.126)

However, to do this we need to look at the covariance matrix D and the
meaning of the PCA directions {n(a)} and the parameter vectors {b(i)} in
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the infinite-dimensional limit, and construct the infinite-dimensional analog
of Theorem 2.6.

Theorem 2.7. Equivalence of Eigenvectors/Eigenfunctions: Infinite-
Dimensional Case.
Consider the covariance matrix (2.124):

D̃ .= {D̃ij : i, j = 1, . . . nS}, (2.127)

D̃ij
.=

1
A

∫
(Si(x) − S̄(x)) · (Sj(x) − S̄(x))dA(x), (2.128)

with eigenvectors and (non-zero) eigenvalues:

D̃ñ(a) = λañ(a), λa �= 0. (2.129)

Consider also the matrix-valued shape covariance function D(y,x) with ele-
ments:

Dνμ(y,x) .=
1
A

(Siν(y) − S̄ν(y))(Siμ(x) − S̄μ(x)) (2.130)

and the general integral eigenproblem:
∫

Dνμ(y,x)n(a)
μ (x)dA(x) = λan(a)

ν (y) (2.131)

⇒
∫

D(y,x)n(a)(x)dA(x) = λan(a)(y), λa �= 0. (2.132)

There then exists a one-to-one mapping between the eigenvectors of D̃ with
non-zero eigenvalue, and the eigenfunctions of D(y,x) with non-zero eigen-
values, and the eigenvalues for corresponding eigenvectors/functions are
equal.

Proof. For parameterised shapes {Si} in R
d, we define:

S̃i(x) .= Si(x) − S̄(x), S̃i(x) .= {S̃iμ(x) : μ = 1, . . . d}. (2.133)

Then the eigenvector equation for D̃ can be written as:

1
A

∫
S̃iμ(x)S̃jμ(x)ñ(a)

j dA(x) = λañ
(a)
i . (2.134)

If we multiply by S̃iν(y) and sum over i, we obtain:

1
A

∫
S̃iμ(x)S̃iν(y)

(
S̃jμ(x)ñ(a)

j

)
= λa

(
S̃iν(x)ñ(a)

i

)
. (2.135)
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If we define the vector-valued function:

n(a)(x) = {n(a)
μ (x) : μ = 1, . . . d}, n(a)

μ (x) .=
(
S̃iμ(x)ñ(a)

i

)
, (2.136)

and using the definition of the matrix-valued covariance function:

D(y,x) .= {Dνμ(y,x) : ν, μ = 1, . . . d}, Dνμ(y,x) .=
1
A

S̃iν(y)S̃iμ(x),

(2.137)
then the eigenvector equation can be rewritten as:

∫
Dνμ(y,x)n(a)

μ (x)dA(x) = λan(a)
ν (y) (2.138)

⇒
∫

D(y,x)n(a)(x)dA(x) = λan(a)(y). (2.139)

Hence n(a)(y) is a solution of the required eigenproblem, with matching eigen-
value λa.

Similarly, if we start from a solution to this eigenproblem, and take the
dot product of both sides with S̃i(y) and integrate over dA(y), we obtain:

1
A

∫
S̃jν(y)S̃jμ(x)n(a)

μ (x)S̃iν(y)dA(x)dA(y) = λa

∫
n(a)

ν (y)S̃iν(y)dA(y).

(2.140)
If we define:

ñ(a) .= {ñ(a)
i : i = 1, . . . nS}, ñ

(a)
i

.=
∫

n(a)
ν (y)S̃iν(y)dA(y), (2.141)

then we have:

1
A

∫
S̃jν(y)S̃iν(y)ñ(a)

j dA(y) = λañ
(a)
i , (2.142)

⇒ D̃ij ñ
(a)
j = λañ

(a)
i ⇒ D̃ñ(a) = λañ(a), (2.143)

which gives a solution to the other eigenproblem. We hence have a one-to-
one mapping between the solutions of the two eigenproblems with non-zero
eigenvalues. �	

We hence have shown the equivalence of the two eigenproblems in the
infinite-dimensional case, just as Theorem 2.6 showed their equivalence in
the finite-dimensional case.

The integral eigenproblem (2.130) is just the infinite-dimensional analog of
the finite-dimensional eigenvector problem for the normalized covariance ma-
trix D (2.122). The eigenfunctions {n(a)(x)} are then the infinite-dimensional
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analog of the eigenvectors {n(a)} that we introduced when we considered
PCA ((2.17) and Theorem 2.1). As in the finite-dimensional case, these eigen-
functions are both left and right eigenfunctions (since D(y,x) is symmetric),
and it then follows that eigenfunctions belonging to different eigenvalues are
orthogonal, where we define the equivalent of the dot product between these
vector-valued eigenfunctions as follows:

∫
n(a)(x) · n(b)(x)dA(x). (2.144)

We can hence define an orthonormal set of eigenfunctions, so that:

∫
n(a)(x) · n(b)(x)dA(x) .= δab. (2.145)

Following the finite-dimensional case (2.34), we introduce parameter vec-
tors {b(i) : i = 1, . . . nm}, which are defined as:

b(i) .= {b(i)
a : a = 1, . . . nS}, b(i)

a
.=
∫

n(a)(x) · S̃i(x)dA(x). (2.146)

From (2.141), we see that as before (2.113):

ñ
(a)
i = b(i)

a . (2.147)

The size of the vectors ñ(a) is however slightly different:

‖ñ(a)‖2 = Aλa. (2.148)

Putting all this together, it means that rather than trying to solve the integral
eigenproblem, we can instead solve for the eigenvalues and eigenvectors of
the covariance matrix D̃ (2.124). The integral over the mean shape in the
covariance matrix can be solved using a numerical approximation. We then
apply the above normalization to the vectors ñ(a), and hence obtain the shape
parameter vectors b(i).

In the finite-dimensional case, the shapes vectors could be expanded in
terms of the PCA eigenvector basis, the coefficients being the shape param-
eter vectors. In the infinite-dimensional case, the shape functions can be
expanded in terms of the eigenfunctions. If we define:

S̃i(x) ≈
nm∑

a=1

cian(a)(x), (2.149)

then by taking the dot product with n(a)(x) we find that:
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cia =
∫

S̃i(x) · n(a)(x)dA(x) = b(i)
a , (2.150)

S̃i(x) ≈
nm∑

a=1

b(i)
a n(a)(x) ⇒ Si(x) ≈ S̄(x) +

nm∑

a=1

b(i)
a n(a)(x). (2.151)

This shape representation is only approximate since we are not necessarily
using all the eigenvectors, but only the first nm (note that, as before, we
assume the eigenvalues are arranged in decreasing order).

For a general shape generated by a parameter vector:

b .= {ba : a = 1, . . . nm},

we have that:

S(x) .= S̄(x) +
nm∑

a=1

ban(a)(x). (2.152)

As in (2.116), this can also be rewritten as follows:

From (2.136:) n(a)(x) = {n(a)
μ (x) : μ = 1, . . . d}, (2.153)

n(a)
μ (x) .=

(
S̃iμ(x)ñ(a)

i

)
=

nS∑

i=1

(
S̃iμ(x)b(i)

a

)
. (2.154)

∴ S(x) .= S̄(x) +
nm∑

a=1

ban(a)(x) (2.155)

= S̄(x) +
nm∑

a=1

ba

nS∑

i=1

(
S̃i(x)b(i)

a

)
(2.156)

⇒ S(x) = S̄(x) +
nS∑

i=1

(
b · b(i)

)
S̃i(x). (2.157)

To summarize, in the infinite-dimensional case, we have the infinite-dimen-
sional parameterised shapes {Si(x)}, and we can perform PCA on these as
is given in Algorithm 2.2.

The point to note is that here we have used PCA to perform a radical di-
mensional reduction, taking us from the space of infinite-dimensional shapes,
to the finite-dimensional space of shape parameter vectors. The use of the al-
ternative covariance matrix means that the only infinite-dimensional objects
we need to consider are the input shapes themselves, since all further objects
are finite-dimensional. The only approximation required is in the initial cal-
culation of the covariance matrix, where we have to use numerical methods
to perform the area integral. The previous statements about the link between
the shape parameter vectors and variance in the various PCA directions still
hold, given the definition we have already used for vector dot products in the
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Algorithm 2.2 : PCA for Infinite-Dimensional Shapes.

• Construct the finite-dimensional covariance matrix D̃ (2.124) by performing numerical in-
tegration over the mean shape.

• Solve for the finite-dimensional eigenvectors {ñ(a)} and eigenvalues {λa} of D̃.
• Normalize the eigenvectors so that ‖ñ(a)‖2 = Aλa.

• Construct the shape parameter vectors, where ñ
(a)
i = b

(i)
a .

• We then can generate shapes from a shape vector b:

S(x) = S̄(x) +

nS∑

i=1

(
b · b(i)

)
S̃i(x). (2.158)

infinite-dimensional space (2.144). Specifically, the mean variance per shape
in the direction n(a)(x) is given by:

S̃i · n(a) .=
∫

S̃i(x) · n(a)(x)dA(x) = b(i)
a . (2.159)

∴
nS∑

i=1

(
S̃i · n(a)

)2

=
nS∑

i=1

(
b(i)
a

)2

=
nS∑

i=1

(
ñ

(a)
i

)2

= ‖ñ(a)‖2 = Aλa.

⇒ 1
A

nS∑

i=1

(
(Si − S̄) · n(a)

)2

= λa. (2.160)

Previously (2.125), we had that λa represented the summed variance for all
shapes about the mean shape in the direction n(a), normalized by the number
of shape points nP . Here we see that we have the corresponding expression,
but normalized to give the variance per unit area of the mean shape.

Since we have now projected our original data from the infinite-dimensional
space of shapes to the finite-dimensional space of shape parameter vectors,
the modelling of the distribution of parameter vectors proceeds as before.

The notation used for finite and infinite-dimensional shape representations,
and the details of the PCA eigenproblems are summarized in Table 2.2.

2.4 Applications of Shape Models

In the previous sections (Sects. 2.1 and 2.3), we have shown how statistical
shape models can be built from training sets of shapes, and how principal
component and density estimation techniques can be applied to characterize
the distribution of shapes. If all we wish to do is analyse the distribution of
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shapes across the training set, this is often sufficient. For example, we can use
the shape of the estimated density or information from principal components
to classify subsets of shapes within the training set. Principal component
analysis can also tell us about the major and minor modes of shape variation
seen across the training set, and provide an intuitive picture of the way the
shapes vary.

If we are given an unseen shape, one which was not included in our training
set, we can use the same techniques to analyse this new shape. For example,
we can decide whether it is like or unlike those seen previously, to what
category of shape it belongs, or describe in what way it varies from what
we have already seen. We can hence describe this new shape within a wider
context of learnt information about this type of shape.

This however presumes that we already have our unseen shape. In many
computer vision or medical imaging applications that study shape, the shapes
themselves are obtained from images. The most intuitive, and the simplest,
way of extracting the shape from the image is to use manual annotation.
However, when there are a large number of examples to process, this can be-
come extremely time-consuming. For the case of images in three dimensions,
such as those encountered in medical imaging, this annotation can become
very difficult.

There are many basic methods for automatically segmenting images [169].
These typically use information such as the colour/greyscale values and tex-
ture in the image to identify regions of the image, and information about
edge structures in the image to try to delineate the boundaries of such re-
gions or sets of regions that constitute the shape of the imaged object. This
can work well provided the shapes are relatively simple, or have good tex-
ture/colour cues, or where we do not know what shapes we expect to see in an
image. However, for cases where we are looking for a particular known object,
the most promising approaches are those which adopt a learning framework.
Such systems proceed in much the same way that a human annotator would
proceed. The trainee human annotator or computer system is first presented
with a set of training examples which have been previously annotated by
some expert. Based on what has been learnt from these examples as to the
shape which is required, and how it varies, the trainee system or human then
annotates examples, possibly with some continuing feedback from an expert
to correct mis-annotation.

Such a system can be constructed using a statistical shape model to encode
the learnt information about shape. Two algorithms which use such a system
for automatic image annotation are the Active Shape Model (ASM) [29, 39]
and Active Appearance Model (AAM) [26, 25, 27].
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2.4.1 Active Shape Models

Suppose we have an image that contains an example of an object we are
trying to annotate with a set of shape points. In general terms, there are sev-
eral components that help us differentiate a successful from an unsuccessful
annotation.

First, we have the global constraint that the set of points should describe
a shape which is, according to what we have learnt about shape, a valid
example of that object. Secondly, we also have the local constraint that the
shape points should lie on edges or structures in the image that look like
the locations where such points have been placed in the annotated training
examples.

Given an initial guess as to the shape, these two constraints can be used
in tandem to home in on the correct position of the shape. Essentially, for
each current shape point, we search in the neighbourhood of that point to see
if there is a candidate position which better fits the expected appearance of
the image. Given such a set of candidate positions, we then apply the global
constraint, by replacing the candidate shape by a shape which is as close
as possible to the candidate shape (hence fits the local constraints), yet is a
valid shape as far as the global constraint is concerned. The process is then
iterated until it converges on a final answer. This is the basic Active Shape
Model search algorithm.

The global constraint is applied by quantifying the training information
about shape and shape variation in terms of a statistical shape model. For a
candidate shape, the positions of the candidate points are encoded in terms
of a shape vector x as described previously (2.2). This shape is then Pro-
crustes aligned (Sect. 2.1.1) with the mean shape x̄ from the SSM, to remove
unimportant details such as the precise scale and orientation of the object.
We then project this shape vector into the subspace of shape space described
by the SSM, and evaluate its proximity to the training set of shapes. The
first stage typically means extracting the PCA components of the candidate
shape as in (2.38), which gives us an approximation representation of the
candidate shape in terms of a set of shape parameters b.

We then have to evaluate the proximity of the point b to the training set
of shapes. For PCA components, we can constrain each component individ-
ually, forcing the shape to lie within a bounding parallelepiped as described
in Sect. 2.2.4. Alternatively, for cases where a density estimate is available
(e.g., as in Sects. 2.2.1–2.2.3), we can restrict the minimum allowed value of
p(b). For points that do not initially satisfy the constraint, we can evolve the
point b through gradient ascent of p(b) until the constraint is satisfied. For
Gaussian density models, this process is considerably simplified, given the
monotonic relationship of Mahalanobis distance and the probability density
as described in Sect. 2.2.4, and it is sufficient to move the point b inwards
along the ray connecting b to the origin of parameter space until the con-
straint is satisfied. It should be noted that setting the appropriate limits is
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important. Setting them too high at the beginning of the search can overly
constrain the shape, and not allow enough freedom in moving through the
search space to locate the optimum fitted shape, or allow only solutions which
are very close to the training shapes. Whereas too loose a constraint can al-
low the search process to get stuck in local minima, fitting to shapes far from
optimum.

The local part of the ASM search is built on learning about the local image
appearance in the neighbourhood of the shape points. For each example of
a specific shape point on each training example, the normal to the shape at
that point is constructed. The image intensity values are then sampled along
this normal to form an image profile. This set of image profiles from each
example is then combined into a statistical profile model in the same general
manner as for shape models. When searching for a new candidate position
for a shape point on an unseen image during search, profiles are sampled in
the vicinity, and the profile that best fits the profile model for that point is
selected as the new candidate position.

There is an extensive and still growing research literature as regards Active
Shape Models, with various variations on the basic ASM described above
(e.g., see [40, 33, 39, 28, 34], and the reader should consult the appropriate
literature for full details (see [32, 37] for reviews).

2.4.2 Active Appearance Models

The ASM search performs extremely well on some types of data. However,
the model uses only limited image information to locate the shape. In the
Active Appearance Model (AAM) [26, 25, 27], the training process incorpo-
rates information about the expected appearance within the entire interior
of the annotated shape, rather than just samples of image information in the
neighbourhood of the shape points.

For the annotated training images, the shape part of the model is con-
structed as before. We obviously cannot just combine the raw image infor-
mation from the interiors of all the training shapes, but have first to convert
this information into a common frame of reference. This is done using the
shape information, since this tells us the varying positions of corresponding
shape points across the whole set of training examples. If we interpolate the
interior of each shape, based on the shape points, this then gives us, by in-
terpolation, a correspondence between the interiors of each shape across the
whole set. We then map each training shape to the mean shape, and resample
the image information from each shape into the frame of the mean shape.
This gives us a set of shape-free texture examples, one from each training
image. The pixel-value information for each shape-free texture example is
then concatenated into a vector, with the entire training set then giving us a
set of data points in a shape-free texture space. The distribution of points in



46 2 Statistical Models of Shape and Appearance

shape-free texture space can then be analysed and modelled using the same
techniques as those used for modelling shape spaces. We then have both a
statistical model of shape, and a statistical model of texture (essentially a
type of shape-free eigenface model [179]). Using these statistical models in
generative mode, we can then create shape-free variations of texture and
modes of variation of texture. Using the reverse of the initial mapping from
texture on a shape to texture on the mean shape, we can also vary shape
whilst leaving texture unchanged.

For many imaging examples, there is a significant correlation between
shape and texture. One obvious example is two-dimensional images of faces.
It is obvious that, for a fixed illumination, as the pose of the subject changes,
the texture (i.e., the positions of highlights and shadows) changes, and is cor-
related with the changes in shape. Even without change of pose, the shape
of the face changes under changes of expression, and the texture changes in
a correlated fashion.

These correlations can be modelled by concatenating the shape vector and
the texture vector of each training example into a single vector. A statistical
model of appearance is then built in the usual manner in this combined
space of shape and texture, and generates modes of variation that capture
the correlations noted above.

The search algorithm for the AAM is slightly more complicated than for
the ASM (and we refer readers to the literature for the details [26, 25, 27]).
However, the basic rationale is the same as for the ASM, where the learnt
information about permissable levels of variation is incorporated into and
constrains the search process.

The statistical appearance model, like the statistical shape model, can
also be applied in a generative mode. By sampling the space of parameters
according to the modelled pdf, we can generate an arbitrarily large number
of artificial examples of the modelled object.

For the case of faces, these artificially generated examples can be al-
most photo-realistic. Analysis of the space of the model can separate out
the subspaces corresponding to varying lighting, pose, identity, and expres-
sion [44, 42]. This means that given an image of an unseen individual, we can
generate examples of this same individual, but apply different expressions. If
information about the gender of subjects across the training set is available,
it is also possible to manipulate the perceived gender, making a face appear
more masculine or more feminine according to what has been learnt from the
training set about the way faces tend to differ with gender [43]. Similarly, it
is also possible to simulate ageing [104] (see Chap. 1).

The power and flexibility of the ASM/AAM approach has led to their
usage in a large (and still growing) number of applications in computer vision
and medical imaging. Both approaches require an initial statistical shape
model for their implementation, and the quality of this initial model is a
prime determining factor in ensuring the quality of the final system. Hence
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establishing a suitable correspondence is a key step in the model-building
process, and one that we address in greater detail in the next chapter.



Chapter 3

Establishing Correspondence

In the previous chapter, we described methods for modelling shape, based on
statistical learning techniques. Such shape models have been used successfully
in many applications, some of which were described in Chap. 1. However, in
order to build such a model, a dense correspondence must be established
between all shapes in our training set. As we will see in Sect. 3.1, the utility
of the model depends critically on an appropriate definition of groupwise
correspondence.

There are various ways in which such a correspondence can be established,
and some of these will be reviewed in Sect. 3.2. However, these approaches
have various limitations, and it is not clear that the correspondence that they
produce is necessarily the correct one when it comes to model-building.

The most promising approach, and the one that is followed in this book,
is to treat correspondence as an optimisation problem. The objective func-
tion for this optimisation is based on the properties of the model built us-
ing the groupwise correspondence. A general framework for this approach
to groupwise correspondence and model-building is established in Sect. 3.3.
This framework can be broken down into three main components:

• An objective function, which assesses the quality of the model built from
the groupwise correspondence.

• A method of manipulating the groupwise correspondence.
• An optimisation algorithm, in order to find the optimum groupwise corre-

spondence.

A brief introductory summary of each component will be provided in this
chapter, with a detailed treatment provided in later chapters.

We begin with the problem of correspondence.

R. Davies et al., Statistical Models of Shape, 49
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3.1 The Correspondence Problem

In the previous chapter on building statistical models of shape, it was assumed
that a dense correspondence had already been established across the training
set of shapes. This is not generally the case for the sets of training shapes
themselves, whether they are obtained by automatic or manual segmentation
of images, or by some other method, since the primary consideration in this
initial data-gathering stage is obtaining a faithful representation of the shape
of the physical object being considered.

The groupwise correspondence matters, since the utility of the resulting
model depends critically on the appropriateness of the correspondence. For
example, an inappropriate choice of correspondence can result in a distribu-
tion of shapes that cannot be well-represented by a reasonable number of
parameters, or where the modes of variation of the resulting shape model
do not correspond well with the actual modes of variation of the objects
from which the shapes were derived. This can mean that representing the
training shapes themselves to some reasonable degree of accuracy requires
an inordinately large number of shape parameters, and that seemingly ‘legal’
parameter values entered into the model produces ‘illegal’ shape examples,
totally unlike those seen in the training set.

This correspondence problem can be demonstrated using a simple exam-
ple. We take a training set consisting of 17 examples of the outline of a hand.
For the first model (model A), correspondence was established by using nat-
ural landmarks, such as the tips of the fingers, with a dense correspondence
then being assigned by interpolation. For the second model (model B), only
one such landmark was used. Correspondence along each shape outline was
assigned in terms of the fractional distance along each shape from the sin-
gle initial landmark (usually referred to as arc-length parameterisation). The
shapes were Procrustes aligned, as in Algorithm 2.1, then a multivariate
Gaussian model built for each choice of correspondence.

Let us now compare these two models, A and B. If we first look at the
variance captured by each mode of shape variation, the three leading modes
of model A have variances of 1.06, 0.58, and 0.30. Whereas for model B, the
variances are 2.19, 0.78, and 0.54, respectively. This suggests that model A
is more compact than model B. If we now consider example shapes gener-
ated by the models (see Fig. 3.1), using shape parameters within the range
found across the training set, we see that model A produces examples that
look like plausible examples of hand outlines. In contrast, model B generates
implausible examples.

In this case, the difference between the two methods of assigning corre-
spondence can be clearly seen, and all that is required is visual inspection of
the shapes generated by the model. But in more realistic cases, different cor-
respondence can still produce significantly different models. This difference
may not be discernable using such a simple visual inspection, both models
may appear equally plausible, but different correspondence can produce sig-
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Fig. 3.1 The first mode of variation (±3
√

λ1) of two shape models built from the same
training set of hand outlines, but with different groupwise correspondence. Model A inter-
polates correspondence from a small set of manually placed landmarks, whereas model B
uses fractional arc-length distance to assign correspondence. It can clearly be seen that the
examples generated by model A are plausible hand outlines, whereas those from model B
are not.

nificant differences in terms of detailed model performance, whether this be
using the model to classify shape, or when the model is used in an ASM or
AAM for extracting shapes from unseen images.

3.2 Approaches to Establishing Correspondence

We have seen already that is important to establish an appropriate corre-
spondence between members of the training set. In this section, we review
several common approaches to establishing correspondence. Although object-
specific solutions have been proposed (for example, [21]), we will confine our
attention to generic approaches.

3.2.1 Manual Landmarking

When statistical shape models were first introduced by Cootes et al. [38],
correspondence was defined using manual landmarks, placed at points of
anatomical significance. The landmarks used for the hand training set above
are an example of this. Such manual landmarking can often give acceptable
results. However, manual landmarking can be subjective, with different an-
notators giving slightly different results. It is also a very time-consuming
process, prone to error, and cannot be guaranteed to produce good models.
For simple cases, such as the hand example above, or images of faces, it is
relatively simple to place reasonable landmarks. However, for many appli-
cations (such as medical images), specialist anatomical knowledge is needed
to identify consistent and reproducible points of anatomical significance. It
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could be argued that this need for specialist knowledge is an advantage, since
it is information that is then incorporated into the model. But in practice, it
can further complicate the process of model-building.

The problems are particularly acute for the case of shape surfaces in three
dimensions, since not only can reproducible points be difficult to define on
smooth surfaces, but also, just the difficulties with visualization can make
such landmarking impractical for large datasets.

For certain classes of shapes obtained from images, where manual land-
marking is feasible, the tedium can be somewhat relieved by means of a
semi-automatic, bootstrapping procedure. The idea is that an initial shape
model is built from the first few annotated examples. This is then incorpo-
rated into an ASM or AAM. The ASM or AAM is then used to search on
an unseen image, and produces an initial estimate of the segmented shape
and its landmarks. This can then be refined by the annotator, and this new
example then included in an updated model. It hence assists with the two
tasks of manual segmentation and manual landmarking.

3.2.2 Automatic Methods of Establishing
Correspondence

Given the above limitations of manual landmarking, even with the inclu-
sion of semi-automatic methods, a fully automatic approach to establishing
correspondence is desirable. Many such automated approaches have been pro-
posed. In the following sections, we provide a brief overview of the field by
considering some of the most prominent approaches.

3.2.2.1 Correspondence by Parameterisation

The simplest approach to defining correspondence between one-dimensional
shape contours is to select a starting point on each example and equally space
an equal number of points on each boundary. A similar scheme was presented
in [5], where spline control points were equally spaced around the contour of
each training shape.

For shape surfaces however, equally spacing a fixed number of points is
much more difficult. It can, however, be achieved by finding an explicit pa-
rameterisation of the surfaces (using a method such as that described in [14]),
then equally spacing points in parameter space.

However, as we saw in the example in Sect. 3.1, equally spacing points on
each shape does not necessarily give a reasonable groupwise correspondence,
and can lead to very poor models.
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Fig. 3.2 An example of a poor distance-based correspondence between two shapes. For
each point on the blue shape, the nearest point on the red shape was chosen as the corre-
sponding point.

3.2.2.2 Distance-Based Correspondence

An intuitive notion of appropriate correspondence is that corresponding
points should be in physical proximity when the shapes are mutually aligned.
The iterative closest point (ICP) algorithm [8] for alignment of unlabelled
point sets is one algorithm that implements such a definition of correspon-
dence. As the name suggests, it is an iterative procedure that assigns an ini-
tial correspondence between the point sets, refines the alignment by means
of minimising the distances between pairs of points, then re-computes the
correspondence and repeats the alignment step until convergence.

More sophisticated algorithms that are also based on minimising point-to-
point distances have been suggested by several authors (e.g., [63, 140, 92]).
However, a general difficulty with such distance-based approaches is that
the relative position of equivalent points may vary considerably over the
training set, invalidating proximity as a satisfactory basis for establishing
correspondence. An example of where a distance-based method produces an
unsatisfactory correspondence is shown in Fig. 3.2.

A slightly different distance-based approach, but one worthy of mention, is
the use of distance maps as a basis for establishing correspondence [77, 106].
Consider the shape and the space in which the shape lies. For each point in
the space, we can assign a number, which is just the distance to the nearest
point on the shape. This then defines a scalar field over the space, which
is the distance map. If we regularly sample this distance map over some re-
gion, it reduces to a distance map image which includes the original shape.
Correspondence is then established by performing image registration on the
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distance maps. However, image registration itself involves various arbitrary
choices in terms of the choice of image similarity measure and the represen-
tation of the deformation field.

3.2.2.3 Feature-Based Correspondence

We have seen that distance-based correspondences can fail to establish a
satisfactory correspondence in some situations. An alternative approach is
to extract some features of the object and use these as a basis for estab-
lishing correspondence. Correspondence between these features can then be
established using a generic numerical optimisation algorithm (e.g., the least-
squares method) or by a specialized matching algorithm (e.g., [159, 161]).

A common approach to establishing correspondence is to use shape-based
features that capture local properties of the object. Curvature is a popular
shape-based feature (e.g., [24, 173, 192]) but, although it ties in with hu-
man intuition, equivalent points may not in practice lie on regions of similar
curvature. Furthermore, curvature is a measure that tends to be sensitive to
noise: errors in segmentation can lead to areas of (artificial) high curvature
that complicate the matching process. Curvature has also been used as a
means of obtaining an initial correspondence, which is subsequently refined
(e.g., [17, 16, 93]).

Other shape-based features have also been proposed. Pitiot et al. [136], for
example, describe the observed transport measure and Belongie et al. [7] use
shape context. We will be considering these and other feature-based methods
in greater detail in Chap. 4.

For the case where shapes are obtained from images, image data sup-
plements the shape data, and can be used to create features. For example,
Baumberg and Hogg [6] manipulated the positions of corresponding points
so that image data was similar in the vicinity of corresponding points on dif-
ferent images. Several other approaches have also used image data as a basis
for establishing correspondence, and these are reviewed below.

Features can also be combined. For example, in [118], a mixture of cur-
vature, point-to-point Euclidian distance, and angle between normal vectors
were combined to form an objective function. From a theoretical point of view
however, such objective functions have the problem that they are a combina-
tion of incommensurate terms, with arbitrary weighting of individual terms.

In most cases, the most appropriate choice of feature depends on the nature
of the object being modelled. It is therefore impossible to devise a feature
that is generic, suitable for any class of object.
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3.2.2.4 Correspondence Based on Physical Properties

We can also assign physical properties to an object, in order to guide the se-
lection of correspondences. For example, Sclaroff and Pentland [158] assigned
a dynamics to the points of each shape example, so that the original shape
was the equilibrium configuration of the points. They then considered the
non-rigid modes of vibration of each shape example, computed by building
a finite-element model for each shape. Correspondence between points was
then assigned based on similarity of displacement when the lowest modes of
vibration were considered.

The thin-plate spline (TPS) has also been used as a basis for establishing
correspondence. The thin plate spline is a spline interpolant, based on the
physical analogy of bending a thin sheet of metal. It has been widely used in
image registration and in shape analysis (see Appendix A and Sect. 4.1.2 for
further details of the thin plate spline). The bending energy of the thin-plate
spline deformation field can be used as an objective function for correspon-
dence. Suppose we have two corresponding point sets on two shapes. We can
then compute the TPS bending energy required to bring the two point sets
into alignment. The correspondence can then be adjusted by sliding one set
of points around on the shape boundary, so as to minimise this bending en-
ergy [12, 142], and hence locate the optimal TPS correspondence. Paulsen
and Hilger [132] also used a thin plate spline warping. A model mesh was
fitted to each training shape, controlled by the positions of some small set
of manual anatomical landmarks. The fitted model mesh was then projected
onto each surface, and a Markov random field was used to regularize the
resultant correspondence. Lorenz and Krahnstover [109] also used a small
number of manual landmark points to align a template to a training set of
surfaces. An elastic relaxation was then performed to fit the template to each
training shape, thus establishing correspondence.

It should be noted that even in the case where the training set of shapes
is derived from the deformation of an actual physical object, the physical
properties we assign to our shapes will not in general be the same as the
physical properties of the actual object, hence the correspondence we obtain
will not be that of the actual deforming object. And in many cases, the
observed variations of shape do not correspond to the deformation of an
actual object, but to the shape variation that arises as the endpoint of a
whole process of biological development.

We hence see that the physical properties we assign to our shapes are
either arbitrary (where different dynamics or a different choice of spline in-
terpolant will give a slightly different result), or inappropriate. The resulting
correspondence hence has to be considered as essentially arbitrary, despite
the intuitive appeal of this approach.
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3.2.2.5 Image-Based Correspondence

Most of the methods we have considered so far find correspondences on the
boundaries of objects. If we have shapes derived from images of objects, then
potentially, we have much greater information available about the object than
just the shape of its boundary, we have all the information in the image of
the object from which the shape was segmented.

In image registration, the image information is used to define a dense
correspondence across the entirety of the image. It hence also defines a cor-
respondence throughout the interior and exterior of the imaged objects. A
volumetric shape model can then be built of this entire deformation field.
Alternatively, the deformation of the surface of a specific structure can be
derived from the volumetric deformation field.

If the original image is not available, a shape boundary itself can be used to
generate a related image. This could be by use of the distance map mentioned
previously, or more simply, by just using a binary image, which distinguishes
between the exterior and interior of a closed shape. These images derived
from the shape can then be used in image registration, and a correspondence
hence derived [72]. A volumetric shape model can then be built of this entire
deformation field (e.g., see [150]).

Where the original image containing the shape is available, the question we
are actually posing is whether we should study the set of images themselves,
or the shapes segmented from the images. This is not quite the same question
as how to determine the correspondence across a set of shapes when no further
information is present. The second scenario, of creating images from shapes,
is potentially interesting. But again, there is an arbitrary element introduced,
inasmuch as we have a choice as to what image we create from our shape.
Do we use a simple binary interior/exterior image, do we use a distance
map which uses the distance to the closest point on the shape, or some
function of this distance? Do we include further information, such as the
relation between the direction from the closest point to the local surface
normal, and create a non-scalar image from our shape? We hence have an
arbitrary choice to make as regards the image created from the shape. We
then have additional arbitrary factors, in terms of the objective function we
use for image registration, and the representation we choose for the dense
deformation field of the image. All of these factors lead to an arbitrariness as
regards the found correspondence.

We note here that the case of groupwise correspondence for images (that
is, groupwise non-rigid image registration) is actually a slightly more compli-
cated groupwise correspondence problem than the problem for shapes. For
a shape, the only variation is spatial deformation, whereas for an image, we
can both deform the image spatially by warping, as well as deforming the
pixel/voxel values themselves. This type of groupwise correspondence prob-
lem can be tackled using the same ideas as those that we will develop for
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shape correspondence (for example, see [115, 180]), but further discussion is
beyond the scope of the current volume.

In what follows, we will restrict ourselves to the case where all the infor-
mation we have is the set of shape boundaries.

3.2.3 Summary

We have seen that there are various ways in which correspondence can be
assigned. Although some of these methods produce acceptable results, there
are still significant drawbacks. Many of the methods described here are es-
sentially pairwise techniques, which deal with correspondence across a group
by repeated application of pairwise correspondence. Other methods are lim-
ited to one-dimensional shapes or curves, which restricts their use in medical
imaging applications where three-dimensional images, hence shape surfaces,
are available. Some methods require manual intervention, which has the pos-
sibility of introducing operator error, even where the intervention is minimal.
And other methods require a set of somewhat arbitrary assumptions and
choices to be made. It is clear that none of these methods can be consid-
ered generic, suitable in principle for any class of object. Finally, and most
importantly, the arguments as to why the correspondences generated by the
above methods should be considered correct in some sense (rather than just
acceptable in practice), are either weak or lacking.

In the next section, we begin to address these issues. We establish a
generic framework for fully groupwise shape correspondence, that integrates
the choice of correspondence into the model-building process.

3.3 Correspondence by Optimisation

To recap, we require a dense groupwise correspondence across our set of train-
ing shapes in order to build a statistical model from those shapes. As we have
seen, different choices of correspondence give models of varying quality. The
obvious approach is to introduce a feedback loop into the process. Given a
correspondence, we construct a model using that correspondence. The prop-
erties of the resulting model should then feedback into our algorithm for
determining the groupwise correspondence.

Such a process is inherently groupwise. There are tasks where pairwise cor-
respondences between shapes are all that is needed. Pairwise correspondence
algorithms can obviously be generalized to include the groupwise case, by ei-
ther considering the correspondence between each training example and some
reference shape, or by considering some large subset of the set of all possible
pairwise correspondences between the training shapes. Such approaches are,



58 3 Establishing Correspondence

F
ig

.
3
.3

A
g
en

er
ic

fr
a
m

ew
o
rk

fo
r

es
ta

b
li
sh

in
g

co
rr

es
p
o
n
d
en

ce
b
y

o
p
ti
m

is
a
ti
o
n
.
C

o
rr

es
p
o
n
d
en

ce
(d

en
o
te

d
b
y

th
e

co
lo

u
re

d
ci

rc
le

s)
is

m
a
n
ip

u
la

te
d

so
a
s

to
m

in
im

is
e

th
e

v
a
lu

e
o
f

a
n

o
b
je

ct
iv

e
fu

n
ct

io
n
,
L

.
E

a
ch

co
m

p
o
n
en

t
is

la
b
el

ed
in

th
e

b
lu

e
b
o
x
es

,
a
lo

n
g

w
it
h

th
e

ch
a
p
te

r
in

w
h
ic

h
th

ey
a
re

co
v
er

ed
.



3.3 Correspondence by Optimisation 59

however, not ideal. Using a reference shape means that the groupwise corre-
spondence is then consistent, but the choice of reference shape can itself bias
the found correspondence. For a more complicated repeated pairwise method,
it is difficult to ensure that the found pairwise correspondences are consistent
across the entire set. Including the model in the location of correspondence
is inherently groupwise, and given the target application, the fact that we
cannot reduce this method to deal with the pairwise case is not important.

One advantage of including the model in the location of the correspondence
is that the process of modelling is a generic one. Hence an algorithm for
groupwise correspondence based on a model should also be generic.

Given the feedback loop proposed, the method is obviously going to be
an iterative one. The obvious way to control such a process is by the use
of an objective function. This then casts our correspondence problem as an
explicit optimisation problem. Viewed in these terms, there are three essential
components to our proposed method:

• An objective function: This assesses the qualities of the model built
from a given set of correspondences.

• A method for manipulating correspondences: Given that we are
proposing to optimise the correspondence across the entire training set,
we obviously require a way to manipulate the groupwise correspondence
that is both flexible and efficient.

• An optimisation algorithm: We need an optimisation algorithm that
is able to locate the optimum correspondence in a reasonable time, even
when we have large training sets.

Each of these components will be introduced below. Figure 3.3 illustrates
diagrammatically how each of these components fits into the overall scheme.
A detailed treatment of each of the components is given in the chapters
indicated in the figure.

If we look back at the methods reviewed in the previous section, most
of these can be cast in the form of optimisation problems. However, the
problem is that most of these methods are inherently pairwise, which is not
desirable, as was detailed above. The objective functions used are also rather
ad hoc. Finally, these methods also lack an efficient means of manipulating
correspondence.

3.3.1 Objective Function

The appropriate choice of an objective function is at the core of our approach.
Note that we will assume that a lower value of the objective function is more
desirable, hence we will refer to minimisation of the value of the objective
function. As is shown in Fig. 3.3, objective functions are dealt with in detail
in Chap. 4. We begin by looking at shape-based objective functions, some
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of which were encountered in the previous section. These objective functions
measure only properties that can be evaluated directly on the training shapes
and usually consider only a pair of shapes at a time.

However, what we are really interested in is building good models, and
hence model-based objective functions. Rather than confining ourselves to
measuring the utility of a model in a particular application, we instead aim
to measure properties that any good model should have. These properties
can be summarized as:

• generalization ability, so that it can represent any instance of the class
of object;

• specificity, so that it can only represent valid instances of the modelled
class of object;

• compactness, so that the model can be represented with few parameters.

Various ways of quantifying these properties are described in the second
half of Chap. 4. The objective functions that perform best in practice are
those based on ideas from information theory. The idea is that a good model
should allow a concise description of all members of the training set. As in
any branch of science, this is the essential rôle of a model – to account for a
possibly large number of observations as manifestations of some underlying
pattern which is itself described as simply as possible. Chapter 4 describes in
detail how this idea can be formalized using the minimum description length
(MDL) principle [144].

3.3.2 Manipulating Correspondence

The approach we have proposed entails a large-scale optimisation problem,
which requires manipulation of the correspondence for each shape in the
training set. We hence require an efficient method for manipulating corre-
spondence so that we can locate the optimum of our chosen objective function
within a reasonable time.

One possible approach is to place our nP shape points on the surface of
each training shape, and manipulate them directly. In effect, every time we
move the points we would be trying to generate a diffeomorphism of the shape
surface into itself, which is a different problem for each shape in the training
set. Even just sliding a single point on the surface is complicated, since, in
general, the point could move off the surface and would have to be projected
back onto the shape surface.

A much more efficient and flexible approach is to treat the problem of cor-
responding continuous curves/surfaces as one of re-parameterisation [101]. In
order to review the idea behind this approach, we need to revisit the paramet-
ric representation of shape introduced in Chap. 2. Recall that we represent
each training shape Si using a parametric shape-function Si(·) (2.117) that
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is defined by an initial one-to-one mapping Xi from the parameter space X
to the shape Si:

X
Xi�−→ Si, x Xi�−→ Si(x). (3.1)

The mapping Xi thus associates a parameter value x to each point on the
ith shape, with the coordinates of that point on the shape being the value
of that shape function, Si(·). A correspondence between shapes can then be
defined at points of the same parameter value x, so that:

Si(x) ∼ Sj(x), (3.2)

where ∼ denotes correspondence.
Given this parametric representation of shape, we are now in a position to

manipulate correspondence by re-parameterisation. If φi is a re-parameter-
isation function for the ith shape, then the re-parameterisation is given by:

x
φi�−→ x′ .= φi(x), (3.3)

where φi is a diffeomorphism of the parameter space. This mapping also acts
on the shape-function Si(·), so that:

Si(·)
φi�−→ S′

i(·), S′
i(x

′) ≡ S′
i(φi(x)) .= Si(x). (3.4)

To clarify: the point under consideration on the actual shape Si(x) does
not change, but both the parameter value for that point (x �→ x′), and the
shape-function describing the shape Si(·) �→ S′

i(·) do change.
This means that, when compared to another shape Sj (that is not being

re-parameterised at the moment), the correspondence can be manipulated by
varying φi:

Sj(x) ∼ Si(x)
φi�−→ Sj(x) ∼ S′

i(x) ⇒ Sj(x) ∼ Si(φ−1
i (x)). (3.5)

Note that it is sometimes more efficient from an implementational point of
view to work with φi(x) rather than φ−1

i (x), so that:

Sj(x) ∼ Si(φi(x)).

This is valid, since, by definition, any valid re-parameterisation function φi(x)
is invertible, hence we are free to chose to explicitly represent either φi(x) or
φ−1

i (x) as convenient.
The general concept is illustrated in Fig. 3.4, which shows an open curve

sampled according to different parameterisations. In practice, each shape in
the training set {Si : i = 1, . . . nS} has its own re-parameterisation function
φi, which are all capable of changing correspondence.

In effect, what we have done is taken the difficult problem of directly gen-
erating a diffeomorphic mapping for each individual shape into itself every



62 3 Establishing Correspondence

Fig. 3.4 Sampling a shape according to three different parameterisations. The left column
shows the parameterisation and the right column shows the sample points on the shape. The
top row shows the (original) identity parameterisation and the other two rows show how the
points can be redistributed around the shape by changing the shape of the parameterisation
function. Each sample point of the parameterisation and the corresponding point on the
shape has been colour coded. On the shapes, the coloured lines show the displacement of
the point caused by the manipulation of the original parameterisation.
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time we adjust the correspondence, and replaced it by the task of only per-
forming it once. This single diffeomorphic mapping for each shape is from
the shape to the parameter space, performed once at the start during the
initialization phase. Once this initial parameterisation has been constructed,
diffeomorphic mappings of each shape surface into itself are generated by con-
sidering instead diffeomorphic mappings of the parameter space into itself,
and mapping the result back onto the shape surface using the fixed initial pa-
rameterisation. This is computationally efficient, since the parameter space
is much simpler than the shapes themselves, and is the same for each shape
in the training set. For example, for a set of shapes topologically equivalent
to spheres, the parameter space is just the unit sphere. Whereas for open or
closed lines, the parameter space is either an open line segment, or the unit
circle.

We hence need to be able to generate diffeomorphic mappings {φi} of
the appropriate parameter space. This can be achieved in two ways. The
first approach is to develop a representation that is limited to some set of
parametric transformations – this can be thought of as hard regularization
and is covered in Chaps. 5 and 6 for curves and surfaces, respectively. Soft
regularization is an alternative approach where more flexible transformations
can be generated, providing it is supported by the data, and this alternative
approach is covered in Chap. 8.

3.3.3 Optimisation

Now that we have chosen an objective function and constructed a represen-
tation of our re-parameterisation functions, we next need to optimise the
objective function with respect to the set of re-parameterisation functions. A
simple illustration of this process is given in Fig. 3.5.

For the case of parametric re-parameterisation functions, the number of
parameters required to represent the re-parameterisation functions is large.
This leads to a difficult high-dimensional optimisation problem. Furthermore,
the groupwise objective functions harbour many false minima, which causes
standard optimisation algorithms to fail. As a result, a specialized algorithm
that exploits properties specific to statistical shape models is required to
tackle the problem.

Much work has been done on finding a tractable algorithm and this is
described in Chap. 7. The chapter also considers practical issues of the opti-
misation, and gives detailed implementation examples, including step-by-step
details of how a model can be built from typical sets of shapes.

Alternative representations of shape and a non-parametric representation
of re-parameterisation are explored in Chap. 8. These representations then
require a different approach to optimisation, which is also covered in the
chapter.
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To summarize, we have provided a brief review of conventional approaches
to shape correspondence, and shown why these approaches our not suitable
for our groupwise task of model-building. We then described the salient details
of our framework for groupwise correspondence by optimisation. The details
of each of the components of our framework will be given in the relevant later
chapters, as detailed above.



Chapter 4

Objective Functions

An essential component of the optimisation approach to establishing group-
wise correspondence is of course the objective function that quantifies what
we mean by the quality of the correspondence.

In the literature, correspondence between shapes or images is often meant
purely in the pairwise sense, using pairwise objective functions. Some of these
pairwise objective functions can then be generalized to the case of groupwise
correspondence. There also exist objective functions that are defined purely
for the groupwise case. However, this is not the classification that we will
adopt here.

We will instead consider the two classes of either shape-based or model-
based objective functions. Shape-based correspondence, as the name implies,
tends to assign correspondence by considering localized properties that can
be measured directly on the training shapes. Whereas model-based objective
functions consider instead the groupwise model that can be built from the
correspondence.

Another way to view this distinction is that shape-based objective func-
tions tend to maximise some measure of similarity between shapes, whereas
the model-based approach includes not just the similarities between shapes,
but also the statistics of the dissimilarities. In fact, a model can be viewed
as a mathematical description of the essential dissimilarity across a group of
shapes. This difference means that it is simple to define similarity between
even a pair of shapes, whereas the statistics of dissimilarity can only be mean-
ingfully evaluated if we have a group of examples, and hence is limited to the
case of groupwise correspondence.

We begin by considering the shape-based objective functions.

R. Davies et al., Statistical Models of Shape, 67
DOI: 10.1007/978-1-84800-138-1 4, c© Springer-Verlag London Limited 2008
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4.1 Shape-Based Objective Functions

The notion of similarity between shapes is a very intuitive one, and a concept
that the human visual processing system implements rather well. Objective
functions built based on these intuitive notions are usually pairwise, since this
is the simplest way to define similarity. But these can of course be trivially
extended to the groupwise case, by quantifying groupwise similarity as just
the appropriate sum over pairwise similarity measures.

All the shape-based objective functions that will be considered here can
be expressed in terms of either discrete (Sect. 2.1) or continuous (Sect. 2.3)
representations of shape and shape correspondence, and can be generalized
to encompass both curves in two dimensions, or surfaces in three dimensions.
For brevity, we will focus on the case where the shapes are finite-dimensional
representations of curves in two dimensions, and the extensions to the other
cases will only receive explicit mention when they are non-trivial.

4.1.1 Euclidian Distance and the Trace of the Model
Covariance

We have already encountered a case of maximising similarity between shapes.
In Sect. 2.1.1 a measure of similarity was used to align pairs or groups of
shapes, with the correspondence held fixed. The transformation used was
composed of translations, scalings and rotations (the appropriately named
similarity transformations).

As before, we take x(i) to denote the position of the ith shape point on
the shape x. If y(i) is the corresponding point on the transformed version of
the other shape, then our previous objective function for alignment can be
written in the form:

L =
nP∑

i=1

||x(i) − y(i)||2, (4.1)

which is just the square of the Euclidean distance between the shape vectors
x = {x(i) : i = 1, . . . nP }, and y = {y(i) : i = 1, . . . nP }. The meaning of
this objective function as quantifying some intuitive concept of similarity is
obvious.

The key point about the similarity transformations used for alignment
is that they change the positions of the shape points, whilst retaining the
shape. But there is another way of manipulating the shape points whilst
maintaining the shape, which is just the manipulation of correspondence.
Hence this objective function can also be used to optimise correspondence,
not just for the case of shape alignment.
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We could generalize this pairwise Euclidean distance to the groupwise case
by considering the distances between all possible pairs of shapes. However,
this quickly becomes prohibitive, since the number of pairs rises quadratically
with the number of examples. A simpler method is to consider instead just
the distances between each shape and the mean, which is linear in the number
of examples. So, just as this Euclidean distance was used in Algorithm 2.1
to align a set of shapes, so it can also be used to quantify similarity, hence
determine correspondence, across a group of shapes.

If xj now denotes the jth shape in our training set,1 then summing the
squares of the distances between each training shape and the mean, we obtain:

x̄ .=
1

nS

nS∑

j=1

xj , L =
nS∑

i=1

nP∑

j=1

||x(j)
i − x̄(j)||2, (4.2)

where x̄(j) is the jth point of the mean shape. This is then just the square of
the Euclidean distance in the full shape space R

dnP .
By considering PCA (Theorem 2.1 and in particular (2.30)), it is simple

to show that this objective function is just the trace of the covariance matrix
D of the training set. That is:

L = Tr(D) =
nS−1∑

a=1

λa, (4.3)

where {λa} are the eigenvalues of the covariance matrix. In this form, this
objective function has been used extensively to establish correspondence (e.g.,
[92, 140, 6]). The objective function is minimised by moving points as close as
possible to the corresponding points on the mean shape, whilst sliding them
along the shape, and it directly minimises the total variance of the model.

However, its use is not without problems. An example of the failure of this
objective function was given in [101], an example that we will recreate here.

Consider the set of artificial shapes shown in Fig. 4.1. They consist of a
rectangular box, with a semi-circular bump of constant size placed on the
upper edge (hence the name box-bumps). A set of such shapes is generated,
such that the only structural variation is the horizontal translation of the
semi-circle along the top of the box.

The correct correspondence is established by fixing the points at the cor-
ners of the box and at the two ends of the semi-circle. This then produces a
correct model with the expected single mode of variation, as is shown in the
figure. A näıve, but incorrect, attempt at defining a correspondence would
be to define it according to the distance along the shape. A single point is

1 Remember that, as defined previously in Chap. 2, x(i) denotes the ith shape point on
an entire shape x = {x(i) : i = 1, . . . nP }, whereas xi denotes the ith entire shape in a

collection of such shapes. We hope the brackets will aid the reader in keeping in mind the

two different meanings.
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Fig. 4.1 Top: A training set of synthetic box-bump shapes. Middle: The model built
using the correct correspondence, which has just one mode of variation. Bottom: The
first mode of a model built using an incorrect correspondence. For both models, examples
generated by varying the first mode within the range ±3

√
λ1 are shown.

fixed on the top left-hand corner of the box and the correspondence of the
rest of the shape is assigned by spacing points equally around each shape.
This is usually referred to as arc-length parameterisation. The first mode of
the model built according to this incorrect correspondence is also shown in
the figure. It is obvious that this is a very poor model – even when using just
the first mode, it creates examples totally unlike those seen in the training
set (that is, it is not specific).

However, if we calculate the trace of the model covariance for both models,
we find that the correct model yields a value of 0.4973, whereas the value for
the incorrect model is 0.3591. That is, this objective function prefers the
inferior model, which is a very obvious failure.

We hence see that using this simple definition of physical distance between
shapes as a measure of similarity is not reliable, even though it is intuitive,
and simple to implement.
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Fig. 4.2 Two shapes (red and green) are each to be compared with another shape (blue).
The Euclidean point-to-point distance from the red or the green shape to the blue shape is
the same (as indicated by the construction lines in grey), even though in terms of intuitive
ideas of shape similarity, we would want the red shape to be closer than the green shape.

4.1.2 Bending Energy

The previous objective function considered the physical distance between ac-
tual shapes as a measure of similarity. As noted above, there are cases where
this Euclidean distance fails. But there are other problems with Euclidean
distance, in that by considering only pairwise distances between points, it
neglects much of what we intuitively think of as shape similarity or dissimi-
larity. An example is shown in Fig. 4.2, where the red and green shapes are
equal Euclidean distances from the blue shape, yet the red example is actu-
ally a much better fit in terms of shape similarity. And adding more shape
points doesn’t help, since then the red example is actually further away than
the green example.

In order to distinguish cases that Euclidean distance cannot, an obvious
approach is to consider the physical idea of deforming one shape so that it
matches the other exactly. If we assign an energy to this deformation, then
the deformation energy becomes our measure of shape similarity, with low
energies indicating high similarity, and vice versa.

Let us consider a pair of aligned shapes as two sets of points {x(i),y(i)},
i = 1, . . . nP , lying in R

d. For example, we could consider one-dimensional
shapes lying in R

2 or R
3, or two-dimensional shape surfaces lying in R

3. The
whole space is then deformed so that a general point x ∈ R

d moves to:

x �→ x + u(x),

where u(x) is the deformation field. We suppose that the points of the shape
{x(i)} are carried along with the deformation, so that they move so as to
coincide exactly with the points of the other shape {y(i)}. That is:
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x(i) + u(x(i)) = y(i).

An objective function for the bending energy of the deformation field can be
written in the form:

L =
∫

Rd

dx (Lu(x)) · (Lu(x)) +
nP∑

i=1

li

∥∥∥u(x(i)) + x(i) − y(i)
∥∥∥

2

. (4.4)

L is some scalar differential operator, that defines the bending energy density
of the deformation field.2 The {li} are a set of Lagrange multipliers, which
ensure that the shapes match after the deformation. In general, this is just the
formulation of a spline interpolant, where the exact form of the differential
operator L determines the exact nature of the spline.3

For example, we could take L = ∇2, which would give (according to the
boundary conditions that were also imposed on the deformation field), either
the biharmonic thin-plate [62, 11] or the biharmonic clamped-plate [9, 114]
spline interpolant of the deformation of the shape points.

There are deformation fields u(0)(x) for which Lu(0)(x) ≡ 0, which hence
make no contribution to the bending energy. For example, if L = ∇2, these
transformations are just the linear transformations. In general, these defor-
mation fields correspond to alignment of the shapes. As stated previously, we
assume, for the sake of simplicity, that the shapes have already been aligned.

The general problem can be solved using the method of Green’s functions,
as discussed in Appendix A. The optimal matching deformation field is com-
puted by taking the functional derivative δL

δu(x) and equating it to zero. The
resulting optimal value of the energy is just a function of the two original
shapes, and for our aligned shapes, can be written in the form:

2 Note that this differential operator L is not the same as that referred to in Appendix A.
They are related by the fact that we can pass derivatives across within the bending-energy
integral, so that:

∫

Rd

dx (Lu(x)) · (Lu(x)) =

∫

Rd

dx u(x) · (L†Lu(x)) + boundary terms,

where L† is the Lagrange dual of L. This then gives the related (self-dual) differential
operator L = L†L as used therein.
3 If the matching is not exact, but there is some trade-off between the energy of the
deformation field, and the closeness of the match, then we have a smoothing rather than an
interpolating spline. Mathematically, it is the difference between the formal optimisation of
the bending energy given, where the Lagrange multipliers are also variables to be optimised
over, and the optimisation of the same expression, but where the {li} take definite, finite

values. The exact values chosen determine the relative trade-off between bending energy

and degree of match at each point.



4.1 Shape-Based Objective Functions 73

Gij
.= G(x(i),x(j)),

Lopt =
nP∑

i,j=1

u(x(i))G−1
ij u(x(j)) ≡

nP∑

i,j=1

d∑

μ=1

uμ(x(i))G−1
ij uμ(x(j)),

where G(·, ·) is the appropriate Green’s function. Note that the matrix G,
hence G−1 depends only on the positions of the points on only one of the
shapes. This means that in general this bending-energy similarity measure is
not symmetric, in that the energy differs depending on which shape we define
as the fixed shape, and which the deforming shape. Although it is of course
possible to define a symmetric version by repeating the procedure with the
shapes swapped.

The use of such bending energies to match shapes and to define correspon-
dence has been considered by several authors (e.g., [12, 142]). The necessary
computation of the inverse of the Green’s function matrix G−1 involves the
inversion of an nP ×nP matrix, which is of order n3

P . There are approximate
methods [61] which can reduce this to (0.1nP )3, but this still means that the
method is unsuitable if we wish to consider the continuum limit nP → ∞.

Another problem occurs if we wish to consider the correspondence across
a group of shapes. Let us suppose that we had just three shapes A, B, and C.
We could match A to B and C to B, and hence infer a correspondence between
A and C. However, it is not guaranteed that this inferred correspondence
would be consistent with the answer we would obtain if we matched A to C
directly. And this problem potentially occurs when we wish to generalize any
pairwise algorithm to the groupwise case in this manner.

Let us return to the Euclidean distance method we considered previously.
We see that one problem is that it only considers proximity measured at
discrete points as a measure of similarity. If we are going to compute point-
based measures of similarity, it could be argued that what we should be
comparing is the local shape in the region of each point, rather than just
the distance between points. Such a method would be able to differentiate
between the cases considered in Fig. 4.2. We will now consider a few such
methods.

4.1.3 Curvature

Let us consider a point on a shape, and the shape in the vicinity of that point.
To lowest order we have just the position of this point, as was considered
in the case of Euclidean distance. To next order, we have the gradient of
the shape at that point. And taking the next order gives quantities formed
from the second-derivatives of the shape, which are the various measures of
curvature.
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Curvature is a shape descriptor with an intuitive appeal. It has the advan-
tage that we can construct scalar measures of curvature. Consider a curve in
two dimensions R

2, where the curve has a parametric description in terms of
Cartesian coordinates (x(t), y(t)). The curvature at a point is given by:

κ
.=

1
R

=
|xtytt − ytxtt|
(x2

t + y2
t ) 3

2

,

where R is the radius of curvature, and xt, xtt denote the derivatives dx(t)
dt

and d2x(t)
dt2 , respectively.

For shape surfaces, we obviously obtain different radii of curvature at a
point depending on the direction we chose. The maximum and minimum
values of the curvature are called the principal curvatures, and we can take
either the arithmetic (the mean curvature), or the geometric (the square-root
of the Gaussian curvature) mean of the principal curvatures as our single
curvature measure.

A simple pointwise comparison of curvatures between two shapes A and
B can then be made using a sum-of-squares objective function:

L =
nP∑

j=1

(κ(j)
A − κ

(j)
B )2, (4.5)

where κ
(j)
A is the curvature measured at point j on shape A. Such an ob-

jective function obviously tends to establish correspondence between points
of similar curvature. Curvature can also be used as one component of more
complex objective functions (e.g., [24, 118, 73, 97]).

For some classes of object, such as the synthetic shapes in Fig. 4.1, cur-
vature tends to be similar at corresponding points, but this is not true for
all classes of shape. Computing curvature can also be computationally prob-
lematic, since it requires the estimation of second derivatives on a shape. If
we have a noisy shape, high-curvature points can arise, purely through noise,
and this can lead to these points having a disproportionate effect on the final
correspondence.

4.1.4 Shape Context

Curvature at a point is a very local description of shape. Belongie et al. [7]
developed the idea of shape context. The basic idea is that this is some de-
scription of the rest of the shape, from the viewpoint of the particular point
in question. This work was based on the approach of pairwise geometric his-
tograms, developed by Thacker et al. [176] in 1995.

For each point in turn, the relative vector position of all other points on
the same shape is computed. This set of vectors is converted into log-polar
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Fig. 4.3 Example double box-bump shapes. If we consider pairwise matches between
shapes on the top row, it could be interpreted as a single bump moving and flipping.
Whereas if we also include groupwise information from the shapes on the bottom row, we
see that a more correct interpretation is of two bumps, which can appear, disappear, and
flip.

coordinates, and the distribution is recorded using a histogram. The similarity
of a given pair of points, one on each shape, is computed by comparing the
histograms at those points. The histograms are compared using the χ-squared
statistic:

L =
nP∑

j=1

nbins∑

k=1

(
h

(j)
A (k) − h

(j)
B (k)

)2

h
(j)
A (k) + h

(j)
B (k)

, (4.6)

where h
(j)
A (k) is the occupancy count of the kth bin of the histogram at point

j on shape A.
Many other shape-based objective functions have also been proposed (e.g.,

[135, 74, 80]), using different measures of similarity. But none produce corre-
spondences that can be considered as correct for all classes of object.

We have already mentioned problems with trying to generate groupwise
correspondence using objective functions that are defined for generating cor-
respondence for a pair of shapes. The näıve approach of defining groupwise
correspondence via repeated-pairwise correspondence has an obvious prob-
lem, in that it is only using a limited amount of the total available informa-
tion. From a theoretical point of view, the match between any pair of shapes
really needs to be determined within the wider context of the group. It is
easy to imagine situations where matching is ambiguous just in a pairwise
context, whereas introducing information from the entire group can help to
remove this ambiguity. Consider the simple example illustrated in Fig. 4.3.
If we use pairwise matches between shapes on the top row, we could get a
pairwise correspondence that would lead to the groupwise interpretation of a
single bump moving and inverting. If we then tried to match a shape from the
top row to one on the bottom row, we could have a possible ambiguity. From
the point of view of curvature matching say, we cannot distinguish between
a convex and a concave bump. Whereas if we also included information on
shapes from the bottom row, we would instead obtain the correct groupwise
interpretation and correspondence in terms of two bumps, that could appear,
disappear, or invert.

We hence progress to the discussion of fully groupwise objective functions.
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4.2 Model-Based Objective Functions

As we stated at the start of this chapter, we have divided objective functions
into those which measure similarity between shapes, such as those discussed
above, and those that also consider the statistics of the dissimilarity across
a set of shapes.

The simplest way to quantify the statistics of dissimilarity is by considering
the second-order statistics of the training set, which is described by either
the dnP × dnP covariance matrix D (2.16) or the nS × nS covariance matrix
D̃ (2.98):

Dμν
.=

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν , D̃ij
.= (xi − x̄) · (xj − x̄).

We first consider a simple objective function built from the determinant
of the covariance matrix. We then consider a slightly more sophisticated
treatment, which uses a model built from the covariance matrix in a statisti-
cal technique known as bootstrapping. Finally, we consider an information-
theoretic objective function based on the minimum description length (MDL)
principle. This is presented in some detail, along with various approximations
to the MDL objective function.

4.2.1 The Determinant of the Model Covariance

The first groupwise objective function was proposed by Kotcheff and Taylor
[101]. It is commonly referred to as the determinant of the covariance matrix,
D, except this description has one major flaw, in that the determinant of the
covariance matrix is in general zero, due to the presence of zero eigenvalues.
What is actually meant is:

Ldet = log(det(D)) = log

(
nm∏

a=1

λa

)
=

nm∑

a=1

log(λa), (4.7)

but only including the set of eigenvalues {λa} that are non-zero eigenvalues
of D. This objective function can be thought of as measuring the volume
that the training set occupies in shape space, and it hence tends to favour
compact models.

In Appendix B, we calculate the gradient of this objective function with
respect to variation of the training shapes (B.24), which gives the result:

δLdet

δxi
=

nm∑

a=1

1
λa

δλa

δxi
=

nm∑

a=1

2b
(i)
a

λa
n(a). (4.8)
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This gradient has the property that it is in the same direction as the gradient
of the Mahalanobis distance at the position of the shape being perturbed.4

It will hence tend to shrink the modes with smaller variance before it shrinks
the modes with larger variance, having the net effect of concentrating the
variance into the larger modes.

Compare this with the gradient of the trace of the covariance matrix:

LTr
.=

nm∑

a=1

λa ⇒ δLTr

δxi
=

nm∑

a=1

2b(i)
a n(a).

It is the additional factor of 1
λa

that makes the difference between the gradi-
ent of the Euclidean distance for the case of the trace (Sect. 4.1.1), versus the
gradient of the Mahalanobis distance for the determinant. The Mahalanobis
distance is superior to the Euclidean distance, in that it is a distance that
incorporates the knowledge about the distribution of the training set. How-
ever, inspection of (4.7) shows that the objective function has a degenerate
minimum when any eigenvalue approaches zero. To overcome this, Kotcheff
and Taylor added a small regularization constant ε:

Ldet = log(det(D + εI)) − nS log ε =
nS∑

a=1

(log(λa + ε) − log ε) , (4.9)

where I is the identity matrix. A non-zero value of ε can be seen as a measure
of uncertainty as to whether an eigenvalue λa can actually be taken to be zero.
It can hence be linked to an estimate of the noise on our training shapes, the
idea being that if there is noise on the training data, eigenvalues that should
be zero will actually be non-zero, and this size of the smallest eigenvalues
will be determined by the size of the noise.

In summary, this objective function has an intuitive appeal, but there is
no rigorous justification for its choice. It explicitly favours compact models,
but there is no particular reason to suppose that it will favour models with
other desirable properties.

As regards simple objective functions based on the covariance matrix, the
sum and product of the eigenvalues (the trace and determinant of the co-
variance matrix) just about exhausts our options. We hence proceed to con-
sidering more sophisticated objective functions, based not on the covariance
matrix per se, but on the statistical model built using this covariance matrix.

4 Kotcheff and Taylor stated this result, but their proof was flawed; see Appendix B for a
detailed analysis.
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4.2.2 Measuring Model Properties by Bootstrapping

Properties of our statistical model of the data can be estimated by bootstrap-
ping. The idea is to build a model pdf from the current correspondence, and
then use this pdf to stochastically generate new shape instances. A detailed
comparison between the generated shapes and the original training data can
then be performed.

We will look at how bootstrapping can be used to measure two properties
that are essential to a good model: specificity and generalization ability.5

A specific model should only generate instances of the object class that
are similar to those in the training set – thus specificity is crucial if the model
is to be used in applications such as image segmentation. The generalization
ability of a model measures its ability to represent unseen instances of the
class of object modelled – this is a fundamental property as it allows a model
to learn the characteristics of a class of object from a limited training set. If
a model is over-fitted to the training set, it will be unable to generalize to
unseen examples.

Let us now look at the precise details of how each property can be esti-
mated in practice.

4.2.2.1 Specificity

Specificity can be assessed by generating a population of instances using the
model and comparing them to the members of the training set. Suppose we
generate M examples from the model pdf {yA : a = 1, . . . M}, using only nm

modes of the model. We define a quantitative measure of specificity:

Ŝ(nm) .=
1
M

M∑

A=1

min
i
‖yA − xi‖. (4.10)

That is, for each member of the sample set {yA}, we find the distance to the
nearest element of the training set. Obviously, the more specific a model, the
smaller these distances.

4.2.2.2 Generalization Ability

The generalization ability of a model is measured from the training set using
leave-one-out reconstruction. A model is built using all but one member of
the training set and then fitted to the excluded example. The accuracy to

5 In Chap. 9, we give a detailed analysis of these measures in the context of model evalu-

ation. More sophisticated measures are also considered there, but in the present context,

we will consider just the näıve measures.
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Algorithm 4.1 : Leave-One-Out Generalization Ability of a Model.

• For nm = 1, . . . ns − 2:

– For i = 1, . . . ns:
1. Build the model (x̄(i),N(i) = {n(a) : a = 1 . . . nm}) from the training set with xi

removed.
2. Calculate the parameter vector for shape i: b(i) = (N(i))T(xi − x̄(i)).
3. Reconstruct the unseen shape using nm shape parameters:

x̃i(nm) = x̄(i) +

nm∑

a=1

b
(i)
a n(a).

4. Calculate the sum of squares approximation error:

ε2i (nm) = ‖xi − x̃i(nm)‖2.

– Repeat

– Calculate the mean squared error: G(nm) = 1
ns

ns∑
i=1

ε2i (nm).

• Repeat

which the model can describe the unseen example is measured and the pro-
cess is repeated, excluding each example in turn. The approximation error is
averaged over the complete set of trials. The generalization ability is again
measured as a function of the number of shape parameters, nm, used in the
reconstructions. The basic procedure is given in Algorithm 4.1.

Although these measures give an intuitive indication of model perfor-
mance, they suffer from three problems. The first is that each measure is
a function of the number of modes retained in the model. However, if any
number except the complete set of modes is used then the optimisation can
‘cheat’ by hiding variation in the excluded modes. A bigger problem is that
optimising specificity will not necessarily produce a general model and vice
versa. For example, it is simple to see that the most specific model possible
for a given set of training data is just a sum of δ-function pdfs at each data
point. But qualitatively, such a model has no generalization ability whatso-
ever! This limitation could be overcome by combining the two measures into
a single objective function as a weighted sum. But is not obvious how each
measure should be weighted, nor is it clear that this weighting should be fixed
throughout the optimisation. The final problem with these measures is the
computational cost. Both measures are costly to calculate, but generaliza-
tion ability is particularly expensive since it involves re-building the model
ns times.
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Because of the limitations of all the model-based objective functions dis-
cussed so far, a new approach was taken [48, 53],6 using ideas from informa-
tion theory, as will be discussed in the next section.

4.3 An Information Theoretic Objective Function

We seek a principled basis for choosing an objective function that will directly
favour models with good generalization ability, specificity, and compactness.
The ability of a model to generalise whilst being specific depends on its ability
to interpolate and, to some extent, extrapolate the training set. In order to
achieve these properties, we apply the principle of Occam’s razor, which can
be roughly paraphrased as the statement that the simplest description of the
training set will interpolate/extrapolate the best.

This notion of the simplicity of the description can be quantified using
ideas from information theory, and in particular, the principle of minimum
description length (MDL) [143, 144].

The basic idea is that we consider the problem of transmitting our entire
training set as a coded message to a receiver. We suppose that the person
receiving the message has a basic codebook, which enables them to decode the
message, and hence reconstruct the training set. The length of this message
is the description length of the training set. The point of this approach is
that it takes incommensurate data terms, and by encoding them, produces a
commensurate representation of the data, in that everything is reduced to a
simple message length measured in bits.

We could just send the raw values of the coordinate positions of each
point on each shape. This however does not make any use of the similar-
ity across the set of shapes. A better encoding would be to send the mean
shape, and then send, for each shape, the deviations for each point from the
corresponding point on the mean shape. However, this still does not make
use of the fact that there are correlations between points on a given shape,
and also correlations between different shapes. These correlations are cap-
tured by the PCA principal axes that were defined previously in Sect. 2.1.3.
This then gives a further-improved scheme, where we send the mean shape,
the principal modes of variation (that is, the eigenvectors n(a)), and finally,
the parameter vectors for each shape. This is obviously advantageous, since
in most cases, the dimensionality of the parameter space R

nm is much less
than the dimensionality of the original shape space R

dnP . However, the final
point to note is that the parameter vectors are not evenly distributed across
parameter space, but are approximately distributed according to our model
pdf p(b). We hence should take account of this model pdf when constructing
our encoding of the parameter vectors – basically, the idea is that regions of

6 Note that the use of MDL had already been introduced into the computer vision com-
munity in a different context, for example, see [108, 66].
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parameter space which have a high probability density should be specifiable
using short messages, whereas regions which have a lower probability density
can be specified using longer messages, so as to give an optimum message
length when averaged over the entire training set. Such a scheme will obvi-
ously be adversely affected if the pdf used in encoding is actually a poor fit
to the data.

This type of scheme effectively encodes the training set of shapes using
the model. What we then have to send to our receiver is a message consisting
of two parts. First, the parameters of the model, enabling the receiver to
reconstruct the model, and second, the training set encoded using this model.
We hence have a total message length which consists of two parts:

Ltotal = Lparams + Ldata, (4.11)

which is the two-part coding formulation of MDL [105]. Before we go into
specific details, it can already be seen that this scheme potentially enables
interesting trade-offs between model complexity, and the degree to which the
model fits the data.

For example, consider the case where our data lies on some straight line
in data space. A well-fitting model would describe the exact position of this
line. The remaining part of the message would just be a single number for
each data point, describing the position of the data point along this line.
A poorly-fitting model would be one, say, that described not this line, but
some sub-space that included the line. This would mean that we would need
more than one parameter to describe the position of each data point in this
sub-space. However, if all the data lay on some line that was not straight,
we would have a possible trade-off between the complexity of the model (do
we describe the exact, curved line, or just the sub-space in which it lies),
versus the degree of fit of the model to the data (the line is a better fit,
but a more complex model, whereas the sub-space is a simpler model, but
a poorer fit to the actual data). In this context, MDL can be used to solve
the model selection problem (e.g., [83]), by comparing the best achievable
message length across different classes of model.

In our application, we will restrict ourselves to a single class of model (e.g.,
Sect. 2.2.1, multivariate Gaussian models). What will vary is the groupwise
correspondence across the data, which, as we have shown previously, effects
both the dimensionality of the model (for example, the case illustrated in
Fig. 4.1), and the degree of fit between the data and the model. It is hence a
suitable case for application of the MDL principle.

In the next sections, we will derive a simple form for the description length
of data encoded using a multivariate Gaussian. For such a model, we first have
to send the mean shape (the origin of the PCA coordinate system), then the
set of PCA directions {n(a)}. Once we have described this PCA coordinate
system, the remaining data we have to send is just the positions of each
data point along each axis. The positions along each axis are distributed as
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a one-dimensional centred Gaussian, where the distributions along each axis
are now uncorrelated. The Gaussians are centred since the origin is the mean
shape.

Before we can derive this description length, we first have to give the
codeword lengths for a few basic operations as follows.

4.3.1 Shannon Codeword Length and Shannon Entropy

Let us first consider transmitting a number 0 < x < 1 to some precision δ as
a binary string. If δ = 1

2k , then the codeword length is given by:

l(x; δ) = − log2(δ) bits,

where log2 denotes logarithms to base 2. We would like a meaning of message
length that applies whether we encode using a binary string, or a decimal
string. We hence define our message length as:

l(x; δ) = − log δ, 0 < x < 1, (4.12)

where log denotes the natural logarithm, and the length is now measured in
nats or nits as opposed to bits. In the general case, transmission of a number
within some range of width R, to a precision δ, requires a codeword of length:

l(x;R, δ) = − log
δ

R
, y < x < y + R, (4.13)

which we can derive from the previous result by a simple scaling.
The next case we require is the codeword length for encoding unbounded

integers. An integer n = 2k requires k bits. We hence take the codeword for
an integer as:

lint(n) = 1 + log n,

where the 1 has been added so that the message length for sending 1 is
one nat, rather than zero. This is not the full result for integers as given
by Rissanen [143], using the iterated logarithm, but it is a continuous and
tractable approximate form, suitable for our purposes.

The next case is transmitting the occurrence of some event from a finite set
of such events. Consider a situation where we have a random process which
has some set of distinct possible outcomes, where the αth outcome occurs
with probability Pα,

∑
α Pα = 1. We transmit the fact of the occurrence

of an event of type α by transmitting a codeword. We take as our full set
of possible codewords the real numbers 0 < x < 1. To specify event α, we
define that the number x has to lie within some portion of the real line of
length xα. The idea here is that to get the shortest possible message length
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on average, frequent events are indicated by short codewords, whereas less
frequent events can have longer codewords.

For example, suppose we have three events A, B, C. We could encode A
by numbers x < 1

2 , xA = 1
2 , B by numbers 0.5 < x < 0.75, and C by numbers

0.75 < x < 1 (xB = xC = 1
4 ). In binary, sending 0.0 is enough to indicate

that A has occurred (less the leading zero and point gives us one bit). Sending
0.1 indicates that it is not A, but we need to send 0.10 to unambiguously
indicate B, whereas 0.11 indicates C.7 And − log2 xa = − log2(0.5) = 1 bit,
whereas − log2 xB = − log2(0.25) = 2 bits.

Hence for some number that lies within the range of length xα, we only
need to send it to a precision of δ = xα to be able to verify that it does indeed
lie within this range. This gives, using the above result, a codeword length of
lα = − log xα. We can hence write the total message length for transmitting
a sequence of N total events as:

L = −
∑

α

NPα log xα + C

(
1 −
∑

α

xα

)
,

where C is a Lagrange multiplier, ensuring that all numbers 0 < x < 1
are assigned to an event. We can find the optimum codeword assignment as
follows:

∂L
∂xα

=
NPα

xα
− C = 0 ⇒ xα ∝ Pα ⇒ xα = Pα, (4.14)

where we have also used the normalization constraint. Hence for a set of events
that occur with probabilities Pα, the optimal Shannon codeword length for
event α is [160]:

lα = − log Pα. (4.15)

The mean codeword length is:

l̄ = −
∑

α

Pα log Pα,

which is just the Shannon entropy. Note that we do not need to know the
actual codewords, we just need to know the optimum possible lengths for a
mutually unambiguous set of codewords.

We can now consider transmitting values x that are distributed according
to some model pdf p(x), where they are transmitted to some fixed precision
Δ. We will assume that we have already transmitted the parameters of the

7 Note that the possible confusion here between our use of precision, and other terms such
as accuracy, is the distinction between truncation and rounding. Hence sending a number
to be correct to the nearest integer requires two digits, since 0.9 and 1.4 will both be
rounded to 1, whereas 1.9 rounds to 2. Hence something decoded by rounding as 1 actually

could be 1 ± 0.5, where 0.5 is referred to as the accuracy. But when using truncation, we
just need one digit. The width of the possible range is the same in each case.
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pdf, enabling the receiver to construct p(x), and that the precision Δ we are
using has also been transmitted.

The set of all possible values of x to precision Δ hence forms an infi-
nite sequence of bins of width Δ, with bin positions {x̂α}. The probability
associated with bin α is given by:

Pα
.=

x̂α+Δ∫

x̂α

p(x)dx. (4.16)

If we can calculate these bin probabilities (which are of course normalized
since the pdf p(x) is normalized), we can use this result to compute the de-
scription length, since from (4.15), the optimum codeword length for trans-
mission of a number that lies in bin α is just lα = − log Pα.

We will now consider the specific case where our model p(b) is a multi-
variate Gaussian.

4.3.2 Description Length for a Multivariate Gaussian
Model

As was explained at the start of this section, the description length for a
multivariate Gaussian can be written as the sum of the description lengths
for a series of one-dimensional centred Gaussians.

The origin of our coordinate system is given by the mean shape. The
message length for transmission of the mean shape will depend on the number
of shape points, the dimensionality of our shapes, and the precision to which
we describe their positions. However, all of these quantities remain unchanged
as we vary the groupwise correspondence, hence we can treat this term as a
constant contribution to our description length.

We require exact reconstruction of our shapes, to a precision Δ, hence
we have to retain all possible modes so that nm = nS − 1. The number of
points nP on each shape has to be taken so that the polygonal shapes are
an adequate representation of our input shapes, hence nP is also fixed. The
description length for our set of nm axis directions {n(a)} is hence also fixed,
being some function of nS , the point precision Δ, and the number of points
nP , and the dimensionality of the space occupied by our original shapes d.

The point precision Δ can be determined by quantizing the point positions
of our original training shapes. Comparison of the original shape and the
quantized version allows a maximum permissable value of Δ to be determined.
For example, for shape boundaries obtained from image data, Δ will typically
be of the order of the pixel-size.

There is one remaining parameter to be determined, which is the effective
scale of our shapes R. Let us suppose that all of our aligned training shapes
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can be enclosed by some sphere or circle of radius r. Then a given point on
any shape can move at most a distance 2r between shapes. This means that
the maximum separation between shape vectors, is:

R = 2r
√

nP .

This is also the lowest upper-bound on the range of the projections of the
shape vectors onto the PCA axes.

We can hence write our total description length in the form:

Ltotal = f(R,Δ, nS) +
nm∑

a=1

(
L(a)

params + L(a)
data

)
= f(R,Δ, nS) +

nm∑

a=1

L(a).

(4.17)
The function f(R,Δ, nS) is then the (fixed) description length for the mean
shape, the PCA directions etc. For each mode a, L(a)

params is the description
length for the parameters of the ath centred Gaussian in the direction n(a),
and L(a)

data is the description length for the data in this direction (that is,
the set of quantized8 shape parameter values (2.34) {b̂(i)

a : i = 1, . . . nS},
b
(i)
a

.= (xi − x̄) · n(a)).
Let us first consider the parameter term L(a)

params. Each centred Gaussian
has one parameter, the variance σ2

a, or the width σa. If this value is encoded
to some precision δa, then the actual number is the quantized version of this:

σ̂a = nδa, n ∈ N.

The strict upper bound on the maximum separation of the data points pro-
jected onto the PCA axis R means that we have a strict upper limit on the
variance:

σmax =
R

2
.

We also choose to set a lower bound on the modelled variance σmin. We
hence have to consider the separately the cases σa > σmin and σa < σmin.

The Case σa > σmin

We will first consider the case where σa > σmin. To encode σ̂a, we hence
have a value to precision δa, within the range σmax − σmin. This hence has a
codeword length (4.13):

l(σ̂a) = l(σ̂a;σmax − σmin, δa) = log
σmax − σmin

δa
.

8 We will use b to denote a continuum value, and b̂ to denote the corresponding quantized
value.
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The receiver cannot decode the value of σ̂a unless they know the value of δa,
we hence have to include the description length for δa. If we assume that δa

is of the form 2±k, k ∈ N, this then gives a description length:

l(δa) ≈ 1 + | log δa|,

where the additional nat codes for the sign. Putting these together gives:

L(a)
params = 1 + log

σmax − σmin

δa
+ | log δa|. (4.18)

Let us now consider the encoding of the data {b̂(i)
a : i = 1, . . . nS}, which has

been quantized to a precision Δ as determined from the original data. For a
centred Gaussian of width σ̂, the bin probability (4.16) for a bin at position
b̂ is given by:

P (b̂) .=

b̂+Δ∫

b̂

1√
2πσ̂2

exp
(
− y2

2σ̂2

)
dy ≈ Δ

σ̂
√

2π
exp
(
− 1

2σ̂2
b̂2

)
.

It can be shown numerically that this is a very good approximation (to
within 99% of the correct value), for all values σ > 2Δ. We hence choose to
take our minimum modelled variance as:

σmin = 2Δ.

We find that for PCA direction n(a):

l(b̂a) = − log P (b̂a) = − log Δ + log σ̂a +
1
2

log 2π +
1

2σ̂2
a

b̂2
a.

Note that in Sect. 2.2.1, an optimum value of σa was determined using the
Maximum Likelihood criterion, giving:

σ2
a =

1
nS

nS∑

i=1

(xi − x̄) · n(a) =
1

nS

nS∑

i=1

(b(i)
a )2 =

λa

nS
.

If we instead use the MDL principle, and optimise:
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nS∑

i=1

l(b̂(i)
a ) = nS log σa +

1
2σ2

a

λa + constant,

⇒ ∂

∂σa

nS∑

i=1

l(b̂(i)
a ) =

nS

σa
− λa

σ3
a

,

⇒ σ2
a =

λa

nS
,

we hence obtain the same result. Note that if we had made a different choice
for encoding σa, we would obtain a slightly different result (e.g., see [115]).
However, the differences are not significant in the limit of large numbers of
shape examples, and we will hence retain the above as our optimal estimate of
the unquantized value σa of the variance of the quantized data. Substituting
back in, we obtain:

L(a)
data

.=
nS∑

i=1

l(b̂(i)
a ) = −nS log Δ + nS log σ̂a +

nS

2
log 2π +

nS

2

(
σ2

a

σ̂2
a

)
.

This result does not simplify trivially, since the variance of the quantized
data σ2

a
.= 1

nS

∑
i(b̂

(i)
a )2 is not exactly equal to the value of the quantized

variance σ̂2
a. In general, they differ by some amount da where:

σ̂a = σa + da, |da| ≤
δa

2
,

where δa is the precision of σ̂a as above.
The exact value of da depends on the data. We can however estimate its

likely effects. If we assume a flat distribution for da over its allowed range, we
can hence calculate the ensemble average of quantities involving da. We can
then make the approximation of replacing such quantities by the ensemble
average. That is:

f(σ̂a) ≈ E [f(σa + da)] ,

where E [·] denotes the average over the distribution of da:

E [f(σa + da)] .=
1
δa

+ δa
2∫

− δa
2

f(σa + y)dy.

Consider the terms in the message length that depend on σ̂a or on δa:

L(a) = | log δa| − log δa + nS log σ̂a +
nS

2

(
σ2

a

σ̂2
a

)
+ . . . .

We hence compute:
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E [log σ̂a] = log σa +
1
δa

+ δa
2∫

− δa
2

log
(

1 +
y

σa

)
dy,

= log σa +
1
2

log
(

1 − δ2
a

4σ2
a

)
− 1 +

σa

δa
log
(

2σa + δa

2σa − δa

)
,

= log σa − δ2
a

24σ2
a

+ O

(
δ4
a

σ4
a

)
.

E

[
1
σ̂2

a

]
=

1
σ2

a

[
1 +

δ2
a

4σ2
a

+ O

(
δ4
a

σ4
a

)]

Hence:

L(a) ≈ | log δa| − log δa +
nSδ2

a

12σ2
a

+ . . . ,

where we have only written the terms that depend on δa. We can hence find
an optimum value of δa by setting the derivative to zero. Because of the
modulus term, we have to consider separately the cases δa < 1 and δa > 1.
We hence find the optimum parameter precision is given by:

δ∗a = δ∗(σa, nS) = min
(

1, σa

√
12
nS

)
. (4.19)

It has been shown numerically [115] that this estimate of the optimum pa-
rameter precision is reliable, provided the dataset is not too small.

Putting all this together, we get the final result for the optimum description
length for direction n(a), for the case σa > σmin, is:

L(a)
1 = L1(σa, nS , R,Δ) = 1 − nS log Δ +

nS

2
log 2π +

nS

2

+ log
(

σmax − σmin

δ∗a

)
+ | log δ∗a|

+nS log σa +
nS(δ∗a)2

12σ2
a

. (4.20)

The Case σa < σmin

If σa < σmin, but the data lies in more than one bin, we decide to encode the
data using a pdf of width σmin. We also set the parameter precision to:

δa = δ∗(σmin, nS).

An analogous derivation to that given above then yields the result:
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L(a)
2 = L2(σmin, nS , R,Δ) = 1 − nS log Δ +

nS

2
log 2π

+ log
(

σmax − σmin

δa

)
+ | log δa| + nS log σmin

− nSδ2
a

24σ2
min

+
nSσ2

a

2σ2
min

(
1 +

δ2
a

4σ2
min

)
. (4.21)

As a check, we note that L(a)
1 and L(a)

2 agree at σa = σmin.
The final case to consider is when σa < σmin, but the data all lie in one

bin. This means that since the data is also centred, all the data lie in the
central bin at the origin. We hence do not have to transmit any information
in this case.

The obvious advantage of this MDL objective function is that the objective
function is well-behaved, even in the limit σa �→ 0, that is, λa �→ 0. This is in
direct contrast to the determinant of the covariance matrix, which required
explicit regularization to deal with small eigenvalues (4.9).

The only free parameters are the number of shape points nP and the
data precision Δ. The number of shape points does not enter explicitly into
the calculation, we can hence take the limit nP �→ ∞ and use the integral
definition of the covariance matrix (2.124). As regards the data precision,
the quantization of point positions can lead to discontinuity in the objective
function close to convergence. This can be overcome by averaging the value
of the objective function over a range of values of Δ. The required integral
can be solved by numerical integration.

4.3.3 Approximations to MDL

The full expression for the description length of a training set derived above
(4.20) and (4.21) is complex, but this is necessary to deal with the general
case. In order to gain further insight into the objective function, Davies et
al. looked at a limiting case [53].

We consider the dual limit of infinitely small data precision (Δ �→ 0), and
an infinitely large dataset (nS �→ ∞). The full MDL objective function can
be approximated by:

L1(σ, nS , R,Δ) ≈ g(R,Δ, nS) + (nS − 2) log σ, (4.22)

L2(σ, nS , R,Δ) ≈ g(R,Δ, nS) + (nS − 2) log σmin +
nS + 3

2

(
σ2

σ2
min

− 1
)

,

(4.23)

where g(R,Δ, nS) is some fixed function. The first point to note is that we
have continuity as σ �→ σmin from below. Furthermore, we can see that in
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this dual limit, the part of the objective function that depends on the {σa}
contains terms similar to the determinant of the covariance matrix (4.9).
However, the MDL objective function is always well-defined, even in the
limit λa �→ 0, σa �→ 0, where such a direction makes no contribution to the
objective function. Whereas in the form used previously [101] it would make
an infinitely large contribution, without the addition of artificial correction
terms.

Thodberg [177] simplified this approximation further by assuming that
the third case never occurs – that is, the range of the data in any direction
is always greater than the quantization parameter, Δ. The f(R,Δ, nS) and
g(R,Δ, nS) terms can now be ignored, since they are constant for a given
training set. This then gives for the total description length:

Ltotal ≈
∑

σp≥σmin
(ns − 2) log σp + (4.24)

∑
σq<σmin

[
(ns − 2) log σmin +

(ns + 3)
2

((
σq

σmin

)2

− 1

)]
.

Dividing by ns − 2 and using the approximation (ns + 3)/(ns − 2) ≈ 1:

Ltotal ≈
∑

σp≥σmin

log σp +
∑

σq<σmin

[
log σmin +

1
2

((
σq

σmin

)2

− 1

)]
. (4.25)

By adding suitable constants, and scaling (subtracting log σmin from each
term, multiplying by 2, then adding 1 to each term), we get the transformed
expression:

Ltotal ≈
∑

σp≥σmin

(
log

(
σ2

p

σ2
min

)
+ 1

)
+

∑

σq<σmin

σ2
q

σ2
min

. (4.26)

If we substitute σ2
p = nP λp, and similarly σ2

min = nP λmin, we obtain the final
expression:

Ltotal ≈
∑

λp≥λmin

(
log
(

λp

λmin

)
+ 1
)

+
∑

λq<λmin

λq

λmin
, (4.27)

which is the form used by Thodberg. Considering (4.27), we see that this
simplification is a trade off between two terms: one similar to the determi-
nant of the data covariance matrix (

∑
log λa, (4.9)), and the other that is

similar to the trace of the data covariance matrix (
∑

λa, (4.3)). This trade-off
works because as we noted earlier, the determinant has problems with small
eigenvalues, whereas the trace does not. The parameter λmin determines the
point where we effectively switch between the determinant-type term and
the trace-type term. However, the relative importance of the two terms is
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governed by the parameter, λmin, for which there is now no obvious choice of
value, since we have removed the significance of the data quantization.

Thodberg and Olafsdottir [178] further modified this expression by the
addition of an arbitrarily weighted term that penalises dissimilarity in cur-
vature at corresponding points. Note that it would be possible to introduce
curvature into MDL by transmitting both the point positions and the cur-
vature at each point. This could be seen as an over-complete description of
the polygonal shape. However, this is not the approach taken by Thodberg
and Olafsdottir, who add an arbitrarily weighted term. As we have already
said above, there is no reason to believe that corresponding points should
lie on regions of similar curvature and it may, in fact, skew the description
length measure. It also negates the theoretical elegance of the MDL approach,
reducing the objective function to a sum of incommensurate terms.

4.3.4 Gradient of Simplified MDL Objective Functions

We now turn to the question of incorporating an MDL objective function
into an optimisation framework. Optimisation algorithms can often perform
better if they are given gradient information about the objective function, as
we will see in detail in Chap. 7.

We will suppose that the parameterisation of the ith shape is controlled
by some vector of parameters α(i), where the individual parameters are given
by {α(i)

A : A = 1, . . . M}.9 The optimisation algorithm needs the gradient of
the objective function with respect to each of the parameters for each shape.

A näıve approach would be to calculate the gradient numerically, using
a simple finite-difference scheme. The partial derivative with respect to the
Ath parameter for the ith shape is approximated by:

∂L
∂α

(i)
A

≈
L
(
α

(i)
A + Δα

(i)
A

)
− L

(
α

(i)
A

)

Δα
(i)
A

, (4.28)

where Δα
(i)
A is some suitably-small perturbation of α

(i)
A . However, as with

any approach of this type, truncation errors and roundoff errors are intro-
duced [139]. A more serious drawback is the high computational cost of using
such a scheme: the whole model must be rebuilt for the estimation of every
component of the gradient – this involves re-building the covariance matrix
and calculating its eigen-decomposition ns × M times.

However, part of the Jacobian of the gradient can be computed analytically
in closed form. Let us suppose we have an objective function which is only a

9 We will talk about re-parameterisation in greater detail in Chaps. 5 and 6. For now, the

reader just needs to know that the relevant variables that we are trying to optimise over

are the α(i) for each shape i = 1, . . . nS .
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function of the eigenvalues of the covariance matrix of the data (such as the
determinant of Kotcheff and Taylor [101], or some of the approximations to
MDL given above), so that:

L = L({λa}).
The Jacobian matrix for the gradient of the objective function is then given
by:

∂L
∂α

(i)
A

=
nm∑

a=1

∂L
∂λa

∂λa

∂α
(i)
A

.

The computation of
∂L
∂λa

is trivial. The computation of
∂λa

∂α
(i)
A

is more com-

plicated. Remember that the eigenvalues {λa} are the eigenvalues of the co-
variance matrix of the data. For finite-dimensional shape representations, the
dnP ×dnP covariance matrix D can be used (2.16). Whereas for the infinite-
dimensional, continuous representation of shape, the alternative nS × nS co-
variance matrix D̃ (2.98) is needed. The eigenvalues are the same in each case,
but the computation is different. We consider first the finite-dimensional case.

For the finite-dimensional shape representation, the ith shape is given by
the shape vector xi with elements {xiμ : μ = 1, . . . dnP }. For the correspond-
ing dnP × dnP covariance matrix D with elements Dμν , using the chain-rule
for derivatives, the computation becomes:

∂λa

∂α
(i)
A

=
dnP∑

μ,ν,η=1

∂λa

∂Dμν

∂Dμν

∂xiη

∂xiη

∂α
(i)
A

=
dnP∑

η=1

∂λa

∂xiη

∂xiη

∂α
(i)
A

.

The computation of
∂λa

∂xiη
from the point of view of PCA and the covariance

matrix D is given in Appendix B, with the result (B.24):

∂λa

∂xiη
= 2b(i)

a n(a)
η ,

where n(a) is the ath eigenvector of D, and b
(i)
a is the projection of the ith

shape vector onto the vector n(a) (the parameter vector (2.34)). This result
was first introduced by Ericsson and Åström [65], who, using the results in
[131], derived it using the singular value decomposition (SVD) of the data
matrix. The relation between the PCA and the SVD approach is also given
in Appendix B.

The final term in the computation of the full Jacobian is the variation
of the ith shape with respect to the re-parameterisation parameters for that

shape,
∂xiη

∂α
(i)
A

, and this obviously depends on the exact details of the re-para-

meterisation. This can be calculated numerically, as we will see in Sect. 7.1.3.



4.3 An Information Theoretic Objective Function 93

For the case of the infinite-dimensional shape representation, or the alter-
native covariance matrix D̃, the corresponding computation is:

∂λa

∂α
(i)
A

=
nS∑

j,k=1

∂λa

∂D̃jk

∂D̃jk

∂α
(i)
A

.

In Appendix B, we show that (B.25):

∂λa

∂D̃ij

=
ñ

(a)
i ñ

(a)
j

‖ñ(a)‖2
,

where ñ(a) is the ath eigenvector of D̃. This result was first derived by
Hlad̊uvka and Bühler [94], who extended the SVD approach to this case.
In Appendix B, this result is derived from the point of view of PCA, and the
link to the SVD approach of Hlad̊uvka and Bühler is also explained.

The next term is:

∂D̃jk

∂α
(i)
A

=
∫

δD̃jk

δSi(x)
δSi(x)

δα
(i)
A

dA(x).

From Appendix B:

S̃i(x) .= Si(x) − S̄(x),

δD̃jk

δSi(x)
=

1
AnS

[
(nSδij − 1)S̃k(x) + (nSδik − 1)S̃j(x)

]
.

So that, as in the finite case, the only term left to calculate is
δSi(x)

δα
(i)
A

, the

gradient of the shape function with respect to the control parameter of the
re-parameterisation. Once we have this term, the integrals over the surface
of the mean shape can be calculated numerically, and the Jacobian of the
gradient of the objective function can be evaluated.

Hlad̊uvka and Bühler [94] give a closed-form solution for this final term,
but it is restricted to a specific transformation model (which will be described
later in Sect. 5.1.4.2). We will see later in Sect. 7.1.3 of Chap. 7 that numerical
methods can be used to calculate this term for any representation, albeit with
some small loss of accuracy.
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4.4 Concluding Remarks

In this chapter, we have reviewed several objective functions. The remaining
question is: which is the best one to use in practice for groupwise model-
building?

As we have already explained, the pairwise objective functions are not suit-
able for building a groupwise model. However, they can usefully be employed
to initialize the groupwise correspondence. We achieve this by performing a
series of pairwise optimisations between each training shape and a fixed ref-
erence shape. Such a series of pairwise optimisations is much quicker than a
groupwise optimisation, and can hence serve as an efficient initialization stage
for the more computationally intensive groupwise stages of the optimisation.
The most appropriate choice of pairwise objective function depends on the
precise features of the class of shapes being modelled.

The bootstrapped objective functions (generalization and specificity) are
too computationally demanding to be used in practice. This leaves the de-
terminant of the covariance matrix, the full MDL objective function and the
various MDL approximations as the only viable model-based objective func-
tions.

Let us begin by considering Thodberg’s simplification of MDL (4.27). Some
arbitrary assumptions and approximations were made in order to arrive at
this simplification and the net result is an objective function that is not really
a measure of description length at all. On the other hand, this simplification
is simpler to compute than the full MDL objective function, and its gradient
is readily computed.

The determinant-based objective function of Kotcheff and Taylor (see
Sect. 4.2.1) seems to offer a more appealing choice: its gradient can be com-
puted, and it is simpler than the gradient of Thodberg’s approximation. How-
ever, the determinant only measures the compactness of the training set in
shape space and does not explicitly measure other desirable model properties
(such as generalization and specificity). It has, however, been shown to pro-
duce very similar models to the proper MDL objective function for a range
of biomedical objects [172].

In conclusion, the objective function of choice is the full MDL objective
function, but it comes at a high computational cost. In practice, the various
approximations to it, or the determinant, can be employed to further refine
our initial correspondence (that found using a pairwise scheme, as above),
since the calculable gradient allows efficient evolution. The full MDL objective
function is only employed when we are close to the optimum.



Chapter 5

Re-parameterisation of Open and
Closed Curves

In the previous chapter, we described various objective functions that mea-
sure the quality of a model built from a given set of correspondences. Our
aim is to find the correspondence that gives the optimum value of the cho-
sen objective function, and in order to achieve this, we need a parameterised
method of manipulating groupwise correspondence.

In Chap. 2, we introduced parameterised, infinite-dimensional representa-
tions of shape. To summarize, a shape Si from the training set of nS shapes is
represented by a parametric shape-function (2.117) Si(·). The shape-function
is defined by considering an initial one-to-one mapping Xi from the parameter
space X to the shape Si thus:

X
Xi�−→ Si, x Xi�−→ Si(x). (5.1)

The mapping Xi hence associates a parameter value x to each point on the
ith shape, the position of that point on the shape being the value of the shape
function Si(x).

Correspondence between shapes is then defined at points of the same pa-
rameter value x, so that:

Si(x) ∼ Sj(x), (5.2)

where ∼ denotes the dense point-to-point correspondence. In the present
chapter, we focus on the case of shapes in two dimensions; that is, the pa-
rameter space X is one-dimensional, and we will use u as the parameter
value, rather than the vector-valued parameter x. The parameter space X is
then quite simple, since we have only two choices for the topology of one-part
shapes, either the open line, or the circle. For shapes topologically equivalent
to an open line, the parameter space X is a segment of the real line u ∈ [0, 1].
For the circle case, we take u ∈ [0, 1] as before (or equivalently, u ∈ [0, 2π] as
in the case of polar coordinates), but add the constraint that Si(0) ≡ Si(1),
which closes the two ends of the shape into a circle.

R. Davies et al., Statistical Models of Shape, 95
DOI: 10.1007/978-1-84800-138-1 5, c© Springer-Verlag London Limited 2008
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In Chap. 3 we introduced the idea of manipulating correspondence by re-
parameterising each example shape. Let φi be a re-parameterisation function
for the ith shape, which is a diffeomorphism of the line/circle as appropriate.
The re-parameterisation is then given by:

u
φi�−→ u′ .= φi(u), φi : [0, 1] �−→ [0, 1]. (5.3)

This mapping then also acts on the shape-function Si(·), so that:

Si(·)
φi�−→ S′

i(·), S′
i(u

′) ≡ S′
i(φi(u)) .= Si(u). (5.4)

That is, the point under consideration on the actual shape (Si(u)) does not
change, but the parameter value for that point (u �→ u′), and the shape-
function describing the shape (Si(·) �→ S′

i(·)) both change. This means that
when compared to another shape Sj (which is not being re-parameterised at
the moment), the correspondence changes:

Sj(u) ∼ Si(u)
φi�−→ Sj(u) ∼ S′

i(u) ⇒ Sj(u) ∼ Si(φ−1
i (u)). (5.5)

In practice, each shape {Si : i = 1, . . . nS} has its own re-parameterisation
function φi, with the correspondence changing under simultaneous re-para-
meterisation in an obvious fashion.

To utilize this representation of re-parameterisation within an optimisation
framework, we must be able to represent and manipulate the set of re-para-
meterisation functions {φi : i = 1, . . . nS}.

We assume that all the shapes in our training set have the correct rela-
tive orientation. That is, increasing the parameter value traverses any of the
shapes in the same direction.1 A suitable diffeomorphic mapping for re-para-
meterisation then has to retain this relative orientation, hence we need only
consider that part of the diffeomorphism group that is continuous with the
identity. For the case where the topology is that of the line, this is isomorphic
to the set of all monotonically-increasing differentiable functions of the unit
line.2 For oriented shapes with circular topology, we could consider a general
orientation-preserving diffeomorphism. However, it is sometimes simpler to
restrict ourselves to the subgroup of diffeomorphisms that leave one point un-
changed on each shape. If we label this point as the closure point for the line

1 This can be considered as part of the general initial task of bringing the shapes into
roughly the correct relative alignment. So, for instance, if we had a training set of hand
outlines, consisting of examples of both left and right hands, the simplest way to achieve this
would be to reflect the shapes of the right hands, so that all the hands can then be overlaid
with the digits in rough correspondence. Then an initial parameterisation that traced first
the thumb then each of the fingers would obviously be a consistent parameterisation across
the set.
2 Whereas a re-parameterisation that changed the orientation would be represented by a

monotonically decreasing function, and would in effect swap the start and ends points of
the curve.



5.1 Open Curves 97

(u = 0 = 1), then the diffeomorphic transformations that leave this point sta-
tionary are the transformations of the line. Altering the corresponding point
that is held fixed on all the shapes then widens the set of transformations,
and any transformation we require can be obtained by concatenating such
transformations.

The problem is then one of constructing parameterised sets of monotonic
functions on the line segment [0, 1], which can be applied to either open or
closed line topologies (although with the proviso that the re-parameterisation
is then not necessarily differentiable on the circle at the point where the ends
join). We also consider specifically the case of circular topology, for re-para-
meterisations that are everywhere differentiable.

In this chapter, we consider several ways to build such sets of functions.

5.1 Open Curves

We consider first the case of open curves, which have the simplest topology.
As explained above, for oriented open curves, consistent parameterisation is
trivial, and the legal re-parameterisation functions are just the set of mono-
tonically increasing functions over the unit line. In what follows, we shorten
this to just monotonic.

5.1.1 Piecewise-Linear Re-parameterisation

The simplest way to construct a monotonic function from a finite set of
parameters is by considering linear interpolation, which builds a piecewise-
linear monotonic function [101].

Suppose we have a set of ordered node points {pα : α = 1, . . . n} spaced
along the real line at positions {uα}. If we define the function values {φ(uα)}
at each node, this then defines the function at any intermediate point by
linear interpolation :

φ(u) .= φ(uα) + (φ(uα+1) − φ(uα))
u − uα

uα+1 − uα
, uα ≤ u ≤ uα+1, (5.6)

where pα and pα+1 are the left and right nearest-neighbour nodes to the point
at u.
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Fig. 5.1 An example of the piecewise-linear re-parameterisation, using three nodes with
parameter values {uα} = {0.4, 0.45, 0.8}.

To ensure that φ(u) is diffeomorphic,3 both the original node positions
{uα} and their new positions {φ(uα)} must be in the same order:

0 ≤ uα < uα+1 . . . < un ≤ 1,

⇒ 0 ≤ φ(uα) < φ(uα+1) . . . ≤ φ(un) ≤ 1. (5.7)

Typically, we start with nodes equally spaced on the shape, so that the initial
parameterisation {uα} is just a path-length parameterisation of the shapes,
with corresponding points at equal fractional path-length distances along
their respective shapes. The piecewise-linear representation is illustrated in
Fig. 5.1.

It should be noted here that ensuring a homeomorphism is particularly
simple for one-dimensional shapes in two or three dimensions, since it re-
duces to a simple case of retaining the relative ordering of points. The same
consideration does not, however, hold for two-dimensional shapes in three
dimensions, with a two-dimensional parameter space, where the homeomor-
phism constraint is considerably more complicated, as will be seen later.

5.1.2 Recursive Piecewise-Linear Re-parameterisation

If we require a denser re-parameterisation of the shapes, we could just create
more equi-distant nodes. But a more interesting approach is to apply the ini-
tial piecewise linear approach in a recursive manner. This will also illustrate
an alternative approach to the ordering constraint required for homeomor-

3 φ(u) is not differentiable at the control points hence it is not diffeomorphic in a strict
sense, but homeomorphic. Homeomorphic mappings are continuous, one-to-one mappings
with a continuous inverse, whereas diffeomorphisms add the constraint that the mapping
and its inverse must be differentiable (to some order), rather than just continuous.
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Fig. 5.2 A tree graph showing, read from top to bottom, recursive subdivision of a line
segment. The actual line segment is shown at the bottom, with nodes indicated by coloured
circles. The edges of the graph represent line segments, with the pair of nodes (coloured
circles) that define that line segment indicated next to it. The coloured squares which
terminate edges indicate addition of a node (coded by colour) within that segment.

phisms, an approach that is fruitful since it can be generalized, and applied
to shapes in three dimensions as well as shapes in two dimensions.

Consider an initial piecewise linear re-parameterisation function φ(u) de-
fined on some set of n nodes. If we consider the part of the function between
a pair of neighbouring nodes, the function in this region is just a straight
line. This is directly analogous to the straight line we have if we consider
the identity re-parameterisation (φ(u) ≡ u) for the entire line (u ∈ [0, 1]),
before we constructed the re-parameterisation based on n nodes. So, just as
we can construct a re-parameterisation of the line segment [0, 1] based on a
set of nodes, so we can also increase the density of this re-parameterisation
by applying this construction recursively onto segments of the line defined
by the sets of nodes created at the previous level.

Let us take the simplest case where we add only one node each time we
apply the process. For the addition of just a single node, the position of that
node can be totally described by giving the identities of the two higher-level
nodes that describe the segment into which the node is going to be placed
(the parent nodes, pα and pβ , say), plus the fractional distance ταβ of the
new daughter node pγ along that segment, where:

uγ
.= uα + ταβ(uβ − uα), uβ > uα. (5.8)

Each new segment can then be further divided, by adding new daughter
nodes.

The final set of nodes can then be described by a simple branching tree
structure as shown in Fig. 5.2. The nodes are represented by coloured circles,
and the edges of the graph correspond to line segments, where the circles to
each side of the graph edge represent the nodes defining that line segment.
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A square represents the action of adding a new node inside the line segment
represented by the graph edge that it terminates. We hence generate two new
line segments, creating two new branches of the graph, with each of the two
nodes that defined the original line segment now helping to define one of the
new line segments, along with the new node.

This process is repeated, the final collection of line segments and nodes
being the terminal branches of the completed tree.

This may seem an unwarranted obfuscation of the original simple concept
of a set of ordered nodes. However, consider now how the homeomorphism
condition constrains the allowed movements of the nodes. For a node with
descendants, the homeomorphism constraint is satisfied with respect to the
descendants provided they move proportionately as the ancestor moves. With
respect to the parents of a node, movement of the daughter node is allowed
provided that the node remains between the parents.

Another way to view this is that movement is allowed provided the connec-
tivity structure of the nodes is preserved. Rather than the connectivity given
by ordering of the nodes, we instead use a representation of connectivity based
on the parent-daughter relationship, with links running from each daughter
to both parents. We see that movement of any node is allowed, provided that
the directed line segments linking it to its parents retain their orientation,
and the any descendant nodes move proportionately. For example, if a child
node moved to the right of its righthand parent, the line segment linking it
to this parent would flip direction, which is not permitted.

This concept can be easily generalized to higher dimensions. For shapes
in three dimensions, the nodes are now connected to form a triangulated
mesh, the triangles of the mesh being the direct counterparts of the line
segments in two dimensions. Triangles of this mesh can be sub-divided by
placing a new child node within the triangle, so that each child node has three
parents. As for the line segments, the original triangle is now replaced by three
new triangles. The homeomorphism constraint is satisfied provided that the
triangles defined by the parent-child relationship do not flip. This process
is explained in detail in the next chapter, which concentrates specifically on
shapes in three dimensions.

Although it is simple to compute, the piecewise-linear representation is
not differentiable at the node positions. This is sufficient for some cases, but
not all. In the following sections, we discuss how to construct parametric
representations of re-parameterisation functions that are differentiable (at
least C1) everywhere.

5.1.3 Localized Re-parameterisation

The recursive linear re-parameterisation is localized in the sense that the
addition of a daughter node affects only points within its parent segment. We
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now consider differentiable methods of re-parameterisation that are explicitly
localized.

An intuitive way of viewing the localized re-parameterisation of a curve is
to introduce a motion field, h(u), that is only non-zero in a local bounded
region. Without loss of generality, let us consider a transformation localized
to the interval [−1, 1], where:

φ(u) =
{

u + h(u)p if −1 ≤ u ≤ 1
u otherwise , (5.9)

hence the re-parameterisation is just the identity outside of this region. The
motion field h(u) is taken to be a differentiable function, and p is the am-
plitude of the motion field. Continuity at the edges of the region mean that
h(−1) = h(1) = 0. To ensure differentiability at the edges of the region, we
have the further constraint that h′(−1) = h′(1) = 0. A homeomorphic (i.e.,
monotonic) re-parameterisation places constraints on p, as detailed in the
following Theorem.

Theorem 5.1. Homeomorphic Localized Re-parameterisation.
For a motion field as defined in (5.9) with the constraints:

h(−1) = h(1) = 0 & h′(−1) = h′(1) = 0, (5.10)

the corresponding re-parameterisation is homeomorphic provided that:

|p| <
1

|h′(u)| ∀ − 1 ≤ u ≤ 1. (5.11)

Proof. From (5.9):
φ(u) = u + ph(u).

Let us consider two points with an infinitesimal separation: u and u + Δu,
where 0 < Δu � 1. Then:

φ(u + Δu) = φ(u) + Δu + ph′(u)Δu + O
(
(Δu)2

)
.

We defined Δu such that u + Δu > u. The transformation is hence homeo-
morphic provided that the image points are in the same order. Hence:

φ(u + Δu) > φ(u) ⇒ Δu (1 + ph′(u)) > 0 ⇒ 1 + ph′(u) > 0.

∴
If h′(u) < 0 ⇒ p < 1

−h′(u)

If h′(u) > 0 ⇒ p > − 1
h′(u)

}
|p| <

1
|h′(u)| . (5.12)

Note that this is effectively just the one-dimensional equivalent of evaluating
the determinant of the Jacobian for the transformation, and constraining it
to be positive. �	
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An obvious choice of function for representing the motion field, h(u), is a
portion of a Gaussian [89], so that:

h(u) =
1

σ
√

2π
exp
(
− u2

2σ2

)
, (5.13)

where σ controls the width of the Gaussian. Using (5.11), we see that the
transformation is homeomorphic within the region if the motion of the centre
is bounded:

If: σ ≤ 1, |p| < σ2
√

2π exp(1
2 ).

else if: σ > 1, |p| < σ3
√

2π exp( 1
2σ2 ).

(5.14)

To maintain continuity at the borders of the region, we must add a constant
term, so that:

h(u) =
1

σ
√

2π
exp
(
− u2

2σ2

)
− B (5.15)

=
1

σ
√

2π
exp
(
− u2

2σ2

)
− 1

σ
√

2π
exp
(
− 1

2σ2

)
, (5.16)

so that h(1) = h(−1) = 0. However, this function does not have a zero
derivative at u = ±1, but:

h′(±1) = ∓ 1
2σ3

√
2π

exp
(
− 1

2σ2

)
. (5.17)

This mismatch obviously decreases the smaller the width σ we choose – that
is, the further along the tails of the Gaussian we make the cut.4 However,
given the nature of the Gaussian, it can never be completely removed.

An alternative function is one based on the bi-harmonic clamped-plate
spline (see [184] and the Appendix), where:

h(u) = 1 − u2 + u2 ln(u2), (5.18)
h(±1) ≡ 0, h′(±1) ≡ 0.

The constraints of continuity and differentiability at the boundary of the
region are hence met automatically (see Fig. 5.3). The homeomorphism con-
straint (5.11) gives the amplitude constraint |p| < e

4 .
If we consider the Taylor series expansion of (5.18) about u2 = 1, and

retain only the first non-zero term, we obtain a simple polynomial function
which is also suitable for our purposes [30]:

4 For surfaces, Heimann et al. [89] cut off the Gaussian at 3σ, which in our case, when
mapped to the range [−1, +1], is equivalent to setting σ = 1

3
.
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Fig. 5.3 Three functions suitable for the local displacement scheme, plotted over the
interval [−1, 1]. Left: clamped plate spline (5.18), Centre: the polynomial representation
(5.19), Right: the trigonometric representation (5.20).
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Fig. 5.4 A re-parameterisation function formed using a combination of local transfor-
mations. Three clamped plate splines of widths {wk} = {0.55, 0.10, 0.20} were placed at
positions {ak} = {0.30, 0.64, 0.80}. The centrepoints of each region were moved to new
relative positions of {pk} = {0.62, 0.20,−0.45}. Left: The motion field, h(u), showing the
territories of the local region. Right: The re-parameterisation function φ(u).

h(u) = (1 − u2)2. (5.19)

This function (see Fig. 5.3) inherits the continuity and differentiability prop-
erties of the clamped-plate spline at the boundary, but it is slightly simpler
to compute. The maximum allowed displacement is |p| < 8

3
√

3
.

We can also construct suitable functions using trigonometric functions.
For example:

h(u) =
1
2

(1 + cos(πu)) , h(±1) = 0, h′(±1) = 0, (5.20)

as is plotted in Fig. 5.3. The homeomorphism constraint yields: |p| < 2
π .

In practice, several such local transformations are applied successively.
Each transformation has a position of the centre ak, a width wk (which is the
size of the actual region that is then mapped to the interval u ∈ [−1, 1]), plus
the amplitude of the deformation pk. Figure 5.4 shows an example of such a
deformation, using three clamped-plate splines, of varying widths, positions,
and amplitudes.
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Fig. 5.5 An illustration of the integral representation of re-parameterisation. Left: three
kernel functions (solid lines) and its sum (dashed line). Right: the integral of the summed
kernel function plus the identity.

5.1.4 Kernel-Based Representation of
Re-parameterisation

We now move on to consider more general differentiable methods of re-para-
meterisation. We first concentrate on the case of open curves. These re-para-
meterisations can also then be applied to closed curves, except that the re-
parameterisation is then only differentiable everywhere except at the point
where the two ends are joined. In a later section (Sect. 5.2), we consider
re-parameterisation for closed curves which are differentiable everywhere.

To recap, we wish to construct functions φ(u), u ∈ [0, 1] that are mono-
tonic, with φ(0) = 0 and φ(1) = 1, and also differentiable.

One simple way of achieving this is where φ(u) is the cumulative distri-
bution function (cdf) of some normalized probability density function (pdf)
ρ(x) [51]:

φ(u) =

u∫

0

ρ(x)dx,

1∫

0

ρ(x)dx = 1, ρ(x) ≥ 0 ∀ x ∈ [0, 1]. (5.21)

Building a parametric representation of φ(·) then reduces to the problem
of building a parametric representation of a general pdf ρ(x). As in kernel
density estimation (that we considered earlier in Sect. 2.1), a general pdf can
be constructed from a weighted sum of basic kernels. The positions, widths
and heights of the individual kernels then form the parametric representation
of ρ(x), hence of φ(u) – the idea is illustrated in Fig. 5.5. In fact, the piecewise-
linear representation (5.6) considered earlier can be cast in this form, where
the kernel is a square bump of varying width and position.

This suggests that to obtain a differentiable function, we need to use
smooth, differentiable kernel functions. One obvious choice would be to use
a combination of Gaussian kernel functions [51]. However, this is not to-
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Fig. 5.6 An illustration of a re-parameterisation constructed from a set of Gaus-
sian kernels. The parameters of the re-parameterisation are: {ak} = {0.2, 0.4, 0.6, 0.8},
{wk} = { 2

15
, 2
15

, 2
15

, 2
15

}, and {Ak} = {0.550, 0.025, 0.075, 0.350}. Left: the individual ker-
nel functions (solid lines) and their sum (dashed line). Right: the integral of the sum of
kernel functions plus the identity.

tally straightforward since we require ρ(x) to be normalized over the range
0 ≤ x ≤ 1, rather than over the entire real line. We hence define the Gaussian-
kernel pdf:

ρ(x) =
1
N

[
1 +

nk∑

k=1

Ak

σk

√
2π

exp
(
− 1

2σ2
k

(x − ak)2
)]

, (5.22)

where we have nk Gaussian kernels, with centres {0 ≤ ak ≤ 1}, widths {σk}
and amplitudes {Ak}. The normalization factor N is given by:

N = 1 +
nk∑

k=1

Ak

2
erf
(

1 − ak

σk

√
2

)
+

nk∑

k=1

Ak

2
erf
(

ak

σk

√
2

)
, erf(x) .=

2√
π

x∫

0

e−r2
dr.

(5.23)
An example of a Gaussian kernel re-parameterisation is shown in Fig. 5.6.
The function is defined so that if all the kernel heights are zero (Ak = 0), the
final φ(u) is just a straight line.

As the Gaussian width σk approach zero, a Gaussian approaches the Dirac
δ-function. Hence in principle, such a mixture of Gaussians can approximate
any pdf to any arbitrarily small degree of accuracy.

There are however other possible choices of kernels. One example is the
Cauchy function, as follows.
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Fig. 5.7 Geometric interpretation of the Cauchy distribution. A pivot P is placed a height
w above the plane, with a straight rod suspended from the pivot. The horizontal distance
x is determined by the angle θ. If θ has a flat distribution between −π

2
and π

2
, then x will

be distributed according to the Cauchy pdf f(x; w, 0) as defined in (5.24).

5.1.4.1 Cauchy Kernels

The Cauchy distribution5 [111] leads to a unimodal, symmetric probability
density function, defined over the whole real line:

f(x;w, a) =
1
π

w

w2 + (x − a)2
, −∞ < x < ∞, w ≥ 0, (5.24)

where w is the width of the Cauchy (the scale parameter) and a is the position
of the centre (the location parameter). It has a simple geometric interpreta-
tion, as is shown in Fig. 5.7.

In this geometric interpretation, the Cauchy distribution is generated from
a uniform distribution via a simple transformation of variables. This means
that it is simple to calculate the integral of the Cauchy pdf. Because of
the existence of this analytic form, Davies et al. [51] chose to use a sum of
Cauchy pdfs to represent a general density ρ(x). In order to calculate the
cumulative distribution function, we need the integral of the pdf (derived
from the geometric interpretation, or [79], page 81, 2.172):

g(u;w, a) =
∫ u

0

f(x;w, a)dx =
1
π

[
arctan

(
u − a

w

)
+ arctan

( a

w

)]
. (5.25)

Note that as for Gaussians, the Cauchy pdf approaches the Dirac δ-
function in the limit, hence can be used to represent an arbitrary density
ρ(x) to any required degree of accuracy. As for a sum of Gaussians, we use a
sum of nk Cauchy kernels plus a constant term, so that:

5 Also referred to in the literature as the Lorentzian distribution or the Lorentz distribution.
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ρ(x) =
1
N

[
1 +

nk∑

k=1

Akf(x;wk, ak, )

]
, 0 ≤ x ≤ 1, (5.26)

B
.=

nk∑

k=1

Ak

π
arctan

(
ak

wk

)
, (5.27)

N
.= 1 + B +

nk∑

k=1

Ak

π
arctan

(
1 − ak

wk

)
, (5.28)

where Ak is the magnitude of the kth kernel. The cdf, hence φ(u), is then
given by:

φ(u) =
∫ u

0

ρ(x)dx, 0 ≤ x ≤ 1

⇒ φ(u) =
1
N

[
u + B +

nk∑

k=1

Ak

π
arctan

(
u − ak

wk

)]
. (5.29)

An example of such a re-parameterisation is shown in Fig. 5.8. As before, the
parameters {Ak} are such that if Ak = 0 ∀ k, the re-parameterisation is just
the identity re-parameterisation.
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Fig. 5.8 An illustration of a re-parameterisation constructed from a set of Cauchy
kernels. The parameters of the re-parameterisation are: {ak} = {0.20, 0.40, 0.60, 0.80},
{wk} = {0.60, 0.10, 0.10, 0.05}, and {Ak} = {0.40, 0.50, 0.40, 0.10}. Left: the kernel func-
tions (solid lines) and its sum (dashed line). Right: the integral of the kernel function plus
the identity.

5.1.4.2 Polynomial Re-parameterisation

The cdf approach to constructing a diffeomorphic re-parameterisation func-
tion borrows ideas from kernel density estimation (Sect. 2.1), and in par-
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Fig. 5.9 The 6th-order Bernstein polynomials.

ticular borrows the idea of using a symmetric, monotonic6 kernel function.
However, since we are not trying to estimate an actual density, we need not
retain this kernel-based link between data points and the estimated pdf. In
particular, we can build up our pdf from simpler, polynomial functions, with
the advantage that differentiation and integration are much simpler for poly-
nomial functions that they are for those kernel-based functions we considered
previously.

Hlad̊uvka and Bühler [94] show that weighted combinations of Bernstein
polynomials can be used as a basis for representing ρ(x) in (5.21). The kth

Bernstein polynomial of degree n is given by:

bn
k (x) = nCkxk(1 − x)n−k, n ≥ 0, k = 0, . . . , n, (5.30)

where nCk is the usual binomial coefficient. The Bernstein basis polynomials
{bn

k (x) : k = 0, . . . , n} of degree n form a basis for polynomial functions of
degree n.

If we consider the unit interval [0, 1], we see that bn
k (x) is non-negative.

For 0 < k < n, they have a maximum:

d

dx
bn
k (x) = nCkxk−1(1−x)n−k−1(k−nx) ⇒ d

dx
bn
k (x) = 0 → x =

k

n
. (5.31)

We hence see that for a fixed order n, the maxima of the set:

{bn
k : k = 1, . . . , n − 1}

are equally spaced along the interval between 0 and 1. See Fig. 5.9 for exam-
ples.

6 That is, each half of the symmetric function is strictly monotonic.
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If we integrate each basis polynomial over the range [0, 1]:

1∫

0

bn
k (x)dx = nCk

1∫

0

xk(1 − x)n−kdx =
1

n + 1
. (5.32)

We hence can construct a normalized pdf as the weighted sum of Bernstein
polynomials of order n:

ρn(x) .=
n + 1
n∑

j=0

wj

n∑

k=0

wkbn
k (x), wk ≥ 0, (5.33)

where {wk} are the weights. The re-parameterisation is then the cdf of ρ(x).
In order to calculate this, we define7:

Bn
k (u) .=

u∫

0

(n + 1)bn
k (x)dx, (5.34)

hence:

φ(u) .= φ(u; {wj}) =
1

n∑
j=0

wj

n∑

k=0

wkBn
k (u). (5.35)

This form makes the dependance on the parameters {wk} explicit, since the
functions Bn

k (·) do not depend on these weights. This means that the Bn
k (u)

can be pre-computed, which is computationally advantageous.
Note that unlike the kernel cases considered previously, the identity re-

parameterisation is obtained when w1 = w2 = . . . = wn > 0.
Although this form has been derived for re-parameterisation of the unit

line, we can re-parameterise the unit circle by joining the ends as before.
However, for the case of the bump-like Bernstein polynomials (0 < k < n),
we have an additional property, that:

bn
k (0) = bn

k (1) ⇒ B′n
k (0) = B′n

k (1) ⇒ φ′(0) = φ′(1), (5.36)

hence if we restrict ourselves to these bump-like polynomials, φ(u) is also
differentiable at the join, hence differentiable on the entire circle.

The explicit dependance on the parameters {wk} also means that we can
differentiate the re-parameterisation function with respect to these parame-
ters thus:

7 Note that we are using a slightly different notation to that used by Hlad̊uvka and
Bühler [94].
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∂φ(u; {wk})
∂wh

= − 1
(

n∑
j=0

wj

)2

n∑

k=0

wkBn
k (u) +

1(
n∑

j=0

wj

)Bn
h (u)

=
1

(
n∑

j=0

wj

)2

n∑

k=0

(Bn
h (u) − Bn

k (u)) . (5.37)

This form is then suitable for use in gradient descent methods of optimisation,
which is the reason why Hlad̊uvka and Bühler [94] introduced this polynomial
representation of re-parameterisation.

The Bernstein representation also lends itself naturally to a multi-resolution
approach. If we consider {bn

k (u)} and {b2n
k (u)}, we see that the maxima (5.31)

of the latter are twice as dense as the maxima of the former, the new addi-
tional maxima lying halfway between the old maxima.

However, unlike the kernel approaches we considered previously, the po-
sitions (and associated widths) of these maxima are not adjustable, which
means that the polynomial approach does not have quite the same degree of
flexibility as the kernel methods, although it does have considerable compu-
tational advantages.

Having considered various approaches to re-parameterising the unit line,
we now consider specifically the case of the unit circle.

5.2 Differentiable Re-parameterisations for Closed
Curves

As noted before, for closed curves (S(0) ≡ S(1)), φ(u) must be a homeomor-
phism of the unit circle. The formalism for open curves can be used by just
joining the curves at u = 0 = 1, but then φ(u) is in general not differen-
tiable at this point. Making φ(u) differentiable at u = 0 = 1 using the cdf
formalism then requires that ρ(0) = ρ(1), which is not generally true for the
parametric pdfs we have considered so far (although it is true for the case of
the Bernstein polynomial representation).

The solution is to use kernel functions defined around a circle, rather than
along the real line, so that the kernel is smooth and everywhere differentiable.
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5.2.1 Wrapped Kernel Re-parameterisation for Closed
Curves

There are distributions that can be naturally defined directly on the circle
(such as the von Mises distribution [189]), which have significance as regards
the field of statistics. But in our case, the statistical properties of such dis-
tributions (fascinating as they are [111, 69]), is not the issue. We require a
flexible approach which can generate differentiable distributions on the circle,
and ideally, we would like these distributions to be unimodal, symmetric, of
variable width/scale, and also have tractable cdfs. One approach that can
achieve this is to create distributions on the circle from suitable distributions
on the real line.

There are two basic ways to transfer pdfs from the real line to the circle.
The most intuitive is by wrapping [111], an idea that goes back to at least
1917 [154]. Imagine a unit circle rolling along the entirety of the real line. Each
time a particular point on the circumference touches the real line, it gathers
the value of the pdf associated with that point on the real line. The final
wrapped pdf at that point on the circle is then calculated by summing the
infinite number of contributions that the point has collected. For a probability
density function f(x), x ∈ R, the wrapped pdf is:

∞∑

p=−∞
f(x + 2πp). (5.38)

The second approach is by mapping, where a one-to-one mapping is con-
structed from the entire real line to the circle, and the distribution transferred
across.

The problem with the wrapping approach is that, in general, the expres-
sion for the pdf on the circle involves an infinite summation which is not
expressible in closed form. However, for the particular case of the Cauchy
distribution, wrapping and the particular mapping we consider here produce
identical distributions [116]. We hence describe here the mapping approach,
and use this to derive the final form of the wrapped or circular Cauchy dis-
tribution [107].

We map the entire real line to the unit circle as follows. The coordinate x on
the extended real line8 maps to the Cartesian coordinates (X,Y ) thus [116]:

X(x) .=
1 − x2

1 + x2
, Y (x) .=

2x

1 + x2
⇒ X2 + Y 2 ≡ 1, (5.39)

or equivalently, in complex notation:

Z(x) .=
1 + ix

1 − ix
= X(x) + iY (x). (5.40)

8 Basically, we have the real numbers plus the point at infinity, to close the circle.



112 5 Re-parameterisation of Open and Closed Curves

We hence see that the point so defined lies on the unit circle. We can then use
the usual polar angle θ, where X

.= cos θ, Y
.= sin θ. The associated inverse

transformation is:

x(θ) =
1

sin θ
(1 − cos θ) = tan

(
θ

2

)
. (5.41)

For a pdf f(x) on the real line, the corresponding mapped pdf f̃(θ) on the
circle is:

f̃(θ) .=
dx

dθ
f(x(θ)). (5.42)

We can also relate the cdfs for the pdfs, since:

θ∫

0

f̃(ψ)dψ ≡
x(θ)∫

0

f(y)dy. (5.43)

Our first instinct might be to take f(x) to be a Gaussian pdf, to obtain
the mapped Gaussian distribution, with pdf:

f(x) .=
1

σ
√

2π
exp
(
− 1

2σ2
x2

)
,

f̃(θ) =
1

2σ
√

2π

(
1 + tan2 θ

2

)
exp
(
− 1

2σ2
tan2 θ

2

)
. (5.44)

However, if we look at the derivative of f̃(θ), we see that this mapped distri-
bution is only unimodal for the case σ ≤ 1√

2
. Hence we cannot explore the

full range, from a Dirac δ-function to a flat distribution, by using this kernel.
See Fig. 5.10 for examples.

If we perform this mapping for the Cauchy distribution (5.24), and take
f(x) = f(x;w, 0), what we obtain is the wrapped Cauchy distribution [107,
111],9 with the density:

f̃(θ;Ω, 0) =
1
2π

1 − Ω2

1 + Ω2 − 2Ω cos θ
,

where: Ω
.=

1 − w

1 + w
, 0 ≤ Ω ≤ 1, (5.45)

where Ω is the angular width parameter. If we compute the first derivative,
we see that f̃(θ;Ω, 0) has a single peak at θ = 0 for all allowed values of
Ω. As Ω → 0, we see that f̃(θ;Ω, 0) → 1

2π , which is a uniform distribution.
Conversely, if Ω = 1 − ε, ε � 1, then f̃(θ;Ω, 0) → ε

2π(1−cos θ) , which ap-

9 Also referred to in the literature as the circular Cauchy distribution.
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Fig. 5.10 Left: Mapped Gaussian distribution for values of σ = 0.25, 0.5, 0.7, 1, and 2.
Right: Mapped Cauchy distribution for values of Ω = 0.01, 0.1, 0.25, and 0.5. For reasons
of clarity, functions are plotted over the range [−π, π] rather than [0, 2π].

proaches the Dirac δ-function. Unlike the mapped Gaussian distribution, the
mapped/wrapped Cauchy distribution hence explores the full required range
(see Fig. 5.10 for examples).

This pdf f̃(θ;Ω, 0) also has a closed-form indefinite integral. Using the
relation to the unmapped Cauchy distribution, the cumulative distribution
for the wrapped Cauchy is:

g̃(θ;Ω, 0) .=

θ∫

0

f̃(ψ;Ω, 0)dψ,

=

u∫

0

f(x;w, 0)dx = g(u;w, 0),

where: u
.= tan

θ

2
, w

.=
1 − Ω

1 + Ω
.

⇒ g̃(θ;Ω, 0) =
1
2π

arctan

( (
1 − Ω2

)
sin θ

(1 + Ω2) cos θ − 2Ω

)
, (5.46)

where the inverse tangent is defined from 0 to 2π. Note that this cdf has the
property that:

g̃(θ;Ω, 0) = 1 − g̃(−θ;Ω, 0). (5.47)

It hence follows that the cumulative distribution for a wrapped Cauchy func-
tion of width Ω centred at a is:

g̃(θ;Ω, a) = g̃(a,Ω, 0) + g̃(θ − a,Ω, 0) − 1
2
[1 − sign(θ − a)], (5.48)
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where:

sign(x) =
{
−1 if x < 1,
1 otherwise. (5.49)

To represent ρ(θ) (which we take for the moment to be an un-normalized
pdf), we use a set of wrapped Cauchy kernels plus a constant term:

ρ(θ) =
1
2π

+
nk∑

k=1

Akf̃(θ;Ωk, ak) 0 ≤ θ ≤ 2π, (5.50)

where Ak is the magnitude of the kth kernel. The cdf φ(u) is then obtained
by integrating ρ(θ). Using the previous result, we find:

φ(u) .=

2πu∫

0

ρ(θ)dθ = u +
nk∑

k=1

Ak g̃(2πu;Ωk, ak), 0 ≤ u ≤ 1. (5.51)

It is then simple to normalize this cdf, to obtain the final expression:

φ(u) =
1
N

[
u +

nk∑

k=1

Akg̃(2πu;Ωk, ak)

]
where N = 1 +

nk∑

k=1

Ak. (5.52)

As before, the parameters are such that Ak = 0 ∀ k gives the identity re-
parameterisation.

Note that, for closed curves, the position of the origin, φ(0), is still a free
parameter. In effect, this additional degree of freedom just corresponds to a
uniform rotation of the parameter space for each shape. Optimisation with
respect to this degree of freedom will be considered in a later chapter.

5.3 Use in Optimisation

This chapter has looked at several representations of re-parameterisation that
are suitable for use in an optimisation framework, using the techniques that
will be described in Chap. 7.

Since we are re-parameterising all of the shapes in our training set, and
since each parametric re-parameterisation function can involve many parame-
ters, it is obvious that we are dealing with a large-scale optimisation problem.
It is therefore advantageous if we can lower the dimensionality of our search
space, by reducing the number of free parameters.

If we consider some of the representations given here, such as the kernel-
based methods, it can be seen that a typical re-parameterisation function
will involve many such kernels, and that each kernel is specified by a set
of three parameters, which are basically the position parameter, the width
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parameter, and the amplitude parameter. For a multiscale or coarse-to-fine
optimisation strategy, we need to be able to specify the scales and positions
a priori. It hence makes sense to fix the positions and widths of each kernel,
and only search over the amplitude parameter. This obviously reduces the
dimensionality of the search space by a factor of three.

Similar considerations hold for other representations of re-parameter-
isation. In general, we refer to those variables which are held fixed as the aux-
iliary parameters. Table 5.1 lists the auxiliary parameters for each method.

We initialize the search algorithm at the identity re-parameterisation
φ(u) = u, and the parameter values required to represent the identity are
also listed in the table.
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Chapter 6

Parameterisation and
Re-parameterisation of Surfaces

In the previous chapter, we showed how correspondence across a set of
curves can be manipulated, by parameterising and then re-parameterising
the curves. In this chapter, we move up a dimension, and consider the case
of shapes in three dimensions – that is, surfaces.

The general approach is the same. However, surfaces present additional
challenges and complications. Consider first the initial parameterisation of a
shape. For a curve, this is trivially simple, we just have to be able to traverse
the curve without retracing our steps, and assign increasing parameter values
as we go. Re-parameterisation is also relatively straightforward, since any
monotonic function preserves the ordering along a curve and hence is a valid
re-parameterisation. No such ordering exists on a surface. This means that
the initial parameterisation has to be explicitly constructed, and complicates
the construction of re-parameterisation functions.

To recap, suppose we have a shape S. We also have a topological primitive
X with the same topology as the shape. The initial parameterisation then
proceeds by finding (by some method) a one-to-one mapping X between the
topological primitive X and the shape S. For the case of curves we consid-
ered in the last chapter, the topological primitive corresponding to an open
curve is just the open line segment, whereas for closed curves, X is the unit
circle. By parameterising the topological primitive, we hence parameterise
the original shape. The parameterisation of the topological primitive is of-
ten fairly straightforward, so that by a slight abuse of notation, we will use
X to represent both the topological primitive and the resulting parameter
space, and X to represent both the mapping from the topological primitive
to the shape, and the mapping from the parameter space to the shape. For
our parameterised shape S, we then have:

X
X�−→ S, x X�−→ S(x), (6.1)

where x is the parameter value of a point on the shape S, and S(·) is a
vector-valued shape function representing the entire shape S:

R. Davies et al., Statistical Models of Shape, 117
DOI: 10.1007/978-1-84800-138-1 6, c© Springer-Verlag London Limited 2008
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S(x) .= (Sx(x), Sy(x), Sz(x)) ∈ R
3. (6.2)

To parameterise a set of shapes {Si : i = 1, . . . nS}, all with the same
topology, we then have to construct a mapping Xi from the common param-
eter space X to each shape in the set. Correspondence between shapes is then
defined by common parameter value x, so that:

X
Xi�−→ Si, x Xi�−→ Si(x),

X
Xj�−→ Sj , x

Xj�−→ Sj(x),
∴ Si(x) ∼ Sj(x), (6.3)

where ∼ denotes correspondence. Correspondence is then manipulated by
re-parameterising the topological primitive:

x
φi�−→ φi(x) & Si

φi�−→ S′
i, where S′

i(φi(x)) .= Si(x) ∀ i = 1, . . . nS ,

∴ Si(x) ∼ Sj(x)
φi,φj�−→ S′

i(x) ∼ S′
j(x), (6.4)

where φi is the re-parameterisation function for the ith shape.
In this chapter, we discuss how to construct such parameterisations and

re-parameterisations for surfaces. We concentrate first on the cases of open
surfaces (with a single boundary), and closed surfaces with spherical topology.
The extension to the case of other topologies (e.g., toroidal) will also be
discussed.

6.1 Surface Parameterisation

Our input surfaces {Si} are typically represented as triangulated meshes. For
a single shape S, a triangulated mesh consists of a set of triangles {tα}, where
vα represents the vertices of the triangle tα, so that:

vα .= {vαa ∈ R
3 : a = 1, 2, 3}. (6.5)

The triangles are of course joined, so that it will sometimes be convenient to
refer to the entire set of non-coincident nodes {vA}, where the triangulation
is constructed by assigned nodes to triangles thus:

vα = {vα1,vα2,vα3} = {vA,vB ,vC}, (6.6)

for some set of values {A,B,C}. A given node vA will typically be a vertex
of several triangles, where vA ∈ tα ⇒ vA ∈ vα. We then also define the set
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of neighbours NA of a vertex vA, where:

NA
.= {vB �= vA : vA ∈ tα, vB ∈ tα},

or NA
.= {B : vB �= vA,vA ∈ tα, vB ∈ tα} (6.7)

as convenient.
The continuous mapping X between the shape S and the parameter space

X is typically constructed by first defining the mapping between the vertices
of the mesh {vA} and their associated set of parameter values {xA ∈ X}. The
full mapping from X to S is then constructed by interpolating the values of
{xA} (hence {vA}) in between the vertices, using the common triangulation
{tα}.

Mesh parameterisation has been a field of intense research activity over
the last decade – see [70] or [162] for a review. Most approaches have focused
on finding a parameterisation that minimises some measure of distortion
between the triangulated mesh on the shape, and the triangulated mesh in
parameter space. Typical optimisation criteria include angle distortion (e.g.,
approximate [96] or exact [3, 85] conformal mappings, where a conformal
mapping is one that preserves all angles), area distortion (e.g., [196]), changes
in edge length, or a combination of these (see [162] for a review).

For the purposes of statistical shape modelling, it has been found that
useful criteria are that the parameterisation should be consistent across a set
of examples, and that the distortion of area should be minimal. The set of
parameterisations define the initial correspondence from which optimisation
of correspondence by re-parameterisation begins. An inconsistent set of pa-
rameterisations can hence lead to a poor initial correspondence, which then
hinders the optimisation algorithm’s ability to find the global minimum, as
well as leading to a long convergence time. Area distortion leads to under- or
over-sampling of the surfaces, giving a poor representation of the shape. This
is because sampling is performed evenly over the parameter space, rather
than directly on the shapes (see Sect. 7.3.3).

Many published methods of parameterisation (see review articles [70, 162])
are sufficient for certain classes of objects. Here, we describe a general method
of parameterisation, which is suitable for building statistical shape models of
many classes of objects. An initial discrete parameterisation is first achieved,
based on the work in [71] and [14]. This discrete parameterisation is then
interpolated (using barycentric interpolation) to create a continuous param-
eterisation. This parameterisation can then be further modified, to address
the criteria of area distortion and inconsistency mentioned above, and a final
parameterisation reached by optimisation [54] as will be described below.
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6.1.1 Initial Parameterisation for Open Surfaces

We first consider the initial parameterisation of open surfaces, a para-
meterisation which can then be further refined as will be discussed in
Sects. 6.1.4 and 6.1.5.

A simply connected1 open surface with a single boundary (i.e., no holes
or handles), is topologically equivalent to the unit disc in the plane. For the
purposes of calculation, it is more convenient to use the unit square, so that:

X = {x},x = (x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (6.8)

The first stage of the parameterisation is mapping the nodes {vA} of the
triangulated mesh. This starts by mapping all the nodes at the boundary of
the mesh to the boundary of the unit square. The spacing between nodes
on the square is adjusted so that the relative spacing between neighbouring
boundary nodes is preserved. Additional nodes then need to be placed at
the corners of the unit square to ensure the entire domain is covered, with
corresponding nodes added on the boundary of the shape.

For the remaining non-boundary nodes, let us consider first adjusting the
position of just one node, xA, say, leaving the positions of all other nodes
fixed. The position of the moving node can be written as a linear combination
of the positions of its neighbours:

xA =
∑

B∈NA

wABxB ,
∑

B∈NA

wAB = 1, (6.9)

with weights {wAB}. In general, the weights can be taken to depend on the
distances between nodes on the triangulated shape, so that:

wAB = f
(
‖vA − vB‖, {‖vA − vC‖ : C ∈ NA}

)
. (6.10)

The function f can then be adjusted so that nodes which are closest together
on the shape, remain closest in parameter space, and so on. The simplest
approach is to assume that all the weights {wAB} have equal value wAB =

1
size(NA)

, so that a node xA is placed at the mean position of its neighbours.
If we now consider moving all the nodes, (6.9) then defines a set of equa-

tions. Let M be the set of indices of the movable, non-boundary nodes, and
F be the set of indices of the fixed boundary nodes. The position vectors of
the movable nodes are collected into a vector of vectors X = {xA : A ∈ M}.
We then construct a matrix of scalars P, where:

P = {PAB : A ∈ M,B ∈ M},
PAA = 1. If B ∈ NA, PAB = −wAB , else PAB = 0. (6.11)

1 Simply connected means that any path between any pair of points can be continuously
deformed into any other such path.
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Fig. 6.1 Initial parameterisation of an open surface, using the method in (6.13). Left:
A view of the triangulated open surface in R

3, representing the distal end of a human
femur. Right: The triangulated mesh mapped to the parameter space of the unit square
(6.8). The colours denotes the correspondence between the meshes, and the thick red curve
represents the boundary of the surface.

A second vector of vectors Y is constructed, where:

YA =
∑

B∈F&B∈NA

wABxB . (6.12)

The set of equations can then be written compactly in matrix form as:

PX = Y, (6.13)

which is solved for the variable X, the collection of positions of the movable
nodes. There are various algorithms that can be used to solve this equation
(see Chap. 2 of [139]), but the conjugate gradient method works well.

An example of an open surface parameterised using this method is given
in Fig. 6.1. It can be seen from the figure that the mapping is correct,and
that none of the triangles have flipped. Note that on the original shape, the
triangles of the mesh are approximately of equal area. This is not the case
on the parameter space, where triangles in the proximity of the boundary
tend to be much larger than triangles further from the boundary. Refining
this parameterisation to minimise the area distortion is dealt with in a later
section.

6.1.2 Initial Parameterisation for Closed Surfaces

In this section, we consider building the initial parameterisation for a tri-
angulated closed surface with the topology of a sphere. As for the case of
triangulated open surfaces, we first construct the mapping for the nodes of
the mesh, and then interpolate to find the continuous mapping.
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Fig. 6.2 Initial parameterisation of a closed surface. Left: Triangulated mesh for a closed
surface, representing the anterior horn of a human brain ventricle. Right: The triangu-
lated mesh in the parameter space S

2. The colours denote the correspondence between the
meshes.

The parameter space for our closed shapes is then just the unit sphere.
The coordinates of a general point x in the parameter space are then the
usual polar coordinates (θ, ψ), with 0 ≤ θ ≤ π, 0 ≤ ψ < 2π.

The initial parameterisation can be constructed using a similar method to
that in (6.9). However, unlike open surfaces, there are no boundary nodes,
so we have to impose other boundary conditions in order to obtain a unique
solution.

One way to do this is as follows. We pick two nodes on the surface which
lie at opposite extremes of the shape – for example, we could pick the nodes
with the minimum and maximum values of the z coordinate. We will denote
these nodes by vNP and vSP , which stands for north pole and south pole,
respectively. These are mapped to the poles of the unit sphere, with θNP = π,
and θSP = 0.

Setting appropriate boundary conditions for the ψ coordinate is more diffi-
cult as it is periodic. We can accommodate this by holding fixed a Greenwich
meridian (ψ = 0). The nodes which map to this meridian are chosen as
those nodes which lie on the shortest path through the shape mesh between
vNP and vSP , and this shortest path can be calculated by using Dijkstra’s
algorithm [60].

This then provides sufficient boundary conditions to yield a unique so-
lution, using an analogous construction to that given for the case of open
surfaces. An example of such an initial spherical parameterisation is given in
Fig. 6.2.
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6.1.3 Defining a Continuous Parameterisation

So far, we have shown how to map triangulated meshes from shape sur-
faces to the corresponding topological primitive, from the triangulated mesh
({vA}, {tα}) to the mapped mesh ({xA}, {tα}), and how this mapping can
be controlled to respect various properties of the original mesh, and preserve
its connectivity. We now show how such a mapping can be interpolated, so
as to create a continuous mapping between the shape and parameter space.

Let v be a general point on the shape surface. Suppose this point lies
within some triangle tα. The position of this point can then be described
in terms of the positions of the vertices of this triangle {vαa} by the use of
barycentric coordinates (aα, bα, cα). Let Area(u,v,w) denote the area of the
triangle formed by the three points u,v, and w. Then the barycentric areal
[45] coordinates are defined thus:

aα(v) .=
Area(v,vα1,vα2)

Area(vα1,vα2,vα3)
(6.14)

bα(v) .=
Area(v,vα1,vα3)

Area(vα1,vα2,vα3)
(6.15)

cα(v) .=
Area(v,vα2,vα3)

Area(vα1,vα2,vα3)
. (6.16)

The position of the general point is recovered from the barycentric coordinates
via:

v ≡ aαvα1 + bαvα2 + cαvα3. (6.17)

The barycentric coordinates for the triangle inside which the point v lies
satisfy:

0 ≤ aα ≤ 1, 0 ≤ bα ≤ 1, 0 ≤ cα ≤ 1 & aα + bα + cα = 1. (6.18)

The triangle that contains v can hence be found using an exhaustive search,
then the barycentric coordinates are then used in an obvious fashion to define
the corresponding point x in the corresponding triangle on the topological
primitive/parameter space X:

x(v) .= aαxα1 + bαxα2 + cαxα3. (6.19)

The inverse transformation x X�−→ v(x) is defined analogously.



124 6 Parameterisation and Re-parameterisation of Surfaces

Fig. 6.3 An example of a distal femur sampled according to its parameterisation before
(Left) and after (Right) correcting for areal distortion.

6.1.4 Removing Area Distortion

We have shown how to construct an initial continuous parameterisation for
both open and closed surfaces. However, as can be seen from Fig. 6.1, this
initial mapping can cause considerable areal distortion, with triangles that
are a similar size on the shape mapping to triangles with very different areas
in the parameter space.

The extent of areal distortion can be quantified by the following objec-
tive function. Using the previous notation, Area(vα) ≡ Area(vα1,vα2,vα2),
which is the area of triangle tα on the shape. The objective function can then
be written as:

L =
∑

α

⎛

⎜⎝
Area(vα)∑

β

Area(vβ)
− Area(xα)∑

β

Area(xβ)

⎞

⎟⎠

2

. (6.20)

We hence see that this algorithm compares the fractional area of a triangle on
the shape with fractional area of the corresponding triangle on the parameter
space. The node positions, {xA}, on the parameter space can be manipulated
using any of the representations of re-parameterisations described later in this
chapter, in order to minimise this objective function.

The benefit of correcting for areal distortion is illustrated in Fig. 6.3.
The point is that from now on, we will be working with surfaces using this
parameterisation. For instance, surfaces will be sampled according to the
parameterisation. The figure shows a surface sampled according to a param-
eterisation before and after correction for areal distortion. It can be seen that
the corrected parameterisation gives a much more even sampling of the shape
surface that the uncorrected one.

Note that we need only perform this correction for a single, reference shape,
since as will be shown in the next section, this can be propagated to all of
the other examples in the training set of shapes.
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6.1.5 Consistent Parameterisation

So far, we have just considered the problem of parameterising a single shape,
and most methods of shape parameterisation only go this far. But for our
application of building models, we have to parameterise an entire training set
of shapes, not just a single example.

If the group of shapes is not taken into consideration, the parameterisations
of individual shapes are unlikely to be consistent with other parameterisations
in the group. The problem is demonstrated in Fig. 6.4, which shows the initial
correspondence between a pair of surfaces, parameterised using the method
described in Sect. 6.1.

Note that our training set of shapes is assumed to be aligned, so that we
have a rough initial correspondence defined across the set. The idea is now
to manipulate the parameterisations, so that they are consistent across the
set, according to this initial definition of correspondence.

Suppose we take one shape as a reference. All the shapes in the set are
mutually aligned, which hence defines an initial correspondence across the
set. And an initial parameterisation has also been generated for each shape.
For the initial shape, we also adjust its parameterisation for areal distortion,
as in Fig. 6.3.

We then decimate the parameterisation of the reference shape. It was found
that retaining about 20% of the original nodes was usually sufficient. Note
that this does not mean losing the fidelity of the shape representation, since
the original dense triangulation is maintained and manipulated. Decimation
just reduces the number of degrees of freedom of the problem, and eases
computation.

Let {ṽA
ref} be the set of nodes of the decimated reference shape, and {vB

i }
the set of nodes for the undecimated triangulation of the ith shape in the set.
A correspondence is then generated between each point of {ṽA

ref}, and its
closest point (according to the point-to-point distances between our aligned
set of training shapes). This then defines an index correspondence between
the reference and each of the other shapes, where:

Ii(A) = B, where B = arg min
(
‖ṽA

ref − vB
i ‖
)
. (6.21)

We now manipulate the parameterisation of the ith shape, using this corre-
spondence derived from the aligned shapes. Our objective function measures
the degree to which the parameterisations are consistent with this closest-
point correspondence defined above, which is quantified by:

L .=
∑

A

‖x̃A
ref − xIi(A)

i ‖2. (6.22)

To summarize, the nodes of the decimated triangulations are held fixed on the
reference shape, and the full triangulation is held fixed on the ith shape. They
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Fig. 6.4 The correspondence according to parameter value of a pair of distal femurs,
where the coloured lines join corresponding points on the pair of shapes. Left: SPHARM
parameterisation [14, 99, 76]; Right: groupwise consistent parameterisation.

are placed in correspondence so as to minimise the sum of squared distances
between nodes on the shapes. We then manipulate the parameterisation of
the ith shape (i.e., the points {xB

i }), so as to also try to minimise the sum of
squared distances between corresponding points, but now in parameter space.
The node positions {xB

i } on the parameter space can be manipulated using
any of the representations of re-parameterisation which will be described next
in this chapter.

Figure 6.4 illustrates the effect of producing a consistent set of parameteri-
sations. The correspondence illustrated here is that given by equal parameter
value, rather than the closest-point referred to above. It can be seen that af-
ter optimisation, points on different shapes with equal parameter values are
much closer together on the physical shapes than before the optimisation.

In this section, we have shown how to generate initial parameterisations for
both closed and open surfaces. We have also shown how to construct objective
functions which allow these initial parameterisations to be refined, generating
parameterisations that minimise areal distortion, as well as parameterisations
that are consistent across a set of shapes.

The final issue is how to manipulate these parameterisations, not just in
order to refine the initial parameterisations as given above, but also to solve
the final groupwise correspondence problem.

6.2 Re-parameterisation of Surfaces

In this section, we consider how to generate legal re-parameterisations for
surfaces. As was shown in Chap. 3, and demonstrated in the previous chapter
for the specific case of shapes in two dimensions (curves), such re-parameter-
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isations involve generating homeomorphic2 mappings of the parameter space
into itself.

We need to recall here what we are actually trying to achieve, which is
exploring the space of groupwise correspondences across a set of shapes, in
order to locate the minimum of some groupwise objective function. Homeo-
morphisms then correspond to legal moves in this space.

As regards solving the optimisation problem itself, there is another consid-
eration: such optimisation problems of groupwise or pairwise correspondence
of either shapes or images [23] are in general ill-posed3 in the Hadamard
sense [86], and are not solvable without some form of regularization. From
the point of view of practical computation, we require a finite-dimensional
search space. There are several different approaches to such regularization.
In what follows, we take the approach of explicitly constructing homeomor-
phic transformations that belong to some finite-dimensional space of param-
eterised transformations (that is, parametric re-parameterisation functions,
which we can think of as hard regularization). The alternative approach, of
soft regularization and non-parametric re-parameterisation functions, is con-
sidered in a later chapter (see Chap. 8).

6.2.1 Re-parameterisation of Open Surfaces

In a previous section, we describe how open surfaces could be mapped to the
unit square, to provide an initial parameterisation.

The relevant re-parameterisation function is then a homeomorphic map-
ping of the unit square. Many such mappings have been defined in the field
of non-rigid image registration (for example, [22, 149, 75]). The fluid-based
representation of Christensen [22] (a soft regularization method) will be con-
sidered later (see Chap. 8). In the current section, we will consider just the
hard regularization methods, based on sets of parameterised homeomorphic
transformations. This can be considered as a generalization and an exten-
sion of the piecewise-linear and local representations of re-parameterisation
defined previously for open curves (see Sect. 5.1).

6.2.1.1 Recursive Piecewise Linear Re-parameterisation

As noted in the previous chapter, the one-dimensional piecewise-linear repre-
sentation of curve re-parameteristaion (in Sect. 5.1.1) has no natural exten-
sion to surface re-parameterisation since the explicit ordering constraints in

2 In technical terms, a homeomorphic mapping (homeomorphism) is one which is one-to-
one, and continuous in both directions. A diffeomorphism is slightly more restricted, in
that the mapping is differentiable (to some order), rather than just continuous.
3 A well-posed problem has a unique solution, which depends continuously on the data.
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(5.7) cannot be applied on two-dimensional surfaces. The recursive piecewise-
linear representation (Sect. 5.1.2), on the other hand, only uses an implicit
ordering, allowing a straightforward extension to surface re-parameterisation.
In Sect. 5.1.2, we also briefly discussed an extension that used recursive sub-
division of triangles, which is of general applicability. However, for the case of
open surfaces, the parameter space is a unit square, which suggests a variant
based on rectangles.

The method proceeds as follows. Suppose we start with the set of four
nodes that correspond to the corners of the entire unit square. The rep-
resentation is refined by successively adding nodes in between those already
present. Each new node subdivides the parameter space into rectangles, which
are then further subdivided. In effect, we are building a simple tiling of the
unit square, with rectangular tiles, the nodes at the corners of these rectangles
forming a mesh.

Let us consider a single rectangle of this mesh, defined by the four nodes
with positions:

�αγβδ = {pα,pγ ,pβ ,pδ}. (6.23)

We will assume that we have Cartesian coordinates (x, y), with unit axis
vectors x̂, ŷ, which are aligned with the sides of the original unit square. This
means that to uniquely specify a rectangle, we need only give the positions
of a pair of diagonal nodes, rather than the positions of all four corners.
Compressing notation somewhat, we then refer to the rectangle �αβ , with
node positions:

�αβ .= {pα,pγ ,pβ ,pδ},
where: pγ = pα + ((pβ − pα) · ŷ) ŷ, pδ = pα + ((pβ − pα) · x̂) x̂. (6.24)

We then place a new daughter node p within this rectangle. Its position is
totally specified by the fractional distances along each of the sides of the
parent rectangle �αβ , so that:

p .= pxx̂ + pyŷ,

px
.= (pα · x̂) + ταβ

x ((pβ − pα) · x̂) ,

py
.= (pα · ŷ) + ταβ

y ((pβ − pα) · ŷ) . (6.25)

ταβ .= (ταβ
x , ταβ

y ). (6.26)

The parent rectangle �αβ is hence subdivided into four new rectangles by
this daughter node. Note that this process also introduces subsidiary nodes
(as shown in Fig. 6.5), so that each new rectangle possesses four nodes.

Each of these new rectangles may then be subdivided in their turn by the
addition of further daughter nodes. The advantage of this scheme is that it
produces a self-similar tiling, hence can be extended to any required depth
of recursion without altering the essential properties of the tiling.



6.2 Re-parameterisation of Surfaces 129

Legal re-parameterisations of the unit square are then created by moving
the daughter nodes from their original positions, with the nodes at the corners
of the original unit square itself remaining fixed. The movement of a daughter
node remains valid as long as it remains within the rectangle defined by its
parents. The subsidiary nodes attached to a daughter node move with it.
And when the parents of a node move, the daughter moves proportionately,
so that the transformation remains homeomorphic. This pattern of movement
is then bilinearly interpolated to define the movement at any point within the
original unit square, which yields the final homeomorphic re-parameterisation
function.

Although the mesh we have created looks quite complicated (see Fig. 6.5),
the parameters of the re-parameterisation function itself are quite simple.
For each daughter node, the free parameters are the fractional distances τ

.=
(τx, τy), where 0 < τx < 1, 0 < τy < 1. We hence see that for a mesh with n
daughter nodes (the entire mesh contains these daughter nodes and all their
associated subsidiary nodes, hence contains far more than n nodes), the full
space of parameters for the re-parameterisation function generated by this
set of daughter nodes is just the unit hypercube in R

2n. The identity re-para-
meterisation function corresponds to the daughter nodes not moving from
their initial positions, and their allowed initial positions correspond to any
point within the unit hypercube.

Fig. 6.5 Left: Subdivision of the parent rectangle �αβ (black lines) by a daughter node p
(blue circle). Right: Recursive subdivision, with daughter nodes displayed as circles filled
with solid colour. The corresponding subsidiary nodes are the stippled filled circles of the
same colour.
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This representation is also localized, in the sense that the movement of any
daughter node affects only the re-parameterisation of those points which lie
within the associated parent rectangle. The method hence facilitates the use
of a coarse-to-fine or a multiscale optimisation scheme.

The major drawback is that the re-parameterisation function itself is not
differentiable at the points or edges of the mesh. This issue of differentiability
will be addressed in the next section.

6.2.1.2 Localized Re-parameterisation

As we saw in the previous chapter, the piecewise-linear representation can
be improved upon by instead using a composition of smoother, local trans-
formations.

We could just consider a traditional spline-based representation of defor-
mation, such as the free-form deformation image registration framework of
Rueckert et al. [151], based on B-splines [57]. However, it is possible to use a
simpler approach.

For the purposes of efficient computational optimisation, we would like a
transformation that is localized in its effect. We would also like the scale of
the affected region to be variable, to allow a coarse-to-fine or a multiscale
optimisation approach. On the grounds of symmetry, the simplest region to
consider is a circular disc, where the radius of the disc provides the scale.

Hence, without loss of generality, let us consider applying a transformation
to the unit disk, centred at the origin. The simplest transformation can be
described as a localized translation, where the centre of the disc translates,
and all other points within the disc translate in the same direction, but with
varying amplitude.

Let us parameterise this transformation by a vector p, which represents
the new position of the centre of the disc, hence the motion at the origin.
The general form of a homeomorphic re-parameterisation function that can
be built from such a transformation is as in the following theorem.

Theorem 6.1. Homeomorphic Local Translations.
Consider the strictly localized re-parameterisation function defined by:

φ(x) =
{

x + h(||x||)p if |x| < 1
x otherwise

where h(r) ≥ 0 ∀ r ≥ 0,

h(0) = 1, h(1) = 0, & h′(1) = 0. (6.27)

φ(x) is then homeomorphic provided that:

‖p‖ <
1

|h′(r)| ∀ r. (6.28)
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Proof. Since all movement is in the direction of p, we do not have to check
for folding due to movement of points whose initial separation contains some
non-zero component perpendicular to this direction. It is hence sufficient to
consider the relative movement of two points with initial positions x and
x + εp, where 0 < ε � 1. Hence:

‖x + εp‖ = ‖x‖ +
εp · x
‖x‖ + O

(
ε2
)
.

∴ φ(x) = x + h(‖x‖)p,

& φ(x + εp) = φ(x) + εp + ε

(
p · x
‖x‖

)
h′(‖x‖)p + O

(
ε2
)
. (6.29)

The re-parameterisation is hence homeomorphic provided that:

p · (φ(x + εp) − φ(x)) > 0 ⇒ 1 +
(

p · x
‖x‖

)
h′(‖x‖) > 0,

⇒ p
.= ‖p‖ <

1
|h′(‖x‖)| . (6.30)

�	

We saw two examples of similar functions in the previous chapter. The first
(Sect. 5.18) is based on the clamped-plate spline (CPS) [112]. The biharmonic
clamped-plate Green’s function in two dimensions [9] leads to the function:

CPS: h(r) = 1 − r2 + r2 ln(r2), constraint: p <
e

4
, (6.31)

The second is the bounded polynomial representation (Sect. 5.19):

Polynomial: h(r) =
(
1 − r2

)2
, constraint: p <

3
√

3
8

, (6.32)

We can also build such functions based on trigonometric functions, for ex-
ample:

Trigonometric: h(r) =
1
2

(1 + cos(πr)) , constraint: p <
2
π

. (6.33)

Whichever form is chosen, several such local transformations can then be
concatenated to produce a more general transformation (see Fig. 6.6 for
examples). The combined transformation then depends on a set of control
points, and control point motions, but also depends on the order in which
the individual transformations are combined.

It is of course also possible to consider a more general spline interpolant,
based on a set of control points, which does not depend on such an ordering.
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We do not propose to consider such splines here, but just consider the simple
case (sufficient for our purposes) of localized interpolants.

Consider a set of control points defined over a regular grid of positions.
We say that the field of movement across the grid is interpolated from the
movements defined at the control points. If the movement within each square
only depends on the control points at the four corners of that square, then
we have the localized interpolant that we require.

Let us consider a single such square, aligned with the coordinate axes. For
ease of computation, we scale the square to unit size, with 0 ≤ x ≤ 1, and
0 ≤ y ≤ 1. Let p(x, y) denote the interpolated movement at the point (x, y),
with corresponding re-parameterisation function:

φ(x, y) .= (x, y) + p(x, y).

We then consider localized interpolants of the form [41]:

p(x, y) .= h(x)h(y)p(0, 0) + h(1 − x)h(y)p(1, 0) + (6.34)
h(x)h(1 − y)p(0, 1) + h(1 − x)h(1 − y)p(1, 1),

where h(r), 0 ≤ r ≤ 1 is the interpolation function. Written in this form,
this is just a form of kernel smoothing of the motion field, although using
(symmetric) kernels k(x) .= h(|x|) of strictly compact support, to ensure the
locality of our interpolant.

For sensible interpolation/smoothing, h(r) should be a monotonically de-
creasing function. To obtain the correct values of the interpolated movement
at the corners, we require that:

h(0) = 1, h(1) = 0. (6.35)

The simplest function that satisfies this is the step-function:

h(r) = 1, r <
1
2
, else: h(r) = 0, (6.36)

which corresponds to nearest-neighbour interpolation.
The next-simplest is the linear function h(r) = 1 − r, and this kernel

is then equivalent to bilinear interpolation. However, neither the nearest-
neighbour or the bilinear interpolant is everywhere differentiable. To obtain
a smoother interpolant, we hence need to choose a smoother kernel. First,
imposing differentiability at the boundary of influence of a control point gives
us the constraint that h′(1) = 0. Any of the functions considered above, the
CPS (6.31), the polynomial (6.32), or the trigonometric (6.33), satisfy this
and can be used to produce this smoothed-out version of bilinear interpo-
lation. An example is shown in Fig. 6.6. Note however that in general, the
conditions that need to be met so that the re-parameterisation given by such
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Fig. 6.6 Examples of local re-parameterisations. Left: A composition of four single-point
clamped-plate spline transformations (6.31). Right: The clamped-plate smoothed inter-
polant (6.35), defined over a 10 × 10 grid of control points.

an interpolation is guaranteed to be homeomorphic are not straightforward,
nor is their derivation.

We will now consider a further restriction on the allowed kernels. Bilinear
interpolation has the important property that the interpolated values are
constant if the control point values are constant. In terms of the kernel h(r),
this is equivalent to the requirement that:

h(r) + h(1 − r) = 1. (6.37)

Of the functions considered above, only the trigonometric satisfies this con-
straint. A class of polynomial functions that satisfy this condition is:

If r ≤ 1
2
, h(r) = 1 − arn, else h(r) = a(1 − r)n, n ≥ 1, a = 2n−1.

If we consider just the class of kernels that satisfy (6.37), the interpolant
becomes slightly simpler:

p(x, y) .= h(x)h(y)p(0, 0) + h(y)(1 − h(x))p(1, 0) + (6.38)
h(x) (1 − h(y))p(0, 1) + (1 − h(x))(1 − h(y))p(1, 1).

Let us rewrite the node motions in terms of the mean motion:

p(0, 0) = p̄ + p̃(0, 0),

where p̄ is the mean of the four motions. We then place bounds on the
components of these residual motions at the nodes, so that:
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− p ≤ p̃x(0, 0) ≤ p, for some p > 0. (6.39)

By considering the Jacobian of the re-parameterisation function φ(x, y),
and constraining this to remain positive (i.e., a valid homeomorphism), it is
possible to derive a relation between the maximum allowed residual displace-
ment p and the maximum value of |h′(r)| (similar to that in (6.28)):

p ≤ 1
α|h′(r)| , (6.40)

where α is some number that can be determined (although only after a con-
siderable amount of algebraic manipulation!).

6.2.2 Re-parameterisation of Closed Surfaces

We now move on to the re-parameterisation of closed surfaces. As we saw in
Sect. 6.1.2, closed surfaces can be parameterised by mapping the surface of
the shape onto the surface of a unit sphere. Points in the parameter space
can then be represented using the usual spherical polar angular coordinates
(θ, φ). Correspondence may now be manipulated by moving points around on
the sphere, and to achieve this, we need to construct sets of homeomorphic
mappings of the surface of the sphere.

Many of the techniques we have developed previously for re-parameter-
ising open surfaces, or for re-parameterising open and closed curves can be
adapted for this task, as we will show.

6.2.2.1 Recursive Piecewise-Linear Re-parameterisation

A recursive piecewise-linear representation of closed surface re-parameter-
isation can be constructed in a similar manner to open surfaces (described
above in Sect. 6.2.1). However, given the differences between a unit square
and a unit sphere, triangular meshes are preferred over the rectangular tiling
that was used previously.

Let us consider first the task applied to a planar triangle (pα,pβ ,pγ) such
as that shown in Fig. 6.7(i). A daughter node P is created within the triangle,
at position p. Its position within the triangle is specified by the two fractional
distances ταβγ

1 , ταβγ
2 . The line r − q is constructed, passing through P and

parallel to pβ −pγ . The fractional distances are then that of P along the line
r−q, and the point q along pγ −pα, with 0 ≤ ταβγ

1,2 ≤ 1. We hence see that:

p = (1 − ταβγ
1 )pα + ταβγ

1 ταβγ
2 pβ + ταβγ

1 (1 − ταβγ
2 )pγ . (6.41)
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Fig. 6.7 Recursive piecewise-linear re-parameterisation of closed surfaces. (i) A daughter
node (blue) placed within a planar triangle (pα,pβ ,pγ), with the fractional distances
ταβγ indicated. (ii) A simple threefold subdivision generated by the daughter node. (iii)
A fourfold subdivision generated by the daughter control node. The dotted grey lines
are construction lines, the solid grey lines indicate the new edges added, with the new
subsidiary nodes (grey filled circles). (iv) A recursive subdivision according to the fourfold
scheme. The solid coloured circles are the various daughter control nodes, with stippled
circles of the same colour indicating the added subsidiary nodes of the triangulation. Grey
lines indicate the added edges.

We could use P to subdivide the parent triangle into three, as shown
in Fig. 6.7 (ii). However, this construction suffers from the problem that
it is not self-similar. The sides of the parent triangle are retained as sides
of the new daughter triangles, which therefore means that these triangles
becoming increasingly sliver-like as the recursion proceeds, approaching a line
in the infinite limit. A better subdivision is the fourfold subdivision shown in
Fig. 6.7 (iii), the construction as shown by the dashed lines in the diagram.
This division is self-similar,4 hence can be carried out to any required depth
of recursion without changing the nature of the triangles. An example of such
multi-level recursion is shown in Fig. 6.7 (iv).

Deformations of these triangulated meshes proceed as before, where the
motion of a daughter control node is legal as long as it remains within its
parent triangle, and any daughter moves proportionately with its parent tri-
angle. The subsidiary nodes of a daughter node move accordingly. As in the
case of open surfaces (Sect. 6.2.1), for a triangulation with n daughter control
nodes, the parameter space is the unit hypercube in R

2n.

4 The construction is obviously related to that used to produce the fractal called the
Sierpiński gasket or Sierpiński triangle [164].
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Now let us consider applying this procedure to points on the sphere. The
construction is initialized by placing a triangulated polyhedron within the
sphere (such as the inscribed tetrahedron or octahedron). The nodes of this
polyhedron then form the initial triangulation, with connectivity as deter-
mined by the inscribed polyhedron. Since we are on the surface of the sphere,
the entire mesh of spherical triangles covers the sphere, without any gaps or
overlaps.

We now consider the planar triangle formed by the same three nodes. This
is subdivided as shown previously. The new nodes are then projected back
onto the surface of the sphere via:

r �→ r
‖r‖ , (6.42)

where the origin is taken at the centre of the sphere. This hence produces
a recursive, self-similar triangulation of the surface, whose movement, con-
trolled as in the planar case, produces a homeomorphic re-parameterisation
of the surface of the sphere.

As before, these recursive piecewise linear re-parameterisations are power-
ful, but possess the drawback that they are not differentiable along the edges
of the triangulation. We hence move on to consider methods of re-parameter-
isation of the sphere which are differentiable almost everywhere.

6.2.2.2 Localized Re-parameterisation

In Sect. 6.2.1, we showed how to generate various parametric homeomorphic
deformations of the unit disc. Hence a simple way of re-parameterising the
sphere is to use these local transformations defined for open surfaces, but
applied on flattened regions of the sphere.

To be specific, consider a region of the surface of the sphere, defined so
as to be less than a distance w from some point C also on the surface. This
sphere about C hence defines a cap on the surface of the unit sphere. In terms
of this localized patch, we refer to C as the centre of the patch, with width
w. Such a cap is obviously topologically equivalent to the disc, and can be
mapped into the disc via an orthographic projection (as long as w <

√
2, to

ensure that the cap is less than a hemisphere). A diagram illustrating the
orthographic projection is shown in Fig. 6.8. The projection obviously means
that points near the edge of a large cap will be compressed, and we found
that a smaller limit of w < 1

3 was suitable, and avoided extreme distortions.
Suppose the centre C has polar coordinates (θc, ψc), and a general point on

the sphere (θ, ψ), which then maps to a point (x, y) in Cartesian coordinates
on the tangent plane TC to the sphere at C. It can be shown that [168, 193]:
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Fig. 6.8 An orthographic projection from the sphere onto the tangent plane.

Fig. 6.9 Multiple local transformations of the sphere. Left: the original mesh; Middle
and Right: the mesh after applying multiple local transformations.

x = cos θ sin(ψ − ψc)
y = cos θc sin θ − sin θc cos θ cos(ψ − ψc). (6.43)

Re-parameterisation is then performed on the disc (Sect. 6.2.1), using
any function obeying the constraints of Theorem 6.1 for homeomorphic local
transformations. The complete set of parameters for the transformation are
then the position of the centre point C, the cap width w, and the amount of
deformation of the centre point, p as in Theorem 6.1. After the transforma-
tion, points are projected back onto the sphere (see [193] for specific formulae
and advice on implementation).

As for open surfaces, a number of local transformations can be combined
to form a general transformation – see Fig. 6.9 for an example.

These transformations, as in the case of open surfaces, have the advantage
that only a localized region is effected, which eases the computational load.
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The width parameter means that they are also suitable for a multiscale or a
coarse-to-fine optimisation strategy.

6.2.2.3 Cauchy Kernel Re-parameterisation

We can also adapt methods for re-parameterising closed curves (Sect. 5.2.1)
to create methods for re-parameterising the sphere.

The basic idea is as follows. Consider an arbitrary point P on the sphere.
This then defines a set of great circles, which intersect at P and at its an-
tipodal point. Considering the arcs from P to the antipode, these can be
re-parameterised using a re-parameterisation of a open line. And provided
that this one-dimensional re-parameterisation varies smoothly around the
sphere perpendicular to the arcs, we then have a re-parameterisation of the
entire sphere.

We consider first a transformation which is symmetric around the axis.
We then generalize this to include asymmetric transformations, and trans-
formations which includes shearing.

6.2.2.4 Symmetric Theta Transformation

Let us consider an arbitrary point P on the unit sphere. For simplicity, assume
that the spherical polar co-ordinates (θ, ψ) on the sphere have been redefined
so that P corresponds to the point θ = 0. Let us first consider a rotationally
symmetric mapping that re-parameterises the θ coordinate:

θ �→ f(θ). (6.44)

For the mapping to be homeomorphic and continuous with the identity, f
must be a non-decreasing monotonic function over the range 0 ≤ θ ≤ π, with
f(0) = 0 and f(π) = π. Hence any of the methods described in the previous
chapter for re-parameterising open curves could be adapted for this purpose.
However, we choose here the method described in Sect. 5.2.1 for closed curves,
using the cumulative distribution of a wrapped Cauchy distribution and a
constant term (5.46).5 Then we have:

f(θ) =

θ∫

0

dα

[
1

(1 + A)

(
1 + A

(
1 − Ω2

1 + Ω2 − 2Ω cos α

))]

=
1

1 + A

(
θ + A arccos

(
(1 + Ω2) cos θ − 2Ω

1 + Ω2 − 2Ω cos θ

))
, (6.45)

5 Note that in (5.46), the cdf was written in terms of the arctan function, but that here
we use a mathematically equivalent formulation in terms of the arccos function.
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where 0 < Ω < 1) is the width parameter,6 and A (A ≥ 0) is the amplitude
of the wrapped Cauchy. Note that here, we are taking the origin of the cdf to
be the centre of the bump of the wrapped Cauchy, and integrating outwards.
Hence points spread out around the bump position, with the centre θ = 0
and the antipodal point θ = π fixed (f(0) ≡ 0, f(π) ≡ π).

This form of f(θ) is such that A = 0 corresponds to the identity re-para-
meterisation. In the limit of small values of the width parameter6 Ω → 0:

f(θ) = θ +
2ΩA sin θ

1 + A
+ O

(
Ω2
)
, (6.46)

which is the identity re-parameterisation plus a perturbation, so that the
largest amount of movement is at the equator at θ = π

2 . Conversely, in the
limit Ω → 1:

f(θ) =
1

1 + A
(θ + Aπ) + O

(
(1 − Ω)2

)
. (6.47)

This corresponds to a linear function, which is the form of f(θ) for values of
θ greater than some minimum, where smaller values of θ correspond to the
initial steep rise given by integration over the sharp peak.

Equation (6.45) was constructed with the kernel centre P at the point
θ = 0. If the polar coordinates are defined with respect to an arbitrary axis,
so that the kernel centre P has the position a ∈ R

3, then an arbitrary point
x ∈ R

3 on the sphere moves to x′ where:

cos θ
.= a · x, (6.48)

x → x′ = a cos f(θ) +
sin f(θ)

sin θ
(x − a cos θ) . (6.49)

In Fig. 6.10, we show an example of re-parameterising a surface using a
single kernel. As can be seen from the figure, points spread out around the
centre of the kernel, whilst compressing at the antipodal point.

6.2.2.5 Asymmetric Theta Transformations

The above transformation is symmetric in its effect about the centre of the
kernel. We can also perform asymmetric transformations of the form:

ψ �→ ψ, θ �→ f(θ, ψ). (6.50)

As before, let us redefine polar coordinates, so that the kernel centre P cor-
responds to the point θ = 0. We take a second point Q �= P , and define the
ψ coordinate about P so that Q is on the meridian ψ = 0. An asymmetric
transformation around the point P , towards a point Q can be achieved using

6 Note that Ω → 1 gives a more highly-peaked distribution, whereas Ω → 0 gives a flatter
distribution. See Fig. 5.10 for examples.



140 6 Parameterisation and Re-parameterisation of Surfaces

Fig. 6.10 A demonstration of a symmetric (top panel) and an asymmetric (bottom
panel) theta transformation applied to the sphere. In each case, two views are presented.
From the left, we have the original sphere, and the theta transformation (6.45) for the
values of Ω = 0.1, 0.25, and 0.5 and A = 4. In the bottom panel, for the asymmetric
transformation (6.51), the same Ω values are used, with A(ψ) as in (6.52), with Υ = 0.75

and A0 = 1−Υ2

Υ
, so that 0 ≤ A(ψ) ≤ 4. The colours denote correspondence, and the poles

(θ = 0, π) are indicated by the thick black line.

(6.45) and making the amplitude A a smooth, periodic function of the ψ
coordinate:

A → A(ψ) ≡ A(ψ + 2π).

f(θ, ψ) .=
1

1 + A(ψ)

(
θ + A(ψ) arccos

(
(1 + Ω2) cos θ − 2Ω

1 + Ω2 − 2Ω cos θ

))
.(6.51)
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One way to do this is to use the wrapped Cauchy distribution to obtain:

A(ψ) = A0

[
1 − Υ 2

1 + Υ 2 − 2Υ cos ψ
− 1 − Υ 2

(1 + Υ )2

]
, (6.52)

where 0 < Υ < 1 is the width of the subsidiary Cauchy. We have chosen the
formulation such that A(ψ) has a minimum value of zero. An example of an
asymmetric transformation is shown in Fig. 6.10, where A0 was chosen so that
the maximum value of A(ψ) matched that of the symmetric transformation
also shown in the figure.

Any of the symmetric theta transformations that have a single amplitude
parameter A can obviously be generalized in this manner to produce a asym-
metric theta transformation. Different choices of the periodic function A(ψ)
can also be used.

6.2.2.6 Shear Transformations

Finally, let us consider transformations of the ψ coordinate. This is equivalent
to shearing and twisting the sphere about the axis defined by the point P .
Consider a re-parameterisation of the form:

ψ → ψ + g(θ). (6.53)

If g(θ) is a constant, we just have a rigid rotation of the unit sphere. In
general, g(θ) just has to be some smooth function. One such choice is where
the transformation g(θ) is given by a wrapped Cauchy distribution:

g(θ) = B
(1 − Γ 2)

1 + Γ 2 − 2Γ cos (θ − θ0)
, (6.54)

with amplitude parameter B, width parameter 0 < Γ < 1, and centre position
θ0. This transformation is continuous with the identity at B = 0. In the limit
Γ → 0:

g(θ) = B [1 + 2Γ cos(θ − θ0)] + O
(
Γ 2
)
, (6.55)

which hence approaches a rigid rotation. In the limit Γ → 1:

g(θ) = B
1 − Γ

1 − cos(θ − θ0)
+ O

(
(1 − Γ )2

)
. (6.56)

We hence see that the effect becomes localized about θ ≈ θ0 in this limit,
over some region where |θ − θ0| = O

(√
1 − Γ

)
.

An example shear transformation is shown in Fig. 6.11.
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Fig. 6.11 Left: the original sphere, Right: the sphere after a shear transformation (6.54),
with Γ = 0.75, θ0 = π

4
, and B chosen so that g(θ0) = π

3
. The colours denote correspon-

dence, and the thick black lines indicate the line θ = π
2
, and the point θ = 0.

6.2.3 Re-parameterisation of Other Topologies

To summarize, we have presented a variety of methods for re-parameterising
open shapes with the topology of the disc or unit square, and closed shapes
with spherical topology. Although this represents a significant proportion of
shapes that we may wish to model, it is worth considering how the methods
can be extended to other topologies.

One of the main difficulties in dealing with shapes with complex topologies
is that of defining an initial parameterisation, or mapping onto the appro-
priate topological primitive. Another problem is that for some topologies, a
single parameter space or a single chart does not suffice.

Consider first the case of shapes with more than one boundary (a few
examples of which are shown in Fig. 6.12). An obvious approach is to extend
the ideas presented in Sect. 6.1.1 for surfaces with a single boundary, and to
map the shape surface onto some region of the plane by flattening it out, but
without cutting or tearing the surface.

If we consider the examples in the figure, we see that some shapes (the
tube, branched tube, and multiple branched tube) have the topology of the
punctured disc.7 These shapes can hence be flattened onto the plane, and
then mapped onto the unit square. One boundary becomes the boundary
of the square, and the other boundaries become the boundaries of holes (or
punctures) within the square. However, the last case cannot be so flattened.
If we compare this with the other shapes, we see that this complex case can
be thought of as the branched tube, but with the addition of a tunnel through
the common branch point. Topologically speaking, such a tunnel is equivalent
to a handle.8 This handle cannot be flattened. To parameterise this shape,

7 Note that we are using punctured disc in the everyday sense, rather than in the strict
mathematical sense of the disc with the point at the origin removed.
8 The simplest example is a torus, which can be thought of as the usual ring doughnut
shape, with a tunnel, or the topologically equivalent case of a sphere with a handle attached.
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Fig. 6.12 Examples of shapes with boundaries. Top: The shapes (tube, branched tube,
multiple branched tube, and a more complex case, a branched tube but with a tunnel
driven through it). Bottom: The shapes flattened onto the plane. Note that the shape
on the right gives a handle, which cannot be flattened. Thick coloured lines mark the
boundaries on each shape and on the plane.

we would have to cut through the handle, producing two additional holes in
the square, but now with the edges identified between the two holes, rather
than the edges being true boundaries.

For shapes which we can flatten without cutting, we can produce an initial
parameterisation by generalizing the approach given in Sect. 6.1.1. First, the
nodes on each boundary are mapped to the corresponding boundaries in the
punctured disc. The positions of all other nodes can be defined as weighted
combinations of neighbouring nodes, and the weight values can be found by
optimisation. A conformal parameterisation can then be established using a
variational approach. Horkaew and Yang [95] used a similar approach to build
a statistical shape model of the heart, although they mapped their surfaces to
the topologically equivalent parameter space formed by conjoined, punctured
spheres, rather than to the plane.

Surfaces without boundaries offer a similar range of increasingly complex
topologies. The addition of a single handle to the sphere produces a shape
topologically equivalent to a torus. We can also add multiple handles, the
surface then being the surface of the resultant handlebody. For such shapes,
once an initial parameterisation has been achieved, we can manipulate pa-
rameterisation by flattening regions of the surface onto the tangent plane
in the same way as we did for the sphere in Sect. 6.2.2.2. In effect, this is
equivalent to defining local coordinate patches by projection, but as in the
case of the orthographic projection of the sphere (6.43), the size of the patch
is limited by the nature of the topological primitive chosen, and the exact
details of the projection. Each patch can then be re-parameterised using a
local transformation, and a composition of such local transformations can be



144 6 Parameterisation and Re-parameterisation of Surfaces

used to re-parameterise the surface. However, this suffers from the problem
that it can generate only localized transformations.

An alternative approach is to take a lead from the computer graphics
community, who have performed considerable research into mesh parame-
terisation of arbitrary topologies [162]. The most popular method is to cut
the surface to form multiple charts and perform a planar parameterisation of
each chart.9 Given such an initial parameterisation, we can re-parameterise
each planar chart using one of the formulations in Sect. 6.2.1. This approach
also offers a somewhat limited transformation since each point can only be
moved within the same chart. This limitation can be overcome by repeat-
ing the process several times and using a different set of ‘cuts’ to produce a
different set of charts each time.

We can also extend the ideas used for constructing kernel-based re-para-
meterisations of closed surfaces (Sect. 6.2.2.2). The previous chapter de-
scribed how a one-dimensional circle (S1) or a one-dimensional line (R1) could
be re-parameterised. We can therefore re-parameterise any surface which is
a product space formed by a combination of S

1 and R
1. For example, if we

represent the cylinder or tube as the product space of R
1 × S

1, we can re-
parameterise either S

1 or R
1 using the representations described in Sects. 5.2

and 5.1, respectively. We can also view the tube as the unit square, but with
periodic boundary conditions imposed on two opposing edges. Similarly, the
torus can be viewed as a square with periodic boundary conditions on both
pairs of edges.

So far, we have only considered the case of single-part shapes of fixed topol-
ogy. Re-parameterisation of multi-part shapes of fixed topology is obviously
a trivial extension of the single-part case, where each part is individually
re-parameterised in the appropriate fashion. The case where the topology
can change (for example, where two parts merge to become a single part, or
where a single part changes its topology) is obviously much more difficult,
and a complete discussion is beyond the scope of the current text.

6.3 Use in Optimisation

We conclude this chapter by considering how each of the homeomorphic
transformations considered in this chapter can be incorporated into an op-
timisation algorithm – the precise details of the optimisation algorithm is
the subject of the next chapter. We could consider optimising over all of the
parameters that we have defined for our chosen set of parameterised home-
omorphisms. However, as for the case of curves, we found that it is instead
advisable to define some parameters as auxiliary parameters (which remain
fixed), and others as free parameters, which are to be optimised over. This

9 In differential geometry, such a collection of charts is called an atlas.
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obviously has the advantage that it reduces the dimensionality of the search
space for optimisation. However, this approach also makes sense if we con-
sider the meaning of the various auxiliary parameters, inasmuch as they refer
to the position and scale of localized transformations, or the position and
scale of kernels. For a multiscale or coarse-to-fine optimisation strategy, it
makes sense to define and fix the possible positions and scales a priori, and
only search over the amplitudes of the localized deformations.

The parameters, and our split between auxiliary and free parameters is
summarized in Table 6.1, along with any constraints on parameter values. We
also initialize our transformations to the identity, and the values to achieve
this are also listed.
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Chapter 7

Optimisation

In previous chapters, we considered objective functions and parametric meth-
ods of manipulating correspondence. It is now time to bring these together in
the context of our framework for groupwise correspondence, and construct a
suitable algorithm for locating the optimum value of the objective function.

Suppose that we have chosen an objective function L (Chap. 4) and a rep-
resentation of re-parameterisation, that is controlled by a vector of parame-
ters α (Chaps. 5 and 6). Our goal is to find the values of these parameters
for each shape, that minimises our chosen objective function:

Lmin = min
{α(1),...,α(i),...α(nS)}

L
(
S′

1, . . . ,S
′
i, . . .S

′
nS

)
,

S′
i(x) .= Si(x′), x′ = φi(x) .= φ(x;α(i)), (7.1)

where φ is the parametric re-parameterisation function1 and α(i) are the set
of parameters that control the re-parameterisation of shape i.

Finding a minimum of (7.1) is a difficult task since the number of param-
eters in the optimisation is large. If, for example, we have a training set of
50 shapes and we use 30 parameters to represent each re-parameterisation,
then we have to find the optimum combination of 1500 parameter values.
The problem is exacerbated by a non-linear objective function that contains
many local minima.

Most standard optimisation algorithms cannot cope with an optimisation
problem of this magnitude and invariably converge on a local optimum. There
are, however, some specialized algorithms such as simulated annealing and
genetic algorithm search that can handle such optimisation problems by using

1 Note that for the purposes of implementation (as was previously indicated in Sect. 3.3.2),
we are working with the alternative definition of re-parameterisation to that in (6.4). Our
re-parameterisation function as defined here is actually the inverse of the re-parameter-

isation function according to the definition in (6.4). This difference is unimportant, since

valid re-parameterisation functions are constrained to be invertible.

R. Davies et al., Statistical Models of Shape, 147
DOI: 10.1007/978-1-84800-138-1 7, c© Springer-Verlag London Limited 2008
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stochastic techniques to evade local minima. Genetic algorithm search was
used in early work on model-building [101, 53] and demonstrated the fea-
sibility of the optimisation approach. Genetic algorithm search is, however,
an inefficient technique that leads to impractical run times, even for small
training sets.

Producing an efficient minimisation routine was one of the most chal-
lenging aspects in the development of this optimisation approach to model-
building. In recent years, many techniques were introduced that turned this
optimisation problem into a tractable task – these are described in the first
section of this chapter. The second section looks at how the optimisation
can be tailored to deal with certain classes of objects, before the third sec-
tion considers implementation issues. The chapter concludes by walking the
reader through two examples of how the optimisation framework can be used
in practice.

7.1 A Tractable Optimisation Approach

Many efficient ‘off-the-shelf’ optimisation algorithms exist, but they cannot
cope with the optimisation problem in (7.1), since the number of parame-
ters is high, leading to impractical computational demands and unreasonable
memory requirements. We must, therefore, find a way of addressing this prob-
lem of dimensionality by breaking down the problem into a series of simpler
ones. Note that any re-parameterisation can be decomposed as a composition
of simpler re-parameterisations:

φ = φ(nj) . . . ◦ φ(2) ◦ φ(1),

where each of the simpler re-parameterisation functions requires fewer pa-
rameters than the compound re-parameterisation function. We hence see
that this decomposition can be used to construct an iterative optimisation
scheme, where, at each iteration, we just optimise over one of these simpler
re-parameterisation functions φ(j). These are lower-dimensional optimisation
problems, allowing the use of standard local optimisation algorithms, which
are far more effective than genetic algorithm search, leading to a large reduc-
tion in convergence time [50]. Any suitable non-linear optimisation algorithm
can be used for this purpose (see Chap. 10 in [139]); in practice we use the
Nelder-Mead downhill simplex algorithm.

This iterative scheme works well for many classes of object, especially
if the training shapes are simple curves (that is, one-dimensional shapes).
However, many adaptations to the basic scheme have been proposed, leading
to decreased convergence time and improved robustness – these are described
in the remainder of this section.
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7.1.1 Optimising One Example at a Time

Even if we employ the iterative approach above, the number of parameters to
be optimised simultaneously can still prevent the local optimisation algorithm
from converging reliably for relatively large training sets (� 100 examples). It
is also not well suited to an iterative model-building scheme where examples
are segmented and added one by one.

The number of variables optimised simultaneously can be reduced by opti-
mising the parameterisation of only one example at a time. This is achieved by
cycling through the training set, optimising the current re-parameterisation
of each example before moving on to the next iteration. Note that we are still
considering the entire training set (i.e., the model is built using the current
parameterisations of all examples) but the parameterisation of each example
is optimised independently. To remove any bias, the ordering of the training
set is permutated at random before each iteration.

7.1.2 Stochastic Selection of Values for Auxiliary
Parameters

Many of the representations of re-parameterisation described in Chaps. 5 and
6 have two sets of parameters: optimisation parameters and auxiliary param-
eters (see Tables 5.1 and 6.1). The optimisation parameters are manipulated
to optimise L, whereas the auxiliary parameters are chosen and fixed before
optimisation.

The auxiliary parameter values can be chosen using some fixed scheme –
in [49], for example, a kernel-based representation was used within a multi-
resolution framework where re-parameterisation was initially defined by a
small set of broad kernels and then refined by adding thinner kernels in
between. However, only a limited number of kernel widths and positions
were used, leading to a limited representation of re-parameterisation. Another
disadvantage is that the scheme required an optimisation schedule (number
of recursion levels, iterations for each level, etc.).

An alternative is to take a multiscale approach, where each auxiliary pa-
rameter value is chosen stochastically [55]. This approach adds more robust-
ness to local minima and allows a richer set of re-parameterisation functions
to be generated. It also avoids the need for an optimisation schedule: the only
values to select are those that define the distribution from which auxiliary
parameter values are sampled (a list of such distributions, that were found
to be suitable for many classes of shape, in given in Table 7.1).

In order to use Table 7.1, we need a method of uniformly sampling the
training surfaces. If we have followed the area-preserving parameterisation
approach in the previous chapter (see Sect. 6.1.4), this can be achieved by
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uniformly sampling from the parameter space. A uniform sampling of the
parameter space of curves and open surfaces is straightforward, but sur-
faces with spherical topology require a little more consideration – see Al-
gorithm 7.1.

Table 7.1 The distributions from which values for auxiliary parameters are chosen.
N (μ, σ) is a Gaussian distribution with mean μ and standard deviation σ and U is a uni-
form distribution over the curve/surface. Note that we take the modulus of values drawn
from a Gaussian, since the actual parameter is required to be positive.

Representation Auxiliary Parameter Distribution

Curves

Local re-parameterisations
(Sect. 5.1.3)

kernel widths, {wk} N (0, 1/20)

centrepoints, {ak} U

Kernel-based
representations
(Sects. 5.1.4.1 & 5.2.1)

kernel widths, {wk} N (0, 1/32)

centrepoints, {ak} U

Surfaces

Local re-parameterisations
(Sects. 6.2.1 & 6.2.2.2)

kernel widths, {wk} N (0, 1/5)

centrepoints, {ak} U

Kernel-based
representations
(Sect. 6.2.2.3)

kernel widths, {wk} N (0, 1/8)

centrepoints, {ak} U

7.1.3 Gradient Descent Optimisation

Optimisation algorithms tend to perform better if they are supplied with
information about the gradient of the objective function. The gradient of
the objective function L, with respect to the optimisation parameters α(i)

of the ith example (that is,
∂L

∂α(i)
), can be estimated numerically using a

finite difference scheme. However, this is computationally demanding since
the entire model has to be re-built from scratch for the computation of each
component of the gradient.

As we saw in Chap. 4 (specifically, Sect. 4.3.4, with detailed computations
in Appendix B), a semi-analytic solution can be obtained by decomposing
the gradient using the chain rule. For the case of infinite-dimensional shape
representations, we obtain the expression:
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Algorithm 7.1 : Generating Random Points on the Surface of a Sphere.

procedure x = random sphere points

Description

• Generates a point x, according to a random sampling of a uniform distribution over the
sphere surface.

Declarations

• R(a, b) is a function that generates a number at random by sampling from a uniform
distribution over the range [a, b]

Sampling

1. let x = (x, y, z) be a point on the sphere, whose coordinates are chosen as follows:

1.1. let z ← R(−1, 1)
1.2. let t ← R(0, 2π)
1.3. let r ←

√
1 − z2

1.4. let x ← r cos t
1.5. let y ← r sin t

return x.

∂L
∂α

(i)
A

=
nS−1∑

a=1

∂L
∂λa

nS∑

j=1

nS∑

k=1

∂λa

∂D̃jk

∫
δD̃jk

δSi(x)
δSi(x)

δα
(i)
A

dA(x), (7.2)

where α
(i)
A is the Ath optimisation parameter for the ith shape, D̃ is the con-

tinuous form of the covariance matrix, and {λa} are its eigenvalues. Practical
details of how this expression can be evaluated in practice are given later in
Sect. 7.3.2.

Optimisation can now be performed using a gradient descent algorithm
such as steepest descent or conjugate gradients [139]. Although the latter is
preferred in general optimisation problems, there is very little difference be-
tween their performance when used for model-building. In practice, steepest
descent is used because of its simplicity: it only involves a series of one-
dimensional line searches down the gradient.
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7.1.4 Optimising Pose

The positions of corresponding points depend on the pose parameters of each
example as well as the shape parameterisations. As we saw in Sect. 2.1.1, a
shape can undergo a similarity pose transformation, consisting of: t ∈ R

dnP

representing a translation in R
d, a dnP ×dnP rotation matrix R, representing

a rotation in R
d, and a scaling, s ∈ R

+:

x �→ sR(x − t). (7.3)

These pose parameter values can be chosen using Procrustes analysis (see
for example Algorithm 2.1), which is equivalent to minimising the squared
distance between each shape and the mean. But as we have already seen
in Sect. 4.1.1, the squared distance is not a good objective function. Bet-
ter models can be built by optimising the pose parameters using one of the
model-based objective functions described in Chap. 4. In practice, transla-
tion can be dealt with directly, by setting the centre of gravity of each re-
parameterised shape to the origin. But both the scale factor and the rotation
must be explicitly optimised. The techniques described above for optimisation
of parameterisation (optimising one example at a time, and using gradient
descent) also work well for pose optimisation.

It is important to note that the optimal pose parameters depend on the pa-
rameterisation of each shape, and must therefore be included in the iterative
optimisation process. In practice, the optimisation of pose and the optimi-
sation of parameterisation are decoupled, and performed sequentially, hence
reducing the number of parameters that must be optimised concurrently.

Note that one trivial way of minimising the objective function is to
simply reduce the size of all the training examples by a uniform scaling
(xi �→ sxi, s ≤ 1). To prevent this, we could just a constrained optimisa-
tion, so that

∑nS

i=1 si = nS ; in other words, the mean scaling is fixed, and the
mean shape is always roughly the same size. Unfortunately, this constraint
cannot be applied if the pose parameters of only one shape are optimised
concurrently. In practice, this can be addressed by limiting the scale factor
to be within ±5% of its value before optimisation.

7.2 Tailoring Optimisation

The previous section described a general approach to solving the optimisation
problem. We will now look at how the algorithm can be tailored to deal with
certain classes of object.
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7.2.1 Closed Curves and Surfaces

For closed curves and closed surfaces, the position of the parameterisation
origin is a free parameter. If an obvious landmark is available on all training
shapes, this can be used as the position of the origin. Alternatively, for each
training example, we can move the origin on the curve or surface to find the
position that minimises the sum of squared Euclidian distances between the
moved points and the points on a fixed reference shape. This gives a good
initial estimate of the position of the origin, but this can often be improved by
considering the positions of the origins in the iterative optimisation process.
If, however, the origin positions are included directly as parameters in the
optimisation, they have a global effect that can disrupt any existing locally
optimised correspondences. A better solution is to randomly place the point
on the curve/surface using a uniform distribution. The position is then fixed
for that iteration, giving every point on the curve/surface the freedom to
move at some stage.

7.2.2 Open Surfaces

The approach to establishing an initial parameterisation of an open surface,
described in Sect. 6.1.1, requires nodes on the surface boundary to be mapped
to the boundary of the unit square. Choosing a suitable mapping is important
because the parameterisation of non-boundary nodes are dependent on the
position of the boundary nodes. Furthermore, correspondence on the edge of
the surfaces is fixed during optimisation – a consistent boundary mapping
must therefore be chosen across the training set before optimisation begins.

One approach is to position nodes so that the distance between neigh-
bouring nodes on the square are proportional to the distance on the three-
dimensional mesh, but this leads to an arbitrary correspondence between
the boundaries of the training surfaces. Better results are obtained by op-
timising the correspondence between training boundaries. This is achieved
by extracting the boundaries of each training surface and representing them
as a set of closed curves. The correspondence can then be optimised using
the optimisation method described above, using any model-based objective
functions. After optimisation, the boundary nodes are re-positioned around
the boundary according to the re-parameterisation found during optimisa-
tion. These re-positioned boundary nodes are used to obtain a solution for
the parameterisation of non-boundary nodes, as described in Sect. 6.1.1.
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7.2.3 Multi-part Objects

So far, we have only considered building models of structures where each
training object consists of a single part. The extension to training objects with
multiple sub-parts (where the corresponding sub-part has the same topology
across the training set) is straightforward.

Optimisation is performed as in the general case, but with a separate
re-parameterisation function for each sub-part of each training object. The
points of all sub-parts of each training example are concatenated into a single
shape vector and the objective function is evaluated as before – in this way
the model represents the joint distribution of all sub-parts of all training
shapes.

7.3 Implementation Issues

The evaluation of the objective function requires the calculation of an integral
over each pair of training shapes, as we saw in Sect. 2.3. Although there are
precise methods for evaluating the integral, they can take an impractical
amount of time to compute. A quicker method is presented here that uses
a discrete approximation with a fixed set of sample points. It is important
that a suitable set of sample points is chosen to ensure that the integral is
calculated precisely – two methods of achieving this are presented below.

We will also see that a discrete representation of re-parameterisation can
contain singularities, despite the fact that the continuous re-parameterisation
is non-singular. A fast method of detecting singularities is presented as well
as ways of avoiding the problem in the first place.

7.3.1 Calculating the Covariance Matrix by Numerical
Integration

In order to evaluate the objective function, we have to compute an integral
over each pair of training shapes to calculate the normalized continuous ver-
sion of the covariance matrix, D̃ij (2.124). The integration ensures that each
shape is represented sufficiently, and the true covariance of the data calcu-
lated. If the integral is not performed, the optimisation can ‘cheat’ by moving
sample points away from ‘difficult’ areas on the shapes. As an extreme ex-
ample, the sample points on each shape can be collapsed to a small region on
each shape, which gives a small value of the objective function but the shapes
are not represented properly. This behaviour only occurs in the later stages of
optimisation when the models are almost optimal. In the early stages of the
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optimisation, it makes almost no difference whether the integral is computed
or not.

There is no closed form solution to the integral in (2.124) so numerical
quadrature methods [139] must be used to evaluate it. While any of the
numerical methods described in Chap. 4 of [139] could be used as a basis for
calculating the covariance matrix, they tend to take a long time to compute.
A simple alternative approach is to use trapezoidal integration using a fixed
set of abscissas. The integral in (2.124) can then be calculated using a simple
finite approximation:

∫ (
Si(x) − S̄(x)) · (Sj(x) − S̄(x)

)
dA(x) (7.4)

≈
n∑

k=1

(
Si(xk) − S̄(xk)) · (Sj(xk) − S̄(xk)

)
ΔA(xk),

where {xk} are the parameters of some set of sample points. Remember that
dA(x) is the length/area measure on the mean shape. Hence for curves in
two dimensions:

ΔA(xk) = (dk,k−1 + dk,k+1), (7.5)

where dk,k−1 is the Euclidian distance between the adjacent points k and
k − 1 as measured on the mean shape. In three dimensions, this becomes

ΔA(xk) =
∑

α

Akα, (7.6)

where {Akα} is the area on the mean shape of all triangles that have point k
as a vertex.

7.3.2 Numerical Estimation of the Gradient

In Sect. 7.1.3, we saw that the gradient of the objective function w.r.t. the
Ath parameter of the ith training example (α(i)

A ) is given by:

∂L
∂α

(i)
A

=
nS−1∑

a=1

∂L
∂λa

nS∑

j=1

nS∑

k=1

∂λa

∂D̃jk

∫
δD̃jk

δSi(x)
δSi(x)

δα
(i)
A

dA(x).

We saw in Sect. 4.3.4 that closed-form expressions are available for all terms

except
δSi(x)

δα
(i)
A

, to which we now turn our attention. An analytical solution

was given in [94], but it was limited to a one-dimensional spline-based repre-
sentation of re-parameterisation (described in Sect. 5.1.4.2). If we are willing
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to accept a possible small degree of numerical inaccuracy, then we can esti-
mate the derivative using a simple finite difference scheme, thus allowing any
representation of re-parameterisation to be used. From (7.1):

S′
i(x) .= Si(x′), x′ = φi(x) .= φ(x;α(i)).

It is hence convenient to define a new shape function:

Si(x;α(i)) .= Si(φ(x;α(i))).

The lowest-order finite difference approximation is then given by:

δSi(x)

δα
(i)
A

=
∂Si(x;α(i))

∂α
(i)
A

≈ Si(x;α(i)
A + Δα

(i)
A ) − Si(x;α(i)

A )

Δα
(i)
A

,

where Δα
(i)
A is a small perturbation of the parameter α

(i)
A . The exact details

of how this can be implemented in practice are given in the example optimi-
sation scheme at the end of this chapter (see Sect. 7.4.2, Algorithm 7.4).

The above expression for the gradient also contains an integral over the
surface of the mean shape. We evaluate this using the same approach as that
described in the previous section for calculating the covariance matrix, so
that:

∫
δD̃jk

δSi(x)
δSi(x)

δα
(i)
A

dA(x) ≈
∑

m

δD̃jk

δSi(xm)
δSi(xm)

δα
(i)
A

ΔA(xm),

where {xm} represent the parameters of some sample points. The values
of the elements of area ΔA(xm) are calculated in the same way as for the
covariance matrix integral (Sect. 7.3.1).

7.3.3 Sampling the Set of Shapes

In order to evaluate the covariance matrix using the method described above,
we need to sample a number of points on each shape. These points must be
chosen so that all shapes in the training set are sufficiently well represented.
Two methods of achieving this are presented here. The first is based on
digital half-toning techniques, and the second is a simpler scheme based on
an adaptive uniform sampling.

The first method of re-sampling is one presented by Heimann et al. (see
[88] and the references therein), which creates a set of surface points which
has a more uniform distribution on the mean shape. The approach is illus-
trated in Fig. 7.1. The method is based on the work in [2]. The first stage
consists of creating an area distortion image, formed by calculating the ratio
Area(v(tβ)/Area(x(tβ), where v(tβ) is the set of positions of the vertices of
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triangle tβ on the shape, and x(tβ) is the set of the positions of the vertices
of the same triangle in parameter space. Area(·) is then just the area of the
triangle in the appropriate space.

The mean of each distortion image is taken and digital half-toning tech-
niques, employing efficient error diffusion methods, are used to create a binary
image. As is shown in the figure, the black pixels are then used as our new
sample vertices. The result is a sampling of the parameterisation that com-
pensates for area distortion, thus producing a roughly uniform sampling of
each shape’s surface.

The use of this digital half-toning step can be avoided if we instead use the
method described in Sect. 6.1.4 to produce initial parameterisations with min-
imal area distortion. Then a uniform sampling of the surface can be achieved
by just uniformly sampling the parameter space. For simple open surfaces,
the parameter space is just the unit square, whereas for closed surfaces with
spherical topology, the corresponding parameter space is the unit sphere.

Fig. 7.1 Creating a more uniform surface sampling using digital half-toning. (i) An area
distortion image (where white represents areas of high distortion) from the ratio of areas
of triangles. (ii) Digital half-toning is used to dither the image: the image in (i) is sampled
according to its intensity to produce a pre-defined number of black pixels, which are then
used as new sample nodes. The two triangulated surfaces on the bottom row were created
from the same shape, but using a different sampling technique. (iii) The shape sampled
according to a uniform distribution over the parameter space and (iv) the same shape
sampled using the nodes obtained from the half-toning technique in (ii). Note that the
distribution of points over the surface is considerably more regular in (iv).
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Uniformly sampling the unit square is trivial, but the unit sphere requires
more careful consideration. It is not strictly possible to position an arbitrary
number of equiareal points on the surface of a sphere. However, an approx-
imation, that is sufficient for our purposes, can be achieved. As is shown in
Fig. 7.2, this is achieved by subdivision of the faces of an icosahedron, to pro-
duce a larger number of finer triangles. The points are then projected onto
the sphere to produce the final icosahedral sampling of the sphere.

Each parameterisation is manipulated during optimisation, so that we need
to ensure that sufficient sampling is maintained across each training surface
as the optimisation proceeds. Detecting a region where the sufficiency of the
sampling may be degrading is simple, we just have to monitor the value of
the area ΔA(xk) associated with the kth sample point. If this area begins to
grow (for example, if it exceeds its initial value by some fixed proportion –
50% being a value typically used herein), we just add a new sample point to
the parameterisation of each training example, placed at the centroid of its
neighbours.

Fig. 7.2 An approximate uniform sampling of a sphere. A unit icosahedron is created (i),
then each face is subdivided into smaller triangles (ii). The subdivided icosahedron is then
projected onto the sphere (iii) and the nodes of the mesh are used as sample points (iv).
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7.3.4 Detecting Singularities in the
Re-parameterisations

The re-parameterisation functions for surfaces that we presented in Chap. 6
are diffeomorphic by construction. However, if we are using a triangulated
mesh of sample points, the usual procedure is to consider just the motion
of the nodes, then perform linear interpolation to find the motion of an ar-
bitrary point. The new position of each edge of the triangulation is defined
to be the straight line connecting the vertices at their new positions. There
is then a possibility that the use of this discrete approximation can destroy
the diffeomorphic property of the mapping. An illustration of such a case is
shown in Fig. 7.3.

In practice, this situation occurs very rarely, and there is a straightfor-
ward method of detecting it. For each triangle in the mesh, we compute the
normal vector before and after each re-parameterisation. A problematic trans-
formation then corresponds to one where the direction of any normal vector
deviates by more than 90◦ from its position before re-parameterisation. If
such a transformation is detected, it can just be removed before continuing
the optimisation.

Consider now Fig. 7.4, which illustrates how a shape is sampled according
to its parameterisation. When we manipulate correspondence, we manipulate
points on the parameter space (here given by the unit sphere). We then have
a choice, we can either keep the sample points fixed on the sphere, and manip-
ulate the nodes of the shape parameterisation, or keep the nodes of the shape

Fig. 7.3 An example of where a transformation may be homeomorphic in the continuous
case, but not in the discrete case. The arrows represent a continuous transformation; the
discrete representation is represented as a triangulation, drawn before (left) and after
(right) applying the transformation. After the transformation has been applied, we can
see that a triangle has folded, which implies that the discrete transformation is not a
homeomorphism.
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parameterisation fixed, and manipulate the sample points. If we consider the
triangulations formed by each of these two sets of points, we see that, as in
the example in the figure, the points of the shape parameterisation tend to
give a more irregular mesh, which can contain many examples of long, thin
triangles. And such triangles are more likely to fold (as in Fig. 7.3) when ma-
nipulated. Conversely, the sample points have a more regular triangulation,
which is much less likely to experience the same sort of folding problems un-
der manipulation. Hence choosing to manipulate the sample points instead
of the parameterisation nodes greatly reduces the probability of obtaining
singularities in the transformations.

7.4 Example Optimisation Routines

We conclude this chapter by giving an explicit illustration of how correspon-
dence can be optimised in practice.

Two different training sets are used. The first is a set of hand outlines in
two dimensions (see Fig. 7.5), and the second is a set of surfaces representing
the distal end of the human femur (see Fig. 7.8).

We will also use various representations of re-parameterisation, as well as
different objective functions and optimisation approaches. Operators, data
types, and conventions used in the pseudocode are listed in the Glossary.

As previously (7.1), we use the alternative definition of re-parameter-
isation, so that:

S′
i(x) .= Si(x′), x′ = φi(x)

⇒ Si(x) ∼ Sj(x)
	−→

φi, φj S′
i(x) ∼ S′

j(x), Si(φi(x)) ∼ Sj(φj(x)). (7.7)

We begin with the hand training set, and example of shapes which are
open curves.

7.4.1 Example 1: Open Curves

The raw data for the hand training set was obtained by taking a series of
photographs of a person’s hand, in a flat position, but with the fingers in
various positions. Each hand outline was then segmented from the images,
to produce the nS = 17 training examples shown in Fig. 7.5.

For model-building, the following options were chosen:

Objective function: The minimum description length objective function
(see (4.20) and (4.21)) will be used, with a fixed precision of Δ = 0.1. For
this particular training set, the optimisation is relatively simple in terms
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of computational complexity, hence it is feasible to retain the full MDL
objective function throughout the optimisation.

Representation of Re-parameterisation: For each shape at each itera-
tion, we use a single Cauchy kernel (Sect. 5.1.4.1 with nk = 1). The re-para-
meterisation is evaluated using (5.29), and is a function of the Cauchy’s
magnitude, position, and width.

Optimisation Approach: One shape parameterisation to be optimised
at a time, using a simple one-dimensional line search optimisation, with
stochastic selection of auxiliary parameter values. No gradient information
to be used.

With these options, the pseudocode for the Algorithm is as given below.

Algorithm 7.2 : An Example of Optimising Correspondence on a Set of Curves.

procedure {shape vectori} ← optimisation example 1 �

({parameterisationi}, {Shape Pointsi})
Variables

• {Shape Pointsi} is a training set of nS shape functions, where each shape is represented
by an ordered set of points; the values of each shape function are defined at positions stored
in the nP -dimensional vector parameterisationi and the coordinates for the points of
each shape are stored in the rows of the nP × 2 matrix Shape Pointsi (note that the
number of points, nP , may be different for each shape);

• the function returns a set of 2n-dimensional shape vectors {shape vectori}, formed by
sampling each training set according to its optimal parameterisation.

Declarations

• b = linear interpolation(x,y, a)
the vector y holds values of a function, evaluated at the abscissas in vector shape vector;
linear interpolation is used to estimate the value, b, of the function at abscissa a;

• ũ = cauchy(u, magnitude, position, width)
evaluates the re-parameterisation at abscissa u using a Cauchy with parameter values
magnitude, position and width, using (5.29).

Initialization

1. choose an index, ref , for a reference shape, whose pose and parameterisation do not
change during optimisation;

2. for i = 1 . . . nS

2.1. let sample pointsi be a n-dimensional vector of points used to sample the ith

shape (n = 400 is used here); each vector is initialized to a uniform sampling of the
parameterisation:

sample pointsi ← (0,
1

n − 1
,

2

n − 1
, . . . , 1);

2.2. sample the ith shape function at the sample points and form a shape vector for each
training example:
for j = 1 . . . n
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% the x-coordinate component

shape vectori(j) ← linear interpolation �

(parameterisationi,Shape Pointsi(·, 1), sample pointsi(j)),

% the y-coordinate component

shape vectori(j + n) ← linear interpolation �

(parameterisationi,Shape Pointsi(·, 2), sample pointsi(j)),

3. align the set of shape vectors, {shape vectori} using Algorithm 2.1, and also apply the
pose parameters to the original shape points, {Shape Pointsi}.

Optimisation

for it = 1 . . . niterations, (niterations = 6.5 × 106 here);

1. choose a shape i at random using a uniform distribution over the training set, with
i �= ref ;

2. Optimise parameterisation:
2.1. select values for the auxiliary parameters: choose values for the width width and posi-

tion position of the Cauchy kernels by random sampling of the relevant distributions
in Table 7.1;

2.2. use a line-search algorithm to find the value of the parameter magnitude in the
range [0, 0.01] that produces the minimum description length. For a given value of
magnitude, the description length is calculated as follows:

2.2.1. apply the re-parameterisation:
for j = 1 . . . n

temp sample(j) ← �

cauchy(sample pointsi(j); magnitude, position, width);

2.2.2. sample the re-parameterised ith shape to form a new shape vector:
for j = 1 . . . n

temp shape vector(j) ← linear interpolation �

(parameterisationi,Shape Pointsi(·, 1), temp sample(j)),

temp shape vector(j + n) ← linear interpolation �

(parameterisationi,Shape Pointsi(·, 2), temp sample(j)),

2.2.3. concatenate temp shape vector with the other shape vectors,
({shape vectork; k = 1 . . . nS , k �= i}), to give an updated training set;

2.2.4. evaluate the description length of the updated training set with (4.20) & (4.21),
using the approximation to the covariance matrix described in Sect. 7.3.1.

2.3. apply the parameterisation found in optimisation:
2.3.1. use the optimal value of magnitude to re-parameterise the ith shape:

for j = 1 . . . n

sample pointsi(j) ← �

cauchy(sample pointsi(j), magnitude, position, width),

2.3.2. update the shape vector:
for j = 1 . . . n
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shape vectori(j) ← linear interpolation �

(parameterisationi,Shape Pointsi(·, 1), sample points(j)),

shape vectori(j + n) ← linear interpolation �

(parameterisationi,Shape Pointsi(·, 2), sample points(j)),

2.3.3. set the centre of gravity of the updated shape to the origin, in preparation for
the pose optimisation;

3. Optimise the scale factor:
3.1. use the line search algorithm to find the value of scale that leads to the minimum

description length. The value of scale is bounded to be in the range ±5% of the
value found in the initial alignment (using Algorithm 2.1). For a given value of scale,
the objective function is evaluated as follows:

3.1.1. apply the scaling to the ith shape:

temp shape vectori ← scale · shape vectori

3.1.2. concatenate the scaled ith shape with the other training shapes to give an
updated training set:

3.1.3. evaluate the description length of the updated training set using (4.20) & (4.21).
3.2. once the optimal value of s is found, update the shape vector

shape vectori ← scale · shape vectori

and shape function:

Shape Pointsi ← scale · Shape Pointsi;

4. optimise rotation:
4.1. the rotation matrix, R is a function of a single parameter, θ that describes the angle

of rotation in the plane; the optimal value is found over a range of ±100 in an
identical manner to the scale factor, above.

return {shape vectori}.

The initial correspondence across the training set is shown in Fig. 7.5,
along with some details of the model built using this initial correspondence.
It can clearly be seen that even if we restrict the range of parameter values
input to the model, choosing only values that vary by less than two standard
deviations from the mean, this initial model still generates illegal shape ex-
amples. The model does show some movement of the hand, but with gross
deformations of the fingers.

By contrast, consider the final optimised correspondence and the model
built from it, as shown in Fig. 7.6. It is clear that the shapes generated by
the model are plausible.2 It is also clear that the model encompasses the
full range of variation seen across the training set, without introducing any
deformation of the hand or fingers.

2 Apart from one case where the fingers cross, which is unlike any case provided in the
training set. However, such possible intersections of parts in close proximity is a well-
understood consequence of the linear assumptions we have made in the modelling, and
does not indicate a problem with the found correspondence.
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Fig. 7.5 The hand training set and initial model. (i) the training set; (ii) the initial align-
ment of the shapes; (iii) the initial correspondence shown between three examples (yellow,
green, and magenta outlines) and the reference shape (red outline) – correspondence is
shown by drawing lines between corresponding points on each curve. Note that correspon-
dence is particularly poor around the ends of the middle three fingers. (iv) the model
built from the initial correspondence, shown by varying the first two modes (m = 1, 2) by
±2[standard deviations found over the training set] – it is clear that the model can produce
illegal instances of the class of object.
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Fig. 7.6 The optimised correspondence and model. In (i), the correspondence is shown
between the same three examples (yellow, green, and magenta outlines) as shown in Fig. 7.5
and the reference shape (red outline) – it is clear that the correspondence is now correct
at all points on the boundaries. The final model is shown in (ii) by varying the first two
modes (m = 1, 2) by ±2[standard deviations found over the training set] – the optimised
model shows the sort of shape variation that one would expect to see, with no distortions.
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7.4.2 Example 2: Open Surfaces

Our second example uses a training set of nS = 10 segmentations of the
human distal femur. The training set is shown in Fig. 7.8. Each training
example is an open surface, represented by a triangulated mesh.

For the optimisation routine, we make the choices as listed below:

Objective function: We use the determinant of the covariance matrix
(4.9), with regularization constant ε = 0.01.
Representation of re-parameterisation: We use nk = 5 clamped plate
splines (Sect. 6.2.1) to transform each example: the re-parameterisation is
evaluated using (6.31), and is a function of the displacement, position, and
width of the spline.
Optimisation approach: A gradient descent optimisation (Sect. 7.1.3)
was chosen, with all examples to be re-parameterised at the same time.

The parameter space for our open surfaces is the unit square. We thus need
a method of transferring points from the parameter space onto the shape
surface itself. As we saw in Sect. 6.1.3, given two surfaces with a common tri-
angulation, we can transfer points between the two surfaces using barycentric
coordinates. Pseudocode to achieve this is given in Algorithm 7.3. The pseu-
docode of an example groupwise optimisation is then given in Algorithm 7.4.

Algorithm 7.3 : Transferring a Point Between Triangulations.

procedure y ← transfer point(Points A,Points B,Triangulation,x)

Description

Transfers the point x from the surface defined by (Points A,Triangulation) to the sur-
face (Points B,Triangulation) to form a new point y, using barycentric areal coordinates.3

Variables

• Points A is a nP × nA matrix containing the coordinates of the nodes on the source
triangulation; note that nA can be 2 or 3;

• Points B is a nP × nB matrix containing the coordinates of the nodes on the target
triangulation; note that nB can again be 2 or 3;

• Triangulation is a nt × 3 matrix containing the common triangulation that indexes
Points A and Points B – see the glossary for details of the format;

• x is a nA-dimensional vector that represents the coordinates of a point in the same space
as the nodes of Points A;

• the procedure returns y, a nB-dimensional vector that represents the coordinates of a point
in the same space as the nodes of Points B.

Declarations

3 See Sect. 6.1.3 for further details.
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• area(a,b, c)
is a procedure that returns the area of a triangle with nodes a, b, and c.

Sampling

1. find the barycentric coordinates of y with respect to the surface
(Points A,Triangulation)4

for j = 1 . . . nt

1.1. let t ← Triangulation(j, ·);
1.2. let {vk} be the set of vertices indexed by triangle t (note that if x is three-dimensional

then it needs to be projected onto the same plane as the triangle, t);
for k = 1 . . . 3

vk ← Points A(t(k), ·);
1.3. let:

d ← area(v1,v2,v3),

a ← area(x,v1,v2)

d
,

b ← area(x,v1,v3)

d
,

c ← area(x,v2,v3)

d
;

1.4. if ((0 ≤ a ≤ 1) AND (0 ≤ b ≤ 1) AND (0 ≤ c ≤ 1) AND (a + b + c = 1))
then break from for loop (and save the value of t) ;

2. apply the barycentric coordinates to the vertices of the corresponding triangle on the
surface (Points B,Triangulation):
for k = 1 . . . 3,

vk ← Points B(t(k), ·);
3. let y ← av1 + bv2 + cv3.

return y.

4 Note that there are many computational shortcuts that could be made here. For example,
only searching triangles within a given distance of x or by remembering which triangle x
lies inside from previous function calls (points typically move by only small amounts and
therefore often stay within the same triangle between function calls). Some components of
the barycentric coordinate calculation can also be precomputed.
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Algorithm 7.4 : An Example of Optimising Correspondence on a Set of Surfaces.

procedure {shape vectori} ← optimisation example 2
({Shape Pointsi}, {Triangulationi})

Variables

• Shape Pointsi is a nP × 3 matrix whose rows contain the coordinates of nodes on the

surface of the ith training example;
• Triangulationi is a nt × 3 matrix that defines the connectivity of the nodes: each row

defines a triangle by indexing the rows of Shape Pointsi – see glossary for details of
format;

• the function returns a set of 3n-dimensional shape vectors {shape vectori}, formed by
sampling each training set according to its optimal parameterisation.

Declarations

• y = transfer point(Points A,Points B,Triangulation,x)
transfers the point x from triangulation (Points A,Triangulation) to triangulation
(Points B,Triangulation) to form a new point y – pseudocode is given in Algorithm 7.3;

• ũ = cps (u,displacement,position, width)
the point in the 2-dimensional vector u is transformed to a new position ũ by apply-
ing a clamped plate spline (cps) to a circular patch centred at a position described by a
2-dimensional vector position and of a width specified by the scalar width – the transfor-
mation is formed by moving the origin of the patch to a new position determined by the
2-dimensional vector displacement; note that the function only applies one cps at a time
– see Sect. 5.1.3 for details;

• δ(i, j)
is the Kronecker delta; it returns 1 if i = j and 0 otherwise.

Initialization

1. let ref be the index of a reference shape, whose pose and parameterisation do not change
during optimisation;

2. parameterise each surface to produce a set of nP × 2 matrices {Parameterisationi},
whose rows contain the coordinates of nodes in parameter space (the unit square), corre-
sponding to the surface nodes stored in {Shape Pointsi}:

2.1. create an initial parameterisation of the reference shape using the method described
in Sect. 6.1.1;

2.2. for the reference shape only: use a set of five clamped plate splines to manipulate the
parameterisation so as to minimise area distortion, as described in Sect. 6.1.4;

2.3. parameterise the remaining surfaces:
2.3.1. extract the boundary of each training surface (including the reference shape)

and represent them as a set of two-dimensional curves;
2.3.2. find the set of re-parameterisation functions that minimise the determinant-based

objective function (4.9) – this can be achieved using Algorithm 7.2, above;
2.3.3. map the nodes on the surface boundary to the boundary of the unit square such

that the relative distance between neighbouring nodes are preserved;
2.3.4. reposition the boundary nodes of all surface parameterisations (except for the

reference shape) according to the re-parameterisation functions found during
optimisation in step 2.3.2;

2.3.5. solve for the positions of the internal, non-boundary nodes as described in
Sect. 6.1.1;
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2.4. improve the consistency of the parameterisations using the method described in
Sect. 6.1.5 to match each shape to the reference shape;

3. initialize the sample points of each shape to be a m × m grid over the unit square
(m2 = n = 1600 was used here); the sample points of each shape are stored in a n × 2
matrix Sample Pointsi:
for i = 1 . . . nS

Sample Pointsi =

(
(0, 0)T ,

(
0,

1

m − 1

)T

, . . . ,

(
1

m − 1
, 0

)T

, �

(
1

m − 1
,

1

m − 1

)T

, . . . , (1, 1)T

)T

;

4. sample each surface according to its parameterisation to produce a set of 3n-dimensional
shape vectors:
for i = 1 . . . nS

for j = 1 . . . n

v ← transfer point(Parameterisationi, �

Shape Pointsi,Triangulationi,Sample Pointsi(j, ·)),
shape vectori(j) ← v(1),

shape vectori(j + n) ← v(2),

shape vectori(j + 2n) ← v(3);

5. align the set of shape vectors, {shape vectori} using Algorithm 2.1, and also apply the
pose parameters to the original shapes, {Shape Pointsi}.

Optimisation

for it = 1 . . . niterations, (we used niterations = 8000);

1. optimise parameterisation:

1.1. let {widthsi} be a set of nA-dimensional vectors that represent the widths of each
clamped plate spline, let {Positionsi} represent a nA×2 matrix whose rows contain
the coordinates of the position of each clamped plate spline; the values of these
parameters are generated by random sampling from the distributions in Table 7.1;

1.2. let {pi} be a set of 2nA-dimensional vectors representing the coordinates of the
control points of the splines – these are the parameters that we wish to optimise;
note that the coordinates of the control point of each spline is 2-dimensional but
these have been concatenated such that the coordinates of the Ath control point are
given by the vector: (pi(A),pi(A + nA));

1.3. let {gradienti} be a set of 2n-dimensional vectors, which hold the values of the
gradient of the objective function, L, w.r.t. the vector of parameters, pi:

gradienti ←

⎛

⎝ ∂L
∂p

(i)
1

, . . .
∂L

∂p
(i)
A

, . . .
∂L

∂p
(i)
2nA

⎞

⎠ ;

in Sect. 4.3.4, we saw that the gradient can be split into a product of simpler terms:

∂L
∂p

(i)
A

=

nS−1∑

a=1

∂L
∂λa

nS∑

j=1

nS∑

k=1

∂λa

∂D̃jk

∫
δD̃jk

δSi(x)

δSi(x)

δp
(i)
A

dA(x)
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we also saw in Sect. 7.3.2 that the term involving the integral can be estimated using
a simple finite sum:

∫
δD̃jk

δSi(x)

δSi(x)

δp
(i)
A

dA(x) ≈
∑

m

δD̃jk

δSi(xm)

δSi(xm)

δp
(i)
A

ΔA(xm)

where {xm} represent the position of the sample points and ΔA(xm) represents the
total area of all triangles connected to the mth sample point, calculated on the mean
shape (see Sect. 7.3.2).
The gradient of the reference shape is set to zero:
for A = 1 . . . 2nA

gradientref (A) ← 0.

For the other training examples, the components of each term are calculated as
follows:

1.3.1. calculate the mean shape vector:

mean shape vector ← 1

nS

∑

i

shape vectori;

1.3.2. create a shape difference vector (2.133) for each shape by subtracting the mean
shape vector:
for i = 1 . . . nS

centred shape vectori ← shape vectori − mean shape vector;

1.3.3. for each sample point: calculate the sum of the areas (calculated on the mean
shape) of all triangles connected to that sample point and store the value in a
n-dimensional vector int area on the mean shape;

1.3.4. calculate a nS × nS covariance matrix, Covariance, using the approximation
described in Sect. 7.3.1; each element is calculated as:

Covariance(i, j) ←
n∑

k=1

int area(k) [ �

centred shape vectori(k) · centred shape vectorj(k)+ �

centred shape vectori(k + n) · centred shape vectorj(k + n)+ �

centred shape vectori(k + 2n) · centred shape vectorj(k + 2n)
]

1.3.5. obtain the set of eigenvectors {eigenvectora} and corresponding (ordered)
eigenvalues {eigenvaluea} of Covariance;

1.3.6. use the eigenvalues to calculate

∂L
∂λa

=
1

eigenvaluea + ε
;

1.3.7. normalize all eigenvectors to have unit length:
for a = 1 . . . nm

eigenvectora ← eigenvectora

||eigenvectora||
1.3.8. use the eigenvectors to calculate

∂λa

∂D̃jk

= eigenvectora(j) · eigenvectora(k);
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1.3.9. calculate the components of
δD̃jk

δSi(xm)
; the x coordinate component is given by:

1

nS ·
∑

m int area(m)
[(nSδ(i, j) − 1)centred shape vectork(m)+ �

(nSδ(i, k) − 1)centred shape vectorj(m))
]
;

the y and z coordinate components are obtained in a similar fashion by substi-
tuting m with m + n and m + 2n, respectively;

1.3.10. use a finite difference scheme to numerically approximate δSi(x)

δp
(i)
A

:

• perturb the Ath control point of the ith shape by a small amount Δ = 10−5

parallel to the x-axis and use it to re-parameterise the ith shape and create
a perturbed shape vector;
for j = 1 . . . n % do one sample point at a time

– re-parameterise by perturbing the x-coordinate of the clamped plate
spline:

displacement ← (Δ, 0),

ũ ← cps (Sample Pointsi(j, ·),displacement, �

Positionsi(A),widthsi(A)),

– sample the point and store in a new shape vector:

ṽ ← transfer point(Parameterisationi, �

Shape Pointsi,Triangulationi, ũ),

perturbed shape vector(j) ← ṽ(1),

perturbed shape vector(j + n) ← ṽ(2),

perturbed shape vector(j + 2n) ← ṽ(3);

• estimate the derivative as a finite difference:

δSi(x)

δp
(i)
A

=
perturbed shape vector − shape vectori

Δ
;

• now perturb in a direction parallel to the y-axis:
for j = 1 . . . n

displacement ← (0, Δ),

ũ ← cps (Sample Pointsi(j, ·),displacement, �

Positionsi(A),widthsi(A),

ṽ ← transfer point(Parameterisationi,Shape Pointsi, �

Triangulationi, ũ),

perturbed shape vector(j) ← ṽ(1),

perturbed shape vector(j + n) ← ṽ(2),

perturbed shape vector(j + 2n) ← ṽ(3);

• estimate the derivative as a finite difference:

δSi(x)

δp
(i)
(A+nA)

=
perturbed shape vector − shape vectori

Δ
;
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1.4. stack the gradient vectors into a nS × 2nA matrix L such that: L(i, A) represents

the partial derivative of the Ath element of gradienti;
1.5. use a line search algorithm to move along the gradient to find the optimal value

of the objective function: using a scalar, μ, move along the gradient and calculate
the objective function value L(μL); for a given value of μ, the objective function is
evaluated as follows:

1.5.1. re-parameterise all sample points using one clamped plate spline at a time:
for i = 1 : . . . nS ,

New Sample Pointsi ← Sample Pointsi

for A = 1 . . . nA

for j = 1 . . . n

displacement ← μ · (L(i, A), L(i, A + nA))

New Sample Pointsi(j, ·) ← cps �

(New Sample Pointsi(j, ·),displacement, �

Ai(A),widthsi(A));

1.5.2. sample the re-parameterised points on the shape surface:
for i = 1 : . . . nS ,

for j = 1 . . . n

v ← transfer point(Parameterisationi,Shape Pointsi, �

Triangulationi,New Sample Pointsi(j, ·)),
new shape vectori(j) ← v(1),

new shape vectori(j + n) ← v(2),

new shape vectori(j + 2n) ← v(3);

1.5.3. use the determinant-based objective function to evaluate {new shape vectori},
using the approximation described in Sect. 7.3.1 to build the covariance matrix;

1.6. once the optimal value of μ is found, use it to update the sample points and shape
vectors:

1.6.1. update the parameterisation by applying the clamped plate splines:
for i = 1 . . . nS , i �= ref

for A = 1 . . . nA

for j = 1 . . . n

displacement ← μ · (L(i, A), L(i, A + nA))

Sample Pointsi(j, ·) ← cps (Sample Pointsi(j, ·), �

displacement,Ai(A),widthsi(A));

1.6.2. use the new parameterisations to update each shape vector:
for i = 1 : . . . nS , i �= ref

for j = 1 . . . n

v ← transfer point(Parameterisationi,Shape Pointsi, �

Triangulationi,Sample Pointsi(j, ·)),
shape vectori(j) ← v(1),

shape vectori(j + n) ← v(2),

shape vectori(j + 2n) ← v(3);

1.6.3. set the centre of gravity of each shape to the origin in preparation for pose
optimisation;
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2. optimise pose:

2.1. let mi be the pose parameters of shape i, formed by concatenating the rotation and
scaling parameters;

2.2. optimisation is performed in an identical manner to the parameterisation optimi-
sation in the previous step, but using the pose parameters mi instead of the re-
parameterisation parameters pi;

2.3. once the optimal values of {mi} are found, separate out the rotation and scaling
factor and use them to update each shape vector
shape vectori ← si · Ri · shape vectori, and each shape Shape Pointsi ← si ·
Ri · Shape Pointsi; note that the rotation matrix must be reshaped appropriately
before multiplication.

return {shape vectori}.

Our choice of objective function (the determinant of the covariance ma-
trix), and the above algorithm, actually provides a very good estimate of the
optimum of the full MDL objective function. If required, the found correspon-
dence can be further refined, where the result of the above gradient-descent
based implementation is used to initialize a further optimisation using the full
MDL objective function. Note, however, that the gradient of the full MDL

Fig. 7.7 A set of corresponding lines (colours), shown on three examples from the training
set, from three different viewpoints.
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Fig. 7.8 The training set of nS = 10 examples of the distal femur, in posterior-anterior
view.

objective function cannot be estimated easily, so that rather than gradient-
descent, a non-gradient method such as the Nelder-Mead simplex optimisa-
tion algorithm must be used instead.

The correspondence produced by Algorithm 7.4 is illustrated in Fig. 7.7,
and the model built using this correspondence is shown in Fig. 7.9. Unlike
the previous example, the visual assessment of these results is not straightfor-
ward, and ideally, specialist anatomical knowledge is required. And even with

Fig. 7.9 The model built from the optimised correspondence. The first mode of variation
of the model is shown by varying its value by ±2[standard deviations found over the

training set]. If we compare this with Fig. 7.8 above, we can see that the model has

captured variation that was evident in the training set.
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such knowledge, the visual assessment is of limited utility. However, without
the aid of such specialist knowledge, it is obvious that the correspondence
shown in Fig. 7.7 is reasonable, with no obvious errors or inconsistencies. A
comparison of the training set (Fig. 7.8) with the shapes produced by the
model (Fig. 7.9), shows that the shapes produced by the model are also plau-
sible. Detailed comparison of the modes of variation with the training set
also indicates that the model modes do encompass the sort of variation that
we can detect across the training set.

In summary, we have provided two detailed examples of the implementa-
tion of the optimisation framework for groupwise correspondence, and shown
the results that are obtained on real datasets. But as is made clear by the
last example, visual inspection is of somewhat limited utility when it comes
to detailed assessment of results, or comparison of different approaches, ex-
cept for the case where an approach has conspicuously failed. The question
of detailed evaluation and comparison of different approaches to establishing
groupwise correspondence is the subject of Chap. 9.

In the present chapter, we considered just the optimisation of correspon-
dence for the parametric representation of re-parameterisation functions.
There is a different approach to the representation of re-parameterisation,
which also requires a different approach to optimisation, and this is the sub-
ject of the next chapter.



Chapter 8

Non-parametric Regularization

In this chapter, we return to the question of the representation of the re-
parameterisation functions for shape surfaces.

In Chaps. 5 and 6, we considered how to build various parametric rep-
resentations of homoeomorphic re-parameterisation functions for curves and
surfaces respectively. Such parametric representations serve two purposes.
First, they enable us to represent continuous re-parameterisation functions
in terms of some small set of parameters, which is obviously advantageous
from a computational point of view. The second advantage is one of regu-
larization of the problem of finding the groupwise correspondence that min-
imises the objective function that we have chosen as defining the optimum
groupwise correspondence. As mentioned previously (Sect. 6.2), such an op-
timisation problem is in general ill-posed in the Hadamard sense [86], and is
not solvable without some form of regularization.

However, there are other approaches, both to representing our re-para-
meterisation functions, and to regularization of the optimisation problem,
and it is such alternative approaches that we will consider in the present
chapter.

8.1 Regularization

To recap, we construct parametric representations for each shape in the train-
ing set {Si : i = 1, . . . nS} in terms of the shape functions {Si(x)}, where x
lies in some parameter space X. The dense groupwise correspondence between
the shapes is determined by the parameterisation, so that:

Si(x) ∼ Sj(x) ∀ x ∈ X.

R. Davies et al., Statistical Models of Shape, 177
DOI: 10.1007/978-1-84800-138-1 8, c© Springer-Verlag London Limited 2008
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The correspondence is manipulated by means of the homeomorphic re-
parameterisation functions {φi(x)}, which act on the parameter space and
on the shape functions as follows:

x
φi�−→ φi(x) & Si

φi�−→ S′
i, where S′

i(φi(x)) .= Si(x) ∀ i = 1, . . . nS .

The optimum correspondence is defined as the minimum of the objective
function LS(S1,S2, . . .SnS

), which depends explicitly on the set of shape
functions, and only implicitly on the re-parameterisation functions.

Posed in this form, we are trying to deduce, given a finitely sampled set of
shapes or images, the position of the optimum re-parameterisation functions
{φi(x)} in the infinite-dimensional space of all homeomorphic functions. And
such problems are in general neither well-posed, nor well-conditioned.

From a computational and theoretical point of view, one obvious way to
regularize the problem is to consider not the infinite-dimensional space of
all possible re-parameterisation functions, but only a finite-dimensional sub-
space of such functions. Such a sub-space can be constructed by considering
re-parameterisation functions that can be described in terms of some finite
set of parameters (such as those detailed in Tables 5.1 and 6.1). The search
space for optimisation is then just the finite-dimensional space of function
parameters.

This parametric method of representation and regularization can be
thought of as hard regularization, in that the sub-space of allowed functions
is held fixed, and no further distinction is made between functions other than
that they are within or not within this sub-space. In coarse-to-fine approaches
to optimization, the sub-space can be expanded as the algorithm proceeds.
This finite-dimensional optimisation problem can then be solved by various
methods, as detailed in Chap. 7.

These parametric approaches share the problem, well-known from image
registration, that the required function can be hard to find, with the possi-
bility of getting stuck in local minima. Or that the required function may not
even be adequately represented within the space of parametric functions that
we have constructed. Note that in this parametric approach, the parametric
representation plays the dual rôle of both representation and regularizer.

We now decouple these two rôles of representation and regularization, and
consider non-parametric methods of regularization.

8.1.1 Non-parametric Regularization

Rather than limiting the re-parameterisation to some parametric sub-space,
we now formally allow the re-parameterisation function to be any homeo-
morphic function. The simplest method of non-parametric regularization is
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imposed by adding a term to the objective function thus:

L = LS({Si}) + Lreg({φi}). (8.1)

The total objective function now depends implicitly on the re-parameter-
isation functions {φi} via their effects on the shape-functions, and also ex-
plicitly via the regularization term Lreg({φi}). The idea here is that more ex-
treme re-parameterisation functions are allowed, provided the evidence from
the data (i.e., the shape data via the shape-functions) warrants it. This can be
described as soft regularization, with the previous approach of hard regular-
ization being a special case with Lreg being zero on the sub-space of paramet-
ric functions, and infinite elsewhere. Typical choices for Lreg({φi}) are based
on the bending-energy1 (e.g., see [151]) or curvature (e.g., see [68, 127]) of
the re-parameterisation functions. Such regularization terms act to constrain
the re-parameterisation to be smooth.

The first problem with this approach is that they tend to explicitly penal-
ize large-amplitude deformations, which may be exactly what is required to
solve the problem. The second problem is that the additional term shifts the
position of the optimum.

Before proceeding further, it is convenient to introduce a mathematically-
equivalent formulation of re-parameterisation. Rather than the re-parameter-
isation function φ(x), we instead introduce the displacement field u(y) where:

y
φ�→ φ(y) .= y + u(φ(y)). (8.2)

We hence see that the displacement field represents the inverse mapping to
φ, where:

x = φ(y) ⇒ y = x − u(x). (8.3)

The regularization term can now be written as Lreg = Lreg(u). One ex-
ample of such a regularization is elastic registration [18]:

Lelas(u)=
∫

X

dx
l1
4

(∂αuβ(x) + ∂βuα(x)) (∂αuβ(x) + ∂βuα(x))+
l2
2

(∇·u(x))2,

where we have used our summation convention (see Glossary). The coeffi-
cients l1, l2 are the Lamé constants. A second example is that of diffusion
registration [67]:

Ldiff(u) =
1
2

∫

X

dx(∇uα(x)) · (∇uα(x)). (8.4)

1 See Willmore energy in the Appendix.



180 8 Non-parametric Regularization

Both these regularizers are based on the second-derivatives of the displace-
ment field. Hence displacement fields which are linear functions of the coordi-
nates entail no cost, and displacement fields which differ by a linear function
of the coordinates have the same cost. The second derivatives mean that the
regularizers tend to smooth the displacement field.

Rather than the objective function L, we can also work in terms of the
forces derived from this objective function. In general, the force at x is given
by:

F(x) .= − δL
δu(x)

, (8.5)

where δ
δu(x) is the functional derivative.2 Hence the optimum of an objective

function corresponds to zero net force. In more familiar terms, this is just
the gradient of the objective function with respect to the coordinates in the
search space. This is the gradient that would be used in gradient descent
approaches to locating the minimum of L. Since our search space here is the
infinite-dimensional space of all homeomorphic displacement fields u(x), the
more usual finite-dimensional gradient vector is here replaced by the infinite-
dimensional functional derivative.

The first part of the objective function provides the driving force:

FS(x) .= − δLS

δu(x)
. (8.6)

Our regularizers provide a force in addition to the driving force. For elastic
and diffusion regularization, the forces are:

Felastic(x) = l1∇2u(x) + (l1 + l2)∇(∇ · u(x)), (8.7)
Fdiff(x) = ∇2u(x). (8.8)

The Euler-Lagrange equations of the complete objective function(8.1) can
then be written in the form:

FS(x) + Freg(x) = 0. (8.9)

This is just a re-statement of the condition for a minimum of the total ob-
jective function. In general, this is a non-linear partial differential equation
(PDE). For the case Freg = Felastic (8.7), the regularizing force is the force
term that appears in the Navier-Lamé equation describing the dynamics of
homogenous, isotropic solids in the linear theory of elasticity. The body force
applied to the solid (the driving force) is the force FS(x). The diffusion reg-
ularizer (8.8) gives a PDE which describes a generalized diffusion problem,
hence the name. It has the interesting property that the component F diff

α (x)

2 For those unfamiliar with the calculus of variations, see the Appendix, Sect. A.2 for an
example of the calculation of a functional derivative.
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depends only on uα(x). Interested readers should consult the appropriate
chapters in Modersitzki [127] for more discussion and implementation details
of both these forms of regularization within the context of image registration.

However, these forms of regularization share a problem, which is that
in general, the regularizing force is non-zero for all non-zero displacements.
Hence the optimum is shifted from the point FS(x) = 0 to the point (8.9)
FS(x) + Freg(x) = 0. Such regularization terms also tend to explicitly penal-
ize large displacements, which may not be desirable if the required solution
actually requires such a large displacement.

Nevertheless, the regularizing forces (8.7) and (8.8) do possess some desir-
able properties. As noted previously, since they only contain second deriva-
tives of the displacement field, they do not penalize any deformation field
which is a linear function of the coordinates plus a constant. That is, the
value of the regularizing part of the objective function is invariant to affine
transformations (rotations, reflections, directional or uniform scaling, and
shear transformations, plus translation).

One way of solving these sorts of non-linear PDEs (8.9) is by introducing
a computational time t. The displacement field is now made a function of
time, so that u = u(x, t). The equation (8.9) is then solved by replacing the
right-hand side, so that:

FS(x, t) + Freg(x, t) =
∂u(x, t)

∂t
.

The required solution is then obtained as the steady-state solution, where
u(x, t) becomes fixed.

However, the introduction of a time coordinate suggests other methods
of regularization. Suppose we consider a time-dependant re-parameterisation
function φ(y; t). We can represent the action of this function by its action on
a set of particles moving in R

n. A particle that starts at a position y at time
t = 0 then follows a trajectory, so that it is at a position φ(y; t) at time t,
with φ(y; 0) .= y. In terms of the displacement field, this just means that we
have zero displacement at t = 0.

When considering the motions of a set of such particles, there are two ways
to describe the dynamics. The Lagrangian approach is to track a particular
particle, which starts at a point y at time t = 0, say, and then has a position
φ(y; t) and velocity:

φ̇(y; t) .=
∂

∂t

∣∣∣∣
y

φ(y; t),

at later times.
The alternative Eulerian approach is to consider instead a fixed point with

respect to the coordinate frame, a point x, say. At time t, the particle passing
x obeys the relation:
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φ(y; t) = x ⇒ y = φ−1(x; t).

We now also have a time-dependant deformation field u(x, t), where as before:

x = φ(y; t), ⇒ y .= x − u(x, t), ∴ φ(y; t) = y + u(φ(y; t), t).

The Eulerian velocity v(x, t) at a point x at time t is then defined as the
velocity of the particles that are passing the point at that time. That is:

v(x, t) .= φ̇(y; t) =
∂

∂t

∣∣∣∣
y

φ(y; t) =
∂

∂t

∣∣∣∣
y

[y + u(φ(y; t), t)] ,

∴ v(x, t) =
∂

∂t

∣∣∣∣
x

u(x, t) + (v(x, t) · ∇)u(x, t). (8.10)

So we see that in the Lagrangian framework, the relevant variables are the
particle trajectories φ(y; t) and the particle velocities φ̇(y; t). Whereas in the
Eulerian framework, they are the displacement field u(x, t) and the Eulerian
velocity field v(x, t). Curvature regularization was based on the Lagrangian
variable φ(x). Elastic or diffusion regularization uses a regularizing force
based on the displacement field u(x, t). Instead, we will consider building
a regularizer based on the other Eulerian variable as follows.

8.2 Fluid Regularization

Let us consider a regularizer based on the Eulerian velocity field v(x, t),
where x ∈ R

n.
Within the context of image registration, such a regularizer, based on the

concept of a viscous fluid was introduced by Christensen et al [22]. However,
rather than considering the physical fluid model, we will instead derive the
same form based on a few simple mathematical considerations.

Let us take the general case of a vector-valued regularizing force Freg which
is a functional of the Eulerian velocity field v(x, t). The simplest case would
be to take:

Freg[v] ∝ v(x, t).

However, this form explicitly penalizes uniform translations, where the ve-
locity field is of the form v(x, t) = v(t). This is usually not desirable in the
context of image registration, where the variable location of objects within
images means we must be free to perform affine or rigid-body alignment of
the images before we beginning the non-rigid part of the registration. Allow-
ing free uniform translations hence means that the regularizing force cannot
depend on v(x, t) explicitly, but instead must depend only on its derivatives.
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We hence consider the quantities:

Mαβ [v] .= ∂αvβ(x, t), x ∈ R
n, α, β = 1, . . . n,

where {xα}, {vα} denote the Cartesian components of the vector position x
and the vector velocity v, and {∂α

.= ∂
∂xα

} denotes the partial derivatives
with respect to position. The {Mαβ} are the components of the rate of strain
tensor M. We can rewrite any tensor in terms of a antisymmetric and a
symmetric part thus:

Aαβ [v] .=
1
2

(∂αvβ(x) − ∂βvα(x)) , Sαβ [v] .=
1
2

(∂αvβ(x) + ∂βvα(x)) .

Let us now consider a rigid rotation of an image. For images in R
2, with

Cartesian components x = (x, y), a rigid rotation corresponds to the motion:

x(t) = r cos ωt, y(t) = r sin ωt,

where r is the radial coordinate r2 = x2 + y2, and ω is the rate of rotation
about the origin. This gives the associated velocity field:

vx =
dx(t)

dt
= −ωy, vy =

dy(t)
dt

= ωx.

For this particular velocity field, we have:

Axx = Ayy = 0, Axy = ω, Sxy = Sxx = Syy = 0.

Allowing the freedom to rotate the image hence means that the regularizer
should depend on only the symmetric part of the rate of strain tensor. Similar
results hold in higher numbers of dimensions.

The simplest vector-valued function we can construct from {Sαβ [v]} is:

F reg
α [v] = a∂αSββ + b∂βSαβ ,

where (a, b) are some coefficients. Re-writing this in terms of the velocity
field, we obtain the form:

F reg
α = a∂α(∂βvβ) +

b

2
∂β(∂αvβ + ∂αvβ),

=
(

a +
b

2

)
∂α(∂βvβ) +

b

2
∂β∂βvα.

∴ Freg =
b

2
∇2v(x, t) +

(
a +

b

2

)
∇(∇ · v(x, t)). (8.11)

Rewriting the coefficients, we obtain the final form:
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Fvisc = μ∇2v(x, t) + (λ + μ)∇(∇ · v(x, t)). (8.12)

This is the expression used by Christensen et al. [22], and represents the
viscous forces in a physical fluid, where μ is the shear viscosity, and λ is
the second viscosity coefficient (related to the bulk viscosity). For physical
fluids, shear viscosity acts to resist non-uniform velocity gradients, whereas
bulk viscosity acts to resist non-uniform compression/rarefaction. In fluid
dynamics, the existence of viscosity reflects the physical effect that internal
forces act within a moving fluid, which tend to resist non-uniform velocities
existing within the fluid. It is analogous to the physical effect of friction for
solid objects, but can also be related to the resistance of an elastic solid to
deformation. In the particle picture we introduced earlier, elasticity reflects
the fact that we can model a solid as a collection of particles connected by
springs. A solid hence possesses a definite undeformed shape, where the forces
between the particles balance, and any deformation from this is resisted.
Whereas for fluids, they have no definite shape. The resistance of a fluid is
resistance to flow, not resistance to deformation. Hence when we include the
freedom to perform affine transformations, we have a similar mathematical
form for both elastic regularization and fluid regularization, but using the
deformation field u(x, t) for solids, whereas for fluids, the flow field v(x, t) is
the relevant variable.

As regards the dynamics, we use the force-balance equation we had be-
fore (8.9):

FS(x, t) + Freg(x, t) = FS [u] + Fvisc[v] = 0. (8.13)

Note that unlike the case of elastic registration, there is no need to modify the
right-hand side in order to solve the PDE. The dynamics is obtained directly
from the above equation. For image or shape correspondence, the driving
force FS(x) depends only on the displacement field u(x, t), and not on the
velocity field v(x, t). Hence with the displacement field given at some time t,
we can determine the driving force at this time. Balancing this driving force
against the viscous forces determines the velocity field (8.12) at the time t.
The velocity field determines the time-dependance of the displacement field
via (8.10), hence determines the displacement field at an incremental future
time t + Δt. The values of the displacement and velocity fields can hence be
integrated numerically until we reach the static limit, where v(x, t) → 0. In
this limit, flow vanishes, hence the viscous forces vanish, giving a static-limit
solution satisfying:

FS(x) = 0.

Hence we can conclude that unlike the elastic or diffusion regularization
schemes, based on Freg[u], the fluid regularizer based on Freg[v] does not
shift the position of the minimum.

If we view the above equations in the context of the physics of actual
fluids, we have a driving force FS(x) acting on the fluid. But unlike real
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fluids, the only other force acting is the viscosity, we have no pressure terms
and no gravitational forces. The force balance equation also means that the
fluids have to be considered as massless and inertialess. Christensen et al. [22]
derived this regularization scheme based on the physics of a visco-elastic fluid.
However, given the above peculiar nature of the fluid, the current authors
found that this physically-based picture of a fluid often caused confusion,
since we found that our physical intuition usually fails when it comes to trying
to imagine the behaviour of massless and inertialess fluids. Hence our reason
for giving this simple mathematical justification for such a regularization
term.

As for the elastic case (8.7), the viscous force (8.12) depends only on the
second derivatives of the flow field v(x, t). It hence gives zero resistance to
flows fields which are linear functions of the coordinates, and these represent
instantaneous and infinitesimal affine transformations.

Within the context of image registration, the displacement fields, velocity
fields and the forces lie in the space x ∈ R

n = X, which is just the space of
the image itself. Calculating derivatives and applying viscous forces directly
in the space of the image is then a sensible procedure. But for the case of
shapes, X = R

n is just the parameter space for the shape. Hence calculating
derivatives, viscous forces and therefore the regularizer itself directly in X
depends on the details of the parameterisation for each shape. In particular,
the regularizer will not be invariant to a global re-parameterisation of all the
shapes, where:

φi(x) �→ ψ(φi(x)),

and ψ(x) is the global re-parameterisation function. Such a global re-para-
meterisation makes no difference to the groupwise correspondence between
shapes, hence a principled regularizer should also be invariant to such a global
re-parameterisation.

To make the fluid regularizer independent of the parameterisation, we need
to consider the manipulation of correspondence, hence the movement of fluid
particles, directly on the surfaces of the shapes themselves. This means that
we need to calculate the viscous forces for fluids flowing on the actual shape
surfaces, and the mathematical tools for this are the subject of the next
section.

8.3 The Shape Manifold

The formal mathematics of calculating derivatives on the curved surface of a
shape is just the usual mathematics of Riemannian differential geometry. All
that we have to do is write down the form of the Riemannian metric in the
coordinates on parameter space, and replace all the ordinary derivatives with
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covariant derivatives. However, for the benefit of readers who may have only
a passing acquaintance with such topics, or none at all, we instead present
a simple derivation of the required calculation, which requires little more
than an understanding of the chain rule for partial derivatives. For those
readers who have a more intimate acquaintance with differential geometry,
we note that we will not employ any of the usual machinery of contravariant
and covariant vectors, and just restrict ourselves to the usual definitions of
vectors and matrices.

Suppose we have a single shape. We will consider the abstract shape mani-
fold S, which has some definite topology (e.g., a sphere). An actual shape S is
what we obtain when we embed this shape manifold into ordinary Euclidean
space R

m, where S ⊂ R
m is the entire shape. For the same shape manifold,

we can obtain a variety of actual shapes, depending on the exact details of
the embedding.

We will present a simple example, to help explain this notion of embedding.
Consider a simple shape manifold with the topology of the open line. This
line can then be embedded into R

2, to create a variety of physical shapes in
the plane. But we can also embed the line into R

3, to create shapes which
cannot be flattened onto the plane.

The distinction between intrinsic topology and the topology of the embed-
ding is important. Suppose we have a physical object in R

3 with the topology
of the open line (i.e., no self-intersections). Such an object could be though
of as a thin flexible wire. Such a wire cannot self intersect, although it can
be formed into a variety of shapes in R

3 by bending the wire. The intrinsic
topology of the wire is always maintained. We now consider photographing
a selection of such objects, and studying the shapes formed by the image
of the wire in the photographs. It is obviously possible to obtain shapes in
R

2 where the object appears to self-intersect. To enable us to appropriately
model the shapes we obtain from these images of our original object, we have
to recognize that this apparent change of topology is just an artifact of the
imaging process. Rather than using the topology of the images of the shape,
which is a result of the way we have obtained the images, we would instead
retain the intrinsic topology of the object as the topology of our shape.

To summarize, the abstract shape manifold knows about the intrinsic
topology of the shape, and this topology is maintained when we move to
the actual shapes S ⊂ R

m.
When we embed the shape, we also gain a definition of distance on the

shape manifold. Suppose we have two points on the shape manifold, with
a continuous path between them. This path on the shape manifold then
becomes a path in R

m, between the points on the surface3 of the actual
shape, lying wholly within the shape surface. The length of this path is then

3 Note than similar considerations hold for n-dimensional shape manifolds embedded in

R
m, m ≥ n + 1. However, for the sake of clarity, we will from now on just refer to shape

surfaces.
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defined as the length of the path in R
m, calculated using the usual definition

of distance in Euclidean spaces.
We then parameterise our actual shape S as before (2.117):

X
X�−→ S, x X�−→ S(x), (8.14)

where X is the parameter space, and S(x) ∈ R
m is the shape function that

describes our actual shape. Since this mapping X is taken to be one-to-one
and onto (that is, every point in the parameter space maps to a point on the
actual shape, and every point on the shape has a unique parameter value),
we will employ a slight abuse of notation, and use X to denote both the
mapping from X to S, and the mapping from S to X. For a n-dimensional
shape manifold, the parameter space is usually taken to be some subset of
R

n, that is, X ⊂ R
n. A single point in parameter space is then given by x,

with components {xμ : μ = 1, . . . n}.
We can now identify our parameter space with the shape manifold itself,

since they share the same intrinsic topology. As X maps us from parameter
space to the shape function S(x), so embedding takes us from the shape
manifold to the actual shape. A particular parameterisation then defines a
chart on the shape manifold, in that it assigns a unique parameter value x to
every point in the shape manifold. The actual shape S can then be considered
as a vector-valued function on the shape manifold S(x) ∈ R

m, where we will
use {SA(x) : A = 1, . . . m} to denote the m Cartesian components of S(x).

This vector-valued function on the shape manifold then defines what we
mean by distances between points.

As an example, consider the entire surface of the earth. We can take as our
parameters the usual latitude and longitude. The entire parameter space can
be represented as the unit square in R

2. The top edge is identified as a single
point (the north pole), and similarly for the bottom edge, which maps to the
south pole. The side edges are identified using periodic boundary conditions,
to give the correct spherical topology. The shape function then gives the
shape of the actual surface of the earth. So, we would then have a square
map of the entire earth, where the latitude and longitude coordinates have a
simple relation to position on the spherical earth. The final component of the
actual shape is the elevation of points on the surface of the earth, a scalar
function on our map, such as that usually represented graphically by contour
lines. To calculate distances between points on the surface of the earth, we
obviously cannot use the distances on the unit square in parameter space,
but have to incorporate the knowledge about the actual shape. Similarly, if
we wish to compute the slopes of surfaces (i.e., the derivatives of height data)
on the real earth, we again have to use the shape information to do this.

The relation between infinitesimal distances in parameter space, and dis-
tances on the shape surface can be described in terms of the induced Rie-
mannian metric g as follows.
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8.3.1 The Induced Metric

Suppose we have two infinitesimally close points in parameter space with
values x and x + Δx. The corresponding points on the shape surface are
separated by an infinitesimal distance Δd in R

m. The way that Δd varies with
Δx and x is described by the matrix-valued metric function g(x), defined by:

(Δd)2 .= gαβ(x)ΔxαΔxβ . (8.15)

The metric g(x) is hence an n × n symmetric matrix at each point x. The
metric is computed from the shape function according to the following The-
orem:

Theorem 8.1. Induced Metrics.
For a shape with shape function S(x) ∈ R

m, where x ∈ R
n is the parameter

value, the induced Riemannian metric g(x) in parameter space coordinates
is given by:

gαβ(x) = (∂αS(x)) · (∂βS(x)), α, β = 1, . . . n, (8.16)

where · is the Euclidean dot product in R
m.

Proof. Consider the points x and x + Δx in parameter space, where ‖Δx‖
is infinitesimal. The corresponding points on the shape are S(x + Δx) and
S(x). Using a Taylor expansion, we have:

S(x + Δx) = S(x) + Δxα∂αS(x) + O
(
‖Δx‖2

)
.

∴ ΔS(x) .= S(x + Δx) − S(x) ≈ Δxα∂αS(x).

Using the definition of distances in R
m in terms of the Euclidean dot product

· in R
m:

(Δd)2 = (ΔS(x)) · (ΔS(x)),
= ΔxαΔxβ (∂αS(x)) · (∂βS(x)) ,

From (8.15): (Δd)2 .= gαβ(x)ΔxαΔxβ ,

∴ gαβ(x) = (∂αS(x)) · (∂βS(x)).

�	

Note that the metric is calculated purely in terms of derivatives in param-
eter space, of functions defined on that parameter space. Now that we can
relate distances on the shape to distances in parameter space, we are partway
to being able to calculate derivatives on the shape. The other thing needed is
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the ability to relate directions on the shape to directions in parameter space.

8.3.2 Tangent Space

Let P be an arbitrary point on the shape, with parameter value xP , and
position SP

.= S(xP ). We construct the space TP , which is the tangent space
to the shape at P .

For example, for a shape surface in R
3, the tangent space is just the tangent

plane at a point. For a one-dimensional shape in R
2, the tangent space is the

line tangent to the shape at a point. And for a one-dimensional shape in R
3,

the tangent space is the tangent line.
We then define Cartesian coordinates in the tangent space. For an n-

dimensional shape, there will be n such coordinates. For the αth such coor-
dinate axis in the tangent space, we hence have a unit vector in e(α) ∈ TP ⊂
R

m, where:

e(α) · e(β) .= δαβ , α, β = 1, . . . n, eα = {e(α)
A }, A = 1, . . . m. (8.17)

We then also have the additional unit vectors e(n+1), . . . e(m), which are or-
thogonal to the tangent space. The complete set of vectors form an orthonor-
mal basis for R

m.
A general point on the shape, S(x) say, can hence be written in terms of

this basis at P thus:

S(α)(x) .= (S(x) − SP ) · e(α), α = 1, . . . n,

S(n+p)(x) .= (S(x) − SP ) · e(n+p), p = 1, . . . m − n,

S(x) = SP +
n∑

α=1

S(α)(x)e(α) +
m−n∑

p=1

S(n+p)(x)e(n+p). (8.18)

What we have done here is create a new Cartesian coordinate system in
R

m, with the origin at the point P , and the axes of the system chosen so
that the first n such axes lie in the tangent space TP , whereas the remaining
axes are perpendicular to this tangent space. The reason for creating such a
coordinate system is that the coordinate derivatives on the shape surface are
particularly simple if we chose tangent-space coordinates.

Within some neighbourhood about P , there is a one-to-one mapping be-
tween points in the tangent space, and points on the shape. Hence within this
Monge patch, the tangent space coordinates give a local parameterisation of
the shape. Let τ denote a point in the tangent space, with coordinates:

τα
.= τ · e(α). (8.19)
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The corresponding point on the shape is the point S(x) such that:

S(α)(x) = τα.

Since we are within the Monge patch, this has a single solution. It hence
relates the coordinate x in parameter space to the coordinate in the tangent
space τ = τ (x). The tangent-space coordinate derivatives on the shape at P
are related to the coordinate derivatives in parameter space via:

dα
.=

∂

∂tα

∣∣∣∣
P

, ∂α
.=

∂

∂xα

∣∣∣∣
P

=
∂τβ(x)
∂xα

∣∣∣∣
P

dβ . (8.20)

The Jacobian of the transformation between x and τ at P is JP , where:

(JP )αβ
.=

∂τβ(x)
∂xα

∣∣∣∣
P

, ∂α = (JP )αβdβ , dβ =
(
J−1

P

)
βα

∂α. (8.21)

The Jacobian matrix is hence the relation we seek between the coordinate
derivatives on the shape at P (dα), and the coordinate derivatives in the
parameter space (∂α).

The Jacobian is related to the metric previously defined by the following
Theorem:

Theorem 8.2. The Jacobian Matrix.
Given the definition of the Jacobian JP above (8.21), this Jacobian is related
to the induced Riemannian metric g(x) via:

g(xP ) = (JP )(JT
P ). (8.22)

The Jacobian relates derivatives with respect to the tangent space coordi-
nates to derivatives in parameter space as stated previously (8.21). But the
Jacobian also relates vectors on the shape to vectors in the parameter space.
If ṽ is a vector in the shape at P , then it is related to the corresponding vector
v in the parameter space via:

v = (JT
P )−1ṽ. (8.23)

Proof. To compute the Jacobian, we take the expression for S(x) (8.18), and
substitute the expression for S(α)(x):

S(x) = SP +
n∑

α=1

ταe(α) +
m−n∑

p=1

S(n+p)(x)e(n+p). (8.24)

Since we are within a Monge patch, the other components {S(n+p)(x)} can be
written as a function of τ . And since we have taken these local parameters τ
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to be defined via the tangent space at P , these functions are purely quadratic
to leading order. Hence, taking the derivative dα at P , we obtain:

dαS(x)|P = e(α) =
(
J−1

P

)
αμ

∂μS(x)|P .

Using the orthonormality of {e(α)} (8.17) and the definition of the metric
(8.16) then gives:

δαβ =
(
J−1

P

)
αμ

(
J−1

P

)
βν

(∂μS(x)) · (∂νS(x)) ⇒ g(xP ) = (JP )(JT
P ).

Now consider a vector ṽ in the shape surface at P . It hence lies purely in the
tangent space at P :

ṽ =
n∑

α=1

ṽ(α)e(α).

This vector is specified by a direction and a magnitude. To relate this vector
to one in the parameter space, we have to relate directions at P in the tangent
space to directions at xP in the parameter space. Let us consider points xP

and xP + Δx in parameter space as before. Using (8.20) and (8.21), and
remembering that τ (xP ) = 0 (i.e., the origin of tangent space coordinates),
then gives to leading order:

τβ(xP + Δx) .= Δτβ = (JP )αβΔxα ⇒ Δxα =
(
J−1

P

)
βα

Δτβ . (8.25)

This is then the relation we require between a direction at P in the shape,
described by {Δτβ}, and a direction at xP in the parameter space, described
by {Δxα}.4 Hence for the vector ṽ in the shape at P , the corresponding vector
in the parameter space at xP obeys:

v ∝ (JT
P )−1ṽ, vα ∝

(
J−1

P

)
βα

ṽβ .

The unknown coefficient of proportionality reflects the fact that we have
the correct direction for v, but are not yet sure of its required magnitude.
Remember that distances in parameter space are calculated using the induced
metric g(x). Hence the length of the vector v is computed as:

‖v‖2 .= vαvβgαβ(xP ).

Hence ‖(JT
P )−1ṽ‖ is given by:

‖(JT
P )−1ṽ‖2 =

(
J−1

P

)
μα

ṽμ

(
J−1

P

)
νβ

ṽνgαβ(xP ) = ṽμṽμ = ‖ṽ‖2.

Therefore the relation between ṽ and v is given by:

4 This has to be calculated using infinitesimal coordinate displacements to represent di-

rection, since in general, a straight line in parameter space does not map to a straight line
in tangent space.
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v = (JT
P )−1ṽ,

which correctly relates both direction and magnitude. �	

We can hence relate derivatives in terms of the tangent space coordinates
at P to derivatives on parameter space, and vectors on the shape at P to
vectors in the parameter space using the Jacobian at P , JP .

We now consider extending this to all points x. At each point of the shape,
we define the tangent-space frame vectors {e(α)(x) ∈ R

m}, which lie in the
tangent space at the point S(x). Provided that this tangent-space frame varies
smoothly with position, we then have a Jacobian J(x), which is a smooth,
matrix-valued function of position.

The metric g(x) is totally determined by the shape via (8.16). Note that
the Jacobian J(x), although related to the metric g(x) via (8.22) is not
totally determined. This is because we are free to rotate the frame vectors
in the tangent space. In fact, we can rotate the frame vectors by differing
amounts at neighbouring points. This means that the Jacobian function is
undetermined up to a local gauge transformation R(x), where R(x) is the
matrix representation of a rotation in R

n centred at the point S(x). This
rotation varies smoothly with position, and we have the gauge invariance of
the metric:

J(x) �→ J(x)R(x)
⇒ g(x) = J(x)JT (x) �→ J(x)R(x)RT (x)JT (x) ≡ J(x)JT (x) = g(x),

since the inverse of a rotation R(x) is just the transpose RT (x).

8.3.3 Covariant Derivatives

Let us now recall the aim of these calculations. We want to describe the
dynamics of fluids moving on the surface of a shape, under the action of
viscous forces acting within the fluid. The fields that describe the velocities
of the particles obviously lie in the shape surface, since the particles do. The
viscous forces that act on the particles are constructed in terms of derivatives
of the velocities, and since the particles remain on the surface of the shape,
the viscous forces that we compute must also be restricted to lie wholly within
the surface. We hence need to use an appropriately defined derivative when
computing these forces.

If we consider just the shape surface, without the interior or exterior of the
shape, this shape surface can then be described as an n-dimensional manifold,
the shape manifold. One global coordinate system for this manifold is just the
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parameter space for the shape x ∈ X. In this parameter space, distances are
defined by the Riemannian metric induced on the manifold g(x) (8.15, 8.16).
The metric can be considered as a matrix-valued function of the coordinate
x.

This shape manifold is not flat, and this property of non-flatness does not
just refer to the fact that the surface viewed from the perspective of R

m is
curved, but that the shape manifold with distances defined using the induced
metric is intrinsically curved. The appropriate derivatives within a curved
space are the covariant derivatives of Riemannian differential geometry [4].

For the benefit of those unfamiliar with differential geometry, we will at-
tempt to give a brief explanation as to why considering a problem defined
on the surface of a shape means that we have to introduce a new type of
derivative.

We start by considering the simplest case, the derivative of a scalar
function f(x) on the surface of the shape. As previously, at each point
S(x) ∈ R

m on the shape, we will define a set of orthonormal frame vec-
tors {e(α)(x) ∈ R

m : α = 1, . . . n}, which lie wholly in the tangent space at
that point. We also constrain our tangent frame so that for each tangent-
space direction α, e(α)(x) is a smooth function of the parameter value x as
we move across the physical surface.

We will consider computing a derivative in the direction e(α)(x). The
derivative is defined thus:

Dαf
.= lim

‖Δx‖→0

(
f(x + Δx) − f(x)

‖S(x + Δx) − S(x)‖

)
, (8.26)

where Δx is such that:

S(x + Δx) − S(x) = Δταe(α)(x) + O
(
(Δτα)2

)
, Δτα ≥ 0

‖S(x + Δx) − S(x)‖ = Δτα + O
(
(Δτα)2

)
.

That is, to leading order the two points S(x + Δx) and S(x) at which we
are taking the values of the function are separated in the direction e(α)(x).
By the definition of the tangent space, we already know that the separation
of these two points in the directions perpendicular to the tangent space is
quadratic in terms of the tangent-plane coordinate Δτα (see Theorem 8.2).

Using the results in (8.21) and (8.25), it is simple to calculate the variation
of f :

f(x + Δx) − f(x) = Δxβ∂βf(x) + O
(
‖Δx‖2

)

= ΔτμJ−1
μβ (x)∂βf(x) + O

(
‖Δτ‖2

)

= Δτμdμf(x) + O
(
‖Δτ‖2

)

= Δταdαf(x) + O
(
‖Δτ‖2

)
(no sum on α).

The covariant derivative of a scalar as defined in (8.26) is then:
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Dαf
.= lim

‖Δx‖→0

(
f(x + Δx) − f(x)

‖S(x + Δx) − S(x)‖

)
= lim

Δτα→0

(
Δταdαf(x)

Δτα

)
= dαf(x).

(8.27)
Hence we see that in tangent-plane coordinates, the covariant derivative of
a scalar at the origin of the coordinate system is just the partial derivative
with respect to the tangent-space coordinates.

Let us now consider calculating the derivative on the shape of a vector
field lying wholly within the surface of the shape. The vector field ṽ(x),
when viewed on the physical shape, is a vector field in R

m. The fact that it is
everywhere in the surface means that ṽ(x) is always tangential to the surface
at x. We have tangent frame vectors e(α)(x) at x, hence ṽ(x) can everywhere
be written in the form:

ṽ(x) =
n∑

α=1

(
ṽ(x) · e(α)(x)

)
e(α)(x) .=

n∑

α=1

ṽα(x)e(α)(x),

where · is the Euclidean dot product in R
m. The set {ṽα(x)} are then

the components of the vector field ṽ(x) with respect to the tangent frame
{e(α)(x)}.

A näıve (and incorrect) approach to calculating a derivative of this vector
field would be to take (8.26), but replace f(x) by each of the components
ṽβ(x) in turn. But a vector field is more than just a set of scalar fields which
are its components. Obviously, different coordinate systems give different
components, yet the vector itself, as a physically relevant entity, is unchanged.
The relation between the components {ṽα(x)} and the vector ṽ(x) is defined
by our frame vectors. The frame vectors themselves vary with position, so
that what we mean by the direction α, hence what exactly we mean by the
αth component of a vector, depends on where we are on the shape.

In general, e(α)(x + Δx) and e(α)(x) are not the same, since they lie in
different tangent spaces. These tangent spaces are only the same if the shape
is flat at x, hence it can be seen that their non-equivalence relates to curvature
of the shape surface. And even if the two tangent spaces are the same, the
directions can still rotate.

A simple example is provided by the surface of a sphere. At every point on
the sphere, we can choose frame vectors {e(α)} as the unit vectors tangential
to the surface pointing to the north and to the east, respectively.5 If we
consider any two points on the sphere, we see that these frame vectors are
in general not the same. Similarly if we consider a curve in the plane, the

5 Note that we cannot define such vectors everywhere on the sphere, since what we mean
by north and east is not defined at the poles themselves. Another way to view this is as
a consequence of the Hairy-Ball Theorem, which states that for any continuous tangent
vector field on the sphere, there must be at least one point where the value of the field is
zero.
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tangent line at any point on the curve is in general not parallel to the tangent
line at some other point.

We hence see that there are two possible sources for the variation of a
component ṽα. The first is that the value of the vector field itself just varies
with position, the sort of variation that is normally associated with the usual
concept of partial coordinate derivatives. However, there is a secondary source
of variation, in that the vector field may not vary, but what we mean by the
αth direction is position dependent.

We hence need a way of dealing with this issue of the position-dependence
of directions and hence components. The usual approach is to define a mech-
anism whereby we take the vector ṽ(x + Δx), and compute its new value
when it is transported to the point x. This means that we can then take
the difference of the two vectors at the same point, an operation which has a
definite meaning independent of the coordinate system. This transportation
is referred to in the literature as the operation of parallel transport, and the
precise details of this process are described in terms of the connection. For
Riemannian manifolds, there is a unique connection that can be defined en-
tirely in terms of the Riemannian metric, called the Levi-Civita connection,
which is described in terms of the set of Christoffel symbols. The derivative
constructed using this connection is the covariant derivative of Riemannian
geometry. The importance of covariant derivatives of vectors or tensors is that
they transform correctly as a tensor under a change of coordinate system, a
property that the partial coordinate derivatives themselves do not possess.

Let us consider the computation of covariant derivatives in a little more
detail. We will start by defining the coordinate system for our calculations. We
take as our local parameterisation of the shape the tangent-space coordinates
τ at P , rather than parameter space coordinates x, since results are simpler
in this particular coordinate system. As in (8.24), within some Monge patch
based at P , the shape function can be expanded in terms of the frame vectors
at P thus:

S(x) = SP +
n∑

α=1

ταe(α)(xP ) +
1
2

m−n∑

p=1

(
C

(p)
αβ τατβ + O

(
τ3
))

e(n+p)(xP ),

(8.28)
where we have now made the quadratic dependence explicit, in terms of the
set of coefficients {C(p)

αβ : p = 1, . . . m − n, α, β = 1, . . . n}.
In (8.16), we gave the definition of the metric g(x) in parameter space co-

ordinates. We can hence obtain the metric g(τ ) in tangent-space coordinates
by simply replacing the parameter-space coordinate derivatives ∂α in (8.16)
by tangent-space coordinate derivatives dα thus:

gαβ(τ ) .= (dαS(x)) · (dβS(x)). (8.29)
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Previously, when we were using an orthonormal frame basis, the vectors
{e(α)(x)} defined the direction(s) α at each point. We discussed how the
need for a covariant derivative rests on the fact that what we mean by the
direction α changes with position. A similar argument applies to our current
coordinate basis, as follows.

Consider the set of vectors {dαS(x)}. They obviously indicate the direction
of the αth coordinate axis at the point S(x) on the shape. Since they are
formed from derivatives of the shape function, they obviously lie within the
tangent space at S(x). And as long as S(x) lies within the Monge patch at P ,
these vectors span the tangent space. The vectors {c(α)(x) .= dαS(x)} hence
form a basis for the tangent space at S(x) – the coordinate basis vectors. But
unlike the orthonormal frame vectors {e(α)(x)} that we considered earlier,
the basis formed is not in general an orthogonal basis.6

In our current coordinate system, which is based on the tangent-space at
P , it is the coordinate basis vectors {c(α)(x)} that define what we mean by
direction α. The metric (8.29) can obviously be written in terms of these
basis vectors thus:

gαβ(τ ) ≡ c(α)(x) · c(β)(x).

The way that the direction α changes as we move on the shape can be encoded
in terms of the set of quantities:

c(μ)(x) · dαc(β)(x) ≡ (dμS(x)) · (dαdβS(x)). (8.30)

In most texts on differential geometry, the covariant derivative is described
in terms of the Christoffel symbols,7 which are related to the metric [4] thus:

Γαβμ(τ ) .=
1
2

(dαgβμ(τ ) + dβgαμ(τ ) − dμgαβ(τ )) ,

= (dμS(x)) · (dαdβS(x)),

=
m−n∑

p=1

C
(p)
αβ C(p)

μη τη + O
(
τ2
)
. (8.31)

6 The distinction made here between the frame vectors {e(α)(x)} and the coordinate
basis vectors {c(α)(x)} can be understood as follows. In the coordinate basis, we chose
Cartesian coordinates in the tangent space at P . These can then be mapped back onto the
shape as long as we remain within the Monge patch. Although the coordinate directions
are everywhere orthonormal in the tangent space at P , the same is not true when we
map the coordinate directions back onto the physical surface of the shape, hence into the
tangent space at some other point. Therefore the coordinate basis vectors are not in general
orthogonal at any point other than P . Whereas for the frame vectors, we define a separate
tangent space at each point of the surface, and a set of orthonormal basis vectors within
each such tangent space.
7 What is given here is a Christoffel symbol of the first kind, whereas in applications such as
general relativity [126], what is usually referred to as the Christoffel symbol is actually the
Christoffel symbol of the second kind Γμ

αβ . They are related via multiplication by g−1(τ)
in our matrix notation.
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We hence see that the quantities we used to describe the variation in direc-
tion of the basis vectors (8.30) are just the Christoffel symbols. This hence
demonstrates the link between the usual definition of the Christoffel symbols
in terms of the metric (8.31), and our earlier, rather heuristic discussion in
terms of the variation of directions.

There are two important things to note about the result (8.31) for the
Christoffel symbols. The first is that at P (the point τ = 0) the Christoffel
symbols vanish. This is the simplification that occurs by our use of tangent-
space coordinates at P . The second is that although the symbols themselves
vanish at P , in general their derivatives at P will not.

Covariant derivatives of vectors and tensors [4] involve various combina-
tions of the Christoffel symbols and their derivatives. In particular, second
derivatives of a vector field involve first derivatives of the Christoffel sym-
bols. The viscous force we are trying to calculate involves second-derivatives
of the velocity field. Even though the Christoffel symbols are zero at P , their
derivatives are not, and hence give a contribution to the viscous force at P .

We could proceed using the full machinery of covariant derivatives.8 This
would mean calculating the set of second derivatives of the shape at each
point. And without going into further detail as regards the exact definitions of
covariant derivatives, it can already be seen that the calculation is becoming
rather unwieldy.

We will instead make a simplifying assumption. In practice, our fields and
forces are only defined at a finite set of sample points on the surface of the
shape. If we then treat the surface as piecewise-flat about these sample points,
then the quadratic terms in (8.28) vanish, as do the corresponding terms in
(8.31). We can hence use just the ordinary partial derivatives with respect to
the tangent-frame coordinates {dα}, rather than the full covariant derivatives
{Dα}. In effect, this approximation retains the information encoded in the
Jacobian at each point, which gives a linear approximation to the relation
between parameter space coordinates and coordinates on the surface. But
it ignores the higher-order terms in the Christoffel symbols, related to the
curvature of the shape.

The viscous force in tangent-frame coordinates in this piecewise linear
approximation is given by:

F̃ visc
α = μdβdβ ṽα(x, t) + (λ + μ) dα(dβ ṽβ(x, t)),

where F̃
visc

is the viscous force, and ṽ the Eulerian velocity in tangent-
space coordinates. These are related to the vectors in the parameter-space
via (8.23):

v(x, t) = (JT (x))−1ṽ(x, t) ⇒ ṽ(x, t) = JT (x)v(x, t).

8 Readers interested in further explicit details of covariant derivatives and frame fields on

surfaces should consult the excellent book by Koenderink [100], which takes a heuristic

rather than a formal approach to the subject.
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We can also relate derivatives via (8.21)

dβ =
(
J−1(x)

)
βα

∂α.

Note that our piecewise-linear assumption means that we must ignore the
derivatives of the Jacobian, and hence we can pass the Jacobian through
derivatives without generating extra terms. The above expression for the
viscous force in tangent-frame components is related to the viscous force in
parameter space components thus:

F̃ visc
α (x, t) = Jηα(x)F visc

η (x).

After some algebra, we obtain the final result for the viscous force in param-
eter space:

F visc
η (x, t) = μg−1

μν (x)∂μ∂νvη(x, t) + (λ + μ)g−1
ην (x)∂ν∂μvμ(x, t). (8.32)

Note that the Jacobian does not explicitly appear in this expression, since
products of Jacobians either combine to give the identity matrix, or appear
in a combination that is equal to the inverse of the metric given in (8.16). We
hence do not have to worry about the local gauge degree of freedom possessed
by the Jacobian, as we would expect for a physically meaningful expression.

This final expression gives the relation between the derivatives of the Eu-
lerian velocity field, defined in the parameter space, and the viscous force de-
fined in the parameter space. The effect of the shape appears via the inverse of
the metric matrix g−1(x). As noted previously, the metric is calculated (8.16)
entirely in terms of the shape function on the parameter space and deriva-
tives of it within the parameter space. We hence have a position-dependant
combination of the second derivatives of the velocity field. Although this com-
bination depends on position, the matrix g−1(x) has only to be calculated
once at each sample point, since in the Eulerian framework, the sample point
x remains fixed on the shape as the fluid, hence the deformation field, evolves.

From the point of view of implementation, the problem is the construction
of a suitable set of sample points in parameter space, at which the values of
the shape function, the displacement field, the Eulerian velocity field, and the
viscous and driving forces are to be defined or calculated. The computation of
the metric and of the viscous forces involve spatial derivatives on parameter
space, hence ideally we require a set of sample points where we can calculate
the numerical derivatives efficiently. A computationally efficient sampling for
shapes with spherical topology is provided by the use of the concept of shape
images, as described in the next section.
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8.4 Shape Images

Let us consider the case of closed shape surfaces in three dimensions, with
spherical topology. We showed previously (Sect. 6.1.2) how to construct
an initial parameterisation for these shapes using the unit sphere, so that
X = S

2. The set of training shapes is typically represented by a set of tri-
angulated meshes (Sect. 6.1.2). Hence working with such a parameterisation
involves interpolation on a general triangulated mesh, which is computation-
ally intensive.

To implement fluid regularization, we could just generate sample points
as densely as required on the unit sphere. Although sampling directly on
the unit sphere means that it is relatively easy to ensure that the topology
is maintained, the computation of derivatives of the various fields involves
another computationally intensive step if we perform it on the sphere.

The computational cost of any interpolation or differentiation would be
considerable reduced if our parameter space X was instead some region of R

2.
We could then generate a set of sample points on parameter space which were
part of a regular grid. And such regular grids allow much more straightforward
and faster methods of interpolation and numerical differentiation.

For the case of shapes with spherical topology, it is well-known that the
sphere cannot be covered by a single chart, so that any such single chart will
have at least one point where derivatives cannot be defined.9

A näıve approach would be to map the surface of the sphere onto the
square, where the Cartesian coordinates on the square are just the usual
polar angles on the sphere, (θ, ψ), with 0 ≤ θ ≤ π, 0 ≤ ψ < 2π. However, this
has the problem that the upper and lower edges of the square are mapped
to single points on the sphere (the poles θ = 0 and θ = π.) Hence we have
two problematic points in our chart. Better charts for the sphere can be
constructed using the work of Praun and Hoppe [138], as we will explain.

We start by considering shapes which have the topology of the sphere,
but are simpler, in the sense that they are formed of flat faces – polyhedra.
There are nine regular polyhedra in R

3, all of which have the property that
they can be contained within a sphere (a circumsphere), with each vertex
lying on that sphere. However, of these nine, only five are convex, and these
are the Platonic solids of classical geometry (tetrahedron, cube, octahedron,
dodecahedron and icosahedron). Each Platonic solid has a polyhedral net [58],
which is an arrangement of edge-joined polygons in the plane, from which the
final solid can be constructed by folding along these joins (see Fig. 8.1). Hence
these polyhedral nets give a mapping from the Platonic solid to a region of
the plane. It is obvious that there exist one-to-one mappings between each
Platonic solid and the smallest possible circumsphere. The Platonic solids

9 A sphere requires at least two charts for each chart to be differentiable everywhere. In
differential geometry, such a collection of charts is called an atlas.
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hence provide possible methods for mapping the unit sphere onto an inscribed
Platonic solid, hence onto a region of the plane.10

The final step is then to deform the polyhedral net, so that it lies within
some more convenient region of the plane. This process is simplest [138] for
the tetrahedron and the octahedron, as illustrated in Fig. 8.1, both of which
can be mapped onto the unit square. The case of the cube is slightly more
complicated, and in [138], Praun and Hoppe retained all six faces of the cube,
hence had an atlas of six square charts, appropriately connected. They also
retained the rectangular mapping for the tetrahedron, since this then retained
the important property that sampling regularly on each of the faces of the
mapping gave regular sampling on the faces of the polyhedron.

Similar square charts can be constructed for shape surfaces with topologies
other than spherical. For example, a shape with cylindrical topology can
be mapped to the unit square, with periodic boundary conditions in one
direction. Whereas a shape with the topology of the torus would require
periodic boundary conditions in both directions.

Geometry images were originally introduced by Gu et al. [84], who con-
sidered the case of mapping arbitrary surfaces to regularly-sampled square
domains. They used the re-sampled, pixellated square grid to store infor-
mation about the geometry of the original shape, in terms of the Cartesian
coordinates of the surface, but they also stored information about the surface
normals and colour of the surfaces. Davies et al. [56, 181] used a simplified
version, storing just the values of the shape function, in the context of shape
modelling, and called them shape images.

Fig. 8.1 Top: Polyhedral net for the tetrahedron, cut, re-stitched, and stretched to fit
into the square. The coloured lines indicate where edges should be joined, and the black
lines indicate where the net should be folded to create the final shape. Bottom: The net
for the octahedron, cut, re-stitching, and distorted, and the final mapping to a square.
Note that the coloured lines are sometimes omitted for reasons of clarity.

10 A similar approach was utilized by Buckminster Fuller in 1946, when he used an unfolded

cuboctahedron (a non-regular polyhedron) or a slightly modified regular icosahedron to

create his DymaxionTMmap of the earth [19, 20, 81].
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We now introduce some notation. We map the original shape to the sur-
face of the sphere as described previously in Sect. 6.1.2. We then place the
octahedron inside the sphere, and map points from the surface of the sphere
onto the octahedron using a gnomic projection. That is, we just take the
radius that passes through the given point on the sphere, and where this
line cuts the polyhedron is the point that it maps to. Hence the edges of the
polyhedron map to arcs of great circles on the sphere, and great circles on
the sphere map to straight lines within a face. Cutting and unfolding the
octahedron as shown in Fig. 8.1, then maps the points from the sphere to the
unit square.

Our parameter space X is now the unit square. We create a regular grid
of points (the pixel positions), with Cartesian coordinates (i, j). We will con-
catenate the positions of all the pixel positions, collecting them into a variable
which we will denote by X, the entire pixel grid. The shape function can now
be interpolated from the original triangulated mesh to the regular grid, to
give the vector-valued shape image S(i, j).

If we are going to apply fluid regularization on the surface of the shape,
we first need to compute the metric at each point (8.16). We hence need to
compute the set of spatial derivatives:

∂

∂i
S(i, j),

∂

∂j
S(i, j).

For quantities defined on a regular grid, spatial derivatives are computing
using a simple finite-difference approximation. If Δ is the grid spacing, then
to lowest order:

∂if(i +
Δ

2
, j) =

f(i + Δ, j) − f(i, j)
Δ

,

∂2
i f(i, j) =

∂if(i + Δ
2 , j) − ∂if(i − Δ

2 , j)
Δ

,

and so on. If S .= {S(i, j) : (i, j) ∈ X}, the collected set of shape values across
the entire grid, then the set of all metric values across the grid can be written
symbolically in the form:

g = (SG)T GS,

where G is some static matrix, since the derivatives required to construct
∂iS are just a simple linear operation when taken as finite-differences. The
exact details of G obviously depend on how we have concatenated the set of
values, hence are implementation-dependent.

For fluid regularization, we now have the displacement field defined at
each point on the pixel grid X, and the corresponding Eulerian velocity field
which is also defined at each point of the grid. We will collect the entire set
of such values into the variables:
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Algorithm 8.1 : Fluid Regularization.

Pre-compute the metric g and hence the derivative matrix D[g, λ, μ].
Initialize variables with U = 0, V = 0.
Repeat:

• Given U(t), find FS(t)
• Compute the velocity field V(t) using:

Fvisc(t) = −FS(t), Fvisc(t) = D[g, λ, μ]V(t)
• Update the displacement field U(t + Δt):

U(t + Δt) = U(t) + Δt [V(t) − (V(t) · ∇)U(t)]
• Check if re-gridding is required

Until convergence.

U(t) .= {u(x, t) : x ∈ X}, V(t) .= {v(x, t) : x ∈ X}. (8.33)

The viscous force is computed from the spatial derivatives of the velocity
field (8.32), hence can be written in the general form:

Fvisc(t) = D[g, λ, μ]V(t), (8.34)

where D is a matrix representing the finite-difference operations required to
construct the set of second derivatives in (8.32). It depends on the values of
the viscosities, and on the metric g we have previously calculated. The point
is note is that like G defined above, this matrix is also static, hence can be
pre-computed.

The final relation we need is that between the displacement field U(t) and
the velocity field V(t). From (8.10):

v(x, t) =
∂

∂t

∣∣∣∣
x

u(x, t) + (v(x, t) · ∇)u(x, t).

If we let ∇ denote the operation of spatial differentiation taken across the
entire grid, then the above can be written in the form:

U(t + Δt) = U(t) + Δt [V(t) − (V(t) · ∇)U(t)] ,

where Δt is now the temporal step-size. This is the required update rule for
the displacement field. The basic fluid regularization algorithm is then as
given in Algorithm 8.1.

We see that the sequence of operations within the loop is as follows. Given
the value of the displacement field at a time t, this determines the driving
force FS(t) (8.6), since as already stated, the driving force depends only
on the shape correspondence (hence U(t)), and not on the velocity. The
exact details of the driving force obviously depends on the objective function
chosen, and the details of the computation will be considered in the next
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Algorithm 8.2 : Solving for V(t).

Pre-compute the derivative matrix D[g, λ, μ].
Pre-compute the LU decomposition: D = PLUQ, where L and U are lower and upper trian-
gular matrices, respectively, and P and Q are permutation matrices.
Within the main loop of Algorithm 8.1:

• Solve Fvisc(t) = PLW for W
• Solve W = UQV(t) for V(t)

section. The balance of forces (8.9) means that knowing FS(t), we then know
Fvisc(t). The next step is non-trivial, in that we have to deduce, given the
viscous forces, what the flow field is that yields those forces. We hence have
to solve the matrix equation (8.34) Fvisc(t) = D[g, λ, μ]V(t) for V(t). It is
important to note that since D involves second derivatives, it is a sparse
matrix. As noted previously, it is static. Christensen et al. [22] solved this
equation using an iterative method, However, since we are only considering
two-dimensional shapes, hence two-dimensional shape images, it is quicker to
use a pre-computed LU decomposition, as shown in Algorithm 8.2.

The velocity field is then used to update the displacement field. Note that
the temporal step-length Δt only enters at this stage. It is hence convenient to
determine it here, where, for example, Δt can be chosen so that the additional
maximum displacement is equal to some pre-determined value. In effect, this
determines the time-scale of our problem. Note that scaling both viscosities λ,
μ just scales the velocity field, hence is equivalent to a temporal re-scaling. We
then have only one physically-relevant parameter, the ratio of the viscosities,
rather than the two the viscosities might initially have suggested. The final
step allows for re-gridding if the displacement field is close to becoming non-
homeomorphic (i.e., folding).

We have now provided a brief sketch of the fluid regularization algorithm.
In the following sections, we first consider several issues that arise when we
begin to consider the practicalities of implementation, followed by explicit
examples of the regularizer in action.

8.5 Implementation Issues

In this section, we deal with several issues that arise whilst implementing
the fluid regularization algorithm using shape images. The first is a purely
practical one, involving memory limitations. The second issue is how we avoid
singular transformations.
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8.5.1 Iterative Updating of Shape Images

For some computer systems, memory limitations can mean that it is imprac-
tical to store an entire set of high-resolution shape images. An alternative
scheme, that works well in practice, uses an iterative approach, where shape
images are re-sampled as required.

At each iteration, we start by creating a lower resolution shape image for
each training example, which is sampled according to the current parameter-
isation. Correspondence across the set of shape images is then optimised by
re-parameterisation. These optimised re-parameterisation functions are then
used to update each shape parameterisation, which then enables a new set
of shape images to be created by sampling, ready for the start of the next
iteration.

In practice, as was discussed previously in Sect. 7.3.4, we chose to manip-
ulate the set of sample points rather than the parameterisations themselves,
since this decreases the chance of creating a non-homeomorphic transforma-
tion. We consider first the case of open surfaces, since the issue of boundary
conditions on the shape image is simpler in this case than for the case of closed
surfaces (we will deal with the case of closed surfaces in the next section).

We give here the outline of an efficient method, which is also illustrated
diagrammatically in Fig. 8.2. Complete pseudocode for this case is given later
in Algorithm 8.4. The method is:

1. Create a regular grid on the unit square.
2. For each training example:

• Set the initial positions of the sample points to be the gridpoints cre-
ated in step 1.

3. For each training example:

• Construct a shape image by using the current sample points to sample
the training surface according to its parameterisation.

4. Optimise the set of shape images. This produces a set of re-parameter-
isation functions, one for each shape.

5. For each training example:

• Use the re-parameterisation functions found during optimisation to
re-parameterise the positions of the sample points.

6. Go back to step 3.

For open surfaces, the task of creating a shape image is simplified, since
we just have to ensure that the boundary of the shape image is mapped
to the boundary of the shape. However, for closed surfaces, the issue of the
placement of the boundary of the shape image has to be dealt with explicitly,
as we will see in the next section.
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Fig. 8.3 Cutting and unfolding an octahedron and flattening it onto the plane. The ⊕
sign denotes singular points, where a fold line meets the edge of the image.

8.5.2 Dealing with Shapes with Spherical Topology

As was discussed previously in Sect. 8.4, in order to create a shape image
from a surface with spherical topology, we have to cut open the parameter
space of the sphere, and flatten and map this to the unit square. There are
several constructions which we can use to perform this task, but in practice,
we use the octahedron scheme shown in Figs. 8.1 and 8.3.

Whichever way the octahedron is cut and unfolded, there will always be
singular points on the shape image (e.g., see Fig. 8.3). These arise at the
points where a fold line meets the edge of the image. As a result, there will
always be some points on the shape image that cannot be re-parameterised,
and must be fixed throughout optimisation. This hence limits the possible
choices of correspondence.

If we use the iterative scheme described in the previous section, we rebuild
the shape image at each iteration. We can therefore ensure that the positions
of these fixed points change at some point, by cutting the octahedron differ-
ently at each iteration. This then means all parts of the parameterisation can
be manipulated, even if they cannot all be manipulated at each iteration.

One easy way of varying the octahedral mapping from the sphere to the
plane is to rotate the parameterisation (i.e., the sphere) with respect to the
octahedron before mapping it to the plane.

An even simpler scheme that also works well in practice is to simply change
the sign of the z-coordinates of the sphere (i.e., the parameterisation) on each
iteration. We thus alternate between two different positions of the singular
points. The basic idea is illustrated in the following algorithm:

1. For each training example:

• Change the sign of the z-coordinates of the parameterisation.

2. For each training example:
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• Construct a shape image by sampling the training surface according
to its current parameterisation.

3. Optimise the set of shape images, thus producing a set of re-parameter-
isation functions, one for each shape.

4. For each training example:

• Apply the re-parameterisation function found during optimisation to
the parameterisation.

5. Go back to step 1.

For the reasons given in the case of open surfaces above, we chose to ma-
nipulate the sample points, rather than the parameterisation. This is a little
more complicated for closed surfaces, but there is an efficient method, which
relies on the use of two sets of sample points for each training example. As be-
fore, we here give a brief outline of the method, a diagrammatic explanation
in Fig. 8.4, and detailed pseudocode later in this chapter (see Algorithm 8.6):

1. Create a regular grid on the unit square.
2. For each training example:

• Project the gridpoints onto the unit sphere via the flattened octahe-
dron – call these sample points A.

• Make a copy of sample points A and reverse the sign of the z-
coordinate – these are sample points B.

3. For each training example:

• If the iteration number is odd, use sample points A, otherwise use
sample points B.

• Construct a shape image using the sample points to sample the train-
ing surface according to its parameterisation.

4. Optimise the set of shape images, producing a set of re-parameterisation
functions, one for each shape.

5. For each training example:

• Project the re-parameterisation onto the sphere (reversing the sign of
the z-coordinates if sample points B were used), using the flattened
octahedron.

• Use the re-parameterisation functions found during optimisation to
re-parameterise the positions of sample points A and sample points B.

6. Go back to step 3.
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8.5.3 Avoiding Singularities by Re-gridding

We saw in Fig. 7.3 that although a continuous transformation may be home-
omorphic, a finitely sampled version of it, which is then interpolated using a
piecewise flat function, may not be. A similar problem can occur for the fluid-
based transformations, since we are using a finitely sampled approximation
to the actual continuous fluid evolution equations.

Since the fluid-based transformations are defined on a regular grid, it is
straightforward to calculate the Jacobian matrix of the transformation at
each point. Monitoring the value of the determinant of this Jacobian provides
a convenient method of predicting and avoiding singularities (that is, folding)
in the transformation [22].

A singularity occurs if the determinant of the Jacobian is zero or less at
any point. We can therefore avoid such singularities if we only allow trans-
formations whose Jacobian is greater than some suitable pre-defined value
at each point. But if we follow this approach, we can only produce a limited
set of transformations, which is insufficient for establishing correspondence
in many practical applications. Remember that one advantage of the fluid
approach is that it explicitly allows large deformations to be considered, and
it is typically such large deformations of the grid which can lead to problems.

An alternative approach to the one of placing constraints on the Jaco-
bian, is to instead use a regridding method. Rather than trying to consider
a single deformation field, which may become singular when the deforma-
tion becomes large, we instead decompose the transformation into a series of
smaller, non-singular ones [22]. Regridding is performed if a transformation
approaches singularity at any point. The process involves saving the current
transformation and applying it to the shape image, thus creating a new prop-
agated shape image. The working transformation is reset to the identity and
optimisation is restarted using this new shape image. Once optimisation is
complete, the set of transformations are then composed into the required
single transformation.

8.6 Example Implementation of Non-parametric
Regularization

We will now describe an efficient algorithm for optimising correspondence
between a training set of shape images using a fluid-based regularizer. The
algorithm can be used by itself if the shape images are of sufficient resolution,
but as we have stated above this is impractical on many computer systems.
The alternative approach, and the one that we follow here, is the iterative
method described in Sect. 8.5.1.

The following options were used in this implementation:
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• Objective function: The determinant-based objective function ((4.9),
Sect. 4.2.1), with regularization constant Δ = 0.001.

• Number of iterations: niterations was set to 25.11

• Fluid Equations: A finite difference scheme, employing LU decomposi-
tion was used to solve the fluid equations.

• Pose: pose transformations were not optimised.

If the shape images represent open surfaces (with a single boundary edge),
then boundary conditions must be set on the shape image so that points do
not move off the edge. For closed surfaces, using the octahedron mapping
shown in Fig. 8.3, only the four singular points of the shape image need to be
fixed. For the rest of the boundary of the shape image, boundary conditions
may be imposed as shown on the figure, which then allows points to move ap-
propriately across the boundary. Fixing only four points allows us to produce
more flexible transformations than fixing the entire boundary, but it requires
a more complicated implementation. In what follows, we make the simpler
choice to fix the entire boundary. This then allows the algorithm to be used
within an iterative scheme for either open or closed surfaces, as described in
Sects. 8.7.1 and 8.7.2, respectively.

Algorithm 8.3 : Optimisation Using Fluid Regularization.

procedure {Reparameterisationi} ← optimise fluid
({Shape Imagei},Grid Points)

Description

Uses fluid regularization to find the set of re-parameterisation functions that minimises a group-
wise objective function.

Variables

• Shape Imagei is a n × 3 shape image representing the ith training shape; the pixel
coordinates are stored in the rows of a n × 2 matrix Grid Points;

• {Reparameterisationi} is a set of n×2 matrices that represent the re-parameterisation
functions that can be applied to the corresponding shape images to produce the optimal
value of the objective function.

Declarations

• b = bilinear interpolation(X,Y;a)
the n × 2 matrix X, holds values of a (vector-valued) function, evaluated at points whose
coordinates are stored in the n × 2 matrix Y; the function returns b, the value of the
function at point a, which is estimated by bilinear interpolation;

• amax = max(a)
returns the element of the vector a with maximum value.

11 Note that this number would be considerably higher if the non-iterative approach was
used.
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Initialization

1. let ref be in the index of the reference shape;
2. initialize the regrid counter to zero for all shapes:

for i = 1 . . . nS

regrid counteri ← 0;

3. make a copy of the original shape images:
for i = 1 . . . nS

Original Shape Imagei ← Shape Imagei;

4. concatenate the coordinates of the m×m regular grid Grid Points into a 2n-dimensional
vector (hence m2 = n):12

grid points ←
(
Grid Points(·, 1)T ,Grid Points(·, 2)T

)
,

where the components are ordered as:

(x(1, 1), x(2, 1), . . . , x(1, 2), x(2, 2), . . . , x(m − 1, m), x(m, m), �

y(1, 1), y(2, 1), . . . , y(1, 2), y(2, 2), . . . , y(m − 1, m), y(m, m));

5. let displacementi be a 2n-dimensional vector representing the displacement field of the

ith shape – the vector is arranged so that each component of displacement corresponds
to a component of grid points; each element of each vector is initialized to zero:
for i = 1 . . . nS

displacementi ← (0, 0, . . . , 0) ;

6. create a 3n-dimensional shape vector for each training example;
for i = 1 . . . nS

for j = 1 . . . n

sample point ← �
(

grid points(j) − displacementi(j),
grid points(j + n) − displacementi(j + n)

)
,

v ← bilinear interpolate (Grid Points,Shape Imagei, sample point) ,

shape vectori(j) ← v(1),

shape vectori(j + n) ← v(2),

shape vectori(j + 2n) ← v(3);

7. let free node be a n-dimensional boolean-valued vector with value true if the node is
allowed to move and, false if its position remains fixed – in this implementation, the free
nodes correspond to all nodes not at the boundary of the unit square;

8. precompute the 2n × 2n (sparse) matrix, D, which holds the finite difference operations
required to construct the set of second derivatives13:

8.1. initialize by setting all elements of D to zero;

12 For clarity, we have assumed that the number of pixels in the shape image was the same
as the number of sample points, but only simple modifications are needed to remove this
assumption.
13 Note that we are here making the approximation that all fluids flow on the surface of

the mean shape, rather than on each individual shape. There is hence only one matrix
involved in computing the second derivatives, rather than one such for each shape.
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8.2. let:

a ← 2μ + λ
h2

, b ← μ
h2

, c ← μ + λ
4h2

, d ← λ + μ
h2

, e ← λ + 3μ
4h2

where the grid-spacing h = 1/m; fluid viscosity values of μ = 1 and λ = 1 were used
here;

8.3. create a 3n-dimensional vector to store the shape function and set it to the mean
shape:

shape function ← 1

nS

∑

i

shape vectori;

8.4. populate the matrix using a finite difference scheme:
for k = 1 . . . n

if (free node(k))
– calculate the gradient of the shape function in the i and j directions and

store them in three-dimensional vectors:

grad i ← �
⎛

⎝
shape function(k) − shape function(k + 1),
shape function(k + n) − shape function(k + 1 + n),
shape function(k + 2n) − shape function(k + 1 + 2n)

⎞

⎠ ,

grad j ← �
⎛

⎝
shape function(k) − shape function(k + m),
shape function(k + n) − shape function(k + m + n),
shape function(k + 2n) − shape function(k + m + 2n)

⎞

⎠ ;

– calculate 2 × 2 the matrix Metric – this corresponds to g in (8.32):

Metric ← 1

h3

(
grad i • grad i, grad i • grad j
grad j • grad i, grad j • grad j

)
,

where • represents the dot product operator;
– calculate the inverse of the metric matrix:

Inverse Metric ← Metric−1;

– fill in the finite difference operations for the i component – note that the
comments after the % sign denotes the element of v to which the entry cor-
responds:

let:
ã ← a · Inverse Metric(1, 1), b̃ ← b · Inverse Metric(2, 2),

c̃ ← c · Inverse Metric(1, 1), d̃ ← d · Inverse Metric(1, 2),
ẽ ← e · Inverse Metric(1, 2);
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D(k, k) ← −2ã − 2b̃ % vi(i, j)
D(k, k − 1) ← ã % vi(i + 1, j)
D(k, k + 1) ← ã % vi(i + 1, j)

D(k, k − m) ← b̃ % vi(i, j − 1)

D(k, k + m) ← b̃ % vi(i, j + 1)
D(k, k + 1 + m) ← ẽ % vi(i + 1, j + 1)
D(k, k − 1 + m) ← −ẽ % vi(i − 1, j + 1)
D(k, k + 1 − m) ← −ẽ % vi(i + 1, j − 1)
D(k, k − 1 − m) ← ẽ % vi(i − 1, j − 1)

D(k, k + n) ← −2d̃ % vj(i, j)

D(k, k + m + n) ← d̃ % vj(i, j + 1)

D(k, k − m + n) ← d̃ % vj(i, j − 1)
D(k, k + 1 + m + n) ← c̃ % vj(i + 1, j + 1)
D(k, k − 1 + m + n) ← −c̃ % vj(i − 1, j + 1)
D(k, k + 1 − m + n) ← −c̃ % vj(i + 1, j − 1)
D(k, k − 1 − m + n) ← c̃ % vj(i − 1, j − 1)

– now do the same for the j component:

let:
ã ← a · Inverse Metric(2, 2), b̃ ← b · Inverse Metric(1, 1),

c̃ ← c · Inverse Metric(2, 2), d̃ ← d · Inverse Metric(2, 1),
ẽ ← e · Inverse Metric(2, 1);

D(k + n, k + n) ← −2ã − 2b̃ % vj(i, j)
D(k + n, k − m + n) ← ã % vj(i, j − 1)
D(k + n, k + m + n) ← ã % vj(i, j + 1)

D(k + n, k − 1 + n) ← b̃ % vj(i + 1, j)

D(k + n, k + 1 + n) ← b̃ % vj(i + 1, j)
D(k + n, k + 1 + m + n) ← ẽ % vj(i + 1, j + 1)
D(k + n, k − 1 + m + n) ← −ẽ % vj(i − 1, j + 1)
D(k + n, k + 1 − m + n) ← −ẽ % vj(i + 1, j − 1)
D(k + n, k − 1 − m + n) ← ẽ % vj(i − 1, j − 1)

D(k + n, k) ← −2d̃ % vi(i, j)

D(k + n, k + m) ← d̃ % vi(i, j + 1)

D(k + n, k − m) ← d̃ % vi(i, j − 1)
D(k + n, k + 1 + m) ← c̃ % vi(i + 1, j + 1)
D(k + n, k − 1 + m) ← −c̃ % vi(i − 1, j + 1)
D(k + n, k + 1 − m) ← −c̃ % vi(i + 1, j − 1)
D(k + n, k − 1 − m) ← c̃ % vi(i − 1, j − 1)

8.5. fill in the values for the fixed nodes:
for k = 1 . . . n

if NOT (free node(k))
D(k, k) ← 1, D(k + n, k + n) ← 1,
for j = 1 . . . 2n

D(k, j) ← 0, D(j, k) ← 0,
D(k + n, j) ← 0, D(j, k + n) ← 0;

8.6. perform an LU decomposition of D to get a lower triangular matrix L and an upper
triangular matrix U.
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Optimisation

1. for it = 1 . . . niterations

1.1. select a shape number, i, at random using a uniform distribution over the training
set with i �= ref ;

1.2. let gradienti be a 2n-dimensional vector that holds the value of the gradient of the

objective function, L, w.r.t. the displacement of the sample points of the ith shape
– for convenience, we will hold the position of the sample points in a 2n-dimensional
vector, p:

gradienti ←
(

∂L
∂p

(i)
1

, . . .
∂L

∂p
(i)
A

, . . .
∂L

∂p
(i)
2n

)
,

where p
(i)
A = grid points(A) − displacementi(A).

In Sect. 4.3.4, we saw that the gradient can be split into a product of simpler terms:

∂L
∂p

(i)
A

=

nS−1∑

a=1

∂L
∂λa

nS∑

j=1

nS∑

k=1

∂λa

∂D̃jk

∫
δD̃jk

δSi(x)

δSi(x)

δp
(i)
A

dA(x)

we also saw in Sect. 7.3.2 that the term involving the integral can be estimated using
a simple finite sum:

∫
δD̃jk

δSi(x)

δSi(x)

δp
(i)
A

dA(x) ≈
∑

m

δD̃jk

δSi(xm)

δSi(xm)

δp
(i)
A

ΔA(xm)

where {xm} represent the position of the sample points and ΔA(xm) represents the

total area of all triangles connected to the mth sample point, calculated on the mean
shape (see Sect. 7.3.2).
• set the value of the gradient of the reference shape to zero:

for j = 1 : 2n
gradientref (j) ← 0,

• set the value at all fixed nodes to be zero:
for i = 1 : nS , i �= ref

for j = 1 : 2n
if NOT (free node(j))

gradienti(j) ← 0;
1.3. The components of each other term are calculated as follows:

1.3.1. calculate the mean shape vector:

mean shape vector ← 1

nS

∑

i

shape vectori;

1.3.2. create a shape difference vector for each shape by subtracting the mean shape
vector:
for i = 1 . . . nS

centred shape vectori ← shape vectori − mean shape vector;

1.3.3. for each sample point: calculate the sum of the areas (on the mean shape) of
all triangles14 connected to that sample point and store it in a n-dimensional
vector int area;

14 In this implementation, a triangulation of the sample points was created by perform-

ing a Delaunay triangulation of Grid Points. One could also define connectivity using
quadrangles, but it is usually easier to work with triangles.
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1.3.4. calculate a nS × nS covariance matrix, Covariance, using the approximation
described in Sect. 7.3.1; each element is calculated as:

Covariance(i, j) ←
n∑

k=1

int area(k) [ �

centred shape vectori(k) · centred shape vectorj(k)+ �

centred shape vectori(k + n) · centred shape vectorj(k + n)+ �

centred shape vectori(k + 2n) · centred shape vectorj(k + 2n)
]

1.3.5. obtain the nS − 1 set of eigenvectors {eigenvectora} and the corresponding
(ordered) eigenvalues {eigenvaluea} of Covariance;

1.3.6. use the eigenvalues to calculate

∂L
∂λa

=
1

eigenvaluea + ε
;

1.3.7. normalize all eigenvector to have unit length:
for a = 1 . . . nS − 1

eigenvectora ← eigenvectora

||eigenvectora||

1.3.8. use the eigenvectors to calculate

∂λa

∂D̃jk

= eigenvectora(j) · eigenvectora(k);

1.3.9. calculate the components of
δD̃jk

δSi(xm)
; the x coordinate component is given by:

1

nS ·
∑

m int area(m)
[(nSδ(i, j) − 1)centred shape vectork(m) �

+ (nSδ(i, k) − 1)centred shape vectorj(m))
]
;

the y and z coordinate components are obtained in a similar fashion by substi-
tuting m with m + n and m + 2n, respectively;

1.3.10. use a finite difference scheme to numerically approximate the x-coordinate com-

ponents of
δSi(x)

δp
(i)
A

for each free grid point:

• perturb the Ath point of the ith shape by a small amount Δ = 10−5

parallel to the x-axis:
– re-parameterise by perturbing the x-coordinate of the sample point:

sample point ←
(

grid point(A) − Δ
grid point(A + n)

)T

– sample the the perturbed point on the shape:

v ← bilinear interpolation �

(Grid Points,Shape Imagei, sample point) ,

– create a copy of the current shape vector for the ith shape and replace
the Ath point with the perturbed point:
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perturbed shape vector ← shape vectori

perturbed shape vector(A) ← v(1),

perturbed shape vector(A + n) ← v(2),

perturbed shape vector(A + 2n) ← v(3);

– estimate the derivative as a finite difference:

δSi(x)

δp
(i)
A

=
perturbed shape vector − shape vectori

Δ
,

1.3.11. now do the same to the y-coordinate components of
δSi(x)

δp
(i)
A

for each free grid

point:
• perturb the Ath point of the ith shape by a small amount Δ = 10−5

parallel to the y-axis:
– re-parameterise by perturbing the y-coordinate of the sample point:

sample point ←
(

grid point(A)
grid point(A + n) − Δ

)T

– sample the the perturbed point on the shape:

v ← bilinear interpolation �

(Grid Points,Shape Imagei, sample point) ,

– create a copy of the current shape vector for the ith shape and replace
the Ath point with the perturbed point:

perturbed shape vector ← shape vectori

perturbed shape vector(A) ← v(1),

perturbed shape vector(A + n) ← v(2),

perturbed shape vector(A + 2n) ← v(3);

– estimate the derivative as a finite difference:

δSi(x)

δp
(i)
A+n

=
perturbed shape vector − shape vectori

Δ
,

2. for i = 1 . . . nS , i �= ref ; % for each shape

2.1. solve the linear PDE
−gradienti = Dvelocityi

for the velocity field of the ith shape, velocityi; this is achieved by solving

La = −gradienti

for a by forward substitution, then solving

Uvelocityi = a

for velocityi by back substitution (where L and U are the pre-computed matrices
produced by the LU decomposition computed in the Initialization);
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2.2. calculate the n-dimensional vectors corresponding to the gradient of the displacement
field of the ith shape, displacementi, along the x and y axis:
for j = 1 . . . n

if free node(j)

duxdx(j) ← displacement(j + m) − displacement(j − m)

2h
,

duxdy(j) ← displacement(j + 1) − displacement(j − 1)

2h
,

duydx(j) ← displacement(j + m + n) − displacement(j − m + n)

2h
,

duydy(j) ← displacement(j + 1 + n) − displacement(j − 1 + n)

2h
,

else

duxdx(j) ← 0,

duxdy(j) ← 0,

duydx(j) ← 0,

duydy(j) ← 0,

2.3. calculate the n × 2 regularization matrix R:
for j = 1 . . . n

R(j, 1) ← velocity(j) − (velocity(j) duxdx(j)+ �

velocity(j + n) duxdy(j), )

R(j, 2) ← velocity(j + n) − (velocity(j) duydx(j)+ �

velocity(j + n) duydy(j));

2.4. calculate the timestep as

t ← δ

max(||R||)
;

where the || · || operator returns a vector representing the Euclidian norm of each row
of R; a value of δ = 10−3 was used in this implementation;

2.5. calculate the proposed displacement:
for j = 1 : n

proposed displacement(j, 1) ← grid points(j) �

−displacementi(j) − tR(j, 1),

proposed displacement(j, 2) ← grid points(j + n) �

−displacementi(j + n) − tR(j, 2);

2.6. if the Jacobian of m · proposed displacement is less than 0.5 at any point;
• then % need to regrid

2.6.1. increment the regrid counter for the ith shape:

regrid counteri = regrid counteri + 1;

2.6.2. store the current transformation into a matrix, whose rows contain all saved
re-parameterisations:
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Saved Reparameterisationi(regrid counteri, ·) ← �

grid points − displacementi;

2.6.3. resample the shape image according to the accumulated re-parameterisation:
2.6.3.1. let Cumulative Reparameterisation ← Grid Points;

for k = 1 . . . regrid counteri

– reshape the saved re-parameterisation into a n × 2 matrix:
for j = 1 . . . n

Reshaped Reparameterisation(j, 1) ← �

Saved Reparameterisationi(k, j),

Reshaped Reparameterisation(j, 2) ← �

Saved Reparameterisationi(k, j + n),

Reshaped Reparameterisation(j, 3) ← �

Saved Reparameterisationi(k, j + 2n)

– accumulate the re-parameterisations:
for j = 1 . . . n

Cumulative Reparameterisation(j, ·) ← �

bilinear interpolation(Grid Points, �

Reshaped Reparameterisation, �

Cumulative Reparameterisation(j, ·));

2.6.3.2. resample the original shape image to create a new shape image, sampled
according to Resized Reparameterisation:
for j = 1 . . . n

Shape Imagei(j, ·) ← bilinear interpolation �

(Grid Points,Original Shape Imagei, �

Resized Reparameterisation(j, ·));

2.6.4. set all elements of the displacement vector of the ith training example to
zero:

displacementi ← (0, 0, . . . 0)T ;

2.6.5. goto step 2.2;
• else % accept the displacement

for j = 1 . . . n

displacementi(j) ← displacementi(j) + t · Ri(j, 1),

displacementi(j + n) ← displacementi(j + n) + t · Ri(j, 2);

3. update the ith shape vector:
for j = 1 . . . n
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sample point ← �
(

grid points(j) − displacementi(j),
grid points(j + n) − displacementi(j + n)

)
,

v ← bilinear interpolate (Grid Points,Shape Imagei, sample point) ,

shape vectori(j) ← v(1),

shape vectori(j + n) ← v(2),

shape vectori(j + 2n) ← v(3),

Post-processing

for i = 1 . . . nS

1. save the final re-parameterisations:

regrid counteri ← regrid counteri + 1,

Saved Reparameterisationi(regrid counteri, ·) ← �

grid points − displacementi;

2. calculate the accumulated re-parameterisation:

2.1. let Cumulative Reparameterisation ← Grid Points;
for k = 1 . . . regrid counteri

• reshape the saved re-parameterisation into a n × 2 matrix:
for j = 1 . . . n

Reshaped Reparameterisation(j, 1) ← �

Saved Reparameterisationi(k, j),

Reshaped Reparameterisation(j, 2) ← �

Saved Reparameterisationi(k, j + n),

Reshaped Reparameterisation(j, 3) ← �

Saved Reparameterisationi(k, j + 2n);

• accumulate the re-parameterisations:
for j = 1 . . . n

Cumulative Reparameterisation(j, ·) ← �

bilinear interpolation(Grid Points, �

Reshaped Reparameterisation, �

Cumulative Reparameterisation(j, ·));

3. let Reparameterisationi ← Cumulative Reparameterisationi.

return {Reparameterisationi}
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8.7 Example Optimisation Routines Using Iterative
Updating of Shape Images

As we noted above, it is often necessary to employ shape images within an
iterative approach to optimisation. In this section, examples are given of how
this can be implemented for both open and closed surfaces.

8.7.1 Example 3: Open Surfaces Using Shape Images

The dataset of open surfaces we will use is the same set of nS = 10 distal
femurs that was used in the example implementation in Sect. 7.4.2. The actual
training shapes are shown in Fig. 7.8.

Pseudocode for the algorithm is given below, which is the algorithm de-
scribed diagramatically in Fig. 8.2.

Algorithm 8.4 : An Example of Optimising Correspondence on Open Surfaces
Using Shape Images.

procedure {shape vectori} ← optimisation example 3
({Shape Pointsi}, {Triangulationi})

Variables

• Shape Pointsi is a nP ×3 matrix whose rows contain the coordinates of nodes that define

the surface of the ith training example;
• Triangulationi is a nt × 3 matrix that defines the connectivity of the nodes: each row

defines a triangle by indexing the rows of Shape Pointsi – see glossary for description of
format;

• the function returns a set of 3n-dimensional shape vectors {shape vectori}, formed by
sampling each training set according to its optimal parameterisation.

Declarations

• y = transfer point(Points A,Points B,Triangulation,x)
transfers the point x from triangulation (Points A,Triangulation) to triangulation
(Points B, Triangulation) to form a new point y – the pseudocode is given in Al-
gorithm 7.3;

• b = bilinear interpolation(X,Y;a)
the n × 2 matrix X, holds values of a (vector-valued) function, evaluated at points whose
coordinates are stored in the n × 2 matrix Y; the function returns b, the value of the
function at point a, which is estimated by bilinear interpolation;

• {Warpi} = optimise fluid({Shape Imagei},Grid Points)
given a set of shape images {Shape Imagei}, with pixels at positions Grid Points,
this function optimises correspondence by re-parameterisation using a fluid-based scheme;
the function returns the set of warps {Warpi}, which correspond to the optimal set of
re-parameterisations – pseudocode is given in Algorithm 8.3.
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Initialization

1. let ref be the index of a reference shape, whose pose and parameterisation do not change
during optimisation;

2. parameterise and align the surfaces as described in step 2 of Algorithm 7.4; we end up
with a set of parameterisations, {Parameterisationi}, represented as a set of nP ×
2 matrices, whose rows contain the coordinates of nodes in parameter space (the unit
square), corresponding to the surface nodes stored in Shape Pointsi;

3. create a m × m grid over the unit square (m2 = n = 1600 was used here) and store the
coordinates in a n × 2 matrix Grid Points:

Grid Points =

(
(0, 0)T ,

(
0,

1

m − 1

)T

, . . . ,

(
1

m − 1
, 0

)T

,

(
1

m − 1
,

1

m − 1

)T

, . . . , (1, 1)T

)T

;

4. create a n × 2 matrix Sample Pointsi that holds the sample points for each training
example – the sample points are initially set to be regular grid points:
for i = 1 . . . nS

Sample Pointsi ← Grid Points

Optimisation

for it = 1 . . . niterations (we used niterations = 1500 here)

1. create a shape image for each example by sampling each shape according to the current
parameterisation:
for i = 1 . . . nS , (if it > 1 , then i �= ref)

for j = 1 . . . n

Shape Imagei(j, ·) ← transfer point(Parameterisationi, �

Shape Pointsi,Triangulationi,Sample Pointsi(j, ·)).

2. optimise the set of shape images by re-parameterisation using fluid regularization; the
function returns a set of n × 2 matrices that represent the optimal re-parameterisation of
each shape;

{Reparameterisationi} ← fluid optimisation �

({Shape Imagei},Grid Points)

3. re-parameterise the sample points of each shape using the optimal re-parameterisation:
for i = 1 . . . nS , i �= ref

for j = 1 . . . n

Sample Pointsi(j, ·) ← bilinear interpolate(Grid Points, �

Reparameterisationi,Sample Pointsi(j, ·))
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Post-processing

1. use the optimal sample points to create a shape vector for each example:
for i = 1 . . . nS

for j = 1 . . . n

v ← transfer point(Parameterisationi, �

Shape Pointsi,Triangulationi,Sample Pointsi(j, ·)),
shape vectori(j) ← v(1),

shape vectori(j + n) ← v(2),

shape vectori(j + 2n) ← v(3)..

return {shape vectori}.

The correspondence and the model produced by the above algorithm for
the femur dataset are almost indistinguishable from those produced by the
earlier approach described in Sect. 7.4.2, which used a parametric represen-
tation of re-parameterisation (clamped-plate splines) and triangulated shape
surfaces. However, the fluid-based algorithm described above converged ≈ 100
times faster.

8.7.2 Example 4: Optimisation of Closed Surfaces
Using Shape Images

Our dataset of closed surfaces is a set of nS = 82 surfaces, representing the
human hippocampus. The data was obtained by manually segmenting the
left hippocampus from magnetic resonance images (MRIs). Some examples
from the training set are shown in Fig. 8.5.

We establish a correspondence across the training set by extending the al-
gorithm described above to deal with closed surfaces. The approach is similar,
but additional steps are required, as was illustrated in Fig. 8.4. In order to
follow this approach, we need a procedure for mapping points from the plane
onto the unit sphere – pseudocode for achieving this is given below (Algo-
rithm 8.5), followed by the pseudocode for the main optimisation procedure
(Algorithm 8.6).
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Fig. 8.5 Eight examples of the training set of 82 outlines of the left human hippocampus
used in the example implementation described in Sect. 8.7.2.

Algorithm 8.5 : Transforming Points from the Plane onto a Sphere.

procedure sphere point ← plane to sphere(plane point)

Description

Transfers a point from the plane onto the surface of a unit sphere via an octahedron.

Variables

• plane point is a two-dimensional vector, representing the coordinates of the point on the
plane;

• sphere point is a three-dimensional vector, representing the coordinates of the mapped
point after projection onto the unit sphere

Declarations

• y = transfer point(Points A,Points B,Triangulation,x)

transfers the point x from triangulation (Points A,Triangulation) to triangulation
(Points B,Triangulation) to form a new point y – pseudocode is given in Algorithm 7.3.
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Initialization
15

1. construct a flattened triangulated octahedron, storing the coordinates in
Flattened Octahedron Points , and the triangulation in a matrix,
Triangulation (see Fig. 8.3);

Flattened Octahedron Points ←
(

(0, 1)T , (0,
1

2
)T , (0, 0)T , �

(
1

2
, 1)T , (

1

2
,
1

2
)T , (

1

2
, 0)T , (1, 1)T , (1,

1

2
)T , (1, 0)T

)T

;

Triangulation ←
(
(5, 8, 6)T , (5, 8, 4)T , (5, 2, 4), (5, 2, 6)T , �

(9, 8, 6)T , (7, 8, 4)T , (1, 2, 4)T , (3, 2, 6)T
)T

;

2. create an octahedron corresponding to the flattened version and store the nodes (with all
nodes of the octahedron at unit length from the origin) in a matrix Octahedron Points:

Octahedron Points ← ((0, 0,−1), (0, 1, 0), (0, 0,−1), (1, 0, 0), �

(0, 0, 1), (−1, 0, 0), (0, 0,−1), (0,−1, 0), (0, 0,−1)) ;

Projection

1. transfer the point from the flattened octahedron triangulation to the unflattened octahe-
dron:

sphere point ← transfer point(Flattened Octahedron Points, �

Octahedron Points,Triangulation,plane point);

2. normalize the point to lie on the surface of the unit sphere:

sphere point ← sphere point

||sphere point||
.

return sphere point;

15 Note that this step can be computed once and saved
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Algorithm 8.6 : An Example of Optimising Correspondence on Closed Surfaces
Using Shape Images.

procedure {shape vectori} ← optimisation example 4
({Shape Pointsi}, {Triangulationi})

Variables

• Shape Pointsi is a nP ×3 matrix whose rows contain the coordinates of nodes that define

the surface of the ith training example;
• Triangulationi is a nt × 3 matrix that defines the connectivity of the nodes: each row

defines a triangle by indexing the rows of Shape Pointsi

• the function returns a set of 3n-dimensional shape vectors {shape vectori}, formed by
sampling each training set according to its optimal parameterisation.

Declarations

• sphere point = plane to sphere(plane point)
takes a point on the plane, whose coordinates are held in the two-dimensional vector
plane point, and projects it onto the sphere via the octahedron to create a point whose
coordinates are held in the three-dimensional vector sphere point. See Algorithm 8.5;

• y = transfer point(Points A,Points B,Triangulation,x)
transfers the point x from triangulation (Points A,Triangulation) to triangulation
(Points B, Triangulation) to form a new point y – pseudocode is given in Algorithm 7.3;

• {Warpi} = optimise fluid({Shape Imagei},Grid Points)
given a set of shape images {Shape Imagei}, with pixels at positions Grid Points,
this function optimises correspondence by re-parameterisation using a fluid-based scheme;
the function returns the set of warps {Warpi}, which correspond to the optimal set of
re-parameterisations – pseudocode is given in Algorithm 8.3.

Initialization

1. let ref be the index of a reference shape, whose pose and parameterisation do not change
during optimisation;

2. parameterise and align the surfaces as described in step 2 of Algorithm 7.4 – note, however,
that we are dealing here with closed surfaces, hence there is no need to extract and optimise
the boundary nodes; we end up with a set of parameterisations, {Parameterisationi},
represented as a set of nP × 3 matrices, whose rows contain the coordinates of nodes
in parameter space (the surface of the unit sphere), corresponding to the surface nodes
stored in Shape Pointsi;

3. create a m × m grid over the unit square (m2 = n = 1600 was used here) and store the
coordinates in a n × 2 matrix Grid Points:

Grid Points =

(
(0, 0)T ,

(
0,

1

m − 1

)T

, . . . ,

(
1

m − 1
, 0

)T

,

(
1

m − 1
,

1

m − 1

)T

, . . . , (1, 1)T

)T

;

4. project the gridpoints onto the sphere via an octahedron:

Sphere Grid Points ← plane to sphere(Grid Points);
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5. create a ntg×3 matrix Grid Triangulation that defines the connectivity of the spherical
gridpoints: each row defines a triangle by indexing the rows of Sphere Grid Points;

6. create two copies of Sphere Grid Points: Sphere Grid Points A is an exact copy,
whereas the signs of the z-coordinates in Sphere Grid Points B are reversed:

Sphere Grid Points A ← Sphere Grid Points,

Sphere Grid Points B ← Sphere Grid Points,

Sphere Grid Points B(·, 3) ← −Sphere Grid Points B(·, 3);

what we end up with are two spherical projections of the gridpoints, with the (fixed) edges
of the grid at a different position on the sphere;

7. create two n×3 matrices, Sample Points Ai and Sample Points Bi for each shape:
their rows contain the coordinates of sample points; they are initialized to the spherical
projection of the gridpoints:
for i = 1 . . . nS

Sample Points Ai ← Sphere Grid Points A,

Sample Points Bi ← Sphere Grid Points B.

Optimisation

for it = 1 . . . niterations (we used niterations = 12500 here)

1. for each training example: create a shape image by using the current sample points to
sample the surface coordinates of the training example and store them in a n × 3 matrix
Shape Imagei; note that if the iteration number, it, is an odd number, then sample
points A are used otherwise sample points B are used:

for i = 1 . . . nS , (if it > 1 , then i �= ref)
if ((2�it/2� − it) = 1)
then

for j = 1 . . . n

Shape Imagei(j, ·) ← transfer point �

(Parameterisationi,Shape Pointsi, �

Triangulationi,Sample Points Ai(j, ·))

else
for j = 1 . . . n

Shape Imagei(j, ·) ← transfer point �

(Parameterisationi,Shape Pointsi, �

Triangulationi,Sample Points Bi(j, ·))

2. optimise the set of shape images by re-parameterisation; the function returns a set of n×2
matrices, which represent the optimal re-parameterisation of each shape;

{Warpi} ← optimise fluid({Shape Imagei},Grid Points)

3. project the re-parameterisation Warpi of each shape onto the sphere:
for i = 1 . . . nS , i �= ref

for j = 1 . . . n

Reparameterisationi(j, ·) ← plane to sphere(Warpi(j, ·))
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4. now, apply the (spherical) re-parameterisation to both sets of sample points:
if ((2�it/2� − it) = 1)
then

for i = 1 . . . nS , i �= ref
4.1. update both sets of sample points:

for j = 1 . . . n

Sample Points Ai(j, ·) ← transfer point �

(Sphere Grid Points A,Reparameterisationi, �

Grid Triangulation,Sample Points Ai(j, ·))

Sample Points Bi(j, ·) ← transfer point �

(Sphere Grid Points A,Reparameterisationi, �

Grid Triangulation,Sample Points Bi(j, ·))

else

for i = 1 . . . nS , i �= ref
4.1. since sample points B has been used, we need to reverse the sign of the

z-coordinates of each re-parameterisation point:

Reparameterisationi(·, 3) ← −Reparameterisationi(·, 3)

4.2. update both sets of sample points:
for j = 1 . . . n

Sample Points Ai(j, ·) ← transfer point �

(Sphere Grid Points B,Reparameterisationi, �

Grid Triangulation,Sample Points Ai(j, ·))

Sample Points Bi(j, ·) ← transfer point �

(Sphere Grid Points B,Reparameterisationi, �

Grid Triangulation,Sample Points Bi(j, ·))

Post-processing

1. subdivide a unit icosahedron and project its coordinates onto the unit sphere (see
Sect. 7.3.3) to produce a nu × 3 matrix Uniform Sample Points;

2. for each shape: re-parameterise the uniform sample points with either sample points A or
B:

for i = 1 . . . nS

for j = 1 . . . nu

Reparameterised Sample Pointsi(j, ·) ← transfer point �

(Sphere Grid Points A,Sample Points Ai, �

Grid Triangulation,Uniform Sample Points(j, ·))

3. now use the reparameterised sample points to sample the original shapes and produce a
shape vector for each example:

for i = 1 . . . nS
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for j = 1 . . . n

v ← transfer point �

(Parameterisationi,Shape Pointsi, �

Triangulationi,Reparameterised Sample Pointsi(j, ·)),
shape vectori(j) ← v(1),

shape vectori(j + n) ← v(2),

shape vectori(j + 2n) ← v(3).

return {shape vectori}.

The correspondence found for the hippocampi is shown in Fig. 8.6. It can
be seen from the figure that correspondence has been established between
similar regions on each surface, and appears plausible. The first mode of
variation of the model built from this correspondence is shown in Fig. 8.7. It
can be seen that this mode represents changes in the thickness and curvature
of the ‘tail’. Comparison with the training set examples shown in Fig. 8.5,
indicates that this mode reflects the shape variation found in the training
set.
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Fig. 8.6 The optimal correspondence found between the set of hippocampi. Four of the
82 training examples are shown here from two orthogonal viewpoints. Correspondence is
denoted by the coloured lines. The figure shows that correspondence has been established
between similar regions on each surface.
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Fig. 8.7 The hippocampus model produced by Algorithm 8.6. The model is shown from
two orthogonal viewpoints by varying the first mode of variation by ±[two standard de-
viations found over the training set]. The figure shows that the main mode of variation
represents changes in the thickness and curvature of the ‘tail’.



Chapter 9

Evaluation of Statistical Models

In this chapter, we consider the question of evaluating the statistical models
of shape that we have built. However, it should be noted that this problem is
not specific to the case of shape models, and the techniques we will present
here can be applied to either statistical models of shapes, or statistical models
of appearance (i.e., models of images).

If we consider the techniques of model-building that we presented in
Chap. 2, the constructions presented there can be summarized as follows.

First, we construct a common representation of our training set of exam-
ples, so that each example can be mapped to a single point in our space of
shapes or our space of images. Second, we then model this distribution of
points by constructing a pdf on this space. There are hence two things which
need to be evaluated, the quality of the representation, and the quality of the
model based on that representation.

As regards the representation, the internal consistency is simple to evalu-
ate, in that we can directly compare the actual examples in the training set
with their representatives in shape space. But, there is also the issue of the
generalization ability of the representation; can it also adequately represent
example shapes or images which are not in the training set? The question of
generalization ability also applies to the model, because even if the unseen
example is adequately represented by some point in image or shape space,
it is not necessarily the case that this point is included within the subspace
spanned by the model. In this chapter, we first discuss the issue of evaluating
the quality of the representation, then concentrate on the more challenging
problem of evaluating the quality of the model.

Before we can evaluate the quality of the model, we have to decide what
we mean by model quality. In general, this depends somewhat on what we
intend to use the model for. For example, if we intend to use the model to
analyse the training set itself, what is important is the quality of the model
with respect to the training set; hence we have a self-referential definition of
model quality. If we want to use the model to help us analyse unseen examples
of shapes or images, then the issue is slightly more complicated, in that poor

R. Davies et al., Statistical Models of Shape, 231
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performance in this task could imply either inadequacy of the training set
itself, or an adequate training set, but an inadequate model built from this
training set.

We consider first the use of ground truth data for evaluation, the advan-
tages and some problems which can arise with this approach. We then show
how it is possible to construct methods of evaluation which are independent
of any ground truth.

9.1 Evaluation Using Ground Truth

We suppose that we have a training set, and also unseen examples which
are not in the training set (what is usually referred to as atest set). In this
case, we already have access to some ground truth data, in that we have
the original shapes or images of the training set and test set.1 This type of
ground truth data is sufficient to establish the quality of the representation,
as follows.

First, we build a model from our training set, and hence construct a shape
space for our data (Chaps. 2 and (2.38)). For each training example, we then
have our original shape vector x ∈ R

dnP , and the corresponding parameter
vector b ∈ R

nm which represents that shape, where:

x �→ NT (x − x̄) .= b(x), b �→ x̄ + Nb .= x̃(b). (9.1)

The mapping between shapes and shape space is determined by the matrix
N, which is the matrix of eigenvectors of our shape covariance matrix, where
nm is the number of eigenvectors retained, hence the number of modes of the
representation. If we retain all the modes, then our reconstruction x → b → x̃
will be exact by definition for all the examples in the training set. However in
practice, we do not wish to retain all the modes, but only a sufficient number,
since for a sufficiently large training set, the number of modes of variation
is much less than the number of example shapes. It was shown previously
(2.30) that the eigenvalues of the covariance matrix encode information about
the variance in each of the modes, hence allowing a number of modes to
be selected that retains a given proportion of the total variance across the
training set. However, this does not necessarily mean that all of our training
shapes are adequately represented. To check this, we must compare each
original shape vector x with its reconstruction x̃.

We can perform the same comparison process for test shapes. For this
case, even if all the modes are retained, this does not guarantee exact recon-

1 In cases where there is an insufficient number of examples to form both a test-set and

a training set, a common approach is to use leave-one-out verification, where a model is

built from all examples but one, then tested against the left-out example.
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Fig. 9.1 Comparison of shapes and shape polygons. Left: An original shape with degree
of tolerance indicated (thick grey line). The original polygonal representation is indicated
by the white circles, whereas the reconstruction is given by the black circles. The point-
to-point distances are indicated. Right: Original shape (Top) and reconstructed shape
(Bottom), drawn separately for reasons of clarity. In this example, it can be seen that
although the point-to-point distances are non-zero, the actual reconstructed shape lies
within the same tolerance range as the original shape. In this case, a point-to-line distance
would give a better measure of the validity of the shape reconstruction.

struction, since the test shape need not lie in the sub-space spanned by the
training set.

When we compare two shapes x and x̃, we are comparing the two polygons
or the two triangulated meshes which these shape vectors describe, where
the representation gives us a point-to-point correspondence between the ver-
tices. The simplest quantitative measure for this comparison is the sum of
the squares of the point-to-point distances (see Fig. 9.1), which is just the
square of the Euclidean distance in shape space ‖x− x̃‖. Note the we cannot
use the statistical Mahalanobis distance (2.84) for this comparison, since by
definition, this ignores separations in directions perpendicular to the model
sub-space. It also scales separations in the model sub-space with respect to
the variance of the training set in that direction. Hence it gives less weight to
differences in directions which have higher variance. The Euclidean point-to-
point distance treats equally separations perpendicular to the shape contour
or surface, and separations tangential to the local shape. It can be argued that
misplacing points by moving them along the tangent has a less deleterious
effect on the validity of the represented shape than moving them perpendic-
ular to the local shape (see Fig. 9.1). To allow for this, the perpendicular
point-to-line or point-to-surface distance can be used instead for evaluating
the quality of the representation. Note that using the point-to-point distance
for test shapes also pre-supposes that we have the pointwise correspondence
ground truth data for our test shapes, whereas the point-to-line distance does
not require this correspondence data for unseen examples. When it comes to



234 9 Evaluation of Statistical Models

evaluating the model itself however, mis-correspondence does matter, so that
we will use the Euclidean point-to-point distance in this case.

For appearance models, the quality of the representation can be evaluated
by comparing the original shape and image patch, with the reconstructed
shape and image patch, the comparison being performed in the frame of the
original image.2 We hence obtain two distances in this case, the Euclidean
point-to-point or the point-to-line distance between the two shapes, and the
Euclidean distance between the two image patches in image space. As for
shape space, the Euclidean distance in image space is formed by considering
the pixel-by-pixel differences between the two patches. For appearance models
where the entirety of the image is modelled, rather than just a patch within
a shape contour or surface, we will use only the Euclidean distance in image
space.

Now let us look at the methods available for obtaining the required ground
truth data. For the case of test shapes given above, we noted that use of
the point-to-point distance assumed we had ground truth data about the
pointwise correspondence for our test shapes. The automatic methods that
exist for extracting shape information from images that also assign a cor-
respondence to that shape, typically rely on using a shape or appearance
model itself within the context of an active shape or appearance model
(Sects. 2.4.1 and 2.4.2). Hence we cannot use such methods when it comes
to evaluating the model itself.

Other automatic methods [169] can provide good segmentations and ex-
traction of continuous shape outlines or shape surfaces, but without the
ground truth correspondence information. Hence for ground truth data from
such a source, we can use the point-to-line distance to verify the shape rep-
resentation, but it does not provide the ground truth correspondence data
that is required for detailed evaluation of the model.

Manual or semi-automatic annotation can provide reliable ground truth
information in terms of shape outlines for shapes extracted from images, but
only for certain classes of images and shapes. But there can still be significant
variability between different annotators, just as there can be significant vari-
ation between different automatic methods. This can be incorporated into
the evaluation of the representation, as is indicated in Fig. 9.1, where the
shape contour is represented as a wide line, indicating that the ground truth
data has a certain degree of uncertainty.

In summary, we see that the ground truth data required to assess the
quality of the shape representation is obviously available, obtained either
automatically or using human annotation, since it is the same type of data
that is required to construct the model in the first place. Assessing the qual-
ity of the shape representation is equivalent to checking that our choice of
the model sub-space within shape space is appropriate. We now move on to
assessing the quality of the model that is built within this model sub-space.

2 Note that we do not compare the shape-free image patches, since warping to the shape-
free frame can hide errors in the representation.
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Fig. 9.2 Examples of manual annotation for shapes from images. Left: Annotation of a
face with a set of points. In this case, the relevant corresponding features are easy to find,
and the points can be placed quite accurately. Centre & Right: A much harder example,
images of an experimental rat [187], viewed from above in a low-resolution video sequence.
The method of annotation is semi-automatic, in that the fixed background is removed, the
shape then being annotated manually. Given enough experience, features can be labeled
fairly reliably, although the variability is greater than for the face example.

For certain classes of shapes or images, human annotation can also provide
us with limited ground truth information about correspondence. Indeed, when
SSMs were first introduced [38], hand-annotated data was all that was used,
both to define the shape, and to define the correspondence. The importance
of correct point placement and the existence of reproducible and consistent
points of correspondence was stressed. Consider the example shapes from
images shown in Fig. 9.2. For the face, there are landmark points that can
be reliably located and annotated, such as the corners of the eyes, the nos-
trils, and the corners of the mouth. Other points can then be reliably placed
partway between such points, such as the points around the eyebrows, or
those along the outline of the face. But the ground truth correspondence
obtainable by such manual annotation methods is limited. And even for the
fairly simple annotation shown in the figure, the process is time-consuming,
and can become prohibitive when hundreds of examples require annotation.
For other types of two-dimensional image data, reproducible landmarks are
much harder to find. And for three-dimensional data such as that provided in
MR image volumes, the placement of landmark points becomes very difficult
if not impossible. Other types of ground truth data are available for such
three-dimensional data, such as the manual labelling of structures, the man-
ual annotation of their surfaces, or the dense voxel-by-voxel labelling of tissue
classes. Although this type of ground truth data can be useful for other types
of evaluation, it is still not the dense point-to-point correspondence ground
truth data that we would ideally like for model evaluation.
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These problems with obtaining suitable ground truth data lead us to con-
sider the question of whether evaluation of the model is possible in the absence
of ground truth data.

9.2 Evaluation in the Absence of Ground Truth

We will suppose that all we have access to is our training set of examples,
and the probabilistic model that we have built from this training set. It will
be taken as given that the quality of the representation has been verified,
according to the methods described above.

In the absence of ground truth data, it could be argued that we can gener-
ate artificial ground truth data (if that is not a misnomer!), by transforming
the shape examples we do have. For example, for shapes which are curves in
two-dimensional space, we can apply a homeomorphism to R

2, which trans-
forms the curve into some new curve, and carries the correspondence along
with it. We hence obtain artificial unseen examples, with a correspondence,
whose deformations are independent of the model and not constrained to lie
within the model sub-space. If suitable homeomorphisms of the bulk space
could be chosen, the deformations could be thought of as realistic deforma-
tions of the physical objects to which the shapes correspond. However, the
problem is that we usually do not have any guarantee that the deformations
and artificial examples that we generate are at all realistic, nor is it necessar-
ily the case that the transformed correspondence is the correct one. Similar
considerations hold for the case of artificially deformed images for appearance
models. We hence reject this sort of artificial ground truth data as unsuitable
for detailed model evaluation.

We are then left with just the training set data points in shape space
{b(i) : i = 1, . . . nS}, and the corresponding model pdf p(b). Note that for
a fixed class of model, we fit the model to the data (i.e., determine the
parameters of the model) by maximising the likelihood (see Theorem 2.2):

nS∑

i=1

ln p(b(i)). (9.2)

However we cannot use the likelihood itself to perform a comparison of model
quality between classes of models. This is because the likelihood only depends
on the values of the pdf at the data points {b(i)}. We can hence imagine many
different pdfs that yield the same likelihood for a given data set. We can hence
deduce that a successful measure of model quality will need to be sensitive
to the entirety of the pdf p(b), not just the values at the data points.

In order to construct such measures, let us consider a qualitative descrip-
tion of what distinguishes good statistical models from poorer models:
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Fig. 9.3 Training set (black points) and a given probability isosurface for various model
pdfs (grey fill). Left: A specific model, but not a general model. Centre: A general model,
but not a specific one. Right: A model that achives a balance between generalization ability
and specificity.

• Compactness: For fixed training data, a compact model pdf should de-
scribe the distribution of the data using the smallest possible number of
parameters. This principle has already been applied when we used PCA
(see Theorem 2.1), where we discarded principal directions of low variance.
This means the dimensionality of the model sub-space has been reduced,
hence the number of parameters required when, say, a multivariate Gaus-
sian model (Sect. 2.2.1) is constructed within this sub-space.

• Specificity: This is the requirement that the model can only represent
valid instances of the class(es) of objects presented in the training set,
hence that the model be specific with respect to this training set.

• Generalization Ability: The model should be able to generalize from
the examples given in the training set, hence describe any valid example
of the class of object, not just those instances seen in the training set.

In Fig. 9.3, we give a simple diagrammatic illustration of models with
varying generalization ability and specificity, for a fixed set of data points.
As noted above, compactness is usually handled within the context of dimen-
sional reduction. We hence concentrate on developing quantitative measures
for the concepts of specificity and generalization ability.

9.2.1 Specificity and Generalization: Quantitative
Measures

If we refer to Fig. 9.3, we see that a specific pdf is one that is concentrated
around the data points, whereas one with good generalization ability is spread
out between and around the data points.

In [52], a leave-one-out measure of generalization ability was used. Suppose
T = {xi : i = 1, . . . nS} is our complete training set. If we build a model
from all examples but the jth, we obtain a model pdf p(j)(b). We can then
reconstruct the jth example xj using this model, to obtain an approximate
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reconstruction x̃j . If we perform this leave-one-out process for each example
xj in turn, and for varying numbers nm of modes in the model, we obtain
the leave-one-out generalization measure:

Ĝ(nm) =
1

nS

nS∑

j=1

‖xj − x̃j‖, (9.3)

which is just the mean Euclidean distance between the original training ex-
ample xj , and that example reconstructed using the leave-j-out model with
nm modes. Obviously the better the generalization ability, the smaller the
difference between the original left-out shape and its reconstructions. How-
ever, this leave-one-out generalization measure still only probes the model
pdfs at the data points.

Let us turn now to specificity. A model pdf is specific if it is concentrated
around the data points. One way to measure this is by sampling from the
model pdf p(b) as follows.

Let Y = {yA : A = 1, . . . M} be a set of shapes sampled from the model
pdf p(b;nm), where nm is the number of modes included in the model. The
sample set Y hence has the same distribution as the model in the limit
M → ∞. The way these points do or do not cluster in the vicinity of the
data is then quantified by the specificity measure:

Ŝ(nm) .=
1
M

M∑

A=1

min
i
‖yA − xi‖. (9.4)

This is just the distance from each sample point yA to the nearest element
of the training set. Hence the more specific the model, the smaller the value
of the measure. Small values of S do not mean, however, that the pdf covers
all the training set.

We can build an analogous measure for generalization:

Ĝ(nm) .=
1

nS

nS∑

i=1

min
A

‖yA − xi‖. (9.5)

This just swaps the rôles of the sample and training set, and only has small
values when all of the training set are covered by the model pdf. We hence
see that this is a measure of generalization ability, and unlike the leave-one-
out generalization measure mentioned above, this measure is sensitive to the
entirety of the model pdf.

It could be argued that these measures are somewhat deficient, in that a
global minimum of both the specificity and generalization can be obtained
for the case where the model pdf p(b) is just the empirical distribution of the
data, where:
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p(b) =
1

nS

nS∑

i=1

δ(b − b(i)). (9.6)

This pdf can be viewed as the zero-width limit of a Gaussian mixture
model. For a multivariate Gaussian, the number of model parameters is just
the number of PCA modes nm. Hence the analogous quantity for the empirical
pdf above is the number of Gaussians, which ranges from 1 to nS . If we now
consider the generalization for this empirical pdf as a function of the number
of Gaussian components, we see that the minimum is only achieved for the
maximum number of Gaussians, and for less than this the measure has a
higher value, related to the nearest-neighbour distance for the training set.
The specificity for the empirical pdf also only achieves the minimum value if
all of the training points are considered in the evaluation.

We can now see the significance of the generalization and specificity ex-
plicitly depending on the number of modes/parameters of the model. We can
deduce that a minimum value of the measures is not necessarily significant,
but should only be considered significant if this behaviour persists as the
number of modes/parameters is varied.

These measures of specificity (9.4) and generalization (9.5) have been used
extensively in the literature to enable comparison between shape models built
using different methods of establishing correspondence. For example, Davies
et al. [52] compared shape models of the hand built using manual annotation,
and models built using the MDL approach, but with two different optimisa-
tion schemes. They also compared shape models of hippocampi built using
the SPHARM method [76] with those built using MDL. The important point
about these comparisons is that they clearly show that specificity and gener-
alization do show statistically significant differences between these difference
approaches, and that these differences persist as the number of modes nm is
varied. Specificity and generalization have been employed to compare differ-
ent methods of groupwise non-rigid registration for images, via assessment of
the appearance models built from the registered images [153]. In particular,
these measures were validated for the case of image registration by consid-
ering their behaviour as the registration was perturbed about the point of
registration. It was shown that the specificity and generalization showed a
monotonic relationship with the degree of mis-registration, and were corre-
lated with a ground truth based measure of mis-registration, based on an
evaluation of the overlap of a set of dense, voxel-by-voxel tissue labels [46].

In summary, the use of these two measures has been validated for the
assessment of both shape and appearance models, and they have been shown
to be both sensitive and discriminative in practice. However, the derivation
given above is rather ad hoc, and it is not clear, for example, how these
measures behave in the limit of a large training set nS , or the limit of a large
sample set M . Placing the meaning of these measures on a firm theoretical
foundation is the subject of the next section.
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9.3 Specificity and Generalization as Graph-Based
Estimators

In this section, we consider the behaviour of the generalized specificity and
generalization measures in the limit of both large sample sets, and large
training sets.3 This enables the expected scaling behaviour of these measures
to be made explicit. It also enables us to derive an integral form for these
measures in this limit, which establishes a link between these graph-based
measures and other integral-based measures such as the cross-entropy and
Kullback-Leibler divergence [103].

We start with a training set of examples T (nS) = {xi : i = 1, . . . nS}. For
shapes represented by nP points in R

d, the original shape vector xi lies in
R

dnP . Dimensional reduction via PCA maps this shape vector to a shape pa-
rameter vector b(i) ∈ R

nm (2.34), where nm is the number of PCA directions
retained. For the purposes of this derivation, we will gloss over this dimen-
sional reduction step, and suppose that our training set consists of points
xi in R

n. A model built from this training set is then given by a pdf p(z),
z ∈ R

n. A sample set of M points generated from this model pdf is then
given by Y (M) = {yA ∈ R

n : A = 1, . . . M}.
The ad hoc definitions of specificity (9.4) and generalization (9.5) given

above can now be written in the form:

Ŝ1(T (nS);Y (M)) .=
1
M

M∑

A=1

min
i
‖yA − xi‖,

Ĝ1(T (nS);Y (M)) .=
1

nS

nS∑

i=1

min
A

‖yA − xi‖,

where ‖·‖ is the usual Euclidean vector norm in R
n. This form makes explicit

the dependance of these measures on the training set T (nS) and the sample
set Y (M), and in particular, the dependance on the sizes of the training set
nS and sample set M . It can now be seen that these measures are based on
graphs which connect one point set (the training set or the sample set) to
the other point set (the sample set or training set respectively).

An obvious generalization is to take the sum of powers of the distances, so
that we obtain the γ-specificity and γ-generalization:

3 The derivations given in this section are based on those presented by the current authors
in [186].
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Ŝγ(T (nS);Y (M)) .=
1
M

M∑

A=1

min
i

(‖yA − xi‖)γ , (9.7)

Ĝγ(T (nS);Y (M)) .=
1

nS

nS∑

i=1

min
A

(‖yA − xi‖)γ . (9.8)

Because of the symmetrical form of our definitions, and the symmetry of
the two graph constructions, we have:

Ĝγ(T (nS);Y (M)) ≡ Ŝγ(Y (M);T (nS)).

We wish to consider the behaviour of these measures in the limit of large
training sets nS → ∞ and large sample sets M → ∞. It is hence sufficient
to just consider the γ-specificity (9.7).

We first take the limit M → ∞. It can be seen that this is just a Monte
Carlo [123] estimator of the integral γ-specificity:

lim
M→∞

Ŝγ(T (nS);Y (M)) .= Sγ(T (nS); p) =
∫

Rn

p(z)min
i

(‖z − xi‖)γ
dz. (9.9)

We now wish to consider how Sγ(T (nS); p) behaves in the limit of a large
training set nS → ∞. We suppose that in this limit, the training set T (nS)

has a well-defined distribution g(z), which is the distribution of the hypothet-
ical process which generated our training data. We then have the following
Theorem:

Theorem 9.1. Large-Numbers Limit of Specificity.
With the definitions given above:

lim
nS→∞

[
(nS)

γ
n Sγ(T (nS); p)

]
= βn,γ

∫

Rn

p(z)g−
γ
n (z)dz, (9.10)

where βn,γ are numerical coefficients which depend only on n and γ.

Proof. Consider first the integral (9.9):

Sγ(T (nS); p) .=
∫

Rn

p(z)min
i

(‖z − xi‖)γ
dz.

If we consider a particular point xi of the training set, we see that the con-
tribution to the integral from this point is the integral over all points z which
are closer to this point than to any other point of the training set. This set
of points is the Voronoi Cell [190] Ωi belonging to xi, where:
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Ωi(T (nS)) .= {z ∈ R
n : ‖z − xi‖ ≤ ‖z − xj‖ ∀ j = 1, . . . nS}. (9.11)

The integral can hence be decomposed in the form:

Sγ(T (nS); p) =
nS∑

i=1

∫

Ωi(T (nS))

p(z) (‖z − xi‖)γ
dz. (9.12)

If we consider now the limit nS → ∞, then in some infinitesimal volume Δz
about the point xi, other points of the training set will be distributed with a
density nSg(xi). And provided that Δz is small enough, and nS large enough,
the process generating nSg(z)Δz points within the volume Δz becomes indis-
tinguishable from points generated by an infinite uniform Poisson process.4

We will denote the relevant uniform Poisson process by:

Pi = P(xi, nSg(xi)),

which is a process of intensity nSg(xi) about the point xi. This means that we
can replace the Voronoi cell Ωi(T (nS)) by the Voronoi cell Ωi(Pi), which is
the cell about xi for the uniform Poisson process Pi. If nS is large enough, we
can also neglect the variation of p(z) across this cell, and finally we obtain:

nS∑

i=1

∫

Ωi(T (nS))

p(z) (‖z − xi‖)γ
dz −→

nS→∞

nS∑

i=1

p(xi)
∫

Ωi(Pi)

(‖z − xi‖)γ
dz.

We then make the approximation of replacing this integral across the Voronoi
cell by its expectation value over the Poisson process:

E

[∫

Ωi(Pi)

(‖z − xi‖)γ
dz

]
= (li)

γ+n
E

[∫

Ω0(P1)

(‖z‖)γ
dz

]
, (9.13)

where we have used simple scaling to replace the Poisson process Pi of in-
tensity nSg(xi) by a Poisson process of unit intensity P1, and translational
invariance of uniform Poisson processes to measure distances from the origin
rather than from xi. The scaling factor is given in terms of li

.= (nSg(xi))
− 1

n ,
where (li)n is the average volume of the Voronoi cell Ωi(T (nS)) about xi. We
then define:

βn,γ
.= E

[∫

Ω0(P1)

(‖z‖)γ
dz

]
, (9.14)

which are the required set of numerical coefficients, depending only on the
dimensionality of the space n and the power γ to which distances are raised.

4 This is just the objective method approach of Steele [171], where the limiting behaviour

of local functionals on finite point sets is described in terms of related functionals defined

on infinite Poisson processes.
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Putting all this together then gives the final result:

lim
nS→∞

Sγ(T (nS); p) = βn,γ

nS∑

i=1

p(xi) (li)
γ+n

,

=
βn,γ

(nS)
γ
n

nS∑

i=1

p(xi)g−
γ
n (xi) (li)

n −→
nS→∞

βn,γ

(nS)
γ
n

∫

Rn

p(z)g−
γ
n (z)dz.

That is: lim
ns→∞

[
(nS)

γ
n Sγ(T (nS); p)

]
= βn,γ

∫

Rn

p(z)g−
γ
n (z)dz. (9.15)

�	

To summarize, we have shown that our ad hoc definition of the graph-based
specificity (9.7) between a sample set generated by the model pdf p(z) and
the training set can be related to an integral definition of the specificity (9.9)
of the training set with respect to the pdf p(z). By then considering the limit
of an infinitely large training set generated by some process with density
g(z), we have shown that the integral specificity can be related to an integral
involving these two pdfs, the generating pdf g(z) and the model pdf p(z).

In order to relate this result to other quantities, we define the following
divergences5:

Dγ(p, g) .=
n

γ
log
∫

Rn

p(z)g−
γ
n (z)dz, (9.16)

D̃γ(p, g) .= Dγ(p, g) − Dγ(p, p). (9.17)

lim
γ→0

Dγ(p, g) = −
∫

Rn

p(z) log g(z)dz = H(p, g), (9.18)

lim
γ→0

D̃γ(p, g) = DKL(p, g), (9.19)

where H(p, g) is the standard cross-entropy of two distributions, and
DKL(p, g) the Kullback-Leibler (KL) divergence:

DKL(p, g) = H(p, g) − H(p, p) =
∫

Rn

p(z) log
p(z)
g(z)

dz. (9.20)

We hence see that our specificity can be used to obtain an estimator for
cross-entropy:

5 The term divergence relates to the separation of two distributions. It cannot be called

a metric or a distance since in general divergences are not symmetric, that is, D(p, g) �=
D(g, p).
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H(p, g) = lim
γ→0

Dγ(p, g) ≈ lim
γ→0

(
n

γ

[
log
(
(nS)

γ
n Sγ(T (nS); p)

)
− log βn,γ

])
.

(9.21)
Given the symmetry of the definitions of specificity and generalization, we
see that corresponding limit of the generalization measure is just the other
cross-entropy H(g, p).

The divergence Dγ(p, g) (9.16) is of a slightly different form to the Rényi
α-divergence [141]:

Dγ(p, g) =
n

γ
log
∫

Rn

p(z)g−
γ
n (z)dz, Rα(p, g) =

1
α − 1

log
∫

Rn

pα(z)g1−α(z)dz.

(9.22)
Hero et al. [91, 90] estimated Rα(p, g) using graph-based methods. However,
they were interested in the slightly different question of the divergence of
two point sets, rather than the divergence of a point set and a pdf. Both
divergences tend towards the same expression in the limits γ → 0 or α → 1.

Given the cross-entropy H(p, g), we can then estimate the KL divergence
if we also know H(p, p) (which is just the Shannon entropy [160] – see
Sect. 4.3.1). For certain classes of models, such as multivariate Gaussians,
the KL divergence can be calculated in closed form.

An alternative is to use a second sample set generated from the model,
and calculate the specificity between the two sample sets to estimate H(p, p).
In this case, we can see what our estimate of the divergence is doing – if we
cannot tell the difference in terms of appropriately normalized graph lengths
between two sample sets, or a sample set and a training set, then the model
pdf that generated those sample sets is indeed our best estimate of the train-
ing set pdf g(z).

The Kullback-Leibler divergence has the property that DKL(p, g) ≥ 0,
with equality only when p(z) = g(z) ∀ z ∈ R

n [103]. However, it should
be remembered that specificity and generalization are being used to assess
the quality of models p(z) which have been fitted to the data, not to fit the
models themselves. If we did try to use the KL divergence to fit the models to
the data over all possible models, we would encounter the same problem with
the empirical distribution (9.6) that we discussed previously. In practice, we
avoid this problem by considering only a limited class of models (multivariate
Gaussians, say), and fit these models to the data in the usual way. When we
vary the correspondence across the training set, this shifts the positions of
the training points slightly, which we then fit to a slightly amended version
of the same class of models. If we neglect the variation in H(p, p) for these
slightly different models, the specificity as an estimator for H(p, g) (hence
DKL(p, g)), under the fitted-model restrictions, does provide a good measure
of the quality of the degree of fit of the model and the training set. In effect,
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our assumption that the true training set distribution g(z) is smooth and
continuous is included by limiting ourselves to classes of models which dis-
play the same features. The empirical distribution can also be excluded on
the grounds that we want models which vary continuously with the data, and
in particular, that vary continuously if single points are either included in or
excluded from the training set.

The derivation in Theorem 9.1 makes the assumption that the Voronoi cells
of the training set are closed, and that their size scales appropriately with the
size of the training set. This will not be true for points on the periphery of the
training set, which have open Voronoi cells which will not have the size and
shape as predicted in the proof of the Theorem. However, the contribution
to the specificity from these points will be negligible provided that p(z) → 0
in this region, or equivalently, if the convex hull of the sample set Y (M) is
not substantially larger than the convex hull of the training set T (nS). The
converse case holds for the limit of the generalization measure. Hence we see
that we expect both graph-based estimators to be valid in the case where the
model p(z) is fitted to the data. This provides another reason why we cannot
use the specificity and generalization to fit the model to the data, whilst they
still will provide a good measure of the quality of fit near the point of fit
itself.

However, we can only use these estimators if we know the values of
βn,γ (9.14).

9.3.1 Evaluating the Coefficients βn,γ

We start by recalling the definition of the coefficients (9.14):

βn,γ
.= E

[∫

Ω0(P1)

(‖z‖)γ
dz

]
. (9.23)

There are two ways to look at the meaning of this expression. In the first
case, we can view this integral as the limit of a sampling process, where the
point z is generated randomly and uniformly. For each such z, the distance is
then measured to the nearest other point of the pre-existing uniform Poisson
process P1. But this means that generating z just means adding a new point
to P1. The distance ‖z‖ is then just the nearest-neighbour distance (nearest-
neighbour since it is within the original Voronoi cell, hence all other points
are further away by definition) for this amended Poisson process. Hence we
can see βn,γ as the expectation value of the γ power of the nearest-neighbour
distance for a uniform Poisson process.

The expectation value of the kth-nearest-neighbour distance has been
calculated by Wade [191], and can be used to deduce the values for our
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Fig. 9.4 Black dots: Seed points, central seed 0, and neighbouring seed P. Grey dots:
The mid-point A, possible face point F. Thick black line: Possible face points on (n−1)-
dimensional hyperplane. Medium black line: Hypersphere through 0 and P, centre F.

coefficients βn,γ . However, it is also possible to calculate the above integral
explicitly, using the methods of Brakke [13], which yields our version of the
proof of the following Theorem:

Theorem 9.2. Evaluating the Coefficients βn,γ.
For a uniform Poisson process P1 of unit intensity in R

n, the value for
the following integral is:

βn,γ = E

[∫

Ω0(P1)

(‖z‖)γ
dz

]
=

n

(n + γ)
· Γ
(
2 +

γ

n

)
· (vn)−

γ
n , (9.24)

where Γ (·) is the usual Gamma function, and vn is the volume of the unit

ball in R
n, vn =

2π
n
2

nΓ
(

n
2

) .

Proof. The näıve way to calculate this expectation value would be to define the
positions of a set of points of the Poisson process (seeds) about a seed at the
origin 0. For this particular set of seeds, we would compute the Voronoi cell
about 0, then attempt to perform the integration over this cell. At the final
stage, we would then perform the statistical averaging over the seed positions.
However, a simpler approach is to follow the methods of Brakke [13], which
effectively combines these stages.

Consider the situation shown in Fig. 9.4. We have the seed 0 that we take
as our origin. We have a neighbouring seed P whose position is held fixed for
the moment. A point F lying on the plane midway between the seeds 0 and
P is a point on a face of the Voronoi cell of 0 provided that no seed points
lie in the hypersphere (medium black line) centred on F that passes through
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the pair of seeds. Let y denote the position of F relative to A, y = |y| and r
is the distance 0A. β is then defined as the angle between the lines 0A and
0F.

The required void is then a hypersphere centred on F of radius OF, where
0F =

√
r2 + y2. It hence has a volume of vn(r2+y2)

n
2 , where vn is the volume

enclosed by the unit hypersphere in R
n. The probability that a void of this size

exists within the Poisson process is the void probability:

exp(−vn(r2 + y2)
n
2 ).

Let dy be the infinitesimal element of hyperarea ( (n− 1)-dimensional vol-
ume lying wholly in the hyperplane) about F. When joined to 0, this defines a
hypercone, which forms part of the volume of the Voronoi cell. Since this cell
is a convex polytope, integrating over all points F sweeps out the whole vol-
ume of the cell once and only once. We can hence calculate the contribution
of this cone to the integral as follows:

(r2+y2)
1
2∫

0

cos β · Rγ ·
(

R

(y2 + r2)
1
2

)n−1

dRdy =
r

n + γ

(
r2 + y2

) γ
2 dy. (9.25)

Here the cos β = r/(r2 + y2)
1
2 term projects dy perpendicular to 0F, and the

integration variable R takes us along the cone from the tip at 0 to the base
centred at F.

We then integrate over the angular part of dy, which takes F over the
surface of the (n − 1)-dimensional hypersphere centred at A of radius y to
give:

r

n + γ
· sn−1 yn−2 ·

(
r2 + y2

) γ
2 dy, where: sp

.=
2π

p
2

Γ (p
2 )

, (9.26)

sp being the surface area of the unit hypersphere in p dimensions, and where
dy is now just the scalar measure. We now include the void probability and
integrate over the position of the neighbouring seed P:

∫
sn−1

n + γ
· ryn−2 ·

(
r2 + y2

) γ
2 exp(−vn(r2 + y2)

n
2 ) dy dP. (9.27)

Note that the measure dP associated with the position of seed P is not a
scalar. However, we can integrate over the angular part, taking P over the
surface of a n-dimensional hypersphere of radius 2r centred on 0:

∫

angular part

dP = sn · 2nrn−1dr. (9.28)
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The remaining variables to be integrated over are just the distances y and r,
which give the complete expression:

βn,γ =
snsn−12n

n + γ

∞∫

0

dr

∞∫

0

dy rnyn−2 ·
(
r2 + y2

) γ
2 exp(−vn(r2 +y2)

n
2 ). (9.29)

We use the standard change of variables:

r = x cos θ, y = x sin θ,

which gives:

βn,γ =
snsn−12n

n + γ

⎛

⎜⎝

π
2∫

0

dθ cosn θ sinn−2 θ

⎞

⎟⎠

⎛

⎝
∞∫

0

xγ+2n−1 exp(−vnxn)dx

⎞

⎠ .

(9.30)
The integral over θ ([79] 3.621 & 8.384) can be expressed in terms of the beta
function, hence in terms of the Gamma function, so that:

π
2∫

0

dθ cosn θ sinn−2 θ =
1
2

Γ
(

n−1
2

)
Γ
(

n+1
2

)

Γ (n)
.

Using another change of variable, the integral over x can also be computed
([79] 3.381). Putting these results together, and with the aid of a little manip-
ulation and use of the Legendre duplication formula,6 yields the final result:

βn,γ =
n

(n + γ)
· Γ
(
2 +

γ

n

)
· (vn)−

γ
n . (9.31)

As a final check on the normalization, we note that βn,0 is just the expec-
tation value of the volume of the Voronoi cell, which is correctly given as 1
by the above expression. �	

Now we have an expression for the coefficients βn,γ in closed form, we have
all that is required to use the specificity and generalization as graph-based
estimators.

Consider the γ-specificity as an estimator of the divergence defined in
(9.16):

6 Γ (z)Γ (z +
1

2
) = 21−2z√πΓ (2z).
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Fig. 9.5 D̃γ(p, g) for p(z) and g(z) spherically symmetric Gaussians in R
7. The training

sets of size nS = 100 are generated from a unit width Gaussian, whereas the model pdf
p(z) has a variable width σ. The divergence is estimated by generating sample-sets of
size M = 1000. Different symbols indicate different instantiations of the training set. The
dotted line shows the exact theoretical result. It can be seen that the estimate fits the
prediction for values σ ≤ 1, as was also predicted.

Dγ(p, g) ≈
(

n

γ

[
log
(
(nS)

γ
n Ŝγ(T (nS);Y (M))

)
− log βn,γ

])
, (9.32)

D̃γ(p, g) .= Dγ(p, g) − Dγ(p, p). (9.33)

We will take p(z) and g(z) to be spherically symmetric Gaussian distribu-
tions in R

n. The divergences Dγ(p, g), D̃γ(p, g) can then be calculated in
closed form. If we take the model distribution to be of width σ, and the data
generating distribution g(z) to be of unit width, then:

D̃γ(p, g) =
n2

γ

[
1
2

ln
(

n − γ

n − γσ2

)
− γ

n
ln σ

]
.

Artificial training sets with nS = 100 and n = 7 were generated by sam-
pling from g(z). Sample sets of size M = 1000 were generated from p(z) with
values of σ up to 2. The comparison between the exact value of D̃γ(p, g) and
the value estimated from the γ-specificity for γ = 0.1 are shown in Fig. 9.5,
plotted as a function of σ. For each estimate, several sample sets were gener-
ated, and the mean value of the γ-specificity used, with the error bars on the
estimates being smaller than the size of the symbols. Note that we use the
exact result for Dγ(p, p), which means that the estimated value of D̃γ(p, g)
need not necessarily be positive.

It can be seen that the estimated values are in good agreement with the
theoretical prediction for σ ≤ 1. This result is also in accord with our com-
ment on the proof of Theorem 9.1, that the derivation is valid provided that
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Fig. 9.6 Ŝγ(p, g) for p(z) and g(z) spherically symmetric Gaussians in R
5. The training

sets of size nS ≤ 200 are generated from Gaussians of width 0.5, whereas the model pdf
p(z) is of width 0.45. Sample sets are of size M = 1000. The plot shows how the measured
specificity varies as the size of the training set is increased, for various values of γ. The
lines are curves fitted to the data.

the convex hull of the sample set lies mostly within the convex hull of the
training set. It confirms that the estimate cannot be used to fit the model,
but that the estimate is reliable at the point of fit (σ = 1) as required.

Our analysis also makes a prediction as regards the way the specificity
scales with nS . From (9.15), we have:

Ŝγ(T (nS), Y (M)) ∝ (nS)−
γ
n .

To test this prediction, we generated artificial training sets by sampling
from spherically-symmetric Gaussians of width 0.5 in n = 5, for training set
sizes up to nS = 200. The sample sets of fixed size M = 1000 are generated
from spherically symmetric Gaussians of width 0.45, so that we are close to
fit but not exactly at the point of fit. The specificity is then evaluated for
various values of γ. Figure 9.6 shows how the measured specificity varies as
a function of the size of the training set. Each set of points was fitted to

Table 9.1 Table comparing the predicted scaling exponent for specificity with the pre-
dicted value, as a function of γ. The final column gives the percentage difference between
values.

γ Predicted power γ
n

Fitted power Degree of Fit

0.10 0.02 0.0196 2.0%
0.25 0.05 0.0532 6.0%
0.50 0.10 0.1002 0.2%
0.75 0.15 0.1819 21.0%
1.00 0.20 0.1970 2.0%
2.00 0.40 0.3718 7.0%
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a curve of the form given above. In Table 9.1, we compare the fitted value
of the power in the scaling law with the actual value of γ

n . It can be seen
that the specificity scales with the size of the training set as predicted, and
that this scaling is valid even for small sizes of training set. Furthermore, the
measured exponent is close to the theoretical prediction.

9.3.2 Generalized Specificity

The results given so far consider just the case of first-nearest-neighbours be-
tween the training and sample sets. We have considered already the extension
of taking a power of the distance. It is obviously possible to consider graph
constructions beyond the first-nearest-neighbour, such as the jth-nearest-
neighbour, or the full set of all k-nearest-neighbours. The analysis follows
through as before, except that the partitioning of R

n into higher-order voronoi
cells is rather more complicated. The final results follows as before, except
that the coefficients βn,γ are replaced by the more general coefficients as given
by Wade ([191], page 6, Theorem 2.1).

Other extensions are possible, such as using a general, translation invariant
distance other than the Euclidean distance. Interested readers should consult
the detailed example given in [186].

For the case of using specificity to evaluate image registration, Schestowitz
et al. [153] used not only the Euclidean distance, but also used the shuffle
distance between images. The use of these distances was validated by consid-
ering random warps applied to registered sets of images, and showing that
the measured specificity and generalization both showed a monotonic rela-
tionship with respect to degree of mis-registration, as did a ground truth
measure based on label overlap.

If I(x) and J(x) are two image functions, and if r(x) represents the points
in a region centred on the point x, then the Euclidean distance between I
and J is:

d(I, J) =
∑

x

|I(x) − J(x)|,

whereas the shuffle distance is:

d(I, J) =
∑

x

min
y∈r(x)

|I(x) − J(y)|.

The region r(x) is typically some circular or spherical region of fixed radius
about x. The advantage of the shuffle distance is that it tends to have a
smoother behaviour with respect to mis-registration than the Euclidean dis-
tance. The form given here is not symmetric with respect to I ↔ J, but it
is obviously trivial to construct a symmetric version. This symmetric shuffle
distance then obviously scales linearly as we scale the image values, but it is
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not translation invariant. Nor is it a simple monotonic function of the Eu-
clidean distance. Hence the above analysis cannot be applied to this instance.
Nevertheless, it may be that locally on the space of actual images, the shuffle
distance may be approximately monotonic for small displacements, and ap-
proximately translation invariant for small displacements lying in the space
of images. If this were the case, then we would have an approximate relation
of the same general form as that given for Euclidean distances. However, at
the moment, this is still just a conjecture for the specificity of images, and
obviously highly data-dependant.

9.4 Specificity and Generalization in Practice

In practice, what tends to be used for model evaluation is just the speci-
ficity (9.4) and generalization (9.5):

Ŝ(nm) .=
1
M

M∑

A=1

min
i
‖yA − xi‖, Ĝ(nm) .=

1
nS

nS∑

i=1

min
A

‖yA − xi‖. (9.34)

Both of these measures give an estimate of the mean nearest-neighbour
distance between the two point sets. Each measurement that contributes to
the mean is statistically independent, hence the error on these measures is
just given by the standard error:

σS =
std
{

min
i
‖yA − xi‖

}

√
M

,

where std is just the estimated standard deviation across the population. A
similar expression holds for the error on the generalization.

Given the measurement, and the error on that measurement, we can now
develop a measure of the sensitivity of the measure itself. Suppose f(d) rep-
resents a measure, where d is some parameter representing the degree of mis-
correspondence. The measure here could be specificity or generalization, but
it could also be some ground truth based measure. For example, for the case
of image registration mentioned above, Schestowitz et al. used specificity and
generalization based on Euclidean and shuffle distances, plus a ground truth
measure based on the overlap of manually-annotated dense tissue labels.

The sensitivity of a measure is then defined as [153]:

1
σf

(
f(d) − f(0)

d

)
,

where σf is the mean error on f over the range of d considered. The meaning
of this is that it gives some indication of the degree of mis-correspondence
that can be reliably detected as being different from zero. Schestowitz et
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al. found that specificity measured using the shuffle distance was more sen-
sitive than sensitivity measured using Euclidean distance. They also found
that generalization was the least-sensitive of the measures they considered.
More importantly, they also found that the specificity was more sensitive
than any of the ground truth measures based on the overlap of dense tissue
labels. This is not totally surprising, given that model specificity uses the full
image intensity information, whereas ground truth labelling by tissue type
is a very impoverished representation of image structure. Nevertheless, this
result indicates that in some cases, not only is reliable model evaluation pos-
sible without ground truth, but that even where ground truth information is
available, the ground truth free measures may be superior.

We now give a simple concrete example for shapes of how specificity varies
as the correspondence varies from the ground truth correspondence. The
shapes we will use are based on the so-called box-bump (see Fig. 9.7), con-
sisting of a rectangle with a semi-circular bump on the top edge, the bump
being able to move along the top edge. These shapes were chosen since the
ground truth correspondence can be reliably defined, in that ground truth
correspondence gives one and only one mode of variation, whereas deviation
from this generates spurious modes. Yet despite this simplicity, finding this
ground truth correspondence using automatic methods such as MDL is still
a challenging task [51].

Ground truth landmarks exist at the corners of the rectangle, and the
corners where the bump meets the top edge. A continuous ground truth cor-
respondence is then defined by interpolating between these landmarks, as
illustrated in Fig. 9.7 by the colouring. A training set is constructed by vary-
ing the bump position between the left and right extreme positions. For the
ground truth correspondence, this then gives only one mode of variation. Note
that the distribution of shapes is not Gaussian, due to the cut-off provided
by the limits on the position of the bump.

For a training set of such box-bumps, the initial parameterisation is defin-
ing using an arc-length parameterisation on the mean shape S̄, with the
parameters then scaled to lie between 0 and 2π. This means that the shape
covariance matrix (2.124) can be written in the form:

Fig. 9.7 Example box-bumps. The colours denote the ground truth correspondence.
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D̃ij
.=

1
2π

2π∫

0

(Si(u) − S̄(u)) · (Sj(u) − S̄(u))du.

This is calculated numerically by sampling points densely and equidis-
tantly on the mean shape, and then re-sampling each training shape at the
equivalent positions. A multivariate Gaussian model using all the modes
of variation is then built from this covariance matrix in the usual way
(Sect. 2.2.1). Note however that the shapes are not Procrustes aligned
(Sect. 2.1.1), since this would introduce extra, spurious modes of shape vari-
ation.

For the experiments, training sets of nS = 100 continuous shapes were gen-
erated by placing the bumps in random positions between the two extremes.
The ground truth correspondence was then perturbed using a re-parameter-
isation of the form:

φi(u) = u + (Δu)i,

where (Δu)i was chosen at random for each shape apart from the first shape,
whose parameterisation was left unchanged. The degree of mis-correlation
across the training set was quantified using the mean of the perturbations
{|(Δu)i| : i = 1, . . . nS}.

Hence a succession of perturbed training sets was created from each ground
truth training set. For each such perturbed training set, the mean shape
was calculated, and the shapes resampled using arc-length parameterisation

Fig. 9.8 Left: Specificity plotted against degree of mis-correspondence for box-bumps.
The different colours indicate different ground truth training sets. See the text for a detailed
explanation of the scale on the x-axis. Right: The mean shape for various degrees of mis-
correspondence. The exact degree of mis-correspondence is indicated by the number, using
the same measure as that in the plot, and the length of the white bar indicates the amount
of movement on the actual shape. As the mis-correspondence increases, the corners of the
mean shape and the corners of the bump becomes smoothed.
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on this mean as before. This enabled the integral covariance matrix to be
calculated and a multivariate Gaussian model to be built, as detailed above.
The specificity of each perturbed model was then measured by generated
sample sets of size M = 300 from the model. The results for the specificity
are shown in the graph in Fig. 9.8. Four different ground truth training sets
were generated, and the 100 perturbed results from each such training set
are shown by the colours. Note that for reasons of clarity, the standard error
on each measurement is not plotted.

It can be seen that there is significant scatter within each training set,
which is not surprising given the stochastic nature of the perturbation pro-
cess. There are also significant differences between the different ground truth
training sets, again not surprising given the stochastic nature of their gen-
eration. However, the results do show a clear trend, where the measured
specificity increases monotonically with the degree of mis-correspondence.
As detailed above, mis-correspondence is defined with respect to arc-length
parameterisation on the mean, which is then scaled so that parameter values
lie between 0 and 2π. Hence a degree of mis-correspondence of 0.1 corresponds
to displacement by 0.1

2π ≈ 1.6% of the total length of the shape.

9.5 Discussion

In this chapter, we have discussed the problems with obtaining ground truth
correspondence data as would be required for detailed evaluation of statistical
models. We considering the properties that a good statistical model should
possess (compactness, specificity, and generalization ability), and showed how
it was possible to build ad hoc quantitative measures based on the latter two
concepts. Detailed consideration of these graph-based measures then revealed
that these measures could be considered as graph-based estimators of the
more familiar concepts of cross-entropy and Kullback-Leibler divergence. This
places our formerly ad hoc measures on a sound theoretical footing, and
explains why they are sensible measures for evaluating statistical models.

Finally, we gave a concrete example of how specificity degraded as the
correspondence across a training set was perturbed from its ground truth
values.

Throughout this chapter, it has been assumed that ground truth corre-
spondence has a definite meaning, and that where it is possible, such ground
truth correspondence is the correspondence that would be assigned to shapes
by a skilled human annotator. However, it can be argued that the concept
of ground truth is only relevant in the case where our ultimate aim is to
reproduce such correspondence by an automatic method.

An alternative view is that automatic correspondence is instead something
that is inferred from the data, and that the purpose of correspondence is to
produce the most meaningful description of the entire training set. Hence
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Fig. 9.9 Automatic MDL correspondence for hand outlines – detail of the end of the
thumb. The automatic method allows points to slide around at the tip of the thumb, so as
to linearize the variation corresponding to rotation of the thumb.

what we mean by the best correspondence can (and should) change as the
size of the training set changes. And indeed, the correspondence that we find
in the limit of infinite size need not converge to the correspondence that would
be assigned by a human. In this view, human ground truth correspondence
is seen as a consequence of the particular way that the human visual system
extracts meaningful shapes from images or scenes, the way the human brain
classifies and categorizes the variation of such sets of shapes, and the way
humans include physical knowledge of the behaviour of the actual objects
imaged into the process. But the algorithms that the human brain has evolved
for such purposes are not the only way to process such information. And in
the context of statistical models, comparison with human algorithms need
not be the best way to assess our automatic results.

Davies et al. [51] included an interesting example which illustrates the dif-
ference between human and automatic approaches to shape correspondence.
They considered the case of the outline of the hand, and compared MDL
correspondence with manual annotation. It was shown that the automatic
correspondence leads to models which are more compact and with better
generalization ability (specificity was not evaluated in that particular paper)
than the case of manual annotation.

The reasons for this difference becomes clear if we consider how people
annotate such shapes. Given their knowledge of the physical object to which
the shapes correspond, people tend to place landmarks at the tips of the fin-
gers and thumb. Particularly for the thumb, there is considerable rotational
movement as the hand moves, which leads to non-linear degrees of freedom
when Cartesian coordinates are used in the shape representation (as noted
in Sect. 2.1). Automatic methods attempt to linearize this rotational degree
of freedom, by allowing the landmarks at the tips of the thumb and fingers
to move slightly, depending on the exact pose of the digit (see Fig.9.9). This
leads to quantitatively better multivariate-Gaussian models, although the
correspondence is not one that we would assign based on physical consider-
ations. This hence illustrates the difference between ground truth correspon-
dence assigned by humans, based on the particulars of human understanding
of shape variation, or experience of the physical properties of the actual ob-
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jects imaged, versus automatic approaches where the main consideration is
producing a compact and efficient statistical model of the variation. Hence
comparison of a model with human ground truth is not necessarily the best
method of evaluation, and the ground truth free methods described in this
chapter provide a principled method of evaluation free of human biases.
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Thin-Plate and Clamped-Plate Splines

We give here a brief description of the construction of thin-plate and clamped-
plate splines, since particularly for the case of clamped-plate splines, a listing
of the full set of Green’s functions [9] can be hard to find in the more recent
literature.

The basic thin or clamped-plate spline is simple to understand. We take
the idealized physical case of a thin, flexible sheet of material, which is bent,
but constrained to pass through a certain set of points (the spline control
points). The actual shape of the plate, hence the spline interpolant of the
control points, is then calculated by minimising a bending energy term, with
respect to the constraint that the sheet passes exactly through the control
points.

The thin-plate spline and the clamped-plate spline differ in terms of the
boundary conditions applied to the plate. Specifically, the thin-plate spline
corresponds to a plate of infinite extent with no particular boundary con-
ditions, whereas the clamped-plate corresponds to a plate whose edges are
clamped, as the name suggests.

The solution to this problem and generalizations of it, is obtained by using
the Green’s function technique.

A.1 Curvature and Bending Energy

First, we need to define the bending-energy term. Consider the simple case
of a bent strip of material, which is constrained to lie in a single plane. The
shape of the strip can then be described by a function f(x). We will suppose
that the deformation of the strip is not too extreme, so that the function
f(x) is everywhere a single-valued function of x ∈ R.

At a point on the strip, we have the radius of curvature R, and its inverse,
the curvature κ, where:

259
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κ
.=

1
R

=
fxx

(1 + f2
x)

3
2
, (A.1)

with fx
.= dxf(x), fxx

.= (dx)2f(x) = d2
xf(x) and so on. If we make the

approximation that the gradient is everywhere small, so that |fx| � 1, we
then have to leading order:

κ ≈ fxx. (A.2)

We take as our expression for the bending energy density of the strip at a
point, the square of the local curvature κ. A straight strip then corresponds
to zero energy, and the more bent the strip, the higher the local curvatures,
hence the higher the total energy.

The case of a two-dimensional plate can be handled in a similar fashion.
Within a Monge patch, the shape of the plate is given by:

(x, y, f(x, y)) ∈ R
3, (A.3)

in Cartesian coordinates. The mean of the principal curvatures at a point of
the plate is then given by:

H =
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy

2(1 + f2
x + f2

y )
3
2

, (A.4)

where fx
.= ∂xf(x, y) and so on. As before, the energy density is given by the

square of the curvature, which when integrated over the whole plate gives the
Willmore energy [195]. If we make the same vanishing-gradient approximation
as above (fx → 0, fy → 0), we find:

H ≈ 1
2
√

2
(fxx + fyy) . (A.5)

As an approximate form for the mean curvature, this is linear in the
second-derivatives, and has the property that it is invariant to rotations in
the (x, y) plane. This suggests that an appropriate form for the approximate
Willmore energy density E should be quadratic in the second-derivatives
thus:

E
.= f2

xx + Afxy(fxx + fyy) + Bf2
xy + Cfxxfyy + f2

yy. (A.6)

If we also impose invariance under rotations in the plane, we then obtain the
general form for the rotationally-invariant energy density1:

E
.= f2

xx + (2 − α)f2
xy + αfxxfyy + f2

yy, (A.7)

where α is some number. Squaring the approximate expression for the mean
curvature (A.5) gives us the above expression for the case α = 2, whereas

1 If F =

(
fxx fxy

fyx fyy

)
, the matrix of second derivatives, then a general quadratic

rotationally-invariant scalar formed from F is of the form: (TrF )2 + (α − 2) det F .
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Bookstein [10] uses an energy term given by the case α = 0. However as we
shall see below, any value of α leads to the same variational problem and the
same Green’s functions.

A.2 Variational Formulation

We now have an expression for the bending energy of a strip or plate. Let
us now consider the original constrained optimisation problem that defines
our splines. Suppose we constrain our plate to pass through the set of points
{(xi, yi, fi) ∈ R

3}. We then have to find the minimum of the expression:

L =
∑

i

li (f(xi, yi) − fi) +
∫∫

R2

(
f2

xx + (2 − α)f2
xy + αfxxfyy + f2

yy

)
dxdy,

(A.8)

where the {li} are Lagrange multipliers. Setting the derivatives
∂L
∂li

to zero

just imposes the corresponding constraint at (xi, yi). By the use of the Dirac
δ-function, we can rewrite this as:

L =
∫∫

R2

(
f2

xx + (2 − α)f2
xy + αfxxfyy + f2

yy

)
dxdy

+
∑

i

∫∫

R2

li (f(x, y) − fi) δ(x − xi, y − yi)dxdy. (A.9)

Just as in finite-dimensional analytic minimisation, we require the deriva-
tive of L with respect to f(x, y). To calculate this functional derivative, we
consider the following infinitesimal variation:

f(x, y) → f(x, y) + ε(x, y), where: |ε(x, y)| � 1 ∀ (x, y) ∈ R
2, (A.10)

and ε(x, y) obeys the boundary conditions that it vanishes either at the
boundary of some region (the clamped-plate case), or at infinity (the thin-
plate case). If we consider a term such as f2

xx, we have:

fxx → fxx + εxx ⇒ (fxx)2 → f2
xx + 2fxxεxx + O

(
ε2
)
. (A.11)

The important point to note is that since these terms occur inside an inte-
gral, we can integrate by parts and pass derivatives across. Since the varia-
tion ε(x, y) vanishes at the boundaries/infinity, we do not acquire any extra
boundary terms. This means that the entire variation ΔL can be written in
the integral form:
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ΔL =
∫∫

R2

δL
δf(x, y)

ε(x, y)dxdy. (A.12)

At the optimum, we require that ΔL vanishes to leading order for all possible
variations ε(x, y). We hence obtain the required solution in the form:

δL
δf(x, y)

= 0 ∀ (x, y). (A.13)

This is just equating the functional derivative of L to zero, where the func-
tional derivative is calculated as described above.

For the specific case of the flexible plate (A.8), we find:

δL
δf(x, y)

= 2
(
∂4

x + 2∂2
x∂2

y + ∂4
y

)
f(x, y) +

∑

i

liδ(x − xi, y − yi).

∴ δL
δf(x, y)

= 0 ⇒ (∂2
x + ∂2

y)2f(x, y) ∝
∑

i

liδ(x − xi, y − yi). (A.14)

Note that this result is independent of the value of α chosen in (A.7), hence
the Bookstein form and the other forms discussed above give equivalent re-
sults.

A.3 Green’s Functions

The above equation (A.14) is of the general form:

Lf(x) = g(x), x ∈ R
d, (A.15)

where L is some scalar differential operator, g(x) is some known, fixed func-
tion, and f(x) is the solution we are seeking, subject to appropriate boundary
conditions. Equations of this form occur frequently in physics. For example,
in electrostatics, we have Poisson’s equation, with L = ∇2, g(x) proportional
to the electric charge density, and f(x) = φ(x), the electrostatic potential.
Related examples occur in the fields of quantum mechanics and quantum
field theory [130].

Such equations are solved using the technique of Green’s functions [82,
170]. For a differential operator L, the associated Green’s function G is defined
as:

LG(x,y) = δ(x − y), (A.16)

where G(x,y) obeys the same boundary conditions as the initial problem.
The solution to (A.15) can then be written in the form:
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f(x) = f0(x) +
∫

Rd

G(x,y)g(y)dy, where Lf0(x) = 0. (A.17)

Hence to calculate the solution, we need to compute the Green’s function. We
consider now the Green’s functions for the thin and clamped-plate problems
we defined previously, and for generalizations of that problem.

A.3.1 Green’s Functions for the Thin-Plate Spline

For the thin-plate spline (as introduced by Duchon [62], and developed by
Meinguet [120, 119, 121]), the plate is free to bend out to infinity. The dif-
ferential operator in the example given above is L = (∇2)2 ≡ (�)2 (the
bi-harmonic thin-plate spline). But this can obviously be generalized to the
case:

L = (−�)m, derivatives wrt x ∈ R
d, (A.18)

which is the polyharmonic thin-plate spline in d-dimensions. The thin-plate
spline as popularized by Bookstein [11] for shape analysis uses the radially-
symmetric biharmonic Green’s function in R

d = R
2, where:

G(x,y) = G(‖x − y‖), G(r) = −r2 ln r2, r ≥ 0. (A.19)

From (A.17), the biharmonic thin-plate spline interpolant (see also [10], page
570) is then of the form:

f(x, y) = f(r) =
∑

i

ai‖r − ri‖2 ln ‖r − ri‖ + Ax + By + C, (A.20)

where {ri ∈ R
2} represents the positions {(xi, yi)} of the spline control points,

and the coefficients {ai} are adjusted so that the spline agrees when compared
to the values {fi} at these points. The last three terms correspond to a flat
plate, and represent the affine part of the deformation.

The problem with this form of interpolant, popular as it is, is that although
the non-affine part is asymptotically flat,2 it has no finite limit, and hence
doesn’t do anything as simple as approach a flat plate at infinity (unless the
particular coefficients obey a certain special relation, as in the example given
in [10]).

As a result, another version of such splines was introduced [114] into image
and shape analysis, with the property that the spline interpolant was strictly
bounded in its effects. This spline was based on solutions to the general
clamped-plate problem, as will be considered next.

2 Asymptotic flatness means that the curvature tends to zero at infinity, which is not the
same as the gradient approaching some finite limit at infinity.
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A.3.2 Green’s Functions for the Clamped-Plate Spline

The clamped-plate problem is similar to the free plate considered above in
terms of the bending-energy and so on – the significant difference is that the
plate is now constrained to be motionless on the boundary of some region
(e.g., a square, a rectangle, a circle, or more complicated shapes such as the
limaçon [47]), hence the term clamped-plate. We will just consider the case of
a circle, or in general, the unit ball in higher dimensions.

As regards the choice of differential operators, this is as above, with:

L = (−�)m. (A.21)

But the general point x, rather than being anywhere in R
d, is now restricted

to the interior of the unit ball ‖x‖ < 1, in R
d. This means that the Green’s

functions and the associated splines now have the property that they vanish
on the boundary of the unit ball ‖x‖ = 1 in R

d.
The general solution for the Green’s function in this case was given by

Boggio [9] in 1905. If x and y are the positions of two general points within
the unit ball in R

d, then the Green’s function can be written as follows:

Define: [XY ] .=
∥∥∥∥x‖y‖ −

y
‖y‖

∥∥∥∥ ≡
√

‖x‖2‖y‖2 − 2x · y + 1, (A.22)

& A(x,y) .=
[XY ]

‖x − y‖ , (A.23)

Then: Gm,n(x,y) = km,n‖x − y‖2m−n

A(x,y)∫

1

(v2 − 1)m−1

vn−1
dv, (A.24)

where {km,n} are numerical coefficients. These Green’s functions not only
vanish on the boundary of the unit ball, but so do all their derivatives up to
order m − 1, so they not only vanish, but vanish in a smooth fashion.

Let us consider specifically the biharmonic case (that is, m = 2), in two
dimensions (n = 2). The radially symmetric, centred Green’s function is then
given by:

G2,2(x,0) = G2,2(r) ∝ r2

1
r∫

1

(
v − 1

v

)
dv =

1
2
(
1 − r2 + r2 ln r2

)
, (A.25)

and this is the function that was used in the main text (see Sect. 5.1.3, (5.18)).
The interested reader should consult [114, 112, 182, 113, 125, 147] for fur-

ther applications of clamped-plate splines within the fields of shape analysis
and image registration.
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Differentiating the Objective Function

In this Appendix, we consider a few more properties of the covariance matrix
of the data. In particular, we give a complete derivation of the computation
of the derivatives of the covariance matrix, the eigenvectors, and eigenvalues
with respect to variation of the input training shapes. The computation is
given for both finite and infinite dimensional shape representations. We show
how these results that we obtain from the point of view of PCA correspond
to the results obtained by Ericsson and Åström [65], and by Hlad̊uvka and
Bühler [94], from the point of view of singular value decomposition (SVD).

We also compute the gradient of the Mahalanobis distance with respect
to variation of the input training shapes.

B.1 Finite-Dimensional Shape Representations

We start by considering finite-dimensional shape representations. As in
Sect. 2.1.3, we define our aligned training shapes as a set of vectors in R

dnP ,
{xi : i = 1, . . . nS}, where:

xi = {xiμ : μ = 1, . . . d × nP }.

The mean shape x̄ is defined as:

x̄ .=
1

nS

nS∑

i=1

xi. (B.1)

The covariance matrix D (2.16) of our training set is then given by the
dnP × dnP matrix with components:

Dμν
.=

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν . (B.2)
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We define the set of orthonormal eigenvectors {n(a) : a = 1, . . . nm} of
D (2.17) thus:1

Dn(a) = λan(a), Dμνn(a)
ν = λan(a)

μ , n(a) · n(b) = δab.

Note that here we specifically consider only the complete set of eigenvectors
with non-zero eigenvalues, λa �= 0. There are at most nS−1 such eigenvectors
for nS data points, so that nm ≤ nS − 1.

This complete set of eigenvectors hence spans the sub-space which contains
the data, so that any training shape can be expanded exactly in terms of this
eigenvector basis:

xi
.= x̄ +

nm∑

a=1

b(i)
a n(a), (B.3)

b(i) .= {b(i)
a : a = 1, . . . nm}, b(i)

a
.= (xi − x̄) · n(a), (B.4)

where b(i) is the vector of the full set of shape parameters for the ith

shape (2.34).

B.1.1 The Pseudo-Inverse

The important point to note about D is that in general it is not invertible,
nor is its determinant non-zero. This is a consequence of the fact that the
data sub-space R

nm is a sub-space of R
dnP . There hence exist eigenvectors

of D with zero eigenvalues, which are perpendicular to the data sub-space.
Nevertheless, it is still possible to define a type of inverse, as follows.

Substituting from (B.3) into (B.2), the covariance matrix can be written
in the form:

Dμν =
nS∑

i=1

nm∑

a,c=1

b(i)
a b(i)

c n(a)
μ n(c)

ν ,

⇒ Dμνn(b)
ν =

nS∑

i=1

nm∑

a=1

b(i)
a b

(i)
b n(a)

μ = λbn
(b)
μ .

∴
nS∑

i=1

b(i)
a b

(i)
b = λbδab, ⇒ Dμν =

nm∑

a=1

λan(a)
μ n(a)

ν . (B.5)

Consider the matrix M, where:

1 As in the main text, we use the summation convention that repeated indices Dμνn
(a)
ν are

summed over unless otherwise stated, whilst bracketed indices λan
(a)
μ are only summed

over if explicitly stated.
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Mμν
.=

nm∑

a=1

1
λa

n(a)
μ n(a)

ν . (B.6)

Then:

(MD)μν = MμαDαν =
nm∑

a,b=1

1
λa

n(a)
μ n(a)

α λbn
(b)
α n(b)

ν =
nm∑

a=1

n(a)
μ n(a)

ν . (B.7)

We hence see that acting on any vector v ∈ R
dnP :

MDv =
nm∑

a=1

n(a)
(
v · n(a)

)
. (B.8)

The matrix MD hence projects v into the data sub-space. It therefore acts
as if it were the identity for vectors lying wholly in the data sub-space, whilst
annihilating vectors which are perpendicular to that sub-space.

The matrix M is the Moore-Penrose pseudo-inverse [129, 133] of D. It
appears when we calculate the Mahalanobis distance [110]. From (2.84), the
square of the Mahalanobis distance from a general point x in the data sub-
space to the mean shape can be written in the form:

l2(x) .= nS

nm∑

a=1

1
λa

(
(x − x̄) · n(a)

)2

= nS

nm∑

a=1

1
λa

(x − x̄)μn(a)
μ n(a)

ν (x − x̄)ν ,

= nS(x − x̄)μMμν(x − x̄)ν . (B.9)

Note that the factor of nS appears since we did not include a factor of 1
nS

in our definition of the covariance matrix (B.2). For the ith data point, from
(B.4), we have:

l2(xi) = nS

nm∑

a=1

1
λa

b(i)
a b(i)

a , (B.10)

which is a result we will use later.

B.1.2 Varying the Shape

Now we will consider the effect on the covariance matrix and its eigenvalues
and eigenvectors of an infinitesimal variation of just the ith shape. Specifically,
we consider:

xi �→ xi + Δxi.

Note that the mean shape (B.1), hence the position of our origin, also changes:
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x̄ �→ x̄ +
1

nS
Δxi,

so that:

xj − x̄ �→ xj − x̄− 1
nS

Δxi, j �= i, & xi− x̄ �→ xi− x̄+Δxi−
1

nS
Δxi. (B.11)

Substituting into (B.2), we find, after some algebra, that to leading order:

Dμν �→ Dμν + (xi − x̄)μ(Δxi)ν + (xi − x̄)ν(Δxi)μ,

ΔDμν
.= (xi − x̄)μ(Δxi)ν + (xi − x̄)ν(Δxi)μ. (B.12)

Since the covariance matrix changes,2 so do the eigenvectors and eigenvalues:

λa �→ λa + Δλa, n(a) �→ n(a) + Δn(a).

The orthonormality constraint on the eigenvectors still has to hold, hence:
(
n(a) + Δn(a)

)
·
(
n(b) + Δn(b)

)
= δab

⇒ n(a) · Δn(b) = −n(b) · Δn(a) & n(a) · Δn(a) = 0. (B.13)

Now let us consider the modified eigenvector equation:

(Dμν + ΔDμν)(n(a) + Δn(a))ν = (λa + Δλa)(n(a) + Δn(a))μ

⇒ DμνΔn(a)
ν + ΔDμνn(a)

ν = λaΔn(a)
μ + Δλan(a)

μ . (B.14)

If we take the dot product of the above equation with n(a), we then obtain
an expression for the variation of the eigenvalues:

Δλa = n(a)
μ ΔDμνn(a)

ν . (B.15)

If we instead take the dot product with n(b), b �= a, we obtain a relation for
the variation of the eigenvectors:

n(b) · Δn(a) =
n

(b)
μ ΔDμνn

(a)
ν

λa − λb
. (B.16)

Note that we have assumed that none of the eigenvalues are degenerate,
since as well as leading to problems with the above expression, it would also
lead to such pairs of eigenvectors being undetermined up to a mutual rotation.

2 In [101], Kotcheff and Taylor assumed in their proof that the covariance matrix could be

held constant during the differentiation with respect to shape variation, which is obviously

incorrect.
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We also wish to consider the variation of the parameter vector b(i) for the
ith shape. From (B.4):

b(i)
a + Δb(i)

a =
(
xi − x̄ +

(
1 − 1

nS

)
Δxi

)
·
(
n(a) + Δn(a)

)

⇒ Δb(i)
a =

∑

b�=a

b
(i)
b (n(b) · Δn(a)) +

(
1 − 1

nS

)
Δxi · n(a). (B.17)

Finally, we take the dot product of (B.14) with a unit vector m, where
m is perpendicular to the data sub-space, hence perpendicular to all the
eigenvectors {n(a)}. This gives:

mμΔDμνn(a)
ν = λa(m · Δn(a)). (B.18)

Now let us suppose that the shape xi is varied in a direction that is also
perpendicular to the data sub-space, so that Δxi = εm, ε � 1. Substituting
from (B.12) into (B.15) and into (B.16), we find that:

Δλa = 0 & n(b) · Δn(a) = 0.

That is, for this particular variation, the eigenvalues do not vary, and the
eigenvectors only change in a direction perpendicular to the data sub-space.
This is what we might have expected intuitively, in that moving a single
point out of the original data sub-space causes the sub-space to tip slightly.
Furthermore, we see from (B.17), that Δb

(i)
a = 0 ∀a.

We can hence conclude that the gradient of either the Mahalanobis dis-
tance (B.10) or any function of the eigenvalues L({λa}) lies wholly within
the data sub-space. We will now proceed to calculate these gradients.

Let us consider the variation:

Δxi = εn(d), ε � 1.

From (B.12) and (B.15) we find:

Δλa = 0 ∀ a �= d, Δλd = 2εn(d) · (xi − x̄) = 2εb(i)
d . (B.19)

The variation of the eigenvectors is computed from (B.16) to give:

Δn(d) =
∑

a�=d

εb
(i)
a

λd − λa
n(a), Δn(a) = − εb

(i)
a

λd − λa
n(d), a �= d.

The variation of the parameter vectors is computed from (B.17):
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Δb(i)
a = − εb

(i)
a b

(i)
d

λd − λa
, a �= d

Δb
(i)
d =

∑

a�=d

εb
(i)
a b

(i)
a

λd − λa
+ ε

(
1 − 1

nS

)
.

To compute the variation of l2(xi) (B.10), we need to consider the variation
of terms such as:

b
(i)
c b

(i)
c

λc
,

remembering that both b
(i)
c and λc vary. Using the results above, we find after

some algebra that:

Δl2(xi) = −
(

2εnSb
(i)
d

λd

)[
l2(xi)
nS

+
1

nS
− 1
]

,

Or: Δl2(xi) = −nS

(
Δλd

λd

)[
l2(xi)
nS

+
1

nS
− 1
]

. (B.20)

The important point to note about this result is that only the first bracketed
term depends on the exact direction of the variation Δxi = εn(d), whereas
the second bracketed term depends on the point chosen.

At first sight, this expression can seem rather puzzling – we might näıvely
expect that the gradient of the Mahalanobis distance should be of constant
sign, directed towards the mean. Yet the above expression can change sign.
This reflects the fact that there are several contributions to the variation of
the Mahalanobis distance – the movement of the point is only one, and there
are other contributions from the changes to the eigenvectors and eigenvalues.

As a check on this result, let us consider the totally trivial case of nS = 2
points. Without loss of generality, their initial positions can be written as
−x and x. We then perturb one point, so that x �→ x + Δx. Without any
calculation, we know that the Mahalanobis distance is unaffected by this
change, since it just corresponds to a scaling and translation of the dataset.
The covariance matrix is just the scalar D = 2x2, with a single eigenvalue
λ = 2x2, with eigenvector n = 1. It then follows that l2(xi) = 1, which is
independent of x as stated previously. Substituting into (B.20):

[
l2(xi)
nS

+
1

nS
− 1
]

=
[
1
2

+
1
2
− 1
]

= 0 ⇒ Δl2(xi) = 0,

which is as we predicted. This completes our check.
Let us now return to the full expression (B.20), and consider the limit

nS �→ ∞, since in this limit, the effects of the movement of one point on the
distribution of the data will vanish. Remember that from Theorem 2.2:
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σ2
a =

1
nS

λa,

where σa is the width parameter of the distribution.We hence conclude that
with our present definition of the covariance matrix, the eigenvalues scale as
nS . So, taking the large nS limit, we find:

Δl2(xi) ≈
(

2εb
(i)
d

σ2
d

)
,

which is the change in the square of the Mahalanobis distance for moving a
test point (as opposed to a data point) from xi to xi + εn(d). It has the sign
we would expect, since moving a point away from the origin (ε > 0) increases
the Mahalanobis distance. We can also see that the other O

(
1

nS

)
terms in

(B.20) are of the correct relative sign, since the mean moves to follow the
point a little, hence decreases the Mahalanobis distance slightly.

Note that this result can also be written in the form:

Δl2(xi) ≈
2εnsb

(i)
d

λd
= 2ns(xi − x̄)μn(d)

μ

1
λd

n(d)
ν (Δxi)ν

= 2ns(xi − x̄)μMμν(Δxi)ν ,

where M is the pseudo-inverse (B.6) of D. This expression (apart from a
factor of nS as regards the definition of Mahalanobis distance) is that given
by Kotcheff and Taylor, although they mistakenly used the full inverse rather
than the pseudo-inverse. Note also that we cannot use this result for compar-
ison with the gradient of objective functions based on the covariance matrix.
This is because to obtain this result, we have to explicitly assume that the
covariance does not vary, which of course makes the variation of any such
objective functions zero to the same order. We hence have to use the full
result given above for any such comparison.

From (B.20), the full result for a general variation Δxi can then be derived,
which hence yields the required derivative:

Δl2(xi) = (2ns(xi − x̄)μMμν(Δxi)ν)
[
1 − 1

nS

(
1 + l2(xi)

)]

∴ δl2(xi)
δxi

= 2nS

[
1 − 1

nS

(
1 + l2(xi)

)]
M(xi − x̄). (B.21)

Let us now consider the variation of the determinant of the covariance
matrix D, or, more correctly, the variation of:

L =

(
nm∏

a=1

λa

)
.
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If we consider just the specific variation Δxi = εn(d), then using the above
results, we find:

ΔL =
Δλd

λd

(
nm∏

a=1

λa

)
. (B.22)

Comparing this with (B.20), we can hence conclude that the gradient of the
determinant of the covariance matrix is in the same direction as the gradient
of the square of the Mahalanobis distance.3

We now move on to consider how our analysis relates to the work of oth-
ers who considered the problem of obtaining the gradient of the objective
function.

B.1.3 From PCA to Singular Value Decomposition

In [65], Ericsson and Åström tackled the problem of differentiating objec-
tive functions based on the eigenvalues of the covariance matrix for finite-
dimensional shape representations by using a singular-value decomposition
(SVD) of the data matrix {(xi − x̄)μ : i = 1, . . . nS , μ = 1, dnP }. We will pro-
ceed to show how the analysis given above is equivalent to their treatment,
by demonstrating the equivalence of singular value decomposition of the data
matrix versus principal component analysis of the covariance matrix of the
data.

Following Ericsson and Åström, we will define a nS × dnP data matrix A,
where:

Aiμ
.= (xi − x̄)μ.

From the definition of the parameter vector (B.4), the data matrix can be
written as:

Aiμ = (xi − x̄)μ =
nm∑

a=1

b(i)
a n(a)

μ =
nm∑

a=1

b
(i)
a√
λa

√
λan(a)

μ . (B.23)

The set of eigenvectors {n(a)} are a set of nm orthonormal vectors in R
dnP

that span the data sub-space. We can hence complete this set, forming an
orthonormal basis for R

dnP . The first nm such vectors then have non-zero
eigenvalues, whereas the remaining basis vectors are orthogonal to the sub-
space, hence have zero eigenvalues.4 From these vectors we then construct
the matrix V of size dnP × dnP , where:

3 In [101], Kotcheff and Taylor stated this result, but their proof, as we have shown, was
incorrect.
4 If dnP < nS , we can consider just artificially increasing the dimensionality of the data
space R

dnP so that the above analysis is still valid.
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Vμa
.= n(a)

μ .

n(a) · n(b) = δab ⇒ VT V = VVT = I.

That is, V is an orthogonal matrix. We next define a diagonal matrix S of
size nS×dnP , where the only non-zero elements are formed from the non-zero
eigenvalues:

sa
.= Saa =

√
λa, a = 1, . . . nm.

Finally, consider the vectors u(a) in R
nS where:

u
(a)
i

.=
b
(i)
a√
λa

, a = 1, . . . nm.

From (B.5), we see that these nm vectors are a set of orthonormal vectors
in R

nS . We can hence complete the set, giving nS orthonormal vectors, the
first nm of these as above. These vectors are then collected into the matrix
U where:

Uia = u
(a)
i , i, a = 1, . . . nS ,

which is then also an orthogonal matrix.
We can then rewrite A (B.23) in terms of these matrices to give:

A = USVT .

This is the singular value decomposition of A. The diagonal matrix S is the
diagonal matrix of singular values {sa : a = 1, . . . nS}, which are just the
square roots of the eigenvalues.

We now return to the variation of the eigenvalues. From (B.19), it can be
seen that for a general variation Δxi:

Δλd = 2(Δxi ·n(d))b(i)
d ⇒ δλd

δxi
= 2b

(i)
d n(d) ⇒ ∂λd

∂xiμ
= 2sduidvμd, (B.24)

which is in agreement with the result given by Ericsson and Åström.

B.2 Infinite Dimensional Shape Representations

The analysis in the previous section used the dnP × dnP covariance matrix
Dμν (2.16), which is only defined for finite-dimensional shape representations.
If we are using infinite-dimensional shape representations, we instead have to
use the nS × nS covariance matrix D̃jk (2.124):

D̃jk
.=

1
A

∫
(Sj(x) − S̄(x)) · (Sk(x) − S̄(x))dA(x),
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where dA(x) is the area measure on the mean shape S̄. The eigenproblem is
then given as:

D̃ñ(a) = λañ(a).

We have shown previously in Theorem 2.6 that there is a correspondence
between the eigenproblems of D̃ and D, and in Theorem 2.7 we showed
how to write the eigenproblem as an eigenfunction problem for the case of
infinite-dimensional shape representations.

Hence for the infinite-dimensional case, we work with the eigenproblem:

D̃ñ(a) = λañ(a), ñ(a) · ñ(b) = Aλaδab.

In the finite-dimensional case, we were able to calculate
∂λa

∂xiμ
directly. In the

infinite-dimensional case, we have the corresponding functional derivative:

δλa

δSi(x)
=

nS∑

j,k=1

∂λa

∂D̃jk

δD̃jk

δSi(x)
.

We hence first need to calculate the partial derivative:

∂λa

∂D̃jk

.

Let us consider a general variation D̃ �→ D̃ + ΔD̃. The modified eigen-
problem is then:

(D̃ + ΔD̃)jk(ñ(a) + Δñ(a))k = (λa + Δλa)(ñ(a) + Δñ(a))j .

Taking the dot product with ñ(a), we obtain:

Δλa =
ñ(a)ΔD̃ñ(a)

‖ñ(a)‖2
⇒ ∂λa

∂D̃jk

=
ñ

(a)
j ñ

(a)
k

‖ñ(a)‖2
. (B.25)

Consider the orthonormal set of eigenvectors:

e(a) =
ñ(a)

‖ñ(a)‖ .

As in the finite-dimensional case, the covariance matrix D̃ can be decomposed
in terms of the these eigenvectors:

D̃jk =
nS∑

a=1

λae
(a)
j e

(a)
k .
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This is just the special case of singular value decomposition noted by
Hlad̊uvka and Bühler [94], and shows that the above result we have obtained
via PCA is identical to their result:

∂λa

∂D̃jk

= e
(a)
j e

(a)
k .

We then have the remaining part of the functional derivative:

δD̃jk

δSi(x)
.

As in Theorem 2.7, we define the shape difference functions:

S̃i(x) .= Si(x) − S̄(x).

From the definition of D̃, we then find:

δD̃jk

δSi(x)
=

1
AnS

[
(nSδij − 1)S̃k(x) + (nSδik − 1)S̃j(x)

]
.

In order to put this all together, we define the vector-valued functions:

e(a)(x) .=
1√
λa

nS∑

i=1

e
(a)
i S̃i(x).

We also define the infinite-dimensional analog of the dot product, the inner
product for functions:

〈
e(a), e(b)

〉
.=

1
A

∫
e(a)(x) · e(b)(x)dA(x) = δab,

so that these functions form an orthonormal set. We then have the identity:

e
(a)
i =

1√
λa

〈
e(a), S̃i

〉
.

Remember that
∑

i S̃i(x) ≡ 0, therefore we can deduce that:

nS∑

i=1

e
(a)
i = 0.

Putting together the results for
∂λa

∂D̃jk

and
δD̃jk

δSi(x)
, we hence find that:

δλa

δSi(x)
=

2
A

〈
e(a), S̃i

〉
e(a)(x).
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If we compare this with the result for the finite-dimensional case:

δλa

δxi
= 2b(i)

a n(a) = 2
(
n(a) · (xi − x̄)

)
n(a),

we see that it is a direct analog, if we identify the orthonormal vectors n(a)

with the orthonormal functions e(a)(x).
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Summation Convention

In general, we adopt the Einstein summation convention, that twice-repeated
indices are summed over. For example:

(xi − x̄)μ(xj − x̄)μ ≡
∑

μ

(xi − x̄)μ(xj − x̄)μ.

But the convention is also taken to hold for the indices i, j, so that:

(xi − x̄)μ(xi − x̄)μ ≡
∑

i

∑

μ

(xi − x̄)μ(xi − x̄)μ ≡
∑

i

(xi − x̄) · (xi − x̄).

The major exception to this rule is that indices in brackets ·(a) are not
summed over, so that:

λan(a)

is a single specific vector n(a) multiplied by a scalar λa, unless specifically
stated that there is a sum. Triple indices, such as:

caan(a)

are also not summed over unless explicitly stated.

Symbols and Abbreviations

a A general vector or vector field.

{aμ : μ = 1, . . . d} The components of a vector a. In most cases, Cartesian
components will be used.

277
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(aα, bα, cα) The barycentric, areal coordinates for some triangle tα.

A A general matrix.

Aij , Aμi The elements of a matrix A.

b(i), b The parameter vector for the ith shape, a general shape
parameter vector.

bn
k (x) The kth Bernstein polynomial of order n.

βn,γ The expectation value of the γ-power of the nearest-
neighbour distance for a Poisson process in R

n.

cdf Cumulative Distribution Function.

Cn The property of being n-times differentiable.
nCk The binomial coefficient, given by nCk

.= n!
(n−k)!k! .

δ(x) The Dirac δ-function.

δab The Kronecker delta, with δab = 0 if a �= b, and 1 other-
wise.

D, D̃ Shape covariance matrices (see Table 2.2).

D(y,x) Shape covariance function for infinite-dimensional shapes
(see Table 2.2).

Dγ(p, g), D̃γ(p, g),
DKL(p, g)

The γ and the Kullback-Leibler divergences of two dis-
tributions p and g.

E[·] The expectation value.

F A feature space.

g(x), g(τ ) For the case of fluid regularization, the induced Rieman-
nian metric of the shape, in parameter-space coordinates
x, or tangent-space coordinates τ . The metric is matrix-
valued, being an n× n symmetric matrix, where n is the
dimensionality of the shape.

G(x,y) A Green’s function.

Ĝ, Ĝγ , Gγ The generalization and γ-generalization. See also Ŝ.

Γ (·) The Gamma function.

Γαβμ, Γμ
αβ The Christoffel symbols of the first and second kinds re-

spectively.

I The identity matrix.

I Input data space.

(i, j), (i, j, k) Coordinates on a regular pixel or voxel grid. See also X.

K,K(b, c) A Mercer kernel function.
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Kij , K̃ij For KPCA and SVM methods, the (ij)th component of
the kernel matrix of the non-centred ({Φ(i)}) and centred
({Φ̃(i)}) mapped data.

KPCA Kernel Principal Component Analysis.

λa The ath eigenvalue in some set of eigenvalues.

λ For fluids, the second viscosity coefficient. See also μ.

L An objective function.

L,L†, L A general differential operator, the Lagrange dual oper-
ator, and a self-dual differential operator, for example
L = L†L.

l, L For MDL, the codeword and total message length.

MDL Minimum Description Length.

μ For fluids, the shear viscosity. See also λ.

μ For multivariate Gaussian distributions, the mean of the
distribution. See also N .

nm Number of modes of variation of a model.

n(a), ñ(a) The ath eigenvector (see Table 2.2).

n(a)(x) The ath vector-valued eigenfunction (see Table 2.2).

N A matrix formed by a collection of eigenvectors.

N (x;μ,D) The functional form of a multivariate Gaussian distribu-
tion, with mean μ and covariance matrix D.

N (μ,D) A multivariate Gaussian distribution, as distinct from the
functional form of such a distribution.

Ωi(P), Ωi(T (nS)) The Voronoi cell about a point xi for the Poisson process
P, or for the set of points T (nS).

P(·), P1 A Poisson process, a Poisson process of unit intensity.

pα, pα For linear or recursive-linear re-parameterisation, the αth

control node.

p(x), pα A probability density function, the probability for some
event α.

PCA Principal Component Analysis.

pdf Probability Density Function.

PDE Partial Differential Equation.

PDM Point Distribution Model, see also SSM.

Φ For KPCA and SVM methods, the mapping between the
input space I and the feature space F .
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Φ(i), Φ(b), Φ̃(i),
Φ̃(b)

For KPCA, the point that the ith data point b(i) or a
general point b maps to in feature space, and the non-
centred and centred positions of this mapped point.

Φ
(i)
α , Φα(b), Φ̃

(i)
α ,

Φ̃α(b)
For KPCA, the non-centred and centred components of
the ith data point b(i) or a general point b.

φ, φi, φ−1 A re-parameterisation function, the ith such function,
and its inverse. It acts on the parameter space X, so
that x ∈ X maps to φ(x) under the re-parameterisation.
Also, by extension, acts on parameterised shapes, and the
correspondence between such shapes.

φ(x), φ(x; t) For the case of fluids, a (time-dependant) mapping, the
track of a fluid particle over time, with φ(x; 0) = x. See
also u(x, t).

φ̇(x; t) Temporal partial derivative, φ̇(x; t) .=
∂

∂t

∣∣∣∣
x

φ(x; t).

R, R
+ The real numbers, and the positive real numbers.

R
d d-dimensional Euclidean space.

�αβ ,�αγβδ A general rectangle, labelled by the identities of a pair of
diagonal nodes, or by all four corner nodes.

S, Si An entire shape, the ith such shape, either in two or three
dimensions.

S(·) A shape function, so that S(x) represents a single point
on the shape.

S A shape when considered as a manifold.

S A specific embedding of a shape manifold into Euclidean
space.

S The mean of a set of shapes.

S
d The sphere in d dimensions.

Ŝ, Ŝγ , Sγ The specificity and γ-specificity. See also Ĝ.

SSM Statistical Shape Model (see also PDM).

SVD Singular Value Decomposition (see Appendix B).

SVM Support Vector Machines (see also KPCA).

t Time.

t, tα A triangle, or the αth such triangle in a triangulated
mesh. See also vα.
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ταβ ,ταβ ,ταβγ For recursive linear re-parameterisation, the fractional
position in one or two dimensions of a daughter node rela-
tive to its parents. For one dimension, or two-dimensional
rectangular tiling, two parents are sufficient, whereas all
three are used for two-dimensional triangulation.

τ For the specific case of fluid regularization, the position of
a point in the tangent space to the shape, with tangent-
space coordinates {τα}.

T = {xi}, T (nS) The training set, consisting of the nP points represented
by shape vectors {xi : i = 1, . . . nS}. See also Y (M).

TP The tangent plane/space to a manifold at a point P .

(θ, ψ) In three dimensions, polar coordinates defined on the
surface of the unit sphere, where x

.= sin θ cos ψ, y
.=

sin θ sin ψ, and z
.= cos θ. Coordinates lie within the

ranges: 0 ≤ θ ≤ π and 0 ≤ ψ < 2π.

u(x), u(x, t) For a fluid particle with track φ(x; t), the corresponding
displacement field, the inverse mapping to φ. So that if
y

φ�→ φ(y), then x .= φ(y), x − u(x) .= y = φ−1(x).

U(t) For the case of fluids, the concatenated values of the dis-
placement field u(x, t) taken at every point on the pixel-
voxel grid X, so that U(t) .= {u(x, t)} ∀ x ∈ X.

U A uniform distribution over some range of values, or a
uniform distribution over a surface.

vα, vαa The set of vertices of a triangle tα, the ath such vertex.
Typically, vαa ∈ R

3, so a single vertex is represented by
a vector.

{vA}, vA, vA
i The total set of vertices of a single triangulated mesh,

the Ath such vertex. A triangulation then consists of as-
signed the vertices to triangles, so that the triangles form
a complete, continuous surface. Where we consider multi-
ple shapes, vA

i refers to the Ath node of the triangulation
of the ith shape.

v(x, t) The Eulerian velocity field of a fluid, given by
v(x, t) .= φ̇(φ−1(x); t).

V(t) Similarly to U(t), the collected values of v(x, t) across a
pixel/voxel grid.

(x, y), (x, y, z) Cartesian coordinates of a point in two or three dimen-
sions.

x(i) The vector position of the ith shape point in a collection
of points, with coordinates {x(i)

μ }.
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x(i)
j The vector position of the ith shape point of the jth

shape.

x A general point in a space, such as x ∈ R
2 or x ∈ S

2.

For the case of finite-dimensional shape representations,
the shape vector consisting of a collection of shape points
x = {x(i) : i = 1, . . . nP }.
For the case of images, the position of a single pixel or
voxel in the entire grid x ∈ X.

xi For finite-dimensional shape representations, the ith

shape vector in a set of shape vectors.

X The parameter space for a set of parameterised shapes.

X The entire regular pixel or voxel grid of an image, the
collection of all pixels/voxels in an image. See also (i, j).

Y = {yA}, Y (M) A sample set of examples {yA : A = 1, . . . M} generated
by a model, sharing the same distribution as the model
pdf.

X, Xi The mapping between a shape S and the parameter space
X, or between a shape Si and X. This mapping is usually
one-to-one, so that we will often use the same notation
to represent the mapping in either direction.

Miscellaneous Symbols

∀ For all.

∴ Therefore.

∃ There exists.
.= Defined as.

∝ Proportional to.

≈ Approximately equal to.

≡ Equivalent to.

• or · The vector dot product.

∼ Symbol indicating the dense, pointwise correspondence
between two shapes, so that Si(x) ∼ Sj(x) means that
the point Si(x) on shape Si corresponds to the point
Sj(x) on shape Sj .
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�→ Mapping, such as that between a parameter space X � x
and a shape S,
X �→ S, x �→ S(x) ∈ S. Also between points in the
same parameter space, when considered as a re-para-
meterisation (see φ).

Derivatives

∂x, dx In general, partial and total derivatives with respect to

x, also written as
∂

∂x
and

d
dx

.

∂α, dα, Dα For the specific case of fluid regularization, ∂α represents
the αth partial derivative wrt the parameter space coor-
dinates, whereas dα represents the αth partial derivative
wrt some other coordinate system (e.g., tangent-space
coordinates). Dα is the covariant derivative.

δ

δu(x)
Functional derivative with respect to the field u(x).

∇ The vector derivative operator, ∇f(x) = (∂xf, ∂yf, ∂zf)
or (∂xf, ∂yf) as appropriate.

∇2,� The Laplacian, so that ∇2 .= ∂2
x + ∂2

y + ∂2
z in R

3.

Distances

‖ · ‖ The usual Euclidean norm in R
d.

| · | A general norm, or the modulus of a scalar.

Pseudocode Notation

Variable Data Types

a, alpha Any variable not in boldface is a scalar.

a, alpha Any variable in boldface, without a capitalized first let-
ter is a vector.

a(i) The ith element of vector a.

A, Alpha Any variable in boldface with a capitalized first letter is
a matrix.

A(i, j) The entry at the ith row and jth column of A.
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A(i, ·) The ith row of A as a vector.

A(·, j) The jth column of A as a vector.

{Ak} A set of variables, indexed by k.

Ak The kth element of the set {Ak}.
Ak(i, j) For a set of matrices, the element at the ith row and

jth column of the kth member of the set. Note that all
members of the set are not necessarily the same size.

Operators and Symbols

a ← b Assigns the value of variable b to variable a.

AND,NOT,OR The standard logical operators.

�a� The ceiling operator, where a is rounded to the next high-
est integer.

� If the symbol � appears at the end of a line, it means
that a procedure call is split over that line and the one
below.

% Indicates a comment, so any text appearing after % is
not part of the code.

Surface Representation

Triangulation Surfaces are represented as triangulated meshes. A list of
triangles is stored in this nt × 3 matrix.

Shape Points A np × d matrix, containing a list of point coordinates.
Each row of Triangulation contains three integers that
reference the row indices of Shape Points.

The representation is easiest to illustrate with the fol-
lowing example, which shows how the coordinates of the
three nodes of the kth triangle in Triangulation are ac-
cessed:

Shape Points(Triangulation(k, 1), ·), % node 1

Shape Points(Triangulation(k, 2), ·), % node 2

Shape Points(Triangulation(k, 3), ·), % node 3
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Index

AAM, see Active Appearance Model

Accuracy, see Precision

Active

Appearance Model (AAM), 45–46

Contour Model (ACM), 1

Shape Model (ASM), 44–45

Ageing, simulated, 6–7, 46

Allen, P.D., vii, 3

Appearance model, see Active Appearance
Model

Arc-length parameterisation, 50, 51, 69–70,
253–255

Area, fractional, 124

Areal

coordinates, 123, 167, 278

distortion, 119, 124–125

image, 156, 157

ASM, see Active Shape Model

Åström, K., 92, 265, 272, 273

Atlas of charts, 144, 199, 200

Barycentric

coordinates, 123, 161, 167–168, 204, 278

interpolation, 119

Basis

eigenfunction, 38

eigenvector, 38, 266

frame, 192, 194, 195

of polynomials, 108

shape basis, 33, 35

Bending energy, 55, 71–73, 179, 259–264

Bernstein polynomials, 107–110, 278

Bookstein, F.L., 261–263

Bootstrapping, 52, 78

Box-bumps, 69, 70, 253–255

double, 75

Brakke, K.A., 245, 246

Bühler, K., 93, 108–110, 265, 275

Calculus of variations, 180

Cauchy distribution, 106–107

geometric interpretation of, 106

mapped, 113

wrapped, 111–114

cdf, see Cumulative distribution function

Centre of mass, 12

Centroid, 12, 158

Chart, 187, 199

mapping X, 34, 61, 95, 117–119, 123,

187, 282

Christensen, G.E., 127, 182, 184, 203

Christoffel symbols, 195–197, 278

Circular Cauchy distribution, see Cauchy
distribution

Clamped Plate Spline, see Spline

Codeword, see Shannon codeword length

Compactness, 60, 80, 94, 237, 255

Conformal

mapping, 119

parameterisation, 119, 143

Conjugate gradient, 121, 151

Connection, Levi-Civita, 195

Coordinates

angular, 11, 20

areal, 123, 167, 278

barycentric, 123, 161, 167–168, 204, 278

Cartesian, 11, 20, 189, 199, 201, 256

curvature, in terms of, 74

polar, 20, 112, 199, 281

tangent-space, 189, 193, 195, 197, 281

Cootes, T.F., vii, 21, 51

Correspondence

by optimisation, 57–65

295
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by parameter value, 34, 61, 95, 96, 118,
177

by parameterisation, 52

by physical properties, 55

by proximity, 53–54

extrinsic, 10

feature-based, 54

ground truth, 253–256

image-based, 56–57

intrinsic, 10

manual, 2, 51–52

problem, 2, 10, 50

Covariance

function, 36, 278

matrix, 15–17, 24, 30, 41, 76, 77, 154,
232, 254, 265, 278

determinant of, 76

normalized, 35

by numerical integration, 154–155

trace of, 68

Covariant derivative, 192–198, 283

of a scalar, 193–194

of a vector, 194–197

Cumulative distribution function (cdf),
104, 106, 113, 278

Curvature

Gaussian, 74

mean, 260

principal, 74

radius of, 74, 259

Data matrix, 92

Datasets

box-bumps, 69, 70, 75, 253–255

femur, vii, 121, 160, 167, 175, 220

hands, 50, 160

hippocampus, vii, 222–230

delta, see Kronecker delta

δ-function, see Dirac δ-function

Density estimation

Gaussian, 19

kernel, 20, 21, 104

KPCA pseudo-density, 29

mixtures of Gaussians, 20, 21

Dental radiographs, 2–4

Derivative

functional, see Functional derivative

in curved space, see Covariant derivative

Diffeomorphism, 34, 110–114, 127

group, 96

orientation-preserving, 96, 97

Differential

geometry, 144, 185, 193, 196, 199

operator, 72, 262–264, 279

Dijkstra’s algorithm, 122

Dimensional reduction, 18, 39, 237, 240

Dirac δ function, 20, 105, 106, 112, 113,

261, 278

Displacement field, 179–182, 184, 185, 198,
201–203, 281

Distance

Euclidean, 68, 69, 71, 77, 187, 233, 234,
238, 251

fractional, 99, 116, 128, 129, 134, 135,
146

Mahalanobis, 26, 77, 233, 267

gradient of, 269–271

map, 53, 56

metric, 188

point-to-line, 233, 234

point-to-point, 53, 54, 71, 125, 233, 234

point-to-surface, 233

Procrustes, 12

shuffle, 251

Distribution

Cauchy, 106–107

cumulative, 104, 106, 113

Lorentzian, 106

mapped Cauchy, 113

mapped Gaussian, 112

mapping to the circle, 111

multivariate Gaussian, 19

uniform, 106, 113, 150, 151, 153, 156,
157, 281

von Mises, 111

wrapped Cauchy, 111–114

wrapping, 111

Divergence

γ, 243, 248–249, 278

Kullback-Leibler, 243, 278

Rényi α, 244

Dodecahedron, 199, 200

DXA images, 3–5

Eigenfunction(s), 36–40, 279

basis, 38

equivalence of, see Theorem: Equivalence
of eigenfunctions

Eigenproblem

integral, 36

matrix, 15, 22, 31

Eigenvalue(s), 16, 17, 19, 23, 29–33, 35,
279

Eigenvector(s), 15–19, 22–25, 28, 30–33,
279

basis of, 38, 266

equivalence of, see Theorem: Equivalence
of eigenvectors
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matrix of, 17, 232, 279

normalization of in KPCA, 28

Energy

bending, 55, 71–73, 179, 259–264

Willmore, 260

Entropy

cross, 243

graph-based estimators, 240–252

Shannon, 83, 244

Ericsson, A., 92, 265, 272, 273

Estimators

density, see Density estimation

finite-difference, 91, 201, 202

of gradient, 155–156

graph-based, 240–252

Euclidean distance, 68, 69, 71, 77, 187,
233, 234, 238, 251

Euler-Lagrange equations, 180

Eulerian

framework, 181, 182, 198

velocity, 182, 198, 281

Faces, 6–7, 28, 46, 51, 235

Feature space, see Space

Finite-difference, see Estimators

Force, 180

balance equation, 180, 181, 184, 203

diffusion, 180

driving, 180, 184, 202

elastic, 180

regularizing, 181, 182

viscous, 184, 185, 203

Frame vectors, see Vectors, frame

Fuller, B., 200

Functional, 182, 242

derivative, 180, 261–262, 283

Gamma function, 246, 248, 278

Legendre duplication formula, 248

Gaussian

curvature, 74

distribution, 279

mapped, 112

multivariate, 19

Gender, manipulating, 46

Generalization

ability, 60, 78, 80, 231, 237, 238, 255, 256

measure, 278

ad hoc, 237–240

error on, 252

γ generalization, 240, 241, 278

integral, 243

leave-one-out, 79, 237–238

objective function

for correspondence, 78–80

sensitivity of, 252

Generative model

AAM, 46

SSM, 18

Genetic algorithm, 148

Geometry image, see Image, geometry

Gnomic projection, see Projection

Gradient

ascent/descent, 44, 91, 110, 150–152,
167, 174, 175

conjugate, 121, 151

of objective function, see Objective
function

Graph-based estimators, 240–252

Green’s function(s), 262–264, 278

matrix, 73

method of, 72

Ground truth, 2, 7, 8, 232–236

artificial, 236

correspondence, 253–256

evaluation in the absence of, 236–239

tissue labels, 251, 252

Hadamard, J., 127, 177

Hairy ball theorem, 194

Hlad̊uvka, J., 93, 108–110, 265, 275

Homeomorphism, 34, 98, 127, 159

constraint, 100, 101, 130–131

Hoppe, H., 199, 200

Icosahedron, 158, 199, 200

Ill-posed problem, 127, 177

Image

area distortion, 156, 157

distance map, 53

geometry, 200

profile, 45

registration, 53, 55, 56, 127, 130, 178,
239, 251

CPS in, 264

diffusion-based, 179, 181

elastic, 179

fluid, 182

shape image, 199–203

space, 234

Jacobian matrix, 91–93, 102, 134, 190, 192,
198, 209

Kernel

Cauchy, 106–107, 138

mapping for KPCA, 21

matrix, 22–24, 279
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Mercer, 22, 24, 27, 278

polynomial, 27

Radial Basis Function (RBF), 27

sigmoid, 27

Kernel density estimation, see Density
estimation

Kernel Principal Component Analysis
(KPCA), see Principal Component
Analysis & Theorem: KPCA

Kotcheff, A. C. W., 77, 92, 94

Kotcheff, A.C.W., 76

Kronecker delta, 15, 169, 278

Lagrange

dual operator, 72, 279

equations, see Euler-Lagrange equations

multipliers, 16, 23, 72, 83, 261

Lagrangian framework, 181, 182

Lamé constants, 179

Landmark, see Manual annotation

Laplacian, 283

Leave-one-out verification, 232

Legendre duplication formula, 248

Levi-Civita connection, 195

Likelihood

maximum, 19–20

model evaluation, unsuitability for, 236

Local gauge transformation, see Transfor-
mation, local gauge

Lorentzian distribution, see Cauchy
distribution

LU decomposition, 203, 213

Mahalanobis distance, 26, 77, 233, 267

gradient of, 269–271

Manual annotation, 2, 43, 51–52, 234–235,
239, 252, 255–257

Mapped

Cauchy distribution, 113

Gaussian distribution, 112

Mapping

chart, see Chart, mapping

to the circle, 111

Matrix

covariance, 15, 16, 24, 30, 41, 76, 77,
232, 254, 265, 278

determinant of, 76

diagonal, 17

normalized, 35

by numerical integration, 154–155

trace of, 68, 69

data, 92

of eigenvectors, 17, 279

equation, solving, 203

finite-difference, 202

Green’s function, 73

identity matrix, 77, 278

Jacobian, 91–93, 102, 134, 190, 192, 198,
209

kernel, 22–24, 279

matrix-valued metric function, 188, 193

inverse of, 196, 198

matrix-valued shape covariance function,
36, 37

rate of strain tensor, 183

rotation, 12, 13, 152, 192

triangular

lower, 213

upper, 213

Maximum likelihood, see Likelihood

MDL, see Minimum Description Length

Mean

curvature, 260

shape, see Shape, mean, 14, 15, 18, 26,
35, 69, 80, 82, 84, 253, 254, 265, 267,
280

Mercer kernel, 22, 24, 27, 278

Message length, 80–83, 87

for integers, 82

Metric, see Riemannian metric

Minimum Description Length, 80–81

for Gaussian models, 81, 84–89

approximations to, 89–91

objective function, see Objective
function

two-part coding scheme, 81

Model

Active Appearance (AAM), 45–46

Active Contour (ACM), 1

Active Shape (ASM), 44–45

finite-element, 55

flexible, 1

Gaussian, 19–20, 25–30

mixture of, 20–21

KPCA, 21, 25–30

profile model, 45

property

compactness, 60, 80, 94, 237, 255

generalization ability, 60, 78, 80, 231,
237, 238, 255, 256

specificity, 1, 60, 78, 80, 94, 237, 238,
255

statistical, 1–9

Model-based objective function, 67, 76

Modes

number of, 17, 279

of variation, 18, 40, 50

texture, 46
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of vibration, 55

Monge patch, 189, 195, 260

Monotonic

function, 97

for interpolation, 132

from cdf, 104

kernel, 107

and ordering, 117

piecewise-linear, 97

relation to homeomorphism, 101

relationship, 26, 239, 251, 255

Monte Carlo, 241

Moore-Penrose pseudo-inverse, 267

Motion field, 101–103

Gaussian, 102

homeomorphism constraint, 101–102

polynomial, 102, 103

spline-based, 102–103

trigonometric, 103

Multi-part shapes, 11, 144, 154

Navier-Lamé equation, 180

Nelder-Mead simplex algorithm, 148, 175

Node

daughter, 99–100, 281

parent, 99–100, 281

points, ordered, 97

Numerical integration, 156

for covariance matrix, 154–155

Monte Carlo method, 241

Objective function, 279

for alignment, 11–14, 68–70

for correspondence, 58–60, 64

approximate MDL, 89–91

by bootstrapping, 78–80

covariance matrix, determinant of,
76–77, 90

covariance matrix, trace of, 68–70, 90

curvature, 73–74, 91

by deformation, 71–73

gradient of, 91–93

groupwise consistency, 73

Minimum Description Length (MDL),
80–89

model-based, 67

from pairwise to groupwise, 75

proximity, 68–70

shape context, 74–75

shape-based, 67

specificity and generalization, 78–80

likelihood, 19–20

for PCA, 15–16

Octahedron, 136, 199, 200

mapping from the plane, 223–224

mapping to the plane, 200, 206, 210

polyhedral net for, 200

Olafsdottir, H., 91

Orthographic projection, see Projection

Osteoporosis, 2–4

Pairwise geometric histograms, 74

Parallel transport, 195

Parameter space, see Space

Parameter(s)

auxiliary, 115, 116, 145, 146, 149–150,
160

model, 5, 239

re-parameterisation α, 91–93

of shape, 17, 26, 32, 44, 50, 79, 266, 278

quantization of, 85

space of, 17–19, 25, 80

vector, 17, 18, 32, 35, 38, 40, 42, 80,
92, 232, 240, 278

Parameter, precision of, see Precision

Parameter, smoothing, 29

Parameterisation

by arc-length, 50, 51, 69–70, 253–255

of a closed surface, 121–122

of complex topologies, 142–144

conformal, 119, 143

consistent, 119, 125–126

continuous, 123

of a general surface, 118–119, 142–144

mesh, 119

of an open surface, 120–121

sampling by, 119, 161

SPHARM, 10, 126, 239

PCA, see Principal Component Analysis

Pixel

grid, 201, 282

positions, 201, 278, 282

Platonic solids, 199, 200

Point Distribution Model (PDM), see
Shape model

Poisson process, 242, 279

nearest-neighbour distance, 245–248, 278

Polyhedral net, 199, 200

for octahedron, 200

for tetrahedron, 200

Praun, E., 199, 200

Precision, 82

compared to accuracy, 83

of a point, 84

in the limit of small values, 89

of a width parameter, 85

optimal, 88

Principal Component Analysis (PCA)
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kernel, 21–30

linear, 14–18

Principal curvature, 74

Profile model, 45

Projection

gnomic, 200

local coordinates by, 144

of shape vector, 85, 92

orthographic, 136, 137

plane to sphere, 223–224

to KPCA space, 27

Pseudo-inverse, see Moore-Penrose
pseudo-inverse

Quantization

ensemble-averaged error of, 87

of point positions, 84, 89

shape parameters, 85

width parameter, 85

Rat, 235

Re-gridding, 203, 209

Re-parameterisation

of complex topologies, 142–144

function, 60–64, 96, 118, 178, 280

action on shape, 61, 96, 178

alternative definition, 61, 147

cdf-based, 104–110

compound, 148

derivative of, 109

detecting singularities in, 159–160

displacement field, see Displacement
field

kernel-based, 104–114, 138

localized, 100–103, 130–134, 136–138

monotonic, 97

motion field, see Motion field

for multi-part objects, 154

non-parametric, 7, 63, 127, 177–179

in optimisation, 91, 114, 144–147

parameters of, 91–93, 129, 177

parametric, 7, 63, 91–93, 114, 116, 127,
147, 176–178

piecewise linear, 97–98

polynomial, 107–110

recursive piecewise linear, 98–100,
127–130, 134–136

time-dependant, 181, 280

using polar angles, 138–141

global, 185

of surfaces, 126–144

closed, 134–141

open, 127–134

other topologies, 142–144

Registration, see Image registration

Regularization, 177–182

curvature-based, 179, 182

diffusion-based, 179, 180, 182, 184

elastic, 179, 180, 182, 184

fluid, 182–185, 202, 203

implementation, 209–219

hard, 178

non-parametric, 178–182

parametric, 178

soft, 179

Rényi α divergence, see Divergence

Riemannian metric, 188–193, 195, 196,
201, 278

distance, 188

inverse of, 198

Rissanen, J.R., 82

Rotation, 11–14, 68, 114, 152, 183, 192,
260, 268

Sample set, 78, 238–240, 244, 282

Sampling

by parameterisation, 161

uniform, 149, 151, 156–158, 161

Scaling, 11–13, 152

exponent, 250

Sensitivity

of a measure, 252

Set

sample, 78, 238–240, 244, 282

test, 232

training, 2, 9, 18, 30, 32, 34, 40, 44,
49–51, 60, 63, 76, 78, 80, 96, 231, 236,
237, 240, 244, 281

Shannon

codeword length, 82–83

entropy, 82, 83, 244

Shape, 280

alignment, 11–14, 68

centering, 12

context, 74

difference, 36

function, 275

embedding, 186–187, 280

function, 33, 38, 61, 95, 117, 118, 156,
177, 188, 195, 280

differentiating, 93

image, 199–203

manifold, 185–187, 280

mean, 14, 15, 18, 26, 35, 69, 80, 82, 84,

253, 254, 265, 267, 280

model, statistical, 2–10, 67

multi-part, 11, 144, 154
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parameters, 17, 26, 32, 44, 50, 79, 266,
278

quantization of, 85

pose, 10, 14, 46, 152

reconstruction of, 17, 79, 84, 232, 233,
238

reference frame, 14

relative orientation, 96

representation, 9–11

approximate, 17, 18, 79, 232, 233, 238

consistency of, 231–234

finite-dimensional, 10–11

infinite-dimensional, 33–35, 61

parametric, 33–35, 61, 95, 117, 118,
177, 187

space, 9, 11, 14, 17–21, 25, 30, 44, 69,
76, 80, 232–234, 236

vector, 10–12, 14, 17, 18, 33, 44, 46, 68,
85, 92, 232, 233, 240, 282

Shape-based objective function, 67

Shuffle distance, 251

Sierpiński gasket/triangle, 135

Simply connected, 120

Singular-value decomposition, 92, 93, 265,
272

Smoothing

kernel, 132

parameter, 29

sample smoothing estimator, 21

Snakes, 1

Space

feature, KPCA, 21–23, 25, 27, 278

parameter space, 33–34, 61, 63, 95, 98,
117–124, 126–128, 142, 143, 150, 157,
159, 167, 177, 178, 185, 187, 188, 199,
282

coordinates x, 61, 95, 117, 177, 187,
195

derivatives in, 190, 192, 198

diffeomorphism of, see Re-
parameterisation

discrete, 33

sampling in, 198

vectors in, 190–192

of shape parameters, 17–19, 25, 26, 32,
44, 50, 80

of shapes, 9, 11, 14, 17–21, 25, 30, 44,
69, 76, 80, 232–234, 236

Specificity, 1, 4, 60, 78, 80, 94, 237, 238,
255

generalized, 251–252

large-numbers limit, 241–243

measure, 280

ad hoc, 237–240

error on, 252

γ specificity, 240, 241

integral, 241–243

objective function

for correspondence, 78

scaling behaviour of, 250

sensitivity of, 252

SPHARM, see Parameterisation

Spline

B-spline, 130

Clamped Plate (CPS), 102, 103, 259–264

Thin Plate (TPS), 259, 263

Statistical Shape Model (SSM), see Shape
model

Steele, J.M., 242

Strain, rate of, 183

Summation convention, 16, 277

Support Vector Machines (SVMs), 21

the kernel trick, 21

SVD, see Singular-value decomposition

Tangent

plane, 136, 137, 143, 189

space, 189–192, 281

coordinates, 189, 193, 195, 197, 281

frame, 192, 194, 197

Test set, 232

Tetrahedron, 136, 199, 200

Texture, 43, 45, 46

Theorem:

Equivalence of eigenfunctions, 36–37

Equivalence of eigenvectors, 30–32

Expectation values for a Poisson process,
246–248

Homeomorphic localized re-
parameterisation, 101–102

Homeomorphism constraint, 130–131

Induced metric, 188

KPCA, 22–25

Large-numbers limit of specificity,
241–243

Maximum likelihood, 19–20

PCA, 15–16

The metric and the Jacobian, 190–192

Thin Plate Spline (TPS), see Spline

Thodberg, H.H., 90, 91, 94

Time, computational, 181

Topological primitive, 117

Topology, 34, 186

of the closed line, 11, 33, 95, 97

cylindrical, 200

of the disc, 142

of embedding, 186

of a handlebody, 143



302 Index

intrinsic, 186, 187
of the disc, 120
of the open line, 11, 33, 95–97
of the open surface, 11
of the punctured disc, 142
spherical, 11, 118, 121, 142, 149, 157,

158, 187, 198–200, 206
toroidal, 200

Training set, 2, 9, 18, 30, 32, 34, 40, 44,
49–51, 60, 63, 76, 78, 80, 96, 231, 236,
237, 240, 244

Transformation
affine, 181
local gauge, 192
rotation, 11–14, 68, 114, 152, 183, 192,

260, 268
scaling, 11–13, 152
shear, 181
similarity, 68
translation, 11, 12, 152

Triangulated mesh, 118–119, 280, 281

Uniform
distribution, 150, 151, 153, 156, 157, 281
sampling, 149, 151, 156–158, 161

Variance, 17, 20, 35, 40, 50, 69, 77, 85, 232,
233, 237

minimum modelled, 85, 86

quantized, 87

Vectors

frame, 192–198

parameter, see Parameter(s) of shape

shape, see Shape vector

Velocity

Eulerian, 182, 198, 281

non-uniform, resistance to, 184

Vertebral fractures, 4–5

Viscosity

bulk, 184

second coefficient of, 184, 279

shear, 184, 279

Viscous force, see Force

von Mises distribution, 111

Voronoi cell, 241, 245, 279

Wade, A.R., 245, 251

Willmore energy, see Energy

Wrapped Cauchy distribution, 111–114

Wrapping to the circle, 111
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