
3

3D Ear Detection from Side Face Range Images

Human ear detection is the first task of a human ear recognition sys-
tem and its performance significantly affects the overall quality of the
system. In this chapter, we propose three techniques for locating hu-
man ears in side face range images: template matching based detec-
tion, ear shape model based detection, and fusion of color and range
images and global-to-local registration based detection. The first two
approaches only use range images, and the third approach fuses the
color and range images.

3.1 3D Ear Detection Using Only Range Images

The template matching based approach [35] has two stages: offline
model template building and online ear detection. The ear can be
thought of as a rigid object with much concave and convex areas. The
averaged histogram of shape index represents the ear model template
since shape index is a quantitative measure of the shape of a surface.
During the online detection, we first perform the step edge computa-
tion and thresholding since there is a sharp step edge around the ear
boundary, and then we do image dilation and connected-component
analysis to find the potential regions containing an ear. Next, for ev-
ery potential region, we grow the region and compute the dissimilarity
between each region’s histogram of shape indexes and the model tem-
plate. Finally, among all of the regions, we choose the one with the
minimum dissimilarity as the detected region that contains ear.

For the second approach, the ear shape model is represented by a set
of discrete 3D vertices corresponding to ear helix and anti-helix parts
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[36]. Since the two curves formed by the ear helix and anti-helix parts
are similar for different people, we do not take into account the small
deformation of two curves between different persons, which greatly
simplifies our ear shape model. Given side face range images, first the
step edges are extracted; then the edge segments are dilated, thinned
and grouped into different clusters which are the potential regions con-
taining an ear. For each cluster, we register the ear shape model with
the edges. The region with the minimum mean registration error is de-
clared as the detected ear region; the ear helix and anti-helix parts are
identified in this process.

3.1.1 Template Matching Based Detection

Shape Index

Shape index Si, a quantitative measure of the shape of a surface at a
point p, is defined by (3.1),

Si(p) =
1

2
− 1

π
tan−1 k1(p) + k2(p)

k1(p) − k2(p)
(3.1)

where k1 and k2 are maximum and minimum principal curvatures, re-
spectively [60]. With this definition, all shapes can be mapped into the
interval Si ∈ [0, 1]. The shape categories and corresponding shape in-
dex ranges are listed in Table 3.1. From the table, we can see that larger
shape index values represent convex surfaces and smaller shape index
values represent concave surfaces.

Table 3.1. Surface shape categories and the range of shape index values.

Shape category Si range
Spherical cup [0, 1/16)

Trough [1/16, 3/16)
Rut [3/16, 5/16)

Saddle rut [5/16, 7/16)
Saddle [7/16, 9/16)

Saddle ridge [9/16, 11/16)
Ridge [11/16, 13/16)
Dome [13/16, 15/16)

Spherical cap [15/16, 1]
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(a) (b)

Fig. 3.1. (a) Ear range image. Darker pixels are away from the camera and the lighter ones are
closer. (b) Its shape index image. The darker pixels correspond to concave surfaces and the
lighter ones correspond to convex surfaces.

The ear has significant convex and concave areas, which gives
us a hint to use the shape index for ear detection. The original ear
range image and its shape index image are shown in Figure 3.1. In
Figure 3.1(b), the brighter pixels denote large shape index values
which correspond to ridge and dome surfaces. The ridge and val-
ley areas form a pattern for ear detection. We use the distribution of
shape index as a robust and compact descriptor since 2D shape in-
dex image is much too detailed. The histogram h can be calculated by
h(k) = # of points with shape index ∈ bin(k). The histogram is
normalized during the implementation.

Curvature Estimation

In order to estimate curvatures, we fit a biquadratic surface (3.2) to a
local window and use the least squares method to estimate the parame-
ters of the quadratic surface, and then use differential geometry to cal-
culate the surface normal, Gaussian and mean curvatures and principal
curvatures [49, 61]. Based on differential geometry, surface normal n,
Gaussian curvature K, mean curvature H , principal curvatures k1,2 are
given by (3.3), (3.4), (3.5) and (3.6), respectively:

f(x, y) = ax2 + by2 + cxy + dx + ey + f (3.2)
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n =
(−fx,−fy, 1)
√

1 + f 2
x + f 2

y

(3.3)

K =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2
(3.4)

H =
fxx + fyy + fxxf

2
y + fyyf

2
x − 2fxfyfxy

2(1 + f 2
x + f 2

y )1.5
(3.5)

k1,2 = H ±
√

H2 − K (3.6)

Model Template Building

Given a set of training side face range images, first we extract ears in
each of the images manually and then calculate its shape index im-
age and histogram the shape index image. After we get the histograms
for each training image, we average the histograms and use the aver-
aged histogram as our model template. Figure 3.2 shows the model
template, obtained using 20 training images, in which the two peaks
correspond to the convex and concave regions of the ear, respectively.

Fig. 3.2. Model template (discretized into 50 bins).
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Step Edge Detection, Thresholding, and Dilation

There is a sharp change in depth around the ear helix part, which is
helpful in identifying the ear region. Given a side face range image, the
step edge magnitude, denoted by Istep, is calculated. Istep is defined
by the maximum distance in depth between the center pixel and its
neighbors in a w × w window. Istep can be written as:

Istep(i, j) = max|z(i, j) − z(i + k, j + l)|,
−(w − 1)/2 ≤ k, l ≤ (w − 1)/2 (3.7)

where w is the width of the window and z(i, j) is the z coordinate
of the point (i, j). To get the step edge magnitude image, a w × w
window is translated over the original side face range image and the
maximum distance calculated from (3.7) replaces the pixel value of the
pixel covered by the center of the window. The original side face range
image and its step edge magnitude image are shown in Figure 3.3(a)
and (b). From Figure 3.3(b), we clearly see that there is a sharp step
edge around the ear boundary since brighter points denote large step
edge magnitude.

The step edge image is thresholded to get a binary image which is
shown in Figure 3.3(c). The threshold is set based on the maximum of
Istep. Therefore, we can get a binary image by using (3.8),

FT (i, j) =

⎧
⎨

⎩

1 if Istep(i, j) ≥ α ∗ max{Istep}
0 ≤ α ≤ 1

0 otherwise
(3.8)

There are some holes in the thresholded binary image and we want
to get the potential regions containing ears. We dilate the binary image
to fill the holes. The dilated image is shown in Figure 3.3(d). There are
some holes in the thresholded binary image and we would like to get
the potential regions containing ears. We dilate the binary image to fill
the holes using a 3×3 structuring element. The dilated image is shown
in Figure 3.3(d).

Connected Component Labeling

Using the above result, we proceed to determine which regions can
possibly contain human ears. To do so, we need to determine the
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(a) (b)

(c) (d)

Fig. 3.3. (a) Original side face range image. (b) Step edge magnitude image. (c) Thresholded
binary image. (d) Dilated image.

number of potential regions in the image. By running the connected
component labeling algorithm, we can determine the number of re-
gions. We used an 8-connected neighborhood to label a pixel. We re-
move smaller components whose area are less than β since the ear
region is not small. The labeling result is shown in Figure 3.4(a)
and the result after removing smaller components is shown in Figure
3.4(b).

After we get regions, we need to know their geometric properties
such as the position and orientation. The position of a region may be
defined using the center of the region. The center of area in binary
images is the same as the center of the mass and it is computed as
follows:
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(a) (b)

Fig. 3.4. (a) Labeled image. (b) Labeled image after removing smaller components.

x̄ =
1

A

n∑

i=1

m∑

j=1

jB[i, j], ȳ =
1

A

n∑

i=1

m∑

j=1

iB[i, j] (3.9)

where B is n × m matrix representation of the binary region and A
is the size of the region. For the orientation, we find the axis of elon-
gation of the region. Along this axis the moment of the inertia will
be the minimum. The axis is computed by finding the line for which
the sum of the squared distances between region points and the line is
minimum. The angle of θ is given by (3.10):

θ =
1

2
tan−1 b

a − c
(3.10)

The parameters a, b and c are given by (3.11), (3.12), and (3.13), re-
spectively.

a =
n∑

i=1

m∑

j=1

(x′
ij)

2B[i, j] (3.11)

b = 2

n∑

i=1

m∑

j=1

x′
ijy

′
ijB[i, j] (3.12)

c =
n∑

i=1

m∑

j=1

(y′
ij)

2B[i, j] (3.13)

where x′ = x − x̄ and y′ = y − ȳ. θ gives us a hint about the region
growing direction.
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Template Matching

As mentioned in Section 3.1.1, the model template is represented by an
averaged histogram of shape index. Since a histogram can be thought
of as an approximation of a probability distribution function, it is nat-
ural to use the χ2 − divergence function (3.14) [62],

χ2(Q, V ) =
∑

i

(qi − vi)
2

qi + vi
(3.14)

where Q and V are normalized histograms. From (3.14), we know
the dissimilarity is between 0 and 2. If the two histograms are exactly
the same, the dissimilarity will be zero. If the two histograms do not
overlap with each other, it will achieve the maximum value 2.

From Section 3.1.1, we get the potential regions that may contain
the ears. For each region, we can find a minimum rectangular bounding
box to include the region; then we grow the region based on the angle
θ. If 0 ≤ θ ≤ π/2, we grow the rectangle by moving the top-right ver-
tex right, up, and anti-diagonal, and then moving the bottom-left vertex
left, down, and anti-diagonal. If π/2 ≤ θ ≤ π, we grow the rectangle
by moving the top-left vertex left, up, and diagonal, and then moving
the bottom-right vertex right, down, and diagonal. For each region, we
choose the grown rectangular box with the minimum dissimilarity as
the candidate ear region. Finally, over all of the candidate regions, we
select the one with the minimum dissimilarity as the detected ear re-
gion. We set a threshold γ for region growing, which controls the size
of the region.

3.1.2 Reference Shape Model Based Ear Detection

Ear Shape Model Building

Considering the fact that the curves formed by ear helix and anti-helix
parts are similar for different people, we construct the ear shape model
from one person only. The reference ear shape model s is defined by
3D coordinates {x, y, z} of n vertices which lie on the ear helix and
the anti-helix parts. The ear helix and the anti-helix parts are man-
ually marked for the reference shape model. The shape model s is
represented by a 3n × 1 vector (x1, y1, z1, x2, y2, z2, · · ·, xn, yn, zn)T .
Figure 3.5(a) shows the ear shape model s marked by the pluses (+).
The corresponding color image is also shown in Figure 3.5(b).
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(a)

(b)

Fig. 3.5. The reference ear shape model. (a) The reference 3D ear shape model is displayed
by the pluses (+). (b) Ear shape model is overlaid on the textured 3D face. The units of x, y
and z are in mm.
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Step Edge Detection and Thresholding

Given the step face range image, the step edge magnitude can be calcu-
lated as described in Section 3.1.1. One example of step edge magni-
tude image is shown in Figure 3.6. Figure 3.6(a) shows the original
side face range image. In Figure 3.6(b), larger magnitudes are dis-
played as brighter pixels. We can clearly see that most of the step edge
magnitudes are small values. To get edges, the step edge magnitude
image must be segmented using a threshold operator. The selection of
threshold value is based on the cumulative histogram of the step edge
magnitude image. Since we are interested in larger magnitudes, in our
approach the top η% (η = 3.5) pixels with the largest magnitudes are
selected as edge points. We can easily determine the threshold by in-
vestigating the cumulative histogram. The thresholded binary image is
shown in Figure 3.6(c).

Edge Thinning and Connected Component Labeling

Since some step edge segments are broken, we dilate the binary image
to fill the gaps. The dilated image is shown in Figure 3.7(a). We pro-
ceed to do edge thinning, and the resulting image is shown in Figure
3.7(b). The edge segments are labeled by running connected compo-
nent labeling algorithm and some small edge segments (less than 10
pixels) are removed. The left over edge segments are shown in Figure
3.7(c).

Clustering Edge Segments

After edge segments are extracted, those close to each other are
grouped into clusters. The clustering procedure works as follows:

while the number of edge segments > 0

• i = 0
• Put the first edge segment ei into a cluster Ci, and calculate its cen-

troid {µxi, µyi}
• For all the other edge segments ej

– Calculate the centroid {µxj, µyj}
– if max{|µxj − µxi|, |µyj − µyi|} ≤ ε put ej into the cluster Ci,

remove ej and update the cluster’s centroid.
• i = i + 1 and relabel the edge segments.
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(a) (b) (c)

Fig. 3.6. (a) Original side face range image. (b) Step edge magnitude image. (c) Step edge
image after thresholding.

(a) (b) (b)

Fig. 3.7. (a) Dilated edge image. (b) Thinned edge image. (c) Left over edge segments.
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Three examples of clustering results are shown in Figure 3.8. The
first row of Figure 3.8 shows side face range images. The second
row shows the corresponding clustering results where each cluster is
bounded by a red rectangular box.

Locating Ears by Use of the Ear Shape Model

For each cluster obtained in the previous step, the problem of locating
ears is to minimize the mean square error between the ear shape model
vertices and their corresponding edge vertices in each cluster,

E =
1

n

n∑

l=1

|Tr(si) − V (si)|2 (3.15)

where Tr is the rigid transformation and V (si) is a vertex in the 3D
side face image closest to the Tr(si). The iterative closest point (ICP)
algorithm developed by Besl and Mckay [63] is a well-known method
to align 3D shapes. ICP requires that each point in one set has a cor-
responding point in the other set. However, one cannot guarantee that
edge vertices in the potential regions satisfy this requirement. There-
fore, we use a modified ICP algorithm presented by Turk [64] to reg-
ister the ear shape model with the edge vertices. The steps of modified
ICP algorithm to register a test shape Y to a model shape X are:

1. Initialize the rotation matrix R0 and translation vector T0.
2. Find the closest point in X for each given point in Y .
3. Discard pairs of points which are too far apart.
4. Find the rigid transformation (R, T ) such that E is minimized.
5. Apply the transformation (R, T ) to Y .
6. Go to step 2 until the difference |Ek − Ek−1| in two successive

steps falls below a threshold or the maximum number of iterations
is reached.

By initializing the rotation matrix R0 and translation vector T0 to
the identity matrix and difference of centroids of two vertex sets re-
spectively, we run ICP iteratively and finally get the rotation matrix R
and translation vector T , which brings the ear shape model vertices and
edge vertices into alignment. The cluster with minimum mean square
error is declared as the detected ear region; the ear helix and anti-helix
parts are identified in this process.
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10 segments 5 segments 7 segments
8 clusters 3 clusters 5 clusters

Fig. 3.8. Examples of edge clustering results using only range images.
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3.1.3 Experimental Results

Data

While we were investigating the above two approaches for 3D ear de-
tection, we had a dataset of 52 subjects with 312 images. Each subject
has at least four images. All the experimental results reported in this
subsection are on the 52-subject dataset.

Results for the Template Matching Approach

We test the template matching based detection method on 312 side face
range images. The parameters of the approach are α = 0.35, w = 5
pixels, γ = 35 pixels and β = 99 pixels. The bin size of the histogram
is 0.02. Figure 3.9 shows examples of positive detection in which the
detected ears are bounded by rectangular boxes. If the detected region
contains a part of an ear, we consider it a positive detection; otherwise
it is a false detection. From Figure 3.9, we observe that the ear region
is correctly detected. However we may obtain a part of an ear; also
we may obtain parts that do not belong to an ear. Figure 3.10 shows
examples of false detection. Each column in this figure shows the step
edge magnitude image, the dilated binary edge map and the detection
result, respectively. We have false detections since the ear helix part is
not extracted. The average time to detect an ear from a side face range
image is 5.2 seconds with Matlab implementation on a 2.4G Celeron
CPU. We achieve a 92.4% detection rate.

Results for the Shape Model Based Approach

We test the ear shape model based detection method on 312 side face
range images. If the ear shape model is aligned with the ear helix and
anti-helix parts, we classify it as a positive detection; otherwise it is a
false detection. In our experiments, the number of vertices in the ear
shape model is 113; the average number of edge segments is 6; and
the average number of clusters is 4. The average time to detect an ear
from a side face range image is 6.5 seconds with Matlab implemen-
tation on a 2.4G Celeron CPU. Examples of positive detection results
are shown in Figure 3.11. In Figure 3.11, the transformed ear shape
model marked by yellow points is superimposed on the correspond-
ing textured 3D face. From Figure 3.11, we can observe that the ear is
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Fig. 3.9. Examples of positive detection using the template matching approach.
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Fig. 3.10. Examples of false detection using the template matching approach. Each column
shows the step edge magnitude image, the dilated binary edge map and the detection result,
respectively.
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correctly detected and the ear helix and anti-helix parts are identified
from side face range images. The distribution of mean square error de-
fined in equation (3.15) for the positive detection is shown in Figure
3.12. The mean of mean square error is 1.79 mm. We achieve a 92.6%
detection rate.

After we locate the ear helix and anti-helix parts in a side face range
image, we put a minimum rectangular bounding box that contains the
detected ear. Figure 3.13 shows the examples of detected ears with a
red bounding box. From Figure 3.13 and Figure 3.9, we observe that
the ears in side face range images are more accurately located by the
shape model-based approach. For the failed cases, we notice that there
are some edge segments around the ear region caused by hair, which
bring more false edge segments. This results in clusters that cannot in-
clude the ear helix and anti-helix parts. Since the ICP algorithm cannot
converge due to the existence of outliers, the false detection happens;
these cases are shown in Figure 3.14 and Figure 3.15. The original
face range images and the corresponding edge clusters are shown in
Figure 3.14. In this figure, the first row shows face images; the second
row shows edge clustering results. The textured 3D faces with overlaid
detected ear helix and anti-helix are shown in Figure 3.15.

3.2 3D Ear Detection Using Range and Color Images

In the above two approaches, there are some edge segments caused by
non-skin pixels, which result in the false detection. Since the Minolta
range sensor provides a registered 3D range image and a 2D color
image, we can achieve a better detection performance by fusion of the
color and range images.

The flow chart for the fusion of range and color images and global-
to-local registration based detection is shown in Figure 3.16. We pro-
pose a two-step approach using the registered 2D color and range
images by locating the ear helix and the anti-helix parts [1].

In the first step a skin color classifier is used to isolate the side face
in an image by modeling the skin color and non-skin color distributions
as a mixture of Gaussians [65]. The edges from the 2D color image are
combined with the step edges from the range image to locate regions-
of-interest (ROIs) that may contain an ear.
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Fig. 3.11. Examples of positive detection results using the shape model based approach.

In the second step, to locate an ear accurately, the reference 3D ear
shape model, which is represented by a set of discrete 3D vertices on
the ear helix and the anti-helix parts, is adapted to individual ear im-
ages by following a new global-to-local registration procedure instead
of training an active shape model [66] built from a large set of ears to
learn the shape variation.

The DARCES (data-aligned rigidity-constrained exhaustive search)
algorithm [67], which can solve the 3D rigid registration problem effi-
ciently and reliably, without any initial estimation, is used to perform
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Fig. 3.12. Distribution of the mean square error for positive detection using the shape model
based approach.

the global registration. This is followed by the local deformation pro-
cess where it is necessary to preserve the structure of the reference ear
shape model since neighboring points cannot move independently un-
der the deformation due to physical constraints. The bending energy
of thin plate spline [68], a quantitative measure for non-rigid defor-
mations, is incorporated into the proposed optimization formulation as
a regularization term to preserve the topology of the ear shape model
under the shape deformation. The optimization procedure drives the
initial global registration towards the ear helix and the anti-helix parts,
which results in the one-to-one correspondence of the ear helix and the
anti-helix between the reference ear shape model and the input image.

3.2.1 Regions-of-Interest (ROIs) Extraction

Since the images in two modalities (range and color) are registered,
the ROIs can be localized in any one modality if they are known in the
other modality.

• Processing of Color Images

The processing consists of two major tasks.
� Skin Color Classification: Skin color is a powerful cue for segment-
ing the exposed parts of the human body. Jones and Rehg [65] built a
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Fig. 3.13. Examples of positive detection using the shape model based approach.
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Fig. 3.14. Examples of failed cases using the shape model based approach. Each column shows
the range image and the edge clustering result, respectively.
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Fig. 3.15. Examples of false detection results using the shape model based approach.
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classifier by learning the distributions of skin and non-skin pixels from
a dataset of nearly 1 billion labeled pixels. The distributions are mod-
eled as a mixture of Gaussians and their parameters are given in [65].
We use this method for finding skin regions. When a pixel p(R, G, B)
is presented for the classification, we compute a posteriori probability
P (skin/RGB) and P (non-skin/RGB) and make the classification us-
ing the Bayesian decision theory. Figure 3.17(a) shows a color image
and Figure 3.17(b) shows the pixel classification result in which the
skin pixels are shown as white. We observe that the large skin region
containing the ear is roughly segmented.
� Edge Extraction in Intensity Images: There are edges, around the
ear helix and anti-helix parts, caused by a change in intensity. These
are helpful for locating the ear region. The edges are extracted from
2D intensity images. The (R, G, B) color images are first converted to
the grayscale images (eliminating the hue and saturation information
while retaining the luminance) and then edges are extracted by using
the Laplacian of Gaussian (LOG) edge detector (13 × 13 window is
used). Figure 3.17(c) shows the edge detection result using the LOG
detector.

• Processing of Range Images

As described in Section 3.1.2, we compute a step edge magnitude im-
age for a given side face range image. Figure 3.18(a) shows a range
image in which the darker pixels are far away from the camera; Figure
3.18(b) shows the step edge magnitude image in which the pixels with
larger magnitudes are displayed as brighter pixels. We observe that the
edge magnitude is large around the ear helix and the anti-helix parts.

Fusion of Color and Range Images

This involves the following steps.

1. The range sensor provides a range mask indicating valid pixels (in
white), which is shown in Figure 3.19(a).

2. The range mask is combined with the skin color map to generate a
final mask indicating the valid skin pixels, which is shown Figure
3.19(b).
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(a) (b) (c)

Fig. 3.17. One example of processing the color image. (a) Color image. (b) Skin color map.
(c) Edge detection using a LOG edge detector.

(a) (b)

Fig. 3.18. One example of processing the range image. (a) Range image. (b) Step edge mag-
nitude image. In image (a), the darker pixels are away from the camera and the lighter ones
are closer. In image (b), the bright pixels denote large edge magnitude.
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3. The final mask is applied to edge pixels from the intensity image
to remove some of the pixels which are non-skin pixels or invalid
pixels. “Non-skin pixels” mean the pixels that are not on the skin.
“Invalid pixels” mean that the range sensor did not make measure-
ments for these pixels. The edge pixels that are left over are shown
in Figure 3.19(c).

4. For the range image, the final mask is also applied to the step edge
magnitude image. In order to get edges in the range image, the step
edge magnitude image is thresholded. The selection of the thresh-
old value is based on the cumulative histogram of the step edge
magnitude image. Since we are interested in larger magnitudes, the
top η% (η = 3.5) pixels with the largest magnitudes are selected as
the edge pixels. The thresholded binary image is then dilated (us-
ing a 3× 3 square structuring element) and thinned (shrinking to a
minimally connected stroke). The edges so obtained are shown in
Figure 3.19(d).

5. The edges from the intensity image and range images are combined
in the following manner. The final edge map that we expect to ob-
tain is initialized to be the edge map of the range image (Figure
3.19(d)); for each edge pixel in the intensity image (Figure 3.19(c))
if none of its neighbors are edge pixels in the range image, then this
edge pixel is added to the final edge map. An example of the final
edge map is shown in Figure 3.19(e).

6. The edge pixels are labeled by the connected component labeling
algorithm and the small edge segments are removed (less than 10
pixels in our experiments). The final left over edge segments are
shown in Figure 3.19(f).

• Clustering Edge Segments

After edge segments are extracted, those close to each other are
grouped into clusters. Each cluster is a region-of-interest. The cluster-
ing procedure works as described in Section 3.1.2.

Three examples of clustering results are shown in the first row of
Figure 3.20, in which each cluster is bounded by a rectangular box
and each edge segment is shown in different color. The second row
shows the extracted regions-of-interest bounded by boxes overlaid on
the color images. From Figure 3.20, we observe that the ear region is
correctly identified.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.19. Fusion of 2D color and 3D range images. (a) The range mask. (b) The final mask
obtained by a combination of the range mask and the skin color map. (c) Edges in the intensity
image after applying the final mask. (d) Edges in the range image after applying the final mask.
(e) Combination of edges in both color and range images. (f) Edges after removal of small edge
segments.
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3 clusters 2 clusters 3 clusters

Fig. 3.20. Examples of edge clustering results using the range and color images. The edge
segments are shown in the first row where each cluster is bounded by a rectangular box. The
second rows show the ROIs superimposed on the color images.
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3.2.2 Reference Ear Shape Model

Instead of training an active shape model to learn the shape variation,
we adapt the reference ear shape model to input images by following
a global-to-local procedure described below, in which the topology of
the ear shape model is preserved during the shape deformation. We
build the reference ear shape model from an instance of an ear belong-
ing to a person which is described in Section 3.1.2.

3.2.3 Alignment of the Reference Ear Shape Model with a Region-of-Interest

Once a ROI is extracted, the ear helix and the anti-helix parts are iden-
tified by the alignment of ROI with the ear shape model. Since the rigid
registration cannot account for the local shape variation between ears,
we develop a global-to-local procedure: the global registration brings
the reference ear shape model into coarse alignment with the ear helix
and the anti-helix parts; the local deformation driven by the optimiza-
tion formulation (given below) drives the reference ear shape model
more close to the ear helix and the anti-helix parts.

• Global Rigid Registration

For 3D registration problem, the iterative closest point (ICP) algorithm
[63] is widely used for matching points with unknown corresponding
pairs. Although there are many variants of the ICP algorithm [69–71],
basically it consists of two iterative steps:

1. identifying correspondences by finding the closest points;
2. computing the rigid transformation based on the corresponding

pairs.

The major drawback of an ICP-based algorithm is that it needs a
good initial guess of the true transformation.

The RANSAC-based data-aligned rigidity-constrained exhaustive
search algorithm (DARCES) [67] can solve the registration problem
without any initial estimation by using rigidity constraints to find the
corresponding points. First three points (primary, secondary, and aux-
iliary) in the reference surface are selected; then each point on the
test surface is assumed to be in correspondence to the primary point,
and the other two corresponding points are found based on the rigidity
constraints. For every corresponding triangle, a rigid transformation is
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computed and the transformation with the maximum number of over-
lapping points is chosen as the solution. Due to its exhaustive nature
of the search, the solution it finds is the true one.

In our case, the 3D coordinates of the reference ear shape model
are known. We use the DARCES algorithm to find the corresponding
triangles (between the reference ear shape model and the ROI under
consideration) and the initial transformation. The ICP algorithm is then
used to refine the transformation. This process is repeated for each ROI
and the ROI with the minimum registration error is passed to the local
deformation stage.

• Local Deformation

(i) Thin Plate Spline Transformation: The reference shape model
(the ear helix and the anti-helix parts) is deformed after it is globally
aligned with a ROI. Thin plate spline (TPS) transformation is a pow-
erful tool for modeling the shape deformation and is widely used in
shape matching [68, 72–74]. The TPS R2 → R2 mapping function is
defined by the following equation:

v = f(u) =

[
fx(u)
f y(u)

]
= Au + t +

n∑

i=1

[
wx

i

wy
i

]
φ(|u− ui|) (3.16)

where φ(r) = r2 log r, u = [x̂, ŷ]T , v = [x, y]T and A and t form an
affine transformation given by

[A t] =

[
a00 a01 t0
a10 a11 t1

]
.

The n × 2 matrix W is given by
[
wx

1 wx
2 · · · wx

n

wy
1 wy

2 · · · wy
n

]T

.

It specifies the non-linear warping where n is the number of land-
mark points. Given n landmark points u(x̂i, ŷi) and their correspond-
ing points v(xi, yi), equation (3.16) can be rewritten as 2n linear
equations. However there are 2n+6 unknown parameters to be solved.
The following six constraints are added to make the spline function
(equation (3.16)) have the square integrable second derivatives:
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P T [wx
1 , w

x
2 , · · ·, wx

n]T = 0, P T [wy
1 , w

y
2 , · · ·, wy

n]T = 0 (3.17)

where P is a n × 3 matrix defined by (1, x̂, ŷ), x̂ = (x̂1, x̂2, · · ·, x̂n)T

and ŷ = (ŷ1, ŷ2, · · ·, ŷn)T . The 2n + 6 equations can be put into a
compact matrix form:

[
Φ P
P T 0

]
⎡

⎣
W
tT

AT

⎤

⎦ =

[
v
0

]
(3.18)

where the n × n matrix Φij = φ(ui − uj), v = (x,y), x =
(x1, x2, · · ·, xn)T and y = (y1, y2, · · ·, yn)T . The TPS transformation
minimizes the following bending energy function,

Be =

∫∫

R2

(F (fx) + F (f y))dxdy (3.19)

where F (g∗(x, y)) = (g2
xx + 2g2

xy + g2
yy)

∗, ∗ denotes the (x or y) under
consideration and gxx, gxy and gyy are second order derivatives. It can
be shown that the value of bending energy is Be = 1

8π
(xT Kx+yT Ky)

where x = (x1, x2, · · ·, xn)T and y = (y1, y2, · · ·, yn)T [68]. The ma-
trix K is the n × n upper left matrix of

[
Φ P
P T 0

]−1

,

which only depends on the coordinates of the landmark points in {u}.
Therefore, the bending energy is determined by the coordinates of
landmark points and their correspondences. Furthermore, the bending
energy is a good measurement of the shape deformation. Since the
coordinates of the reference ear shape model are known, the matrix K
can be precomputed. The task is to drive the reference ear shape model
towards the ROI ear such that the topology of the reference ear shape
model is preserved. The bending energy is used to penalize the large
shape deformation.

(ii) Optimization Formulation: In Section 3.2.1, we noted that
there are strong step edge magnitudes in range images around the ear
helix and the anti-helix parts. After we bring the reference shape model
into coarse alignment with the ear helix and the anti-helix parts (in the
ROI image) through the global rigid registration, we get the locations
of the 3D coordinates of ear helix and anti-helix parts in the 2D color
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image and perform the local deformation on the 2D image plane since
the 2D color image is registered with the 3D range image. In other
words, we would like to drive the reference ear shape model more
close to the ear helix and the anti-helix parts with the topology of the
shape model preserved. We can achieve this task by minimizing the
proposed new cost function:

E(x,y) = Eimg(x,y) + γED(x,y)

=

n∑

i=1

h(|∇Istep(xi, yi)|)

+
1

2
γ(xT Kx + yT Ky) (3.20)

where h(|∇Istep|) = 1/(1 + |∇Istep|), |∇Istep(xi, yi)| is the step
edge magnitude of ith point of the shape model located in the 2D
plane and γ is a positive regularization constant that controls the topol-
ogy of the shape model. For example, increasing the magnitude of γ
tends to keep the topology of the ear shape model unchanged. In equa-
tion (3.20), the step edge magnitude in range images is used for the
term Eimg since edges in range images are less sensitive to the change
of viewpoint and illumination than those in color images. In equation
(3.20) the first term Eimg drives points (x,y) towards the ear helix and
the anti-helix parts which have larger step edge magnitudes; the sec-
ond term ED is the bending energy that preserves the topology of the
reference shape model under the shape deformation. When we take the
partial derivatives of equation (3.20) with respect to x and y and set
them to zero, we have

γKx −
n∑

i=1

1

(1 + |∇Istep(xi, yi)|)2
Ωx = 0,

γKy −
n∑

i=1

1

(1 + |∇Istep(xi, yi)|)2
Ωy = 0. (3.21)

In equation (3.21),

Ωx =
∂|∇Istep(xi, yi)|

∂x

Ωy =
∂|∇Istep(xi, yi)|

∂y
.
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Since K is positive semidefinite, equation (3.21) can be solved itera-
tively by introducing a step size parameter α which is shown in equa-
tion (3.22) [75]. The solutions can be obtained by matrix inversion
which is shown in equation (3.23), where I is the identity matrix.

γKxt + α(xt − xt−1) −Fx
t−1 = 0

γKyt + α(yt − yt−1) −Fy
t−1 = 0 (3.22)

In equations (3.22) and (3.23),

Fx
t−1 =

n∑

i=1

1

(1 + |∇I t−1
step(xi, yi)|)2

∂|∇I t−1
step(xi, yi)|
∂x

Fy
t−1 =

n∑

i=1

1

(1 + |∇I t−1
step(xi, yi)|)2

∂|∇I t−1
step(xi, yi)|
∂y

.

Fx
t−1 and Fy

t−1 are evaluated for coordinates (xi, yi) at the iteration
t − 1. |∇I t−1

step(xi, yi)| is the step edge magnitude at the location of
(xi, yi) at the iteration t − 1. We have used α = 0.5 and γ = 100 in
our experiments.

xt = (γK + αI)−1
(
αxt−1 + Fx

t−1

)

yt = (γK + αI)−1
(
αyt−1 + Fy

t−1

)
(3.23)

3.2.4 Experimental Results

The detection experiments are performed on the UCR dataset (155
subjects with 902 shots) and the UND dataset Collection F (302 sub-
jects with 302 pairs) and a subset of Collection G (24 subjects with 96
shots).

• Ear Detection on UCR Dataset

The proposed automatic ear detection method is tested on 902 pairs
of range and color images. Figure 3.21 shows the effectiveness of the
global-to-local registration procedure on three people. After the global
registration, we get the positions of the 3D coordinates on the 2D im-
age plane and their locations are marked by the bright dots which are
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(a) (b) (c)

Fig. 3.21. Examples of global registration and local deformation. (a) Global registration results
superimposed on the color images. (b) Local deformation results superimposed on the color
images. (c) Cost function (equation (3.20)) vs. iteration.
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Fig. 3.22. Results of ear localization on the UCR dataset. The helix and the anti-helix parts
are marked by the bright dots and the detected ear is bounded by a rectangular box.
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Fig. 3.24. Results of ear localization on the UND dataset shown in Figure 1.5. The helix
and the anti-helix parts are marked by the bright dots and the detected ear is bounded by a
rectangular box.
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Table 3.2. Comparison of the three ear detection approaches.

Ear Detection Method Detection Rate Detection
Time

Template matching 92.4% on the UCR dataset (52 subjects with
312 shots)

5.2s

Ear shape model 92.6% on the UCR dataset (52 subjects with
312 shots)

6.5s

Fusion of color/range image
& global-to-local registration

99.3% on the UCR dataset (155 subjects
with 902 shots), 87.71% on the UND dataset

9.48s

shown in Figure 3.21(a). It can be seen that the shape model is roughly
aligned with the ear helix and the anti-helix parts. The ear shape model
is then driven towards the ear helix and the anti-helix parts by minimiz-
ing the cost function (equation (3.20)) and their locations are marked
by the bright dots which are shown in Figure 3.21(b). It can be seen
that the optimization formulation drives the shape model more closely
to the true positions with the topology of the reference ear shape model
preserved. Figure 3.21(c) shows that the cost function decreases with
the number of iterations, which means the optimization formulation
works. More examples of ear localization are shown in Figure 3.22,
in which the detected ear helix and the anti-helix parts are shown by
the dots superimposed on the 2D color images and the detected ear
is bounded by the rectangular box. We observe that the ears and their
helix and anti-helix parts are correctly detected.

In order to quantitatively evaluate the improvement of ear localiza-
tion through the local deformation driven by the optimization formu-
lation, we compute the error

ε =
1

Nm

Nm∑

i=1

(
1

n

n∑

j=1

Dist(vij, Gti)

)

(3.24)

for the global registration and the local deformation, where Nm is the
number of side face range images (Nm = 208, since we manually
labeled 3D vertices on the ear helix and the anti-helix parts for 208
images for evaluation purposes only), n is the number of points on the
shape model, vij is the jth point on the shape model detected in the ith
side face range image, Gti is the set of manually labeled 3D points on
the ear helix and the anti-helix parts of the ith side face range image
and Dist(vij , Gti) is the distance between vij and its closest point in
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Gti. The error ε for the global registration is 5.4mm; the error ε after
the local deformation is 3.7mm. Thus, the local deformation driven by
the optimization formulation really improves the localization accuracy.
Figure 3.23 shows the extracted ears from the side face range images
in Figure 1.4. The average number of points on the ears extracted from
902 side face images is 2,797. The ear detection takes about 9.48s with
Matlab implementation on a 2.4G Celeron CPU. If the reference ear
shape model is aligned with the ear helix and the anti-helix parts in a
side face range image, we classify it as a positive detection; otherwise
a false detection. On the 902 side face range images, we achieve 99.3%
correct detection rate (896 out of 902).

• Ear Detection on UND dataset

Without changing the parameters of the ear detection algorithm on the
UCR dataset, the proposed automatic ear detection method is tested
on 700 (302×2 + 24× 4 = 700) pairs of range and color images of the
UND dataset (Collections F and a subset of Collection G). We achieve
87.71% correct detection rate (614 out of 700). The average number
of points (on 700 images) on the ears is 6,348. Figure 3.24 shows the
extracted ears from the side face range images in which the ear helix
and the anti-helix are marked by bright points and the extracted ear is
bounded by a rectangular box.

3.3 Conclusions

We have proposed three techniques—template matching based detec-
tion, ear shape model based detection, and fusion of color/range im-
ages and global-to-local registration based detection—to locate ears
from side face range images. The comparison of the three approaches
are given in Table 3.2. The first approach runs the fastest and it is sim-
ple, effective and easy to implement. The second approach locates an
ear more accurately than the first approach since the shape model is
used. The third approach uses both color and range images to local-
ize the ear region accurately by following a global-to-local registration
procedure. It performs the best on both the UCR and the UND datasets
and it runs the slowest. Experimental results on real side face range im-
ages demonstrate the effectiveness of the proposed three approaches.




