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Abstract: Statistical process control (SPC) is a tool used for on-line quality control in mass production. 
Statistical sampling theory is effectively used for this purpose in the form of control charts. Various types 
of control charts have been developed in industry for controlling different types of quality characteristics. 
The basic principles of development, design and application of various types of control charts are 
discussed in this chapter. The state of the art and recent developments in SPC tools are included with 
references for further research. A separate section on process capability studies is also included.  

14.1 Introduction  

The concepts of quality are as old as human 
civilization. It has been a constant endeavor of any 
society or culture to design and develop finest 
pieces of quality in all walks of life. This is visible 
in many of the human made world wonders such as 
the Taj Mahal of India, the pyramids of Egypt, the 
high roads and sculptures of the Roman Empire, 
the finest paintings of Renaissance Europe, or the 
latest developments such as space shuttles, super 
computers, or atomic power generation. However, 
quality as a science or as a formal discipline has 
developed only during the 20th century. Quality 
has evolved through a number of stages such as 
inspection, quality control, quality assurance, and 
total quality control.  

The concepts of specialization, standardization, 
and interchangeability resulted in mass production 
during the Second World War. This also changed 
the traditional concepts of inspection of individual 
products for quality control. It was found that 

applications of statistical principles are much more 
practical and beneficial in mass production. 
Statistical sampling theory, for instance, helped to 
minimize the need of resources for quality control 
with acceptable levels of accuracy and risk. The 
concept of statistical process control (SPC) has 
now been accepted as the most efficient tool for 
on-line quality control in mass production systems. 
SPC uses control charts as the main tool for 
process control. The control chart is one of the 
seven tools for quality control. Fishbone diagrams 
or Ishikawa diagrams check sheets, histograms, 
Pareto-diagrams, scatter diagrams, and stem and 
leaf plots are other tools. They are discussed in 
detail in [1]. This chapter focuses on SPC using 
control charts.  

14.2 Control Charts  

The control chart is a graphical tool for monitoring 
the activities of a manufacturing process. The 
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numerical value of a quality characteristic is 
plotted on the Y-axis against the sample number on 
the X-axis. There are two types of quality 
characteristics, namely variables and attributes. 
The diameter of shafts, the strength of steel 
structures, service times, and the capacitance value 
of capacitors are examples of variable 
characteristics. The number of deformities in a 
unit, and the number of nonconformities in a 
sample are examples of attribute quality 
characteristics. A typical control chart is shown in 
Figure 14.1.  

As shown in this figure, there is a centerline to 
represent the average value of the quality 
characteristic. It shows where the process is 
cantered. The upper control limit (UCC) and the 
lower control limit (LCL) on the control chart are 
used to control the process. The process is said to 
be in statistical control if all sample points plot 
inside these limits. Apart from this, for a process to 
be in control the control chart should not have any 
trend or nonrandom pattern.  

 

 

 

 

 

Figure 14.1. A typical control chart 

14.2.1  Causes of Process Variation  

Many factors influence the manufacturing process, 
resulting in variability.  For example, variation in 
raw materials, skills of operators, capabilities of 
machines, methods, management policies, and 
many other factors including environmental 
variations affect the performance of a process. The 

causes of process variability can be broadly 
classified into two categories, viz., assignable 
causes and chance causes.  

Assignable Causes 

If the basic reason for the occurrence of a cause of 
process variation can be found, then we list it 
under the category of assignable causes. Improper 
raw materials, usage of inappropriate cutting tools, 
carelessness of machine operators, etc., are 
examples of this. Such causes are also known as 
special causes. The basic purpose of using control 
charts is to identify the presence of assignable 
causes in the process and to eliminate these so as to 
bring back the process to statistical control.  

 Chance Causes  

These are natural causes inherent in any process. 
The basic reasons for the occurrence of such causes 
cannot be correctly established. Elimination of 
such causes is also not possible in actual practice. 
A process is said to be out of control if any 
assignable cause is present in the process. Inherent 
material variations, operator skills, environmental 
conditions, and machine vibration are examples of 
chance causes. These are also known as common 
or random causes. 

It is found that the assignable causes result in 
large variations in the process parameters whereas 
chance causes bring only small variations. It is 
reported that about 15% of the causes of variation 
are due to assignable causes and the remainder are 
due to chance causes for which only the 
management is accountable [2]. It is very important 
to remember that a process under statistical control 
will have some variations due to chance causes. In 
fact, the control limits are designed based on this 
principle.  

Statistical Basis  

Control charts are formulated based on the 
properties of the normal distribution [3]. The 
central limit theorem [1] states that if we plot the 
sample average of a process parameter, it will tend 
to have a normal distribution. The normal 
distribution is described by its parameters mean 
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( )μ  and standard deviations ( )σ . For a normal 
distribution it can be shown that 99.74% of all 
points fall within the σ3  limits on either side of 
the mean. The upper and lower control limits of the 
control chart are determined based on this 
principle. This means that almost all the data points 
will fall within σ3  control limits if the process is 
free from assignable causes.  

Errors in Control Charts  

Two types of errors are associated with using the 
control charts. These are type I error and type II 
error. Type I error is the result of concluding that a 
process is out of control (based on actual data 
plotted on the chart) when it is actually in control. 
For a σ3  control chart this chance ( )α  is very 
small (about 0.0026). Type II error is the result of 
concluding that a process is in control (based on 
actual data plotted on the chart) when it is actually 
out of control. This may happen under many 
situations, such as the process mean changes from 
its initial setup, but all sample points fall within the 
control limits. The probability of type II error is 
generally represented by β  and it is evaluated 
based on the amount of process change and the 
control limits. A plot of β  versus the shifting 
process parameter is known as the operating 

characteristic (OC) curve of a control chart. The 
OC curve is a measure of the ability of a control 
chart to detect the changes in process parameters. 
A good control chart should have an OC curve as 
shown in Figure 14.2. For small changes in the 
process parameter, the probability of nondetection 
( )β  by the control charts is high. For large 
changes in the process parameter, β  should be 
small so that it is detected and corrected by the 
control chart.  

 

Average Run Length (ARL) 

The average run length (ARL) is another measure 
of the performance of a control chart. It is the 
number of samples required to detect an out-of-
control by a control chart. It is measured as 
reciprocal of type I errorα .  

α
1=ARL . 

For a σ3  control chart, 385
0026.0
1 =⎟

⎠
⎞

⎜
⎝
⎛=ARL . 

This shows that on an average one sample point is 
expected to fall out of 385 sample points outside 
the control limits. A large ARL is preferred since it 
produces fewer false alarms in a control chart.  

Other Considerations 

As mentioned earlier, control charts are plotted by 
taking small samples from the manufacturing 
process on a regular basis. Therefore, selection of 
sample size is very important in using the control 
charts.  

Sample Size 

It can be shown that a larger sample size results in 
narrow control limits. Decreasing the sample size 
makes the control limits wider. A larger sample 
size is needed if the small shift in the process 
parameter needs to be detected early. Apart from 
these factors the selection of sample size is 
influenced by the availability of resources, the 
types of tests used for sample evaluation, 
production rate, etc.   Figure 14.2. Typical OC curve for control charts 
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14.2.1.8 Frequency of Sampling  

Theoretically it is most beneficial if we have more 
frequent large sample sizes. The type of inspection 
and the resource constraints are the main factors 
influencing the selection of these. In most practical 
situations a small sample size at frequent intervals 
is preferred.  

Decision Rules for Control Charts  

Five rules are used to detect when a process is 
going out of statistical control. These are briefly 
discussed below:  
Rule 1: A process is going out of control if a single 
point plots outside the control limits.  
Rule 2: A process is going out of control if two out 
of three consecutive points fall outside the σ2  
warning limits on the same side of the centerline.  
Rule 3: A process is going out of control if four out 
of five consecutive sample points fall outside the 
σ1  limits on the same side of the centerline.  

Rule 4: A process is going out of control if nine or 
more consecutive points fall to one side of the 
centerline. 
Rule 5: A process is going out of control if six or 
more consecutive sample points run up or down.  

Applications of Control Charts  

Control charts have several applications. This helps 
us in the following decision making:  

1. To decide when to take corrective actions 
and when to leave the process as it is.  

2. They give indications of type of remedial 
actions necessary to bring the process to 
control.  

3. They help us to estimate the capability of 
our process to meet certain customer 
demands or orders.  

4. They help us to improve quality.  
5. They help us to take decisions such as the 

need for machine or technology replacement 
to meet quality standards.  

Quality control and improvement are ongoing 
activities and, therefore, control charts must be 
maintained or revised as and when changes occur 

in the process. Installation of a new machine or 
application of a new technology necessitates the 
development of new control charts.  

As mentioned earlier, the quality characteristics 
are broadly of two types. These are variables and 
attributes. Variable characteristics are continuous 
in their range where as attributes are discrete. 
Therefore, control charts are broadly classified into 
two categories, viz., control charts for variables and 
for attributes.  

14.3 Control Charts for Variables  

Quality characteristics that can be measured on a 
numerical scale such as diameter of a shaft, length 
of a component, strength of a material and weight 
of a part are known as variables. Process control 
means controlling the mean as well as the 
variability of the characteristic. The mean of the 
variable indicates the central tendency and 
variability indicates the dispersion of the process. 
Variability is measured in terms of the range or 
standard deviation. Various types of control charts 
are discussed in the following sections.  

14.3.1 Control Charts for Mean and Range 

These charts are used to control the process mean 
and its variations.  This is because the process 
control is ensured only if its mean is located 
correctly and its spread is kept within its natural 
limits. Therefore, these charts are used in pairs. 
The following steps are generally used for 
designing these control charts:    

Step I: Decide the sampling scheme (sample size, 
number of samples, and frequency of sampling) 
and the quality characteristic to be controlled.  
Step II: Collect the samples randomly from the 
process, measure the quality characteristic, and 
enter it into a data sheet.  Let n be the sample 
size and iX  be the i-th observation, i = 1...n.  
Step III: For each sample (j) calculate mean and 
range using the following equations (j =1...g). 
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 minmax jjj XXR −=  .                               (14.2) 
Step IV: Estimate the centerline (CL) and trial 
control limits for both mean and range charts using 
the following equations: 

g
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j
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=== 1 ,                                (14.3) 
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∑
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( ) RAXLCLUCL
XX 2, ±= ,                 (14.5)                                                          

( ) RDUCLR 4=    ,                         (14.6) 
RDLCLR 3=    .                                   (14.7)   

The values of 432 ,, DDA  depend on the sample 
size and can be taken from Appendix A-7 of [1].  
Step V: Plot jX  and jR  on the control charts 
developed as per Step III. Check whether the 
process is in control as per the decision rules 
discussed earlier. If so, the control limits in Step III 
are final. Else revision of control limits by 
elimination of the out of control points is required. 
Repeat these steps for revision of control limits 
until final charts are obtained. The principle of 
development of other control charts is similar to 
the above methodology.  

If the sample size is not constant from sample to 
sample, a standardized control chart can be used. 
The reader is referred to [4] and [5] for more 
details. Sometimes control charts are to be 
developed for specified standard or target values of 
mean and standard deviation. The reader is referred 
to [1] for the complete procedure for this. If a 
process is out of control assignable causes are 
present, which can be identified from the pattern of 
the control chart. AT & T [6] explains different 
types of control chart patterns that can be 
compared with the actual pattern to get an idea 
about “what” action is to be taken “when”.  

The effect of measurement error on the perform-
ance of X  and S2 charts is frequently quantified 
using gage capability studies [7], which are further 
investigated using a linear covariate [8]. Their 
study also identifies conditions under which 
multiple measurements are desirable and suggests 
a cost model for selection of an optimal mean. 
They also suggest taking multiple measurements 
per item to increase the statistical power of control 
charts in such cases.  

14.3.2 Control Charts for Mean and Standard 
Deviation ( )SX ,  

Both range and standard deviation is used for 
measuring the variability. Standard deviation is 
preferred if the sample size is large (say n > 10). 
The procedure for construction of X  and S charts 
is similar to that for X and R chart. The following 
formulas are used: 

g

S
SCL

g

j
j

s

∑
=== 1   ,                          (14.8) 

SBUCLs 4= ,                            (14.9) 
 

SBLCLs 3=  .                           (14.10) 

The reader is referred to Appendix A-7 of [1] for 
the values of 3B and 4B . X and S  charts are  
sometimes also developed for given standard 
values [1]. 

14.3.3 Control Charts for Single Units (X     
chart)  

In many practical situations we are required to 
limit the sample size to as low as unity. In such 
cases we use an X chart in association with a 
moving range (MR) chart. The moving range is the 
absolute value of the difference between successive 
observations. The assumption of normal distrib-
ution may not hold well in many cases of X and 
MR charts. The following formulas shown in Table 
14.1 are used for developing the charts.  
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Table 14.1. Control limits for X and MR charts 
 

Chart  CL UCL LCL 
X X  2/3 dMRX +  2/3 dMRX −  

MR MR  MRD4  MRD3  

The values of d2 depend on the sample size and can 
be taken from Appendix A-7 of [1]. These charts 
can also be developed for given standard values.  

The control charts discussed so far are initially 
developed by Walter A Shewhart. Therefore, these 
charts are also known as Shewhart control charts 
[9]. Shewhart control charts are very easy to use 
and are very effective for detecting magnitudes of 
shifts from σ5.1  to σ2  or larger. However, a 
major limitation of these charts is their insensitivity 
to small shifts in process parameters, say about 

σ5.1  or less. To alleviate this problem a number of 
special charts have been developed. These are 
discussed in the following sections. 

14.3.4 Cumulative Sum Control Chart 
(CUSUM) 

These control charts are used when information 
from all previous samples need to be used for 
controlling the process. CUSUM charts are more 
effective in detecting small changes in the process 
mean compared to other charts discussed earlier.  

The cumulative sum for a sample m is 
calculated by 

( )∑
=

−=
m

j
oim XS

1

μ   ,                                     (14.11) 

where oμ  is the target mean of the process. In this 
case CUSUM is plotted on the y-axis. The details 
of development and implementation of CUSUM 
charts are discussed in [10]. A V-mark is designed 
and developed for taking the decision on the 
process control while using these charts. A 
methodology to use CUSUM charts for detecting 
larger changes in process parameters is also 
available in this reference. 

A comparative study of the performance based 
on the ARL of a moving range chart, a cumulative 
sum (CUSUM) chart based on moving ranges, a 

CUSUM chart based on an approximate 
normalizing transformation, a self-starting 
CUSUM chart, and an exponentially weighted 
moving chart based on subgroup variance is 
discussed in [11, 12]. The CUSUM chart is again 
compared with several of its alternatives that are 
based on the likelihood ratio test and on 
transformations of standardized recursive residual 
[13]. The authors conclude that the CUSUM chart 
is not only superior in the detection of linear trend 
out-of-control conditions, but also in the detection 
of other out-of-control situations. For an excellent 
overview of the CUSUM chart techniques the 
reader is referred to [14]. 

The adaptive CUSUM (ACUSUM) chart was 
proposed to detect a broader range of shifts on 
process mean [15]. A two-dimensional Markov 
chain model has also been developed to analyze the 
performance of ACUSUM charts [16]. This 
improves on the theoretical understanding of the 
ACUSUM schemes and also allows the analysis 
without running exclusive simulations. Moreover,  
a simplified operating function is derived based on 
an ARL approximation of CUSUM charts [16]. 

14.3.5 Moving Average Control Charts  

These charts are also developed to detect small 
changes in process parameters. The moving 
average of width w for a sample number r is 
defined as: 

 
w

XXXM wrrr
r

11 +−− +++= .             (14.12)     

That means rM  is an average of latest w  samples 
starting from the r-th sample. The control limits for 
this chart will be wider during the initial period and 
stabilize to the following limits after the first (w-1) 
samples:  

XCL = ,                              (14.13) 

( )
nw

XLCLUCL σ3, ±= .             (14.14) 

The initial control limits can be calculated by 
substituting r in place of w in these equations. 
Larger values of w should be chosen to detect 
shifts of small magnitudes. These charts can also 
be used when the sample size is unity.  
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14.3.6 EWMA Control Charts  

The exponentially weighed moving average 
(EWMA) control chart was introduced in 1959 
[17]. EWMA charts are also used for detecting 
shifts of small magnitudes in the process 
characteristics. These are very effective when the 
sample size is unity. Therefore, these are very 
useful for controlling chemical and process 
industries, in discrete part manufacturing with 
automatic measurement of each part, and in 
automatic on-line control using micro computers. 
EWMA is similar to MA, except that it gives 
higher weighting to the most recent observations. 
Therefore, the chances of detecting small shifts in 
process are better compared to the MA chart. 
These charts are discussed in details in [18–20], 
and [1]. The control limits of the EWMA chart are  

XCL =  ,                       (14.15) 

( ) ( )[ rp
pn

p
XLCLUCL 211

2
3),( −−

−
±= σ (14.16)                                        

where p is the weighing constant ( ),10 ≤< p  and 
r is the sample number.  

It may be noted that if p = 1, EWMA chart 
reduces to Shewhart chart and for p = 2/(w +1), it 
reduces to MA chart. Selecting a small value of p 
(say 0.05) ensures faster detection of small shifts in 
process. These charts are also known as geometric 
moving average control charts. 

As discussed earlier, violation of the assumption 
of independent data results in increased number of 
false alarms and trends on both sides on the 
centerline. A typical approach followed in the 
literature to study this phenomenon is to model the 
autocorrelated structure of the data and use a 
traditional control chart method to monitor the 
residuals. See [21–25], for more details. An 
alternative approach is the exponentially weighted 
moving average (MCEWMA) chart proposed in 
[26]. The literature also explores the shift detection 
capability of the moving centerline exponentially 
weighted moving average (MCEWMA) chart and 
recommends enhancements for quicker detection 
of small process upsets [27]. 

14.3.7 Trend Charts  

In many processes the process average may 
continuously run either upward or downward after 
production of every unit of product. This is a 
natural phenomenon and therefore, it is an 
acceptable trend. Examples are effects of wearing 
of the punch, die, cutting tools or drill bits. 
However, such a trend in the process mean is 
acceptable only within some upper and lower 
limits (in most cases the specification limits). The 
trend charts are developed to monitor and control 
these types of processes. The centerline of the 
trend chart will have an upward or downward 
trend, and the upper and lower control limits will 
be parallel to the centerline. The intersection of 
centerline a and the slope b can be evaluated from 
the observations collected from the process [1]. 
The equations for the control limits are  

ibaCL +=  ,                                    (14.17) 

( ) RAbaUCL i 2++= ,                                  
(14.18) 

( ) RAbaLCL i 2−+=  .                  (14.19) 

These charts are useful for detecting changes in 
the process and also to decide whether or not a tool 
change is required. These charts are also known as 
regression control charts and are very helpful in 
controlling processes in machine shops and other 
production machines. 

14.3.8 Specification Limits on Control Charts  

If we want to include specification limits on the 
control charts, we require modification of the 
control limits. This is because the specification 
limits are defined on individual units where as 
most control charts are developed for sample 
average values. A simple methodology for finding 
the modified control limits is discussed in [1]. 

14.3.9 Multivariate Control Charts  

The quality of a product is a function of many 
characteristics. For example, the length, diameter, 
strength, and surface finish among others 
contribute to the quality of a shaft. Therefore 
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controlling of all these variables is required to 
control the quality of the product. Multivariate 
control charts are developed to simultaneously 
control several quality characteristics. The 
procedure for development and application of 
multivariate control charts are discussed in detail in 
[1]. The 2T distribution is used to develop the 
control chart and the F-distribution is used for 
finding the upper control limit [28]. The lower 
control limit is zero. The probability of type I error 
for this type of chart is very difficult to establish if 
the variables are dependent. If all the variables are 
independent then we can calculate this probability 
by the equation: 

( ) pαα −−= 11*  ,              (14.20) 

where p  is the number of independent variables. 
Two phases in constructing multivariate control 

charts are defined, with phase I divided into two 
stages [29]. In stage I of phase I, historical 
observations are studied for determining whether 
the process was in control and to estimate the in-
control parameters of the process. The T2 chart of 
Hotelling is used in this stage as proposed in  [30], 
and [31]. Control charts are used in stage II with 
future observations for detecting possible 
departures from the parameters estimated in the 
first stage. In the phase II charts are used for 
detecting any departures from the parameter 
estimates, which are considered the true in-control 
process parameters. A T2 control chart based on 
robust estimators of location and dispersion is 
proposed in [32]. Using simulation studies the 
author shows that the T2 control chart using the 
minimum volume ellipsoid (MVE) estimators is 
effective in detecting any reasonable number of 
outliers (multiple outliers).  

Multiway principal components analysis 
(MPCA), a multivariate projection method, has 
been widely used for monitoring the batch process. 
A new method is proposed in [33] for predicting 
the future observation of the batch that is currently 
being operated (called the new batch). The 
proposed method, unlike the existing prediction 
methods, makes extensive use of the past batch 
trajectories. 

The effect of measurement error on the 
performance of the T2 chart is studied in [34]. For 
some multivariate nonnormal distributions, the T2 
chart based on known in-control parameters has an 
excessive false alarm rate as well as a reduced 
probability of detecting shifts in the mean vector 
[35]. The process conditions that lead to the 
occurrence of certain nonrandom patterns in a T2 
control chart are discussed in [36]. Examples 
resulting from cycles, mixtures, trends, process 
shifts, and auto correlated data are identified and 
presented. Results are applicable to a phase I 
operation or phase II operation where the T2 
statistics is based on the most common covariance 
matrix estimator. The authors also discuss the 
cyclic and trend patterns, effects of mixture of 
populations, process shifts and autocorrelated data 
on the performance of the T2 chart. 

A strategy for performing phase I analysis (of 
the multivariate control charts) for high-
dimensional nonlinear profiles is proposed in [37]. 
This consists of two major components: a data 
reduction  component  that projects the original 
data into a lower dimension subspaces while 
preserving the data-clustering structure and a data-
separation technique that can detect single and 
multiple shifts as well as outliers in the data. 
Simulated data sets as well as nonlinear profile 
signals from a forging process are used to illustrate 
the effectiveness of the proposed strategy.  

Excellent reviews on the T2 chart are presented 
in [38, 39]. Several useful properties of the T2 

statistics based on the successive difference 
estimator which give a more accurate approximate 
distribution for calculating the upper control limit 
individual observation in a phase I analysis are 
demonstrated in [40].The author discusses how to 
accurately determine the upper control limit for a 
T2 control chart based on successive difference of 
multivariate individual observations. 

A multivariate extension of the EWMA chart 
was proposed in  [41]. This chart, known as 
MEWMA chart, is based on sample means and on 
the sum of squared deviations from the target. The 
performance of many of these control charts 
depends on the direction of the shifts in the mean 
vector or covariance matrix [42]. 
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14.4 Control Charts for Attributes 

Attribute characteristics resemble binary data, 
which can take only one of two given alternatives. 
In quality control, the most common attribute 
characteristics used are “conforming” or “not 
conforming”, “good” or “bad”.  Attribute data need 
to be transformed into discrete data to be 
meaningful.  

The types of charts used for attribute data are:  

• Control chart for proportion nonconforming 
items (p chart) 

• Control chart for number of nonconforming 
items (np chart ) 

• Control chart for nonconformities (c chart)  
• Control chart for nonconformities per unit (u 

chart) 
• Control chart for demerits per unit (U chart) 

A comprehensive review of the attribute control 
charts is presented in [43]. The relative merits of 
the c chart compared to the X chart for the Katz 
family covering equi-, under-, and over-dispersed 
distributions relative to the Poisson distribution are 
investigated in [44]. The Katz family of 
distributions is discussed in [45]. The need to use 
an X chart rather than a c chart depends upon 
whether or not the ratio of the in control mean is 
close to unity. The X chart, which incorporates the 
information on this ratio, can lead to significant 
improvements under certain circumstances. The c 
chart has proven to be useful for monitoring count 
data in a wide range of application. The idea of 
using the Katz family of distribution in the 
robustness study of control charts for count data 
can be extended to the cumulative sum (CUSUM) 
and exponentially weighted moving average 
(EWMA) chart. 

The p and np charts are developed based on  
binomial distribution, the c, u, and U charts are 
based on Poisson distribution. These charts are 
briefly discussed in this section. 

14.4.1 The p chart 

The p chart is used when dealing with ratios, 
proportions or percentages of nonconforming parts 

in a sample. Inspection of products from a 
production line is a good example for application 
of this chart. This fulfils all the properties of  
binomial distribution. The first step for developing 
a p chart is to calculate the proportion of 
nonconformity for each sample. If n and m 
represent the sample size and number of 
nonconforming items in the sample, then the 
fraction of nonconforming items p is given by: 

n
mp = .                 (14.21) 

If we take g such samples, then the mean 
proportion nonconforming p is given by: 

g
ppp

p g+++
=

......21 .            (14.22) 

The centerline and the 3σ  limits of this chart are 
as follows:  

pCL =  ,                 (14.23) 

n
pppUCL )1(3 −+=  ,            (14.24) 

n
pppLCL )1(3 −−= .            (14.25) 

In many situations we may require to develop p-
charts with variable sample size. In such situations 
control charts can be developed either for 
individual samples or for a few representative 
sample sizes. A more practical approach is to 
develop a standardized chart. For this a 
standardized value z of p for each sample is 
calculated as follows: 

i

i
i

npp

pp
z

/)1( −

−
=  .             (14.26) 

zi is then plotted on the chart. This chart will have 
its centerline at zero and the control limits of 3 on 
either side. A number of rules are developed for 
decision making on the out-of-control situations. 
Different types of p-charts and the decision rules 
are discussed in more detail in [1] and [5]. A p 
chart has the capability to combine information 
from many departments, product lines, and work 
centers and provide an overall rate of product 
nonconformance.  
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14.4.2 The np chart 

The np chart is similar to the p chart. It plots the 
number of nonconforming items per sample. 
Therefore it is easier to develop and use compared 
to the p chart. While the p chart tracks the 
proportion of nonconformities per sample, the np 
chart counts the number of defectives in a sample. 
The binomial distribution can be used to develop 
this chart. The mean number of nonconformities in 
a sample is np.   

The centerline and the control limits for an np-
chart are as follows:  

pnCL = ,                 (14.27) 

)1(3 ppnpnUCL −+= ,            (14.28) 

)1(3 ppnpnLCL −−= .            (14.29) 

np charts are not used when the sample size 
changes from sample to sample. This is because 
the centerline as well as the control limits are 
affected by the sample size. Using and making 
inferences in such cases are very difficult. 

14.4.3 The c chart 

The c chart monitors the total number of 
nonconformities (or defects) in samples of constant 
size taken from the process. Here, nonconformance 
must be distinguished from defective items since 
there can be several nonconformances on a single 
defective item. For example a casting may have 
many defects such as foreign material inclusion, 
blow holes, hairline cracks, etc. Other examples are 
the number of defects in a given length of cable, or 
in a given area of fabric. Poisson distribution is 
used to develop this chart. If the sample size does 
not change and the defects on the items are fairly 
easy to count, the c chart becomes an effective tool 
to monitor the quality of the production process.  

If c  is the average number of nonconformities 
per sample, then the centerline and the σ3 control 
limits of the c chart are:  

cCL = ,                 (14.30) 

ccUCL 3+= ,               (14.31) 

ccLCL 3−= ,               (14.32) 

14.4.4 The u chart 

One of the limitations of the c chart is that it can be 
used only when the sample size remains constant. 
The u chart can be used in other cases. It can be 
effectively used for constant as well as for variable 
sample size. The first step in creating a u chart is to 
calculate the number of defects per unit for each 
sample,  

i

i
i n

c
u = ,                 (14.33) 

where u represents the average defect per sample, c 
is the total number of defects, n is the sample size 
and i is the index for sample number. Once all the 
averages are determined, a distribution of the 
means is created and the next step will be to find 
the mean of the distribution, in other words, the 
grand mean.  
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1   ,                (14.34) 

where g is the number of samples. The control 
limits are determined based on u  and the mean of 
the samples n,  

inuuUCL /3+= ,                                     (14.35) 

inuuLCL /3−= .        (14.36) 
Furthermore, for a p chart or an np chart the 

number of nonconformances cannot exceed the 
number of items on a sample, but for a u chart, it is 
conceivable since what is being addressed is not 
the number of defective items but the number of 
defects in the sample. 

14.4.5 Control Chart for Demerits per Unit 
(U chart) 

One of the deficiencies of the c and u charts is that 
all types of nonconformities are treated equally. In 
actual practice there are different types of 
nonconformities with varying degrees of severity. 
ANSI/ASQC Standard A3 classifies the 
nonconformities into four classes, viz., very 
serious, serious, major, and minor, and proposes a 
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weighing system of 100, 50, 10, and 1, 
respectively. The total number of demerits (D) for 
a sample is therefore calculated as the weighed 
sum of nonconformities of all types as follows:  

44332211 cwcwcwcwD +++=   .         (14.37) 

The demerits per sample (U) is defined as 
nDU /= where n is the sample size. The center 

line of the control chart is given by: 

44332211 uwuwuwuwUCL +++== ,       (14.38) 

where iu represent the average number of 
nonconformities per unit in the i-th class. The 
control limits of the chart are: 

UUUCL σ3+= ,               (14.39) 

UULCL σ3−= ,               (14.40) 

where  

( ) nuwuwuwuwU /4
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2
1 +++=σ .  (14.41) 

For a detailed discussion on the U hart the reader is 
referred to [1]. 

As mentioned earlier, the success of using 
control charts for process control depends to a 
great extent on the observed data. Data must be 
independent of one another to ensure the random 
phenomenon. If this is not strictly ensured, the data 
will be autocorrelated and the inferences on 
process control based on the control charts will be 
misleading. In actual practice there is a chance of 
some level of autocorrelation of the data. 
Therefore, dealing with autocorrelated data has 
been a research problem in SPC. Many useful ideas 
have been developed and published on this topic.    

A model for correlated quality variables with 
measurement error is presented in [46]. It is shown 
that the performance of multivariate control 
charting methods based on measured covariates is 
not directionally invariant to shifts in the mean 
vector of the underlying process variables, even 
though it may be directionally invariant when no 
measurement error exists. For further information 
on the directional invariance of multivariate control 
charts the reader is referred to [41, 47, 48], and 
[49]. 

The traditional control charts become unreliable 
when the data are autocorrelated [50]. In the 
literature the reverse moving average control chart 
is proposed as a new forecast-based monitoring 
scheme, compare the new control chart to 
traditional methods applied to various ARMA(1,1), 
AR(1), MA(1) processes, and make recommend-
ations concerning the most appropriate control 
chart to use in a variety of situations when charting 
autocorrected processes [51].  

Many new types of control charts have been 
proposed in the recent literature to handle different 
types of data.  The proportional integral derivative 
(PID) chart for monitoring autocorrelated 
processes based on PID predictors and correspond-
ing residuals is introduced in [52]. The PID 
charting parameter design, the mean shift pattern 
analysis, and the relationship between the average 
run length performance and PID parameter 
selection are also discussed extensively in the 
literature. Improved design schemes are suggested 
for different scenarios of autocorrelated processes 
and verified with Monte Carlo simulation. This 
study provides useful information for practitioners 
to effectively apply PID charts. See [53–56] for 
further discussions on autocorrelation of data in 
control charts. 

The cumulative conformance count (CCC) chart 
was introduced as a Six Sigma tool to deal with 
controlling high-yield processes (see [57]). CCC 
chart was first introduced in [58] and became 
popular through [59]. It is primarily designed for 
processes with sequential inspection carried out 
automatically one at a time. A control scheme that 
is effective in detecting changes in nonconforming 
fractions for high yield processes with correlation 
within each inspection group is followed in [60].  
A Markov model is used to analyze the 
characteristics of the proposed schemes in terms of 
which the average run length (ARL) and average 
time signal (ATS) are obtained. The performance 
of the proposed schemes in terms of ATS is 
presented along with the comparison with the 
traditional cumulative conformance count (CCC) 
chart. Moreover, the effects of correlation and 
group size are also investigated by the authors. The 
authors also have proposed a control scheme, the 
C4-chart for monitoring high-yield high volume 
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production/process under group inspection with 
consideration of correlation within each group. 
Circumstances that lead to group inspection 
include a slower inspection rate than the 
production rate, economy of scale in group 
inspection, and strong correlation in the output 
characteristics. 

Many applications and research opportunities 
available in the use of control charts for health-care 
related monitoring are reported in [61]. The 
advantage and disadvantage of the charting 
methods proposed in health care and public health 
areas are considered. Some additional contribution 
in the industrial statistical process control literature 
relevant to this area are given. Several useful 
references in the related areas are listed in this 
paper. This shows that the application of SPC for 
health care systems has become increasingly 
popular in recent times.  

14.5 Engineering Process Control 
(EPC)  

In recent times EPC has been used to control the 
continuous processes manufacturing discrete parts. 
It is also known as automatic process control 
(APC) in which an appropriate feedback or 
feedforward control is used to decide when and by 
how much the process should be adjusted to 
achieve the quality target. It is an integrated 
approach in which the concepts of design of 
experiments and robust design are also effectively 
used for designing control charts.  EPC has been 
developed to provide an instantaneous response, 
counteracting changes in the balance of a process 
and to apply corrective action to bring the output 
close to the desired target. The approach is to 
forecast the output deviation from target that would 
occur if no control action were taken and then to 
act so as to cancel out this deviation [62]. 

14.6 Process Capability Analysis 

Process capability represents the performance of a 
process when it is in a state of statistical control. It 
is measured as the total process variability when 

only common causes are present in the system. The 
process spread σ6  is generally taken as a measure 
of the process capability. 99.74% of all products 
will be within this spread if the normality 
assumption is valid. In many situations we are 
required to check if our existing process is capable 
of meeting certain product specifications. Such 
decisions are taken based on the process capability 
indices (PCI). The following PCI are generally 
used. 

14.6.1 Process Capability Indices 

This relates the process spread to the specification 
spread as follows: 

σ6
LSLUSLC p

−= .              (14.42) 

where USL and LSL are the upper and lower 
specification limits. From the above equation it can 
be seen that the process is capable when 1>pC . 
However, pC  is not a good measure since it does 
not take care of the location of the center of the 
process. pC represents only the process potential. 
Therefore other PCI such as upper capability index 
(CPU), lower capability index (CPL), pkC  
and pmC are also developed for such studies. They 
are defined as follows: 

σ
μ

3
−= USLCPU  , 

σ
μ

3
LSLCPL −= , and 

{ }CPLCPUMinC pk ,=  .            (14.43) 
Since pkC  also takes into account the position of 
the centerline of the process ( )μ , it represents the 
actual process capability of the process with the 
present parameter values. Taguchi proposed and 
used another index, viz., pmC [63, 64]. The author 
emphasizes the need to reduce the process 
variability around a target value T. pmC is defined 
as follows. 

τ6
LSLUSLC pm

−= ,              (14.44) 
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where τ is the standard deviation from the target 
value and is calculated by 

( )[ ]22 TXE −=τ   .              (14.45) 

Combining the merits of these indices, a more 
advanced index, pmkC , is proposed that takes into 
account process variation, process centering, and 
the proximity to the target value, and has been 
shown to be a very useful index for manufacturing 
processes with two-sided specification limits. The 
behavior of pmkC  as a function of process mean 
and variation is discussed in [65]. If the variation 
of the process increases, the maximum value of 

pmkC  moves from near the target value to the 
midpoint of the specification. If the process mean 
varies inside the specification, pmkC decreases as 
the variation increases. It is argued that these 
properties may constitute a sensible behavior of the 
process capability index. For an extensive study on 
process capability the reader is referred to [66– 
68]. 

In many situations we may require to compare 
several processes based on process capability. If 
there are two processes, the classical hypothesis 
testing theory can be applied as suggested in [69, 
70]. A bootstrap method for similar studies is 
proposed in [71]. When there are more than two 
processes, the best subset selection method 
proposed in [72–76] can be effectively used. A 
solutions to this problem based on permutation 
testing methodology is proposed in [77]. In the 
case of two processes, the methodology is based on 
a simple permutation test of the null hypothesis 
that the two processes have equal capability. In the 
case of more than two processes, multiple-
comparison techniques are used in conjunction 
with the proposed permutation test. The advantage 
of using the permutation methods is that the 
significance levels of the permutation tests are 
exact regardless of the distribution of the process 
data. The methodology is demonstrated using 
several examples, and the potential performance of 
the methods are investigated empirically. 
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