
5

Recognizing 3D Ears Using Local Surface Patches

In this chapter, we use the local surface patch (LSP) representation for
matching 3D ears [1, 12]. The LSP representation, a new local sur-
face descriptor, is characterized by a centroid, a local surface type
and a 2D histogram. The 2D histogram shows the frequency of oc-
currence of shape index values vs. the angles between the normal of
reference feature point and that of its neighbors. The proposed human
recognition system using the LSP representation is illustrated in Figure
5.1. The local surface descriptors are computed for the feature points
which are defined as either the local minimum or the local maximum
of shape indexes. By comparing the local surface patches for a gallery
and a probe image, the potential corresponding local surface patches
are established and then filtered by geometric constraints. Based on the
filtered correspondences, the initial rigid transformation is estimated.
Once this transformation is obtained, it is then applied to randomly se-
lected control points of the hypothesized gallery ear in the database. A
modified iterative closest point (ICP) algorithm is run to improve the
transformation which brings a gallery ear and a probe ear into the best
alignment, for every gallery-probe pair. The root mean square (RMS)
registration error is used as the matching error criterion. The subject in
the gallery with the minimum RMS error is declared as the recognized
person in the probe image.

5.1 Local Surface Patch Representation (LSP)

In 3D object recognition, the key problems are how to represent free-
form surfaces effectively and how to match the surfaces using the
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Fig. 5.1. The 3D ear recognition using the local surface patch (LSP) representation.
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selected representation. Researchers have proposed various surface
signatures for recognizing 3D free-form objects which are reviewed
in [12, 51]. In the following, we present a new surface representation,
called the local surface patch (LSP), investigate its properties and use
it for ear recognition.

5.1.1 Definition of LSP

We define a “local surface patch” (LSP) as the region consisting of a
feature point P and its neighbors N. The LSP representation includes
feature point P , its surface type, centroid of the patch, and a histogram
of shape index values vs. dot product of the surface normal at point P
and its neighbors. A local surface patch is shown in Figure 5.2. The
neighbors satisfy the following conditions,

N = {pixels N, ||N − P || ≤ ε1}
and acos(np•nn < A), (5.1)

where • denotes the dot product between the surface normal vectors
np and nn at point P and N and acos denotes the inverse cosine func-
tion. The two parameters ε1 and A (ε1 = 5.8mm, A = 0.5) are important
since they determine the descriptiveness of the local surface patch rep-
resentation. A local surface patch is not computed at every pixel in a
range image, but only at selected feature points.

The feature points are defined as the local minimum and the maxi-
mum of shape indexes, which can be calculated from principal curva-
tures. The curvatures can be estimated as described in Section 3.1.1.

Shape index (Si), a quantitative measure of the shape of a surface
at a point P , is defined by equation (5.2),

Si(P ) =
1

2
− 1

π
tan−1 k1(P ) + k2(P )

k1(P ) − k2(P )
(5.2)

where k1 and k2 are maximum and minimum principal curvatures, re-
spectively. With this definition, all shapes are mapped into the interval
[0, 1] [77]. The shape categories and corresponding shape index ranges
are listed in Table 3.1. Figure 5.3 shows original ear range images and
their shape index images for two people. In this figure, the brighter
pixels denote large shape index values which correspond to ridge and
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Table 5.1. Surface type Tp based on the value of shape index.

Type tag (Tp) Si range Surface type
0 [0,5/16) Concave
1 [5/16,11/16) Saddle
2 [11/16,1] Convex

dome surfaces while the darker pixels denote small shape index val-
ues that correspond to valley and cup surfaces. Within a b × b (b = 5)
window, the center point is marked as a feature point if its shape index
is higher or lower than those of its neighbors. The results of feature
points extraction are shown in Figure 5.4 where the feature points are
marked by red plus sign. In order to see the feature points’ location,
we enlarge the two images. We can clearly see that some feature points
corresponding to the same physical area appear in both images.

For every local surface patch, we compute the shape indexes and
normal angles between point P and its neighbors. Then we form a 2D
histogram by accumulating points in particular bins along the two axes.
One axis of this histogram is the shape index which is in the range
[0,1]; the other is the dot product of surface normal vectors at P and N
which is in the range [−1, 1]. In order to reduce the effect of noise, we
use bilinear interpolation when we calculate the 2D histogram. One ex-
ample of 2D histogram is shown as a grayscale image in Figure 5.2(c);
the brighter areas in the image correspond to bins with more points
falling into them. In the implementation, the number of bins for the
shape index axis is 17 and the number of bins for the other axis is 34.

We classify surface shape of a local surface patch into three types:
concave (Tp = 0), saddle (Tp = 1) and convex (Tp = 2) based on the
shape index value of the feature point. The shape index range and its
corresponding surface type are listed in Table 5.1. We also compute
the centroid of a local surface patch. Note that a feature point and the
centroid of a patch may not coincide.

In summary, every local surface patch is described by a 2D his-
togram, surface type, and the centroid. The 2D histogram and surface
type are used for comparison of LSPs and the centroid is used for com-
puting the rigid transformation. The patch encodes the geometric in-
formation of a local surface.
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(a)
Local surface patch

Centroid:
( 1.629,2.40,4.72 −=== zyx )

Tp = 2 at the feature point
marked by the blue asterisk

2D histogram

(b)

Shape Index
0 0.5 1

-1
0

1
D

otP
roduct

(c)

Fig. 5.2. Illustration of a local surface patch (LSP). (a) Feature point P is marked by the
asterisk and its neighbors N are marked by the interconnected dots. (b) LSP representation
includes a 2D histogram, a surface type and centroid coordinates. (c) The 2D histogram is
shown as a gray image in which the brighter areas correspond to bins with the high frequency
of occurrence.
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(a) (b) (c) (d)

Fig. 5.3. Two examples of ear range images ((a), (c)) and their corresponding shape index
images ((b), (d)). In images (a) and (c), the darker pixels are away from the camera and the
lighter ones are closer. In images (b) and (d), the darker pixels correspond to concave surfaces
and lighter ones correspond to convex surfaces.

Fig. 5.4. Feature points location (+) in two range images shown as grayscale images of the
same ear taken at different viewpoints.
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5.1.2 Comparing Local Surface Patches

Given a probe range image, we extract feature points and get local sur-
face patches. Considering the inaccuracy of feature points’ location,
we also extract local surface patches from the neighbors of feature
points. Then we compare them with all of the local surface patches
saved in the gallery based on the surface type and histogram dissimi-
larity. We use a statistical method to assess the dissimilarity between
the two probability density functions since a histogram can be thought
of as an unnormalized approximation to it. The χ2 − divergence is
among the most prominent divergence used in statistics to assess the
dissimilarity between two probability density functions. We use it to
measure the dissimilarity between two observed histograms Q and V,
as follows [62]:

χ2(Q, V ) =
∑

i

(qi − vi)
2

qi + vi
(5.3)

From equation (5.3), we know the dissimilarity is between 0 and
2. If the two histograms are exactly the same, the dissimilarity will
be zero. If the two histograms do not overlap with each other, it will
achieve the maximum value of 2.

Figure 5.5 shows an experimental validation that the local surface
patch has the discriminative power to distinguish shapes. We do exper-
iments under three cases:

• A local surface patch (LSP1) generated for an ear is compared to
another local surface patch (LSP2) corresponding to the same phys-
ical area of the same ear imaged from a different viewpoint; in this
case a low dissimilarity exists and both LSPs have the same surface
type.

• The LSP1 is compared to LSP3 which lies in a different area of the
same ear; the dissimilarity is high and they have different surface
type.

• The LSP1 is compared to LSP4 which lies in the similar area as the
LSP1 but it is not the same ear; there exists a higher dissimilarity
than the first case and they also have the different surface type.

These experimental results suggest that the local surface patch pro-
vides distinguishable features and it can be used for differentiation
among ears. Table 5.2 shows the comparison results.
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Fig. 5.5. The demonstration of discriminatory power of local surface patches. The ear images
in the first row are from the same person but with different viewpoints. The ear image shown
in the second row is from a different person. The histograms of four local surface patches
(LSP1 to LSP4) are also shown for the comparison.

Table 5.2. Comparison results for four local surface patches shown in Figure 5.5.

Surface Type
LSP1 LSP2 LSP3 LSP4
Tp=0 Tp=0 Tp=2 Tp=1

χ2 − divergence
χ2(LSP1, LSP2) χ2(LSP1, LSP3) χ2(LSP1, LSP4)
0.479 1.99 0.984
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5.1.3 Generating Parameters of LSP

There are four parameters that control the generation of an LSP: the
number of bins for the shape index, the number of bins for the dot
product of surface normal vectors, the distance constraint ε1, and the
angle constraint A. Figure 5.6 and 5.7 show quantitative analysis of
the effect of these four parameters. We compute χ2 dissimilarity for
corresponding and non-corresponding LSPs versus different generat-
ing parameters. Since the gallery/probe pair is registered, we can easily
determine correspondence in the probe range image for every extracted
feature point in the gallery range image. If we only consider the dissim-
ilarity between corresponding LSPs, it is not sufficient to analyze the
effect of generating parameters on comparing LSPs. We need to take
into account the dissimilarity for both corresponding LSPs and non-
corresponding LSPs to analyze the effect of generating parameters. In
order to get non-corresponding points, we move their correspondences
in the probe image to other locations to make them at least 15mm apart
(the average length of ear is about 62mm). For every corresponding
LSP, we compute the dissimilarity for corresponding LSPs and get
the mean. By repeating the same procedure for different generating
parameters, we create the plot of χ2 dissimilarity for corresponding
LSPs versus the varying parameter. We repeat the same procedure for
non-corresponding LSPs and obtain the plot of χ2 dissimilarity versus
the varying parameter. We analyze the effect of each parameter while
keeping other three fixed.

In Figure 5.6 and 5.7 there are three curves: two of them are plots of
the mean of dissimilarity versus the varying parameter; the other one is
the plot of the separability versus the varying parameter. Assuming the
distributions for corresponding and non-corresponding LSPs are Gaus-
sian, the separability is defined by |µ1−µ2|√

(σ2
1+σ2

2)
, where µ1, σ1 and µ2, σ2

are the mean and standard deviation of dissimilarity for corresponding
and non-corresponding LSPs respectively. The separability measures
the distance between the dissimilarity distribution for corresponding
and non-corresponding LSPs to some degree.

The number of bins is an important parameter since it controls the
size of 2D histogram and it also affects the descriptiveness of LSPs.
If the number of bins is small, the possibility of points falling into
the same bin is large, and the χ2 dissimilarity for corresponding and
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non-corresponding LSPs will be small. As the number of bins in-
creases, the χ2 dissimilarity for corresponding and non-corresponding
LSPs increases since the chances of points falling into different bins
are higher, which results in the decrease in the overlap of histograms
corresponding to two LSPs. Figure 5.6(a), (b) and 5.7(a), (b) verify
the analysis. We can also observe that the separability increases with
the increasing number of bins and then decreases, which confirms the
intuition that too few bins and too many bins are not good choices for
generating surface signatures.

The distance constraint controls the number of points contributing
to the generation of a LSP. Larger distance constraint allows for more
points to be included in a LSP. Intuitively the larger distance constraint
results in more discriminating LSPs since LSPs encode more surface
information. The intuition is confirmed by the curve of dissimilarity
versus the distance constraint in Figure 5.6(c) and 5.7(c), which show
that the dissimilarity drops with the increase in distance constraint. It
may seem that we should set the distance constraint as large as possi-
ble. However, the dissimilarity for non-corresponding LSPs also drops
with the distance constraint increasing. From Figure 5.6(c) and 5.7(c),
we also observe that the separability increases then drops when the
distance constraint increases, which suggests that there is a tradeoff
between the descriptiveness of a LSP and the distance constraint.

The angle constraint controls the effect of self occlusion. The small
value of angle constraint allows for a small number of points contribut-
ing to the generation of a LSP, resulting in the large dissimilarity. As
the angle constraint is relaxed, the number of points included as a part
of a LSP increases. Therefore, in this case an LSP encodes more shape
information and the dissimilarity should decrease. As the angle con-
straint becomes more relaxed the dissimilarity may increase since the
shape becomes more and more unique. Figure 5.6(d) and Figure 5.7(d)
show that initially dissimilarity decreases and then increases slowly as
the angle constraint increases. The separability increases as the angle
constraint increases. It seems that we should set the angle constraint
as large as possible. However, a small angle constraint is necessary for
limiting the effect of occlusion.

The surface type, another component of LSP representation, only
depends on the reference point of LSP, and is not affected by the four
generating parameters.
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(a) Varying the number of bins for dot product of surface normals
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(b) Varying the number of bins for shape index

Fig. 5.6. Effect of generating parameters of LSP on comparing LSPs obtained from one
gallery/probe pair ((a)-(d)).
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Fig. 5.6. Figure 5.6 Continued.
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Fig. 5.7. Effect of generating parameters of LSP on comparing LSPs obtained from another
gallery/probe pair ((a)-(d)).
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Fig. 5.7. Figure 5.7 Continued.



5.1 Local Surface Patch Representation (LSP) 97

5.1.4 Invariance of Local Surface Patches to Rigid Transformation

The LSP representation consists of histogram of shape index and sur-
face normal angle which are invariant to rigid transformation. To ver-
ify this, we compute the χ2 dissimilarity between reference LSPs and
their corresponding LSPs after rigid transformation. We synthetically
generate range images at different views by applying 3D rigid trans-
formation. Given a range image {v = {x, y, z}}, we apply the trans-
formation (tv = R(v − v0) + v0) to generate new views where v0 is
the centroid of 3D vertices in the original range image, R is the rota-
tion matrix and tv are new 3D coordinates after transformation. The
rotation matrix R can be written as R = Rφ ∗ Rβ ∗ Rα where Rφ, Rβ,
Rα are rotation matrices along x-axis, y-axis, and z-axis, respectively.
We calculate shape index and surface normals for the synthetic range
image, compute LSPs at the same location as the reference LSPs, and
compute the χ2 dissimilarity between the two corresponding LSPs for
the extracted feature points. The surface type for the corresponding
LSP is not changed by the rigid transformation. The dissimilarity dis-
tributions are shown in Figure 5.8.

Figure 5.8(a) and (b) show the distributions for two different rota-
tions. From this figure, we observe the dissimilarity does not change
much and LSP representation is invariant to rigid transformation. Fur-
thermore, as described in Section 5.3, we performed experiments on
the UCR dataset which has pose variations (±35◦) for six different
shots of the same subject and on a subset of the UND dataset Col-
lection G which has pose variations (up to 45◦) for four shots of the
same subject. We achieved good performance. These results show the
robustness and view-point invariance of the LSP representation.

5.1.5 Robustness of Local Surface Patches in the Presence of Noise

In order to use the proposed LSP representation for recognizing 3D
objects from real data, we need to address the problem of robustness
of LSP in the presence of noise. Since LSP is a local surface descrip-
tor, it will be robust to certain levels of noise. We verify this hypoth-
esis experimentally. While the noise model for different range sensors
may be different, we use the Gaussian noise model for the Minolta
Vivid camera [78]. Other examples of additive Gaussian noise model
with the range data can be found in [79, 80]. Therefore, we inject zero
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(a) φ = 5◦, β = 10◦, α = 10◦ (b) φ = 10◦, β = 30◦, α = 30◦

Fig. 5.8. χ2 dissimilarity for corresponding LSPs with respect to the rigid transformation.

(a) (b) (c)

Fig. 5.9. Visualization of a surface corrupted by Gaussian noise N(µ, σ). (a) No noise added.
(b) N(µ = 0, σ = 0.6mm). (c) N(µ = 0, σ = 1.0mm).
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(a) N(0, σ = 0.6mm) (b) N(0, σ = 1.0mm)

Fig. 5.10. χ2 dissimilarity for corresponding LSPs in the presence of noise.

mean Gaussian noise N(0, σ2) to range images along the viewing di-
rection (Z-axis). The standard deviation of Gaussian noise that we add
depends on the mesh resolution of range scans. However the mesh
resolution is not well defined. We use the Johnson’s definition [3] ac-
cording to which “Mesh resolution is defined as the median of all edge
lengths in a mesh.” Given a range image, we triangulate it and get a
triangular mesh. Then we calculate the median of all edge lengths in
the mesh. The average median calculated from range scans is about
1.25mm. Adding noise to range images will corrupt the surface and
examples of a range image corrupted with Gaussian noise are shown
in Figure 5.9.

Given a range image, we add zero mean Gaussian noise with
σ = 0.6mm and σ = 1.0mm, then we compute the LSP at the same lo-
cation as the reference LSP on the corrupted range image, next we cal-
culate the χ2 dissimilarity between corresponding LSPs. Figure 5.10
shows the distribution of dissimilarity with added Gaussian noise.
From Figure 5.10, we can see that the LSP representation is robust
to Gaussian noise with σ = 0.6mm and performs a little worse to
Gaussian noise with σ = 1.0mm. Since the noise corrupts the surface,
14% of corresponding LSPs change the surface type. The dissimilar-
ity for corresponding and non-corresponding LSPs and the separabil-
ity versus the increased corruption for two different ears are shown in
Figure 5.11. We can observe that the dissimilarity for corresponding
LSPs increases slowly since the noise corrupts the surface shape and
the separability decreases with the increase in corruption, which sug-
gests that LSP matching degrades slowly as the noise level increases.
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Fig. 5.11. χ2 dissimilarity for corresponding LSPs with respect to noise of different σ.
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5.1.6 Comparison with Spin Image Representation

It is to be noted that our LSP representation is different from the spin
image representation [3]. Unlike the LSP representation, spin image is
a 2D histogram described by two parameters: distance to the tangent
plane of the oriented point from its neighbors and the distance to the
normal vector of the oriented point. As described above, we compute
LSPs for feature points, while the spin image is computed for every
vertex on the surface of an object [3]. In Section 5.3.4, we provide a
comparison of the LSP and the spin image representations on a ear
dataset.

5.2 Surface Matching

5.2.1 Grouping Corresponding Pairs of LSPs

Given a probe range image, we extract feature points and get local
surface patches. Considering the inaccuracy of feature points’ location,
we also extract local surface patches from neighbors of feature points.
Then we compare them with all of the local surface patches saved in
the model database. This comparison is based on the surface type and
χ2 dissimilarity mentioned in Section 5.1.2.

For every local surface patch from the probe ear, we choose the
local surface patch from the database with minimum dissimilarity and
the same surface type as the possible corresponding patch. We filter the
possible corresponding pairs based on the geometric constraints given
below.

dC1,C2 = |dS1,S2 − dM1,M2 | < ε2

max(dS1,S2, dM1,M2) > ε3 (5.4)

where dS1,S2 and dM1,M2 are Euclidean distances between centroids
of two surface patches. The first constraint guarantees that distances
dS1,S2 and dM1,M2 are consistent; the second constraint removes the
correspondences which are too close. For two correspondences C1 =
{S1, M1} and C2 = {S2, M2} where Si is probe surface patch and Mi

is gallery surface patch, they should satisfy (5.4) if they are consistent
corresponding pairs. Therefore, we use simple geometric constraints
to partition the potential corresponding pairs into different groups. The
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larger the group is, the more likely it contains the true corresponding
pairs.

Given a list of corresponding pairs L = {C1, C2, . . . , Cn}, the
grouping procedure for every pair in the list is as follows:

• Initialize each pair of a group.
• For every group, add other pairs to it if they satisfy (5.4).
• Repeat the same procedure for every group.
• Sort the groups in the ascending order based on the size of groups.
• Select the groups on the top of the list.

Figures 5.12 and 5.13 show two examples of partitioning corre-
sponding pairs into different groups. Figure 5.12 shows a pair of ears
with a small pose variation and Figure 5.13 shows a pair of ears
with a large pose variation. Figures 5.12 and 5.13(a) show the feature
point extraction results for the probe ears. Comparing the local surface
patches with LSPs on the gallery ear, the initial corresponding pairs are
shown in Figure 5.12 and 5.13(b), in which every pair is represented
by the same number superimposed on the probe and gallery images.
We observe that both the true and false corresponding pairs are found.
Applying the simple geometric constraints (5.4), examples of filtered
groups are shown in Figures 5.12 and 5.13(c) (d), respectively. We can
see that the true corresponding pairs are obtained by comparing lo-
cal surface patches and using the simple geometric constraints for ear
pairs with small or large pose variations.

5.2.2 Alignment of Gallery with Probe Ears

Once the corresponding LSPs between the gallery and probe are estab-
lished, the initial rigid transformation is estimated and the coarse-to-
fine surface matching strategy is followed (see Section 4.2).

5.3 Experimental Results

As described in Section 4.3 about the dataset, we perform experiments
on the UCR dataset ES1 and ES2 and on the UND dataset Collection
F and a subset of Collection G (24 subjects with four orientations).
The experimental results on the UND dataset Collection F and G are
obtained by using the same parameters of the ear recognition algorithm
as those used on the UCR dataset.
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(a) Feature points extraction from a probe ear (b) Initial corresponding pairs

(c) Example of filtered corresponding pairs (d) Example of filtered corresponding pairs

Fig. 5.12. Example of grouping corresponding LSPs for a pair of ears with a small pose vari-
ation. The probe ear is shown as the left image in (b), (c) and (d).
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(a) Feature points extraction from a probe ear (b) Initial corresponding pairs

(c) Example of filtered corresponding pairs (d) Example of filtered corresponding pairs

Fig. 5.13. Example of grouping corresponding LSPs for a pair of ears with a large pose varia-
tion. The probe ear is shown on the left image in (b), (c) and (d).
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5.3.1 Identification Performance

Every probe is matched to every 3D ear in the gallery set and the RMS
registration error is calculated using the procedure described in Sec-
tion 4.2. The matching error matrix {ME(i, j), i = 1, 2, . . . , Nt, j =
1, 2, . . . , Nm} on the UCR dataset ES1 using the LSP representation,
where Nt and Nm are the number of probe ears and gallery ears, re-
spectively, is displayed as an intensity image shown in Figure 5.14.
The average time to match a pair of ears, which includes the coarse
and fine alignment, is about 3.7 seconds with C++ implementation on
a Linux machine with an AMD Opteron 1.8GHz CPU.

The identification performance is evaluated by the cumulative
match characteristics (CMC). Table 5.3 shows the rank-r recognition
rates using the LSP representation for the UCR dataset and the UND
dataset Collection F. In Table 5.3, the numbers of images in the gallery
and the probe sets are listed in the parenthesis following the name of
the dataset. We achieve 94.84% rank-1 recognition rate (150 out of
155) on the UCR dataset ES1 and 96.36% rank-1 recognition rate (291
out of 302) on the UND dataset Collection F. As expected, the sys-
tem performs better on ES1 with the same pose and the performance
degrades slightly on ES2 with pose variations.

We show four special cases of correctly recognizing gallery-probe
ear pairs using the LSP representation in Figures 5.15. In this figure,
each probe ear is rendered as a textured 3D surface and each gallery
ear is displayed as a mesh. In order to examine the results visually, we
display the pre-aligned gallery ear and the probe ear in the same image
(Figures 5.15(b)) and also the post-aligned (transformed) gallery and
the probe ear in the same image (Figures 5.15(c)). From Figure 5.15,
we observe that the ear recognition system can handle partial occlu-
sion. Twelve more examples of correctly recognized gallery-probe ear
pairs are shown in Figure 5.16. From Figure 5.16, we observe that each
gallery ear is well aligned with the corresponding probe ear.

One error case is illustrated in Figure 5.17. Figure 5.17 (a) and (b)
show the color images of two visually similar probe and gallery ears
that belong to different subjects; Figure 5.17(c) shows the correspond-
ing gallery ear overlaid on the textured 3D probe ear after registra-
tion; Figure 5.17(d) shows the falsely recognized gallery ear overlaid
on the textured 3D probe ear after alignment. In Figure 5.17(d), the
root mean square error is 1.002mm, which is smaller than 1.079mm in
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Fig. 5.14. Matching error matrix on the UCR dataset ES1 using the LSP representation dis-
played as an intensity image (smaller values correspond to darker pixels). The gallery ID is
labeled horizontally and the probe ID is labeled vertically.

Table 5.3. Cumulative matching performance on the UCR dataset and the UND dataset Col-
lection F using the LSP representation.

Dataset Rank-1 Rank-2 Rank-3 Rank-4 Rank-5
UCR ES1(155, 155) 96.77% 96.77% 96.77% 96.77% 96.77%
UCR ES2(310, 592) 94.43% 96.96% 97.30% 97.64% 97.80%

UND(302, 302) 96.36% 98.01% 98.34% 98.34% 98.34%
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Figure 5.17(c). Since the ears of these two subjects are quite similar in
3D, the error occurs and it is an example of false recognition.

Figure 5.17 (a) and (b) show the color images of two visually sim-
ilar probe and gallery ears that belong to different subjects; Figure
5.17(c) shows the true gallery ear overlaid on the textured 3D probe ear
after registration; Figure 5.17(d) shows the falsely recognized gallery
ear overlaid on the textured 3D probe ear after alignment. In Figure
5.17(d), the root mean square error for the falsely recognized ear is
smaller than the error for the correct ear in Figure 5.17(c). Since we
pick up the gallery ear with the minimum RMS error as the recognized
ear, we made the errors. In this figure, we obtain good alignment be-
tween the gallery and model ears from different persons since these
ears are quite similar in 3D.

5.3.2 Verification Performance

The verification performance of the proposed system is evaluated in
terms of the two popular methods, the receiver operating characteris-
tic (ROC) curve and the equal error rate (EER). Figure 5.18 shows the
ROC curves on the UCR and the UND dataset Collection F using the
LSP representation for surface matching. As expected, the system per-
forms better on ES1 than on ES2 using the the LSP representations.
We obtain the best performance with a 0.023 EER on the UND dataset
using the LSP representation. It is clearly seen that without retuning
the parameters of the proposed algorithms we achieved good verifica-
tion performance on the UND dataset.

5.3.3 Evaluation of Verification Performance

We discuss and evaluate the accuracy of the ear verification system by
applying the method in [38, 81, 82]. As described in Section 1.3, the
UCR dataset has 155 subjects. There are 155 probes providing 155 user
claims and 23,870 (155 × 154) imposter claims for the UCR dataset
ES1. For the UCR dataset ES2 there are 592 probes providing 592
user claims and 91,168 (592×154) imposter claims. The UND dataset
Collection F has 302 subjects. There are 302 pairs of images providing
302 user claims and 90,902 (302 × 301) imposter claims.

We calculate the number of user claims and imposter claims that
gives statistically significant results. Let ζµ denote the µ−percentile of
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(a) (b) (c)

Fig. 5.15. UCR dataset: Four examples of the correctly recognized gallery-probe pairs using
the LSP representation. Two ears have earrings and the other two ears are partially occluded
by the hair. Images in column (a) show color images of ears. Images in column (b) and (c) show
the probe ear with the corresponding gallery ear before the alignment and after the alignment,
respectively. The gallery ears represented by the mesh are overlaid on the textured 3D probe
ears. The units of x, y and z are in millimeters (mm).
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(a) (b)

Fig. 5.16. UCR dataset: Twelve cases of the correctly recognized gallery-probe pairs using
the LSP representation. (a) Examples of probe ears with the corresponding gallery ears before
alignment. (b) Examples of probe ears with the correctly recognized gallery ears after align-
ment. The gallery ear represented by the mesh is overlaid on the textured 3D probe ear. The
units of x, y and z are in millimeters (mm). Two example cases are shown on a page.
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(a) (b)

Fig. 5.16. Figure 5.16 Continued.
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(a) (b)

Fig. 5.16. Figure 5.16 Continued.
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(a) (b)

Fig. 5.16. Figure 5.16 Continued.
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(a) (b)

Fig. 5.16. Figure 5.16 Continued.
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(a) (b)

Fig. 5.16. Figure 5.16 Continued.
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(a) (b) (c) (d)

Fig. 5.17. UCR dataset: An incorrectly recognized model-test pair using the LSP representa-
tion. The model ear represented by the yellow mesh is overlaid on the textured 3D test ear.
The units of x, y and z are in millimeters (mm). (a) Color image of the probe ear. (b) Color
image of the falsely recognized gallery ear. (c) The gallery ear after alignment is overlaid on
the texture 3D probe ear. (d) The falsely recognized gallery ear after alignment is overlaid
on the textured 3D probe ear. Note that for the incorrect match the gallery ear in column (d)
achieves a smaller value of RMS error than the gallery ear in column (c).
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Fig. 5.18. UCR dataset and UND dataset Collection F: Verification performance as a ROC
curve. ROC curves on the UCR dataset ES1, ES2 and the UND dataset using the LSP repre-
sentation.
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the standard Gaussian distribution with zero mean and unit variance.
Since the verification tests can be thought of as Bernoulli trials, we
can assert that with confidence δ = 1−µ that the minimum number of
user claims which ensures that the expected value of FRR (pFR) and
the empirical value (p̂FR) are related by |pFR − p̂FR| ≤ ξ, is given by

υC =
(ζµ/2

ξ

)2

pFR(1 − pFR). (5.5)

The number υI of the imposter claims [82] which is sufficient to
ensure that the expected value of FAR (pFA) and the empirical value
(p̂FA) are related by |pFA − p̂FA| ≤ ξ is given by

υI =
(ζµ/2

ξ′

)2

po(1 − po), ξ
′
=

ξ

k
, (1 − po)

k = 1 − pFA

(5.6)

where po is the probability that one imposter is falsely accepted as an
authorized user and k is the number of imposter claims (k = 154 for
the UCR dataset and k = 301 for the UND dataset Collection F). By
setting the desired EER, δ and ξ, we can compute υC and υI .

For the UCR dataset ES1, we find υC = 149 and υI = 24, 759 with
EER = 5%, δ = 95% and ξ = 3.5%.

For the UCR dataset ES2, we find υC = 456 and υI = 75, 826 with
EER = 5%, δ = 95% and ξ = 2%.

For the UND dataset Collection F, we find υC = 292 and υI =
94, 874 with EER = 5%, δ = 95% and ξ = 2.5%.

Note that the order of magnitude of these numbers are the same
as those provided by the test scenarios. The values of ξ on the UCR
dataset ES2 (ξ = 2%) and the UND dataset Collection F (ξ = 2.5%)
are smaller than the value on the UCR dataset ES1 (ξ = 3.5%) since
the UCR dataset ES2 and the UND dataset Collection F are larger in
size than the size of the UCR dataset ES1.

5.3.4 Comparison of LSP and Spin Image Representations

In order to compare the distinctive power of the LSP and the spin im-
age representations, we follow the same procedures as described in
this chapter to recognize ears using the spin image representation. In
the experiments, the size of the spin image is 15 × 15. We perform
experiments on the UCR dataset ES1 (155 shots in the gallery and 155
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shots in the probe) to compare the performance of these two represen-
tations in terms of the CMC and the ROC curves.

Table 5.4 shows CMC values using the LSP and the spin image
representations for ear recognition. Figure 5.19 shows the ROC curves
using the LSP and the spin image representations for matching ears.
From Table 5.4 and Figure 5.19, we observe that the LSP representa-
tion achieved a slightly better performance than the spin image repre-
sentation.

5.3.5 Identification and Verification Performance with Occlusion

In order to show the recognition performance with occlusions, we sim-
ulate the occluded probe ear images by selecting a fraction of the ex-
tracted LSPs in the images. The area covered by the occluded LSPs is
removed. For a probe ear, we randomly remove 10%, 20%, 30%, 40%,
and 50% of the extracted LSPs and then match it against every ear
in the gallery. The identification performance is given in Table 5.5 and
the ROC curves for different occlusion ratios are shown in Figure 5.20.
We observe that the recognition performance degrades slowly with the
increased occlusion.

5.4 Comparison with Yan and Bowyer’s Approach

The most important difference is that we propose the ear helix/anti-
helix and the local surface patch (LSP) representations to estimate the
initial rotation and translation between a gallery-probe pair while Yan
and Bowyer do not estimate the initial transformation. The initial trans-
formation is critical for the success of ICP algorithm, which can be
seen from Table 5.6 that shows the rank-1 recognition rates. As de-
scribed above, in the UND dataset Collection G, there are 24 subjects
whose images are taken at four different poses, straight-on, 15◦ off
center, 30◦ off center and 45◦ off center. For each angle of an ear im-
age, we match it against all the images at different angles. This is the
same experiment performed in [34, Chap. 8.3]. We observe that the re-
sults obtained by the helix/anti-helix representation are better than Yan
and Bowyer’s results [34, Chap. 8.3] for all the cases except the case
(45◦ probe against 30◦ gallery). The results obtained by the LSP rep-
resentation outperform the results obtained in [34, Chap. 8.3] for the
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Table 5.4. Cumulative matching performance on the UCR dataset ES1 using the LSP and the
spin image representations.

Representation Rank-1 Rank-2 Rank-3 Rank-4 Rank-5
LSP 94.84% 96.77% 96.77% 96.77% 96.77%

Spin Image 92.90% 95.48% 95.48% 95.48% 95.48%
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Fig. 5.19. Verification performance as ROC curves using the LSP and the spin image repre-
sentations on the UCR dataset ES1.
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Table 5.5. Cumulative matching performance on the UCR dataset ES1 with different occlu-
sion ratios using the LSP representation.

Occlusion ratio Rank-1 Rank-2 Rank-3 Rank-4 Rank-5
0 94.84% 96.77% 96.77% 96.77% 96.77%

0.1 94.19% 96.13% 96.13% 96.13% 96.13%
0.2 92.26% 94.84% 94.84% 95.48% 95.48%
0.3 90.97% 92.90% 92.90% 94.19% 95.48%
0.4 87.74% 92.90% 92.90% 92.90% 93.55%
0.5 84.52% 88.39% 88.39% 88.39% 88.39%
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Ratio = 0 (EER = 0.040)
Ratio= 0.1 (EER = 0.038)
Ratio= 0.2 (EER = 0.045)
Ratio= 0.3 (EER = 0.058)
Ratio= 0.4 (EER = 0.077)
Ratio= 0.5 (EER = 0.14)

Fig. 5.20. Verification performance as ROC curves with different occlusion ratios on the UCR
dataset ES1 using the LSP representation.
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Table 5.6. Comparison between Chen and Bhanu’s approach [1] and Yan and Bowyer’s ap-
proach [2] on a subset of Collection G. Our rank-1 identification results are put inside the
brackets. The first number is obtained using the helix/anti-helix representation and the second
one is obtained using the LSP representation. The number outside the bracket is obtained from
[34, Chap. 8.3].

Probe\Gallery Straight-on 15◦ off 30◦ off 45◦ off Average
Straight-on [100%,

100%],
100%

[91.7%,
87.5%],
87.5%

[87.5%,
83.3%],
70.8%

[93.1%,
90.3%],
86.1%

15◦ off [100%, 100%],
100%

[100%,
100%],
100%

[87.5%,
91.7%],
87.5%

[95.8%,
97.2%],
95.8%

30◦ off [91.7%, 91.7%],
87.5%

[100%,
100%],
100%

[95.8%,
91.7%],
95.8%

[95.8%,
94.4%],
94.4%

45◦ off [87.5%, 87.5%],
79.2%

[91.7%,
87.5%],
87.5%

[95.8%,
87.5%],
100%

[91.7%,
87.5%],
88.9%

Average [93.1%, 93.1%],
88.9%

[95.8%,
95.8%],
95.8%

[97.2%,
91.7%],
95.8%

[90.3%,
88.9%],
84.7%

[94.1%,
92.4%],
91.3%
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cases with large pose variations (45◦ and 30◦ probes against straight-
on gallery, straight-on and 15◦ probes against 45◦ gallery). From Table
5.6, we see that our representations can reasonably handle the pose
variation up to 45◦.

5.5 Conclusions

In this chapter, we proposed a new local surface patch (LSP) rep-
resentation for 3D matching. This representation is invariant to ro-
tation and translation. We used this representation for finding initial
correspondences between a gallery-probe pair. Then a modified iter-
ative closest point (ICP) algorithm iteratively refined the transforma-
tion which brings the hypothesized gallery and a probe image into the
best alignment. The root mean square (RMS) registration error is used
as the matching error criterion. The experimental results on two real
ear range and color image datasets demonstrated the potential of the
proposed algorithms for robust ear recognition in 3D. Extensive ex-
periments are performed on the UCR dataset (155 subjects with 902
images under pose variations), the UND dataset Collection F (302
subjects with 302 time-lapse gallery-probe pairs) and a subset of the
UND dataset G for evaluating the performance with respect to pose
variations without retuning the parameters of the proposed algorithms.
These results showed that the proposed ear recognition system is ca-
pable of recognizing ears under pose variations, partial occlusions and
time lapse effects. The proposed representation is less sensitive to pose
variations.

We also provided a comparison of the LSP representation with the
spin image representation for identification and verification. This com-
parison showed that the LSP representation achieved a slightly better
performance than the spin image representation.




