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Abstract: In many reliability design problems, the decision variables can only take integer values. There
are many examples such as redundancy allocation, spare parts allocation, repairman allocation that 
necessitate integer programming formulations and solutions thereof. In other words, the integer 
programming plays an important role in system reliability optimization. In this chapter, a simple yet 
powerful algorithm is described, which provides an exact solution to any general class of integer n
programming formulations and thereby offers reliability designers an efficient tool for system design. The 
algorithm is presented with an illustration to make the readers understand various steps. Besides, the 
applications of the algorithm to various reliability design problems are also provided.

33.1 Introduction

Advances in technology have always led system 
engineers, manufacturers and designers to design
and manufacture systems with ever increasing 
sophistication, complexity, and capacity.
Unreliable performance of some of the constituent 
sub-systems in these systems may lead to
disastrous consequences for the system and its
environment and loss of lives including economic, 
legal and sociological implications. Therefore it 
necessarily requires designers to design systems
with the highest possible reliability within the
constraints of cost, time, space, volume,
technological limits etc. As a result, reliability is
one of the system attributes that cannot be 
compromised in system planning, design,
development and operation. It is of paramount 
concern to practicing engineers, manufacturers, 

economists and administrators. However, it is an 
established fact that the occurrence of failure can 
not be completely eliminated even for well-
designed, well-engineered, thoroughly tested and 
properly maintained equipment. As a consequence,
a present day user is not prepared to compromise
on reliability, yet would like to have its best value 
for resources consumed in designing a system. 
Reliability and maintainability design is one of the
areas in reliability engineering which makes
possible more effective use of resources and helps
decrease the wastage of scarce finances, material, 
and manpower.  

An optimal design is one in which all the
possible means available to a designer have been
explored to enhance the reliability of the system
under certain objective(s), operational 
requirements and allocated resources. Some of thed
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means through which a designer might attempt to 
enhance system reliability are:

< Reducing the system complexity.
< Increasing the reliability of constituent 

components through some product
improvement program.

< Use of structural redundancy. 
< Putting in practice a planned maintenance

and repair/replacement policy.

Although each of the aforementioned 
alternatives has its relative advantages and 
disadvantages, one may have to strike a balance 
between them to achieve a system’s objectives.  

The employment of structural redundancy at 
subsystem/component level, without disturbing the 
system topology, can provide a very effective 
means of improving system reliability to any 
desired level [1]. In fact, structural redundancy in
combination with an appropriate maintenance
strategy may lead to provide almost unity 
reliability. The structural redundancy involves the
use of two or more identical components, to ensure 
that if one fails, the system operation does not get 
affected and continues to carry on the specified 
task even in presence of a faulty component.
Depending on the type of system, various forms of 
redundancy schemes, viz., active, standby, partial, 
voting, etc., are available, and this may provide the 
quickest, easiest, cheapest and sometimes the only 
solution. However, the only factors, which may 
influence such a decision, could be the time
constraints, existence of an already designed 
component, a costly and prohibitive redesign, and 
of course the technological limits. 

There are several kinds of reliability design 
problems a designer may face. For example, it may
include reliability allocation, repairman allocation, 
failure/repair rate allocation, spare parts allocation 
problem, etc., or a combination of these problems.
Depending on the situation, appropriate techniques
can be adopted. 

The present chapter describes an exact and 
efficient search technique, known as Misra Integer 
Programming (MIP) in the literature to addressg
many system design problems. Although the
algorithm was originally conceived to deal with the
redundancy allocation problem, it can solve not 

only several other problems in system reliability
design but many other general integer 
programming problems with equal ease  [12].  

Before providing the details of the search 
algorithm and its applications, the next section
presents a brief overview of the redundancy
allocation problem and the necessity and 
importance of developing a useful yet very simple
algorithm to solve many design problems.

33.2 Redundancy Allocation Problem 

33.2.1 An Overview 

The problem of redundancy allocation is concerned 
with the determination of the number of redundant 
units to be allocated to each subsystem to achieve 
an optimized objective function (usually the
reliability or some other related attribute of the
system, e.g., average life, MTTF), subject to one or 
more constraints reflecting the availability of 
various resources. Mathematically, the problem 
can be stated as: 

. [ ( ), ( )... ( )]s n nMax R. [ ( ), ( )... ([ ( ), ( )... (s n[ ( ), ( )... ([ ( ), ( )...[ ( ), ( )... (MM ( ), (), (( ), (( ), (), (( ), ( , (33.1)

i n i1 2Sub g x g x x x b i m. to ( ) ( , ... ) , 1,2...( ) ( , ... ) ,i n i1 2( ) ( , ... )( ) ( , ... )) ( , ... )1 2( , ... ) ,( , ... ) ,( )1 2( , ... ))( , ... )1 2 , (33.2) 

where reliability Rs (of n f sub-systems with xjx
redundant units at the jth subsystem, each with a
component reliability of rjr ) will be a function of its 
subcomponents’ reliabilities, RjR (xjx ).jj The functional
form of f(·) depends on the system configuration
and the type of redundancy being used. The form 
of m number of constraints, gi(x) (linear/nonlinear, 
separable/non-separable) can usually be 
determined from physical system considerations. 
However, if the constraints are separable functions, 
we can write (33.2) as:

( )
n

i ij j i(
j n

g i m( ) , 1,2...,ij j i( )( )( ))) ( ) ,( ) ,( )( )( )�� . (33.3)

The decision variables xjx , in the above
formulations can take only non-negative integer 
values; therefore, the problem belongs to the class
of non-linear integer programming problems, and 
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expression Rs, in general, may not be separable in
xjx . Also, the nonlinear constraints may not 
necessarily be separable. However, an active-
parallel redundant system in a series model 
consisting of n subsystems with linear constraints
can be written in a closed form [10, 13]. 

In general, a redundancy allocation problem 
involving integer programming formulation can be 
stated as:

 ( )Optimize f x (( ,  (33.4)
Sub. to ( ) ; 1,2...i i( )g m) ; 1,2...) ;)) ;;; . (33.5)

The function f(x) in (33.4) can be minimized or 
maximized and could be set to *( )*f x( � ?; , in 
general, (“+” for minimization and “–” for 
maximization) to start the search process. The
variable ( , ,... )nx , ,..., ,...� 1 2,,,,  is a vector of decision 
variables in EnEE  (the n-dimensional Euclidian 
plane), which is allowed to take positive integer 
values belonging to the feasible region R only and R
bounded by (33.5). Further, some xi can also
assume a value equal to zero. However, most often
all xi, being non-negative integers, are defined 
between the limits: l u

j j jx x xj� �x j . In a redundancy 
optimization problem, xi would have positive
integer values between 1 u

j jx x� �jx .

The value of u
kx for the kth subsystem cankk

easily be determined through the consideration of 
the ith constraint and accepting a minimum of the
upper limits computed over all i=1,2…m, while
maintaining 1,l

jx j n j k1, 2... ,�1, j1, 2... ,1, 2...  for other 
subsystems, i.e.,

maxi {u
k j{

i
x k n i m k j}, 1, 2... , 1,2... ,max� min{min{ k}, 1, 2... , 1,2... ,}, 1, 2... , 1,2...1, 2... ,max . 

  (33.6)

Therefore, the search to optimize, *( )*f could 
begin at one of the corners of feasible region, i.e., 

$ %  of R and finish at another point 

$ % . Both of these points are certainly in

the feasible region.

Therefore, the MIP basically relies on a 
systematic search near the boundary of constraints
and involves functional evaluations on feasible
points satisfying a specified criterion that a feasible
point x would lie within the constraints and the 
current test point is close to the boundary from 
within the feasible region. However, the stopping
criteria can be chosen depending upon the problem
and objective of analysis. One of the ways of 
choosing the stopping criterion could be a test for 
maximum permissible slacks defined as:

min{ }i ijmin{
j

mps min{i min{ @
}min{ . 

To initiate the search, we frequently require the 
computation of maxx1xx , and in case of linear 

constraints maxx1xx could be computed as:
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  (33.7)

where gi(·) and bd i are the constraint functions of 
variables and resources available for an ith type of 
constraint, respectively.

In case of non-linear constraints, maxx1xx  can be
obtained by incrementing x1, successively, by one
unit at a time until at least one of the constraints 
gets violated, while keeping xj x at a minimum level 
at all other stages. It would be computationally 
advantageous if we compute and store the 
nonlinear incremental costs for the whole range of 
x1 in memory rather than evaluate it every time 

maxx1xx  is desired.

33.2.2 Redundancy Allocation Techniques:
A Comparative Study

Among the well known methods to provide an
exact solution are: (i) Dynamic Programming
approach, and (ii) Search Technique, e.g., Cutting 
plane, Branch and Bound, Implicit search, and 
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partial enumerations using functional evaluations 
and certain rules for detecting an optimal solution 
from as few feasible solutions as possible. 

Besides the exact techniques, several
approximate and earlier methods such as Lagrange 
Multiplier [1, 8], Geometrical programming and
the maximum principle approach [8], Differential
dynamic programming sequential simplex search, 
penalty function approaches, etc., have also been
employed by treating the integer decision variables
as real variables and the final solution is obtained 
by rounding off the optimal variables to the nearest 
integers. In view of the fact that a decision problemff
involving integer variables is NP-complete, a 
number of heuristic procedures for solving design 
problems have also been proposed. Some 
evolutionary techniques inspired by some natural
phenomenon such as biological (GA) or 
functioning of brain (ANN) have also been applied 
to deal with reliability design problems. Such 
techniques are known as meta-heuristic algorithms 
in the literature. The interested reader may refer to  
[6] for a comprehensive survey and a good account 
of various reliability design problems, their types 
and classifications, solution approaches along with 
the applications of some meta-heuristic techniques 
(such as GA and ANN). 

Summarily, most of the exact integer f
programming techniques mentioned above, except 
those which are strictly based on some heuristic
criteria, are computationally tedious, time-
consuming and sometimes unwieldy, and have 
limitations of one kind or the other. The other 
simple techniques are mostly heuristic and thus 
approximate. 

However, the approach described later in this 
chapter can solve a variety of general integer 
programming problems also, is simple to
comprehend, is amenable to computerization, and 
easy to formulate. The advantages of the approach 
over the existing techniques are briefly given as
under: 

1. It does not require the conversion of 
variables into binary variables as in [5, 7].

2. It is applicable to a very wide variety of 
problems, with arbitrary nature of 
objective and constraint functions and 
without any assumption on the 

separability of objective functions.
However, the functions involved must be 
non-decreasing functions of decisions
variables.

3. It can solve both integer programming as
well as zero-one programming problems
with ease and effectiveness.  

4. As stated earlier, the present approach to
solve redundancy allocation problem is a 
systematic search near the boundary of 
feasible reason, so it drastically reduces
the number of search points.

33.3  Algorithmic Steps to Solve 
Redundancy Allocation Problem 

The entire algorithm can be summarized in
following eight steps [9]:

1. Compute the upper and lower bounds of 
the decision variables to determine the
entire feasible region. Lower bounds are
generally known from the system 
description whereas upper bounds are 
determined from constraints  (see (33.6)).
Set t = 2 and A = 0A , $ %x B  and 

*x x� . If this point is within the slack 
band i i ib mps b i m, , 1, 2...,i i i,C D , go to 
step 8. 

2. Set x2=x2+1. If ux x�2 2x� , go to next step. 
Otherwise go to step 4.

3. Keeping all other variables, xjx , jjj =2,3…n at 
the current level, determine the value of 

maxx1xx  which does not violate any of the
constraints (refer to (1.8) and subsequent 
paragraph). If max

1 0x1 � , go to next step. 
Otherwise go to step 7.

4. A =A A + 1. if A > (nA -2),2  STOP and print the
optimal result. Otherwise proceed to step 5.

5. Set k = t + A and 1k kxk � 
kx . If u
k kx x# ,

return to step 4. Otherwise proceed to
step 6.
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6. Set l
j jx x�  for 1j k2,3...2 3 . Also, set 

A=AA 0. Return to step 3.
7. Calculate slacks for constraints, 

, 1,2...is m1,2... . If the current point lies
within the allowable slacks for all i, go to
next step. Otherwise return to step 2.

8. Evaluate the objective function f(x) at the 
current point x. If it is better than *( )*f ,

then replace *x x� and *( ) ( )f f) () (* .
Return and continue from step 2.

The algorithmic steps are simple and self 
explanatory. However, for the reader’s benefit 
some of the steps of algorithm are explained in the
following illustration.

Illustration:
Consider a SP system with four subsystems, two
linear constraints and with subsystem reliabilities 
as, [0.85 0.80 0.70 0.75]r � , respectively. 
Mathematically, we can formulate it as:

Maximize 
4

1

(1 (1 ) )x
j(1 (1s

j

R (1 (1(1 (1s
�

(1 (1(1�� ,

Sub. to 
1 2 3 46.2 3.8 6.5 5.3 51.81 2 3 42 31 2 32 32 33.8 6.5 5.33.8 6.5 5.3 43 8 6 5 5 36 5 5 33 8 6 52 32 32 32 3

1 2 3 49.5 5.5 3.8 4 67.81 2 3 421 2 32 32 35.5 3.8 45.5 3.8 4 45 5 3 8 43 8 45 5 3 82 32 32 32 3 .

Let us determine the upper and lower bounds
(step 1) of the variables involved using (33.6) and 
the search area bounded by its constraints.

By keeping 1,kx j k j1,2,3,4,�1, k1,2,3,4, , the upper 
bound of a variable, say x1xx , can be determined 
from constraints as: 

1 16.2 3.8 6.5 5.3 51.8 5.83871 13.8 6.5 5.3 51.81 3 8 6 5 5 33 8 6 5 5 33 8 6 5 5 33 8 6 5 5 3

1 19.5 5.5 3.8 4 67.8 5.73681 15.5 3.8 4 67.85.5 3.8 4 67.81 5 5 3 8 45 5 3 8 45 5 3 8 45 5 3 8 4 ,

i.e., 1 min(5.8387,5.7368) 5ux1 � min(5.8387,5.7368) . 

Similarly, 2 3 48, 5, 63 43
u u u8 55x2 8 55333 48 55333 , respectively. 

Therefore, the starting point in the search would be 
[5111]x � , and will finish once we reach
[1116]x � . 

After following the steps of the algorithm with 
minimum cost difference of 3.7 units, the optimum
system reliability, * 0.8559967R �  is obtained 
for * [2232]x � . Although the total number of 
search points in the region is 1200, the functional 
evaluations performed by the algorithm were only 
done at 43 points, whereas the number of 
functional value comparisons to obtain maximum 
reliability was only 5.

The above steps are the essence of the 
algorithm, and other variables shown in the
algorithmic steps are just to make the translation of 
the algorithm in a suitable programming language
easy.

33.4 Applications of MIP to Various 
System Design Problems 

Here we provide an exhaustive list of applications 
areas and problem formulations, where the MIP 
has been successfully applied. The areas are as
follows:

33.4.1 Reliability Maximization Through 
Active Redundancy 

33.4.1.1 SP System with Linear and/or Nonlinear 
Constraints 

The series parallel (SP) model is one of the
simplest and most widely used models in reliability 
studies. Mathematically, the problem for such
systems could be formulated as:

Maximize 
1

(1 (1 ) )
n

x
s j(1 (1

j

R (1 (1s (1 (1
�

(1 (1(1� , (33.8) 

Sub. to:
1

( ) , 1,2...
n

i j ij j i( ))
j

g m, 1, 2...,))
�

,,�� , (33.9)

where the constraints could either be linear,
nonlinear or a combination of both (linear and 
nonlinear). 
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Example 1: The illustration taken belongs to this
category, where the constraints are linear. The
optimal solution point provided by the algorithm is

* [2232]x � , with optimal system reliability
* 0.85599sR � , with resource consumptions as 50.1

and 49.9, respectively.

Example 2: Consider a SP System with five
subsystems, three nonlinear constraints with
subsystem reliabilities

[0.80 0.85 0.90 0.65 0.75]r � , respectively. The
problem is to

Maximize
5

1

(1 (1 ) )x
j(1 (1s

j

R (1 (1(1 (1s
�

(1 (1(1�� , 

Subject to: 
2 2 2 2 2
1 2 3 4 5 602 2 2 22 2 2

5x1 2 3 42 3 42 3 42 3 4
 2 3 4 53 4 52 2 2 22 2 22 2
52 3 4 53 4 53 42 3 42 3 42 3 43 4 , 

/ 4/ 4 / 4
1 2 3

/ 4/ 4
4 5

) 5( )37( / 4/ 42
1 2 32

9( ) 4( ) 225/ 4/ 4
4 5

xx / 41 / 4

xx

) 7( ) 5() 7( ) 5(1 2 322

) () 4(4 5

/ 4 ) 7( ) 5() 7( ) 5(1 2 / 421 ) 7( ) 5() 7( ) 5() 7( ) 5(1 2
2 3222


9( ) 4( )) 4( )54 / 4/ 4 ) 4() 4() 4(4
4 5

, 

and 
1/ 4 / 4 / 4 / 41

1 1 1 1
/ 4

1

7 1 1 11 1
1 1 11 1

9 340/ 4
1

x / 4 / 4 / 4/ 4 / 4 11 / 4 / 4 / 4/ 4 / 4/ 41 11 11 11

x
1 x e18 8 61 1 1

1 11 11 1

1

1 111 11 1111 11 11111 18 888 81 1111 1
1 111 11 1


9 1 / 4
1

.

The optimal solution point provided by the
algorithm is 9 :* 22223x � with an optimal value of 

system reliability of * 0.80247sR � , and resources 
consumed of 58, 122.63 and 152.78, units,
respectively.

33.4.1.2 NSP System with Linear and/or 
Nonlinear Constraints 

The general formulation of the problem for such
systems is: 

Maximize ( , )sR f x r( ,,s   (33.10)
Sub. to ( )i i( )g b) i) , 1,2...i m1,2... , (33.11) 

where ( , )f x r( ,, is the reliability function of the NSP
system.  

Example 3: Consider a NSP system with five nodes
and seven links as shown in Figure 33.1.

The objective is to maximize the reliability of 
the network with the following linear cost 
constraint:

1 3 4 5 6 74 5 2 3 3 5 4571 3 4 5 63 4 5 63 4 5 65 2 3 3 55 2 3 3 5 75 2 3 3 52 3 3 55 2 3 33 4 5 63 4 5 63 4 5 63 4 5 6 ,

given the component reliabilities as
[0.7,0.9,0.8,0.65,0.7,0.85,0.85]r � . The optimal

reliability of the network computed by the
algorithm is * 0.99951sR �  at 9 :* 1121143x �  with
no slacks. Also, out of a total of 11,61,600 search
points, it carries out functional evaluations only at 
815 points. 

Example 4: Consider the bridge network shown in
Figure 33.2 with the following three nonlinear 
constraints:

2 2 2 2 2
1 2 3 4 5 1102 2 2 22 2 2

5x1 2 3 42 3 42 3 42 3 4
 2 3 4 53 4 52 2 2 22 2 22 2
52 3 4 53 4 53 42 3 42 3 42 3 43 4 ,  

31 2

54

4 4 4
1 2 3

4 4
4 5

7( ) 7( ) 5( )4 4 44
1 2 32

9( ) 5( ) 1754 4
4 5

x3x x1

xx

) 7( ) 5() 7( ) 5(1 2 322

) 5() 5(4 5


 
 




 


4 444) 7( ) 5() 7( ) 5() 7( ) 5(4 4444
2 3222


9( ) 5( )) 5( )4 4) 5() 5() 5(4
4 5

, 

and 

1 2 4
1 2 3 4

5
5

7 1 22 3
1 2 32 34 4 4 42 3 42 3

9 2005
5 4

xx11 x x322 32 3x333
1 x e48 8 61 2

2 32 32 3

x
5

222 38 888 88 32222 3
2 322 32 3


9 5
5

.

The optimal allocation for maximizing the
reliability of the bridge network is computed to be

* [32343]x � , with * 0.99951sR � , with resource
consumption 1 2 3110, 156.55, 198.443g1 22110 156 55156 55222 3110 156 55156 55222 ,

7 

3

1

2 3

4

5

1

2

4 5

6

Figure 33.1.Figur A five-node, seven-link NSP
m system
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respectively. The total number of points visited by
the algorithm was 3125, whereas the functional 
evaluations were at 173 points only.

33.4.2 System with Multiple Choices 
and Mixed Redundancies 

In many engineering applications, it may be
possible that the system might need the support of 
a mixture of available redundancy types (active-
parallel, k-out-of-m, standby, partial, etc.) at 
various subsystems levels. The following example
illustrates a typical problem type and its 
formulation.

Example 5: Consider a three stage series system. 
The system reliability can be increased by 
choosing a more reliable component out of four 
available candidates at stage one. The second stage
needs active parallel redundancy whereas the third 
stage requires a 2-out-of-3:G configuration. The 
objective is to maximize system reliability with 
three nonlinear constraints. The formulation of the
above problem is as follows.

The objective of the problem can be formulated 
as: 

Maximize ( )
n

s j j(
j

R (Rs j (
�
�

1

, (33.12)

where ( )j jR (j is the jth subsystem reliability
whose form would vary from subsystem to
subsystem and therefore no closed form expression

for sR can be obtained. The constraints can either 
be linear or nonlinear of the type given by (33.11). 
For this case, we have four choices available for 
the components of reliability at the first stage, i.e.,

1

0.88
0.92
0.98
0.99

R

! �
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��
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 (also called ultiple choice).

At the second stage, there is an active
redundant system with single component reliability
equal to 0.81. Clearly, the subsystem reliability
expression for this stage would be

2
2 2( ) 1 (1 0.81)2

xR2 ( 1 (11 (1 , and third stage has a 2-
out-of-x:G subsystem, with unit component 
reliability = 0.77, i.e., the reliability expression for 
this stage is given by 

3

3
3

2

(0.77)(1 0.77)
x

x kR 
G H3x3

(0 77)(1� I J
G HG H
K LkI JI Jk� . 

The constraints are: 

2 34 5 2 45355 2

� 1�� 1� 10 02
� 2
� �� �0.02� 1� 1� 1� 10.02
�
� 2� 21 ( )(1 1( )1 1� �� �1 ( )1 ( )1 1((((1 1( )1 1
� 2� 2� 2� 21 ( )( 5 25 2 35 225 2 , 

1

8
33 5( ) 6533 5(

x1

e 8
33

G H3 1x3 
I J3G HG H3 1x3

K L44I JI J4G H2x

5( )5( )5(5( 3
4
 33I J44

G HG H
44

I 2222
4

2
K LI JI J2 , 

and 

$ %
32 1

4 4$ %2 $8 6 1 2304 4$ %
x3x

6 16 1%4
2 $



4$ %6 1$ %$ %$ . 

Clearly, the upper and lower bounds of stage 
one are 1 and 4, respectively, whereas for the 
others, the bounds would be decided by the 
constraints and can be computed by using (33.6)
(see illustration for how to use the equation). 

By following the algorithmic steps, the optimal
solution is obtained at 9 :* 3,3,6x �  with 

* 0.9702399R � . The resources consumed were
9 :37.87,64.26,155.52g � . The total search points

were 144 with functional evaluations performed at 
23 points only.  

4 

2

5

1

1

2

3

4

3 

Figure 33.2. A bridge network 
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33.4.3 Parametric Optimization 

In many cases, a decision maker would like to 
know the effects on the solution, if a certain change
in constraints values are made. Besides, some 
constraints values may not be known with certainty
(usually they are guessed at). In general, the
problems of these types can be transformed into 
parametric nonlinear programming problems.
Several formulations to such problems can be
found in [2]. A general parametric programming
formulation to reliability design for n-stage SP 
systems is:

Maximize $ %$ %$$ $sR $ $$ $$ss $ $�� , (33.13) 

subject to $ %
1

, , ...
n

i%
j

g b u i m% , 1, 2...i%
�

u ,ibb u� , (33.14) 

where 0 10 0 1 l l0 10 10� � � � � � �... 1, , ...... 1, ,0 11 , ...0 100... 1,... 1,10 111 11 , 1jx �
and are integers, and , iu�  are non-negative
constants. The assumptions made in such
formulations are: 

1. Each stage is essential for overall
operational success of the mission.

2. All components are mutually s-independ-
ent and in the same stage the probability
of failure of components is the same. 

3. All the components at each stage work 
simultaneously, and for the stage to fail,
all components in that stage must fail.

We provide an illustration for the above 
formulation. 

Example 6: Consider a series system having four 
stages and two constraints such that we wish to

Maximize
$ %$ %$ %$ % $ %$ %

$ %$ % $ %$ %

%

%
%$ % %$ % $ $%$ $

%$ % $ $%$ $
%$ $ %%$ $ %%$ $s

%$ $ %%$ $ %%$ $

R � $ %$ % $ $

%$ % $ $
,

subject to

1 2 3 46.2 3.8 6.5 5.3 51.8 101 2 3 42 31 2 32 32 3 �03.8 6.5 5.3 51.83.8 6.5 5.3 51.843 8 6 5 5 36 5 5 33 8 6 52 32 32 32 3

1 2 3 49.5 5.5 3.8 4.0 67.8 15 ,1 2 3 42 3

0 1
1 2 32 32 3 �5 ,
�

5.5 3.8 4.0 67.85.5 3.8 4.0 67.845 5 3 8 4 03 8 4 05 5 3 82 32 32 32 3 . 

The optimal result was obtained at � � 0 37. ,
by varying �  between zero to one inclusive, which 
were the same as obtained by [8]. The optimal
allocation was 9 :* 2,2,3,3x � , with * 0.74401R � ,

and consumed resources were $ %g � . 
The summary of optimal results of the

numerical examples considered in above sections is
shown in Table 33.1. 

33.4.4 Optimal Design of Maintained Systems

33.4.4.1 Availability Maximization with 
Redundancy, Spares and Repair Facility 

The availability is a more appropriate measure than 
reliability or maintainability for maintained 
systems. So the objective for such systems 
becomes to maximize availability subjected to
multiple constraints (linear and/or nonlinear)
taking into account the cost of redundancy, spares 
and repair facility. Therefore, the formulations to 
such problems are mostly concerned, directly or 

Table 33.1. Summary of the optimal results

Ex. # Results Remark 
1. * [2232]x �

* 0.80247sR �

SP system with two 
linear constraints

2. 9 :* 22223x �
* 0.80247sR �

SP system with three
nonlinear constraint 

3. 9 :* 1121143x �
* 0.99951sR �

NSP with a linear 
constraint. 

4. * [32343]x �
* 0.99951sR �

NSP with three 
nonlinear constraints

5. 9 :* 3,3,6x �
* 0.9702399R �

Mixed redundant 
series system with 
three nonlinear 
constraints

6. 9 :* 2,2,3,3x �
* 0.74401R �

Parametric
optimization, Series 
system, two linear 
constraints
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indirectly, with either redundancy or spare parts or 
repairman allocations. Besides, since these three
variables can only assume integer values, 
availability (a nonlinear function of these 
variables) optimization would necessitate a
nonlinear integer programming formulation but 
increasing the actual number of variables to three r
times the number of subsystems as compared to the 
redundancy allocation problems discussed earlier.

The foregoing section has provided the
versatility of the algorithm to deal with redundancy
optimization problems related to non-maintained 
systems. However, it can be applied with equal 
ease to problems such as spares allocation, 
repairmen allocation, etc., for maintained system 
and to multi-criteria optimization. 

Let us consider a SP-system of n stages, and 
each stage not only has redundancy but also has a 
separate maintenance facility like spares and repair 
in terms of repair. The jth stage of such a system is 
shown in Figure. 33.3, where kjkk , jj �j� and �j� , jj are the 
minimum number of components (functional
requirement), spares, and used repairmen provided 
for the jth subsystem, respectively. The problem
statement of the system is as follows: 

Maximize the availability of a series-parallel 
maintained system with redundancy, spares, and 
repair as decision variables, subject to linear 
constraints. Mathematically, the problem can be 
expressed as:

Maximize
1

n
s s
s j

j

AjjAs

�
� ,

where the steady-state subsystem availability is
expressed as ( , ),s

i j j j,,, ,A f (Bs
ii (B , assuming that 

all subsystems can be repaired independently. The 
formulation is subject to the constraints, 

. /
1

n

i ij j j j j i. /
j

g g x k b i m. , 1, 2...,/ij j j j j i. //
�

g . ,,/ij . /B � . 

The details of various symbols, assumptions, 
mathematical formulation and solution of the
above problem using the present algorithm have
been provided in [15, 17].

33.4.5 Computer Communication Network 
Design with Linear/Nonlinear
Constraints and Optimal Global 
Reliability/Availability

A CCN is defined as a collection of nodes, N, at 
which the computing resources reside, which 
communicate with each other via a set of data 
communicating channels (set of links), L. The main 
objective of such a CCN is to provide efficient 
communication among various computer centers in 
order to increase their utility and to make their 
services available to more users. One of the
fundamental desiderata in designing such a system 
is that of global availability, i.e., the probability
that the network is at least simply connected 
(connectedness), which depends on the topological 
layout and the availability of individual computer 
systems and communication facilities.

Assuming link duplexity, a two state model
(working or failed), and the presence/absence of a 
link in a network can be represented by a binary
variable, taking a value either zero or one. The 
problem for such networks can be stated as [16]: 
determine an optimal CCN topology that gives 
maximum overall availability within the given 

NiN

kik

Figure 33.3. A General Subsystem Structure   
of a jth Stage of a Maintained System

j
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permissible cost. In other words, the objective is to 
find a set of links from a given set of links, which
together constitute an optimal CCN topology 
within the budgetary constraints of CsC .
Mathematically, the problem can be expressed as: 
Maximize ( , ... ) ( , ... )s n nA f ( , ... ) ( , ..., ... ) ( , ......f A(B f ( , ... ), ...1 2 n, ... ) ( ,, ... ) ( ,, ... ) ( ,n ) ( ,) ( ,,, ... )..., , 

subject to: 

1

( ... ) {11...1},  

( ) 1

n

j j j jn1 2
j

x ( 1 2j j( ......1 2

with ( ))> (
�
�  (33.15) 

1�

��
n

j j s
j

c x c�j jj � . (33.16) 

The form of sAss entirely depends on the network 
topology and is a minimized expression of global 
reliability/availability of the network, which can be
obtained if the spanning trees of the network are
known. In the above formulation, (33.15) signifies 
the continuity constraint, which ensures that the 
allocation of the decision variables provides a 
globally available network. The summation and 
product sign in the constraint represents binary 
sum and product, respectively. Note that here

( ... ) ( )( )...( )j j j jn j j j j j jnx y ... ) ( )( )...(... ) ( )( )...( j)...(j j jn j j j jj jn j j j j) ( )() ( )() ( )(j jn j j j jj jn j j jj jn j j j j... ) ( )(... ) ( )(... ) ( )(... ) ( )( , and 
( ... )j j jny ......j ...1 jy j is a string of binary variables 
corresponding to the jth link, e.g., if jL connects
the pth and qth nodes, then , 1jp jq,y , and 

jky k p qjk k pk p0 , e.g., if L4L  connects the second 
and fourth nodes in a five node network then 

41 42 43 44 45( ) {01010}4541 42 43 4442 43 44 . Variable jx can be 
either one or zero and represents the
presence/absence of the link in the network. The 
cost constraint (33.16) is self explanatory. The 
details of the above problem and application of the
algorithm can be found in [17, 18].

33.4.6 Multicriteria Redundancy Optimization 

In many situations, the reliability design problems
of complex engineering systems may necessitate
consideration of several non-commensurable 
criteria, which may be equally important. In order 
to offer alternatives to a system designer, it may be 

better to achieve some kind of balance among the 
several conflicting properties rather than to
optimize just one property. This situation can be
mathematically formulated as multicriteria
optimization problem in which the designer’s goal
is to minimize or maximize not a single objective
function but several functions simultaneously. 

A multi-objective optimization problem, in
general, can be stated as follows: 

Find a vector * * * *[ , ... ]* * *
nx , ..., ...� 1 2,,,, , which satisfies

m inequality constraints 

( ) 0, 1, 2...ig m) 0, 1, 2...) 0,00,0,

and p equality constraints 

uh x u p n( ) 0, 1, 2...) 0,u p0, 1, 2...0 , 

such that the vector function
( ) [ ( ), ( )... ( )]kf x f x f x f x( ) [ ( ), ( )... () [ ( ), ( )... (k1 2f ff f( ),),( ),   

gets optimized, where * * * *[ , ... ]* * *
nx , ..., ...� 1 2,,,, is a vector 

of decision variables defined in the n -dimensional 
Euclidean space of variables nE

( ) [ ( ), ( )... ( )]kf x f x f x f x( ) [ ( ), ( )... () [ ( ), ( )... (k1 2f ff f( ),),( ),  is a vector function 
defined in k -dimensional Euclidean space of 
objectives kE , and ( )ig , ( )uh x(u , and ( )lfl  are 
linear and/or nonlinear functions of variables 

* * *... nx x x...1 2,xx x . The constraints (equality and inequality) 
define the feasible region X and any point x  in
X defines a feasible solution.

In fact, the task involved in multi-criteria 
decision making is to find a vector of the decision d
variables which satisfies constraints and optimizes a 
vector function whose elements represent several
objective functions. These functions form a mathe-
matical description of the performance criteria,
which are usually in conflict with each other.ff
Therefore, the term “optimize” here would mean
finding a solution which provides acceptable values 
for all the objective functions simultaneously.

The extension to MIP to such problems
provides an efficient approach for solving
multicriteria reliability design problems. This is 
accomplished in combination with the min-max 
approach for generating Pareto optimal solutions 
for multicriteria optimization. For detailed 
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discussions, examples and their solutions thereof,
the interested reader can refer to [11]. 

33.5 Conclusions

The search approach presented in this chapter is 
quite versatile in dealing with problems involving 
integer programming formulations arising in
reliability design. The approach can be easily aa
programmed using any suitable language a user is 
familiar with. It does not require proving any 
conditions of convexity, concavity or 
differentiability of involved functions (objective 
and constraints) in the optimization process. It is 
simple, requiring only objective function 
evaluations for testing the feasibility of very few 
solution vectors in the search space bounded by the
constraints and a comparison with the previous
value of the evaluated function.  

The major benefit that one can draw from such 
a search pattern is that for a given set of 
constraints, the search pattern is independent of the 
objective function involved. This allows a designer 
to change the objective function without changing 
the search pattern and one only need evaluate the
objective function to arrive at a different optimal
solution. This may be found useful in studying
various configurations of constituent subsystems/ f
components for optimal reliability or any other 
measures of system performance.

The technique is not only an effective and 
efficient tool for problems involving single
objective functions but is also suitable for 
problems involving multiple objective functions. 

References

[1] Becker PW. The highest and lowest reliability 
achievable with redundancy. IEEE Transactions
on Reliability 1977; R-26:209–213. 

[2] Chern MS, Jan RH. Parametric programming 
applied to reliability optimization problems. IEEE 
Transactions on Reliability 1985; R-34(2):165–170. 

[3] Everett III H. Generalized Lagrangian multiplier 
method for solving problems of optimum 
allocation of resources. Operations Research 1963;
11:339–417.  

[4] Federowicz AJ, Mazumdar M. Use of geometrical 
programming to maximize reliability achieved by 

redundancy. Operations Research 1968; 16:948–
954.

[5] Geoffrion AM. Integer programming by implicit 
enumeration and Bala’s method. Society of 
Industrial and Applied Mathematics Review 1967;
9:178–190.

[6] Kuo W, Prasad VR, Tillman FA, Hwang C. 
Optimal reliability design: fundamentals and 
applications. Cambridge University Press, 2001.

[7] Lawler E, Bell MD. A method for solving discrete
optimization problems. Operations Research 1966; 
14:1098–1112.

[8] Misra KB. Reliability optimization of series-
parallel system Part-I: Lagrangian multiplier 
approach Part:II maximum principle approach. 
IEEE Transaction on Reliability 1972; R-
21(4):230–238. 

[9] Misra KB. Search procedure to solve integer 
programming problems arising in reliability design
of a system. International Journal of Systems 
Science 1991; 22(11):2153–2169. 

[10] Misra KB. Reliability analysis and prediction: A 
methodology oriented treatment. Elsevier, 
Amsterdam, 1992.  

[11] Misra KB. Multicriteria redundancy optimization 
using an efficient search procedure. International
Journal of System Science.1991; 22(11):2171–
2183.

[12] Misra K, Misra V. Search method for solving
general integer programming problems. 
International Journal of System Science 1993; 
24(12): 2321–2334. 

[13] Misra KB (Editor). New trends in system
reliability evaluation. Elsevier, Amsterdam, 1993.  

[14] Ohno K. Differential dynamic programming for
solving nonlinear programming problems. Journal 
of Operations Research Society of Japan 1978;
21:371–398.  

[15] Sharma U, Misra KB. Optimal availability design
of a maintained system. Reliability Engineering
and System Safety 1988; 20:146–159. 

[16] Sharma U, Misra KB, Bhattacharji A.K.
Optimization of computer communication mm
networks: Exact and heuristic approaches, 
Microelectronics and Reliability 1990; 30: 43–50. 

[17] Sharma U. On some aspects of reliability design of 
complex systems. Ph. D. Thesis, Guide: Misra KB, 
Reliability Engineering Centre, IIT Kharagpur, 
1990.

[18] Sharma U, Misra KB, Bhattacharji AK. Applica-
tions of an efficient search technique for optimal
design of a computer communication network.
Microelectronics and Reliability 1991; 31:337–341.  

 




