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Abstract: In this chapter, a state-of-the-art review of fault tree analysis is presented. Different forms of aa
fault trees, including static, dynamic, and non-coherent fault trees, their applications and analyses will be
discussed. Some advanced topics such as importance analysis, dependent failures, disjoint events, and 
multistate systems will also be presented.

38.1 Introduction

The fault tree analysis (FTA) technique was first 
developed in 1962 at Bell Telephone Laboratories
to facilitate analysis of the launch control system 
of the intercontinental Minuteman missile [1]. It 
was later adopted, improved, and extensively 
applied by the Boeing Company. Today FTA has
become one of the most widely used techniques for 
system reliability and safety studies. In particular, 
FTA has been used in analyzing safety systems in 
nuclear power plants, aerospace, and defense. 

FTA is an analytical technique, whereby an 
undesired event (usually system or subsystem 
failure) is defined, and then the system is analyzed 
in the context of its environment and operation to
find all combinations of basic events that will lead 
to the occurrence of the predefined undesired event 
[2]. The basic events represent basic causes for the
undesired event; they can be events associated with
component hardware failures, human errors, 
environmental conditions, or any other pertinent 
events that can lead to the undesired event. A fault 

tree thus provides a graphical representation of 
logical relationships between the undesired event 
and the basic fault events. From a system design 
perspective, FTA provides a logical framework for 
understanding the ways in which a system can fail,
which is often as important as understanding how a 
system can operate successfully.
     In this chapter, we first compare the FTA
method with other existing analysis methods, in
particular, reliability block diagrams, and then 
describe how to construct a fault tree model. 
Different forms of fault trees, including static,
dynamic, and non-coherent fault trees and their 
applications will also be discussed. We then 
discuss different types of FTA as well as both
classical and modern techniques used for FTA. We
also discuss some advanced topics such as
importance analysis, common-cause failures, 
generalized dependent failures, disjoint events, as 
well as application of fault trees in analyzing
multistate systems and phased-mission systems.
Some FTA software tools will be introduced at the 
end of this chapter. 
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38.2 A Comparison with Other 
Methods 

System analysis methods can be classified into two
generic categories: inductive methods and 
deductive methods. Induction constitutes reasoning
from specific cases to a general conclusion. In an
inductive system analysis, we postulate a particular 
fault or initiating event and attempt to find out the 
effect of this fault on the entire system failure.
Examples of inductive system analysis include
failure mode and effect analysis (FMEA) [2–4],
failure mode effect and criticality analysis
(FMECA) [2, 4, 5], preliminary hazards analysis 
(PHA) [2], fault hazard analysis (FHA) [2], and 
event tree analysis [4, 6].  In a deductive system 
analysis, we postulate a system failure and attempt 
to find out what modes of system or component 
behavior contribute to the system failure. In other 
words, the inductive methods are applied to 
determine what system states (usually failed states) 
are possible; the deductive methods are applied to
determine how a particular system state can occur.
FTA is an example of deductive method and is the
principle subject of this chapter. Similar to FTA,
we can also use reliability block diagrams (RBD) 
[7] to specify various combinations of component 
successes that lead to a specific state or 
performance level of a system. Therefore, RBD
can also be viewed as a deductive method. In the
following subsection, we give a brief comparison 
between fault trees and RBD. 

38.2.1 Fault Trees Versus RBD

The most fundamental difference between fault 
trees and RBD is that an RBD is a success-oriented 
model, while a fault tree is failure-oriented. 
Specifically, in an RBD, one works in the “success 
space” and thus looks at system success 
combinations, whereas in a fault tree one works in
the “failure space” and thus looks at system failure 
combinations. For practical applications in which 
the system failure depends only on combinations of 
its component failures, we may choose either a 
fault tree or an RBD to model the system structure. 
Both methods will produce the same results. But in
most applications, particularly for safety critical

systems, it is recommended to start by constructing
a fault tree instead of an RBD because thinking in
terms of failures will often reveal more potential
failure causes than thinking from the function point 
of view [4]. 

In most cases, we may convert a fault tree to an 
RBD or vice versa. Particularly, the conversion is
possible for all static coherent structures. In the
conversion from a fault tree to an RBD, we start 
from the TOP event of the fault tree and replace the 
gates successively. A logic AND-gate is replaced 
by a parallel structure of the inputs of the gate, and 
an OR gate is replaced by a series structure of the 
inputs of the gate. In the conversion from an RBD
to a fault tree, a parallel structure is represented as 
a fault tree where all the input events are connected 
through an AND-gate, and a series structure is
represented as a fault tree where all the input 
events are connected through an OR-gate. 
Figure 38.1 shows the relationship between a fault 
tree and an RBD. Note that the events in the fault 
tree are failure events. Blocks in the RBD means
the components represented by the blocks are
functioning. 

C1

C2

C3
C1 C3C2

C1 C3C2

C1 C2 C3

Figure 38.1. Conversion between RBDs and fault trees

Both FTA and RBD are evolutionary in nature,
meaning that their modeling capabilities are
enhanced as needed to support a wide range of 
scenarios. For example, introducing new gates, the
FTA is enhanced to support sequence dependent 
failures. However, RBDs are not enhanced to
support these modeling features. Similarly, therett
are some other enhancements to RBDs that are not 
available in FTA. Hence, it is not possible or 
practical to covert all fault trees into equivalent 
RBDs and vice-versa. 



Fault Tree Analysis 597 

38.3 Fault Tree Construction 

FTA is a deductive technique where we start with 
the failure scenario being considered, and 
decompose the failure symptom into its possible 
causes. Each possible cause is then investigated 
and further refined until the basic causes of the
failure are understood. For more details, one can
refer to [21, Chapter 8 ] or [32, Chapter 7]. The 
failure scenario to be analyzed is normally called 
the TOP event of the fault tree. The basic causes
are the basic events of the fault tree. The fault tree
should be completed in levels, and they should be 
built from top to bottom. However, various 
branches of a fault tree can be built to achieve
different levels of granularity. 

38.3.1 Important Definitions

The following concepts are critical for the proper 
selection and definition of fault tree events, and 
thus for the construction of fault trees: 

< An undesired event constitutes the TOP event t
of a fault tree model constructed for a system.
Careful selection of the undesired event is
important to the success of FTA. The
definition of the TOP event should be neither 
too general nor too specific. Here are several
examples of undesired events that can be 
suitable for beginning FTA: overflow of a 
washing machine [8], no signal from the start 
relay of a fire detector system when a fire 
condition is present [4], car does not start 
when ignition key is turned [2], and loss of 
spacecraft in the space exploration [2].

< A primary (or basic) failure is a failure caused 
by natural aging of the component. For 
example, fatigue failure of a relay spring
within its rated lifetime, and leakage of a valve
seal within its pressure rating. 

< A secondary failure is a failure induced by the 
exposure of the failed component to 
environmental and/or service stresses 
exceeding its intended ratings. The stresses 
may be shocks from mechanical, electrical, 
chemical, thermal, or radioactive energyr
sources. The stresses may be caused by 
neighboring components within the system, 

external environment, or system operators.   
For example, the component has been
improperly designed, or selected, or installed 
for the application, and a failed component is 
overstressed or under-qualified for its burden.

38.3.2 Elements of Fault Trees 

The main elements of a fault tree include: 

< A TOP event: represents the undesired event, 
usually the system failure or accident.

< Basic events: represent basic causes for the 
undesired event, usually the failures of 
components that constitute the system, human
errors, or environmental stresses. No further 
development of failure causes is required for 
basic events.

< Undeveloped events: represent fault events
that are not examined further because 
information is unavailable or because its
consequence is insignificant;  

< Gates: are outcomes of one or a combination 
of basic events or other gates. The gate events 
are also referred to as intermediate events. 

Readers may refer to [2, 8, 9, 21, and 32] for 
more details of these elements as well as their 
graphical representation in the fault tree model.    

38.3.3 Construction Guidelines

To achieve a consistent analysis, the following
steps are suggested for constructing a successful
fault tree model: 

1) Define the undesired event to be analyzed. The
description of it should provide answers to the 
following questions: 
a. What: describe what type of undesired 

event is occurring (e.g., fire, crash, or 
overflow). 

b. Where: describe where the undesired 
event occurs (e.g., in a motor of an 
automobile). 

c. When: describe when the undesired event 
occurs (e.g., when the power is applied,
when a fire condition is present). 
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2) Define boundary conditions for the analysis,
including 
a. Physical boundaries: define what 

constitutes the system, i.e. which parts of 
the system will be included in the FTA. 

b. Boundary conditions concerning
environmental stresses: define what type
of external stresses (e.g., earthquake and 
bomb) should be included in the fault tree. 

c. Level of resolution: determine how far 
down in detail we should go to identify 
the potential reasons for a failed state.  

3) Identify and evaluate fault events, i.e.,
contributors to the undesired TOP event: if a 
fault event represents a primary failure, it is 
classified as a basic event; if the fault event 
represents a secondary failure, it is classified 
as an intermediate event that requires a further 
investigation to identify the prime causes.   

4) Complete the gates: all inputs of a particular 
gate should be completely defined before 
further analysis of any one of them is
undertaken (complete-the-gate rule) [2].  The
fault tree should be developed in levels, and 
each level should be completed before any 
consideration is given to the next level.  

38.3.4 Common Errors in Construction

Errors observed frequently in constructing fault 
trees are listed. The mistakes listed here are not 
intentional. Instead, they happen due to simple 
oversights, misconceptions, and/or lack of 
knowledge about the fault trees. 

< Ambiguous TOP event: the definition of the
undesired TOP event should be clear and 
unambiguous. If it is too general, the FTA can 
become unmanageable; if it is too specific, the 
FTA cannot provide a sufficiently broad view 
of the system. 

< Ignoring significant environment conditions: 
another common mistake is to consider only
failures of components that constitute the
system and ignore external stresses, which 
sometimes can contribute significantly to the 
system failure. 

< Inconsistent fault tree event names: the same 
name should be used for the same fault event 
or condition throughout the analysis.

< Inappropriate level of detail/resolution: the 
level of detail has a significant impact on the 
problem formulation. Avoid the formulations
that are either too narrow or too broad. When
determining the preferred level of resolution,
we should remember that the detail in the fault 
tree should be comparable to the detail of the 
available information.

38.4 Different Forms

Fault trees can be broadly classified into coherent 
and noncoherent categories. Coherent fault trees do
not use inverse gates, that is to say, the inclusion of 
inversion may lead to a noncoherent fault tree.
Coherent trees can be further classified as static or 
dynamic trees depending on the sequence
relationship between the input events. We describe 
these three types of fault trees in this section and 
their evaluation methods in Sections 38.6, 38.7,
and 38.8, respectively. 

38.4.1 Static Fault Trees

In a static fault tree, logical gates are restricted to 
static coherent gates, including AND, OR, and K-KK
out-of-N gates. Static fault trees express the failure N
criteria of the system in terms of combinations of 
fault events. Moreover, the system failure is 
insensitive to the order of occurrence of component 
fault events [8]. 

38.4.2 Dynamic Fault Trees

In practice, the failure criteria of a system may
depend on both the combinations of fault events 
and sequence of occurrence of input events. For 
example, consider a fault-tolerant system with one 
primary component and one standby spare 
connected with a switch controller (Figure 38.2)
[10]. If the switch controller fails after the primary
component fails and thus the standby is switched 
into active operation, then the system can continue
to operate. However, if the switch controller fails 
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before the primary component fails, then the 
standby component cannot be activated, and the 
system fails when the primary component fails 
even though the spare is still operational. Systems
with sequence dependence are modeled with 
dynamic fault trees (DFT). Dugan and Doyle [8] 
described several different types of sequence 
dependencies and corresponding dynamic fault tree
gates. A brief description of them is given as
follows.

Switch 
Controller

Primary

Spare

Figure 38.2. A standby sparing system

38.4.2.1 Functional Dependency (FDEP) Gate

A FDEP gate (Figure 38.3) has a single trigger 
input event and one or more dependent basic 
events. The trigger event can be either a basic 
event or the output of another gate in the fault tree. 
The occurrence of the trigger event forces the
dependent basic events to occur. The separate 
occurrence of any of the dependent basic events 
has no effect on the trigger event. The FDEP gate 
has no logical output, thus it is connected to the 
fault tree through a dashed line.

...
dependent basic events

trigger 
event FDEP

Figure 38.3. Functional dependency gate

For example, the FDEP gate can be used when 
communication is achieved through a network 
interface card (NIC), where the failure of the NIC 
(trigger event) makes the connected components
inaccessible.  

38.4.2.2 Cold Spare (CSP) Gate 

A CSP gate (Figure 38.4) consists of one primary 
input event and one or more alternate input events. 
All the input events are basic events. The primary
input represents the component that is initially mm
powered on. The alternate inputs represent 
components that are initially un-powered and serve
as replacements for the primary component. The 
output occurs after all the input events occur, i.e.,
the primary component and all the spares have 
failed or become unavailable. As an example, the 
CSP gate can be used when a spare processor is 
shared between two active processors. The basic
event representing the cold spare processor is the d
input event to two CSP gates. However, the spare 
is only available to one of the CSP gates,
depending on which of the primary processors fails 
first.  

...
spares used in the specified 

order (from left to right)

primary 
component

CSP

Figure  38.4. Cold spare gate

There are two variations of the CSP gate: hot spare f
(HSP) gate and warm spare (WSP) gate. The
graphical layouts of these two gates are similar to
Figure 38.4, only changing CSP to HSP and WSP 
respectively. In HSP, the spare components have 
the same failure rate before and after being
switched into active use. In WSP, the spare 
components have reduced failure rate before being
switched into active use. Note that the cold, warm,
and hot spare gates not only model sparing 
behavior, but also affect the failure rates of basic
events attached to them. As a result, basic events 
cannot be connected to spare gates of different 
types, because attenuation of the failure rate would 
not be defined.   

Coppit et al. [11] suggest using a generic spare
instead of a temperature (cold, warm, or hot)
notion for the spare gate. The attenuation of failure 
rate of an unused, unfailed replica of a basic event 
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is dictated solely by a dormancy factor of the basic
event. This change can provide more orthogonality
between spare gates and basic events, and can 
remove the restriction on sharing of spares among 
spare gates. This design is implemented in Relex 
fault tree analysis software [12].  

38.4.2.3 Priority-AND Gate 

The priority-AND gate (Figure 38.5) is logically 
equivalent to a normal AND gate, with the extra 
condition that the input events must occur in a
defined order. Specifically, the output occurs if 
both input events occur and the left input occurs 
before the right input. In other words, if any of the
events has not occurred or if the right input occurs
before the left input, the output does not occur.   

Figure 38.5. Priority-AND gate 

As an example, the priority-AND gate can be used 
to describe one of the failure scenarios for the 
standby sparing system in Figure 38.2: if the 
switch controller fails before the primary 
component, the system fails when the primary 
component fails. Assume the cold spare is used in
this example, and then the fault tree model for the
entire system is shown in Figure 38.6.

Spare

CSP

Prim-
ary

Prim-
ary

Swit-
ch

System 
failure

Figure 38.6. DFT of the standby sparing system 

38.4.2.4 Sequence Enforcing (SEQ) Gate

The SEQ gate (Figure 38.7) forces all the input 
events to occur in a defined order: left-to-right 
order in which they appear under the gate. It is
different from the priority-AND gate in that the
SEQ gate only allows the events to occur in a 
specified order whereas the priority-AND gate
detects whether the input events occur in a 
specified order, the events can occur in any order 
in practice, though. 

SEQ

...

Figure 38.7. Sequence enforcing gate

38.4.3  Noncoherent Fault Trees

A noncoherent fault tree is characterized by inverse 
gates besides logic gates used in coherent fault 
trees. In particular, it may have Exclusive-OR and 
NOT gates (Figure 38.8). A non-coherent fault tree
is used to describe failure behavior of a
noncoherent system, which can transit from a 
failed state to a good state by the failure of a 
component, or transit from a good state to a failed 
state by the repair of a component. The structure
function of a noncoherent system does not increase 
monotonically with additional number of 
functioning components. 

(a) NOT gate (b) Exclusive-OR gate 

Figure 38.8. Noncoherent fault tree gates

Noncoherent systems are typically prevalent in
systems with limited resources, multi-tasking and 
safety control applications. As an example,
consider a k-to-kk l-out-of-n multiprocessor system 
where resources such as memory, I/O, and bus are 
shared among a number of processors [13]. If less
than a certain number of processors k is beingk
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used, the system will not work to its maximum
capacity; on the other hand, if the number of 
processors being used exceeds l, the system 
efficiency also suffers due to the traffic congestion 
on a limited bandwidth bus. In FTA, we can
consider the system has failed for these two 
extreme cases. Other examples of noncoherent 
systems include electrical circuits, traffic light 
systems, load balancing systems, protective control 
systems, liquid level control systems, pumping 
systems, and automatic power control systems  
[13–18]. 

In addition, noncoherent systems are often used 
to accurately analyze disjoint events [19],
dependent events [20], and event trees [6]. The
wide range of applications of noncoherent systems
has gained the attention of reliability engineers
working in safety-critical applications. As a result, 
several commercial reliability software vendors 
have extended the support of NOT logic from fault 
trees to reliability block diagrams [12].  

38.5 Types of Fault Trees Analysis 

Depending on the objectives of the analysis, FTA 
can be qualitative or quantitative. In the following 
subsections, possible results and analysis methods 
for qualitative and quantitative FTA will be 
discussed in detail.  

38.5.1 Qualitative Analysis

Qualitative analysis usually consists of studying
minimal cutsets. A cutset in a fault tree is a set of 
basic events whose occurrence leads to the
occurrence of the TOP event. A minimal cutset is a 
cutset without redundancy. In other words, if any 
basic event is removed from a minimal cutset, it 
ceases to be a cutset. 

To find the minimal cutsets of a fault tree, a 
top-down approach is applied. The algorithm starts
at the top gate representing the TOP event of the
fault tree and constructs the set of cutsets by 
considering the gates at each lower level. If the
gate being considered is an AND gate, then all the 
inputs must occur to activate the gate. Thus, the
AND gate will be replaced at the lower level by a 

list of all its inputs. If the gate being considered is
an OR gate, then the occurrence of any input can 
activate the gate. Thus, the cutset being built is 
split into several cutsets, one containing each input 
to the OR gate.  

Consider a fault tree in Figure 38.9(a).
Figure 38.9(b) shows its cutset generation. The 
top-down algorithm starts with the top gate G1. 
Since G1 is an OR gate, it is split into two sets, one
containing each input to G1, that is, {G2} and 
{M4}. G2 is an AND gate, so it is replaced in the
expansion by its two inputs {M1, G3}. Finally, the
expansion of G3 splits the cutset {M1, G3} into
two, yielding {M1, M2} and {M1, M3}. Therefore, 
there are three minimal cutsets for this example
fault tree: C1={M1, M2}, C2={M1, M3}, and 
C3={M4}.

Possible results from the qualitative analysis 
based on minimal cutsets include: 

< All the unique combinations of component 
failures that may result in a critical event 
(system failure or some unsafe condition) in 
the system. Each combination is represented 
by a minimal cutset. For the fault tree in 
Figure 38.9(a), if both M1 and M2 fail, or both
M1 and M3 fail, or M4 fails, the system fails.

TOP 
Event

M4

G1

G2

M1

M2 M3

G3

(a) 

{G1} {M1, M2}

{M1, M3}

{M4}

{G2} {M1, G3}

(b)  

Figure 38.9. An example fault tree and its cutsets. (a)
Fault tree, (b) minimal cutset generation
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< All single-point of failures for the system. A 
single-point of failure is any component whose 
failure by itself leads to the system failure. It is
identified by a minimal cutset with only a
single component. For the fault tree in Figure
38.9(a), M4 is a single-point of failure. 

< Vulnerabilities resulting from particular 
component failures. The vulnerabilities can be
identified by considering minimal cutsets that 
contain the component of interest. For the 
example system in Figure 38.9(a), once M1
fails, the system is vulnerable to the failure of 
either M2 or M3.   

Those qualitative results can help to identify 
system hazards that might lead to failure or unsafe
states so that proper preventive measures can be 
taken or reactive measures can be planned. 

38.5.2 Quantitative Analysis

Quantitative analysis is used to determine the
occurrence probability of the TOP event, given the
occurrence probability (estimated or measured) of 
each basic event. Approaches for quantitative FTA
can be broadly classified into three categories: state
space oriented methods (see, e.g., [22–26]),
combinatorial methods (see, e.g., [27–29]), and a 
modular solution that combines the previous two
methods as appropriate (see, e.g., [30, 31]).  

The state space oriented approaches, which are 
based on Markov chains and/or Petri nets, are 
flexible and powerful in modeling complex
dependencies among system components. 
However, they suffer from state explosion when
modeling large-scale systems. Combinatorial 
methods can solve large fault trees efficiently. 
However, a widely held view among researchers is 
that combinatorial models are not able to model
dependencies and thus cannot provide solutions to
any dynamic fault tree. 

The modular approach combines both
combinatorial methods and state space oriented 
methods. Specifically, in the modular approach,
independent subtrees are identified and the 
decision to use a state space oriented solution or a 
combinatorial solution is made for a subtree
instead of for the fault tree as a whole. These
independent subtrees are treated separately and 

their solutions are integrated to obtain the solution 
for the entire fault tree. The advantage of the 
modular approach is that it allows the use of state
space oriented approach for those parts of a system 
that require them and the use of combinatorial
methods for the more “well-behaved” parts (static
parts) of the system, so that the efficiency of 
combinatorial solution can be retained where 
possible. In Section 38.7.2, an example of the
modular approach that combines the use of the
Markov chain solution for dynamic subtrees and 
binary decision diagrams based solution for static
subtrees will be discussed in detail. The following
three sections are devoted to the quantitative
analysis techniques for static, dynamic, and 
noncoherent fault trees, respectively.  

38.6 Static FTA Techniques 

Quantitative analysis techniques for static fault 
trees using cutsets or binary decision diagrams will
be discussed in this section. 

38.6.1 Cutset Based Solutions

In Section 38.5.1, the top-down approach to 
generate the minimal cutsets from a static fault tree
has been described. Each cutset represents a way in
which the system can fail. So the system 
unreliability (denoted by UsysUU ) is simply the 
probability that all of the basic events in one or 
more minimal cutsets will occur. Let CiC  represent a 
minimal cutset and there are n minimal cutsets for 
a system, thus we have:  

)Pr(
1
�

n

i
isys CU

�

� .      (38.1)

Because the minimal cutsets are not generally
disjoint, the probability of the union in (38.1) is not 
equal to the sum of the probabilities of the
individual cutsets. Actually, for coherent systems,
the sum of the individual cutsets gives an upper 
bound of the system unreliability since the
intersection of the events from two minimal cutsets
may be counted more than once. Several methods
exist for the evaluation of (38.1) [10, 21, 33]. We
describe two commonly used ones: inclusion-
exclusion and sum of disjoint products.  
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38.6.1.1 Inclusion–Exclusion (I–E) 

The I–E method is a generalization of the rule for 
computing the probability of the union of two 
events: )Pr()Pr()Pr()Pr( BABABA X
�6 . It is
given by the sum of probabilities of cutsets taken
one at a time, minus the sum of probabilities of the 
intersection of cutsets taken two at a time, plus the
sum of probabilities of the intersection of cutsets 
taken three at a time, and so on, until reaching an 
term which contains the probability of the
intersection of all the cutsets [8]. The equation for 
representing the above procedure is: 

)Pr(...)Pr(        
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     (38.2)

Consider the example system in Figure 38.9, there 
are three minimal cutsets: C1={M1, M2}, C2={M1, 
M3}, and C3={M4}. The system unreliability can 
be calculated as:  

)Pr()Pr()Pr(

)Pr()Pr()Pr{

3213231

21

3

1
321

CCCCCCC

CCCCCCU
i

isys

		X
X


X
�66� �
�

The evaluation of (38.2) gives the exact system 
unreliability. As each successive summation term 
is calculated and included into the sum, the result 
alternatively overestimates (if the term is added) or 
underestimates (if the term is subtracted) the
desired system unreliability. Hence, lower and 
upper bounds on the system unreliability can be m
determined by using only a portion of the terms in 
(38.2).    

38.6.1.2 Sum of Disjoint Products (SDP) 

The basic idea of the SDP method is to take each 
minimal cutset and make it disjoint with each
preceding cutset using Boolean algebra, as shown
in (38.3):  

)...(...)()( 1321321211
1

nn

n

i
i CCCCCCCCCCCC 


�

� �����
  (38.3)

iC represents the negation of the set CiC . Because 
the terms in the right-hand side of (38.3) are
disjoint, the sum of probabilities of these 
individual terms gives the exact system 
unreliability, that is,  

)...Pr(...)Pr()Pr()Pr( 121211
1

nn

n

i
isys CCCCCCCCU 


�
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  (38.4)

Consider the example system in Figure 38.9, the 
system unreliability using the SDP method will be 
calculated as: )Pr()Pr()Pr( 321211 C3C2C1C2C1C1U sys � . 
Similar to the I–E method, lower and upper bounds
on the system unreliability can be obtained by
using a portion of the terms in (38.4) [8].   

38.6.2 Binary Decision Diagrams

Binary decision diagrams (BDD) were, at first,
used in the circuit design and verification as an 
efficient method to manipulate Boolean
expressions [34, 35]. It has recently been adapted 
to solve a static fault tree model for the system 
reliability analysis. It has been shown by many 
studies [36–42] that in most cases, the BDD based 
method requires less memory and computational
time than other methods. Thus, it provides an 
efficient way to analyze large fault trees.   

A BDD is a directed acyclic graph (DAG) 
based on Shannon decomposition. Let f be a f
Boolean expression on a set of Boolean variables X
and x be a variable of X, then the Shannon XX
decomposition and its if-then-else (ite) format is:

),,( 212101 F2F1xiteF2xF1xfxfxf xffxff ������� ��

The BDD has two sink nodes, each labeled by a 
distinct logic value 0, 1, representing the system 
being operational or failed, respectively. Each non-
sink node is associated with a Boolean variable x
and has two outgoing edges called then-edge (or 1-
edge) and else-edge (or 0-edge), respectively. The
two edges represent the two corresponding
expressions in the Shannon decomposition as 
shown in Figure 38.10. In other words, each non-
sink node in the BDD encodes a Boolean 
expression, or an ite format. One of the key 
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characteristics of the BDD is the disjointness of 
1�� xf xx and 0�� xf xx .

An ordered BDD (OBDD) is defined as a BDD 
with the constraint that variables are ordered and 
every source to sink path in the OBDD visits the
variables in an ascending order. Further, a reduced 
OBDD (ROBDD) is an OBDD where each node
represents a distinct Boolean expression. Two
reduction rules will be introduced in Section 
38.6.2.2 to obtain an ROBDD from an OBDD.  

To perform a quantitative analysis of a static 
fault tree using the BDD method, we convert the
fault tree to the BDD first, and then evaluate the 
resulted BDD to yield the system unreliability. In 
the following, we discuss the conversion and 
evaluation processes in detail.

38.6.2.1 Converting Fault Trees to BDDs 

To construct an OBDD from a fault tree, the
ordering of variables/components has to be selected 
first. The ordering strategy is very important for the
OBDD generation, because the size of the OBDD
will heavily depend on the order of input variables.
A poor ordering can significantly affect the size of 
BDD, thus the reliability analysis solution time for 
large systems. Currently there is no exact procedure 
for determining the best way of ordering variables
for a given fault tree structure. Fortunately,
heuristics can usually be used to find a reasonable 
variable ordering [43].     

After each variable is assigned a different order 
or index, a depth-first traversal of the fault tree is
performed and the OBDD model is constructed in
a bottom-up manner [44]. Specifically, the OBDDs 
are created for basic events first. Then these basic 
event OBDDs will be combined based on the logic
operation of the current gate traversed. The 

resulted sub-OBDDs are further combined based 
on the logic operation of the traversed gate. The 
mathematical representation of the logic operation 
on two sub-OBDDs is described as follows.  

Let � represent any logic operation (AND/OR). 
Let the ite format for Boolean expressions G and 
H, representing two sub-OBDDs, be: 

),,(),,( 2101 GGxiteGGxiteG xx �� ��
and 

),,(),,( 2101 HHyiteHHyiteH xx �� ��
. 

Then: 

�
�
��

�
�
��

��
�
��

#YY
MYY

�YY
�Y�Y

)()(),,(
)()(),,(

)()(),,(
),,(),,(

21

21

2211

2121

yindexxindexHGHGyite
yindexxindexHGHGxite

yindexxindexHGHGxite
HHyiteGGxiteHG

 (38.5) 
The same rules can be used for logic operation 

between sub-expressions until one of them 
becomes a constant expression ‘0’ or ‘1’. Note that 
Boolean algebra (1+x+ =1, 0+x+ =x= , 1·x=x= , 0·x=0) is 
applied to simplify the representation when one of 
the sub-OBDDs is a constant expression ‘0’ or ‘1’.  

To illustrate the fault tree to BDD conversion 
process, we present the construction of the OBDD 
from the fault tree in Figure 38.9 (a). Assume the 
variable ordering is M1<M2<M3<M4. Consider 
the subtree rooted at the OR gate G3; the first path R
traversed leads to the basic event M2. This means 
that the OR gate G3 will be applied once OBDDs
are built for all the inputs of G3, that is, M2 and
M3. Figure 38.11 shows the initial OBDDs for the
two basic events M2 and M3 as well as the OBDD 
resulting from the application of the logic OR gate 
G3. M2 is the root of the resulted OBDD since it 
has a lower index than M3.

Figure 38.12 shows the OBDD resulting from 
the application of the logic AND gate G2 on the 
OBDD of Figure 38.11 and the OBDD for the 
basic event M1. M1 is the root of the resulted 
OBDD since it has a lower index than M2.   

x

fx=0ff fx=1ff

f
then edge
/1-edge

else edge
/0-edge

Figure 38.10. A non-sink node in BDD

M2

10

M3

10

OR
M2

1M3

10

Figure 38.11. OBDD construction up to G3
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Figure 38.13 shows the OBDD resulting from 
the application of OR gate G1 on the OBDDs 
which represent the inputs of G1, i.e., the OBDD 
generated in Figure 38.12 and the OBDD for the
basic event M4. Since G1 is the top gate of the
fault tree, the OBDD in Figure 38.13 gives the full 
OBDD representing the entire fault tree of Figure
38.9 (a). This graph demonstrates that if both M1 
and M2 fail; or if M1 fails, M2 does not fail, and 
M3 fails; or if M1 fails, M2 and M3 do not fail,
and M4 fails; or if M1 does not fail and M4 fails,
the entire system fails.  

OR
0

M2

1M3

10

M1

M2

1M3

1

M1

M4

10

M4

10

M4

10

Figure 38.13. OBDD construction up to G1

38.6.2.2 Generating a Reduced OBDD (ROBDD)

As the OBDD is built, the following two reduction
rules can be applied to ensure that the OBDD that 
results is minimal for the chosen ordering:  

< Rule#1: isomorphic subtrees are merged since 
two isomorphic subtrees encode the same 
Boolean expression. Thus at least one is 
superfluous and the isomorphic sub-OBDDs 
can be merged as one sub-OBDD
(Figure 38.14). For example, the two sub-
BDDs rooted at node M4 in Figure 38.13 are
isomorphic and can be merged. Figure 38.15 
shows the ROBDD for the fault tree of Figure 
38.9 (a) after applying this reduction rule to
the OBDD in Figure 38.13.  

G G G

Figure 38.14. Rule#1: merging isomorphic sub-OBDDs 

M2

M3

1

M1

M4

0

Figure 38.15. An example ROBDD

< Rule#2: deletion of useless nodes. A node 
encoding a function of form )()( GxGx Z,Z
is superfluous and thus can be deleted from the
model because the function is simply
equivalent to G (Figure 38.16).  

0
x

1

Gy
0 1

G
y

0 1

Figure 38.16. Rule#2: deleting useless nodes

38.6.2.3 Calculating System Unreliability 

The final BDD model must be evaluated to obtain 
the system unreliability. Observing the BDD
(Figure 38.15) generated for the fault tree in Figure 
38.9(a), it is easy to find that each non-sink node in 
the BDD represents a component that can fail, and 
each path from the root to a leaf/sink node
represents a disjoint combination of component 
failures and non-failures. If a path leads from a
node to its then-edge (or right branch), then the 
failure of the component should be considered for 
that path. If a path leads from a node to its else-
edge (or left branch), then the non-failure of the
component should be considered for that path. If 
the sink node for a path is labeled with a “1”, then 
the path leads to system failure; if the sink ism
labeled with a “0” then the path represents the 

M1

10

AND M2

1M3

10

M2

1M3

10

M1

0

Figure 38.12. OBDD construction up to G2
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system being functioning. The probabilities
associated with the then-edges on each path are the
failure probabilities of corresponding components; 
the probabilities associated with the else-edges on d
each path are the operational probabilities of the 
corresponding components. Because all the paths
are disjoint, the system unreliability is given by the
sum of the probabilities for all the paths from the
root to a sink node labeled “1”, or the system 
reliability is given by the sum of the probabilities 
for all the paths from the root to a sink node
labeled “0”.

G2

x
0 1

G1

G

Figure 38.17. An ROBDD branch  

The recursive algorithm for evaluating the 
ROBDD is described as follows. Consider a
ROBDD branch G rooted at node x in Figure 
38.17. The 1-edge of node x is associated with the
failure probability of the component q(x(( ). The 0-
edge is associated with the operational probability
of the component 1-q(x(( ). The unreliability 
concerning the sub-BDD G is calculated as: U(UU G) 
= q(x(( )U(UU G1)+[1-q(x(( )]U(UU G2). When x is the rood 
node of the entire system BDD, U(UU G) gives the 
entire system unreliability. The exit condition of 
this recursive algorithm is: if G = 0, then U(UU G) = 0; 
if G = 1, then U(UU G) = 1. 

38.6.2.4 Variations of BDDs 

Recently the BDD model has been combined with 
the multistate concept to analyze the reliability of 
systems subject to imperfect coverage behaviour 
[45–47], where an uncovered component fault can
lead to extensive damage to the entire system 
despite the presence of fault-tolerant mechanisms
[8]. There are three states for a system with 
imperfect coverage and its components: operation, 
covered failure and uncovered failure [8]. Readers 
may refer to Chapter 22 for detailed discussion on 
imperfect fault coverage. In the multistate BDD 
based method, each state of the component is 
represented using a Boolean variable indicating

whether the component is in that particular state 
and the system BDD is generated using these 
Boolean variables. Because statistical-dependence 
exists among variables representing different states 
of the same component, special treatments are
needed to address the dependence when applying 
the traditional Boolean algebra for BDD evaluation
[46, 47]. In [42, 48] a similar similar idea was 
applied to the analysis of general multistate
systems in which both the system and its 
components may exhibit three or more than three 
performance levels (or states) varying from perfect 
operation to complete failure. However, the 
disadvantage of the BDD-based method is that 
many Boolean variables must be dealt with and 
dependence among variables representing different 
states of the same component must be addressed.   

To decrease the number of variables involved 
in the generation and evaluation of the system 
model, Xing and Dugan first adapted multiple-
valued decision diagrams (MDD) [49] for the
reliability analysis of fault tolerant systems with
imperfect coverage [50, 51]. In their work, a MDD 
is a directed acyclic graph with three sink nodes 
each labeled by a distinct logic value 0, 1, 2,
representing the system being in the operation,
covered failure, and uncovered failure state, 
respectively. Each non-sink node representing a 
three-state component is labelled by a ternary-
valued variable and has three outgoing edges; one
corresponding to each logic value or component 
state. According to the special characteristic of an 
uncovered failure, i.e., it leads to the entire system 
failure [8], a set of special ternary-valued algebra
rules was developed for performing the logic
AND/OR operation on the two basic events. Xing
and Dugan showed that the MDD-based method 
provides smaller models and a much neater and 
simpler evaluation algorithm for analyzing systems 
subject to imperfect coverage than the BDD-based 
method. However, the MDD and rules developed 
in [50, 51] apply only to systems subject to 
imperfect coverage, in which both the system and 
its components have the same set of three states
(operation, covered failure, and uncovered failure), 
and once a component is in the uncovered failure
state, the entire system is in that state too. They 
cannot apply to the general multistate systems in 
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which the component states may not be consistent 
with the system states, and characteristics of each 
state can be nondeterministic. 

Recently, a new modelling approach called 
multistate multivalued decision diagrams (MMDD) 
has been proposed, which provides an efficient and 
effective means for analyzing general large-scale 
multistate systems [52]. Different from the MDD 
model used in [50, 51], which can have more than 
two sink nodes representing the system being in
each of the multiple states, a MMDD model can
have two and only two sink nodes representing the
system being or not being in a specific state.
Results of case studies in [52] show that the
MMDD based method provides smaller models in 
terms of the number of nodes and much neater and 
simpler generation and evaluation processes than 
the BDD-based approach proposed in [42]. 
Moreover, similar to the BDD-based method, the 
MMDD model can implicitly represent the sum of 
disjoint products, each of which indicates a disjoint 
combination of component states that cause the 
system to be in a specific state.      

38.7 Dynamic FTA Techniques

38.7.1 Markov Chains

Dynamic fault trees (DFT) extend traditional FTA
to include dynamic system behavior such as
sequence dependence and shared pool of resources. 
The DFT model includes special purpose gates 
(dynamic gates described in Section 38.4.2) to
incorporate the dynamic behavior into Markov
chains, which are used for the solution to the
system unreliability analysis. 

The two main concepts in the Markov model
are system states and state transitions. The state of 
a system represents a specific combination of 
system parameters that describe the system at any 
given instant of time. For representing the system 
reliability, each state of the Markov model
generally represents a distinct combination of 
faulty and fault free components. The state 
transitions govern the changes of a state that occur 
within a system. As time passes and failures occur, 
the system goes from one state to another until one

of the absorbing states (usually the system failure 
states) is reached. The state transitions are
characterized by parameters such as failure rates,
fault coverage factors, and repair rates [53]. 

Solving a Markov model consists of solving a 
set of differential equations: AP(t) =t P'(t). The
specific form is:  
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where kjjk =,� is the transition rate from state j
to state k. The diagonal element 

jj�  in the matrix A
is the sum of departure rates from state j, that is,

� =�
� n

jkk jkjj ,1
�� . Thus, the sum of each column of 

A is 0. Pi(t) is the probability of system being in
state i at time t, and n represents the number of 
states presented in the Markov model. 

To solve the differential equations, Laplace
transform is typically applied [4]. The solutionaa
includes the probability of the system being in each 
state. The system unreliability can be calculated by 
adding the probability of being each failure state:
�*F F tPFiFF )( , where )(tP

iFPP
i

is the probability of system 
being in the failure state FiFF at time t.

Markov model has more power as a solution 
method than the combinatorial methods in that it 
can solve system with dynamic and dependent 
behaviors. However, Markov model has the 
significant disadvantage that its size grows 
exponentially as the size of the system increases. f
This rapid growth of the number of states may lead
to intractable models. Therefore, many researchers 
made efforts to the approximate bounding methods 
where only a portion of the state space of Markov 
chain is generated [54, 55]. In addition, Markov
model assumes exponential time-to-failure l
distribution, whereas, combinatorial methods can 
be applied to any arbitrary failure distribution.
Since Markov and combinatorial approaches both 
have their pros and cons, a dynamic fault tree
modular approach has been proposed to combine
both solutions in the system reliability analysis
(refer to the following section for details).
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38.7.2 The Modular Approach 

Gulati and Dugan [30] presented an exciting hybrid 
approach, called the modular approach, for the 
efficient analysis of both static and dynamic fault 
trees. It provides a combination of BDD solution 
for static subtrees and Markov chain solution for 
dynamic subtrees coupled with the detection of 
independent subtrees. The modular approach
allows the use of Markov models for dynamic parts
of a system that require them, and use of 
combinatorial methods for static parts of the
system to retain the efficiency of combinatorial
solutions where possible.

Specifically, in the modular approach, the fault 
tree is divided into independent subtrees (subtrees
that share no input events) using a fast and efficient 
algorithm [56]. These independent subtrees are
further identified as static or dynamic depending 
on the relationships between the input events. 
Static subtree gates express the failure criteria in 
terms of combinations of events. Dynamic subtree
gates express the failure criteria in terms of both
combinations of events and order of occurrence of 
input events. 

As an example, the modular approach is 
applied to the fault tree in Figure 38.18 [57]. The
fault tree is divided into four independent subtrees:
two static subtrees and two dynamic subtrees, as 
indicated in Figure 38.18. The static subtrees can 
be solved using the combinatorial BDD-based 
method. The dynamic subtrees can be solved using 
the Markov chain based method.  

M1 M2 M5M4M3

FDEP FDEP

MIU1 MIU2

FDEP

3/5

Memory
Failure

Processor 
Failure

CSP CSP

P1 P2

Cold
Spare 

PS

System
Failure

B2B1

I/O

static
static

dynamic

dynamic

Figure 38.18. The modular approach [57]

Note that modularization is a recursive process 
as subtrees might themselves contain independent 
subtrees [30]. Solutions of various independent 
subtrees are integrated using a relatively 
straightforward and recursive algorithm to obtain 
the solution to the entire system. 

38.8 Noncoherent FTA Techniques

38.8.1 Prime Implicants

The traditional approach to analyzing a non-
coherent system is using prime implicants in the 
place of minimal cutsets [58]. A prime implicant in 
a fault tree is a minimal set of basic events whose 
occurrence or non-occurrence leads to the 
occurrence of the TOP event (system being
unavailable). Similar to the FTA using cutsets, 
either I–E or SDP method can be applied to obtain
the system unavailability based on prime
implicants. We use two examples to illustrate the mm
prime implicant based method for the analysis of 
noncoherent fault trees.

In the first example, we consider a noncoherent 
fault tree containing an Exclusive OR gate with 
two inputs: x and y. There are two prime 
implicants: },{1 yxI � and },{2 yxI � . Applying 
the I-E method, we obtain the expression of system 
unavailability as: 

)Pr())Pr(1())Pr(1)(Pr(

0)Pr()Pr()Pr()Pr(

)Pr()Pr()Pr(

)Pr()Pr()Pr()Pr( 212121

y((x((y((x((

y((x((y((x((

yxyyyx((yx(( yyyx((

II((I((I((II((
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 (38.6)

Note that )Pr( 21II  is zero since 21II  contains 
disjoint events: x and x ; y and y . 

In the second example, we consider the traffic
light system used at the crossing of two mono-
directional roads (Figure 38.19) [14, 59]. Assume 
the light functions properly and is RED for road 1 
and GREEN for road 2. We define three basic 
events: event a –car A fails to stop; event b – car B
fails to stop; and event c – car C fails to continue.
The system has three prime implicants:
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Figure 38.19. Traffic light system

< },{1 caI � : the accident occurs when car A 
fails to stop (a) and car C moving towards C
road 2 is crossing ( c );

< },{2 baI � : the accident occurs when car A

acts properly and stops ( a ) and car B fails to 
stop (b);

< },{3 cbI3 � : the accident occurs when car B
fails to stop (b) and car C continues throughC
the light ( c ), no matter what car A does. 

Define the probability of an event a occurring as
qa, and not occurring as pa. Applying the I–E
method, the expression for computing the
occurrence probability of an accident is: f

0)Pr(

)Pr(0)Pr()Pr()Pr(

)Pr()Pr(
)Pr()Pr()Pr()Pr()Pr(
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38.8.2 Importance Measures 

Considerable research efforts have been expended 
in the component importance analysis for coherent 
systems and many different importance measures 
have been proposed for coherent system analysis 
[4, 60, 61]. However, these measures cannot be
directly applied to the analysis of noncoherent 
systems. In [62, 63] it was proposed to extend four 
commonly used importance measures for 
noncoherent systems: 1) Birnbaum’s measure [64],
2) component criticality measure [4], 3) Fussell–

Vesely measure [65], and 4) initiator and enabler 
measure [66]. Because Birnbaum’s measure is 
central to the other three importance measures, we 
discuss it in detail in this section. Readers may
refer to [63] for details on the definitions and 
applications of the other three measures.

Birnbaum’s measure of component importance 
is defined as the probability that a component is 
critical to system failure, or the probability that the
system is residing in a critical state for a 
component such that its failure causes the system 
failure [64]. Define:

< B)(qBi
Birnbaum’s measure of component i.

< B)(tqi
the probability that a component i is not 

working at time t, it can be either unreliability
for a non-repairable system or unavailability 
for a repairable system. 

< B)(tpi
the probability that a component i is 

working at time t, i.e., 1 � qi(t).
< Bq a vector of component unavailability or 

unreliability for all other components except i.
< B),1( qQ isys

the probability that the system fails 
with component i failed.

< B),0( qQ isysQQ the probability that the system fails 
with component i functioning.

< B)(tQsysQ the probability that the system fails at 
time t. 

The Birnbaum’s measure can be expressed as: 

)(
)(

))(,0())(,1()(
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sysQQ
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[
[

�
�

 (38.8)

When dealing with a coherent system, the system 
failure can only be caused by component failures. 
Therefore, a component in a coherent system can
only be failure-critical. However, when dealing 
with a noncoherent system, the system failure can
be caused, not only by the failure of a component 
(referred to as an event i), but also by the repair of 
the component (referred to as event i ). Thus, a 
component in a noncoherent system can be failure-
critical or l repair-critical. These two criticalities
must be considered separately because a 
component can exist in only one state at any time. 
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Birnbaum’s measure for a noncoherent system is 
given by:                                                                    

)()()( qBqBqB R
iBF

iBiB �     (38.9) 

where )(qBF
iB represents the component failure-

criticality, specifically, the probability that the 
system is in a working state such that the failure of 
component i would cause the system failure; )(qBR

iB
represents the component repair-criticality, 
specifically, the probability that the system is in a 
working state such that the repair of component i 
would cause the system failure. It has been shown 
that the failure and repair criticalities can be
calculated separately by differentiating )(tQsysQQ with 
respect to qi and pi, respectively [62]:  
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For example, consider the traffic light system in
Section 38.8.1. The system unavailability is given
in (38.7): 

cbacbacbbaca pqppqqpqqppq 

�(t)Qsys
. 

According to (38.10), the failure criticality and 
repair criticality for event a are:  
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According to (38.9), the Birnbaum’s measure
of event a is: 

cbcb
R

a
F

aa qqppqBqBqB �� )()()( .

38.8.3 Failure Frequency

Perhaps, the first paper on frequency calculations
of noncoherent systems is by Inagaki and Henley 
[58]. Their method is similar to the method 
proposed by Vesely for coherent system analysis 
[67]. For noncoherent systems, prime implicants
will be used in the place of minimal cut sets for the
failure frequency calculation. According to the 
method proposed in [58], the expected number of 
failures within [t, t + ( t] is:  
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If t(  is small and is equivalent to the time unit, 
( , )N ( ,,  is equivalent to the failure frequency 

denoted by ( ).�( It should be noted that 
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Although the method proposed in [58] 
produces correct results for noncoherent systems, it 
is unnecessarily complex. The evaluation of 
(38.11) involves an NP problem within each stepP
of another NP problem. Therefore, even for theP
simple example problem considered in [58], a 
complex procedure is required to solve it. In this 
section, we describe a simple rule-based method 
proposed in [59]. The method converts the
expression for system unavailability U obtained U
using the calculation procedure of [58] into an
expression for �. The general form of the 
expression for U is the sum of products form:U

1

m

i i
i

c Ti iU
�
� , where m is the number of product terms, 

TiTT is the product of component availabilities and 
unavailabilities, and ci is an integer coefficient that 
can be negative or positive. For example, in (38.7), 
the terms are:

i 1 2 3 4 5
ci 1 1 1 -1 -1 
TiTT qapaa c paqb qbpbb c qaqbpbb c paqbpbb c

Each term iTi is in the form of qjq qk…pmpmm n. The
general form of TiTT  is: 

i i

i j k
j F k Si

pTi
F kF ki

� �jj� �qq jj
, where FiFF

and SiS  are the set of component indices i
corresponding to the unavailability and availability
terms in TiTT , respectively.

The rule for converting U intoU � is to multiply
every term i ic Ti i with the effective rate term 

i i

i j k
j F k Si i

R �� j
F kF ki

� � j� � , where i i i
i

i iq qi

� �i i iip� � �  and 

.i i i
i

i ip p
A �i iq� � �  If the system is in the steady-state,

then 
i i� �i

 and .i i� �ii�  Refer to [59] for the proof.
In simple terms, if TiTT  is in the form of 

,j k m nq q p pj k mk m then multiply that term with

( ).j k m n� �( Hence, we have: i i ic T Ri ii� � . 
For example, the iR  terms for (38.7) are:
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i ic TiTT Ri

1 1 qapaa c �a + �c
2 1 paqb �a + �b
3 1 qbpbb c �b + �c
4 -1 qaqbpbb c �a+ �b+ �c
5 -1 paqbpbb c �a+ �b+ �c

Therefore, the failure frequency of the traffic light 
system (Figure 38.19) is:

)()(
)()()(

cbacbacbacba

cbcbbabacaca

pqppqq
pqqppq

������
�������




�

38.9 Advanced Topics

38.9.1 Component Importance Analysis 

Results from fault tree reliability analysis have
been key contributors to system design and tuning
activities. However, reliability analysis tells only 
part of the story; in particular, reliability analysis
gives very little information about each individual
component’s contribution to the entire system 
failure. Follow-up questions such as “How does a 
change in one component’s reliability affect the 
entire system reliability?”, “How can the entire 
system reliability be best improved given limited 
resources?” have to be answered. These and similar
questions can be best answered using results of 
component importance analysis (also called 
sensitivity analysis) [68]. 

The importance analysis helps the designer to 
identify which components contribute most to the
system reliability and thus these components
would be good candidates for efforts leading to
improving the entire system reliability. From the
maintenance point of view, the analysis would, by 
means of a list, tell the repairperson in which order 
to check the components that may have caused the 
system failure. Ideally speaking, the maintenance-
oriented importance analysis [61] will rank the 
component whose repair will hasten the system 
recovery the most, the highest. Section 38.8.2
presents the component importance analysis for 
noncoherent systems. Xing [72] considers the
importance analysis of components in a 
generalized phased-mission system subject to

modular imperfect coverage. Here, we discuss the 
component importance analysis in the general 
term.

Two classes of component importance 
measures have been proposed for the case where
the support model is a fault tree: structural-
importance (SI) measures and reliability-
importance (RI) measures. The SI measures assess 
the importance of a component to the system 
operation or reliability by virtue of its position in 
the fault tree structure, without considering the
reliability of the component [70]. Thus, they can be 
used even if the component reliability is unknown 
or subject to changes. However, the SI measures
cannot distinguish between components that 
occupy similar structural positions but have 
drastically different component reliabilities. On the 
other hand, the RI measures consider both the
position of the component in the system and the 
reliability of the component in question. Thus, the 
RI measures can generally provide more useful
information for generating the ranked list than the
SI measures. 

Xing [61] studied seven different RI measures, 
including conditional probability (CP) [71], risk 
achievement worth (RAW) [60], risk reduction 
worth (RRW) [60, 70], diagnostic importance
factor (DIF), Birnbaum’s measure (BM) [4], the
criticality importance factor (CIF) [4], and the 
improvement potential (IP). Refer to [61] for their 
mathematical definitions as well as physical
interpretations. The study in [61] compared the 
performance of these measures in assisting the
system design and maintenance activities. Results
of the study show that CP, RAW, and BM may 
induce misleading conclusions in terms of guiding 
the system maintenance, though some of these
measures serve a good indicator for selecting
components that are the best candidates for efforts 
leading to improving the entire system reliability. 
RRW, CIF, and IP generally induce reasonable 
conclusions. However, they give the same
importance result for all components in a parallel 
structure irrespective of the (drastic) difference
among the component reliabilities. In addition, the 
CIF and IP measures become impractical for large 
dynamic systems because they must be solved 
using Markov approaches which suffer from the
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well-known state explosion problem. Furthermore, 
the computation of both CIF and IP measures
involves the assessment of BM measure that 
involves simultaneously solving a set of 
differential equations (the number of equations is
the same as the number of states present in thef
Markov model) for the state occupation
probabilities and a much larger set of partial 
differential equations for the component 
importance analysis [73]. The solutions to those
equations are computationally intensive.

Based on the experimental results obtained in 
[61], the DIF measure is the most informative and 
appropriate measure for the maintenance-oriented 
importance analysis among the nine measures. The
DIF measure generally produces the ranking that is 
consistent with those produced by using the RRW, 
CIF, and IP measures; it accounts for the effects of 
exceptionally unreliable component; it can always 
distinguish components that occupy similar 
structural positions (for both series and parallel
structures) but have different reliabilities.   

38.9.2 Common Cause Failures 

Common cause failures (CCF) are multiple
dependent component failures within a system that 
are a direct result of a shared root cause or 
common cause (CC), such as sabotage, flood,
earthquake, lightening, power outage, sudden 
changes in environment, design weaknesses, or 
human errors. According to [74], CCF are defined 
as “A subset of dependent events in which two or 
more component fault states exist at the same time,
or in a short time interval, and are direct results of 
a shared cause.” CCF typically occur in systems 
designed with redundancy techniques, which are 
characterized by the use of s-identical components
[75]. It is critical to consider CCF in the system 
reliability analysis because failure to consider CCF
can lead to overestimated system reliability
[76, 77].  

Considerable research efforts have been 
expended in the study of CCF for the system 
reliability modeling and analysis. However, most
of these CCF models suffer from various 
limitations, such as being concerned with a specific
system structure [78, 79]; applicable only to

systems with exponential time-to-failure 
distributions [80–82]; being subject to 
combinatorial explosion as the redundancy level of 
the system increases [83, 84]; limiting analysis to 
components being affected by at most a single
common-cause [75, 77]; having a single CC that 
affects all components of a system [79, 85]; or 
defining CC as being s-independent or mutually 
exclusive [86]. Xing [39] proposed a generic CCF
model that addressed these restrictions of the 
existing CCF models in the reliability analysis of 
computer network systems by allowing for 
multiple CC that can affect different subsets of ff
system components, and which can occur s-
dependently. 

Xing [87] utilized the generalized CCF model 
of [39] and incorporated this CCF model into
dynamic fault trees using a new dynamic gate, 
called CCF gate, for the reliability analysis of 
hierarchical systems subject to CCF. Moreover, an 
efficient decomposition and aggregation (EDA)
approach was proposed for incorporating CCF into 
the reliability analysis of hierarchical systems. The
basic idea of the EDA approach is to decompose an 
original reliability problem into a number of 
reduced reliability problems according to the total 
probability theorem. The effects of CCF are 
factored out through the reduction. The reduced 
problems are represented in a dynamic fault tree
model by the CCF gate, which is modeled after the 
FDEP gate [8]. These reduced problems can be
solved using any reliability evaluation approaches 
that ignore CCF; for example, an efficient one is 
the BDD based method (Section 38.6.2). The final 
reliability measure is obtained by aggregating the 
results of each reduced problem. 

Specifically, the EDA approach can be applied 
in the following three steps: 

Step 1: Building common-cause event (CCE) 
space. Assume the system is subject to m common-
causes (CC). The m CC partition the event space
into the 2m disjoint subsets, each called a CCE: 

mCCCCCCCCE XXX� ...211
, 

12 CC1CCE2 � mCCmCC XXX ...2C , 
……,

mCCCCCCCCE m XXX� ...212
. 
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A space called “CCE space” (denoted by CCE0 ) is
built over this set of collectively exhaustive and 
mutually exclusive CCE that can occur in the 
system, i.em ., },...,,{

221 mCCE
2

CCE2CCE1CCE �0 . If 
Pr(CCEjE ) denotes the occurrence probability of 
CCEjE , then we have � �

�
m

j jCCE2

1
1)Pr(  and 

��X ji CCECCE for any i � j. Define a common-
cause group (CCG) as a set of components that are 
cause to fail due to the same elementary CC. Let 

iCCEi
S denote the set of components affected by
CCEi, then

iCCEi
S is simply the union of CCG 

whose corresponding CC occur. For example,
define

321 CCCCCCCCEi XX�  as a CCE in a
system with three elementary CC;

iCCEi
S is then

equal to CCG3 because CC3C  is the only active
elementary CC. For another example, consider 

321 CC3CC2CCCCE jE XX� ,
iCCEi

S is then equal to

32 CCGCCG 6  because both CC2C  and CC3C  are active
elementary CC.

Step 2: Generating and solving reduced problems.
Based on the CCE space built in step 1 and the 
total probability theorem, the system unreliability 
can be calculated as:

�

�

�

�

<�

<�

m

i

m

i
i

ii

)](CCE[U

)(CCECCE

2

1

2

1i
sys

Pr

]Pr)|fails(systemPr[U

                                                                      (38.12) 
As defined in (38.12), UiUU  is a conditional 
probability that the system fails conditioned on the m
occurrence of CCEi. The evaluation of UiUU  is
actually a reduced reliability evaluation problem in
which the set of components affected by CCEi do
not appear. Specifically, in the system DFT model,
each basic event (the failure of a component) that 
appears in 

iCCEi
S  will be replaced by a constant 

logic value “1” (true). After the replacement, a
Boolean reduction can be applied to the system 
DFT to generate a simpler DFT in which all the 
components of 

iCCEi
S  do not appear. Most 

importantly, the evaluation of the reduced DFT can

proceed without further consideration of CCF. The
studies in [87] showed that most of DFT after 
reduction become trivial to solve. In addition, 
given the fact that systems are usually subject to a
small number (m) of root common causes, and 
considering the parallel processing capability of 
modern computing systems, even though there are
2m reduced problems involved in the EDA
approach, the overall solution complexity is still 
low. 

Step 3: Integrating for the final result. After 
obtaining the results for all the reduced problems 
in (38.12), we integrate them with the occurrence
probabilities of CCE, i.e., Pr(CCEi) to obtain the 
final unreliability of the system subject to CCF. 

Advantages offered by the EDA approach y
include: 1) it enables the analysis of multiple CC 
that can affect different subsets of components 
within the system, and which may occur s-
dependently; 2) it allows reliability engineers to
use their favorite software package that ignores
CCF for computing reliability, and adjust the input 
and output of the program slightly to produce the 
system reliability considering CCF. Due to the
separation of CCF from the solution combinatorics,
the EDA approach has higher computational 
efficiency and is easier to implement than other 
potential methods such as Markov methods, which 
can accommodate CCF by expanding the state
space and number of transitions, worsening the
state explosion problem [30]. 

38.9.3 Dependent Failures 

In FTA, a common assumption made is that all 
system components fail independently. However,
this is not necessarily true in practical systems. rr
CCF and failure dependence described in the
FDEP gate are two examples of dependent failures.  

In general, there are two types of dependencies: 
positive dependence and negative dependence [4]. 
Positive dependence occurs if the failure of one
component leads to an increased tendency for 
another component to fail. For example, when 
several components share a common load, the 
failure of one component may lead to an increased 
load on the remaining components and thus may 
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lead to an increased likelihood of failure. Negative
dependence occurs if the failure of a component 
leads to a reduced tendency for another component 
to fail. For example, if an electrical fuse fails open
such that downstream circuit is disconnected, the 
load on the electrical devices in this circuit is
removed and thus their likelihood of failure is
reduced.  

In probability theory, we say that two events E1
and E2 are independent if Pr(E1�E2) =
Pr(E1)·Pr(E2) or Pr(E1|E2) = Pr(E1) and Pr(E2|E1)
= Pr(E2), meaning that the occurrence of one event 
has no influence on the occurrence of the other 
event. A component has a positive dependence 
when Pr(E1|E2) > Pr(E1) and Pr(E2|E1) > Pr(E2),
such that Pr(E1�E2) > Pr(E1)·Pr(E2). A
component has a negative dependence when 
Pr(E1|E2) < Pr(E1) and Pr(E2|E1) < Pr(E2), such
that Pr(E1� E2) < Pr(E1)·Pr(E2).   

Besides CCF discussed in Section 38.9.2 and 
functional dependence discussed in Section
38.4.2.1, another type of dependent failure we
would like to briefly mention here is cascading 
failures, also called propagating failures. 
According to [4], cascading failures are “multiple 
failures initiated by the failure of one component in 
the system that results in a chain reaction or 
domino effect.” Cascading failures are common in 
power grids when one of the elements fails 
(completely or partially) and shifts its load to
nearby elements in the system. Those nearby 
elements are then pushed beyond their capacity so 
they become compromised and shift their load onto
other elements [88]. Cascading failures may be 
modeled and analyzed by event trees and fault 
trees.   

38.9.4 Disjoint Events 

Disjoint events, also referred to as mutually 
exclusive events, are events that cannot occur at 
the same time. For example, two failure modes of a
relay: “stuck-open” and “stuck-closed” cannot 
occur simultaneously. This event dependence can
be easily modeled using Markov chains. However,
due to the well-known state explosion problem, the
Markov chain solution is only practical for small
systems. Another alternative is to approximate the 

mutually exclusive events in a fault tree by
stochastically independent events. Thus cutsets 
containing more than one of mutually exclusive 
events can occur, leading to incorrect quantitative
reliability evaluation, although the errors are
usually insignificant.  Twigg et al. [19] proposed 
an accurate method to model the mutually
exclusive events by converting each of the
mutually exclusive events to a subtree that is 
constructed from ordinary and stochastically 
independent events as well as logic AND, OR, and 
NOT gates. Next, we review the basics of the 
approach through an example fault tree with two mm
disjoint events from [19].

Consider the fault tree in Figure 38.20. Events
D1 and D2 are two disjoint events representing two 
disjoint failure modes of a component D. B and C
represent two independent component failure 
events. Figure 38.20 actually models the two 
disjoint failure events as independent events, which 
means that the two failure events D1 and D2 may
occur at the same time, leading to errors in 
reliability calculation. This can also be seen from
the cutsets generation.

B D1 D2

G1

G2 G3

C

Figure 38.20. Fault tree without modeling disjointt

Apply the top-down approach described in Section 
38.5.1, we obtain the minimal cutsets for this fault 
tree as: {D1, C}, {D2, B}, {B,C}, and {D1, D2}.
The minimal cutset {D1, D2} representing the 
simultaneous occurrence of the two disjoint failure
events appears because the dependence between
those two events has not been modeled in the fault 
tree analysis. In the solution of [19], each disjoint 
event in the original fault tree will be replaced with
a disjoint subtree as shown in Figure 38.21.

Specifically, the basic event D1 is replaced with
a subtree encoding the Boolean expression of 
D1=A�A1, and D2 is replaced with a subtree
encoding the Boolean expression of D2=A� 1A ,
where A and A1 are independent arbitrary events
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and 21 DDA 6� . The minimal cutsets, more
accurately, the prime implicants, generated from 
the new fault tree (Figure 38.21): {B, C}, {A, A1,
C}, {A, 1A , B} will be used in the system 
reliability calculation. Note that the set {A, A1,

1A } was also generated from the top-down
approach, but since both A1 and 1A  occur in this 
set, this set can be automatically removed in the
cutset generation. 

In general, give a set of n mutually exclusive 
events {D1, D2, …, Dn}, each event Di with 
probability of �i. To construct n disjoint subtrees
with the equivalent occurrence probability �i, we
introduce n stochastically independent events: {A,
A1, …, An-1}, where �

n

i
iDA

1�

� , and {A1, …, An-1}

are arbitrary events. The disjoint sets {D1, D2, …,
Dn} are constructed by subdividing A using A1, …,
An-1 consecutively:

11 AAD X� , 

212 AAAD XX� , 
……,

1211 ... 


 XXXX� nnn AnnAA11ADn
, 

121 ... 

 XXXX� nnn AAAAD . 

In particular, the value of n is 2 for the example 
fault tree in Figure 38.20. In general, each disjoint 
event Dk is converted to a subtree encoding thek

Boolean function of kkk AAAAD XXXX� 
11 ... .
Apparently, the subtree requires one AND gate and 
(k-1) NOT gates.  To decrease the number of gates, kk
Morgan’s law is applied to Dk: 

kk

kkk

AAAAA

AAAAD

X666X�

XXXX�







)...(

)...(

121

11

which requires only three gates: one AND gate,
one OR gate, and one NOT gate. 

To ensure the subtrees have the same
occurrence probabilities as the corresponding 
disjoint events, Twigg et al. [19] derived the 
probabilities of each independent event in the set 
{A, A1, …, An-1} as:
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These probabilities are used in the quantitative 
evaluation of the system unreliability using prime
implicants method (Section 38.8.1).  

38.9.5 Multistate Systems

 A multistate system is a system in which both the
system and its components may exhibit multiple
performance levels (or states) varying from perfect 
operation to complete failure [89]. Examples 
abound in real applications such as communication
networks, computer systems, circuits, power 
systems, and fluid transmission systems [36, 42,
90, 91]. Analyzing the probability of the system 
being in each state, and thus the reliability of a hh
multistate system is essential to the design and 
tuning of dependable multistate systems. The 
difficulty and challenge in analysis arise from the
non-binary state property of the system and its 
components.

Due to the wide use of fault tree in the analysis aa
of systems in other applications, the traditional
fault trees have been adapted to model and analyze
multistate systems. And the adapted fault trees are 
called multistate fault trees (MFT) [42]. Similar to
the traditional fault tree, a MFT provides a 
mathematical and graphical representation of the 

B

G1

G2 G3

CD1

A1A

A1

A

D2

disjoint subtrees

Figure 38.21. Fault tree with modeling of disjoint 
dependence using disjoint subtrees
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combination of events that can cause the system to 
occupy a specific state. The quantitative analysis of 
MFT will be used to determine the probability of 
system being in that specific state, given the 
occurrence probabilities of basic events. Each basic 
event in the MFT represents a component being in 
a specific state. Also, each MFT consists of a top 
event representing the system being in a state SjS . 
The top event is resolved into a combination of 
events that can cause the occurrence of SjS by meansj
of AND, OR, and K-out-of-KK N logic gates. N

As an example, consider a multistate computer 
system that consists of two boards B1 and B2 
(Figure 38.22) [42]. Each board has a processor 
and a memory. The two memories (M1M and M2MM ) can 
be shared by both processors (P(( 1 and P2P ) through a 
common bus. Each board can be considered as a 
single component with four mutually exclusive and 
complete states: Bi,4 (both P and M are functional),
Bi,3 (M is functional, but P is down), Bi,2 (P is
functional but M is down), and Bi,1 (both P and M
are down). Note that Bi,j represent the board Bi
being in state j, where i = 1, 2 and j = 1, 2, 3, 4.
The entire computer system has three states, which 
are defined as:  S3S  (at least one processor and both
memories are functional), S2S  (at least one processor 
and exactly one memory are functional), and S1S (no 
processor or no memory is functional). For 

illustration purpose, Figure 38.23 shows the MFT
for the computer system being in state S3S . Clearly, 
the system is in state S3S  if the board B1 is in state 4 
and the board B2 is in state 3 or state 4; or if the 
board B1 is in state 3 and the board B2 is in state 4.  

Various approaches have been proposed for the 
analysis of multistate systems; examples include
universal moment generating function based 
methods [91], BDD based methods [38, 42, 92],
and MDD based methods [50–52]. Note that 
among the work, the methods proposed in [38, 50, 
51, 92] can only apply to the analysis of multistate 
systems with multiple failure modes along with a 
single operational mode, for example, systems
subject to imperfect coverage. They cannot directly 
apply to the general multistate systems, which may 
contain the states of perfect operation and complete
failure, as well as multiple degraded performance
levels between those two states. The details of all
those approaches for multistate system analysis are 
outside the scope of this chapter. Readers may
refer to the references indicated above for more 
details. 

38.9.6 Phased-mission Systems 

A phased-mission system (PMS) is a system used 
in the mission characterized by multiple,
consecutive, and non-overlapping operational 
phases [38]. During each mission phase, the system 
has to accomplish a specified task.  Since the tasks
may differ from phase to phase, the system may be 
subject to different stresses as well as different 
reliability requirements. Thus, system confi-
guration, success/failure criteria, and component 
failure parameters may also change from phase to
phase. In the fault tree analysis, the representation
of structure functions of a PMS usually requires 
multiple different fault trees, one for each phase. 
Further complicating analysis are the statistical
dependencies that exist across the phases for a 
given component  

Extensive research has been conducted in the 
reliability analysis of PMS [38, 41, 46, 51, 72, 92].
Similar to the fault tree analysis methods for non-
PMS (Section 38.5.2), the PMS analysis 
approaches can be classified into three groups: 
state space oriented approaches based on Markov 

P1

P2

M1

M2

B1

B2

Bus

Figure 38.22. An example multistate system 

B1,4B2,3 B2,4 B1,3 B2,4

S3

G3

G1

G2

G4

Figure 38.23. MFT of the example system in S3S
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chains and/or Petri nets, combinatorial methods, 
and a modular approach. Readers may refer to 
Chapter 23 for a state-of-the-art review of these
various phased-mission analysis techniques.  

38.10 FTA Software Tools

Various software tools have been developed based 
on the fault trees models. NUREG-0492 [2]
summarized available computer software for fault mm
tree analysis and categorized them into five groups.
Most of the software codes described in NUREG-
0492 were developed in 1970s. In this section, we
introduce two software tools that are commonly
used by industries and academic research: Galileo 
dynamic fault tree analysis tool [93] and Relex 
fault tree analysis software [12]. For details on
other available software packages, refer to [94].

Galileo is a dynamic fault tree modeling and 
analysis tool developed at the University of 
Virginia [93, 95]. Galileo combines the innovative 
dynamic fault tree analysis methodology, i.e., the 
modular approach (Section 38.7.2) with a rich user 
interface built using package-oriented programm-
ing. The important modeling and analysis features 
of Galileo include: 1) automatic modularization of 
fault trees and independent solution of modules: 
efficient BDD based method for static subtrees and 
Markov chains for dynamic subtrees; 2) multiple
time-to-failure distributions  (fixed probability,
exponential, lognormal, Weibull); 3) imperfect 
fault coverage modeling in both static and dynamic
subtrees; 4) phased mission modeling and analysis; 
and 5) component importance analysis, i.e.
sensitivity analysis.   

Relex fault tree analysis software [12] supports
both quantitative and qualitative analyses,
providing computation flexibility based on users’
requirements. Relex fault tree analysis tool can 
compute system unreliability, unavailability,
failure frequency, and the number of failures. In
addition, it incorporates a minimal cutset (MCS)
engine that can quickly determine the minimal
cutsets and support interactive, on-screen cutset 
highlighting. It is the only commercial software 
package that supports the exact analysis of 
dynamic fault trees. Relex fault tree analysis tool 

also supports Lambda-Tau calculations, various 
importance measures, and noncoherent fault trees. 
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