
38

Fault Tree Analysis

Liudong Xing1 and Suprasad V. Amari2

1 Department of Electrical and Computer Engineering, University of Massachusetts-Dartmouth, USA
2 Relex Software Corporation, Greensburg, USA

Abstract: In this chapter, a state-of-the-art review of fault tree analysis is presented. Different forms of aa
fault trees, including static, dynamic, and non-coherent fault trees, their applications and analyses will be
discussed. Some advanced topics such as importance analysis, dependent failures, disjoint events, and
multistate systems will also be presented.

38.1 Introduction

The fault tree analysis (FTA) technique was first
developed in 1962 at Bell Telephone Laboratories
to facilitate analysis of the launch control system
of the intercontinental Minuteman missile [1]. It
was later adopted, improved, and extensively
applied by the Boeing Company. Today FTA has
become one of the most widely used techniques for
system reliability and safety studies. In particular,
FTA has been used in analyzing safety systems in
nuclear power plants, aerospace, and defense.

FTA is an analytical technique, whereby an
undesired event (usually system or subsystem
failure) is defined, and then the system is analyzed
in the context of its environment and operation to
find all combinations of basic events that will lead
to the occurrence of the predefined undesired event
[2]. The basic events represent basic causes for the
undesired event; they can be events associated with
component hardware failures, human errors,
environmental conditions, or any other pertinent
events that can lead to the undesired event. A fault

tree thus provides a graphical representation of
logical relationships between the undesired event
and the basic fault events. From a system design
perspective, FTA provides a logical framework for
understanding the ways in which a system can fail,
which is often as important as understanding how a
system can operate successfully.
 In this chapter, we first compare the FTA
method with other existing analysis methods, in
particular, reliability block diagrams, and then
describe how to construct a fault tree model.
Different forms of fault trees, including static,
dynamic, and non-coherent fault trees and their
applications will also be discussed. We then
discuss different types of FTA as well as both
classical and modern techniques used for FTA. We
also discuss some advanced topics such as
importance analysis, common-cause failures,
generalized dependent failures, disjoint events, as
well as application of fault trees in analyzing
multistate systems and phased-mission systems.
Some FTA software tools will be introduced at the
end of this chapter.

596 L. Xing and S.V. Amari

38.2 A Comparison with Other
Methods

System analysis methods can be classified into two
generic categories: inductive methods and
deductive methods. Induction constitutes reasoning
from specific cases to a general conclusion. In an
inductive system analysis, we postulate a particular
fault or initiating event and attempt to find out the
effect of this fault on the entire system failure.
Examples of inductive system analysis include
failure mode and effect analysis (FMEA) [2–4],
failure mode effect and criticality analysis
(FMECA) [2, 4, 5], preliminary hazards analysis
(PHA) [2], fault hazard analysis (FHA) [2], and
event tree analysis [4, 6]. In a deductive system
analysis, we postulate a system failure and attempt
to find out what modes of system or component
behavior contribute to the system failure. In other
words, the inductive methods are applied to
determine what system states (usually failed states)
are possible; the deductive methods are applied to
determine how a particular system state can occur.
FTA is an example of deductive method and is the
principle subject of this chapter. Similar to FTA,
we can also use reliability block diagrams (RBD)
[7] to specify various combinations of component
successes that lead to a specific state or
performance level of a system. Therefore, RBD
can also be viewed as a deductive method. In the
following subsection, we give a brief comparison
between fault trees and RBD.

38.2.1 Fault Trees Versus RBD

The most fundamental difference between fault
trees and RBD is that an RBD is a success-oriented
model, while a fault tree is failure-oriented.
Specifically, in an RBD, one works in the “success
space” and thus looks at system success
combinations, whereas in a fault tree one works in
the “failure space” and thus looks at system failure
combinations. For practical applications in which
the system failure depends only on combinations of
its component failures, we may choose either a
fault tree or an RBD to model the system structure.
Both methods will produce the same results. But in
most applications, particularly for safety critical

systems, it is recommended to start by constructing
a fault tree instead of an RBD because thinking in
terms of failures will often reveal more potential
failure causes than thinking from the function point
of view [4].

In most cases, we may convert a fault tree to an
RBD or vice versa. Particularly, the conversion is
possible for all static coherent structures. In the
conversion from a fault tree to an RBD, we start
from the TOP event of the fault tree and replace the
gates successively. A logic AND-gate is replaced
by a parallel structure of the inputs of the gate, and
an OR gate is replaced by a series structure of the
inputs of the gate. In the conversion from an RBD
to a fault tree, a parallel structure is represented as
a fault tree where all the input events are connected
through an AND-gate, and a series structure is
represented as a fault tree where all the input
events are connected through an OR-gate.
Figure 38.1 shows the relationship between a fault
tree and an RBD. Note that the events in the fault
tree are failure events. Blocks in the RBD means
the components represented by the blocks are
functioning.

C1

C2

C3
C1 C3C2

C1 C3C2

C1 C2 C3

Figure 38.1. Conversion between RBDs and fault trees

Both FTA and RBD are evolutionary in nature,
meaning that their modeling capabilities are
enhanced as needed to support a wide range of
scenarios. For example, introducing new gates, the
FTA is enhanced to support sequence dependent
failures. However, RBDs are not enhanced to
support these modeling features. Similarly, therett
are some other enhancements to RBDs that are not
available in FTA. Hence, it is not possible or
practical to covert all fault trees into equivalent
RBDs and vice-versa.

Fault Tree Analysis 597

38.3 Fault Tree Construction

FTA is a deductive technique where we start with
the failure scenario being considered, and
decompose the failure symptom into its possible
causes. Each possible cause is then investigated
and further refined until the basic causes of the
failure are understood. For more details, one can
refer to [21, Chapter 8] or [32, Chapter 7]. The
failure scenario to be analyzed is normally called
the TOP event of the fault tree. The basic causes
are the basic events of the fault tree. The fault tree
should be completed in levels, and they should be
built from top to bottom. However, various
branches of a fault tree can be built to achieve
different levels of granularity.

38.3.1 Important Definitions

The following concepts are critical for the proper
selection and definition of fault tree events, and
thus for the construction of fault trees:

< An undesired event constitutes the TOP event t
of a fault tree model constructed for a system.
Careful selection of the undesired event is
important to the success of FTA. The
definition of the TOP event should be neither
too general nor too specific. Here are several
examples of undesired events that can be
suitable for beginning FTA: overflow of a
washing machine [8], no signal from the start
relay of a fire detector system when a fire
condition is present [4], car does not start
when ignition key is turned [2], and loss of
spacecraft in the space exploration [2].

< A primary (or basic) failure is a failure caused
by natural aging of the component. For
example, fatigue failure of a relay spring
within its rated lifetime, and leakage of a valve
seal within its pressure rating.

< A secondary failure is a failure induced by the
exposure of the failed component to
environmental and/or service stresses
exceeding its intended ratings. The stresses
may be shocks from mechanical, electrical,
chemical, thermal, or radioactive energyr
sources. The stresses may be caused by
neighboring components within the system,

external environment, or system operators.
For example, the component has been
improperly designed, or selected, or installed
for the application, and a failed component is
overstressed or under-qualified for its burden.

38.3.2 Elements of Fault Trees

The main elements of a fault tree include:

< A TOP event: represents the undesired event,
usually the system failure or accident.

< Basic events: represent basic causes for the
undesired event, usually the failures of
components that constitute the system, human
errors, or environmental stresses. No further
development of failure causes is required for
basic events.

< Undeveloped events: represent fault events
that are not examined further because
information is unavailable or because its
consequence is insignificant;

< Gates: are outcomes of one or a combination
of basic events or other gates. The gate events
are also referred to as intermediate events.

Readers may refer to [2, 8, 9, 21, and 32] for
more details of these elements as well as their
graphical representation in the fault tree model.

38.3.3 Construction Guidelines

To achieve a consistent analysis, the following
steps are suggested for constructing a successful
fault tree model:

1) Define the undesired event to be analyzed. The
description of it should provide answers to the
following questions:
a. What: describe what type of undesired

event is occurring (e.g., fire, crash, or
overflow).

b. Where: describe where the undesired
event occurs (e.g., in a motor of an
automobile).

c. When: describe when the undesired event
occurs (e.g., when the power is applied,
when a fire condition is present).

598 L. Xing and S.V. Amari

2) Define boundary conditions for the analysis,
including
a. Physical boundaries: define what

constitutes the system, i.e. which parts of
the system will be included in the FTA.

b. Boundary conditions concerning
environmental stresses: define what type
of external stresses (e.g., earthquake and
bomb) should be included in the fault tree.

c. Level of resolution: determine how far
down in detail we should go to identify
the potential reasons for a failed state.

3) Identify and evaluate fault events, i.e.,
contributors to the undesired TOP event: if a
fault event represents a primary failure, it is
classified as a basic event; if the fault event
represents a secondary failure, it is classified
as an intermediate event that requires a further
investigation to identify the prime causes.

4) Complete the gates: all inputs of a particular
gate should be completely defined before
further analysis of any one of them is
undertaken (complete-the-gate rule) [2]. The
fault tree should be developed in levels, and
each level should be completed before any
consideration is given to the next level.

38.3.4 Common Errors in Construction

Errors observed frequently in constructing fault
trees are listed. The mistakes listed here are not
intentional. Instead, they happen due to simple
oversights, misconceptions, and/or lack of
knowledge about the fault trees.

< Ambiguous TOP event: the definition of the
undesired TOP event should be clear and
unambiguous. If it is too general, the FTA can
become unmanageable; if it is too specific, the
FTA cannot provide a sufficiently broad view
of the system.

< Ignoring significant environment conditions:
another common mistake is to consider only
failures of components that constitute the
system and ignore external stresses, which
sometimes can contribute significantly to the
system failure.

< Inconsistent fault tree event names: the same
name should be used for the same fault event
or condition throughout the analysis.

< Inappropriate level of detail/resolution: the
level of detail has a significant impact on the
problem formulation. Avoid the formulations
that are either too narrow or too broad. When
determining the preferred level of resolution,
we should remember that the detail in the fault
tree should be comparable to the detail of the
available information.

38.4 Different Forms

Fault trees can be broadly classified into coherent
and noncoherent categories. Coherent fault trees do
not use inverse gates, that is to say, the inclusion of
inversion may lead to a noncoherent fault tree.
Coherent trees can be further classified as static or
dynamic trees depending on the sequence
relationship between the input events. We describe
these three types of fault trees in this section and
their evaluation methods in Sections 38.6, 38.7,
and 38.8, respectively.

38.4.1 Static Fault Trees

In a static fault tree, logical gates are restricted to
static coherent gates, including AND, OR, and K-KK
out-of-N gates. Static fault trees express the failure N
criteria of the system in terms of combinations of
fault events. Moreover, the system failure is
insensitive to the order of occurrence of component
fault events [8].

38.4.2 Dynamic Fault Trees

In practice, the failure criteria of a system may
depend on both the combinations of fault events
and sequence of occurrence of input events. For
example, consider a fault-tolerant system with one
primary component and one standby spare
connected with a switch controller (Figure 38.2)
[10]. If the switch controller fails after the primary
component fails and thus the standby is switched
into active operation, then the system can continue
to operate. However, if the switch controller fails

Fault Tree Analysis 599

before the primary component fails, then the
standby component cannot be activated, and the
system fails when the primary component fails
even though the spare is still operational. Systems
with sequence dependence are modeled with
dynamic fault trees (DFT). Dugan and Doyle [8]
described several different types of sequence
dependencies and corresponding dynamic fault tree
gates. A brief description of them is given as
follows.

Switch
Controller

Primary

Spare

Figure 38.2. A standby sparing system

38.4.2.1 Functional Dependency (FDEP) Gate

A FDEP gate (Figure 38.3) has a single trigger
input event and one or more dependent basic
events. The trigger event can be either a basic
event or the output of another gate in the fault tree.
The occurrence of the trigger event forces the
dependent basic events to occur. The separate
occurrence of any of the dependent basic events
has no effect on the trigger event. The FDEP gate
has no logical output, thus it is connected to the
fault tree through a dashed line.

...
dependent basic events

trigger
event FDEP

Figure 38.3. Functional dependency gate

For example, the FDEP gate can be used when
communication is achieved through a network
interface card (NIC), where the failure of the NIC
(trigger event) makes the connected components
inaccessible.

38.4.2.2 Cold Spare (CSP) Gate

A CSP gate (Figure 38.4) consists of one primary
input event and one or more alternate input events.
All the input events are basic events. The primary
input represents the component that is initially mm
powered on. The alternate inputs represent
components that are initially un-powered and serve
as replacements for the primary component. The
output occurs after all the input events occur, i.e.,
the primary component and all the spares have
failed or become unavailable. As an example, the
CSP gate can be used when a spare processor is
shared between two active processors. The basic
event representing the cold spare processor is the d
input event to two CSP gates. However, the spare
is only available to one of the CSP gates,
depending on which of the primary processors fails
first.

...
spares used in the specified

order (from left to right)

primary
component

CSP

Figure 38.4. Cold spare gate

There are two variations of the CSP gate: hot spare f
(HSP) gate and warm spare (WSP) gate. The
graphical layouts of these two gates are similar to
Figure 38.4, only changing CSP to HSP and WSP
respectively. In HSP, the spare components have
the same failure rate before and after being
switched into active use. In WSP, the spare
components have reduced failure rate before being
switched into active use. Note that the cold, warm,
and hot spare gates not only model sparing
behavior, but also affect the failure rates of basic
events attached to them. As a result, basic events
cannot be connected to spare gates of different
types, because attenuation of the failure rate would
not be defined.

Coppit et al. [11] suggest using a generic spare
instead of a temperature (cold, warm, or hot)
notion for the spare gate. The attenuation of failure
rate of an unused, unfailed replica of a basic event

600 L. Xing and S.V. Amari

is dictated solely by a dormancy factor of the basic
event. This change can provide more orthogonality
between spare gates and basic events, and can
remove the restriction on sharing of spares among
spare gates. This design is implemented in Relex
fault tree analysis software [12].

38.4.2.3 Priority-AND Gate

The priority-AND gate (Figure 38.5) is logically
equivalent to a normal AND gate, with the extra
condition that the input events must occur in a
defined order. Specifically, the output occurs if
both input events occur and the left input occurs
before the right input. In other words, if any of the
events has not occurred or if the right input occurs
before the left input, the output does not occur.

Figure 38.5. Priority-AND gate

As an example, the priority-AND gate can be used
to describe one of the failure scenarios for the
standby sparing system in Figure 38.2: if the
switch controller fails before the primary
component, the system fails when the primary
component fails. Assume the cold spare is used in
this example, and then the fault tree model for the
entire system is shown in Figure 38.6.

Spare

CSP

Prim-
ary

Prim-
ary

Swit-
ch

System
failure

Figure 38.6. DFT of the standby sparing system

38.4.2.4 Sequence Enforcing (SEQ) Gate

The SEQ gate (Figure 38.7) forces all the input
events to occur in a defined order: left-to-right
order in which they appear under the gate. It is
different from the priority-AND gate in that the
SEQ gate only allows the events to occur in a
specified order whereas the priority-AND gate
detects whether the input events occur in a
specified order, the events can occur in any order
in practice, though.

SEQ

...

Figure 38.7. Sequence enforcing gate

38.4.3 Noncoherent Fault Trees

A noncoherent fault tree is characterized by inverse
gates besides logic gates used in coherent fault
trees. In particular, it may have Exclusive-OR and
NOT gates (Figure 38.8). A non-coherent fault tree
is used to describe failure behavior of a
noncoherent system, which can transit from a
failed state to a good state by the failure of a
component, or transit from a good state to a failed
state by the repair of a component. The structure
function of a noncoherent system does not increase
monotonically with additional number of
functioning components.

(a) NOT gate (b) Exclusive-OR gate

Figure 38.8. Noncoherent fault tree gates

Noncoherent systems are typically prevalent in
systems with limited resources, multi-tasking and
safety control applications. As an example,
consider a k-to-kk l-out-of-n multiprocessor system
where resources such as memory, I/O, and bus are
shared among a number of processors [13]. If less
than a certain number of processors k is beingk

Fault Tree Analysis 601

used, the system will not work to its maximum
capacity; on the other hand, if the number of
processors being used exceeds l, the system
efficiency also suffers due to the traffic congestion
on a limited bandwidth bus. In FTA, we can
consider the system has failed for these two
extreme cases. Other examples of noncoherent
systems include electrical circuits, traffic light
systems, load balancing systems, protective control
systems, liquid level control systems, pumping
systems, and automatic power control systems
[13–18].

In addition, noncoherent systems are often used
to accurately analyze disjoint events [19],
dependent events [20], and event trees [6]. The
wide range of applications of noncoherent systems
has gained the attention of reliability engineers
working in safety-critical applications. As a result,
several commercial reliability software vendors
have extended the support of NOT logic from fault
trees to reliability block diagrams [12].

38.5 Types of Fault Trees Analysis

Depending on the objectives of the analysis, FTA
can be qualitative or quantitative. In the following
subsections, possible results and analysis methods
for qualitative and quantitative FTA will be
discussed in detail.

38.5.1 Qualitative Analysis

Qualitative analysis usually consists of studying
minimal cutsets. A cutset in a fault tree is a set of
basic events whose occurrence leads to the
occurrence of the TOP event. A minimal cutset is a
cutset without redundancy. In other words, if any
basic event is removed from a minimal cutset, it
ceases to be a cutset.

To find the minimal cutsets of a fault tree, a
top-down approach is applied. The algorithm starts
at the top gate representing the TOP event of the
fault tree and constructs the set of cutsets by
considering the gates at each lower level. If the
gate being considered is an AND gate, then all the
inputs must occur to activate the gate. Thus, the
AND gate will be replaced at the lower level by a

list of all its inputs. If the gate being considered is
an OR gate, then the occurrence of any input can
activate the gate. Thus, the cutset being built is
split into several cutsets, one containing each input
to the OR gate.

Consider a fault tree in Figure 38.9(a).
Figure 38.9(b) shows its cutset generation. The
top-down algorithm starts with the top gate G1.
Since G1 is an OR gate, it is split into two sets, one
containing each input to G1, that is, {G2} and
{M4}. G2 is an AND gate, so it is replaced in the
expansion by its two inputs {M1, G3}. Finally, the
expansion of G3 splits the cutset {M1, G3} into
two, yielding {M1, M2} and {M1, M3}. Therefore,
there are three minimal cutsets for this example
fault tree: C1={M1, M2}, C2={M1, M3}, and
C3={M4}.

Possible results from the qualitative analysis
based on minimal cutsets include:

< All the unique combinations of component
failures that may result in a critical event
(system failure or some unsafe condition) in
the system. Each combination is represented
by a minimal cutset. For the fault tree in
Figure 38.9(a), if both M1 and M2 fail, or both
M1 and M3 fail, or M4 fails, the system fails.

TOP
Event

M4

G1

G2

M1

M2 M3

G3

(a)

{G1} {M1, M2}

{M1, M3}

{M4}

{G2} {M1, G3}

(b)

Figure 38.9. An example fault tree and its cutsets. (a)
Fault tree, (b) minimal cutset generation

602 L. Xing and S.V. Amari

< All single-point of failures for the system. A
single-point of failure is any component whose
failure by itself leads to the system failure. It is
identified by a minimal cutset with only a
single component. For the fault tree in Figure
38.9(a), M4 is a single-point of failure.

< Vulnerabilities resulting from particular
component failures. The vulnerabilities can be
identified by considering minimal cutsets that
contain the component of interest. For the
example system in Figure 38.9(a), once M1
fails, the system is vulnerable to the failure of
either M2 or M3.

Those qualitative results can help to identify
system hazards that might lead to failure or unsafe
states so that proper preventive measures can be
taken or reactive measures can be planned.

38.5.2 Quantitative Analysis

Quantitative analysis is used to determine the
occurrence probability of the TOP event, given the
occurrence probability (estimated or measured) of
each basic event. Approaches for quantitative FTA
can be broadly classified into three categories: state
space oriented methods (see, e.g., [22–26]),
combinatorial methods (see, e.g., [27–29]), and a
modular solution that combines the previous two
methods as appropriate (see, e.g., [30, 31]).

The state space oriented approaches, which are
based on Markov chains and/or Petri nets, are
flexible and powerful in modeling complex
dependencies among system components.
However, they suffer from state explosion when
modeling large-scale systems. Combinatorial
methods can solve large fault trees efficiently.
However, a widely held view among researchers is
that combinatorial models are not able to model
dependencies and thus cannot provide solutions to
any dynamic fault tree.

The modular approach combines both
combinatorial methods and state space oriented
methods. Specifically, in the modular approach,
independent subtrees are identified and the
decision to use a state space oriented solution or a
combinatorial solution is made for a subtree
instead of for the fault tree as a whole. These
independent subtrees are treated separately and

their solutions are integrated to obtain the solution
for the entire fault tree. The advantage of the
modular approach is that it allows the use of state
space oriented approach for those parts of a system
that require them and the use of combinatorial
methods for the more “well-behaved” parts (static
parts) of the system, so that the efficiency of
combinatorial solution can be retained where
possible. In Section 38.7.2, an example of the
modular approach that combines the use of the
Markov chain solution for dynamic subtrees and
binary decision diagrams based solution for static
subtrees will be discussed in detail. The following
three sections are devoted to the quantitative
analysis techniques for static, dynamic, and
noncoherent fault trees, respectively.

38.6 Static FTA Techniques

Quantitative analysis techniques for static fault
trees using cutsets or binary decision diagrams will
be discussed in this section.

38.6.1 Cutset Based Solutions

In Section 38.5.1, the top-down approach to
generate the minimal cutsets from a static fault tree
has been described. Each cutset represents a way in
which the system can fail. So the system
unreliability (denoted by UsysUU) is simply the
probability that all of the basic events in one or
more minimal cutsets will occur. Let CiC represent a
minimal cutset and there are n minimal cutsets for
a system, thus we have:

)Pr(
1
�

n

i
isys CU

�

� . (38.1)

Because the minimal cutsets are not generally
disjoint, the probability of the union in (38.1) is not
equal to the sum of the probabilities of the
individual cutsets. Actually, for coherent systems,
the sum of the individual cutsets gives an upper
bound of the system unreliability since the
intersection of the events from two minimal cutsets
may be counted more than once. Several methods
exist for the evaluation of (38.1) [10, 21, 33]. We
describe two commonly used ones: inclusion-
exclusion and sum of disjoint products.

Fault Tree Analysis 603

38.6.1.1 Inclusion–Exclusion (I–E)

The I–E method is a generalization of the rule for
computing the probability of the union of two
events:)Pr()Pr()Pr()Pr(BABABA X
�6 . It is
given by the sum of probabilities of cutsets taken
one at a time, minus the sum of probabilities of the
intersection of cutsets taken two at a time, plus the
sum of probabilities of the intersection of cutsets
taken three at a time, and so on, until reaching an
term which contains the probability of the
intersection of all the cutsets [8]. The equation for
representing the above procedure is:

)Pr(...)Pr(

)Pr()Pr(}Pr{

1

1 1

	

�

		

	

n

j
j

kji
kji

ji
ji

n

i

n

i
iisys

CCCC

CC-CCU

�MM

M� �

?

��

�

��

 (38.2)

Consider the example system in Figure 38.9, there
are three minimal cutsets: C1={M1, M2}, C2={M1,
M3}, and C3={M4}. The system unreliability can
be calculated as:

)Pr()Pr()Pr(

)Pr()Pr()Pr{

3213231

21

3

1
321

CCCCCCC

CCCCCCU
i

isys

		X
X

X
�66� �
�

The evaluation of (38.2) gives the exact system
unreliability. As each successive summation term
is calculated and included into the sum, the result
alternatively overestimates (if the term is added) or
underestimates (if the term is subtracted) the
desired system unreliability. Hence, lower and
upper bounds on the system unreliability can be m
determined by using only a portion of the terms in
(38.2).

38.6.1.2 Sum of Disjoint Products (SDP)

The basic idea of the SDP method is to take each
minimal cutset and make it disjoint with each
preceding cutset using Boolean algebra, as shown
in (38.3):

)...(...)()(1321321211
1

nn

n

i
i CCCCCCCCCCCC

�

� �����
 (38.3)

iC represents the negation of the set CiC . Because
the terms in the right-hand side of (38.3) are
disjoint, the sum of probabilities of these
individual terms gives the exact system
unreliability, that is,

)...Pr(...)Pr()Pr()Pr(121211
1

nn

n

i
isys CCCCCCCCU

�

�� �
 (38.4)

Consider the example system in Figure 38.9, the
system unreliability using the SDP method will be
calculated as:)Pr()Pr()Pr(321211 C3C2C1C2C1C1U sys � .
Similar to the I–E method, lower and upper bounds
on the system unreliability can be obtained by
using a portion of the terms in (38.4) [8].

38.6.2 Binary Decision Diagrams

Binary decision diagrams (BDD) were, at first,
used in the circuit design and verification as an
efficient method to manipulate Boolean
expressions [34, 35]. It has recently been adapted
to solve a static fault tree model for the system
reliability analysis. It has been shown by many
studies [36–42] that in most cases, the BDD based
method requires less memory and computational
time than other methods. Thus, it provides an
efficient way to analyze large fault trees.

A BDD is a directed acyclic graph (DAG)
based on Shannon decomposition. Let f be a f
Boolean expression on a set of Boolean variables X
and x be a variable of X, then the Shannon XX
decomposition and its if-then-else (ite) format is:

),,(212101 F2F1xiteF2xF1xfxfxf xffxff ������� ��

The BDD has two sink nodes, each labeled by a
distinct logic value 0, 1, representing the system
being operational or failed, respectively. Each non-
sink node is associated with a Boolean variable x
and has two outgoing edges called then-edge (or 1-
edge) and else-edge (or 0-edge), respectively. The
two edges represent the two corresponding
expressions in the Shannon decomposition as
shown in Figure 38.10. In other words, each non-
sink node in the BDD encodes a Boolean
expression, or an ite format. One of the key

604 L. Xing and S.V. Amari

characteristics of the BDD is the disjointness of
1�� xf xx and 0�� xf xx .

An ordered BDD (OBDD) is defined as a BDD
with the constraint that variables are ordered and
every source to sink path in the OBDD visits the
variables in an ascending order. Further, a reduced
OBDD (ROBDD) is an OBDD where each node
represents a distinct Boolean expression. Two
reduction rules will be introduced in Section
38.6.2.2 to obtain an ROBDD from an OBDD.

To perform a quantitative analysis of a static
fault tree using the BDD method, we convert the
fault tree to the BDD first, and then evaluate the
resulted BDD to yield the system unreliability. In
the following, we discuss the conversion and
evaluation processes in detail.

38.6.2.1 Converting Fault Trees to BDDs

To construct an OBDD from a fault tree, the
ordering of variables/components has to be selected
first. The ordering strategy is very important for the
OBDD generation, because the size of the OBDD
will heavily depend on the order of input variables.
A poor ordering can significantly affect the size of
BDD, thus the reliability analysis solution time for
large systems. Currently there is no exact procedure
for determining the best way of ordering variables
for a given fault tree structure. Fortunately,
heuristics can usually be used to find a reasonable
variable ordering [43].

After each variable is assigned a different order
or index, a depth-first traversal of the fault tree is
performed and the OBDD model is constructed in
a bottom-up manner [44]. Specifically, the OBDDs
are created for basic events first. Then these basic
event OBDDs will be combined based on the logic
operation of the current gate traversed. The

resulted sub-OBDDs are further combined based
on the logic operation of the traversed gate. The
mathematical representation of the logic operation
on two sub-OBDDs is described as follows.

Let � represent any logic operation (AND/OR).
Let the ite format for Boolean expressions G and
H, representing two sub-OBDDs, be:

),,(),,(2101 GGxiteGGxiteG xx �� ��
and

),,(),,(2101 HHyiteHHyiteH xx �� ��
.

Then:

�
�
��

�
�
��

��
�
��

#YY
MYY

�YY
�Y�Y

)()(),,(
)()(),,(

)()(),,(
),,(),,(

21

21

2211

2121

yindexxindexHGHGyite
yindexxindexHGHGxite

yindexxindexHGHGxite
HHyiteGGxiteHG

 (38.5)
The same rules can be used for logic operation

between sub-expressions until one of them
becomes a constant expression ‘0’ or ‘1’. Note that
Boolean algebra (1+x+ =1, 0+x+ =x= , 1·x=x= , 0·x=0) is
applied to simplify the representation when one of
the sub-OBDDs is a constant expression ‘0’ or ‘1’.

To illustrate the fault tree to BDD conversion
process, we present the construction of the OBDD
from the fault tree in Figure 38.9 (a). Assume the
variable ordering is M1<M2<M3<M4. Consider
the subtree rooted at the OR gate G3; the first path R
traversed leads to the basic event M2. This means
that the OR gate G3 will be applied once OBDDs
are built for all the inputs of G3, that is, M2 and
M3. Figure 38.11 shows the initial OBDDs for the
two basic events M2 and M3 as well as the OBDD
resulting from the application of the logic OR gate
G3. M2 is the root of the resulted OBDD since it
has a lower index than M3.

Figure 38.12 shows the OBDD resulting from
the application of the logic AND gate G2 on the
OBDD of Figure 38.11 and the OBDD for the
basic event M1. M1 is the root of the resulted
OBDD since it has a lower index than M2.

x

fx=0ff fx=1ff

f
then edge
/1-edge

else edge
/0-edge

Figure 38.10. A non-sink node in BDD

M2

10

M3

10

OR
M2

1M3

10

Figure 38.11. OBDD construction up to G3

Fault Tree Analysis 605

Figure 38.13 shows the OBDD resulting from
the application of OR gate G1 on the OBDDs
which represent the inputs of G1, i.e., the OBDD
generated in Figure 38.12 and the OBDD for the
basic event M4. Since G1 is the top gate of the
fault tree, the OBDD in Figure 38.13 gives the full
OBDD representing the entire fault tree of Figure
38.9 (a). This graph demonstrates that if both M1
and M2 fail; or if M1 fails, M2 does not fail, and
M3 fails; or if M1 fails, M2 and M3 do not fail,
and M4 fails; or if M1 does not fail and M4 fails,
the entire system fails.

OR
0

M2

1M3

10

M1

M2

1M3

1

M1

M4

10

M4

10

M4

10

Figure 38.13. OBDD construction up to G1

38.6.2.2 Generating a Reduced OBDD (ROBDD)

As the OBDD is built, the following two reduction
rules can be applied to ensure that the OBDD that
results is minimal for the chosen ordering:

< Rule#1: isomorphic subtrees are merged since
two isomorphic subtrees encode the same
Boolean expression. Thus at least one is
superfluous and the isomorphic sub-OBDDs
can be merged as one sub-OBDD
(Figure 38.14). For example, the two sub-
BDDs rooted at node M4 in Figure 38.13 are
isomorphic and can be merged. Figure 38.15
shows the ROBDD for the fault tree of Figure
38.9 (a) after applying this reduction rule to
the OBDD in Figure 38.13.

G G G

Figure 38.14. Rule#1: merging isomorphic sub-OBDDs

M2

M3

1

M1

M4

0

Figure 38.15. An example ROBDD

< Rule#2: deletion of useless nodes. A node
encoding a function of form)()(GxGx Z,Z
is superfluous and thus can be deleted from the
model because the function is simply
equivalent to G (Figure 38.16).

0
x

1

Gy
0 1

G
y

0 1

Figure 38.16. Rule#2: deleting useless nodes

38.6.2.3 Calculating System Unreliability

The final BDD model must be evaluated to obtain
the system unreliability. Observing the BDD
(Figure 38.15) generated for the fault tree in Figure
38.9(a), it is easy to find that each non-sink node in
the BDD represents a component that can fail, and
each path from the root to a leaf/sink node
represents a disjoint combination of component
failures and non-failures. If a path leads from a
node to its then-edge (or right branch), then the
failure of the component should be considered for
that path. If a path leads from a node to its else-
edge (or left branch), then the non-failure of the
component should be considered for that path. If
the sink node for a path is labeled with a “1”, then
the path leads to system failure; if the sink ism
labeled with a “0” then the path represents the

M1

10

AND M2

1M3

10

M2

1M3

10

M1

0

Figure 38.12. OBDD construction up to G2

606 L. Xing and S.V. Amari

system being functioning. The probabilities
associated with the then-edges on each path are the
failure probabilities of corresponding components;
the probabilities associated with the else-edges on d
each path are the operational probabilities of the
corresponding components. Because all the paths
are disjoint, the system unreliability is given by the
sum of the probabilities for all the paths from the
root to a sink node labeled “1”, or the system
reliability is given by the sum of the probabilities
for all the paths from the root to a sink node
labeled “0”.

G2

x
0 1

G1

G

Figure 38.17. An ROBDD branch

The recursive algorithm for evaluating the
ROBDD is described as follows. Consider a
ROBDD branch G rooted at node x in Figure
38.17. The 1-edge of node x is associated with the
failure probability of the component q(x((). The 0-
edge is associated with the operational probability
of the component 1-q(x((). The unreliability
concerning the sub-BDD G is calculated as: U(UU G)
= q(x(()U(UU G1)+[1-q(x(()]U(UU G2). When x is the rood
node of the entire system BDD, U(UU G) gives the
entire system unreliability. The exit condition of
this recursive algorithm is: if G = 0, then U(UU G) = 0;
if G = 1, then U(UU G) = 1.

38.6.2.4 Variations of BDDs

Recently the BDD model has been combined with
the multistate concept to analyze the reliability of
systems subject to imperfect coverage behaviour
[45–47], where an uncovered component fault can
lead to extensive damage to the entire system
despite the presence of fault-tolerant mechanisms
[8]. There are three states for a system with
imperfect coverage and its components: operation,
covered failure and uncovered failure [8]. Readers
may refer to Chapter 22 for detailed discussion on
imperfect fault coverage. In the multistate BDD
based method, each state of the component is
represented using a Boolean variable indicating

whether the component is in that particular state
and the system BDD is generated using these
Boolean variables. Because statistical-dependence
exists among variables representing different states
of the same component, special treatments are
needed to address the dependence when applying
the traditional Boolean algebra for BDD evaluation
[46, 47]. In [42, 48] a similar similar idea was
applied to the analysis of general multistate
systems in which both the system and its
components may exhibit three or more than three
performance levels (or states) varying from perfect
operation to complete failure. However, the
disadvantage of the BDD-based method is that
many Boolean variables must be dealt with and
dependence among variables representing different
states of the same component must be addressed.

To decrease the number of variables involved
in the generation and evaluation of the system
model, Xing and Dugan first adapted multiple-
valued decision diagrams (MDD) [49] for the
reliability analysis of fault tolerant systems with
imperfect coverage [50, 51]. In their work, a MDD
is a directed acyclic graph with three sink nodes
each labeled by a distinct logic value 0, 1, 2,
representing the system being in the operation,
covered failure, and uncovered failure state,
respectively. Each non-sink node representing a
three-state component is labelled by a ternary-
valued variable and has three outgoing edges; one
corresponding to each logic value or component
state. According to the special characteristic of an
uncovered failure, i.e., it leads to the entire system
failure [8], a set of special ternary-valued algebra
rules was developed for performing the logic
AND/OR operation on the two basic events. Xing
and Dugan showed that the MDD-based method
provides smaller models and a much neater and
simpler evaluation algorithm for analyzing systems
subject to imperfect coverage than the BDD-based
method. However, the MDD and rules developed
in [50, 51] apply only to systems subject to
imperfect coverage, in which both the system and
its components have the same set of three states
(operation, covered failure, and uncovered failure),
and once a component is in the uncovered failure
state, the entire system is in that state too. They
cannot apply to the general multistate systems in

Fault Tree Analysis 607

which the component states may not be consistent
with the system states, and characteristics of each
state can be nondeterministic.

Recently, a new modelling approach called
multistate multivalued decision diagrams (MMDD)
has been proposed, which provides an efficient and
effective means for analyzing general large-scale
multistate systems [52]. Different from the MDD
model used in [50, 51], which can have more than
two sink nodes representing the system being in
each of the multiple states, a MMDD model can
have two and only two sink nodes representing the
system being or not being in a specific state.
Results of case studies in [52] show that the
MMDD based method provides smaller models in
terms of the number of nodes and much neater and
simpler generation and evaluation processes than
the BDD-based approach proposed in [42].
Moreover, similar to the BDD-based method, the
MMDD model can implicitly represent the sum of
disjoint products, each of which indicates a disjoint
combination of component states that cause the
system to be in a specific state.

38.7 Dynamic FTA Techniques

38.7.1 Markov Chains

Dynamic fault trees (DFT) extend traditional FTA
to include dynamic system behavior such as
sequence dependence and shared pool of resources.
The DFT model includes special purpose gates
(dynamic gates described in Section 38.4.2) to
incorporate the dynamic behavior into Markov
chains, which are used for the solution to the
system unreliability analysis.

The two main concepts in the Markov model
are system states and state transitions. The state of
a system represents a specific combination of
system parameters that describe the system at any
given instant of time. For representing the system
reliability, each state of the Markov model
generally represents a distinct combination of
faulty and fault free components. The state
transitions govern the changes of a state that occur
within a system. As time passes and failures occur,
the system goes from one state to another until one

of the absorbing states (usually the system failure
states) is reached. The state transitions are
characterized by parameters such as failure rates,
fault coverage factors, and repair rates [53].

Solving a Markov model consists of solving a
set of differential equations: AP(t) =t P'(t). The
specific form is:

�
�
��

�
��

�
��

�
��

�
��

�
��

���

�
��

�
�
��

�
��

�
��

�
��

�
��

�
��

 ��

!
��

�

�
�
��

�
��

�
��

�
��

�
��

���

�
��

�
�
��

�
��

�
��

�
��

�
��

 ��

!
��

<

�
�
��

�
��

�
��

�
��

�
��

���

�
��

�
�
��

�
��

�
��

�
��

�
��

 ��

!
��

)(
...

)(

)(
)(

)(
...

)(
)(
)(

...
...............

...

...

...

'

'
3

'
2

'
1

3

2

1

321

3332313

2322212

1312111

tP

tP3

tP2

tP1

tP

tP3

tP2

tP1

nPnPnnnnn

n

n

n

����

����
����
����

where kjjk =,� is the transition rate from state j
to state k. The diagonal element

jj� in the matrix A
is the sum of departure rates from state j, that is,

� =�
� n

jkk jkjj ,1
�� . Thus, the sum of each column of

A is 0. Pi(t) is the probability of system being in
state i at time t, and n represents the number of
states presented in the Markov model.

To solve the differential equations, Laplace
transform is typically applied [4]. The solutionaa
includes the probability of the system being in each
state. The system unreliability can be calculated by
adding the probability of being each failure state:
�*F F tPFiFF)(, where)(tP

iFPP
i

is the probability of system
being in the failure state FiFF at time t.

Markov model has more power as a solution
method than the combinatorial methods in that it
can solve system with dynamic and dependent
behaviors. However, Markov model has the
significant disadvantage that its size grows
exponentially as the size of the system increases. f
This rapid growth of the number of states may lead
to intractable models. Therefore, many researchers
made efforts to the approximate bounding methods
where only a portion of the state space of Markov
chain is generated [54, 55]. In addition, Markov
model assumes exponential time-to-failure l
distribution, whereas, combinatorial methods can
be applied to any arbitrary failure distribution.
Since Markov and combinatorial approaches both
have their pros and cons, a dynamic fault tree
modular approach has been proposed to combine
both solutions in the system reliability analysis
(refer to the following section for details).

608 L. Xing and S.V. Amari

38.7.2 The Modular Approach

Gulati and Dugan [30] presented an exciting hybrid
approach, called the modular approach, for the
efficient analysis of both static and dynamic fault
trees. It provides a combination of BDD solution
for static subtrees and Markov chain solution for
dynamic subtrees coupled with the detection of
independent subtrees. The modular approach
allows the use of Markov models for dynamic parts
of a system that require them, and use of
combinatorial methods for static parts of the
system to retain the efficiency of combinatorial
solutions where possible.

Specifically, in the modular approach, the fault
tree is divided into independent subtrees (subtrees
that share no input events) using a fast and efficient
algorithm [56]. These independent subtrees are
further identified as static or dynamic depending
on the relationships between the input events.
Static subtree gates express the failure criteria in
terms of combinations of events. Dynamic subtree
gates express the failure criteria in terms of both
combinations of events and order of occurrence of
input events.

As an example, the modular approach is
applied to the fault tree in Figure 38.18 [57]. The
fault tree is divided into four independent subtrees:
two static subtrees and two dynamic subtrees, as
indicated in Figure 38.18. The static subtrees can
be solved using the combinatorial BDD-based
method. The dynamic subtrees can be solved using
the Markov chain based method.

M1 M2 M5M4M3

FDEP FDEP

MIU1 MIU2

FDEP

3/5

Memory
Failure

Processor
Failure

CSP CSP

P1 P2

Cold
Spare

PS

System
Failure

B2B1

I/O

static
static

dynamic

dynamic

Figure 38.18. The modular approach [57]

Note that modularization is a recursive process
as subtrees might themselves contain independent
subtrees [30]. Solutions of various independent
subtrees are integrated using a relatively
straightforward and recursive algorithm to obtain
the solution to the entire system.

38.8 Noncoherent FTA Techniques

38.8.1 Prime Implicants

The traditional approach to analyzing a non-
coherent system is using prime implicants in the
place of minimal cutsets [58]. A prime implicant in
a fault tree is a minimal set of basic events whose
occurrence or non-occurrence leads to the
occurrence of the TOP event (system being
unavailable). Similar to the FTA using cutsets,
either I–E or SDP method can be applied to obtain
the system unavailability based on prime
implicants. We use two examples to illustrate the mm
prime implicant based method for the analysis of
noncoherent fault trees.

In the first example, we consider a noncoherent
fault tree containing an Exclusive OR gate with
two inputs: x and y. There are two prime
implicants: },{1 yxI � and },{2 yxI � . Applying
the I-E method, we obtain the expression of system
unavailability as:

)Pr())Pr(1())Pr(1)(Pr(

0)Pr()Pr()Pr()Pr(

)Pr()Pr()Pr(

)Pr()Pr()Pr()Pr(212121

y((x((y((x((

y((x((y((x((

yxyyyx((yx((yyyx((

II((I((I((II((

�

�

�

�6

 (38.6)

Note that)Pr(21II is zero since 21II contains
disjoint events: x and x ; y and y .

In the second example, we consider the traffic
light system used at the crossing of two mono-
directional roads (Figure 38.19) [14, 59]. Assume
the light functions properly and is RED for road 1
and GREEN for road 2. We define three basic
events: event a –car A fails to stop; event b – car B
fails to stop; and event c – car C fails to continue.
The system has three prime implicants:

Fault Tree Analysis 609

Figure 38.19. Traffic light system

< },{1 caI � : the accident occurs when car A
fails to stop (a) and car C moving towards C
road 2 is crossing (c);

< },{2 baI � : the accident occurs when car A

acts properly and stops (a) and car B fails to
stop (b);

< },{3 cbI3 � : the accident occurs when car B
fails to stop (b) and car C continues throughC
the light (c), no matter what car A does.

Define the probability of an event a occurring as
qa, and not occurring as pa. Applying the I–E
method, the expression for computing the
occurrence probability of an accident is: f

0)Pr(

)Pr(0)Pr()Pr()Pr(

)Pr()Pr(
)Pr()Pr()Pr()Pr()Pr(

)Pr(

32132

3121321

321

cbacbacbbaca pqppqqpqqppq
cbbabb

cbcbbacbbabbca

III1II
II1II1III1

III1

�

�

�

66

 (38.7)

38.8.2 Importance Measures

Considerable research efforts have been expended
in the component importance analysis for coherent
systems and many different importance measures
have been proposed for coherent system analysis
[4, 60, 61]. However, these measures cannot be
directly applied to the analysis of noncoherent
systems. In [62, 63] it was proposed to extend four
commonly used importance measures for
noncoherent systems: 1) Birnbaum’s measure [64],
2) component criticality measure [4], 3) Fussell–

Vesely measure [65], and 4) initiator and enabler
measure [66]. Because Birnbaum’s measure is
central to the other three importance measures, we
discuss it in detail in this section. Readers may
refer to [63] for details on the definitions and
applications of the other three measures.

Birnbaum’s measure of component importance
is defined as the probability that a component is
critical to system failure, or the probability that the
system is residing in a critical state for a
component such that its failure causes the system
failure [64]. Define:

< B)(qBi
Birnbaum’s measure of component i.

< B)(tqi
the probability that a component i is not

working at time t, it can be either unreliability
for a non-repairable system or unavailability
for a repairable system.

< B)(tpi
the probability that a component i is

working at time t, i.e., 1 � qi(t).
< Bq a vector of component unavailability or

unreliability for all other components except i.
< B),1(qQ isys

the probability that the system fails
with component i failed.

< B),0(qQ isysQQ the probability that the system fails
with component i functioning.

< B)(tQsysQ the probability that the system fails at
time t.

The Birnbaum’s measure can be expressed as:

)(
)(

))(,0())(,1()(
tq
tQ

tqQtqQqB
i

sysQQ
isysQQisysQQiB

[
[

�
�

 (38.8)

When dealing with a coherent system, the system
failure can only be caused by component failures.
Therefore, a component in a coherent system can
only be failure-critical. However, when dealing
with a noncoherent system, the system failure can
be caused, not only by the failure of a component
(referred to as an event i), but also by the repair of
the component (referred to as event i). Thus, a
component in a noncoherent system can be failure-
critical or l repair-critical. These two criticalities
must be considered separately because a
component can exist in only one state at any time.

610 L. Xing and S.V. Amari

Birnbaum’s measure for a noncoherent system is
given by:

)()()(qBqBqB R
iBF

iBiB � (38.9)

where)(qBF
iB represents the component failure-

criticality, specifically, the probability that the
system is in a working state such that the failure of
component i would cause the system failure;)(qBR

iB
represents the component repair-criticality,
specifically, the probability that the system is in a
working state such that the repair of component i
would cause the system failure. It has been shown
that the failure and repair criticalities can be
calculated separately by differentiating)(tQsysQQ with
respect to qi and pi, respectively [62]:

)(
)(

)(
tq
tQ

qB
i

sysQQF
i [

[
� ,

)(
)(

)(
tp
tQ

qB
i

sysQQR
iB

[pp
[

� (38.10)

For example, consider the traffic light system in
Section 38.8.1. The system unavailability is given
in (38.7):

cbacbacbbaca pqppqqpqqppq

�(t)Qsys
.

According to (38.10), the failure criticality and
repair criticality for event a are:

bcbccbc
a

sysF
a ppqppqp

tq
tQsqB �
�
�

[
[

�)1(
)(
)(

)(

cbcbcbb
a

sysR
a qqpqpqq

tp
tQsqB �
�
�

[pp
[

�)1(
)(
)(

)(

According to (38.9), the Birnbaum’s measure
of event a is:

cbcb
R

a
F

aa qqppqBqBqB ��)()()(.

38.8.3 Failure Frequency

Perhaps, the first paper on frequency calculations
of noncoherent systems is by Inagaki and Henley
[58]. Their method is similar to the method
proposed by Vesely for coherent system analysis
[67]. For noncoherent systems, prime implicants
will be used in the place of minimal cut sets for the
failure frequency calculation. According to the
method proposed in [58], the expected number of
failures within [t, t + (t] is:

1 1

(,) Pr

where
p p

i i1 1

N (,) Pr,

1 1

� 1 � 1p p

)) Pr) � 2 � 2i��
� 1 � 1� 1 � 1

�
� 3 � 31 1

i
i i11

� 2 � 2� 2 � 2i

G Hp

Ji�
HH

�
K L1i

JJi

1 �1 �
BPrPr

1 �1 �1 �
BP

3 �3 �
ii

� � 	i iidd B Bd B and and i Bi
G

Bandand i
GG

K
II

 (38.11)

If t(is small and is equivalent to the time unit,
(,)N (,, is equivalent to the failure frequency

denoted by ().�(It should be noted that

0

(,)() lim .
0

(,)
t

N (,,(,,
t

� �(
(+t

)(�
(

Although the method proposed in [58]
produces correct results for noncoherent systems, it
is unnecessarily complex. The evaluation of
(38.11) involves an NP problem within each stepP
of another NP problem. Therefore, even for theP
simple example problem considered in [58], a
complex procedure is required to solve it. In this
section, we describe a simple rule-based method
proposed in [59]. The method converts the
expression for system unavailability U obtained U
using the calculation procedure of [58] into an
expression for �. The general form of the
expression for U is the sum of products form:U

1

m

i i
i

c Ti iU
�
� , where m is the number of product terms,

TiTT is the product of component availabilities and
unavailabilities, and ci is an integer coefficient that
can be negative or positive. For example, in (38.7),
the terms are:

i 1 2 3 4 5
ci 1 1 1 -1 -1
TiTT qapaa c paqb qbpbb c qaqbpbb c paqbpbb c

Each term iTi is in the form of qjq qk…pmpmm n. The
general form of TiTT is:

i i

i j k
j F k Si

pTi
F kF ki

� �jj� �qq jj
, where FiFF

and SiS are the set of component indices i
corresponding to the unavailability and availability
terms in TiTT , respectively.

The rule for converting U intoU � is to multiply
every term i ic Ti i with the effective rate term

i i

i j k
j F k Si i

R �� j
F kF ki

� � j� � , where i i i
i

i iq qi

� �i i iip� � � and

.i i i
i

i ip p
A �i iq� � � If the system is in the steady-state,

then
i i� �i

 and .i i� �ii� Refer to [59] for the proof.
In simple terms, if TiTT is in the form of

,j k m nq q p pj k mk m then multiply that term with

().j k m n� �(Hence, we have: i i ic T Ri ii� � .
For example, the iR terms for (38.7) are:

Fault Tree Analysis 611

i ic TiTT Ri

1 1 qapaa c �a + �c
2 1 paqb �a + �b
3 1 qbpbb c �b + �c
4 -1 qaqbpbb c �a+ �b+ �c
5 -1 paqbpbb c �a+ �b+ �c

Therefore, the failure frequency of the traffic light
system (Figure 38.19) is:

)()(
)()()(

cbacbacbacba

cbcbbabacaca

pqppqq
pqqppq

������
�������

�

38.9 Advanced Topics

38.9.1 Component Importance Analysis

Results from fault tree reliability analysis have
been key contributors to system design and tuning
activities. However, reliability analysis tells only
part of the story; in particular, reliability analysis
gives very little information about each individual
component’s contribution to the entire system
failure. Follow-up questions such as “How does a
change in one component’s reliability affect the
entire system reliability?”, “How can the entire
system reliability be best improved given limited
resources?” have to be answered. These and similar
questions can be best answered using results of
component importance analysis (also called
sensitivity analysis) [68].

The importance analysis helps the designer to
identify which components contribute most to the
system reliability and thus these components
would be good candidates for efforts leading to
improving the entire system reliability. From the
maintenance point of view, the analysis would, by
means of a list, tell the repairperson in which order
to check the components that may have caused the
system failure. Ideally speaking, the maintenance-
oriented importance analysis [61] will rank the
component whose repair will hasten the system
recovery the most, the highest. Section 38.8.2
presents the component importance analysis for
noncoherent systems. Xing [72] considers the
importance analysis of components in a
generalized phased-mission system subject to

modular imperfect coverage. Here, we discuss the
component importance analysis in the general
term.

Two classes of component importance
measures have been proposed for the case where
the support model is a fault tree: structural-
importance (SI) measures and reliability-
importance (RI) measures. The SI measures assess
the importance of a component to the system
operation or reliability by virtue of its position in
the fault tree structure, without considering the
reliability of the component [70]. Thus, they can be
used even if the component reliability is unknown
or subject to changes. However, the SI measures
cannot distinguish between components that
occupy similar structural positions but have
drastically different component reliabilities. On the
other hand, the RI measures consider both the
position of the component in the system and the
reliability of the component in question. Thus, the
RI measures can generally provide more useful
information for generating the ranked list than the
SI measures.

Xing [61] studied seven different RI measures,
including conditional probability (CP) [71], risk
achievement worth (RAW) [60], risk reduction
worth (RRW) [60, 70], diagnostic importance
factor (DIF), Birnbaum’s measure (BM) [4], the
criticality importance factor (CIF) [4], and the
improvement potential (IP). Refer to [61] for their
mathematical definitions as well as physical
interpretations. The study in [61] compared the
performance of these measures in assisting the
system design and maintenance activities. Results
of the study show that CP, RAW, and BM may
induce misleading conclusions in terms of guiding
the system maintenance, though some of these
measures serve a good indicator for selecting
components that are the best candidates for efforts
leading to improving the entire system reliability.
RRW, CIF, and IP generally induce reasonable
conclusions. However, they give the same
importance result for all components in a parallel
structure irrespective of the (drastic) difference
among the component reliabilities. In addition, the
CIF and IP measures become impractical for large
dynamic systems because they must be solved
using Markov approaches which suffer from the

612 L. Xing and S.V. Amari

well-known state explosion problem. Furthermore,
the computation of both CIF and IP measures
involves the assessment of BM measure that
involves simultaneously solving a set of
differential equations (the number of equations is
the same as the number of states present in thef
Markov model) for the state occupation
probabilities and a much larger set of partial
differential equations for the component
importance analysis [73]. The solutions to those
equations are computationally intensive.

Based on the experimental results obtained in
[61], the DIF measure is the most informative and
appropriate measure for the maintenance-oriented
importance analysis among the nine measures. The
DIF measure generally produces the ranking that is
consistent with those produced by using the RRW,
CIF, and IP measures; it accounts for the effects of
exceptionally unreliable component; it can always
distinguish components that occupy similar
structural positions (for both series and parallel
structures) but have different reliabilities.

38.9.2 Common Cause Failures

Common cause failures (CCF) are multiple
dependent component failures within a system that
are a direct result of a shared root cause or
common cause (CC), such as sabotage, flood,
earthquake, lightening, power outage, sudden
changes in environment, design weaknesses, or
human errors. According to [74], CCF are defined
as “A subset of dependent events in which two or
more component fault states exist at the same time,
or in a short time interval, and are direct results of
a shared cause.” CCF typically occur in systems
designed with redundancy techniques, which are
characterized by the use of s-identical components
[75]. It is critical to consider CCF in the system
reliability analysis because failure to consider CCF
can lead to overestimated system reliability
[76, 77].

Considerable research efforts have been
expended in the study of CCF for the system
reliability modeling and analysis. However, most
of these CCF models suffer from various
limitations, such as being concerned with a specific
system structure [78, 79]; applicable only to

systems with exponential time-to-failure
distributions [80–82]; being subject to
combinatorial explosion as the redundancy level of
the system increases [83, 84]; limiting analysis to
components being affected by at most a single
common-cause [75, 77]; having a single CC that
affects all components of a system [79, 85]; or
defining CC as being s-independent or mutually
exclusive [86]. Xing [39] proposed a generic CCF
model that addressed these restrictions of the
existing CCF models in the reliability analysis of
computer network systems by allowing for
multiple CC that can affect different subsets of ff
system components, and which can occur s-
dependently.

Xing [87] utilized the generalized CCF model
of [39] and incorporated this CCF model into
dynamic fault trees using a new dynamic gate,
called CCF gate, for the reliability analysis of
hierarchical systems subject to CCF. Moreover, an
efficient decomposition and aggregation (EDA)
approach was proposed for incorporating CCF into
the reliability analysis of hierarchical systems. The
basic idea of the EDA approach is to decompose an
original reliability problem into a number of
reduced reliability problems according to the total
probability theorem. The effects of CCF are
factored out through the reduction. The reduced
problems are represented in a dynamic fault tree
model by the CCF gate, which is modeled after the
FDEP gate [8]. These reduced problems can be
solved using any reliability evaluation approaches
that ignore CCF; for example, an efficient one is
the BDD based method (Section 38.6.2). The final
reliability measure is obtained by aggregating the
results of each reduced problem.

Specifically, the EDA approach can be applied
in the following three steps:

Step 1: Building common-cause event (CCE)
space. Assume the system is subject to m common-
causes (CC). The m CC partition the event space
into the 2m disjoint subsets, each called a CCE:

mCCCCCCCCE XXX� ...211
,

12 CC1CCE2 � mCCmCC XXX ...2C ,
……,

mCCCCCCCCE m XXX� ...212
.

Fault Tree Analysis 613

A space called “CCE space” (denoted by CCE0) is
built over this set of collectively exhaustive and
mutually exclusive CCE that can occur in the
system, i.em ., },...,,{

221 mCCE
2

CCE2CCE1CCE �0 . If
Pr(CCEjE) denotes the occurrence probability of
CCEjE , then we have � �

�
m

j jCCE2

1
1)Pr(and

��X ji CCECCE for any i � j. Define a common-
cause group (CCG) as a set of components that are
cause to fail due to the same elementary CC. Let

iCCEi
S denote the set of components affected by
CCEi, then

iCCEi
S is simply the union of CCG

whose corresponding CC occur. For example,
define

321 CCCCCCCCEi XX� as a CCE in a
system with three elementary CC;

iCCEi
S is then

equal to CCG3 because CC3C is the only active
elementary CC. For another example, consider

321 CC3CC2CCCCE jE XX� ,
iCCEi

S is then equal to

32 CCGCCG 6 because both CC2C and CC3C are active
elementary CC.

Step 2: Generating and solving reduced problems.
Based on the CCE space built in step 1 and the
total probability theorem, the system unreliability
can be calculated as:

�

�

�

�

<�

<�

m

i

m

i
i

ii

)](CCE[U

)(CCECCE

2

1

2

1i
sys

Pr

]Pr)|fails(systemPr[U

 (38.12)
As defined in (38.12), UiUU is a conditional
probability that the system fails conditioned on the m
occurrence of CCEi. The evaluation of UiUU is
actually a reduced reliability evaluation problem in
which the set of components affected by CCEi do
not appear. Specifically, in the system DFT model,
each basic event (the failure of a component) that
appears in

iCCEi
S will be replaced by a constant

logic value “1” (true). After the replacement, a
Boolean reduction can be applied to the system
DFT to generate a simpler DFT in which all the
components of

iCCEi
S do not appear. Most

importantly, the evaluation of the reduced DFT can

proceed without further consideration of CCF. The
studies in [87] showed that most of DFT after
reduction become trivial to solve. In addition,
given the fact that systems are usually subject to a
small number (m) of root common causes, and
considering the parallel processing capability of
modern computing systems, even though there are
2m reduced problems involved in the EDA
approach, the overall solution complexity is still
low.

Step 3: Integrating for the final result. After
obtaining the results for all the reduced problems
in (38.12), we integrate them with the occurrence
probabilities of CCE, i.e., Pr(CCEi) to obtain the
final unreliability of the system subject to CCF.

Advantages offered by the EDA approach y
include: 1) it enables the analysis of multiple CC
that can affect different subsets of components
within the system, and which may occur s-
dependently; 2) it allows reliability engineers to
use their favorite software package that ignores
CCF for computing reliability, and adjust the input
and output of the program slightly to produce the
system reliability considering CCF. Due to the
separation of CCF from the solution combinatorics,
the EDA approach has higher computational
efficiency and is easier to implement than other
potential methods such as Markov methods, which
can accommodate CCF by expanding the state
space and number of transitions, worsening the
state explosion problem [30].

38.9.3 Dependent Failures

In FTA, a common assumption made is that all
system components fail independently. However,
this is not necessarily true in practical systems. rr
CCF and failure dependence described in the
FDEP gate are two examples of dependent failures.

In general, there are two types of dependencies:
positive dependence and negative dependence [4].
Positive dependence occurs if the failure of one
component leads to an increased tendency for
another component to fail. For example, when
several components share a common load, the
failure of one component may lead to an increased
load on the remaining components and thus may

614 L. Xing and S.V. Amari

lead to an increased likelihood of failure. Negative
dependence occurs if the failure of a component
leads to a reduced tendency for another component
to fail. For example, if an electrical fuse fails open
such that downstream circuit is disconnected, the
load on the electrical devices in this circuit is
removed and thus their likelihood of failure is
reduced.

In probability theory, we say that two events E1
and E2 are independent if Pr(E1�E2) =
Pr(E1)·Pr(E2) or Pr(E1|E2) = Pr(E1) and Pr(E2|E1)
= Pr(E2), meaning that the occurrence of one event
has no influence on the occurrence of the other
event. A component has a positive dependence
when Pr(E1|E2) > Pr(E1) and Pr(E2|E1) > Pr(E2),
such that Pr(E1�E2) > Pr(E1)·Pr(E2). A
component has a negative dependence when
Pr(E1|E2) < Pr(E1) and Pr(E2|E1) < Pr(E2), such
that Pr(E1� E2) < Pr(E1)·Pr(E2).

Besides CCF discussed in Section 38.9.2 and
functional dependence discussed in Section
38.4.2.1, another type of dependent failure we
would like to briefly mention here is cascading
failures, also called propagating failures.
According to [4], cascading failures are “multiple
failures initiated by the failure of one component in
the system that results in a chain reaction or
domino effect.” Cascading failures are common in
power grids when one of the elements fails
(completely or partially) and shifts its load to
nearby elements in the system. Those nearby
elements are then pushed beyond their capacity so
they become compromised and shift their load onto
other elements [88]. Cascading failures may be
modeled and analyzed by event trees and fault
trees.

38.9.4 Disjoint Events

Disjoint events, also referred to as mutually
exclusive events, are events that cannot occur at
the same time. For example, two failure modes of a
relay: “stuck-open” and “stuck-closed” cannot
occur simultaneously. This event dependence can
be easily modeled using Markov chains. However,
due to the well-known state explosion problem, the
Markov chain solution is only practical for small
systems. Another alternative is to approximate the

mutually exclusive events in a fault tree by
stochastically independent events. Thus cutsets
containing more than one of mutually exclusive
events can occur, leading to incorrect quantitative
reliability evaluation, although the errors are
usually insignificant. Twigg et al. [19] proposed
an accurate method to model the mutually
exclusive events by converting each of the
mutually exclusive events to a subtree that is
constructed from ordinary and stochastically
independent events as well as logic AND, OR, and
NOT gates. Next, we review the basics of the
approach through an example fault tree with two mm
disjoint events from [19].

Consider the fault tree in Figure 38.20. Events
D1 and D2 are two disjoint events representing two
disjoint failure modes of a component D. B and C
represent two independent component failure
events. Figure 38.20 actually models the two
disjoint failure events as independent events, which
means that the two failure events D1 and D2 may
occur at the same time, leading to errors in
reliability calculation. This can also be seen from
the cutsets generation.

B D1 D2

G1

G2 G3

C

Figure 38.20. Fault tree without modeling disjointt

Apply the top-down approach described in Section
38.5.1, we obtain the minimal cutsets for this fault
tree as: {D1, C}, {D2, B}, {B,C}, and {D1, D2}.
The minimal cutset {D1, D2} representing the
simultaneous occurrence of the two disjoint failure
events appears because the dependence between
those two events has not been modeled in the fault
tree analysis. In the solution of [19], each disjoint
event in the original fault tree will be replaced with
a disjoint subtree as shown in Figure 38.21.

Specifically, the basic event D1 is replaced with
a subtree encoding the Boolean expression of
D1=A�A1, and D2 is replaced with a subtree
encoding the Boolean expression of D2=A� 1A ,
where A and A1 are independent arbitrary events

Fault Tree Analysis 615

and 21 DDA 6� . The minimal cutsets, more
accurately, the prime implicants, generated from
the new fault tree (Figure 38.21): {B, C}, {A, A1,
C}, {A, 1A , B} will be used in the system
reliability calculation. Note that the set {A, A1,

1A } was also generated from the top-down
approach, but since both A1 and 1A occur in this
set, this set can be automatically removed in the
cutset generation.

In general, give a set of n mutually exclusive
events {D1, D2, …, Dn}, each event Di with
probability of �i. To construct n disjoint subtrees
with the equivalent occurrence probability �i, we
introduce n stochastically independent events: {A,
A1, …, An-1}, where �

n

i
iDA

1�

� , and {A1, …, An-1}

are arbitrary events. The disjoint sets {D1, D2, …,
Dn} are constructed by subdividing A using A1, …,
An-1 consecutively:

11 AAD X� ,

212 AAAD XX� ,
……,

1211 ...

 XXXX� nnn AnnAA11ADn
,

121 ...

 XXXX� nnn AAAAD .

In particular, the value of n is 2 for the example
fault tree in Figure 38.20. In general, each disjoint
event Dk is converted to a subtree encoding thek

Boolean function of kkk AAAAD XXXX�
11
Apparently, the subtree requires one AND gate and
(k-1) NOT gates. To decrease the number of gates, kk
Morgan’s law is applied to Dk:

kk

kkk

AAAAA

AAAAD

X666X�

XXXX�

)...(

)...(

121

11

which requires only three gates: one AND gate,
one OR gate, and one NOT gate.

To ensure the subtrees have the same
occurrence probabilities as the corresponding
disjoint events, Twigg et al. [19] derived the
probabilities of each independent event in the set
{A, A1, …, An-1} as:

��
���

����
n

i
i

n

i
i

n

i
i DDA

111

)Pr()Pr()Pr(7� � ,

�
71

11)Pr(�� Ap ,

1

2

1

2
22 1)1(
)Pr(

7
7

� (
7

�

��

p
Ap ,

……

�

�

�JJJJLJJ

HJJIIIIKII
GII

�� 1

11

1

1 1
)Pr(k

j j

k

k

k

k

k
kk p

pAp
7�

7
7
7 .

These probabilities are used in the quantitative
evaluation of the system unreliability using prime
implicants method (Section 38.8.1).

38.9.5 Multistate Systems

 A multistate system is a system in which both the
system and its components may exhibit multiple
performance levels (or states) varying from perfect
operation to complete failure [89]. Examples
abound in real applications such as communication
networks, computer systems, circuits, power
systems, and fluid transmission systems [36, 42,
90, 91]. Analyzing the probability of the system
being in each state, and thus the reliability of a hh
multistate system is essential to the design and
tuning of dependable multistate systems. The
difficulty and challenge in analysis arise from the
non-binary state property of the system and its
components.

Due to the wide use of fault tree in the analysis aa
of systems in other applications, the traditional
fault trees have been adapted to model and analyze
multistate systems. And the adapted fault trees are
called multistate fault trees (MFT) [42]. Similar to
the traditional fault tree, a MFT provides a
mathematical and graphical representation of the

B

G1

G2 G3

CD1

A1A

A1

A

D2

disjoint subtrees

Figure 38.21. Fault tree with modeling of disjoint
dependence using disjoint subtrees

616 L. Xing and S.V. Amari

combination of events that can cause the system to
occupy a specific state. The quantitative analysis of
MFT will be used to determine the probability of
system being in that specific state, given the
occurrence probabilities of basic events. Each basic
event in the MFT represents a component being in
a specific state. Also, each MFT consists of a top
event representing the system being in a state SjS .
The top event is resolved into a combination of
events that can cause the occurrence of SjS by meansj
of AND, OR, and K-out-of-KK N logic gates. N

As an example, consider a multistate computer
system that consists of two boards B1 and B2
(Figure 38.22) [42]. Each board has a processor
and a memory. The two memories (M1M and M2MM) can
be shared by both processors (P((1 and P2P) through a
common bus. Each board can be considered as a
single component with four mutually exclusive and
complete states: Bi,4 (both P and M are functional),
Bi,3 (M is functional, but P is down), Bi,2 (P is
functional but M is down), and Bi,1 (both P and M
are down). Note that Bi,j represent the board Bi
being in state j, where i = 1, 2 and j = 1, 2, 3, 4.
The entire computer system has three states, which
are defined as: S3S (at least one processor and both
memories are functional), S2S (at least one processor
and exactly one memory are functional), and S1S (no
processor or no memory is functional). For

illustration purpose, Figure 38.23 shows the MFT
for the computer system being in state S3S . Clearly,
the system is in state S3S if the board B1 is in state 4
and the board B2 is in state 3 or state 4; or if the
board B1 is in state 3 and the board B2 is in state 4.

Various approaches have been proposed for the
analysis of multistate systems; examples include
universal moment generating function based
methods [91], BDD based methods [38, 42, 92],
and MDD based methods [50–52]. Note that
among the work, the methods proposed in [38, 50,
51, 92] can only apply to the analysis of multistate
systems with multiple failure modes along with a
single operational mode, for example, systems
subject to imperfect coverage. They cannot directly
apply to the general multistate systems, which may
contain the states of perfect operation and complete
failure, as well as multiple degraded performance
levels between those two states. The details of all
those approaches for multistate system analysis are
outside the scope of this chapter. Readers may
refer to the references indicated above for more
details.

38.9.6 Phased-mission Systems

A phased-mission system (PMS) is a system used
in the mission characterized by multiple,
consecutive, and non-overlapping operational
phases [38]. During each mission phase, the system
has to accomplish a specified task. Since the tasks
may differ from phase to phase, the system may be
subject to different stresses as well as different
reliability requirements. Thus, system confi-
guration, success/failure criteria, and component
failure parameters may also change from phase to
phase. In the fault tree analysis, the representation
of structure functions of a PMS usually requires
multiple different fault trees, one for each phase.
Further complicating analysis are the statistical
dependencies that exist across the phases for a
given component

Extensive research has been conducted in the
reliability analysis of PMS [38, 41, 46, 51, 72, 92].
Similar to the fault tree analysis methods for non-
PMS (Section 38.5.2), the PMS analysis
approaches can be classified into three groups:
state space oriented approaches based on Markov

P1

P2

M1

M2

B1

B2

Bus

Figure 38.22. An example multistate system

B1,4B2,3 B2,4 B1,3 B2,4

S3

G3

G1

G2

G4

Figure 38.23. MFT of the example system in S3S

Fault Tree Analysis 617

chains and/or Petri nets, combinatorial methods,
and a modular approach. Readers may refer to
Chapter 23 for a state-of-the-art review of these
various phased-mission analysis techniques.

38.10 FTA Software Tools

Various software tools have been developed based
on the fault trees models. NUREG-0492 [2]
summarized available computer software for fault mm
tree analysis and categorized them into five groups.
Most of the software codes described in NUREG-
0492 were developed in 1970s. In this section, we
introduce two software tools that are commonly
used by industries and academic research: Galileo
dynamic fault tree analysis tool [93] and Relex
fault tree analysis software [12]. For details on
other available software packages, refer to [94].

Galileo is a dynamic fault tree modeling and
analysis tool developed at the University of
Virginia [93, 95]. Galileo combines the innovative
dynamic fault tree analysis methodology, i.e., the
modular approach (Section 38.7.2) with a rich user
interface built using package-oriented programm-
ing. The important modeling and analysis features
of Galileo include: 1) automatic modularization of
fault trees and independent solution of modules:
efficient BDD based method for static subtrees and
Markov chains for dynamic subtrees; 2) multiple
time-to-failure distributions (fixed probability,
exponential, lognormal, Weibull); 3) imperfect
fault coverage modeling in both static and dynamic
subtrees; 4) phased mission modeling and analysis;
and 5) component importance analysis, i.e.
sensitivity analysis.

Relex fault tree analysis software [12] supports
both quantitative and qualitative analyses,
providing computation flexibility based on users’
requirements. Relex fault tree analysis tool can
compute system unreliability, unavailability,
failure frequency, and the number of failures. In
addition, it incorporates a minimal cutset (MCS)
engine that can quickly determine the minimal
cutsets and support interactive, on-screen cutset
highlighting. It is the only commercial software
package that supports the exact analysis of
dynamic fault trees. Relex fault tree analysis tool

also supports Lambda-Tau calculations, various
importance measures, and noncoherent fault trees.

References

[1] Watson HA. Launch control safety study. Bell
Telephone Laboratories, Murray Hill, NJ, USA,
1961.

[2] Vesely WE, Goldberg FF, Roberts NH, Haasl DF.
Fault tree handbook. U.S. Nuclear Regulatory
Commission, Washington DC, 1981.

[3] Auda DJ, Nuwer K. Effective failure mode effects
analysis facilitation. Tutorial Notes of the Annual
Reliability and Maintainability Symposium,
Alexandria, VA.; Jan. 24–27, 2005.

[4] Rausand M, Hoyland A. system reliability theory:
models, statistical methods, and applications (2nd
Edition). Wiley Inter-Science, New York, 2003.

[5] Bowles JB, Bonnell RD. Failure modes, effects,
and criticality analysis. Tutorial Notes of the
Annual Reliability and Maintainability
Symposium 1997.

[6] Andrews JD, Dunnett SJ. Event-tree analysis
using binary decision diagrams. IEEE
Transactions on Reliability 2000; 49(2): 230–238.

[7] IEC61078, Analysis techniques for dependability
– Reliability block diagram method. International
Electrotechnical Commission, Geneva, 1991.

[8] Dugan JB, Doyle SA. New results in fault-tree
analysis. Tutorial Notes of the Annual Reliability
and Maintainability Symposium 1997.

[9] NASA, Fault tree handbook with aerospace
applications, NASA Office of Safety and Mission
Assurance, Washington DC, 2002.

[10] Henley EJ, Kumamoto H. Probabilistic risk
assessment. IEEE Press, New York, 1992.

[11] Coppit D, Sullivan KJ, Dugan JB. Formal
semantics of models for computational
engineering: A case study on dynamic fault trees.
Proceedings of the International Symposium on
Software Reliability Engineering 2000; 270–282.

[12] Relex software, www.relex.com
[13] Pham H. Optimal design of a class of noncoherent f

systems. IEEE Transactions on Reliability 1991;
40(3): 361–363.

[14] Amendola A, Contini S. About the definition of
coherency in binary system reliability analysis. In:
Apostolakis G, Garribba S, Volta G, Editors.
Synthesis and analysis methods for safety and
reliability studies. Plenum Press, New York, 1978; m
79–84.

618 L. Xing and S.V. Amari

[15] Jackson PS. Comment on probabilistic evaluation
of prime implicants and top-events for non-
coherent systems. IEEE Transactions on
Reliability 1982; R-31: 172–173.

[16] Jackson PS. On the s-importance of elements and
implicants of non-coherent systems. IEEE
Transactions on Reliability 1983; R-32: 21–25.

[17] Johnson BD, Matthews RH. Non-coherent
structure theory: a review and its role in fault tree
analysis. UKAAE, SRD R245, 1983; October.

[18] Wolfram S. Mathematica – A system for doing
mathematics by computer. Addison-Wesley,
Reading, MA, 1991.

[19] Twigg DW, Ramesh AV, Sandadi UR, Sharma
TC. Modeling mutually exclusive events in fault
trees. Proceedings of the Annual Reliability and
Maintainability Symposium 2000; 8–13.

[20] Twigg DW, Ramesh AV, Sharma TC. Modeling
event dependencies using disjoint sets in fault
trees. Proceedings of the 18th International System
Safety Conference 2000; 275–279.

[21] Misra KB. Reliability analysis and prediction: a
methodology oriented treatment. Elsevier,
Amsterdam, 1992.

[22] Bobbio A, Franceschinis G, Gaeta R, Portinale L.
Exploiting Petri nets to support fault tree based
dependability analysis. Proceedings of the 8th
International Workshop on Petri Nets and
Performance Models 1999; 146 – 155.

[23] Dugan JB, Trivedi KS, Sometherman MK, Geist
RM. The hybrid automated reliability predictor.
AIAA Journal of Guidance, Control and Dynamics
1991; 9(3): 554–563.

[24] Dugan JB, Bavuso SJ, Boyd MA. Fault trees and
Markov models for reliability analysis of fault
tolerant systems. Reliability Engineering and
System Safety 1993; 39: 291–307.

[25] Hura GS, Atwood JW. The use of Petri nets to
analyze coherent fault trees. IEEE Transactions on
Reliability 1988; R-37: 469–474.

[26] Malhotra M, Trivedi KS. Dependability modeling
using Petri nets. IEEE Transactions on Reliability
1995; R-44: 428–440.

[27] Coudert O, Madre JC. Fault tree analysis: 1020

prime implicants and beyond. Proceedings of the
Annual Reliability and Maintainability
Symposium 1993; 240–245.

[28] Doyle SA, Dugan JB. Analyzing fault tolerance
using DREDD. Proceedings of the 10th
Computing in Aerospace Conference 1995.

[29] Sinnamon R, Andrews JD. Fault tree analysis and
binary decision diagrams. Proceedings of the
Annual Reliability and Maintainability
Symposium 1996; 215–222.

[30] Gulati R, Dugan JB. A modular approach for
analyzing static and dynamic fault trees.
Proceedings of the Annual Reliability and
Maintainability Symposium 1997.

[31] Sahner R, Trivedi KS, Puliafito A. Performance
and reliability analysis of computer systems: an
example-based approach using the SHARPE
software package. Kluwer, Dordrecht, 1996.

[32] Misra KB. New trends in system reliability
evaluation. Elsevier, 1993.

[33] Shooman ML. Probabilistic reliability: an
engineering approach (2nd Edition). McGraw-
Hill, New York, 1990.

[34] Brace K, Rudell R, Bryant R. Efficient
implementation of a BDD package. Proceedings of
the 27th ACM/IEEE Design Automation
Conference 1990; 40–45.

[35] Bryant R. Graph based algorithm for boolean
function manipulation. IEEE Transactions on
Computers 1986; 35: 677–691.

[36] Chang YR, Amari SV, Kuo SY. OBDD-based
evaluation of reliability and importance measures
for multistate systems subject to imperfect fault
coverage. IEEE Transactions Dependable and
Secure Computing 2005; 2(4): 336–347.

[37] Kuo S, Lu S, Yeh F. Determining terminal-pair
reliability based on edge expansion diagrams
using OBDD. IEEE Transactions on Reliability
1999; 48(3): 234–246.

[38] Xing L, Dugan JB. Analysis of generalized
phased-mission systems reliability, performance
and sensitivity. IEEE Transactions on Reliability
2002; 51(2): 199–211.

[39] Xing L. Fault-tolerant network reliability and
importance analysis using binary decision
diagrams. Proceedings of the 50th Annual
Reliability and Maintainability Symposium, Los
Angeles, CA, 2004.

[40] Yeh F, Lu S, Kuo S. OBDD-based evaluation of
k-terminal network reliability. IEEE Transactions
on Reliability 2002; 51(4): 443–451.

[41] Zang X, Sun H, Trivedi KS. A BDD-based
algorithm for reliability analysis of phased-
mission systems. IEEE Transactions on Reliability
1999; 48(1): 50–60.

[42] Zang X, Wang D, Sun H, Trivedi KS. A bdd-
based algorithm for analysis of multistate systems
with multistate components. IEEE Transactions on
Computers 2003; 52(12): 1608–1618.

[43] Bouissou M, Bruyere F, Rauzy A. BDD based
fault-tree processing: a comparison of variable
ordering heuristics. Proceedings of ESREL
Conference 1997.

Fault Tree Analysis 619

[44] Coudert O, Madre JC. Metaprime, an interactiveaa
fault-tree analyzer. IEEE Transactions on
Reliability 1994; 43(1): 121–127.

[45] Xing L. Dependability modeling and analysis of
hierarchical computer-based systems. Ph.D.
Dissertation, Electrical and Computer
Engineering, University of Virginia, 2002; May.

[46] Xing L, Dugan JB. Generalized imperfect
coverage phased-mission analysis. Proceedings of
the Annual Reliability and Maintainability
Symposium, Seattle, WA, 2002; 112–119,

[47] Zang X., Sun H., and Trivedi KS. Dependability
analysis of distributed computer systems with
imperfect coverage. Proceedings of the 29th
Annual International Symposium on Fault-
Tolerant Computing 1999; 330–337.

[48] Caldarola L. Coherent systems with multistate
components. Nuclear Engineering and Design
1980; 58: 127–139.

[49] Miller DM, Drechsler R. Implementing a multiple-
valued decision diagram package. Proceedings of
the 28th International Symposium on Multiple-
valued Logic 1998.

[50] Xing L. Dugan JB. Dependability analysis using
multiple-valued decision diagrams. Proceedings of
the 6th International Probabilistic Safety
Assessment and Management, Puerto Rico 2002.

[51] Xing L, Dugan JB. A separable TDD-based
analysis of generalized phased-mission reliability.
IEEE Transactions on Reliability 2004; 53(2):
174–184.

[52] Xing L. Efficient analysis of systems with
multiple states. Proceedings of the IEEE 21st
International Conference on Advanced
Information Networking and Applications,
Niagara Falls, Canada 2007; 666–672.

[53] Gulati R. A modular approach to static and
dynamic fault tree analysis. M. S. Thesis,
Electrical Engineering, University of Virginia,
August 1996.

[54] Sune V, Carrasco JA. A method for the
computation of reliability bounds for non-
repairable fault-tolerant systems. Proceedings of
the 5th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computers
and Telecommunication System 1997; 221–228.

[55] Sune V, Carrasco JA. A failure-distance based
method to bound the reliability of non-repairable
fault-tolerant systems without the knowledge of
minimal cutsets. IEEE Transactions on Reliability
2001; 50(1): 60–74.

[56] Dutuit Y, Rauzy A. A linear time algorithm to find
modules of fault trees. IEEE Transactions on
Reliability 1996; 45(3): 422–425.

[57] Manian R, Dugan JB, Coppit D, Sullivan KJ.
Combining various solution techniques for
dynamic fault tree analysis of computer systems.
Proceedings of the 3rd IEEE International High-
Assurance Systems Engineering Symposium
1998; 21–28.

[58] Inagaki T, Henley EJ. Probabilistic evaluation of
prime implicants and top-events for non-coherent
systems. IEEE Transactions on Reliability 1980;
29(5): 361–367.

[59] Amari SV. Computing failure frequency of
noncoherent systems. International Journal of
Performability Engineering 2006; 2(2): 123–133.

[60] Dutuit Y, Rauzy A. Efficient algorithm to assess
component and gate importance in fault tree
analysis. Reliability Engineering and System
Safety 2001; 72: 213–222.

[61] Xing L. Maintenance-oriented fault tree analysis
of component importance. Proceedings of the 50th
Annual Reliability and Maintainability
Symposium, Los Angeles, CA, USA. 2004; 534–
539,

[62] Andrews JD, Beeson S. Birnbaum’s measure of
component importance for noncoherent systems.
IEEE Transactions on Reliability 2003; 52(2):
213–219.

[63] Beeson S, Andrews JD. Importance measures for mm
non-coherent-system analysis. IEEE Transactions
on Reliability 2003; 52(3): 301–310.

[64] Birnbaum ZW. On the importance of different
components in a multicomponent system. In:
Krishnaiah P, Editor. Multivariate analysis.
Academic Press, New York, 1969.

[65] Fussell J. How to hand calculate system reliability
characteristics. IEEE Transactions on Reliability
1975; R-24: 169–174.

[66] Barlow RE, Proschan F. Importance of system
components and fault tree events. Stochastic
Processes and Their Applications 1975; 3: 153–
173.

[67] Vesely WE. A time dependent methodology for
fault tree evaluation. Nuclear Engineering and
Design 1970; 13: 337–360.

[68] Andrews JD, Moss TR. Reliability and risk
assessment. Longman Scientific and Technical,
Essex, 1993.

[69] Anne A. Implementation of sensitivity measures
for static and dynamic subtrees in DIFtree. M.S.
Thesis, University of Virginia, 1997.

[70] Chang Y, Amari SV, Kuo S. Computing system
failure frequencies and reliability importance
measures using OBDD. IEEE Transactions on
Computers 2004; 53(1): 54–68.

620 L. Xing and S.V. Amari

[71] Papoulis A. Probability, random variables, and
stochastic processes (3rd Edition). McGraw-Hill
Series in Electrical Engineering, McGraw-Hill,
New York, 1991.

[72] Xing L. Reliability importance analysis of
generalized phased-mission systems. International
Journal of Performability Engineering 2007; 3(3):
303–318.

[73] Frank PM. Introduction to system sensitivity.
Academic Press, New York, 1978.

[74] NUREG/CR-4780, Procedure for treating
common-cause failures in safety and reliability
studies. U.S. Nuclear Regulatory Commission,
Washington DC, 1988; Vols. I and II.

[75] Tang Z, Dugan JB. An integrated method for
incorporating common cause failures in system
analysis. Proceedings of the 50th Annual
Reliability and Maintainability Symposium, 610–
614, Los Angeles, CA, 2004.

[76] Mitra S, Saxena NR, McCluskey EJ. Common-
mode failures in redundant VLSI systems: a
survey. IEEE Transactions on Reliability 2000;
49(3): 285–295.

[77] Vaurio JK. An implicit method for incorporating
common-cause failures in system analysis. IEEE
Transactions on Reliability 1998; 47(2): 173–180.

[78] Bai DS, Yun WY, Chung SW. Redundancy
optimization of k-out-of-n systems with common-
cause failures. IEEE Transactions on Reliability
1991; 40(1): 56–59.

[79] Pham H. Optimal cost-effective design of triple-
modular-redundancy-with-spares systems. IEEE
Transactions on Reliability 1993; 42(3): 369–374.

[80] Anderson PM, Agarwal SK. An improved model
for protective-system reliability. IEEE Trans-
actions on Reliability 1992; 41(3): 422–426.tt

[81] Chae KC, Clark GM. System reliability in the
presence of common-cause failures. IEEE
Transactions on Reliability 1986; R-35: 32–35.

[82] Fleming KN, Mosleh N, Deremer RK. A
systematic procedure for incorporation of common
cause events into risk and reliability models.
Nuclear Engineering and Design 1986; 93: 245–
273.

[83] Dai YS, Xie M, Poh KL, Ng SH. A model for
correlated failures in n-version programming. IIE
Transactions 2004; 36(12): 1183–1192.

[84] Fleming KN, Mosleh A. Common-cause data
analysis and implications in system modeling.
Proceedings of the International Topical Meeting
on Probabilistic Safety Methods and Applications
1985; 1: 3/1–3/12, EPRI NP-3912-SR.

[85] Amari SV, Dugan JB, Misra RB. Optimal
reliability of systems subject to imperfect fault-
coverage. IEEE Transactions on Reliability 1999;
48 (3): 275–284.

[86] Vaurio JK. Common cause failure probabilities in
standby safety system fault tree analysis with
testing – scheme and timing dependencies.
Reliability Engineering and System Safety 2003;
79(1): 43–57.

[87] Xing L. Reliability modeling and analysis of
complex hierarchical systems. International
Journal of Reliability, Quality and Safety
Engineering 2005; 12(6): 477–492.

[88] Dobson I., Carreras BA, Newman DE. A loading-
dependent model of probabilistic cascading
failure. Probability in the Engineering and
Informational Sciences 2005; 19(1): 15–32.

[89] Huang J, Zuo M. Dominant multi-state systems.
IEEE Transactions on Reliability 2004; 53(3):
362–368.

[90] Li W, Pham H. Reliability modeling of multi-state
degraded systems with multi-competing failures
and random shocks. IEEE Transactions on
Reliability 2005; 54(2): 297–303.

[91] Levitin G, Dai YS, Xie M, Poh KL. Optimizing
survivability of multi-state systems with multi-
level protection by multi-processor genetic
algorithm. Reliability Engineering and System
Safety 2003; 82(1): 93–104.

[92] Tang Z, Dugan JB. BDD-based reliability analysis
of phased-mission systems with multimode
failures. IEEE Transactions on Reliability 2006;
55(2): 350–360.

[93] Galileo Dynamic Fault Tree Analysis Tool,
http://www.cs.virginia.edu/~ftree/.

[94] Fault Tree Analysis Software, http://www.fault-
tree.net/software.html.

[95] Sullivan KJ, Coppit D, Dugan JB. The Galileo
fault tree analysis tool. Proceedings of the 29th
International Conference on Fault-Tolerant
Computing, Madison, Wisconsin, June 15–18,
1999: 232–235.

