4
Recognizing 3D Ears Using Ear Helix/Anti-Helix

During the ear detection described in Chapter 3, the optimization pro-
cedure drives the initial global registration towards the ear helix and
anti-helix parts, which results in the one-to-one correspondence of the
ear helix and anti-helix between the reference ear shape model and the
input image. We propose to match 3D ears using the ear helix/anti-
helix representation [1]. First the correspondence of ear helix and anti-
helix parts (available from the ear detection algorithm) between every
gallery-probe ear pair is established and it is used to compute the initial
rigid transformation. Then this transformation is applied to randomly
selected control points of the hypothesized gallery ear in the database.
A modified iterative closest point (ICP) algorithm is run to improve the
transformation which brings the gallery ear and probe ear into the best
alignment, for every gallery-probe pair. The root mean square (RMS)
registration error is used as the matching error criterion. The subject in
the gallery with the minimum RMS error is declared as the recognized
person in the probe image.

4.1 Ear Helix/Anti-Helix Representation

The 3D coordinates of the ear helix and anti-helix parts are ob-
tained from the detection algorithm and these coordinates form our ear
helix/anti-helix representation. The detected ear helix/anti-helix parts
are marked by the green points in Figure 4.1
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4.2 Surface Matching

As shown in the ear recognition part of Figure 4.1, the surface match-
ing follows the coarse-to-fine strategy. Given a set of probe images, the
ear and its helix and the anti-helix parts are extracted by running the
detection algorithm described above. The correspondence of the helix
and the anti-helix between the probe ear and the hypothesized gallery
ear is used to compute the initial transformation that brings the hypoth-
esized gallery ear into coarse alignment with the probe ear, and then
a modified ICP algorithm is run to refine the transformation to bring
gallery-probe pairs into the best alignment.

4.2.1 Coarse Alignment

Given two corresponding sets of NV, 3D vertices M and .S on the helix
and the anti-helix parts, the initial rigid transformation, which brings
the gallery and the probe ears into coarse alignment, can be estimated
by minimizing the sum of the squares of theses errors (equation (4.1))
with respect to the rotation matrix R and the translation vector 7.
The rotation matrix and translation vector are computed by using the
quaternion representation [76].

N,

1 p
y= § 1S; — R+ M; —T|? (4.1)

Ny =1

The unit quaternion is a vector qr = [qo, 1, @2, 3], where go > 0

and ¢2+q¢?+q5+q5 = 1. The solution of R and T using the quaternion
representation is performed as follows:

1. Calculate the centroid of the gallery data set M,,, and the probe data
set S, given by (4.2).

L 1 &
= N S and py= Y M, 42
s N, 2 and fipy Np 2 4.2)

2. Calculate the covariance matrix X, of the sets M, and S, is
given by
1 &
s = Z[(Mz — i )(Si — )" (4.3)

P =
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Construct the matrix A;; = (X5 — X1,4):; which is used to form
the column vector A = [Ay3 A3y Apo]”. This vector is then used to
form the symmetric 4 x 4 matrix ().

_ tT’(ZMs) AT

Q A EMS + E]ES — tT’(EMs)Ig (44)

where I3 is the 3 x 3 identity matrix and ¢r is the matrix trace
operator.

. The maximum eigenvalue of () is corresponding to the qgr.

. The 3 x 3 rotation matrix generated from a unit rotation quaternion

is calculated by (4.5).

B+ad—ad—a 2ae—q9wp)  2(ae+ 00e)
R = 20142 + Q93) G+ -G — @G 29205 — qoq1)
20143 — 0q2)  2(e@z +901) GG — G — ¢
4.5)

The translation vector 7 is calculated as 7" = pg — Rpupy.

4.2.2 Fine Alignment

Given the estimate of initial rigid transformation, the purpose of iter-
ative closest point (ICP) algorithm [63] is to determine if the match is
good and to find a refined alignment between them. If the probe ear is
really an instance of the gallery ear, the ICP algorithm will result in a
good registration and a large number of corresponding points between
gallery and probe ear surfaces will be found. Since ICP algorithm re-
quires that the probe be a subset of the gallery, a method to remove
outliers based on the distance distribution is used [70]. The basic steps
of the modified ICP algorithm are summarized below:

Input: A 3D gallery ear range image, a 3D probe ear range image
and the initial transformation obtained from the coarse alignment.
Output: The refined transformation between the two ears.

e Procedure:

(a) Select control points (~180) in the gallery ear range image ran-
domly and apply the initial transformation to the gallery ear im-
age.
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(b)Find the closest points of the control points in the probe ear im-
age and compute the statistics [70] of the distances between the
corresponding pairs in the gallery and probe images.

(c) Discard some of the corresponding pairs by analyzing the statis-
tics of the distances (a threshold is obtained based on the mean
and standard deviation of distances) [70].

(d) Compute the rigid transformation between the gallery and the
probe ears based on the correspondences.

(e) Apply the transformation to the gallery ear range image and re-
peat step b) until convergence.

Starting with the initial transformation obtained from the coarse
alignment, the modified ICP algorithm is run to refine the transfor-
mation by minimizing the distance between the control points of the
gallery ear and their closest points of the probe ear. For each gallery
ear in the database, the control points are randomly selected and the
modified ICP is applied to those points. For a selected gallery ear, we
repeat the same procedure 15 times and choose the rigid transforma-
tion with the minimum root mean square (RMS) error. The subject in
the gallery set with the minimum RMS error is declared as the rec-
ognized person. In the modified ICP algorithm, the speed bottleneck is
the nearest neighbor search. Therefore, the K-d tree structure is used in
the implementation. Figure 4.2(a) shows the coarse alignment after ap-
plying the initial rigid transformation; Figure 4.2(b) shows the refined
alignment after applying the modified ICP algorithm. In Figure 4.2,
the gallery ear represented by the mesh is overlaid on the textured 3D
probe ear. We observe a better alignment after applying the modified
ICP algorithm.

4.3 Experimental Results

In order to evaluate and compare the matching performance on the se-
lected datasets, all the ears are correctly extracted. In these limited
cases where the ears are not successfully detected in an automated
manner, they are correctly extracted by human interaction.

In the UCR dataset there are 155 subjects with 902 images. The data
are split into a gallery set and a probe set. Each set has 155 subjects
and every subject in the probe set has an instance in the gallery set. In
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(a) Coarse alignment (b) Fine alignment

Fig. 4.2. Two examples of coarse and fine alignment. The gallery ear represented by the mesh
is overlaid on the textured 3D probe ear.
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order to evaluate the proposed surface matching schemes, we perform
experiments under three scenarios:

e one frontal ear of a subject is in the gallery set and another frontal
ear of the same subject is in the probe set;

e two frontal ears of a subject are in the gallery set and the rest of the
ear images of the same subject are in the probe set;

e two ears of a subject are randomly chosen and put in the gallery set
and the rest of ear images for the same subject are in the probe set.

All the experiments are repeated five times. The three scenarios are
denoted by £'S}, E/S; and E S5 respectively. S| is used for testing the
performance of the system to recognize ears with the same pose; F.S,
is used for testing the performance of the system to recognize ears with
pose variations; £/S3 is used for testing the robustness of the system.

In the UND dataset Collection F, there are 302 subjects and each
subject has two images. The gallery set has 302 images and the probe
set has the corresponding 302 images. The experimental results on the
UND dataset Collection F are obtained using the same parameters of
the ear recognition algorithm as those used on the UCR dataset.

Note that the resolution of the sensors for the UCR and UND
datasets are different. We anticipate improvement in performance by
fine tuning the parameters on the UND dataset. However, these ex-
periments are not performed since we wanted to keep the algorithm
parameters fixed across datasets.

4.3.1 Identification Performance

Given a probe ear image, the root mean square (RMS) error is calcu-
lated for every enrolled subject in the gallery set and the subject in
the gallery with the minimum RMS error is declared as the recognized
person in the probe image. The matching error matrix { M E (i, j),1 =
1,2,...,Ny,j = 1,2,...,N,,} on the UCR dataset £'S; using the
helix/anti-helix representation, where N; and /V,,, are the number of
probe ears and gallery ears respectively, is displayed as an intensity
image shown in Figure 4.3. The smaller the matching error is the more
likely the two ears match. From Figure 4.3, we can see that most of the
diagonal pixels are darker than the other pixels on the same row, which
means correct recognition. The average time to match a pair of ears,
which includes the coarse and fine alignment, is about 1.1 seconds
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Table 4.1. Cumulative matching performance on the UCR dataset and the UND dataset Col-
lection F. The number of images in the gallery and probe sets are listed in the parenthesis.

Dataset Rank-1 Rank-2 Rank-3 Rank-4 Rank-5
ES1(155,155) 96.77% 98.06% 98.71% 98.71% 98.71%
ES2(310,592) 94.43% 96.96% 97.80% 98.31% 98.31%

92.91% 95.95% 96.96% 97.30% 97.47%
94.26% 95.78% 96.28% 96.45% 96.96%
ES5(310,592) 92.74% 94.76% 95.44% 95.78% 95.95%
92.23% 95.44% 95.61% 96.45% 96.79%
92.23% 94.93% 95.44% 95.78% 95.78%
UND(302,302) 96.03% 96.69% 97.35% 97.68% 98.01%

with C++ implementation on a Linux machine with an AMD Opteron
1.8GHz CPU.

The identification performance is evaluated by the cumulative
match characteristics (CMC), which describes “is the right answer in
the top rank-r matches?”. Table 4.1 shows the rank-r recognition rates
for the UCR dataset and the UND dataset Collection F. In Table 4.1,
the numbers of images in the gallery and the probe sets are listed in
the parenthesis following the name of the dataset. We achieve 96.77%
rank-1 recognition rate (150 out of 155) on the UCR dataset £S; and
96.03% rank-1 recognition rate (290 out of 302) on the UND dataset
Collection F. As expected, the system performs better on F.S; with
the same pose and the performance degrades slightly on F.S; with
pose variations. By an inspection of the CMC values on ESj3 listed
in Table 4.1, it also can be seen that the system is robust to recognize
ears under different conditions. We observe that without retuning the
parameters of the proposed algorithm we still achieved good recogni-
tion performance on the UND dataset which has several weeks of time
lapse between the gallery and the probe.

Figure 4.4 shows three examples of the correctly recognized
gallery-probe ear pairs with a large pose variation. Figure 4.4(a) shows
the side face color images of the gallery and the probe alternately;
Figure 4.4(b) shows the range images of the ears that are automati-
cally extracted; Figure 4.4(c) shows the gallery ear represented by the
mesh overlaid on the textured 3D probe ear images. We observe that
the cases with a large pose variation are correctly handled.

We show three special cases of correctly recognizing gallery-probe
ear pairs in Figures 4.5. In these two figures, the probe ear is rendered
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Gallery ID

1234...

1234... Probe 1D

Fig. 4.3. Matching error matrix on the UCR dataset £.S; using the ear helix/anti-helix rep-

resentation displayed as an intensity image (smaller values correspond to darker pixels). The
gallery ID is labeled horizontally and the probe ID is labeled vertically.
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Fig. 4.4. UCR dataset: Three cases of the correctly recognized gallery-probe ear pairs using
the ear helix/anti-helix representation with a large pose variation. (a) Side face color images.
(b) Range images of the detected ears. In columns (a) and (b), the gallery image is shown
first and the probe image is shown second. (c) The probe ear with the corresponding gallery
ear after alignment. The gallery ear represented by the mesh is overlaid on the textured 3D
probe ear. The units of x, y and z are millimeters (mm). In case 1, the rotation angle is 33.5°
and the axis is [0.0099, 0.9969, 0.0778]7. In case 2, the rotation angle is —33.5° and the
axis is [—0.1162,0.9932,0.0044]”. In case 3, the rotation angle is 32.9° and the axis is
[0.0002, 0.9998, 0.0197]%.
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as a textured 3D surface; the gallery ear is displayed as a mesh. In order
to examine our results visually, we display the gallery ear and probe
ear in the same image (Figure 4.5(b)) and also the transformed gallery
and probe ear in the same image (Figure 4.5(c)). From Figure 4.5, we
observe that the ear recognition system can handle partial occlusion.
Twelve more examples of correctly recognized gallery-probe ear pairs
are shown in Figure 4.6. The images in the columns (a) and (c) dis-
play test ears and their corresponding gallery ears before alignment;
the images in the columns (b) and (d) show probe ears and correctly
recognized gallery ears after alignment. From Figure 4.6, we see that
each gallery ear is well aligned with the corresponding probe ear.

During the recognition, some errors are made and four cases are il-
lustrated in Figure 4.7. Figure 4.7(a) and (b) show the color images of
two visually similar probe and gallery ears that belong to different sub-
jects; Figure 4.7(c) shows the true gallery ear overlaid on the textured
3D probe ear after registration; Figure 4.7(d) shows the falsely recog-
nized gallery ear overlaid on the textured 3D probe ear after alignment.
In Figure 4.7(d), the root mean square error for the falsely recognized
ear is smaller than the error for the correct ear in Figure 4.7(c). Since
we pick up the gallery ear with the minimum RMS error as the recog-
nized ear, we made the errors. In this figure, we obtain good alignment
between the gallery and model ears from different persons since these
ears are quite similar in 3D.

4.3.2 Verification Performance

The verification performance of the proposed system is evaluated in
terms of the two popular methods, the receiver operating character-
istic (ROC) curve and the equal error rate (EER). The ROC curve is
the plot of genuine acceptance rate (GAR) versus the corresponding
false acceptance rate (FAR). GAR is defined as the percentage of the
occurrences that an authorized user is correctly accepted by the sys-
tem, while FAR is defined as the percentage of the occurrences that a
non-authorized user is falsely accepted by the system. The EER, which
indicates the rate at which false rejection rate (FRR = 1 — GAR) and
the false acceptance rate are equal, is a threshold independent perfor-
mance measure.

During the verification, the RMS distance is computed from match-
ing the gallery ears to the probe ears and it is then compared to a
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Fig. 4.5. Three special cases of correctly recognized gallery-probe ears using the ear helix/anti-
helix representation, in which ears are partially occluded by an earring or by the hair. (a)
Color images of the ears. (b) Examples of probe ears with the corresponding gallery ears
before alignment. (c) Examples of test ears with the correctly recognized gallery ears after
alignment. The gallery ear represented by the mesh is overlaid on the textured 3D test ear. The
units of x, y and z are millimeters (mm).
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Fig. 4.6. UCR dataset: Twelve cases of the correctly recognized gallery-probe pairs using the
ear helix/anti-helix representation. (a) Examples of probe ears with the corresponding gallery
ears before alignment. (b) Examples of probe ears with the correctly recognized gallery ears
after alignment. The gallery ear represented by the mesh is overlaid on the textured 3D probe
ear. The units of x, y and z are millimeters (mm).
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Fig. 4.6. Figure 4.6 Continued.
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Fig. 4.6. Figure 4.6 Continued.
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Fig. 4.6. Figure 4.6 Continued.
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Fig. 4.6. Figure 4.6 Continued.
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Fig. 4.6. Figure 4.6 Continued.



4.3 Experimental Results 79

: < E o> /’(/(:1 E
o - E . zn\//(_;u a0
o * RMS=1.04mm 0 « RMS=0.99mm
5 - = 4 i
- o B <
v - - n 4
7 7 x RMS=1.15mm 2% P < RWMS=1.01mm
@ (b

(©) ()

@ < RMS=1.00mm = 7 % RMS=0.88mm

Fig. 4.7. UCR dataset: Four cases of incorrectly recognized gallery-probe pairs using the ear
helix/anti-helix. Each row shows one case. The gallery ears represented by the mesh are over-
laid on the textured 3D probe ears. The units of x, y and z are millimeters (mm). (a) Color
images of the probe ears. (b) Color images of falsely recognized gallery ears. (c) True gallery
ears after alignment are overlaid on the textured 3D probe ears. (d) The falsely recognized
gallery ears after alignment are overlaid on the textured 3D probe ears. Note that for the in-
correct matches the gallery ears in column (d) achieve a smaller value of RMS error than the
gallery ears in column (c).
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Fig. 4.8. UCR dataset and UND dataset Collection F: Verification performance as a ROC
curve using the ear helix/anti-helix representation. (a) ROC curves on the UCR dataset £'S1,
E S5 and the UND dataset. (b) ROC curve on the UCR dataset £'Ss. The dotted line is the
average of GAR over a particular FAR and the vertical line indicates the range of GAR for a
particular FAR over 5 runs. The EERs for the 5 runs are 0.042, 0.043, 0.049, 0.045, and 0.055,
respectively.
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threshold to determine if the probe is an authorized user or an imposter.
By varying the threshold FAR and GAR values are computed and plot-
ted in Figure 4.8. Figure 4.8(a) shows the ROC curves on the UCR
dataset £'S7, E'S; and the UND dataset; Figure 4.8(b) shows the ROC
curve on the UCR dataset £'S53. As expected, the system performs best
on FS; with a 0.032 EER. It can be seen that EERs changed slightly
on the three scenarios, which suggests that the system is capable of
verifying ears with pose variations and partial occlusions.

4.4 Conclusions

We have proposed the ear helix/anti-helix representation for surface
matching in 3D. The 3D coordinates of the ear helix/anti-helix parts
are obtained from the detection algorithm and they are used to estimate
the initial transformation between a gallery-probe pair. Then a modi-
fied ICP algorithm iteratively refines the transformation which brings
the hypothesized gallery and a probe into the best alignment. We have
performed extensive experiments the UCR dataset (155 subject with
902 images) and the UND dataset Collection F (302 subject with 302
time-lapse pairs). It is encouraging to observe that the proposed ear
recognition system is capable of recognizing ears with pose variation
and partial occlusions.





