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Applications of the Proposed Techniques

The techniques we proposed in Chapter 3 and Chapter 5 are general
techniques in computer vision and pattern recognition. For example,
the local surface patch (LSP) representation can be used to recognize
3D general objects; the global-to-local registration with the optimiza-
tion framework can handle non-rigid shape registration. We discuss
the applications of these two techniques in this chapter with several
non-ear examples.

8.1 LSP Representation for General 3D Object Recognition

The LSP representation introduced in Chapter 5 for ear recognition
is a general surface descriptor applicable to any 3D objects. In this
subchapter, we propose a general 3D object recognition system using
the LSP representation. In order to speed up the retrieval of surface
descriptors and to deal with a large set of objects, the local surface
patches of models are indexed into a hash table. Given a set of test
local surface patches, votes are cast for models containing similar sur-
face descriptors. Based on the votes for potential corresponding local
surface patches the candidate models are hypothesized. The verifica-
tion is performed by aligning models with the test data for the most
likely models that occurs in a scene.

8.1.1 Local Surface Patch

Similar to the LSP representation introduced in Chapter 5, the surface
type Tp of a LSP is obtained based on the Gaussian and mean cur-
vatures of a feature point using equation (8.1) where H is the mean
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curvature and K is the Gaussian curvature [106, 107]. There are eight
surface types determined by the signs of Gaussian and mean curvatures
given in Table 8.1. A local surface patch is shown in Figure 8.1.

Tp = 1 + 3(1 + sgnεH
(H)) + (1 − sgnεK

(K))

sgnεx(X) =

⎧
⎨

⎩

+1 if X > εx

0 if |X| ≤ εx

−1 if X < εx

(8.1)

In this chapter, feature points are defined in areas with large shape
variations as measured by the shape index values calculated from the
principal curvatures. The shape index values are calculated as de-
scribed in Section 5.1.

Figure 8.2 shows the range image of an object and its shape index
image. In Figure 8.2(a), the darker pixels are away from the camera
while the lighter ones are closer. In Figure 8.2(b), the brighter points
denote large shape index values which correspond to ridge and dome
surfaces while the darker pixels denote small shape index values which
correspond to valley and cup surfaces. From Figure 8.2, we can see that
shape index values can capture the characteristics of the shape of ob-
jects, which suggests that shape index can be used for extraction of
feature points. In other words, the center point is marked as a feature
point if its shape index Si satisfies equation (8.2) within a w × w win-
dow placed at a pixel in an image.

Si = max of shape indexes and Si ≥ (1 + α) ∗ µ

or Si = min of shape indexes and Si ≤ (1 − β) ∗ µ

where µ =
1

M

M∑

j=1

Si(j) 0 ≤ α, β ≤ 1. (8.2)

In equation (8.2) α, β parameters control the selection of feature points
and M is the number of points in the local window. The results of
feature extraction are shown in Figure 8.3 where the feature points are
marked by red dots. From Figure 8.3, we can clearly see that some
feature points corresponding to the same physical area appear in both
images.
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Table 8.1. Surface type Tp based on the signs of Mean curvature (H) and Gaussian curvature
(K).

Mean Curvature H K > 0 K = 0 K < 0

H < 0 Peak Ridge Saddle Ridge
Tp = 1 Tp = 2 Tp = 3

H = 0 None Flat Minimal
Tp = 4 Tp = 5 Tp = 6

H > 0 Pit Valley Saddle Valley
Tp = 7 Tp = 8 Tp = 9

Local surface patch

Centroid:
( 74.938,99.13,11.6 −=== zyx )T

Surface Type Tp = 1

2D histogram
Shape indexC

osθ

Fig. 8.1. Illustration of a local surface patch (LSP). Feature point P is marked by the aster-
isk and its neighbors N are marked by the dots. The surface type of the LSP is 1 based on
Table 8.1.
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(a) (b)

Fig. 8.2. (a) A range image and (b) its shape index image. In (a), the darker pixels are away
from the camera and the lighter ones are closer. In (b), the darker pixels correspond to concave
surfaces and the lighter ones correspond to convex surfaces.

Fig. 8.3. Feature points location (·) in two range images, shown as gray scale images, of the
same object taken at different viewpoints.
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8.1.2 Hash Table Building

Considering the uncertainty of location of a feature point, we also cal-
culate descriptors of local surface patches for neighbors of a feature
point P . To speed up the retrieval of local surface patches, for each
LSP we compute the mean (µ = 1

L

∑L
l=1 Si(pl)) and standard de-

viation (σ2 = 1
L−1

∑L
l=1(Si(pl) − µ)2) of the shape index values in

a neighborhood around the feature point where L is the number of
points on the LSP under consideration such that the angle between
the surface normal at the feature point and its neighboring points is
small. pl is the lth point on the LSP. We use LSPs to index a hash table
and insert into the corresponding hash bin the information about the
model LSPs. Thus, the model local surface descriptors are saved into
the hash table. For each model object, we repeat the same process to
build the model database. The structure of the hash table is explained in
Figure 8.4, where every bin in the hash table has an associated linked
list which saves the information of the model surface descriptors in
terms of model ID, 2D histogram, surface type and the centroid; and
the accumulator keeps track of the number of votes that each model
receives.

8.1.3 Hypotheses Generation

Given a test range image, we extract feature points and get local sur-
face patches. Then we calculate the mean and stand deviation of shape
index, and cast votes to the hash table if the histogram dissimilarity
falls below a preset threshold ε2 and the surface type is the same.
The dissimilarity between the two histograms is evaluated by equation
(5.3).

After voting, we histogram all hash table entries and get models
which received the top three highest votes. By casting votes, we not only
know which models get higher votes, but also we know the potential
corresponding local surface patch pairs. Note that a hash table entry
may have multiple items, we choose the local surface patch from the
database with minimum dissimilarity and the same surface type as
the possible corresponding patch. We filter the possible correspond-
ing pairs based on the geometric constraints (5.4). Figure 8.5 shows
one example of partitioning corresponding pairs into groups. It shows
the grouping results for an object imaged at two different viewpoints.
Figure 8.5(a) shows the feature point extraction result for the test object.
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Comparing the local surface patches with LSPs on the model object
and casting votes to the hash table, the initial corresponding LSP pairs
are shown in Figure 8.5(b), in which every pair is represented by the
same number superimposed on the test and model images. We observe
that both the true and false corresponding pairs are found. After ap-
plying the simple geometric constraint (5.4), the filtered largest group
is shown in Figure 8.5(c), in which the pairs satisfying the constraint
(5.4) are put into one group. We observe that true correspondences be-
tween the model and the test objects are obtained by comparing local
surface patches, casting votes to the hash table and using the simple
geometric constraint.

8.1.4 Verification

Given the corresponding LSPs between a model-test pair, the initial
rigid transformation, which brings the model and test objects into a
coarse alignment, can be estimated by minimizing the sum of the
squares of theses errors (Σ = 1

n

∑n
l=1 |Sl−R∗Ml−T |2) with respect to

the rotation matrix R and the translation vector T . The rotation matrix
and translation vector are computed by using the quaternion represen-
tation [76].

Given the estimate of initial rigid transformation, the purpose of it-
erative closest point (ICP) algorithm [63] is to determine if the match
is good and to find a refined alignment between them. If the probe ear
is really an instance of the gallery ear, the ICP algorithm will result in a
good registration and a large number of corresponding points between
gallery and probe ear surfaces will be found. Since ICP algorithm re-
quires that the test data set is a subset of the model set, we use the
modified ICP algorithm proposed by Zhang [70] to remove outliers
based on the distance distribution.

Starting with the initial transformation obtained from the coarse
alignment, the modified ICP algorithm is run to refine the transfor-
mation by minimizing the distance between the control points of the
model object and their closest points of the test objecct. For each ob-
ject in the model database, the control points are randomly selected and
the modified ICP is applied to those points. We repeat the same proce-
dure 15 times and choose the rigid transformation with the minimum
root mean square (RMS) error. The object in the model database with
the minimum RMS error is declared as the recognized object. In the
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Fig. 8.5. An example of corresponding LSPs. (a) Feature points marked as dots on the test
object. (b) Test object with matched LSPs after hashing. (c) A model object with matched
LSPs after hashing. (d) Test object in Figure 8.5(b) with matched LSPs after applying the
geometric constraint (5.4). (e) The model object in Figure 8.5(c) with matched LSPs after
applying the geometric constraint (5.4).
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Fig. 8.6. The range images of objects in the model database. The object IDs (0 to 19) are
labeled from left to right and top to bottom.

modified ICP algorithm, the speed bottleneck is the nearest neighbor
search. Therefore, the kd-tree structure is used in the implementation.

8.1.5 Experimental Results

Data and Parameters

We use real range data collected by Ohio State University.1 There are
20 objects in our database and the range image of the model objects are
shown in Figure 8.6. The parameters of our approach are ε1 = 6.5mm,
A = π/3, ε2 = 0.75, ε3 = 9.4mm, α = 0.35, β = 0.2, and εH =
εK = 0.003. Note that A, ε1, ε3 parameters are the same as in Chapter
5. The new parameters in this chapter are ε2, εH , εK , α and β. The
number of bins in the shape index axis is 17 and the number of bins
in the other axis (cos θ) is 34. The total number of LSPs calculated in
the model objects is about 34,000. The average size of local surface
patch is 230 pixels. We apply our approach to the single-object and
1 http://sampl.eng.ohio-state.edu/sampl/data/3DDB/RID/minolta/
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two-object scenes. The model objects and scene objects are captured
at two different viewpoints.

Single-Object Scenes

In this test case, we show the effectiveness of the voting scheme and the
discriminating power of LSP in the hypothesis generation. For a given
test object, feature points are extracted and the properties of LSPs are
calculated. Then LSPs are indexed into the database of model LSPs.
For each model indexed, its vote is increased by one. We show the vot-
ing results (shown as a percentage of the number of LSPs in the scene
which received votes) for the twenty objects in Figure 8.7. Note that in
some cases the numbers shown are larger than 100 since some LSPs
may receive more than one vote. We observe that most of the highest
votes go to the correct models. For every test object, we perform the
verification for the top three models which obtained the highest votes.
The verification results are listed in Table 8.2, which shows the candi-
date model ID and the corresponding RMS registration error. From Ta-
ble 8.2, we observe that all the test objects are correctly recognized. In
order to examine the recognition results visually, we display the model
object and test object in the same image before and after the alignment
for four examples. The images in Figure 8.8 (top figure) show test
objects and their corresponding model objects before alignment. The
images in Figure 8.8 (bottom figure) show test objects and the cor-
rectly recognized model objects after alignment. We observe that each
model object is well aligned with the corresponding test object and the
test cases with large pose variations (up to 45◦) are correctly handled.
Since the proposed LSP representation consists of histogram of shape
index and surface normal angle, they are invariant to rigid transforma-
tion. The experimental results verified the view-point invariance of the
LSP representation.

Two-Object Scenes

We created four two-object scenes to make one object partially over-
lap the other object as follows. We first properly translated objects
along the x and y axes, and then resampled the surface to create a
range image. The visible points on the surface were identified using the
Z-buffer algorithm. Table 8.3 provides the objects included in the four
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63 56 146 54 61 8 76 41 78 54 82 76 49 45 39 8 52 2 53 63

21 21 60 76 44 7 44 39 55 10 55 63 71 31 18 10 31 0 10 50

35 44 30 25 69 5 12 17 67 37 67 50 19 28 7 5 25 0 35 51

8 20 11 5 2 120 5 22 5 5 31 25 17 0 0 0 25 54 5 5

68 49 158 52 30 6 171 53 76 57 73 83 78 42 39 19 45 0 105 46

10 62 12 20 12 55 27 102 60 12 82 55 57 15 0 15 40 62 30 65

50 61 86 53 50 26 45 36 172 58 113 94 93 28 24 30 57 12 65 87

30 32 48 13 36 3 55 3 86 92 26 44 32 30 17 40 46 0 63 28

43 85 68 80 61 48 58 81 118 38 143 114 75 21 31 13 68 8 85 123

18 86 68 47 38 33 83 76 63 29 80 104 90 45 40 6 63 7 63 100

57 72 75 79 62 22 90 88 75 31 87 127 131 79 24 14 61 9 61 100

31 75 68 27 44 10 41 27 58 27 51 65 41 79 6 3 51 0 27 44

31 51 100 37 72 6 72 17 106 41 89 93 51 65 96 6 48 0 55 86

5 65 10 5 0 25 0 15 35 15 35 25 25 10 0 110 60 20 25 10

35 64 69 41 58 19 48 42 105 42 83 85 42 39 21 8 103 10 37 58

5 43 7 0 2 53 0 25 17 7 41 43 23 7 0 2 30 87 0 10

9 30 44 11 13 13 50 21 63 26 67 59 48 26 11 13 25 0 161 55

40 49 63 44 32 7 51 47 105 43 108 87 57 47 36 18 30 2 64 115

Fig. 8.7. Voting results, shown as a percentage of the number of LSPs in the scene which
received votes, for twenty models in the single-object scenes. Each row shows the voting
results of a test object to 20 model objects. The maximum vote in each row is bounded by a
box.
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Table 8.2. Verification results for single-object scenes. The first number in the parenthesis is
the model object ID and the second one is the RMS registration error. The unit of registration
error is in millimeters (mm).

Test objects Results (Top 3 matches)
0 (0, 0.624) (2, 4.724) (11, 1.529)
1 (11, 3.028) (1, 0.314) (8, 3.049)
2 (2, 0.504) (10, 2.322) (8, 2.148)
3 (3, 0.913) (12, 2.097) (11, 1.335)
4 (4, 0.632) (8, 2.372) (10, 1.781)
5 (5, 0.217) (17, 2.081) (10, 3.146)
6 (6, 0.5632) (2, 3.840) (18, 4.692)
7 (7, 0.214) (10, 2.835) (19, 3.901)
8 (8, 0.426) (10, 1.326) (11, 2.691)
9 (9, 0.459) (8, 2.639) (18, 4.745)

10 (10, 0.263) (19, 2.451) (8, 3.997)
11 (11, 0.373) (19, 3.773) (12, 1.664)
12 (12, 0.525) (11, 1.698) (19, 4.149)
13 (13, 0.481) (1, 1.618) (2, 4.378)
14 (8, 2.694) (2, 4.933) (14, 0.731)
15 (15, 0.236) (1, 2.849) (16, 4.919)
16 (8, 3.586) (16, 0.306) (11, 1.499)
17 (17, 0.252) (5, 2.033) (11, 2.494)
18 (18, 0.395) (10, 2.316) (8, 2.698)
19 (19, 0.732) (10, 2.948) (8, 3.848)
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Fig. 8.8. Four examples of correctly recognized model-test pairs. Each row shows one exam-
ple. The test objects are shaded light gray while the recognized model objects are shaded dark
gray and overlaid on the test objects. The top figure shows the model and test objects before
alignment, and the bottom one shows the model and test objects after alignment. For the range
images of model objects, the lighter pixels are closer to the camera and the darker pixels are
away from the camera. In example 1 shown here, the rotation angle is 20.4◦ and the axis is
[0.0319, 0.9670, 0.2526]T .
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Fig. 8.8. Figure 8.8 Continued, Example 2. The rotation angle is 35.9◦ and the axis is
[−0.0304,−0.5714, −0.1660]T .
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Fig. 8.8. Figure 8.8 Continued, Example 3. The rotation angle is 14.1◦ and the axis is
[0.0187, 0.2429, 0.0046]T .
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Fig. 8.8. Figure 8.8 Continued, Example 4. The rotation angle is 43.6◦ and the axis is
[0.6855, −0.6150,−1.3909]T .
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Table 8.3. Voting and registration results for the four two-object scenes shown in Figure 8.9(a).
The first number in the parenthesis is the model object ID, the second one is the voting result
and the third one is RMS registration error. The unit of registration error is in millimeters
(mm).

Test Objects in the
image

Voting and registration results for top 6 matches

Scene 0 1, 10 (10,
137,
0.69)

(1,
109,
0.35)

(11,
109,
1.86)

(2,
102,
5.00)

(12,
100,
1.78)

(19,
98,
2.14)

Scnee 1 13, 16 (11,
72,
2.51)

(8, 56,
2.69)

(2, 56,
3.67)

(13,
56,
0.50)

(10,
51,
1.98)

(16,
48,
0.53)

Scene 2 6, 9 (6,
129,
1.31)

(2,
119,
3.31)

(18,
79,
3.74)

(8, 76,
2.99)

(9, 56,
0.55)

(12,
52,
1.97)

Scene 3 4, 12 (4,
113,
0.81)

(8,
113,
2.09)

(11,
88,
1.69)

(2, 86,
3.05)

(10,
81,
1.89)

(19,
74,
3.85)
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Fig. 8.9. Recognition results for the four two-object scenes. Example 1 is shown here. The test
objects are shaded light gray while the recognized model objects are shaded dark gray. The
top figure shows the range images of the four two-object scenes, and the bottom one shows the
recognized model objects overlaid on the test objects with the recovered pose. For the range
images of model objects, the lighter pixels are closer to the camera and the darker pixels are
away from the camera. Note that in Example 4 one object is missed.
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Fig. 8.9. Figure 8.9 Continued, Example 2.
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Fig. 8.9. Figure 8.9 Continued, Example 3.
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Fig. 8.9. Figure 8.9 Continued, Example 4.
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scens and the voting and registration results for the top six candidate
model objects. The candidate models are ordered according to the per-
centage of votes they received and each candidate model is verified
by the ICP algorithm. We observe that the objects in the first three
scenes objects are correctly recognized and the object 12 is missed in
the fourth scene since the vote it obtained was not ranked on the top.
The four scenes are shown in Figure 8.9 (top figure). The recognition
results are shown in Figure 8.9 (bottom figure). We observe that the
recognized model objects are well aligned with the corresponding test
objects.

8.1.6 Comparison with the Spin Image and the Spherical Spin Image
Representations

We compared the distinctive power of the LSP representation with the
spin image (SI) [3] and the spherical spin image (SSI) [4] represen-
tations. We conducted the following experiments. We take 20 model
objects, compute feature points as described in Section 8.1.1 and calcu-
late the surface descriptors at those feature points and their neighbors.
Given a test object, we calculate the surface descriptors for the ex-
tracted feature points, find their nearest neighbors, apply the geometric
constraint and perform the verification by comparing it against all the
model objects. In the experiments, both of the size of the spin image
and the spherical spin image are 15 × 15. We achieved 100% recogni-
tion rate by the three representations. However, the average computa-
tion time for the three representations are different. The total time (T )
for recognizing a single object consists of three timings:

• find the nearest neighbors ta;
• find the group of corresponding surface descriptors tb;
• perform the verification tc.

These timings, on a Linux machine with an AMD Opteron 1.8 GHz
processor, are listed in Table 8.4. We observe that the LSP represen-
tation runs the fastest for searching the nearest neighbors because the
LSPs are formed based on the surface type and the comparison of LSPs
is based on the surface type and the histogram dissimilarity.

8.1.7 Discussions

From the experimental results, we observe that the integrated local sur-
face descriptor (LSP) is really effective for surface representation and
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Table 8.4. The timing in seconds for the three representations. LSP denotes the local surface
patch descriptor; SI denotes the spin image [3]; SSI denotes the spherical spin image [4].

ta tb tc T
LSP 21.46 0.8 67.16 89.42
SI 95.26 0.67 66.14 162.07

SSI 83.63 0.66 66.28 150.57

3D object recognition. For fast retrieval of surface descriptors, the gen-
erated LSPs for all models are indexed into a hash table. During recog-
nition, surface descriptors computed for the scene are used to index the
hash table, casting the votes for the models which contain the similar
surface descriptors. The candidate models are ordered according to the
number of votes received by the models. Verification is performed by
aligning models with scenes for the most likely models. Experimental
results on the real range data have shown the validity and effectiveness
of the proposed approach: geometric hashing scheme for fast retrieval
of surface descriptors and comparison of LSPs for the establishment of
correspondences. Comparison with the spin image and spherical spin
image representations shows that our representation is as effective for
the matching of 3D objects as these two representations but it is effi-
cient by a factor of 3.89 (over SSI) to 4.37 (over SI) for finding corre-
sponding parts between a model-test pair. This is because the LSPs are
formed based on the surface type and the comparison of LSPs is based
on the surface type and the histogram dissimilarity.

8.2 Global-to-Local Non-Rigid Shape Registration

Registration of non-rigid shapes is an important issue in computer vi-
sion and it has drawn an increasing attention due to its wide range of
applications related to recognition, tracking and retrieval. The shape
registration problem can be stated as follows: Given two shapes, a
model shape M and a target shape S, find the best transformation that
assigns any point of M a corresponding point in S and minimizes the
dissimilarity between the transformed shape M̂ and S. Therefore, there
are two problems to be resolved: the correspondence, and the transfor-
mation.
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The non-rigid shape registration is much harder since it has more
degrees of freedom than the rigid shape registration problem. Recently
researchers have come up with different approaches to solve the non-
rigid shape registration problem [72, 108–111]. Chui and Rangarajan
[72] presented an optimization based approach, TPS-RPM (thin plate
spline-robust point matching) algorithm, to jointly estimate the cor-
respondence and non-rigid transformations between two point-based
shapes. Belongie et al. [108] proposed a descriptor called shape con-
text to find correspondences by minimizing the overall shape context
distances and the TPS transformation is iteratively solved. Guo et al.
[109] described a joint clustering and diffeomorphism estimation al-
gorithm that can simultaneously estimate the correspondence and fit
the diffeomorphism between the two point sets (a diffeomorphism is
a invertible function that maps one differentiable manifold to another
such that both the function and its inverse are smooth). Paragios et al.
[110] introduced a simple and robust shape representation (distance
functions) and a variational framework for global-to-local registration
in which a linear motion model and a local deformation field are incre-
mentally recovered. Zheng and Doermann [111] presented a relaxation
labeling based point matching algorithm for aligning non-rigid shapes.
The point matching is formulated as a graph matching problem to pre-
serve local neighborhood structures in which the point is a node and
neighboring points are connected by edges.

As compared to these approaches, we decompose the non-rigid
shape registration into a two-step procedure:

• the global similarity transformation that brings the model shape and
target shape into a coarse alignment;

• the local deformation that deforms the transformed model shape to
the target shape [112].

For the first step, feature based registration is employed; in the sec-
ond step the local deformation is formulated as an optimization prob-
lem to preserve the structure of the shape model.

8.2.1 Global Similarity Registration

The task of the global registration is to find a similarity transforma-
tion between M and S that includes three parameters (s, θ, T ); a scale
factor s, a rotation θ and a translation vector T = (Tx, Ty).
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S = s

[
cos θ sin θ
−sin θ cos θ

]
M +

[
Tx

Ty

]
(8.3)

Once the corresponding pairs (Mi, Si) are known, the three param-
eters can be estimated by minimizing the sum of square distance be-
tween the transformed Mi and Si.

The shape context descriptor [108] is used to find the correspon-
dence only. Considering the shape contexts of two point a and b, the
cost Cab of matching the two points is evaluated by χ2 test statistic
since shape contexts are histograms that can approximate probability
distributions.

Cab = C(a, b) =
1

2

K∑

i=1

(ha(i) − hb(i))
2

ha(i) + hb(i)
(8.4)

where ha(i) and hb(i) denote the K-bin normalized histograms at
points a and b respectively. Given the sets of costs C(a, b) between
pairs a on the model shape and b on the target shape, the optimal cor-
respondence is found by minimizing the sum of individual matching
costs. This is solved by a bipartite matching algorithm with the one-
to-one matching constraint [108]. In our case, the configuration of the
model shape is fixed and we resample the points from the contour of
the model shape. Then we compute shape context descriptors to find
the correspondences of the model shape in the target shape to calcu-
late the global similarity transformation, while in [108] the non-linear
TPS transformation is solved iteratively by warping the model shape
to the target and recovering correspondences. Figure 8.10 shows one
example of the global similarity registration result; Figure 8.10 shows
the model shape and the target shape before alignment; Figure 8.10
(a) shows the transformed model shape is superimposed on the tar-
get shape after alignment. The three parameters are s = 1.28, θ =
45.3◦, T = (−36.4, 77.9) pixels. We observe that the model shape is
roughly aligned with the target shape.

8.2.2 Local Deformation

After the model shape is brought into coarse alignment with the target
shape through the global registration, it needs to deform to the target
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(a) (b)

Fig. 8.10. Global similarity registration. The model shape is shown in red and the target shape
is shown in black). (a) Initial condition. (b) Global similarity registration result.

shape with the structure of the shape model preserved. The local de-
formation is model by the thin plate spline (TPS) transformation that
is widely used in shape matching. As described in Section 3.2.3, we
can achieve this task by minimizing the proposed cost function,

E(x,y) = Eimg(x,y) + γED(x,y)

=

n∑

i=1

g(|∇Im(xi, yi)|) +
1

2
γ(xT Kx + yT Ky). (8.5)

As derived in Chapter 3.2.3, the coordinates of (x,y) can be itera-
tively updated by

xt = (γK + αI)−1
(
αxt−1 +

n∑

i=1

1

(1 + |∇I t−1
step(xi, yi)|)2

∂|∇I t−1
step(xi, yi)|
∂x

)

yt = (γK + αI)−1
(
αyt−1 +

n∑

i=1

1

(1 + |∇I t−1
step(xi, yi)|)2

∂|∇I t−1
step(xi, yi)|
∂y

)
. (8.6)

Figure 8.11 shows an example of deforming the model shape (dude)
to the target shape at iteration 0, 25, 50, 75, 100, and 125. We observe
that the model shape is brought more closer to the target shape during
the deformation.
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Fig. 8.11. Deformation of the transformed model shape to the target shape at iteration 0, 25,
50, 75, 100, and 125. The model shape is show in red and the target shape is shown in black.
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(a) (b)

(c) (d)

Fig. 8.15. An example of the registration of the occluded hand shape. The model shape is
shown with dotted line and the target shape is shown with solid line. (a) Model shape. (b)
Global registration. (c) Local deformation driven by the proposed optimization formulation.
(d) Correspondences. Note that the target hand shape is occluded.
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8.2.3 Experimental Results on Binary Images

We used the shape database collected by Brown University.2 Figures
8.12, 8.13 and 8.14 show the non-rigid shape global-to-local registra-
tion results on three shapes of the hand, dude, and fish, respectively.
The regularization term γ for shapes of the hand, dude and fish is 20,
100, 25, respectively. In the three figures, the first row shows the model
shape and the columns below the model shape show the model shape
and target shape before the global registration, the transformed model
shape overlaid on the target shape after the global alignment, the regis-
tration results after local shape deformation, the one-to-one correspon-
dence connected by the blue lines, and the warped regular grids by the
local deformation computed from equation (3.18). From Figures 8.12,
8.13 and 8.14, we see that the model shape is successfully deformed to
the target shape and the one-to-one correspondence is established.

Figure 8.15 shows the registration of the model shape with the oc-
cluded target shape. Since the shape model encodes the prior informa-
tion about the shape topology, the registration of the occluded shape
can be handled. We observe that the model shape is driven towards the
target shape by the optimization formulation.

Quantitative evaluation: The accuracy of the proposed approach
is quantified by the average Euclidean distance between the points in
the transformed model shape and the correspondences in the target
shape. The average distances after the local deformation for the shapes
of hand, dude and fish are 0.59, 0.45, and 0.61 pixels, respectively;
while the distances after global alignment are 1.84, 1.80, and 2.49 pix-
els. We observe that the proposed global-to-local non-rigid shape reg-
istration algorithm brings the model shape and the target shape into a
good alignment.

8.2.4 Experimental Results on Gray-Level Images

The proposed formulation is also valid for gray-levle images as well
as binary images. Figure 8.16 shows the registration of callosum in
a human brain MRI image. Figure 8.16(a) shows the global registra-
tion result by the blue line and local deformation result by the red
line; Figure 8.16(b) shows the grid deformation in which the corre-
spondences are connected by the blue lines.
2 http://www.lems.brown.edu/vision/
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8.2.5 Discussions

We have proposed a novel global-to-local procedure for aligning non-
rigid shapes. Since the structure of the model shape should be pre-
served under the deformation, the bending energy is incorporated into
the optimization formulation as a regularization term to penalize the
large shape deformation. The optimization procedure drives the initial
global registration towards the target shape with the structure of the
model shape preserved and finally finds one-to-one correspondence be-
tween the model shape and target shape. Experimental results on three
non-rigid shapes show the effectiveness of the proposed approach.

8.3 Conclusions

In this chapter, we presented two general applications in the field of
computer vision and pattern recognition. First, we presented 3D object
recognition results on general 3D range images. We use the local sur-
face patch (LSP) representation that has been used for ear recognition.
The only difference in LSP representation used for ears and general 3D
objects is the number of surface types. In 3D ear recognition, the sur-
face takes three different types (concave, saddle, and convex). For the
general 3D object recognition, the surface takes eight different types
(peak, ridge, saddle ridge, flat, minimal, pit, valley, and saddle valley).

We also presented a global-to-local registration scheme for the pre-
cise alignment of a variety of images collected from various applica-
tions. These images included hand images, dude images, fish images,
and MRI images.




