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Abstract: This chapter presents the reliability of discrete-time semi-Markov systems. After some basic
definitions and notation, we obtain explicit forms for reliability indicators. We propose non-parametric
estimators for reliability, availability, failure rate, mean hitting times and we study their asymptotic
properties. Finally, we present a three state example with detailed calculations and numerical evaluations.

24.1 Introduction
In the last 50 years, a lot of work has been carried
out in the field of probabilistic and statistical
methods in reliability. We do not intend to provide
here an overview of the field, but only to point out
some bibliographical references that are close to
the work presented in this chapter. More precisely,
we are interested in discrete-time models for
reliability and in models based on semi-Markov
processes that extend the classical iid or
Markovian  approaches. The generality is
important, because we pass from a geometric
distributed sojourn time in the Markov case, to a
general distribution on the set of non-negative
integers N, like the discrete-time Weibull
distribution.

It is worth noticing here that most mathematical
models for reliability consider time to be
continuous. However, there are real situations

when systems have natural discrete lifetimes. We
can cite here those systems working on demand,
those working on cycles or those monitored only at
certain discrete times (once a month, say). In such
situations, the lifetimes are expressed in terms of
the number of working periods, the number of
working cycles or the number of months before
failure. In other words, all these lifetimes are
intrinsically discrete. However, even in the
continuous-time modeling case, we pass to the
numerical calculus by first discetizing the
concerned model. A good overview of discrete
probability distributions used in reliability theory
can be found in [1].

Several authors have studied discrete-time
models for reliability in a general i.i.d. setting (see
[1-4]). The discrete-time reliability modeling via
homogeneous and non-homogeneous Markov
chains can be found in [5, 6]. Statistical
estimations and asymptotic properties for
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reliability metrics, using discrete-time homo-
geneous Markov chains, are presented in [7]. The
continuous-time semi-Markov model in reliability
can be found in [8-10].

As compared to the attention given to the
continuous-time  semi-Markov  processes and
related inference problems, the discrete-time semi-
Markov processes (DTSMP) are less studied. For
an introduction to discrete-time renewal processes,
see, for instance, [11]; an introduction to DTSMP
can be found in [12—14]. The reliability of discrete-
time semi Markov systems is investigated in
[14-18] and in [22].

We present here a detailed modeling of
reliability, availability, failure rate and mean times,
with closed form solutions and statistical
estimation based on a censured trajectory in the
time interval [0,M]. The discrete time modeling

presented here is more adapted to applications and
is numerically easy to implement using computer
software, in order to compute and estimate the
above metrics.

The present chapter is structured as follows. In
Section 24.2, we define homogeneous discrete-
time Markov renewal processes, homogeneous
semi-Markov chains and we establish some basic
notation. In Section 24.3, we consider a repairable
discrete-time semi-Markov system and obtain
explicit forms for reliability measures: reliability,
availability, failure rate and mean hitting times.
Section 24.4 is devoted to the non-parametric
estimation. We first obtain estimators for the
characteristics of a semi-Markov system. Then, we
propose estimators for measures of the reliability
and we present their asymptotic properties. We end
this chapter by a numerical application.

24.2 The Semi-Markov Setting

In this section we define the discrete-time semi-
Markov model, introduce the basic notation and
definitions and present some probabilistic results
on semi-Markov chains.

Consider a random system with finite state
space E ={l,...,s} We denote by M, the set of

matrices on EXE and by M, (IN)the set of
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matrix-valued functions defined on the set of non-
negative integers N, with values in M. For

Ae M, (N), we write 4=(A(k);ke N), where,
for ke N fixed, A(k)=(4,(k);ke E)e M. Put

1, € M, for the identity matrix and 0, € M for
the null matrix.

We suppose that the evolution in time of the
system is described by the following chains (see
Figure 24.1.):

e The chain J=(J,), With state space
E, where J, is the system state at the
n th jump time.
e The chain S=(§,),, with state space
N, where S, is the nth jump time. We
that S, =0
0<S§,<§5,<...<8,<8,,, <....

suppose and

e The chain X =(X,) . with state space

N", where X, is the sojourn time in

state J,_, before the nth jump. Thus, for

n-1
all ne N, wehave X, =5,-S5, ,.

A fundamental notion for semi-Markov systems is

that of semi-Markov kernel in discrete time.

Definition 1: A  matrix-valued  function
qe M, (N) is said to be a discrete-time semi-

Markov kernel if it satisfies the following three
properties:

1. 0<gq,(k)<li,je E,ke N;

2. ¢,(0)=0and Y g,(k)<Li,j€E;
k=0

3. iZqij(k):l,ie E.

k=0 jeE

Definition 2: The chain (J,S)=(J,,S,),n 1S said
to be a Markov renewal chain (MRC) if for all
ne N, for all i,je E and for all ke N it

satisfies almost surely
P("]nH
=P

= i8Sy =Sy =kJy... T ,.S,,...8,)

— S, =k,

n+l

=8

n+l n+l n+l
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states

A (X, ) : sojourn times
(J, ) : states of the system
X, (S,) : jump times
=3 x —
Uiy ——
Xon
.=k} —<
N,
I I I I 7
S, S, S, ... S, S.i ... time

Figure 24.1. A typical sample path of a Markov renewal
chain

Moreover, if the previous equation is independent
of n, (J,S)is said to be homogeneous and the

discrete-time semi-Markov kernel q is defined by
q(/ (k) = P(JnJrl = j’ Xn+l = k']n = l)

Figure 24.1 provides a representation of the
evolution of the system.

We also introduce the cumulative semi-Markov

kernel as the matrix-valued function
Q = (Q(k);ke N)e M, (N) defined by
Qij (k) = P(JnH = j’ Xn+l S k Jn = l)
(24.1)

k
=>q;(.i,j€ E,ke N.

1=0
Note that for (J,S)a Markov renewal chain, we

can easily see that (J,),n 1is a Markov chain,

called the embedded Markov chain associated to
MRC (J,S). We denote by p=(p;), cx € My the

transition matrix of (J,),.n defined by
p; =P, =jlJ, =i, je E;ne N.
We also assume that p, =0, ¢,(k)=0, i€k,

n+l

ke N, ie, we do not allow transitions to the
same state. Let us define now the conditional
sojourn time distributions depending on the next
state to be visited and the sojourn time
distributions in a given state.

Definition 3. For all i, j€ E, let us define:
1. f,;(), the conditional distribution of
X,..ne N,
£,k =P(X,, =k

J,=i,J,., =Jj),ke N.

n+l

2. F;(), the conditional cumulative
distribution of X,,,,n€ N,
E](k) = 1p()(rlﬂ < kJn = i"])H—l = j)

= Zk:fl.j(l),ke N.
=0

Obviously, for all i, j€ E and for allke N U{e},
we have

(k Lifp. #0,
£ - q;( )/pl{ D,
’ 1{k=w},1f pij =0.
Definition 4: For all ie E, let us define:
1. %;(-), the sojourn time distribution in state
i:
(k) =P(X,,, =k|J, =i) = q,(k).ke N.
JEE
2. H,(), the

distribution function in state i :

k
J, =)= h().keN.
=0

sojourn time cumulative

H,(k)=PX,., <k

n+l

We consider that in each state i the chain stays at
least one time unit, i.e., for any state j; we have

1;(0) = q;(0) = h,(0) = 0.
Let us also denote by m; the mean sojourn time in
astate ie E,

m, =E(S,|J, =i)=_(1-H,(k))

k=0

For G the cumulative distribution function of a
certain .v. X, we denote its survival function by

5(k)=1—G(k)=P(X>k),ke N. Thus, for all
states i,je€ E, we put Fy and F, for the

corresponding survival functions.
The operation which will be commonly used
when working on the space M, (IN) of matrix-

valued functions will be the discrete-time matrix
convolution product. In the sequel we recall its
definition, we see that there exists an identity
element, we define recursively the n-fold
convolution and we introduce the notion of the
inverse in the convolution sense.
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Definition 5: Let A,Be M.(IN) be two matrix-
valued functions. The matrix convolution product
A*B is a matrix-valued function Ce M (IN)
defined by

k
C,(k)y=>">"4,(k=1)B,(1).i,j€ E.ke N.

reE 1=0
The following result concerns the existence of the
identity element for the matrix convolution product
in discrete time.
Lemma 1: Let ol =(d,;(k);i,j€ E)e M (N) be

the matrix-valued function defined by
|1 ifi=jandk =0,
d; (k)=

0 elsewhere.
Then, 8 satisfies
ol *A=A*0l = A,Ae M (N),

i.e., Ol is the identity element for the discrete-time
matrix convolution product.

The power in the sense of convolution is defined
straightforwardly, using Definition 5.
Definition 6: Let A€ M (IN) be a matrix-valued

function and ne N. The n-fold convolution A™

is a matrix-valued function in M, (IN) defined
recursively by:
O (1Y —
4;7 (k) =d;(k),

1 —
AV (k) =4, (),

k
AV (k)= A, (k=D)AL (Dn=2,ke N.

reE =0

For a MRC (J,S) the n-fold convolution of the
semi-Markov kernel has the property expressed in
the following result.

Lemma 2: Let (J,5)=(J,,S,),n be a Markov
renewal chain and q= (q,.j(k);i,je E, ke N) be
its associated semi-Markov kernel. Then, for all
n,ke N such that n >k +1, we have q"” (k) = 0.

This property of the discrete-time semi-Markov
kernel convolution is essential for the simplicity
and the numerical exactitude of the results obtained
in discrete time. We need to stress the fact that this
property is intrinsic to the work in discrete time
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and it is no longer valid for a continuous-time
Markov renewal process.

Definition 7: Let Ae M;(IN) be a matrix-valued
function. If there exists a Be M, (IN) such that
B*A=0I, then B is called the left inverse of A

in the convolution sense and it is denoted by 4",

It can be shown that given a matrix-valued
function A€ M, (IN)such that det4(0) #0, then

the left inverse B of A exists and is unique (see
[14] for the proof).

Let us now introduce the notion of the semi-
Markov chain, strictly related to that of the Markov
renewal chain.

Definition 8: Let (J,S) be a Markov renewal

chain. The chain Z =(Z,),. is said to be a semi-

Markov chain associated to the MRC (J,S), if
Zy=Jyu.ke N,

where

Ny =fheN|s, <k} (42
is the discrete-time counting process of the number
of jumps in [1,k] € N. Thus, Z, gives the system

state at time k. We also haveJ,6 =Z; ,ne .

Let the row vector a = (a(l),...,a(s)) denote the
initial distribution of the semi-Markov chain
Z=(Z)en»> Where a(i) =P(Z, =i)=P(J, =i),
ie E.

Definition 9: The transition function of the semi-
Markov chain Z is the matrix-valued function
Pe M, (N) defined by

Py(k)=P(Z, = j|Z,=i),i,je E.ke N.

The following result consists in a recursive formula
for computing the transition function P of the
semi-Markov chain Z.

Proposition 1: For all i, je E and for all ke N,
we have

k
Py(k) =1,y (1= H,(k)+ YY" q, (DB, (k= 1),

reE 1=0
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where
1 ifi=g,
L=
0 elsewhere.
Let us define for all ke N :
o [(k)y=1I, for ke N, 1= (k);ke N);
o  H(k):=diag(H,(k);ie E),
H:=(H(k);ke N).
In matrix-valued function notation, the transition
function P of the semi-Markov chain verifies the
equation
P=I-H+q*P.
This is an example of what is called the discrete-
time Markov renewal equation. We know that the
solution of this equation exists, is unique (see [14])
and, for all k€ IN, has the following form:

P(k) = (1 - )" * (1~ H)(k)

S (1 dian(. (24.3)
(o —q)" " * (1 - diag(Q-D)(k).

24.3 Reliability Modeling

In this section we consider a reparable discrete-
time semi-Markov system and we obtain closed
form solutions for reliability measures: reliability,
availability, failure rate, mean time to failure, mean
time to repair.

24.3.1 State Space Split

Consider a system (or a component) S whose
possible states during its evolution in time are
E={1,...,s}. Denote by U={1,...,sl} the subset
of working states of the system (the up-states) and
by D={s, +1,...,s} the subset of failure states (the
down-states),  with 0<s <s (obviously,
E=UUD and UND=0, U#@, D#@). One
can think of the states of U as different operating
modes or performance levels of the system,
whereas the states of D can be seen as failures of
the system with different modes. According to the
partition of the state space in up-states and down-
states, we will partition the vectors, matrices or
matrix functions we are working with.

Firstly, for a,p,q(k),f(k),F(k),H(k),Q(k), we
consider the natural matrix partition corresponding
to the state space partition U and D. For
example, we have

p:(p“ plzJ and q(k)=(q“(k) qlz(k)}
P P2 q, (k) q, (k)
Secondly, for P(k) we consider the restrictions to

UxU and DxD induced by the corresponding
restrictions of the semi-Markov kernel q(k). To be

more specific, using the partition given above for
the kernel q(k), we note that:

P (k)= (o —q,) " * (1~ diag(Q-1),,)(k),
Py, (k)= (ol _qzz)(_l) *(I-diag(Q-1),, )(k).
The reasons fort taking this partition for P(k) can
be found in [19].
For m,ne N" such that m >n, let 1, denote

the m-dimensional column vector whose n first
elements are 1 and last m—n elements are 0; for
me N” let 1, denote the m-column vector whose

elements are all 1, thatis, 1, =1

m,m*

24.3.2 Reliability

Consider a system § starting to function at time
k=0 and let 7, denote the first passage time in
subset D, called the lifetime of the system, i.e.,
T, = inf{ke N|Zk € D} and inf@ = oo,
The reliability of a discrete-time semi-Markov
system S at time ke N, that is the probability
that the system has functioned without failure in
the period [0,4], is
Rk)y=P(T,>k)=P(Z,eU,n=0,...,k).
The following result gives the reliability of the

system in terms of the basic quantities of the semi-
Markov chain.

Proposition 2: The reliability of a discrete-time
semi-Markov system at time k€ IN is given by
R(k) = alpll(k)ls,

=a,(0 —q;)"" *(I-diag(Q- 1), )(K)L, .
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24.3.3 Availability

The point-wise (or instantaneous) availability of a
system S at time k€ IN is the probability that the
system is operational at time k& (independently of
the fact that the system has failed or not in[0,%) ).
So, the point-wise availability of a semi-Markov
system at time k€ N is
Ay =P(Z, € U) =Y a(i)4,(k),
i€k

where we have denoted by A,(k) the system’s
availability at time ke IN, given that it starts in
state i€ E,

A,(k)=P(Z, e U|z, =i).
The following result gives an explicit form of the

availability of a discrete-time semi-Markov
system.

Proposition 3: The point-wise availability of a
discrete-time semi-Markov system at time ke IN
is given by

A(k)=aP(k)1,

=a(dl -q)"" *(I-diag(Q- 1)KL,

24.3.4 The Failure Rate

We consider here the classical failure rate,
introduced by Barlow, Marshall and Proschan in
1963 (see [20]). We call it the BMP-failure rate
and denote it by A(k),ke IN.

Let 5 be a system starting to function at time
k =0. The BMP-failure rate at time k€ IN is the
conditional probability that the failure of the
system occurs at time k, given that the system has
worked until time &k —1.

For a discrete-time semi-Markov system, the
failure rate at time £ =1 has the expression
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A(k) = P(T, = k[T, 2 k),
__R(k)
R(k-1)’
0, otherwise,
_ a1P11 (k)lsl
= o, P (k-DI1
0, otherwise.

R(k-1)#0, 244)

, R(k—1)#0,

The failure rate at time k=0 is defined by
A(0) :=1-R(0).

It is worth noticing that the failure rate A(k) in
discrete-time case is a probability function and not
a general positive function as in the continuous-
time case. There exists a more recent failure rate,
proposed in [2] as being adapted to reliability
studies carried out in discrete time. Discussions
justifying the use of this discrete-time adapted
failure rate can also be found in [3, 4]. In this
chapter we do not present this alternative failure

rate. Its use for discrete-time semi-Markov systems
can be found in [18, 19].

24.3.5 Mean Hitting Times

There are various mean times which are interesting
for the reliability analysis of a system. We will be
concerned here only with the mean time to failure
and the mean time to repair.

We suppose that a, =0, i.e, the system starts
in a working state. The mean time to failure
(MTTF) is defined as the mean lifetime, i.e., the
expectation of the hitting time to down-set
D, MTTF = E(T,).

Symmetrically, consider now that a, =0, ie.
the system fails at the time ¢=0. Denote by T,
the first hitting time of the up-set U, called the
repair duration, i.e.,

T, =inflke N|Z, e U}
The mean time to repair (MTTR) is defined as the
mean of the repair duration, i.e., MTTR := E(T).
The following result gives expressions for the
MTTF and the MTTR of a discrete-time semi-
Markov system.
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Proposition 4: If the matrices /—p,, and [ -p,,
are non-singular, then

MTTF =0,(I-p,,) 'm,,

MTTR = 0,(I-p,,) "' m,,
where m=(m, m,)" is the partition of the mean
sojourn times vector corresponding to the partition
of the state space E in up-states U and down-

states D. If the matrices are singular, we put
MTTF =o0 or MTTF = co.

24.4 Reliability Estimation

The objective of this section is to provide
estimators for reliability indicators of a system and
to present their asymptotic properties. In order to
achieve this purpose, we firstly show how
estimators of the basic quantities of a discrete-time
semi-Markov system are obtained.

24.4.1 Semi-Markov Estimation

Let us consider a sample path of a Markov renewal
chain (J,,S,),.n, censored at fixed arbitrary time

MeN,
}[(M) :(J09X1 ...,JN(M)_lsXN(M)’JN(M)’uM)’

where N (M) is the discrete-time counting process

of the number of jumps in (see (24.2)) and
uy =M =Sy, is the censored sojourn time in

the last visited state J -

Starting from the sample path #(M), we will

propose empirical estimators for the quantities of
interest. Let us firstly define the number of visits to
a certain state, the number of transitions between
two states and so on.
Definition 10: For all states i, je€ E and positive
integer k <M, define:
N(M)-1
. NM)= Zl{f -;) - the number of visits
n=0
to state , up to time M;

N(M)
2. N,M)= ZI{JH:,.J”:j} - the number of
n=1
transitions from i to j,up to time M;
N(M)

3. Ny(kM)= Y1, ., .y -  the

n=l1
number of transitions from i to j,up to
time M, with sojourn time in state i
equalto k1<k<M.

For a sample path of length M of a semi-Markov
chain, for any states i, j€ £ and positive integer

ke N,k <M, we define the empirical estimators
of the transition matrix of the embedded Markov
chain p;, of the conditional distributions of the

sojourn times f (k) and of the discrete-time semi-
Markov kernel g, (k) by:

ﬁjj(M):: N;](M)/N;(M),
[k, M) =N, (k, M)/N, (M),
q;(k, M) = N, (k,M)/N,(M).

(24.5)

Note that the proposed estimators are natural
estimators. For instance, the probability p, that
the system goes from state i to state ;j is estimated
by the number of transitions from ito j, devised
by the number of visits to state i. As can be seen in
[17] or [19], the empirical estimators proposed in
(24.5) have good asymptotic properties. Moreover,
they are in fact approached maximum likelihood
estimators (Theorem 1). In order to see this,
consider the likelihood function corresponding to
the history #'(M)
N(M)

L(M) = Hp./HJk fJHJ,( (Xk )ﬁjwm (uM )’

k=1
where 17,.(-) is the survival function in state i. We

have the following result concerning the
asymptotic behavior of u,, (see [19] for a proof).

Lemma 3: For a semi-Markov chain (Z,),.n we

have u,, /M —*—0, as M — oo,
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Let us consider the approached likelihood function

N(M)

LM)y=[1ps 0o (X0 (24.6)

obtained by neglecting the last term in the
expression of L(M). Using Lemma 3, we see that

the maximum likelihood function L(M) and the
approached maximum likelihood function Z,(M)
are asymptotically equivalent, as M tends to
infinity. Consequently, the estimators obtained by
estimating L(M) or L,(M) are asymptotically
equivalent, as M tends to infinity.

The following result shows that
p,(M), f,(k,M)and g,(k,M) defined in (24.5)
are obtained in fact by maximizing L,(M) (a
proof can be found in [17]).

Theorem 1: For a sample path of a semi-Markov
chain (Z,),., of arbitrary fixed length M e N,

the empirical estimators of the transition matrix of
the embedded Markov chain (J,) of the

conditional distributions of the sojourn times and
of the discrete-time semi-Markov kernel, proposed
in (24.5), are approached nonparametric maximum
likelihood estimators, ie., they maximize the
approached likelihood function L, (M) given in
(24.0).

As any quantity of interest of a semi-Markov
system can be written in terms of the semi-Markov
kernel, we can now use the kernel estimator
q;(k,M) in order to obtain plug-in estimators for

neN»

any functional of the kernel. For instance, the
cumulative semi-Markov kernel
Q=(Q(k);ke N) defined in (24.1) has the

estimator
—_ k -
QUk, M) =) q(l,M).
I=1

Similarly, using the expression of the transition
function of the semi-Markov chain Z given in
(24.3), we get its estimator

P(k, M) = (& —q) " (M) * (I - diag(Q(-, M) - 1))(k).
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Proofs of the consistency and of the asymptotic
normality of the estimators defined up to now can
be found in [16, 17, 19].

We are able now to construct estimators of the
reliability indicators of a semi-Markov system and
to present their asymptotic properties.

24.4.2 Reliability Estimation

The expression of the reliability given in
Proposition 2, together with the estimators of the
semi-Markov transition function and of the
cumulative semi-Markov kernel given above,
allow us to obtain the estimator of the system’s
reliability at time & given by
R(k,M)=a,P, (k,M)1, . (24.7)
Let us give now the result concerning the
consistency and the asymptotic normality of the
reliability estimator. A proof of the asymptotic
normality of reliability estimator, based on CLT
for Markov renewal processes (see [21]) can be
found in [17]. An alternative proof based on CLT
for martingales, can be found in [19].
Theorem 2: For any fixed arbitrary positive integer
ke N, the estimator of the reliability of a
discrete-time semi-Markov system at instant & is
strongly consistent, i.e.,

|R(k, M) = R(k)| —= 0,25 M — =,
and asymptotically normal, i.e., we have
M Rk, M) = RO —2— (0,028 ) as M — oo,
with the asymptotic variance

oi (k) = Z#{Z{D —l{feu}Zam\Iﬁ,} g, (k)

j=1 €U

_|:ZY:(D;/ *ql,'f_l{ieU}Za(t)l//ti*Qi'J:| (k) >

Jj=1 telU

where

D =YY amy, *v, *([-diag@Q-1)),,

nel reU

v(k):=>Y q" (k), Wk)=) Q" k),

n=0 n=0
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and g, is the mean recurrence time of the state i
for the chain Z.

24.4.3 Availability Estimation

Taking into account the expression of the
availability given in Proposition 3, we propose the
following estimator for the availability of a
discrete-time semi-Markov system:

Ak, M) =aP(k,M)1,, .

The following result concerns the consistency and
the asymptotic normality of the reliability
estimator. A proof can be found in [19].

Theorem 3: For any fixed arbitrary positive integer
ke N, the estimator of the availability of a

discrete-time semi-Markov system at instant k is
strongly consistent and asymptotically normal, in
the sense that

‘;l(k,M) - A(k)‘Lw, as M — oo,
and

M Gk, M)~ A —2— 3 (0,02 (K)) as M — o,
with the asymptotic variance
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R(k,M) 5
- 1-——"2  R(k-1L,M)#0,k>1,
Ak,M)=1" R(k-1,M) ( )

0, R(k-1,M)=0,k>1,
A(0,M):=1-R(0,M).

For the failure rate estimator we have a similar
result as for reliability and availability estimators.
A proof can be found in [18, 19].

Theorem 4: For any fixed arbitrary positive integer
ke N, the estimator of the failure rate of a

discrete-time semi-Markov system at instant & is
strongly consistent and asymptotically normal, i.e.,

Ak, M) = A —=0,a5 M — e,
and
M Lk, M) = A |2 3(0,02() ) as M — oo,
swith the asymptotic variance
o (k) =07 (k)/ R* (k=1),
where o} (k) is given by
ol (k)=

iﬂﬁ{Rz(k)i{D;f _1{[6,]}20{(;)\11,[} *g,(k-1)

el

2
03("):2%{2[%—l{feu}zl‘,“(f)‘l’ﬁ} *q; (k) +R2(k—1)2|:Dl§./—l{igu}za(t)\yn:| *q, (k) =17 (k)

i=1 j=1

{2(0,, *q, 1oy W, *Qi,»ﬂ 0,

J=1

where D, = 2 Za(n)l//m. ok (I-diag(Q-1)),.

n=1 ret

24.4.4 Failure Rate Estimation

For a matrix function 4€ M, (IN), we denote by
A" e M, (N)
A" (k) = A(k +1),ke N. Using the expression of

the failure rate obtained in (24.4), we obtain the
following estimator:

the matrix function defined by

el

+2ROU=DROOY Loy DY Y e

j=l1 teU

1y (DY ) S ey, - (DY) DY

telU

-t T, o |4 <k—1>},

teU eU

where

T,(k)= Y [R)DY *q, (k~1)~ Rk ~1)DY *q, (k)
Jj=1

— RNy Y (O, * 0, (k—1)

teU
+ Rk =Dy Y (O, * 0, (k)
teU

and D, is given in Theorem 2.
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24.4.5 Asymptotic Confidence Intervals

The previously obtained asymptotic results allow
one to construct asymptotic confidence intervals
for reliability, availability and failure rate. For this
purpose, we need to construct a consistent
estimator of the asymptotic variances.

Firstly, using the definitions of wy(k) and of

Y(k) given in Theorem 2, we can construct the
corresponding estimators y(k,M) and ‘i’(k,M ).

One can check that these estimators are strongly
consistent. Secondly, for k£ <M, replacing q(k),

Q(k),

estimators in the asymptotic variance of the
reliability given in Theorem 2, we obtain an

y(k) and W(k) by the corresponding

estimator & (k,M) of the asymptotic variance
oq(k). From the strong consistency of the
q(k, M),  QUk,M), (kM)
W(k,M) (see [17, 19]), we obtain that &2(k, M)

estimators and

converges almost surely to o (k), as M tends to

infinity. Finally, the asymptotic confidence interval

of R(k) atlevel 100(1-%)%, y € (0,]), is:

G, (k, M) & (kM)
JM N7

where u,_,, is the (1-y/2) fractile of #(0,1). In

the same way, we can obtain the other confidence
intervals.

[ﬁ(k,M) —uy JR(k, M) + Up_yp

24.5 A Numerical Example

Let us consider the three-state discrete-time semi-
Markov system described in Figure 24.2.

The state space E ={1,2,3} is partitioned into
the up-state set U ={1,2} and the down-state set
D={3}

The system is defined by the initial distribution
a=(100), by the transition probability matrix p
of the embedded Markov chain (J,),, and by
the conditional distributions of the sojourn times:

V. Barbu and N. Limnios

Ge(p)

W b

Figure 24.2. A three-state semi-Markov system

0 1 0
p=1095 0 0.05],
1 0 0
0 folk) 0
f(k) =| f2 (k) 0 S (k) ke N.
Suk) 0 0

We consider the following distributions for the
conditional sojourn time:

—f,, is a geometric distribution on N, of
parameter p =0.8.

—fu = W, s So = Wy b» S = W, , are
discrete-time, first type Weibull distributions (see
[1]), defined by w,,0):=0,
W,,(=q"" =g, k21,
¢q,=03, b =05 ¢,=05 b,=07, g,=0.6,
b, =0.9. Note that we study here a strictly semi-

where we take

Markov system, which cannot be reduced to a
Markov one.

Using the transition probability matrix and the
sojourn time distributions given above, we have
simulated a sample path of the three state semi-
Markov chain, of length M. This sample path

allows us to compute N, (M), N, (M) and
N;(k,M), using Definition 10, and to obtain the
py(M),  f,(k,M) and
q;(k,M) from (24.5). Consequently, we can

empirical estimators
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obtain the estimators Q(k,M), y(k,M) and

W(k,M). Thus, from (24.7), we obtain the

estimator of the reliability. In Theorem 2, we have
obtained the expression of the asymptotic variance
of reliability. Replacing q(k), Q(k), w(k) and

Y (k) by the corresponding estimators, we get the

true value of reliability
empirical estimator: M=4000
o8t — - — - — empirical estimator: M=5000

* empirical estimator: M=10000

0.9}

[
06f
0s5f
04t B

0.3} o~

02f -3

o1t s

o)
0 50 100 150 200 250 300

Figure 24.3. Consistency of reliability estimator

— true value of 63
ARk ge ° empirical estimator: M=4000
1ol 0 ~ empirical estimator: M=5000 ||
TN * * empirical estimator: M=10000
*
*
N
8 * 4
*
N
N

. *

6 N * g
N *
. *
*
*
*
a * q
*
*
N DN
N *
2 N o 4
EE ™
T ey
50 100 150 200 250 300

Figure 24.4. Consistency of &5 (k, M)

true value of Reliability | |
*  empirical estimator

0.9\

0.8F ™ — - — 95% confidence interval

0.7F \
06 N\
05f A

0.4t AN

L L i 0 3
0o 50 100 150 200 250 300

Figure 24.5. Confidence interval of reliability

estimator & (k,M) of the asymptotic variance

o (k). This estimator will allow us to have the

asymptotic confidence interval for reliability, as
shown in Section 24.4.5.

The consistency of the reliability estimator is
illustrated in Figure 24.3, where reliability
estimators obtained for several values of the
sample size M are drawn. We can note that the
estimator approaches the true value, as the sample
size M increases. Figure 24.4 presents the
estimators of the asymptotic variance of the
reliability o (k), obtained for different sample
sizes. Note also that the estimator approaches the
true value, as M increases. In Figure 24.5, we
present the confidence interval of the reliability.
Note that the confidence interval covers the true
value of the reliability.
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