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Abstract: This chapter presents the reliability of discrete-time semi-Markov systems. After some basic 
definitions and notation, we obtain explicit forms for reliability indicators. We propose non-parametric 
estimators for reliability, availability, failure rate, mean hitting times and we study their asymptotic 
properties. Finally, we present a three state example with detailed calculations and numerical evaluations. 

24.1 Introduction 

In the last 50 years, a lot of work has been carried 
out in the field of probabilistic and statistical 
methods in reliability. We do not intend to provide 
here an overview of the field, but only to point out 
some bibliographical references that are close to 
the work presented in this chapter. More precisely, 
we are interested in discrete-time models for 
reliability and in models based on semi-Markov 
processes that extend the classical i.i.d. or 
Markovian approaches. The generality is 
important, because we pass from a geometric 
distributed sojourn time in the Markov case, to a 
general distribution on the set of non-negative 
integers ,N  like the discrete-time Weibull 
distribution.  

It is worth noticing here that most mathematical 
models for reliability consider time to be 
continuous. However, there are real situations 

when systems have natural discrete lifetimes. We 
can cite here those systems working on demand, 
those working on cycles or those monitored only at 
certain discrete times (once a month, say). In such 
situations, the lifetimes are expressed in terms of 
the number of working periods, the number of 
working cycles or the number of months before 
failure. In other words, all these lifetimes are 
intrinsically discrete. However, even in the 
continuous-time modeling case, we pass to the 
numerical calculus by first discetizing the 
concerned model. A good overview of discrete 
probability distributions used in reliability theory 
can be found in [1]. 

Several authors have studied discrete-time 
models for reliability in a general i.i.d. setting (see 
[1–4]). The discrete-time reliability modeling via 
homogeneous and non-homogeneous Markov 
chains can be found in [5, 6]. Statistical 
estimations and asymptotic properties for 
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reliability metrics, using discrete-time homo-
geneous Markov chains, are presented in [7]. The 
continuous-time semi-Markov model in reliability 
can be found in [8–10].  
     As compared to the attention given to the 
continuous-time semi-Markov processes and 
related inference problems, the discrete-time semi-
Markov processes (DTSMP) are less studied. For 
an introduction to discrete-time renewal processes, 
see, for instance, [11]; an introduction to DTSMP 
can be found in [12–14]. The reliability of discrete-
time semi Markov systems is investigated in  
[14–18] and in [22]. 

We present here a detailed modeling of 
reliability, availability, failure rate and mean times, 
with closed form solutions and statistical 
estimation based on a censured trajectory in the 
time interval ].,0[ M  The discrete time modeling 
presented here is more adapted to applications and 
is numerically easy to implement using computer 
software, in order to compute and estimate the 
above metrics.  

The present chapter is structured as follows. In 
Section 24.2, we define homogeneous discrete-
time Markov renewal processes, homogeneous 
semi-Markov chains and we establish some basic 
notation. In Section 24.3, we consider a repairable 
discrete-time semi-Markov system and obtain 
explicit forms for reliability measures: reliability, 
availability, failure rate and mean hitting times. 
Section 24.4 is devoted to the non-parametric 
estimation. We first obtain estimators for the 
characteristics of a semi-Markov system. Then, we 
propose estimators for measures of the reliability 
and we present their asymptotic properties. We end 
this chapter by a numerical application.  

24.2 The Semi-Markov Setting 

In this section we define the discrete-time semi-
Markov model, introduce the basic notation and 
definitions and present some probabilistic results 
on semi-Markov chains. 

Consider a random system with finite state 
space { }.sE ,,1 …=  We denote by EM  the set of 
matrices on EE ×  and by )(NEM the set of 

matrix-valued functions defined on the set of non-
negative integers ,N  with values in EM . For 

),(NEA M∈  we write ( )N∈= kkAA );( , where, 
for N∈k  fixed, .));(()( Eij EkkAkA M∈∈=  Put 

EE M∈I  for the identity matrix and EE M∈0  for 
the null matrix. 

We suppose that the evolution in time of the 
system is described by the following chains (see 
Figure 24.1.):  

• The chain N∈= nnJJ )( with state space 
,E  where nJ  is the system state at the 

n th jump time. 
• The chain N∈= nnSS )( with state space 

,N  where nS  is the n th jump time. We 
suppose that 00 =S  and 

…… <<<<<< +1210 nn SSSS . 
• The chain *)(

N∈= nnXX  with state space 

,*N  where nX  is the sojourn time in 
state 1−nJ  before the n th jump. Thus, for 

all *N∈n , we have 1−−= nnn SSX . 

A fundamental notion for semi-Markov systems is 
that of semi-Markov kernel in discrete time. 
Definition 1: A matrix-valued function  

)(NEM∈q  is said to be a discrete-time semi-
Markov kernel if it satisfies the following three 
properties: 

1. ;,,,1)(0 N∈∈≤≤ kEjikqij   

2. 0)0( =ijq  and  ;,,1)(
0

Ejikq
k

ij ∈≤∑
∞

=

 

3. .,1)(
0

Eikq
k Ej

ij ∈=∑∑
∞

= ∈

  

Definition 2: The chain N∈= nnn SJSJ ),(),(  is said 
to be a Markov renewal chain (MRC) if for all 

,N∈n  for all Eji ∈,  and for all N∈k  it 
satisfies almost surely 
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Figure 24.1. A typical sample path of a Markov renewal 
chain 

Moreover, if the previous equation is independent 
of ,n ),( SJ is said to be homogeneous and the 
discrete-time semi-Markov kernel q  is defined by 

).,(:)( 11 iJkXjJkq nnnij ==== ++P  
Figure 24.1 provides a representation of the 
evolution of the system. 
 
We also introduce the cumulative semi-Markov 
kernel as the matrix-valued function 

( ) )();( NN Ekk M∈∈= QQ defined by 

 
.,,),(

),(:)(

0

11

∑
=

++
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=≤==
k
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ij

nnnij

kEjilq

iJkXjJkQ

N

P

 (24.1) 

Note that for ),( SJ a Markov renewal chain, we 
can easily see that N∈nnJ )(  is a Markov chain, 
called the embedded Markov chain associated to 
MRC ).,( SJ  We denote by EEjiijp M∈= ∈,)(p  the 
transition matrix of N∈nnJ )(  defined by 

.,,),( 1 NP ∈∈=== + nEjiiJjJp nnij  
We also assume that ,0=iip  ,0)( =kqii  ,Ei ∈  

,N∈k  i.e., we do not allow transitions to the 
same state. Let us define now the conditional 
sojourn time distributions depending on the next 
state to be visited and the sojourn time 
distributions in a given state. 
Definition 3: For all ,, Eji ∈  let us define: 

1. ),(⋅ijf  the conditional distribution of 
,,1 N∈+ nX n  

.),,(:)( 11 NP ∈==== ++ kjJiJkXkf nnnij  

2. ),(⋅ijF  the conditional cumulative 
distribution of ,,1 N∈+ nX n  

.,)(

),(:)(

0

11

N

P

∈=

==≤=

∑
=

++

klf

jJiJkXkF
k

l
ij

nnnij

 

Obviously, for all Eji ∈,  and for all { },∞∈ ∪Nk  
we have 

 

{ }⎩
⎨
⎧
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Definition 4: For all ,Ei ∈  let us define: 

1. ),(⋅ih  the sojourn time distribution in state 
:i   

.,)()(:)( 1 NP ∈==== ∑
∈

+ kkqiJkXkh
Ej

ijnni  

2. ),(⋅iH  the sojourn time cumulative 
distribution function in state :i  

.,)()(:)(
0

1 NP ∈==≤= ∑
=

+ klhiJkXkH
k

l
inni  

We consider that in each state i the chain stays at 
least one time unit, i.e., for any state j  we have 

.0)0()0()0( === iijij hqf  
Let us also denote by im  the mean sojourn time in 
a state ,Ei ∈  

( ).)(1)(
0

01 ∑
≥

−===
k

ii kHiJSm E  

 
For G  the cumulative distribution function of a 
certain r.v. ,X  we denote its survival function by 

.),()(1)( N∈>=−= kkXkGkG P  Thus, for all 

states ,, Eji ∈  we put ijF  and iH  for the 
corresponding survival functions. 

The operation which will be commonly used 
when working on the space )(NEM  of matrix-
valued functions will be the discrete-time matrix 
convolution product. In the sequel we recall its 
definition, we see that there exists an identity 
element, we define recursively the n-fold 
convolution and we introduce the notion of the 
inverse in the convolution sense. 
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Definition 5: Let )(BA, NEM∈  be two matrix-
valued functions. The matrix convolution product 

BA*  is a matrix-valued function )(C NEM∈  
defined by 

.,,),()(:)(
0

N∈∈−=∑∑
∈ =

kEjilBlkAkC
Er

k

l
rjirij  

The following result concerns the existence of the 
identity element for the matrix convolution product 
in discrete time.  
Lemma 1: Let )(),);(( NEij EjikdI M∈∈=δ  be 
the matrix-valued function defined by 

⎩
⎨
⎧ ==

=
 
 

elsewhere.0
,0 and  if1

:)(
kji

kdij  

Then, Iδ  satisfies 
),(,** NEAAIAAI M∈== δδ  

i.e., Iδ  is the identity element for the discrete-time 
matrix convolution product. 

The power in the sense of convolution is defined 
straightforwardly, using Definition 5. 
Definition 6: Let )(NEA M∈  be a matrix-valued 

function and .N∈n  The n-fold convolution )(nA  
is a matrix-valued function in )(NEM  defined 
recursively by: 

.,2),()(:)(

),(:)(

),(:)(

0

)1()(

)1(

)0(
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For a MRC ),( SJ  the n-fold convolution of the 
semi-Markov kernel has the property expressed in 
the following result. 
Lemma 2: Let N∈= nnn SJSJ ),(),(  be a Markov 
renewal chain and ( )N∈∈= kEjikqij ,,);(q  be 
its associated semi-Markov kernel. Then, for all 

N∈kn,  such that ,1+≥ kn  we have .0)()( =knq  
 

This property of the discrete-time semi-Markov 
kernel convolution is essential for the simplicity 
and the numerical exactitude of the results obtained 
in discrete time. We need to stress the fact that this 
property is intrinsic to the work in discrete time 

and it is no longer valid for a continuous-time 
Markov renewal process. 
Definition 7: Let )(A NEM∈  be a matrix-valued 
function. If there exists a )(NEB M∈  such that 

,* IAB δ=  then B  is called the left inverse of A  
in the convolution sense and it is denoted by .)1(−A  
     It can be shown that given a matrix-valued 
function )(A NEM∈ such that ,0)0(det ≠A  then 
the left inverse B  of A exists and is unique (see 
[14] for the proof). 
     Let us now introduce the notion of the semi-
Markov chain, strictly related to that of the Markov 
renewal chain. 
Definition 8: Let ),( SJ  be a Markov renewal 
chain. The chain N∈= kkZZ )(  is said to be a semi-
Markov chain associated to the MRC ),,( SJ  if 

,,: )( N∈= kJZ kNk  
where 

                           { }kSnkN n ≤∈= N:)(          (24.2) 
is the discrete-time counting process of the number 
of jumps in .k][1, N⊂  Thus, kZ  gives the system 
state at time .k  We also have ., N∈= nZJ

nSn  

Let the row vector ( ))(,),1( sαα …=α  denote the 
initial distribution of the semi-Markov chain 

,)( N∈= kkZZ  where ),()(:)( 00 iJiZi ==== PPα  
.Ei ∈  

Definition 9: The transition function of the semi-
Markov chain Z  is the matrix-valued function 

)(NEM∈P  defined by 
.,,),(:)( 0 NP ∈∈=== kEjiiZjZkP kij  

 
The following result consists in a recursive formula 
for computing the transition function P  of the 
semi-Markov chain .Z  
Proposition 1: For all Eji ∈,  and for all ,N∈k  
we have 

{ }( ) ∑∑
∈ =

= −+−=
Er

k

l
rjirijiij lkPlqkHkP ,)()()(1)(

0

1
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where 

{ }
⎩
⎨
⎧ =

== elsewhere.0
 , if1

:
ji

ji1  

Let us define for all :N∈k  
• EkI I=:)(  for ,N∈k ););((: N∈= kkII  
• ),);((diag:)( EikHk i ∈=H

).);((: NH ∈= kkH  
In matrix-valued function notation, the transition 
function P  of the semi-Markov chain verifies the 
equation 

.*PqHIP +−=  
This is an example of what is called the discrete-
time Markov renewal equation. We know that the 
solution of this equation exists, is unique (see [14]) 
and, for all ,N∈k  has the following form: 

      
).))((diag(*)(

))((*)()(
)1(

)1(

kI

kIk

1QIq

HIqP

⋅−−=

−−=
−

−

δ
δ

     (24.3)  

24.3 Reliability Modeling 

In this section we consider a reparable discrete-
time semi-Markov system and we obtain closed 
form solutions for reliability measures: reliability, 
availability, failure rate, mean time to failure, mean 
time to repair.  

24.3.1 State Space Split 

Consider a system (or a component) S  whose 
possible states during its evolution in time are 

{ }.sE ,,1 …=  Denote by { }1,,1 sU …=  the subset 
of working states of the system (the up-states) and 
by { }ssD ,,11 …+=  the subset of failure states (the 
down-states), with ss << 10  (obviously, 

DUE ∪=  and ,Ø=DU ∩  ,Ø≠U  Ø≠D ). One 
can think of the states of U  as different operating 
modes or performance levels of the system, 
whereas the states of D  can be seen as failures of 
the system with different modes. According to the 
partition of the state space in up-states and down-
states, we will partition the vectors, matrices or 
matrix functions we are working with. 

Firstly, for ),(),(),(),(),(,, kkkkk QHFfqpα  we 
consider the natural matrix partition corresponding 
to the state space partition U  and .D  For 
example, we have 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2221

1211

pp
pp

p  and .
)()(
)()(

)(
2221

1211
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

kk
kk

k
qq
qq

q   

Secondly, for )(kP  we consider the restrictions to 
UU ×  and DD ×  induced by the corresponding 

restrictions of the semi-Markov kernel ).(kq  To be 
more specific, using the partition given above for 
the kernel ),(kq  we note that: 

).)()(diag(*)(:)(

),)()(diag(*)(:)(

22
)1(

2222

11
)1(

1111

kIk

kIk

1QIqP

1QIqP

⋅−−=

⋅−−=
−

−

δ
δ

 

The reasons fort taking this partition for )(kP  can 
be found in [19]. 

For *, N∈nm  such that ,nm >  let  nm,1  denote 
the m-dimensional column vector whose n  first 
elements are 1 and last nm −  elements are 0; for 

*N∈m  let m1  denote the m-column vector whose 
elements are all 1, that is, .,mmm 11 =   

24.3.2 Reliability 

Consider a system S  starting to function at time 
0=k  and let DT  denote the first passage time in 

subset ,D  called the lifetime of the system, i.e.,  
{ }DZkT kD ∈∈= Ninf:  and .:Øinf ∞=  

The reliability of a discrete-time semi-Markov 
system S  at time ,N∈k  that is the probability 
that the system has functioned without failure in 
the period ],,0[ k  is  

).,,0,()(:)( knUZkTkR nD …=∈=>= PP  
The following result gives the reliability of the 
system in terms of the basic quantities of the semi-
Markov chain.  
Proposition 2: The reliability of a discrete-time 
semi-Markov system at time N∈k  is given by 

.))()(diag(*)(

)()(

1

1

11
)1(

111

111

s

s

kI

kkR

11QIqα

1Pα

⋅−−=

=
−δ
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24.3.3 Availability 

The point-wise (or instantaneous) availability of a 
system S at time N∈k  is the probability that the 
system is operational at time k  (independently of 
the fact that the system has failed or not in ),0[ k ). 
So, the point-wise availability of a semi-Markov 
system at time N∈k  is  

∑
∈

=∈=
Ei

ik kAiUZkA ),()()(:)( αP  

where we have denoted by )(kAi  the system’s 
availability at time ,N∈k  given that it starts in 
state ,Ei ∈  

 ).()( 0 iZUZkA ki =∈= P  

The following result gives an explicit form of the 
availability of a discrete-time semi-Markov 
system. 
 
Proposition 3: The point-wise availability of a 
discrete-time semi-Markov system at time N∈k  
is given by 

 
.)))((diag(*)(

)()(

1

1

,
)1(

,

ss

ss

kI

kkA

11QIqα

1αP

⋅−−=

=
−δ

 

24.3.4 The Failure Rate 

We consider here the classical failure rate, 
introduced by Barlow, Marshall and Proschan in 
1963 (see [20]). We call it the BMP-failure rate 
and denote it by .),( N∈kkλ  

Let S  be a system starting to function at time 
.0=k  The BMP-failure rate at time N∈k  is the 

conditional probability that the failure of the 
system occurs at time ,k  given that the system has 
worked until time .1−k  

For a discrete-time semi-Markov system, the 
failure rate at time 1≥k  has the expression  

 

⎪⎩

⎪
⎨

⎧
≠−

−
−=

⎪⎩

⎪
⎨
⎧ ≠−

−
−=

≥==

otherwise.,0

 ,0)1(,
)1(

)(
1

otherwise,,0

 ,0)1(,
)1(

)(1

,:)(

1

1

111

111 kR
k

k

kR
kR

kR

)kTk(Tk

s

s

DD

1Pα
1Pα

Pλ

    (24.4) 

The failure rate at time 0=k  is defined by 
).0(1:)0( R−=λ   

It is worth noticing that the failure rate )(kλ  in 
discrete-time case is a probability function and not 
a general positive function as in the continuous-
time case. There exists a more recent failure rate, 
proposed in [2] as being adapted to reliability 
studies carried out in discrete time. Discussions 
justifying the use of this discrete-time adapted 
failure rate can also be found in [3, 4]. In this 
chapter we do not present this alternative failure 
rate. Its use for discrete-time semi-Markov systems 
can be found in [18, 19]. 

24.3.5 Mean Hitting Times 

There are various mean times which are interesting 
for the reliability analysis of a system. We will be 
concerned here only with the mean time to failure 
and the mean time to repair. 

We suppose that ,02 =α  i.e., the system starts 
in a working state. The mean time to failure 
(MTTF) is defined as the mean lifetime, i.e., the 
expectation of the hitting time to down-set 

,D ).(: DTMTTF E=  
Symmetrically, consider now that ,01 =α  i.e. 

the system fails at the time .0=t  Denote by UT  
the first hitting time of the up-set ,U called the 
repair duration, i.e., 

{ }.inf: UZkT kU ∈∈= N  
The mean time to repair (MTTR) is defined as the 
mean of the repair duration, i.e., ).(: UTMTTR E=  
The following result gives expressions for the 
MTTF and the MTTR of a discrete-time semi-
Markov system.  
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Proposition 4: If the matrices 11p−I  and 22p−I  
are non-singular, then  

,)(

,)(

2
1

222

1
1

111

mpα

mpα
−

−

−=

−=

IMTTR

IMTTF
 

where T
21 )( mmm =  is the partition of the mean 

sojourn times vector corresponding to the partition 
of the state space E  in up-states U  and down-
states .D  If the matrices are singular, we put 

∞=MTTF  or .∞=MTTF   

24.4 Reliability Estimation 

The objective of this section is to provide 
estimators for reliability indicators of a system and 
to present their asymptotic properties. In order to 
achieve this purpose, we firstly show how 
estimators of the basic quantities of a discrete-time 
semi-Markov system are obtained.  

24.4.1 Semi-Markov Estimation 

Let us consider a sample path of a Markov renewal 
chain ,),( N∈nnn SJ  censored at fixed arbitrary time 

,*N∈M  
),,,,,,()( )()(1)(10 MMNMNMN uJXJXJM −= …H

 
where )(MN  is the discrete-time counting process 
of the number of jumps in (see (24.2)) and 

)(: MNM SMu −=  is the censored sojourn time in 
the last visited state .)(MNJ  

Starting from the sample path ),(MH  we will 
propose empirical estimators for the quantities of 
interest. Let us firstly define the number of visits to 
a certain state, the number of transitions between 
two states and so on.  
 Definition 10: For all states Eji ∈,  and positive 
integer ,Mk ≤  define: 

1. { }∑
−

=
==

1)(

0

:)(
MN

n
iJi n

MN 1 - the number of visits 

to state ,i  up to time ;M  

2. { }∑
=

==−
=

)(

1
,1

:)(
MN

n
jJiJij nn

MN 1 - the number of 

transitions from i  to ,j up to time ;M  

3. { }∑
=

===−
=

)(

1
,,1

:),(
MN

n
kXjJiJij nnn

MkN 1 - the 

number of transitions from i  to ,j up to 
time ,M  with sojourn time in state i  
equal to .1, Mkk ≤≤  

 
For a sample path of length M  of a semi-Markov 
chain, for any states Eji ∈,  and positive integer 

,, Mkk ≤∈N  we define the empirical estimators 
of the transition matrix of the embedded Markov 
chain ,ijp  of the conditional distributions of the 
sojourn times )(kfij  and of the discrete-time semi-
Markov kernel )(kqij  by:  

            

).(),(:),(

,)(),(:),(

,)()(:)(

MNMkNMkq

MNMkNMkf

MNMNMp

iijij

ijijij

iijij

=

=

=

�

�
�

         (24.5) 

Note that the proposed estimators are natural 
estimators. For instance, the probability ijp  that 
the system goes from state i to state j  is estimated 
by the number of transitions from i to ,j  devised 
by the number of visits to state .i  As can be seen in 
[17] or [19], the empirical estimators proposed in 
(24.5) have good asymptotic properties. Moreover, 
they are in fact approached maximum likelihood 
estimators (Theorem 1). In order to see this, 
consider the likelihood function corresponding to 
the history )(MH  

,)()()(
)(

1
)(11∏

=
−−

=
MN

k
MJkJJJJ uHXfpML

MNkkkk
 

where )(⋅iH  is the survival function in state .i  We 
have the following result concerning the 
asymptotic behavior of Mu  (see [19] for a proof). 
Lemma 3: For a semi-Markov chain N∈nnZ )(  we 

have ,0..⎯→⎯ sa
M Mu  as .∞→M  
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Let us consider the approached likelihood function 

             ,)()(
)(

1
1 11∏

=
−−

=
MN

k
kJJJJ XfpML

kkkk
         (24.6) 

obtained by neglecting the last term in the 
expression of ).(ML  Using Lemma 3, we see that 
the maximum likelihood function )(ML  and the 
approached maximum likelihood function )(1 ML  
are asymptotically equivalent, as M  tends to 
infinity. Consequently, the estimators obtained by 
estimating )(ML  or )(1 ML  are asymptotically 
equivalent, as M  tends to infinity.  

The following result shows that 
),(Mpij

� ),( Mkfij

�
and ),( Mkqij

�  defined in (24.5) 
are obtained in fact by maximizing )(1 ML  (a 
proof can be found in [17]).  
Theorem 1: For a sample path of a semi-Markov 
chain ,)( N∈nnZ  of arbitrary fixed length ,N∈M  
the empirical estimators of the transition matrix of 
the embedded Markov chain ,)( N∈nnJ  of the 
conditional distributions of the sojourn times and 
of the discrete-time semi-Markov kernel, proposed 
in (24.5), are approached nonparametric maximum 
likelihood estimators, i.e., they maximize the 
approached likelihood function )(1 ML  given in 
(24.6). 
     As any quantity of interest of a semi-Markov 
system can be written in terms of the semi-Markov 
kernel, we can now use the kernel estimator 

),( Mkqij
�  in order to obtain plug-in estimators for 

any functional of the kernel. For instance, the 
cumulative semi-Markov kernel 

( )N∈= kk);(QQ  defined in (24.1) has the 
estimator 

 ∑
=

=
k

l

MlMk
1

).,(:),( qQ ��
 

Similarly, using the expression of the transition 
function of the semi-Markov chain Z  given in 
(24.3), we get its estimator 

).))(),((diag(*),()(),( )1( kMMIMk 1QIqP ⋅⋅−⋅−= − ���
δ  

Proofs of the consistency and of the asymptotic 
normality of the estimators defined up to now can 
be found in [16, 17, 19]. 

We are able now to construct estimators of the 
reliability indicators of a semi-Markov system and 
to present their asymptotic properties.  

24.4.2 Reliability Estimation 

The expression of the reliability given in 
Proposition 2, together with the estimators of the 
semi-Markov transition function and of the 
cumulative semi-Markov kernel given above, 
allow us to obtain the estimator of the system’s 
reliability at time k  given by  

                  .),(),(
1111 sMkMkR 1Pα

��
=             (24.7) 

Let us give now the result concerning the 
consistency and the asymptotic normality of the 
reliability estimator. A proof of the asymptotic 
normality of reliability estimator, based on CLT 
for Markov renewal processes (see [21]) can be 
found in [17]. An alternative proof based on CLT 
for martingales, can be found in [19]. 
Theorem 2: For any fixed arbitrary positive integer 

,N∈k  the estimator of the reliability of a 
discrete-time semi-Markov system at instant k  is 
strongly consistent, i.e., 

, as ,0)(),( .. ∞→⎯→⎯− MkRMkR sa�
 

and asymptotically normal, i.e., we have 
[ ] ( ) , as ,0)(),( 2 ∞→⎯→⎯− M(k),σkRMkRM RND�

 
with the asymptotic variance  
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and iiμ  is the mean recurrence time of the state i  
for the chain .Z  

24.4.3 Availability Estimation 

Taking into account the expression of the 
availability given in Proposition 3, we propose the 
following estimator for the availability of a 
discrete-time semi-Markov system: 

 .),(),(
1,ssMkMkA 1Pα

��
=  

The following result concerns the consistency and 
the asymptotic normality of the reliability 
estimator. A proof can be found in [19]. 
Theorem 3: For any fixed arbitrary positive integer 

,N∈k  the estimator of the availability of a 
discrete-time semi-Markov system at instant k  is 
strongly consistent and asymptotically normal, in 
the sense that 

 , as ,0)(),( .. ∞→⎯→⎯− MkAMkA sa�
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24.4.4 Failure Rate Estimation 

For a matrix function ),(NEA M∈  we denote by  

)(NEA M∈+  the matrix function defined by 

.),1(:)( N∈+=+ kkAkA  Using the expression of 
the failure rate obtained in (24.4), we obtain the 
following estimator: 
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For the failure rate estimator we have a similar 
result as for reliability and availability estimators. 
A proof can be found in [18, 19]. 
Theorem 4: For any fixed arbitrary positive integer 

,N∈k  the estimator of the failure rate of a 
discrete-time semi-Markov system at instant k  is 
strongly consistent and asymptotically normal, i.e., 
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24.4.5 Asymptotic Confidence Intervals 

The previously obtained asymptotic results allow 
one to construct asymptotic confidence intervals 
for reliability, availability and failure rate. For this 
purpose, we need to construct a consistent 
estimator of the asymptotic variances.  

Firstly, using the definitions of )(kψ  and of 
)(kΨ  given in Theorem 2, we can construct the 

corresponding estimators ),( Mkψ�  and ).,( MkΨ
�

 
One can check that these estimators are strongly 
consistent. Secondly, for ,Mk ≤  replacing ),(kq  

),(kQ  )(kψ  and )(kΨ  by the corresponding 
estimators in the asymptotic variance of the 
reliability given in Theorem 2, we obtain an 
estimator ),(2 MkRσ�  of the asymptotic variance 

).(2 kRσ  From the strong consistency of the 

estimators ),,( Mkq�  ),,( MkQ
�

 ),( Mkψ�  and 

),( MkΨ
�

 (see [17, 19]), we obtain that ),(2 MkRσ�  

converges almost surely to ),(2 kRσ  as M  tends to 
infinity. Finally, the asymptotic confidence interval 
of )(kR  at level ,%)1(100 γ−  ),1,0(∈γ  is: 
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where 21 γ−u  is the )21( γ−  fractile of ).1,0(N  In 
the same way, we can obtain the other confidence 
intervals.  

24.5 A Numerical Example 

Let us consider the three-state discrete-time semi-
Markov system described in Figure 24.2. 

The state space { }3,2,1=E  is partitioned into 
the up-state set { }2,1=U  and the down-state set 

{ }.3=D  
The system is defined by the initial distribution 

),001(=α  by the transition probability matrix p  
of the embedded Markov chain N∈nnJ )(  and by 
the conditional distributions of the sojourn times: 
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Figure 24.2. A three-state semi-Markov system 
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We consider the following distributions for the 
conditional sojourn time: 
– 12f  is a geometric distribution on ,*N  of 
parameter .8.0=p  
– ,:

11 ,21 bqWf = ,:
22 ,23 bqWf =

33 ,31 : bqWf = are 
discrete-time, first type Weibull distributions (see 
[1]), defined by ,0:)0(, =bqW  

,:)( )1(
,

bb kk
bq qqkW −= −  ,1≥k  where we take 

,3.01 =q  ,5.01 =b  ,5.02 =q  ,7.02 =b  ,6.03 =q  
.9.03 =b  Note that we study here a strictly semi-

Markov system, which cannot be reduced to a 
Markov one. 

Using the transition probability matrix and the 
sojourn time distributions given above, we have 
simulated a sample path of the three state semi-
Markov chain, of length .M  This sample path 
allows us to compute ),(MNi  )(MNij  and 

),,( MkNij  using Definition 10, and to obtain the 

empirical estimators ),(Mpij
�  ),( Mkfij

�
 and 

),( Mkqij
�  from (24.5). Consequently, we can 
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obtain the estimators ),,( MkQ
�

 ),( Mkψ�  and 

).,( MkΨ
�

 Thus, from (24.7), we obtain the 
estimator of the reliability. In Theorem 2, we have 
obtained the expression of the asymptotic variance 
of reliability. Replacing ),(kq  ),(kQ  )(kψ  and 

)(kΨ  by the corresponding estimators, we get the 

estimator ),(2 MkRσ�  of the asymptotic variance 

).(2 kRσ  This estimator will allow us to have the 
asymptotic confidence interval for reliability, as 
shown in Section 24.4.5. 
 The consistency of the reliability estimator is 
illustrated in Figure 24.3, where reliability 
estimators obtained for several values of the 
sample size M  are drawn. We can note that the 
estimator approaches the true value, as the sample 
size M  increases. Figure 24.4 presents the 
estimators of the asymptotic variance of the 
reliability ),(2 kRσ  obtained for different sample 
sizes. Note also that the estimator approaches the 
true value, as M  increases. In Figure 24.5, we 
present the confidence interval of the reliability. 
Note that the confidence interval covers the true 
value of the reliability. 
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