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Abstract: In this chapter, a state-of-the-art review of various analytical modeling techniques for reliability 
analysis of phased-mission systems (PMS) is presented. The analysis approaches can be broadly classified 
into three categories: combinatorial, state-space oriented, and modular. The combinatorial approaches are 
computationally efficient for analyzing static PMS. A combinatorial binary decision diagram based 
method is discussed in detail. Methods to consider imperfect fault coverage and common-cause failures in 
the reliability analysis of PMS will also be presented. 

23.1 Introduction 

The operation of missions encountered in 
aerospace, nuclear power, and many other 
applications often involves several different tasks 
or phases that must be accomplished in sequence. 
Systems used in these missions are usually called 
phased-mission systems (PMS). A classic example 
is an aircraft flight that involves take-off, ascent, 
level-flight, descent, and landing phases. During 
each mission phase, the system has to accomplish a 
specified task and may be subject to different 
stresses as well as different dependability 
requirements. Thus, system configuration, success 
criteria, and component failure behavior may 
change from phase to phase [1]. This dynamic 
behavior usually requires a distinct model for each 
phase of the mission in the reliability analysis. 
Further complicating the analysis are statistical-
dependencies across the phases for a given 
component. For example, the state of a component 

at the beginning of a new phase is identical to its 
state at the end of the previous phase in a non-
repairable PMS [2]. The consideration of these 
dynamics and dependencies poses unique 
challenges to existing analysis methods. 

Considerable research efforts have been 
expended in the reliability analysis of PMS over 
the past three decades. Generally, there are two 
classes of approaches to the evaluation of PMS: 
analytical modeling [1–5] and simulation [6, 7]. 
Simulation typically offers greater generality in 
system representation, but it is often more 
expensive in computational requirements [5]. On 
the other hand, analytical modeling techniques can 
incorporate a desirable combination of flexibility 
in representation as well as ease of solution. The 
analytical modeling approaches can be further 
categorized into three classes: state space oriented 
models [3, 5, 8–10], combinatorial methods [1, 2, 
4, 11, 12], and a phase modular solution [13–16] 
that combines the former two methods as 
appropriate. The state space oriented approaches, 
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which are based on Markov chains and/or Petri 
nets, are flexible and powerful in modeling 
complex dependencies among system components. 
However, they suffer from state explosion when 
modeling large-scale systems. With an effort to 
deal with the state explosion problem of the state 
space oriented approaches, some researchers 
proposed combinatorial methods, which exploit 
Boolean algebra and various forms of decision 
diagrams to achieve low computational complexity 
and less storage space consumption. 

This chapter will give a state-of-the-art review 
of the various analytical modeling methods. It then 
focuses on a combinatorial binary decision 
diagrams based method for the reliability analysis 
of a class of generalized PMS (GPMS). 
Traditionally in a PMS, the mission is assumed to 
fail if the system fails during any one phase [17]. 
GPMS extends this phase-OR failure requirement 
to the more general combinatorial phase 
requirement (CPR) [1]. The outcome of the GPMS 
may also exhibit multiple performance levels 
between binary outcome (success or failure). 
Methods to consider imperfect fault coverage and 
common-cause failures in the reliability analysis of 
GPMS will also be discussed in this chapter.  

23.2 Types of Phased-mission Systems  

PMS can be categorized in several ways: 

• Static versus dynamic PMS: If the structure of 
the reliability model for any phase of PMS is 
combinatorial, i.e., the failure of the mission in 
any phase depends only on the combinations 
of component failure events, the PMS is said 
to be static. If the order in which the 
component failure events occur affects the 
outcome, i.e., the failure of the mission in any 
one phase depends on both the combinations 
of the component failure events and sequence 
of occurrence of input events, the PMS is said 
to be dynamic. Systems involving functional 
dependencies and/or spares management are 
also dynamic. In Section 23.3, various 
approaches to the analysis of static and 
dynamic PMS will be presented. 

• Repairable versus non-repairable PMS: In a 
non-repairable PMS, once a component has 
failed in one phase, it remains failed in all later 
phases. In a repairable system, the state of the 
system depends on the failure characteristics 
of its components as well as the maintenance 
plans that are conducted on the system. 
Maintenance can be classified into three 
categories according to the reason why it is 
conducted [13]: 1) failure-driven maintenance 
occurs when maintaining a system upon the 
occurrence of a component failure; 2) time-
driven maintenance is performed on a pre-
determined schedule; and 3) condition-driven 
maintenance is performed based on the 
observed condition of a system, for example, a 
component is repairable whenever the 
component fails and the system does not fail; 
no repair is possible upon the system failure. 
Meshkat [13] investigated these maintenance 
plans and analysis of PMS with certain kinds 
of time-driven maintenance. Xing [18] studied 
the dependability modeling and analysis of 
PMS with the failure-driven maintenance and 
the scheduled maintenance. This chapter will 
focus on the reliability modeling and analysis 
of non-repairable PMS. 

• Coherent versus non-coherent PMS: In a 
coherent PMS, each component contributes to 
the system state, and the system state worsens 
(at lease does not improve) with an additional 
component failure [19]. On the other hand, the 
structure function of a noncoherent system 
does not increase monotonically with the 
additional number of functioning components. 
Specifically, a noncoherent system can transit 
from a failed state to a good state by the 
failure of a component, or transit from a good 
state to a failed state by the repair of a 
component. In other words, both component 
failures and repairs can contribute to the 
system failure in a noncoherent system. The 
failure behavior of a noncoherent PMS can be 
described using noncoherent fault trees, which 
are characterized by inverse gates (for 
example, NOT and exclusive-OR gates) 
besides logic gates used in coherent fault trees. 
This chapter will focus on coherent PMS.  
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• Series/phase-OR PMS versus combinatorial 
phase requirements (CPR): In a series PMS, 
the entire mission fails if the system fails 
during any one phase [17]. For a PMS with 
CPR, its failure criterion can be expressed as a 
logical combination of phase failures in terms 
of phase-AND, phase-K-out-of-N, and phase-
OR. Thus, a phase failure does not necessarily 
lead to a mission failure; it may just produce 
degraded performance of the mission [1]. 

• Sequential versus dynamic choice of mission 
phases: In a sequential PMS, the sequence of 
phases traversed by the system to accomplish 
its goals is always constituted by a single path 
from the first phase to the last one. Most of 
existing PMS analysis techniques focuses on 
the sequential PMS. There are indeed 
examples of PMS for which the sequence of 
phases is better represented by a more generic 
direct acyclic graph [9]. In this scenario, at the 
end of a phase, the next phase may be selected 
according to a probability distribution, or 
depending on the current internal state of the 
PMS. Methods for considering the 
probabilistic choice of mission phases were 
presented in [8, 9]. A brief discussion on these 
methods is also given in Section 23.3.2.2. 

23.3 Analytical Modeling Techniques 

Three classes of analytical approaches to the 
reliability analysis of coherent PMS are described 
in this section. Section 23.3.1 presents the 
combinatorial approaches to the analysis of static 
PMS. Section 23.3.2 presents the state space 
oriented methods. Section 23.3.3 presents the 
phase modular approach, which provides a 
combination of combinatorial solution for static 
phase modules and Markov chain solution for 
dynamic phase modules.  

23.3.1 Combinatorial Approaches 

Combinatorial methods for analyzing PMS assume 
that all components fail/behave s-independently 
within each phase. However, they deal with the s-
dependence across phases for a given component.  

23.3.1.1 The Mini-component Technique 

Esary and Ziehms [4] proposed to deal with the s-
dependence across phases by replacing the 
component in each phase with a system of 
components (called mini-components), performing 
s-independently and in series. For example, a 
component A in phase j of a non-repairable PMS is 
replaced by a set of s-independent mini-
components { }j

iia 1=
 in series. The relation between 

a component and its mini-components is: 
jj aaaA •••= …21
, meaning that A is operational 

in phase j (represented by 1=jA  or 0=jA ) if and 
only if it has functioned in all the previous phases.  

Figure 23.1 shows the reliability block diagram 
(RBD) and fault tree (FT) format of the mini-
component solution. Esary and Ziehms [4] showed 
that reliability of the resulted new system after the 
above transformation is the same as the reliability 
of the original PMS. Most importantly, the 
evaluation of the new system can proceed without 
considering the s-dependence across phases for a 
given component.  

Aj

In RBD, 
replaced by

a1 a2 aj...

In FT, 
replaced by

Aj

a1 a2 aj

 
Figure 23.1. Mini-component method 

Let A(t) be the state indicator variable of 
component A, and )(tq

ia
 be the failure function of 

mini-component ai for component A in phase i, 
which conditionally depends on the survival of 
phase (i-1). The relationship between A(t) and 
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In the system-level reliability analysis, )(tq
ia

 is 
given as the system input in the form of a 
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conditional failure distribution conditioned on the 
success of ai-1. 

Consider an example PMS with three compo-
nents (A, B, and C) used in three non-overlapping 
consecutive phases (adapted from [3]). Figure 23.2 
shows the failure criteria in each phase of the PMS 
in fault trees. In Phase 1, the system fails if all the 
three components fail. In Phase 2, the system fails 
if A fails or both B and C fail. In Phase 3, the 
system fails if any of the three components fails.  

A

B C

Phase 2 
failure

A B C A B C

Phase 3 
failure

Phase 1 
failure

 
Figure 23.2. Fault tree model of a three-phase PMS 

Figure 23.3 shows the equivalent system fault tree 
model in the mini-component method. Clearly the 
difficulty with this method is that the size of the 
problem becomes very large as the number of 
phases increases, for which a solution can be 
computationally very expensive.  

PMS 
failure
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Phase 3 
failure
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Figure 23.3. Equivalent mini-component system 

23.3.1.2 The Boolean Algebraic Method 

Another solution to the phased mission problem is 
to connect multiple phase models in series. Figure 
23.4 shows the equivalent system at the end of 
mission in the Boolean algebraic method for the 
example PMS in Figure 23.2. 

Based on the relation between a component and 
its mini-components, the failure function for 

component A in phase j can be calculated from 
)(tq

ia
 as (23.2):  
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                                                                        (23.2) 
where time t is measured from the beginning of 
phase j so that 

jTt ≤≤0 . Tj is the duration of phase 
j. The first term in (23.2) when j > 1 represents the 
probability that component A has already failed in 
the previous phases (1, 2, …, j-1). The second term 
denotes the probability distribution of lifetime of A 
in phase j.  

PMS 
failure

A

B C

Phase 2 
failure

A B C A B C

Phase 3 
failure

Phase 1 
failure

1 1 1
2

2 2

3 3 3

 
Figure 23.4. Example PMS in the Boolean algebra 
method 

Because s-dependence exists among the same 
component in different phases, special treatment is 
needed for combination terms containing more 
than one Ai, mi ≤≤1 , where m represents the total 
number of phases in the PMS. A set of Boolean 
algebraic rules called phase algebra rules was 
proposed to deal with the dependence (Table 23.1) 
[11, 20].  

Table 23.1. Rules of phase algebra (i < j) 

jji AAA →•  jji AAA →+  

iji AAA →•  iji AAA →+  

0→• ji AA  1→+ ji AA  

The phase algebra rules can be proved using 
the relation between the component and its mini-
components (

jj aaaA •••= …21
) [2]: 
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• “
jji AAA →• ”: the event “A is operational in 

phase i and the later phase j” is equivalent to 
the event “A is operational in the later phase 
j”.  

jj

jiji

Aaaa

aaaaaaAA

=••=

••••=•

...           

)...)(...(

21

2121  

• “ iji AAA →• ”: the event “A has failed in 
phase i and the later phase j” is equivalent to 
the event “A has failed in phase i”.  

ii
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aaaaaa

aaaaaaAA

=••=

••+••=

•••••=•

...             

......            

)...()...(

21

2121

2121

 

• “ 0→• ji AA ”: the event “A has failed in 
phase i, but is operational in the later phase j” 
does not exist for a non-repairable PMS.  

0 )...)(...(            

)...)(...(

2121

2121

=••+++=

••••=•

ji

jiji

aaaaaa

aaaaaaAA  

The three rules in the right column of Table 23.1 
are just the complementary form of the rules in the 
left column, which have been proved in the above. 
Phase algebra rules do not account for ji AA •  and 

ji AA +  combinations [2, 20]. ji AA •  means that A 
is operational until the end of phase i and then fails 
sometime between the end of phase i and the end 
of phase j; 

ji AA +  has no physical meaning 
without considering repair. These phase algebra 
rules apply only to variables belonging to the same 
component.  

23.3.1.3 Binary Decision Diagrams 

Zang et al. [2] proposed a binary decision diagram 
(BDD) based method for the reliability analysis of 
static PMS with phase-OR requirement. As the 
first step of the method, phase algebra rules (Table 
23.1) combined with heuristic variable ordering 
strategies are used to generate the PMS BDD 
model. Two types of ordering strategies were 
explored for variables that represent the same 
component in different phases: forward and 
backward. Thus, two types of phase-dependent 
operations (PDO) were proposed: forward PDO in 

which the variable order is the same as the phase 
order, and backward PDO in which the variable 
order is the reverse of the phase order. It is shown 
in [2] that in the PMS BDD generated by the 
backward PDO, the 0-edge always links two 
variables belonging to different components and 
the cancellation of common components can be 
done automatically during the generation of the 
BDD without any additional operation. So, the 
backward PDO is preferred in the PMS analysis.  

After generating the PMS BDD, a recursive 
evaluation of the resulting PMS BDD yields the 
reliability/unreliability of the PMS. Special 
treatments are needed in the evaluation to deal with 
dependence among variables of the same 
component but different phases. The above BDD-
based method [2] will be discussed in detail in 
Section 23.4.1. BDD-based methods for analyzing 
generalized PMS subject to imperfect fault 
coverage, modular imperfect coverage, and 
common-cause failures will also be discussed in 
Sections 23.4.2, 23.4.3, and 23.4.4, respectively.  

23.3.2 State Space Based Approaches 

Traditionally, if the failure criteria in any one 
phase of the PMS are dynamic, then a state space 
based approach must be used for the entire PMS. 
Section 23.3.2.1 presents Markov chains based 
methods for the reliability analysis of dynamic 
PMS. Section 23.3.2.2 presents Petri nets based 
methods for dynamic PMS analysis.  

23.3.2.1 Markov Chains 

Several different Markov chain based methods are 
available for the reliability analysis of PMS. The 
basic idea is to construct a single Markov chain to 
represent the failure behavior of the entire PMS or 
several Markov chains, each representing the 
failure behavior in each phase. These Markov 
models at once account for dependence among 
components within a phase as well as dependence 
across phases for a given component. Solving the 
Markov chain models yields the probability of the 
system being in each state. The system 
unreliability is obtained by summing all the failure 
state probabilities.  
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Specifically, Smotherman and Zemoudeh [5] 
(SZ approach) used a single non-homogeneous 
Markov chain model to perform the reliability 
analysis of a PMS. In their approach, the behavior 
of the system in each phase is represented using a 
different Markov chain, which may contain a 
different subset of states. The state transitions are 
described in terms of time dependent rates so as to 
include phase changes. Thus, state-dependent 
phase changes, random phase durations, time-
varying failure and repair behavior can be easily 
modeled in the SZ approach. 

Consider the example PMS in Figure 23.2. 
Assume the failure rates of the three components 
A, B, and C are a, b, and c, respectively. Figure 
23.5 shows the Markov chain model of the entire 
PMS in the SZ approach. In the Markov chain 
representation, a 3-tuple represents a state 
indicating the status of the three components. A 
“1” represents the corresponding component is 
operational and a “0” represents the corresponding 
component has failed. For example, state (110) 
implies that A and B are operational and C has 
failed. A “F” represents a state in which the system 
has failed. A transition from one state to another 
state is associated with the failure rate of the failed 
component. The transitions hi(t) in Figure 23.5 
represent the failure rates associated with the time 
at which phase changes occur.  
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Figure 23.5. Markov chain model in the SZ approach 

Since this model includes the configurations for all 
phases as well as the phase changes, it needs only 
be solved once. The major drawback of this 
approach, like the mini-component approach [4], is 
that a large overall model is needed. The size of the 
state space is as large as the sum of number of 
states in each of the individual phases. Since the 

state space associated with a Markov model of a 
system is exponential in the number of components 
in the worst case, the SZ method requires a large 
amount of storage and computational time to solve 
the model, thus limiting the type of system that can 
be analyzed. 

Instead of generating and solving an overall 
Markov chain, Somani et al. [21] (SRA approach) 
suggested generating and solving separate Markov 
chains for individual phases of a PMS. The 
variation in failure criteria and system confi-
guration from phase to phase is accommodated by 
providing an efficient mapping procedure at the 
transition time from one phase to another. While 
analyzing a phase, only states relevant to that phase 
are considered. Apparently, each individual 
Markov chain is much smaller than the overall 
Markov chain used in the SZ approach [5]. For the 
example three-phase PMS in Figure 23.2, Markov 
chains for the three phases are shown in 
Figure 23.5 (without considering the inter-phase 
mapping). In the SRA approach, three Markov 
chains with 8, 4, and 2 states, respectively, need to 
be solved. The reliability (or unreliability) of the 
system can be computed from the output of the last 
phase. While in the SZ approach, a single Markov 
chain with 12 states (after the three system failure 
states “F” are merged as one failure state) must be 
solved. Therefore, using the SRA approach, the 
computation time for large systems can be reduced 
significantly without compromising the accuracy 
of the results. Also, the SRA approach allows the 
phase duration to be modeled as fixed or random.  

As another alternative to the reliability analysis 
of PMS using Markov models, Dugan [3] (Dugan 
approach) advocated generating a single Markov 
chain with state space equal to the union of the 
state spaces of the individual phases from the start. 
The transition rates are parameterized with phase 
numbers and the Markov chain is solved n times if 
the PMS has n phases. The final state probabilities 
of one phase become the initial state probabilities 
of the next phase. One potential source of the 
problem with the Dugan approach is that once a 
state is declared to be a system failure state in a 
phase, it cannot become an up state in a later 
phase. In practice, it is possible to have some states 
that are failure states in a phase but are up states in 
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a later phase. For example, if we swap the failure 
criteria of phase 1 and phase 3 in Figure 23.2, then 
the states of (011), (001), (010), and (100) are 
failure states in both phase 1 and phase 2, but are 
up states in phase 3. In the Dugan approach, all 
those states will be treated as forced failure states 
in phase 3. This problem would cause 
overestimated system unreliability. 

23.3.2.2 Petri Nets 

Mura and Bondavalli [9] (MB approach) proposed 
a hierarchical modeling and evaluation approach 
for analyzing PMS, where missions may evolve 
dynamically by selecting the next phase to perform 
according to the state of the system, and the 
duration of all phases are fixed and known in 
advance. Their approach combines the Markov 
analyses and Petri nets through a two-level 
modeling approach. 

Specifically the upper level model in the MB 
approach is a single discrete-time Markov chain 
(DTMC), describing the overall behavior of the 
whole mission without any detail of the internal 
phase behavior. There are typically two absorbing 
states: loss of the entire mission and success of the 
mission. Each non-absorbing states in the DTMC 
represents a different phase in the mission. This 
allows simplifying the modeling of variety of 
mission scenarios by sequencing the phases in 
proper ways. Moreover, it allows probabilistic or 
dynamic choice of the mission phases according to 
the system states, which is not possible in other 
state space oriented approaches based only on 
Markov models. The lower level models are built 
using generalized stochastic Petri nets (GSPN). 
These lower level models are used to describe the 
system behavior inside each phase and they are 
built and solved separately. The separate modeling 
of each phase allows the reuse of the previously 
built models when the operation of a phase is 
repeated during the mission. The major advantages 
offered by the MB approach include the great 
flexibility by allowing the dynamic selection of 
mission phases and reusability of the defined phase 
models.  

Later, Mura and Bondavalli [10] proposed a 
new methodology based on Markov regenerative 

stochastic Petri nets (MRSPN), which extended the 
MB approach by allowing random phase duration. 
This methodology is incorporated in the DEEM 
(dependability evaluation of multiple-phased 
systems) software package [8].  

23.3.3 The Phase Modular Approach 

Traditional approaches to PMS analysis are either 
combinatorial (Section 23.3.1) or state space based 
(Section 23.3.2). The combinatorial approaches are 
computationally efficient, but are applicable only 
when every phase of the PMS is static. Markov 
based approaches can capture the dynamic 
behavior such as functional dependencies, the 
sequence of failure events, and spares 
management. However, the major limitation with 
Markov methods is that if the failure criterion in 
only one phase is dynamic, then a Markov 
approach must be used for every phase. Due to the 
well-known state explosion problem of Markov 
approaches, it is often computationally intensive 
and even infeasible to solve the model.  

B D E H

A G B F

C D

Phase 1 failure

A

B F

C E

Phase 2 failure

A G

Phase 3 failure

2/3

FDEP

D EC

PMS failure

M11 M12

M13M22M21

M23   
Figure 23.6. PMS fault free with defined modules 

To take advantage of both types of solutions while 
addressing their limitations, a phase-modular fault 
tree approach employing both BDD and Markov-
chain solution methods as appropriate was 
developed for the reliability analysis of PMS [13–
16]. In applying this approach, first the modules of 
components that remain independent throughout 
the mission are identified, and then the reliability 
of each independent module in each phase is found 
using the appropriate solution technique. Finally, 
the modules are combined in a system-level BDD 
to find the system-level reliability. We illustrate 
the basic elements/steps of the phase-modular 
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approach using a simple example PMS, which has 
three phases and eight components (Figure 23.6) 
[22] as follows:  

1) Represent each mission phase with a fault tree, 
and then link the phase fault trees with a 
system top event. For this example, the 
reliability of the PMS is the probability that 
the mission successfully achieves its 
objectives in all phases, the phase fault trees 
are linked using an OR gate to obtain the 
entire PMS fault tree.  

2) Each phase fault tree is then divided into 
independent subtrees/modules. In Figure 23.6, 
Phase 1 fault tree has two main modules {A, 
G, B, F} and {C, D}. Phase 2 fault tree has 
two modules {A, B, F} and {C, E}. Phase 3 
fault tree has three modules {A, G}, {B}, and 
{C, D, E, H}. 

3) Characterize each phase module as static or 
dynamic. Static fault trees use only OR, AND, 
and K-out-of-N gates. Dynamic fault trees 
have at least one dynamic gate such as 
priority-AND gate, FDEP gate, or 
CSP/WSP/HSP gates. In Figure 23.6, both 
modules in Phase 1 fault tree are static; the 
module {A, B, F} in Phase 2 fault tree is static 
and the module {C, E} is dynamic; and Phase 
3 fault tree has two static modules, {A, G} and 
{B}, and one dynamic module, {C, D, E, H}. 

4) Identify each phase module as bottom-level 
(without child modules) or upper-level (with 
child modules). The module {C, D} in Phase 1 
fault tree is a bottom-level module, and the 
module {A, G, B, F} is an upper-level module 
since it contains child modules {A, G} and {B, 
F} linked by an OR gate. The identification of 
child and parent modules is vital information 
used in solving for these modules’ reliability. 

5) Find the system-level independent modules. 
This identification is accomplished by finding 
the unions of components in all the phase 
modules that overlap in at least one 
component. The example PMS fault tree has 
two system-level independent modules, {A, B, 
F, G} and {C, D, E, H}.  

6) Identify each system-level module as static or 
dynamic across the phases. Identification of a 
component as dynamic in at least one mission 

phase is sufficient for the identification of the 
corresponding system-level module as 
dynamic. In the example PMS, the system-
level module {A, B, F, G} is static and {C, D, 
E, H} is dynamic. 

7) Group the phase modules according to the 
corresponding system-level module. Com-
ponents of {A, B, F, G} are labeled as M1i and 
components of {C, D, E, H} are labeled as 
M2i, where i = mission phase (Figure 23.6). 
These are the modules that will be solved for 
the joint phase module probabilities. 

8) Find the joint phase module probabilities for 
all system-level modules. The BDD method is 
used for modules that are static across all the 
phases, and the combined Markov chain 
method as presented in [13, 15] is used for 
modules identified as dynamic. Therefore, we 
can use the BDD method on the system-level 
module {A, B, F, G}; however, we must use 
the Markov chain method on the system-level 
module {C, D, E, H}. 

9) Consider each module as a basic event of a 
static fault tree of the entire system and solve 
the corresponding fault tree using BDD to find 
the overall system reliability based on the 
reliability measures of the modules. 

Each module's reliability is solved with a 
consideration of its own behavior in previous 
phases. For instance, for finding the reliability of 
M12, a combined BDD approach is used for M11 
and M12; for finding the reliability of M23, the 
combined Markov chain approach is used for M21, 
M22, and M23. We then consider solving the static 
PMS fault tree with the basic events M11, M21, 
M12, M22, M13, and M23 using the combined BDD 
approach and the reliability measures for each 
individual phase module computed from previous 
steps. It is important to note that solving this 
simple PMS fault tree without using the 
modularization technique would involve solving a 
Markov chain with approximately 256 states, while 
the Markov chain involved in this example has a 
maximum of only 16 states. The phase-modular 
approach provides exact reliability measures for 
PMS with dynamic phases in an efficient manner. 
Readers may refer to [13, 15, 16] for more details 
about this approach.  
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23.4 BDD Based PMS Analysis 

In this section, the binary decision diagrams 
(BDD) based approaches to the reliability analysis 
of PMS, PMS with imperfect fault coverage, and 
PMS with common-cause failures will be 
discussed. In the model for the BDD based PMS 
analysis, the following assumptions are made: 

• Component failures are s-independent within 
each phase. Dependencies arise among differ-
ent phases and different failure modes (when 
imperfect fault coverage is considered). 

• Phase durations are deterministic. 
• The system is not maintained during the 

mission; once a component transfers from the 
operation mode to a failure mode (either 
covered or uncovered), it will remain in that 
failure mode for the rest of the mission time. 

• The system is coherent.  

23.4.1 Traditional Phased-mission Systems 

Reliability of a traditional phase-OR PMS is the 
probability that the mission successfully achieves 
the objective in all phases [17]. In the BDD-based 
method to the reliability analysis of PMS, three 
major steps are involved: 1) generating BDD for 
each phase fault tree, 2) combining single-phase 
BDD to obtain the entire PMS BDD, and 3) 
evaluating the PMS BDD to obtain the system 
reliability. Similar to the generation of BDD for 
non-PMS, the variable ordering can heavily affect 
the size of PMS BDD. Currently, there is no exact 
method of determining the best way of ordering 
basic events for a given fault tree structure. 
Fortunately, heuristics can usually be used to find a 
reasonable variable ordering. 

In PMS, two kinds of variables need to be 
ordered: variables belonging to different 
components and variables that represent the same 
component in different phases. For the variables of 
different components, heuristics are typically used 
to find an adequate ordering. Several heuristics 
based on a depth-first search of the fault tree model 
can be found in [23]. For the variables of the same 
component in different phases, there are two ways 
to order them: forward and backward. In the 
forward method, the variable order is the same as 

the phase order, that is, mAAA ≺…≺≺ 21 , where 
Ai is the state variable of component A in phase i 
and m is the number of phases. In the backward 
method, the variable order is the reverse of the 
phase order, that is, 11 AAA mm ≺…≺≺ − .  

After assigning each variable an index/order, 
for generating single-phase BDD in step 1), the 
traditional BDD operation rules based on Boolean 
algebra are applied. The reader may wish to review 
the traditional BDD operation rules in Chapter 38. 
In step 2), for combining single-phase BDD, 
dependence among variables of the same 
component but different phases is dealt with using 
the phase-dependent operation (PDO) [2]. 
According to the two ways to order variables of the 
same component, two types of PDO were 
developed: forward and backward. Assume 
component A is used in both phases i and j (i < j). 
Ai and Aj are state variables of A in phase i and 
phase j, respectively. Ai =0 or iA =1 implies that A 
has failed in phase i. Using the ite format, the sub-
BDD rooted at iA  and jA  respectively can be 
written as: ),,(),,( 2101

GGAiteGGAiteG iAAi
ii

==
==

 and 

),,(),,( 2101 HHAiteHHAiteH jAAj
jj

== ==
. Let ◊ represent 

logic operation AND or OR, then we have:  

   

⎪⎩

⎪
⎨
⎧

◊◊

◊◊
=

◊=◊

PDO backward  ),,(

PDO forward   ),,(

),,(),,(

221

211

2121

HGHGAite

HGHGAite

HHAiteGGAiteHG

j

i

ji
    (23.3) 

The reader may refer to [2] for the proof of (23.3) 
using the phase algebra rules in Table 23.1. As 
discussed in Section 23.3.1.3, the backward PDO is 
preferred in the PMS analysis because in the PMS 
BDD generated by the backward PDO, the 0-edge 
always links two variables of different components 
and thus less dependence needs to be handled 
during the model evaluation.  

Note that PDO of [2] is only applicable to non-
repairable PMS. In addition, they can perform the 
task of combining BDD of individual phases into 
the overall PMS BDD correctly only given that the 
ordering strategies abide the following two rules:  

• Orderings adopted in the generation of each 
single phase BDD are consistent or the same 
for all the phases. 
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• Orderings of variables that belong to the 
same component but to different phases stay 
together. In practice, this can be achieved by 
replacing each component indicator variable 
with a set of variables that represent this 
component in each phase after ordering 
components using heuristics. 

These two rules are very stringent from the 
implementation point of view. Xing and Dugan 
relaxed the constraints by adding a removal 
procedure in the PMS BDD generation to allow 
arbitrary ordering strategies. For details, see [24]. 

After PMS BDD is generated, the final step to 
accomplish the reliability analysis is to evaluate the 
resulting PMS BDD. Note that 1-edges in the PMS 
BDD may link two variables of the same 
component but different phases. Dependence 
between these variables must be addressed during 
the evaluation. As a result, two different evaluation 
methods are needed for the PMS BDD generation. 
Specifically, consider the sub-BDD in Figure 23.7: 
The ite format is: 

2121 ),,( GxGxGGxiteG •+•==  

21211 ),,( HyHyHHyiteG •+•== . Let p(x) be the 
failure probability of component represented by 
node x and P(G) be the unreliability with respect to 
the current sub-BDD rooted at node x. The 
recursive evaluation algorithm of PMS BDD is as 
follows: 

• For 1-edge or 0-edge linking variables of 
different components, the evaluation method is 
the same as the ordinary BDD. For example, if 
x, y in Figure 23.7 belong to different 
components, the evaluation method is: 

         P(G)=P(G1)+[1-p(x)]*[P(G2)-P(G1)]     (23.4) 
• For 1-edge linking variables of the same 

component, for example, if x, y in Figure 23.7 
belong to the same component, the evaluation 
method is:  

         P(G)= P(G1)+[1-p(x)]* [P(G2)-P(H2)]   (23.5) 

The phase algebra rules (Table 23.1) are applied to 
deal with the dependence between x and y in the 
derivation of (23.5). Refer to [2] for details of the 
derivation. Exit conditions of the recursive 
algorithm are: if G = 0, i.e., the system is 
operational, then the unreliability P(G) = 0; if G = 
1, i.e., the system has failed, then P(G) = 1. 

23.4.2 PMS with Imperfect Coverage 

PMS, especially those devoted to safety-critical 
applications, such as aerospace and nuclear power, 
are typically designed with sufficient redundancies 
and automatic recovery mechanisms to be tolerant 
of faults or errors that may occur. However, the 
recovery mechanisms can fail, such that the system 
cannot adequately detect, locate, and recover from 
a fault occurring in the system. This uncovered 
fault can propagate through the system and may 
lead to an overall system failure, despite the 
presence of fault-tolerant mechanisms. As 
discussed in Chapter 22, the imperfect coverage 
(IPC) [25, 26] introduces multiple failure modes 
(covered failure and uncovered failure) that must 
be considered for accurate reliability analysis of 
fault-tolerant PMS. A covered component failure is 
local to the affected component; it may or may not 
lead to the system failure depending on the system 
configuration, failure criteria, and remaining 
redundancy. An uncovered component failure is 
globally malicious, and causes the system to crash. 

This section presents a BDD-based approach 
called GPMS-CPR [1] for the reliability analysis of 
PMS with IPC, while considering the CPR and 
multiple performance levels for GPMS. The IPC 
behavior will be modeled using the fault/error 
handling model (FEHM) described in Figure 22.1. 
However, the near-coincident failure exit is not 
considered here. The probabilities of the three 
mutually exclusive exits R, C, and S in the FEHM 
are denoted as: r, c, and s, where r + c + s = 1. 

The basic idea of the GPMS-CPR is to separate 
all the component uncovered failures from the 
combinatorics of the solution based on the simple 
and efficient algorithm (SEA) [1, 27] (Chapter 22) 
and the mini-component technique (Section 
23.3.1.1). SEA represents a separable scheme for 

 
Figure 23.7. A PMS BDD branch  



Reliability of Phased-mission Systems 359 

 

incorporating IPC in the reliability analysis of 
single-phase systems. It cannot directly apply to 
PMS with s-dependence across phases. The mini-
component concept can deal with the across-phase 
dependence. The basics of GPMS-CPR are to 
convert the PMS to an equivalent mini-component 
system so as to remove s-dependence, and then 
apply the SEA approach to address IPC. 
Figure 23.8 illustrates the GPMS-CPR approach.  

PMS Fault 
Tree 

Ignoring 
IPC

PMS Fault 
Tree 

Incorporating 
IPC

Q 1 - Pu

Covered 
Failure

UPMS = 1-Pu+Q*Pu

Uncovered 
Failure

System 
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Uncovered Failure 
of Comp. 1

SF1

SF11 SF1m
......

Uncovered Failure 
of Comp. n

SFn1 SFnm
......

SFn

 
Figure 23.8. The separable GPMS-CPR approach 

In Figure 23.8, SFA denotes an event that 
component A fails uncovered. SFA for different 
components are s-independent. 

iaSF represents an 
event that mini-component ai fails uncovered. 
Different

iaSF (i = 1,…,m) for the same component 
are not independent and the dependence must be 
addressed in the solution. The probability of no 
mini-component experiencing an uncovered failure 
(Pu) and the unreliability of the complementary 
perfect-coverage system (Q) are integrated using 
the total probability theorem:  

          UPMS = 1 - Pu + Q * Pu                     (23.6) 

The derivation of (23.6) is similar to the 
derivation of the SEA in Chapter 22. Also, refer to 
[1] for details. The formulation of Pu in (23.6) is:  
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   (23.7)                

where n is the total number of components in the 
PMS, u[A] is the probability that component A fails 
uncovered during the whole mission, that is, u[Am] 
is the probability that A has failed uncovered 
before the end of the last phase m. Let 

iaNF , 
iaCF , 

and 
iaSF denote events that A in phase i, namely, 

mini-component ai does not fail, fails covered, and 
fails uncovered, respectively. The three events are 
mutually exclusive and complete. Define n[ai] = 
Pr(

iaNF ), c[ai] = Pr(
iaCF ), and u[ai] = Pr(

iaSF ). 
According to the FEHM in Figure 22.1, these three 
probabilities can be calculated as:        
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Based on the relationship between a component 
and its mini-components depicted in Section 
23.3.1.1 and on the fact that a component can fail 
uncovered in one phase only if it has survived all 
the previous phases, u[Aj] can be calculated as: 
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                                                                        (23.9) 
where j = 1, u[A1] = u[a1]. Similarly, the covered 
failure probability c[Aj] and non-failure probability 
n[Aj] can be calculated as in (23.10) and (23.11), 
respectively, when j = 1, c[A1 = c[a1], n[A1] = 
n[a1]. 

Next, consider the evaluation of perfect-
coverage unreliability Q in (23.6). According to the 
SEA method, Q should be evaluated given that no 
component experiences an uncovered failure. 
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Therefore, before evaluating Q, the failure function 
of each component A in each phase j needs to be 
modified as a conditional failure probability, 
denoted by )(tF

jA
, conditioned on there being no 

uncovered failure during the whole mission, that is, 

][1
][

][1
][

)|Pr()(
m

jj
AAA Au

Ac
Au

Ac
SFCFtF

jj −
=

−
==  (23.12) 

Using these modified component failure functions, 
Q can be evaluated using the efficient PMS BDD 
method that does not consider IPC [2] (Section 
23.4.1). In summary, GPMS-CPR can be described 
as the following five-step algorithm: 

1) Compute the modified failure probability for 
each component at the end of each phase using 
(23.12). 

2) Order components using backward PDO and 
heuristics. Generate BDD for each phase. 

3) According to the specified CPR and mission 
performance criteria, combine the single-phase 
BDD using phase algebra and backward PDO 
to obtain the final PMS BDD. 

4) Evaluate Q recursively from the final PMS 
BDD using the algorithm of Section 23.4.1 
and using )(tF

jA
 generated in step (1) as the 

component failure probability. 

5) Evaluate the imperfect coverage probability (1 
- Pu). Then integrate it with Q using (23.6) to 
obtain final GPMS unreliability/performance. 

Due to the nature of BDD and the beauty of the 
SEA method, the GPMS-CPR method has low 
computational complexity and is easy to 
implement, as compared to the other potential 
methods such as Markov chain based methods. The 
Markov methods can address IPC by expanding the 
state space and number of transitions, worsening 
the state explosion problem [28]. In addition, the 
GPMS-CPR is capable of evaluating a wider range 
of more practical systems with less restrictive 
mission requirements, while offering more human-
friendly performance indices such as multi-level 
grading as compared to the previous PMS 
methods. Next, we consider the analysis of a data 
gathering PMS using GPMS-CPR. 

23.4.2.1 The Data Gathering System 
and Analysis  

A space data gathering system [1], which is loosely 
based on a practical system in NASA, consists of 
four types of components that are used in different 
configurations over three consecutive phases 
(Figure 23.9): 

•  Aa, Ab: needed for all phases; one of them 
must be functional during all the three phases. 

• Ba: only needed for phases 1 and 2; it must be 
functional during these two phases. 

• Ca, Cb: work during phases 1 and 3; both must 
be functional during phase 1, at least one of 
them must be functional during phase 3. 

• Da, Db, Dc: work during phases 2 and 3; all of 
them must be functional during phase 2, at 
least two of them must be functional during 
phase 3. 

Aa Ab Aa AaBa Ca Cb Ab Ba DaDb Dc Ab Ca Cb DaDbDc

2/3

Phase 1 Phase 2 Phase 3

 
Figure 23.9. Data gathering system configuration 
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Figure 23.10. Four performance levels in the fault tree 

According to the combination of data quality in the 
three phases, a four-performance-level result for 
the process can be defined as follows 
(Figure 23.10): 

• Excellent level: data collection is successful 
in all the three phases. 

• Good level: data collection is successful in 
phase 1 or 2 and in phase 3. 

• Acceptable level: data collection is successful 
in only one of the three phases. 

• Failed level: data collection fails in all the 
three phases. 

Let Plevel represent the multi-level reliability of the 
system, then we have: 

Pexcellent  = 1- Pr(TOPexce), 
Pgood  = 1- Pr(TOPgood), 
Pacceptable = Pr(TOPacce)- Pr(TOPfail), 
Pfailed  = Pr(TOPfail).                           (23.13) 

For illustration purpose, the final PMS BDD for 
the good level is shown in Figure 23.11 [1]. The 
ordering of cbabaaba DDDCCBAA ≺≺≺≺≺≺≺  

for variables of different components and 
backward ordering for variables of the same 
component and are used in the BDD generation. 

By recursively traversing the PMS BDD of 
each performance level, the parameter Q in (23.6) 
is calculated. The UPMS(level) is then found using 
(23.6). Lastly, the multi-level reliability Plevel for 
each level is given as a simple and linear function 
of UPMS(level) according to the corresponding 
grade-level performance criteria described in 
(23.13). Table 23.2 gives the input parameters 
(including phase duration, failure probabilities or 
rates, and coverage factors r, c, s) used in the 
analysis. Table 23.3 presents both the intermediate 
and final results for the analysis of the data 
gathering system. 

Table 23.2. Input parameters (λ and λw are in 10-6/hr; coverage factor r is 0 for all components in all phases) 

Phase 1 (33 hours) Phase 2 (100 hours) Phase 3 (67 hours) Basic events 
p or λ coverage c p or λ coverage c p or λ coverage c 

Aa, Ab 0.0001 0.99 0.0001 0.99 0.0001 0.99 
Ba λ =1.5 0.97 λ =1.5 0.97 0.0001 0.97 

Ca, Cb 0.0025 0.97 λ =1 0.99 λWeibull =1.6 
αWeibull =2 

1 

Da, Db, Dc 0.001 0.99 0.002 0.99 0.0001 0.97 
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Figure 23.11. PMS BDD for the good level 
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Table 23.3. Analysis results of the data gathering system using GPMS-CPR 

Performance level Excellent Good Acceptable Failed 
Pu 0.999734 0.999734 0.999734 0.999734 
Q 1.387e-2 1.261e-4 1.2602e-4 2.049e-7 
UPMS = 1 - Pu + Q * Pu. 0.0141326 3.9193e-4 3.9185e-4 2.6607e-4 
Multi-level reliability: Plevel 0.9858674 0.9996081 1.2578e-4 2.6607e-4 

 
 

23.4.3 PMS with Modular Imperfect Coverage 

In the traditional IPC, an uncovered component 
failure kills the entire mission. In the GPMS with 
CPR, however, the extent of the damage from an 
uncovered component fault can be just a phase 
loss, instead of the entire mission loss. Xing and 
Dugan proposed a generalized coverage model, 
called the modular imperfect coverage model 
(MIPCM) [29, 30], to exactly describe the behavior 
of a GPMS with CPR in the presence of a fault. As 
shown in Figure 23.12, MIPCM is a single entry, 
multiple exit black box. The model is activated 
when a fault occurs, and is exited when the fault is 
successfully handled or when the fault causes 
either a phase failure or the entire mission failure. 
The transient restoration exit R and permanent 
coverage exit C have the same meaning as in the 
traditional coverage model FEHM.  

Coverage
Model

c

Fault occurs in a 
component.

Fault may be transient or 
permanent.

Exit R:
Transient Restoration

Covered transient fault does 
not lead to component failure

Exit C:
Permanent Coverage
Fault leads to covered  
failure of a component

Single-Point Failure
Fault leads to uncovered  failure 

of a component

r

s

1-p

Exit P-S:
Phase Single Point Failure 

Uncovered failure crashes the 
single phase only

Modular 
Imperfect 
Coverage

p

Exit M-S:
Mission Single Point Failure 
Phase uncovered fault remains 
uncovered in system level, and 
hence leads to mission failure

 
Figure 23.12. General structure of MIPCM 

The following details the single-point failure exits. 
When a single fault (by itself) brings down a phase 
to which the fault belongs, single-point failure (or 
uncovered failure) is said to occur. Further, if such 

phase uncovered fault is covered at the higher 
system level, the phase single-point failure exit 
(labeled P-S) is reached, then a phase uncovered 
component failure occurs. If the phase uncovered 
fault remains uncovered at the system level, and 
hence leads to the failure of the entire mission, 
then the mission single-point failure exit (labeled 
M-S) is reached, and a mission uncovered failure is 
said to occur. 

The four exits R, C, P-S, and M-S are mutually 
exclusive and complete. Define [r, c, s] to be the 
probability of taking the [transient restoration, 
permanent coverage, single-point failure] exit, 
given that a fault occurs, as in IPCM, and r + c + s 
= 1. Define p as a conditional probability that an 
uncovered fault fails a single phase, not the 
mission conditioned on an uncovered fault 
occurring in that phase. Then s*p will be the 
probability of taking the P-S exit, and s*(1−p) will 
be the probability of taking the M-S exit. 

As compared with reliability analysis of PMS 
with traditional IPC, the analysis of GPMS with 
modular imperfect coverage (MIPC) is a more 
challenging task because the MIPC introduces 
more failure modes (covered failure, phase 
uncovered failure, and mission uncovered failure) 
and thus more dependencies into the system 
analysis. Building upon the above MIPCM, Xing 
and Dugan proposed two types of combinatorial 
methods for the reliability analysis of GPMS 
subject to MIPC: multi-state binary decision 
diagrams (MBDD) based method and ternary 
decision diagrams (TDD) based method. For each 
method, new phase algebra rules, new phase 
dependent operations for combining single-phase 
models into the overall system model, and new 
model evaluation algorithms were developed. The 
reader may refer to [29, 30] for the details of the 
MBDD-based method and the TDD-based method, 
respectively.   
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23.4.4 PMS with Common-cause Failures 

Components in PMS can be subject to common-
cause failures (CCF) during any phase of the 
mission. CCF are simultaneous component failures 
within a system that are a direct result of a 
common cause (CC) [31], such as extreme 
environmental conditions, design weaknesses, or 
human errors. It has been shown in many studies 
that the presence of CCF tends to increase a 
system’s joint failure probabilities and thus 
contributes significantly to the overall unreliability 
of the system [32]. Therefore, it is crucial that CCF 
be modeled and analyzed appropriately. 
Considerable research efforts have been expended 
on the study of CCF for the system reliability 
analysis; refer to Chapter 38 for a discussion of 
various approaches, their contributions, and their 
limitations concerning the analysis of non-PMS. 
Actually, many of these limitations can also be 
found in the CCF models developed for PMS [33].  

This section will present a separable solution 
that can address those limitations by allowing 
multiple CC to affect different subsets of system 
components and to occur s-dependently [34]. This 
separable approach is based on the efficient 
decomposition and aggregation (EDA) approach 
for the CCF analysis of single-phased systems 
(Chapter 38) and is easy to integrate into the 
existing PMS analysis methods.  

Assume Li elementary CC exists in each phase i 
of the PMS and they are denoted as: 

1111,......, LCCCC  for phase 1, 
2221,......, LCCCC  for 

phase 2, …, 
mmLm CCCC ,......,1

 for the last phase m. 

Thus, total number of CC in PMS is: ∑ =
= m

i iLL
1

. 

According to the EDA approach, a common-cause 
event (CCE) space is built over a set of collectively 
exhaustive and mutually exclusive CCE that can 
occur in the PMS: },...,,{

221 LCCECCECCECCE =Ω . 
Each CCE in the set is a distinct and disjoint 
combination of elementary CC in the PMS:  

mmLmL CCCCCCCCCCE ∩∩∩∩∩∩= ......... 11111 1
, 

mmLmL CCCCCCCCCCE ∩∩∩∩∩∩= ......... 11112 1
, 

…… , 

mL mLmL CCCCCCCCCCE ∩∩∩∩∩∩= ......... 11112 1
. 

If Pr(CCEj) denotes the occurrence probability of 
CCEj, then ∑ =

=
L

j jCCE2

1
1)Pr(  and 

0)()Pr( ==∩ φPCCECCE ji
 for any ji ≠ .  

As in the EDA approach, to find 
jCCES , a set of 

components affected by event CCEi is necessary. 
Define a common-cause group (CCG) as a set of 
components that are caused to fail due to the same 
CC. For non-PMS, 

jCCES is simply the union of 
CCG whose corresponding CC occur. For 
example, assume 

321 CCCCCCCCEi ∩∩=  is a 
CCE in a non-PMS with three CC, 

jCCES  is simply 

equal to CCG3 since CC3 is the only active 
elementary CC. For a non-maintainable PMS, a 
component will remain failed in all later phases 
once it has failed in a phase. Therefore, 

jCCES  must 
be expanded to incorporate the affected 
components in all subsequent phases. The gene-
ration of 

jCCES  for PMS will be illustrated later on.  
According to the total probability theorem, the 

unreliability of a PMS with CCF is calculated as: 

∑ =
=

L

j jjPMS CCECCEfailsPMSU 2

1
)]Pr()| [Pr(   (23.14) 

Pr(PMS fails|CCEj) in (23.14) is a conditional 
probability that the PMS fails conditioned on the 
occurrence of CCEj. It is a reduced reliability 
problem, in which all components in 

jCCES do not 

appear. Specifically, in the system fault tree model, 
each basic event appearing in 

jCCES  is replaced by a 

constant logic value “1” (true). After the replace-
ment, a Boolean reduction can be applied to the 
PMS fault tree to generate a fault tree in which all 
components in 

jCCES  do not appear. Most impor-

tantly, the evaluation of the reduced problems can 
proceed without consideration of CCF. Thereby, 
the overall solution complexity is reduced.  

Consider the excellent case of the data 
gathering PMS in Figure 23.9 with the following 
CCF scenario. The system is subject to CCF from 
hurricanes (denoted by CC11) during phase 1, from 
lightning strikes (CC21) during phase 2, and from 
floods (CC31) during phase 3. A hurricane of 
sufficient intensity in phase 1 would cause Aa and 
Ca to fail, i.e., },{ 1111 aa CACCG = , where Aa1 is the 



364 L. Xing and S.V. Amari 

 

state indicator variable of component Aa in phase 1, 
and 

1aA  denotes the failure of Aa in phase 1. 
Serious lightning strikes in phase 2 would cause 
Aa, Ab, and Ba to fail, i.e., },,{ 22221 aba BAACCG = . 
Serious flooding in phase 3 would cause Ca and Da 
to fail, i.e., },{ 3331 aa DCCCG = . The probability of a 
hurricane occurring in phase 1 is 02.0

11
=CCP . The 

probability of a lightning strike occurring in phase 
2 is 03.0

21
=CCP . Floods often occur in conjunction 

with hurricanes, and the s-dependence between the 
two CC can be defined by a set of conditional 
probabilities: the probability that floods occur in 
phase 3 conditioned on the occurrence of 
hurricanes in phase 1 is: 6.0

1131|
=CCCCP . Similarly, 

03.0
1131| =CCCCP , 

11311131 || 1 CCCCCCCC PP −= , 
11311131 ||

1
CCCCCCCC

PP −= . 

These probabilities can typically be derived from 
available weather information. 

Because there are three common causes in the 
example PMS, the CCE space is composed of 

823 =  CCE, as defined in the first column of 
Table 23.4. The second and third columns of the 
table show the set of components affected by each 
CCE (

jCCES ) and occurrence probability calculation 

for each CCE based on statistical relation among 
those three CC, respectively.  

According to (23.14), the problem of 
evaluating the reliability of the data gathering 
system with CCF can be subdivided into eight 
reduced problems that need not consider CCF. 
Based on system configuration in Figure 23.9 and 
failure criteria for the excellence case described in 
Figure 23.10 (a), it is easy to derive that: Pr(PMS 
fails|CCEj) = 1 for j = 3…8. We apply the PMS 
BDD approach of [2] to evaluate the remaining 
two reduced problems, Pr(PMS fails|CCE1) and 
Pr(PMS fails|CCE2). Figure 23.13 (a) and (b) show 
the reduced fault tree models after applying the 
reduction procedure for removing components of 

1CCES and 
2CCES , respectively. Note that because no 

component is affected by CCE1, the reduced fault 
tree in Figure 23.13(a) is actually the same as the 
original PMS fault tree (fault trees of the three 
phases in Figure 23.9 connected via an OR gate) 
but without considering CCF. Figures 23.14(a) and 
(b) show the PMS BDD generated from the fault 
tree models in Figures 23.13(a) and(b), 
respectively. Finally, results of the eight reduced 
problems are aggregated using (23.14) to obtain 

Table 23.4. CCE, affected components, and probabilities 

CCEi jCCES  Pr(CCEi) 

312111:1 CCCCCC ∩∩  φ  
9221.0

11311121 |

=
CCCCCCCC PPP  

312111:2 CCCCCC ∩∩  },{ 33 aa DC  
0285.0

11311121 |

=
CCCCCCCC PPP  
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}

,,{

)32(

)32()32(

−

−−
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)32()32(
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(a) PMS|CCE1 

Aa1Ab1 Aa2 Aa3Ba1 Ca1Cb1 Ab2 Ba2Da2Db2Dc2 Ab3 Cb3 Db3Dc3

Mission failure

Phase 1 failure Phase 2 failure Phase 3 failure

 
(b) PMS|CCE2 

Figure 23.13. Reduced PMS fault trees 
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the unreliability of the data gathering system with 
the consideration of CCF.  

Figure 23.15 shows a conceptual overview of 
the separable approach for analyzing PMS with 
CCF. In summary, the methodology is to 
decompose an original PMS reliability problem 
with CCF into a number of reduced reliability 
problems based on the total probability theorem. 
The set of reduced problems does not have to 
consider dependence introduced by CCF, and thus 
can be solved using the efficient PMS BDD 
method [2]. Finally, the results of all reduced 
reliability problems are aggregated to obtain the 
entire PMS reliability considering CCF. 

Component failure 
parameters

Traditional 
PMS 

reliability 
analysis 
software 
package

Traditional 
PMS 

reliability 
analysis
software 
package

Pr(CCE1)

L

.

.

.

UPMS: PMS 
unreliability 
considering 

CCF

Fault tree after removing 
components of A        CCE1

Fault tree after removing 
components of A LCCE2

Pr(CCE2  )

+

+

 
Figure 23.15. A conceptual overview  

23.4.4.1 A Case Study: The Mars Orbiter System  

To demonstrate this method, we considered a Mars 
orbiter mission system (originally described in 

[35]). As shown in the high-level dynamic fault 
tree (DFT) model of the system (Figure 23.16), this 
mission system involves launch, cruise, Mars orbit 
insertion (MOI), commissioning, and orbit phases. 
The triangles in the DFT are transfer gates to the 
DFT model for the Subsystem F.  

Each mission phase is characterized by at least 
one major event in which the mission failure can 
occur. Examples of failure events for this system 
include the launch event during the launch phase, 
the deployment of the solar arrays (SA) and high-
gain antennas (HGA), and the configuration of the 
heaters during the cruise phase, the propulsive 
capture into Mars’ orbit during the MOI phase, and 
the release of an orbiting sample (OS) and the 
inclusion of a rendezvous and navigation (RAN) 
platform on the orbiter that might induce additional 
failure modes during orbit [35]. Table 23.5 gives 
occurrence probabilities of these failure events. 

Mission Failure

Launch Cruise MOI Commission Orbit

Launch Sub
System

F

Heater 
Configuration

Deploy SA

HGA Deploy Propulsive 
System OS Release

RAN inducedSub
System

F

Sub
System

F

Sub
System

F

Sub
System

F  
Figure 23.16. High-level DFT model 

Table 23.5. Probabilities of failure events  

Failure events Probability 
Launch 0.02 
SA deployment 0.02 
Heater configuration 0.02 
HGA deployment 0.02 
Propulsive capture 0.03 
Orbiting sample release 0.02 
RAN-induced failure 0.02 

Subsystem F in Figure 23.16 consists of 
telecommunication, power, propulsion, the 
command and data handling system (CDS), the 
attitude control system (ACS), and thermal 
subsystems, which are connected through an OR 
gate (Figure 23.17).  

Aa3

0

Ab3

Ba2

Da2

Db3

Ca1

Cb3

Dc3

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1  
(a) PMS BDD|CCE1 (b) PMS BDD|CCE2 

Figure 23.14. PMD BDD for reduced fault trees 
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Subsystem-F

ThermalACSCDSPropulsionPowerTelecom  
Figure 23.17. Fault tree of subsystem F 

As described in [35], these subsystems can be 
subject to CCF due to two independent CC: CC1 is 
a micrometeoroid attack that results in the failure 
of the entire system, and CC2 is a solar flare that 
fails the subsystem’s electronics, most notably the 
CDS in all pre-MOI phases. The orbiter will not be 
affected by solar flares after the MOI phase due to 
the increased distance of the orbiter from the sun. 
Assume that the occurrence probabilities of CC1 
and CC2 are 0.01 and 0.02, respectively. Table 23.6 
specifies the four CCE generated from the two CC, 
the set of components affected by CCEi, and 
occurrence probability of each CCEi, Pr(CCEi).  

A review of Table 23.6 implies that the CDS 
subsystem is the only subsystem affected by both 
CC1 and CC2 and therefore its failure will receive 
further analysis in this example. Figure 23.18 
shows the fault tree model of the CDS subsystem.  

Table 23.7 gives the failure rates for the CDS 
components and for the rest of the components 
(subsystems) of the subsystem F in each phase, as 
well as the phase duration. According to (23.14), 
the problem of evaluating the unreliability of the 
orbiter system with CCF is decomposed into four 
reduced problems that need not consider CCF. 
Based on the fault trees in Figures 23.16 through 
23.18, we can derive that Pr(orbiter fails| CCEi) = 1 
for i = 2, 3, and 4. Solving the phase-mission fault 
tree for a mission duration of 97368 hours using 
the PMS BDD method yields 0.14661 for 
Pr(Orbiter fails|CCE1). Finally, according to 
(23.14), the unreliability of the proposed Mar’s 
orbiter system with CCF is 0.172. This result is 
obtained by aggregating the results of Pr(Orbiter 
fails | CCEi) and Pr(CCEi) given in Table 23.6. 
 

Table 23.7. Failure rates (10-7/hr) of components in CDS and subsystem F 

CDS components/ 
subsystem in F 

Launch 
(504 hrs) 

Cruise 
(5040 hrs) 

MOI 
(144 hrs) 

Comm. 
(4080 hrs) 

Orbit 
(87600 hrs) 

EPS-interface 0.05 0.04 0.05 0.05 0.04 
Mass memory 0.02 0.01 0.02 0.02 0.01 
AC-DC converter 0.02 0.01 0.02 0.02 0.01 
CMIC (A and B) 0.03 0.02 0.03 0.03 0.02 
FlightProc (A and B) 0.04 0.03 0.04 0.04 0.03 
Bus (A and B) 0.02 0.01 0.02 0.02 0.01 
IO-card (A and B) 0.02 0.01 0.02 0.02 0.01 
PACI-card 0.01 0.005 0.01 0.01 0.005 
ULDL-card 0.01 0.005 0.01 0.01 0.005 
Telecommunication 0.03 0.2 0.3 0.3 0.2 
Power 0.02 0.1 0.2 0.2 0.1 
Propulsion 0.3 0.2 0.3 0.3 0.2 
ACS 0.04 0.03 0.04 0.04 0.03 
Thermal 0.02 0.01 0.02 0.02 0.01  

Table 23.6. CCE, affected components, and probabilities 

iCCE  
jCCES  Pr(

iCCE ) 

211 CCCCCCE ∩=  φ  9.702e-1 

212 CCCCCCE ∩=  all spacecraft  
elements 9.980e-3 

213 CCCCCCE ∩=  CDS 1.980e-2 

214 CCCCCCE ∩=  all spacecraft  
elements 2.000e-4 
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Figure 23.18. DFT model of the CDS 

23.5  Conclusions  

This chapter presented three classes of analytical 
approaches to the reliability analysis of PMS, 
which subject to multiple, consecutive, and non-
overlapping phases of operations. The 
combinatorial approaches are computationally 
efficient but are limited to the analysis of static 
PMS only. The state space oriented approaches are 
powerful in modeling the various dynamic 
behaviors and dependencies, but are limited to the 
analysis of small-scale systems due to the state 
explosion problem. A better solution is the phase 
modular approach that combines the advantages of 
both combinatorial analyses and state space 
oriented analyses. This chapter also discussed the 
efficient BDD based methods to the analysis of 
PMS with imperfect coverage or common-cause 
failures in detail. Since they are combinatorial, the 
BDD-based methods are applicable to static PMS 
only. Recently, a separable solution based on the 
phase modular approach was proposed for the 
reliability analysis of dynamic PMS subject to 
CCF. The reader may refer to [22] for details. 
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