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LRD Isolation in Generalized
Processor Sharing

This chapter introduces the application of stochastic network calculus to
analysis of queuing processes in generalized processor sharing (GPS) and
packet-based GPS (PGPS) systems with long-range dependent (LRD) traffic
inputs.

The GPS discipline is a widely studied non-FIFO scheduling discipline
[84], due to its attractive characteristics. One is that each backlogged session
is guaranteed a minimum service rate in GPS. This ensures that the misbe-
havior of other flows has a limited effect on an individual session, and provides
the foundation of isolation between sessions. Achieving isolation further en-
ables GPS to guarantee differentiated QoS for individual sessions. Another
attractive characteristic of GPS is that it is work-conserving and any excess
service rate can be redistributed among backlogged flows. The second charac-
teristic enables GPS to obtain a statistical multiplexing gain between input
flows. Because of these two characteristics, GPS is deemed an ideal schedul-
ing discipline that meets the following two requirements. One is to provide
isolation between flows, where isolation means that the queuing process be-
haves no worse than its single server queue (SSQ) process with a comparable
service rate. This guarantees that the scheduling discipline is able to pro-
tect an individual flow against misbehavior from other flows. The other is
to realize a statistical multiplexing gain. This suggests that a flow can uti-
lize excess service rate allocated to other flows. When GPS is extended to
packet-switched networks, it is usually referred to as weighted fair queuing
(WFQ)[33] or packet-based GPS (PGPS) [113].

Long-range dependent (LRD) traffic is an important class of traffic in
modern-day networks because long-range dependency is exhibited in many
types of networks and network traffic, such as Ethernet [94], WWW [27],
compressed video traffic [9, 62], and TCP traffic [48]. Since LRD traffic has
burstiness extending over various timescales, a Weibull bound rather than
a conventional exponential bound is usually associated with LRD traffic’s
single-server queue process [55].

By applying the results from previous chapters, this chapter studies the
queuing behavior of a single-server system, where the GPS discipline is
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190 9 LRD Isolation in Generalized Processor Sharing

adopted and the inputs are LRD flows. In particular, we derive two bounds for
individual queuing processes in the GPS system. Complimenting the analy-
sis on GPS in Section 7.3.4, these bounds provide valuable insights into the
isolation between multiple GPS sessions. More specifically, it is shown that
the index parameter in the upper bound of one LRD flow, in addition to the
decay rate and the asymptotic constant, may be affected by other LRD flows.
In addition, a necessary and sufficient condition for a flow being guaranteed
to be LRD-isolated from other flows is derived. Based on this condition, a
technique that can be used to quickly check if a flow can be guaranteed to be
LRD-isolated from other flows with a given GPS service weight assignment
is introduced. When some flows have already been assigned contract weights
according to some service level agreement (SLA) that cannot be changed,
the introduced technique can also be used to determine the minimum con-
tract weight to be assigned to the flow in order for it to be guaranteed to be
LRD-isolated from other flows.

9.1 Introduction

In this section, we briefly review the fundamental knowledge on the GPS
scheduling discipline and the queue length distribution of LRD traffic. Their
relations with that arrival curve and service curve are also shown to facilitate
the analysis based on results from the earlier chapters.

9.1.1 GPS Fundamentals

Generalized processor sharing (GPS) is a scheduling discipline defined under
the assumption that sources are described by fluid models [143]. Consider a
GPS server with rate γ serving N sessions. Let each session i be assigned
a weight parameter that is a fixed real-valued positive number φi. The set
{φ1, φ2, ..., φN} thus represents the GPS assignment. Each session is assumed
to have its dedicated queue. The N sessions share the server in the following
way [113], as also introduced in Section 7.3.4:

- It is work-conserving; i.e., as long as there are packets backlogged in any
of the GPS queues, the server is never idle.

- The excess service rate, if any, is redistributed among the backlogged ses-
sions in proportion to their weight parameters.

- Let Sk(s, t) denote the amount of traffic served in the time interval [s, t]
for session k. If session i is backlogged in the system during the entire
interval [s, t] (i.e., there is always traffic queued for session i), then

Si(s, t)
Sj(s, t)

≥ φi

φj
, j = 1, 2, ..., N. (9.1)
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From (9.1), it is clear that when session i is backlogged, it is guaranteed a
backlog clearing rate (or equivalently a guaranteed service rate) of at least

γi =
φi

∑N
j=1 φj

γ. (9.2)

As shown in Table 2.1 in Chapter 2, it is easy to verify that the GPS server
provides to flow i a deterministic strict service curve βi (t) = φi∑N

j=1 φj
γt.

Let the arrival process for a stationary GPS session i be Ai(t) with long-
term average rate λi. Assume

∑N
i=1 λi < γ.

In order to characterize the effect of backlogs from a set of sessions, the
concept of the so-called feasible ordering [143] of the sessions will be frequently
referred to hereafter and is defined based on their arrival rates and GPS service
weight parameters as follows [113].

Definition 9.1. For a given set of input traffic flows in a GPS system whose
long-term average rate is λi, an ordering is called a feasible ordering among
the sessions with respect to {λ1, λ2, ..., λN} and GPS service weight parameters
{φ1, φ2, ..., φN} if

λi < ϕi

⎛

⎝γ −
i−1∑

j=1

λj

⎞

⎠ , 1 ≤ i ≤ N, (9.3)

where ϕi = φi∑N
j=i φj

is a constant associated with weight parameters and by

convention,
∑i−1

j=1 λj = 0 when i = 1.

Note that one of the results of feasible ordering is that for a given set of
input traffic flows in a GPS server with

∑N
i=1 λi < γ there always exists at

least one feasible ordering that satisfies (9.3) after being relabeled (e.g., see
[143]).

Also note that the right-hand side of (9.3) can be considered as the service
rate available to flow i. It is clear, by definition, that those flows ordered
earlier than flow i will affect the service rate available to flow i. However, they
will not affect the index parameter of the queuing process of a heavier-tailed
LRD flow i, as will be explained later in more detail.

9.1.2 LRD Traffic Characterization

LRD traffic is often characterized by heavy traffic bursts that extend over a
wide range of timescales [114] [132]. The LRD traffic backlog, buffered within
a singe-server queue (SSQ), often possesses a tail distribution that decays
slower than that of traditional (e.g., Poisson) traffic. More specifically, the
queue length distribution of traditional traffic obeys a certain exponential
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form. For the case of LRD traffic, the Weibull distribution has been used to
characterize the slower decaying SSQ distribution [9] [37] [116].

The queue length distribution, which is Weibull bounded (WB), is defined
as follows [109].

Definition 9.2. A stochastic SSQ process, denoted by WSSQ,γ(t), where γ is
the service rate of the queue, is WB(C, η, υ) with parameters C(> 0) denoting
the asymptotic constant, η(> 0) denoting the decay rate, and (0 <)υ(≤ 1)
denoting the index parameter, if it satisfies

P{WSSQ,γ(t) > w} < Ce−ηwυ

(9.4)

for all w ≥ 0 and all t ≥ 0.

In Definition 9.2, the quantity P{WSSQ,γ(t) > w} essentially represents
the probability that the backlog of the SSQ with service rate γ will exceed a
certain queue size w. In other words, P{WSSQ,γ(t) > w} represents the queue
length distribution of the SSQ. In addition, the decay rate η increases with γ
because when the service rate increases, the likelihood that the queue length
exceeds w will decrease. Also, the index parameter υ can be further expressed
in terms of the Hurst parameter H, which is commonly used to characterize
the degree of long-range dependence [9] [37] [116] and, more specifically, υ =
2(1 − H), where 0.5 ≤ H < 1. A traffic process with H = 0.5 corresponds to
conventional traffic with a queue length distribution that decays exponentially.
A larger H, or a smaller υ, corresponds to heavier-tailed LRD traffic.

The definition of WB shows that it is indeed a special case of a gSBB
or v.b.c. stochastic arrival curve with bounding function Ce−ηwυ

. Therefore,
WB has all properties of a gSBB and v.b.c. stochastic arrival curve.

9.1.3 LRD Isolation of Flows

In Definition 9.2, the index parameter is what differentiates an LRD flow from
a short-range dependent (SRD) flow. Although the decay rate and constant
parameters also define the queuing process, these parameters form the ex-
ponential bound parameters commonly associated with an SRD flow. Hence
their presence, by definition, is for the purpose of describing the SRD property
of the flow.

The index parameter, found in the Weibull bound formula, was introduced
to bound flows exhibiting LRD behavior that cannot be suitably bounded by
just the constant parameter and the decay rate. Hence, the LRD property of
a flow, by definition, is primarily due to its index parameter. Accordingly, we
introduce the following notion of LRD isolation.

Definition 9.3. A flow, when multiplexed with other flows in a queue system,
is said to be LRD-isolated (from other flows) in that queue system if its re-
sulting queue process has the same or larger index parameter (i.e., less heavy
tailed) as the index parameter associated with its SSQ process with service rate
equivalent to that guaranteed in the queue system.
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This notion of “LRD isolation” is different from the conventional under-
standing of flow isolation. In flow isolation, the major concern is the flow’s
service rate, and a flow is said to be isolated from other flows if this flow is
not adversely affected by these flows [88]. Based on this, an LRD flow is flow
isolated if and only if its queue process is not adversely affected after it is
multiplexed and served with other flows in the GPS server.

It can be shown that flow isolation is guaranteed for a flow in a GPS
server if the flow can be ordered first in a feasible ordering. The reason is that
under this case, the flow is always guaranteed a service rate greater than its
long term average rate based on (9.3), which is not affected by other flows.
In addition, Lemma 9.11 will show that the flow’s queue process in the GPS
system is not adversely affected (with respect to its SSQ process) by other
flows. However, if the flow cannot be ordered first in any feasible ordering, the
guaranteed service rate to the flow may depend on the arrival rates of some
other flows. In other words, it may vary over time and hence the queue process
of the flow in the GPS system could be affected adversely.1 As a result, if a
flow cannot be ordered first in any feasible ordering, the flow may or may
not be guaranteed to be flow isolated from other flows. However, a flow can
still be guaranteed to be LRD-isolated (from heavier-tailed flows) even if some
lighter-tailed flows have to be ordered before this flow in all feasible orderings,
as will be discussed later in this section. Clearly, flow isolation implies LRD
isolation but not vice versa. Since the index parameter is the most important
measure of the LRD property (heaviness or lightness of the tail) of a flow, the
notion of LRD isolation as defined above is useful when studying LRD flows.

9.2 Analysis of LRD Traffic

9.2.1 Single Arrival Process

In this subsection, we establish the relationship between a WB SSQ and a
Weibull bounded burstiness (WBB) arrival process. We begin by defining the
burstiness constraint qualifier that describes the arrival process of LRD traffic
as follows.

Similar to the notation in Definition 9.2, let C denote the asymptotic
constant, υ the index parameter, µ the decay rate2, and ρ the long-term “upper
rate” of the arrival process, which will be further elaborated in Lemma 9.5.

Definition 9.4. A traffic arrival process A(t) is WBB(ρ, C, µ, υ) with para-
meters ρ, C, µ, and υ if it satisfies

P{A(s, t) > ρ(t − s) + w} < Ce−µwυ

(9.5)
1 Note that, when λi = φiγ, flow i cannot be ordered first according to (9.3),

although it is flow-isolated.
2 Not to be confused with the symbol η, which denotes the decay rate of a WB

SSQ process.
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for all w ≥ 0 and all 0 ≤ s ≤ t.

Here again, A(s, t) is the amount of arrival traffic accumulated in time
interval [s, t]. In addition, the decay rate µ will increase with ρ, just as η will
increase with γ in a WB SSQ process (see Definition 9.2).

It can be seen that WBB is a special case of a t.a.c. stochastic arrival
curve with bounding function Ce−µwυ

. Therefore, WBB has all properties of
a t.a.c. stochastic arrival curve. Additionally, WBB has interesting properties
useful to the objectives of this chapter, which are presented below.

Lemma 9.5. An arrival process A(t) that is WBB(ρ, C, µ, υ) possesses the
property that its parameter ρ is always larger than or equal to its long-term
average rate

ρ ≥ lim
t−s→∞

E[
∫ t

s
A(u)du]

t − s
. (9.6)

Proof. First, we have

E

[∫ t

s

A (u) du

]

=
∫ ∞

0

Pr
{∫ t

s

A (u) du > x

}

dx

=
∫ ρ(t−s)

0

Pr
{∫ t

s

A (u) du > x

}

dx

+
∫ ∞

0

Pr
{∫ t

s

A (u) du > ρ (t − s) + x

}

dx

< ρ (t − s) +
∫ ∞

0

Ce−µxvdx.

Second, as long as v > 0, we have

lim
t−s→∞

∫∞
0

Ce−µxv

dx

t − s
= lim

t→∞

∫ t

0
Ce−µxv

dx

t
= lim

t→∞
Ce−µtv

= 0.

Therefore,

ρ ≥ lim
t−s→∞

E[
∫ t

s
A(u)du]

t − s
.

��

The long-term upper rate ρ is useful for the purpose of bounding the entire
ensemble of sample time observations that constitute the stochastic arrival
process A(t). In particular, let An(t) be the nth sample observation of A(t) in

[s, t], and let λn = limt−s→∞

∫ t
s

A(n,u)du

t−s be the corresponding average arrival
rate for this sample. If we were to repeat the observation of A(t) infinitely
many times using different start times, so that n approaches infinity, then we



9.2 Analysis of LRD Traffic 195

would have a corresponding list of average arrival rates λ1, λ2, ..., λn→∞. This
long term upper rate ρ ranges between the lower limit E[λn] and the higher
limit ρmax = max[λ1, λ2, ..., λn→∞]. For a conservative (loose) WBB bound
on A(t), one may set ρ to the higher limit ρmax. However, notice that the long-
term upper rate, defined in (9.5), is applied continuously even if the arrival
process is inactive. Therefore, a lower value of ρ, where ρmax ≥ ρ ≥ E[λn],
may suffice to produce a tighter WBB bound on A(t). To summarize, the
use of the long-term upper rate ρ in (9.5) is essential for a general stochastic
process that may not be stationary (i.e., λ1 �= λ2 �= ... �= λn→∞). However,
in practical arrival processes, stationarity is an implicit property for a flow
that has some fixed arrival rate λ. This means that if this flow is presented to
the queue at different start times, the same average rate λ applies. Hence, for
the case of practical flows, λ1 = λ2 = ... = λn→∞ = λ and therefore ρ = λ.
Although many of the later derivations following this definition are still based
on ρ, readers should be aware that for practical considerations ρ ought to
be replaced by λ since practical arrival processes are by default implicitly
stationary in property. In fact, in the consideration of the GPS and PGPS
discipline in Sections 9.3, 9.4, and 9.5, we consider λ instead of ρ. Finally,
it is also noted that, besides ρ, the WBB expression in (9.5) also contains
other parameters, such as the decay rate µ, the index υ, and the asymptotic
constant C. These parameters can similarly be modified to obtain either loose
or tight WBB bounds.

Following the relationship between the t.a.c. stochastic arrival curve and
v.b.c. stochastic arrival curve, the following theorem establishes the relation-
ship between a WBB arrival process and a WB SSQ process.

Theorem 9.6. Consider a work-conserving SSQ that transmits at rate γ.
Suppose the queue is fed with a single arrival process A(t), and let WSSQ,γ(t)
be the workload stored in the queue at time t. Then:

(i) If WSSQ,γ(t) is WB, then A(t) is WBB with long-term upper rate ρ = γ.
(ii) If A(t) is WBB with long-term upper rate ρ = γ − ε for some ε > 0,

then WSSQ,γ(t) is WB.

Although LRD traffic is usually described in terms of some WB SSQ
process, it is still insufficient to proceed on to GPS analysis since in GPS
we are concerned with multiple arrival processes rather than a single arrival
process. If there is no burstiness constraint on a single arrival process, there is
not much that can be deduced about the stability of a GPS server that is serv-
ing a number of these arrival processes. With the introduction of Theorem 9.6,
we can now proceed further since it is now known that any LRD arrival process
resulting in a WB SSQ process must satisfy the WBB constraint with some
long-term upper rate ρ. This means that for a GPS server serving a number
of LRD sources, as long as the sum of the long-term upper rates of these LRD
sources does not exceed the service capacity of the GPS server, the GPS queue
will be stable and further analysis can proceed.
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9.2.2 Aggregate Process

In this subsection, several bounds on the aggregate WB SSQ process are
presented, based on the superposition property of the v.b.c. stochastic arrival
curve. These bounds will later be used frequently for the analysis of GPS and
PGPS.

Lemma 9.7. Let W1(t) be WB(C1, η1, υ1) and W2(t) be WB(C2, η2, υ2). The
two processes can either be dependent or independent. Then, W1(t) + W2(t)
is WB ((C1 + C2 + C∗), η, υ) , satisfying

P{W1(t) + W2(t) > w} < (C1 + C2 + C∗)e−ηwυ

, (9.7)

where η = 1
1

η1
+ 1

η2

, υ = min(υ1, υ2), and C∗ = (C1 + C2)
[
e−η(wvmax

0 −wv
0) − 1

]
.

Proof. According to the superposition property of the v.b.c. stochastic arrival
curve, we have

P {W1 (t) + W2 (t) > w} < C1e
−η1wv1 ⊗ C2e

−η2wv2

< C1e
−η1pwv1 + C2e

−η2(1−p)wv2
, for any 0 ≤ p ≤ 1.

We choose p such that η1p = η2 (1 − p) , i.e., p = η2
η1+η2

. Defining η = η1η2
η1+η2

and v = min (v1, v2) , we obtain

P {W1 (t) + W2 (t) > w} < C1e
−ηwv1 + C2e

−ηwv2
.

If 0 < w < 1, then we have

P {W1 (t) + W2 (t) > w} < (C1 + C2) e−ηwvmax
, (9.8)

where vmax = max [v1, v2] .
If w ≥ 1, then we have

P {W1 (t) + W2 (t) > w} < (C1 + C2) e−ηwv

, (9.9)

where v = min [v1, v2] .

It is noted that both (9.8) and (9.9) have the Weibull bound form except
with different index parameters. Next, we try to combine (9.8) and (9.9) so
the same index parameter, namely v rather than vmax, can also be used for
the case where 0 < w < 1. First, we notice that the bound using the index
vmax in (9.8) is always larger than the bound using the index in (9.9) for the
range 0 < w < 1. Once w > 1, the bound in 0 < w < 1 is always larger than
the bound in (9.8). At w = 0 and w = 1, the bounds in (9.8) and (9.9) have
exactly the same values. Hence, in order to extend (9.9), which uses the index
v, to provide a bound for the same case where 0 < w < 1, we can always add
an additional asymptotic constant factor C∗ to raise the bound of (9.9). This
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additional asymptotic constant C can be easily obtained, as it is related to
the maximum displacement between (9.8) and (9.9) when 0 < w < 1. More
specifically, let

f (w) = (C1 + C2) e−ηwvmax − (C1 + C2) e−ηwv

.

Notice that f (w) is zero at w = 0 and w = 1, and f (w) > 0 only for
0 < w < 1, where both e−ηwvmax and e−ηwv

monotonically decrease with w.
Therefore, there exists a unique maximum point of f (w) for w ∈ (0, 1). Let w0

maximize f (w) for 0 < w < 1. Specifically, w0 is the solution to the following
non-algebraic equation:

e−ηwvmax

wvmax
vmax =

e−ηwv

wv
v.

Hence the additional asymptotic constant C∗ is given by

C∗ = f (w0) e−ηwv
0

= (C1 + C2)
[
e−ηwvmax

0 − e−ηwv
0

]
e−ηwv

0

= (C1 + C2)
[
e−η(wvmax

0 −wv
0) − 1

]
.

Therefore, we have

P{W1(t) + W2(t) > w} < (C1 + C2 + C∗)e−ηwυ

,

where w ≥ 0. ��

Lemma 9.7 can be applied step-by-step to obtain the following theorem
for the case involving multiple WB processes.

Theorem 9.8. Let Wi(t), 1 ≤ i ≤ N be N WB processes with parameters (Ci,
ηi, υi), respectively. These processes can either be dependent or independent.
Then, W1(t) + W2(t) + · · · + WN (t) is WB((

∑N
i=1 Ci + C∗), η, υ), satisfying

Pr

{
N∑

i=1

Wi(t) > w

}

<

(
N∑

i=1

Ci + C∗

)

e−ηwυ

, (9.10)

where η = 1∑N
i=1

1
ηi

, υ = min(υ1, υ2, ..., υN ), and C∗ is a constant as given in

Lemma 9.7.

Given Lemma 9.7, the proof of Theorem 9.8 is straightforward and hence
omitted. For N WB queuing processes with the same LRD degree (i.e., the
same υ), υ = min(υ1, υ2, ..., υN ) is the tightest lower bound on the index
parameter. But, for N WB queuing processes with different LRD degrees, it
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is a loose bound because the index parameter of multiplexed LRD flows is in
general heavier tailed than the individual flows due to multiplexing gain.

Similar to the study on the independent case of two gSBB processes, in the
case where W1(t) and W2(t) are two independent processes, Lemma 9.9 and
Theorem 9.10 present alternate bounds to those obtained in Lemma 9.7 and
Theorem 9.8, respectively. The alternate bounds are useful since in certain
cases they are tighter.

Lemma 9.9. Let W1(t) and W2(t) be two independent processes WB(C1, η1,
υ1) and WB(C2, η2, υ2), respectively. If η2 ≤ η1 and υ2 ≤ υ1, then for ∀w > 2,
W1(t) + W2(t) has an upper bound of the form

P{W1(t) + W2(t) > w} < CWB
2 (w)e−ηwυ

, (9.11)

where η = min{η1, η2} = η2, υ = min{υ1, υ2} = υ2, and

CWB
2 (w) = C2h(C1) + C1,

where h(C1) = 1 + C1υη(eη − 1) + C1w
υη.

Note that the η in Lemma 9.7 is η1η2
η1+η2

, which is always less than or equal
to min(η1, η2), which is the η in (9.11). Hence Lemma 9.9 yields a larger (thus
better) decay rate. In fact, if η2 ≈ η1, then η in Lemma 9.9 is almost twice
the value of η in Lemma 9.7. However, the asymptotic constant in Lemma 9.9
increases with w, which is a trade-off. For a heavy-tailed arrival process where
υ → 0 so that, for practical and finite values of w, wυ → 1 and thus CWB

2 (w)
approaches a constant, the penalty for using Lemma 9.9 is insignificant. Con-
versely, if η2 differs significantly from η1 (i.e., η2 � η1), then η → min(η1, η2),
making Lemma 9.7 more attractive.

Table 9.1 summarizes the preferences (in terms of which lemma to use to
obtain the bound) assuming that in all the scenarios the queue size of interest
is larger than or equal to 2.

Table 9.1. Preference for Lemma 9.7 or Lemma 9.9 in different scenarios

Scenario Preference

η2 ≈ η1 and υ2 is small Lemma 9.9

η2 � η1 and υ2 is large Lemma 9.7

All other cases Either is ok

Similar to the way in which Lemma 9.7 is extended to Theorem 9.8, we
now extend Lemma 9.9 to Theorem 9.10, whose proof can be obtained by
recursively applying Lemma 9.9.

Theorem 9.10. Let Wi(t), 1 ≤ i ≤ N , be N independent WB processes with
parameters (Ci, ηi, υi). If the queuing processes can be rearranged such that
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the N th queuing process has the property that ηN ≤ ηj and υN ≤ υj for
1 ≤ j ≤ N − 1, then, for ∀w > 2, W1(t) + W2(t) + · · · + WN (t) has an upper
bound of the form

P

{
N∑

i=1

Wi(t) > w

}

< CWB
N (w)e−ηwυ

, (9.12)

where η = min{η1, η2, ..., ηN} = ηN , υ = min{υ1, υ2, ..., υN} = υN and

CWB
N (w) =

N∑

j=1

[

Cj

j−1∏

l=1

h(Cl)

]

, (9.13)

where h(Cl) = 1 + Clυη(eη − 1) + Clw
υη, and by convention

∏j−1
l=1 h(Cl) = 1

when j = 1.

9.3 Sample Path Behavior of LRD Traffic
in a GPS System

Recall from Theorem 9.6 that any LRD traffic input whose queue length
distribution is characterized by a WB distribution has an arrival process that
satisfies the WBB constraint with some long-term upper rate ρ. Hereafter, we
consider N stationary flows that maintain the same long-term average rate λi,
i = 1, 2, ..., N, irrespective of the start time of the flow. As mentioned earlier
(in the discussion after Lemma 9.5), the long-term upper rate ρ reduces to
the more familiar λ.

9.3.1 GPS Decomposition

Let Ai denote a sample path (or a single realization) of the random ar-
rival process Ai(t) and QGPS,γ

i denote the corresponding sample path of the
GPS queue backlog due to the sample arrival process Ai. To obtain relevant
bounds on QGPS,γ

i , we use a method similar to that in [143] to decompose
the GPS system into N fictitious WB single server queues (SSQs), denoted by
δSSQ,γi

i (t), with individual rates γ1, γ2, ..., γN , where γi > λi,
∑N

i=1 γi ≤ γ,
and γi ≤ ϕi(γ −

∑i−1
j=1 γj). Now, the reason for considering the N fictitious

WB SSQs is that their bounds are easier to obtain and would surely bound
QGPS,γ

i as well. This is because the N fictitious WB SSQs do not consider
multiplexing gain, while the QGPS,γ

i queue process does.
Without loss of generality, let 1, 2,..., N be a feasible ordering of the

fictitious processes with respect to γi’s. From Lemma 3 of [143], Lemma 9.11
can be derived.
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Fig. 9.1. Decomposing a GPS system into N fictitious SSQs

Lemma 9.11. For any t,

QGPS,γ
i (t) ≤ ϕi

i−1∑

j=1

δ
SSQ,γj

j (t) + δSSQ,γi

i (t), (9.14)

where each δSSQ,γi

i SSQ process is independent.

Lemma 9.11 provides an upper bound on the queue length QGPS,γ
i (t) of an

individual session in the GPS system in terms of the queue length δSSQ,γi

i (t)
in the fictitious system. It is clear from Lemma 9.11 that to bound the distri-
bution of QGPS,γ

i (t), it suffices to bound the following aggregate of fictitious
queue length processes:

ϕiδ
SSQ,γ1
1 (t) + ϕiδ

SSQ,γ2
2 (t) + ... + ϕiδ

SSQ,γi−1
i−1 (t) + δSSQ,γi

i (t) (9.15)

In what follows, we will provide two bounds on (9.15), i.e., the right-hand
side of (9.14).

9.3.2 A General Bound

For N individual LRD flows sharing a GPS server on the condition of queue
stability (i.e.,

∑N
i=1 λi < γ) and under the assumption that 1, 2,... N is a

feasible ordering with respect to φi and λi, λi < γi for i = 1, 2, ..., N , we
present a GPS bound in Theorem 9.12 that is based on Theorem 9.8.

Theorem 9.12. Each individual queue length distribution in the GPS system
has an upper bound as follows:

P{QGPS,γ
i (t) > q} < CGPS

i e−ηGP S
i qυGP S

i , (9.16)

where
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υGPS
i = min

1≤j≤i
{υj}, (9.17)

ηGPS
i =

1
∑i

j=1
1
η̄j

, (9.18)

CGPS
i =

⎛

⎝
i∑

j=1

Cj + C∗

⎞

⎠ e−ηGP S
i , (9.19)

and, in the above,

η̄j =

{
ηj

ϕ
υj
i

1 ≤ j < i

ηi j = i

and C∗ can be obtained similarly as in Theorem 9.8.

Proof. First, because all the input flows are LRD flows, we have

P{δSSQ,γj

j (t) > q} < Cje
−ηjqυj

, j = 1, 2, ..., N. (9.20)

Secondly letting
δ

SSQ,γj

j,eqv (t) = ϕiδ
SSQ,γj

j (t), j < i, (9.21)

we have

P{δSSQ,γj

j,eqv (t) > q} = Pr{δSSQ,γj

j (t) >
q

ϕi
} < Cje

−η̄jqυj
, (9.22)

for 1 ≤ j < i, where η̄j = ηj

ϕ
υj
i

. Finally, since (9.15) can now be written as

δSSQ,γ1
1,eqv (t) + δSSQ,γ2

2,eqv (t) + ... + δ
SSQ,γi−1
i−1,eqv (t) + δSSQ,γi

i (t), (9.23)

by combining (9.20), (9.22) and Lemma 9.11, one can easily verify the result
in (9.16) based on Theorem 9.8. ��

Theorem 9.12 gives a general upper bound on queue length distribution
in a GPS system. It is important to note that the GPS upper bound on flow
i is not affected by the flows that are ordered after flow i (because they do
not factor in the upper bound expression for flow i). It is affected only by
flows 1 to i − 1, but the impact on the bound is negligible as long as flow i is
heavier-tailed (i.e., has a smaller index parameter υi) than any of the flows 1
through i − 1. In fact, the index parameter in the bound for flow i is not
affected at all as long as flows 1 to i − 1 are lighter tailed than flow i.

9.3.3 An Alternate Bound

In Theorem 9.13, an alternate upper bound on individual session queue length
in GPS with LRD traffic is provided based on Theorem 9.10. Such a bound
may be better than the bound previously given in Theorem 9.12 but can only
be applied under the condition that for any given i there exists a 1 ≤ k ≤ i
such that both η̄k and υk are minimal in addition to the conditions stated for
Theorem 9.12.
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Theorem 9.13. If there exists a 1 ≤ k ≤ i such that η̄k = min1≤j≤i{η̄j} and
υk = min1≤j≤i{υj}, then for ∀q > 2, the upper bound for individual session
queue length is

P{QGPS,γ
i (t) > q} < CGPS

i (q)eηGP S
i qυGP S

i , (9.24)

where
υGPS

i = min
1≤j≤i

(υj) = υk, (9.25)

ηGPS
i = min

1≤j≤i
(η̄j) = η̄k, (9.26)

CGPS
i (q) = Ck

i∏

l=1,l �=k

hGPS
i (Cl) +

i∑

j=1,j �=k

⎡

⎣Cj

j−1∏

l=1,l �=k

hGPS
i (Cl)

⎤

⎦ , (9.27)

with hGPS
i (Cl) = 1 + Clυ

GPS
i ηGPS

i (eηGP S
i − 1) + Clw

υGP S
i ηGPS

i , and by con-
vention

∏j−1
l=1,l �=k hGPS

i (Cl) = 1 when j = 1.

Proof. Without loss of generality, assume that k < i. The aggregate process
in (9.23) can be rewritten such that the kth process with the minimum decay
rate as well as with the minimum index parameter appears last in the sequence
as follows:

δSSQ,γ1
1,eqv (t) + δSSQ,γ2

2,eqv (t) + ... + δ
SSQ,γk−1
k−1,eqv (t)

+δ
SSQ,γk+1
k+1,eqv (t) + ... + δSSQ,γi

i (t) + δSSQ,γk

k,eqv (t). (9.28)

Hence, by applying Theorem 9.10, Theorem 9.13 can be easily verified. ��
Theorem 9.13 provides an upper bound on an actual session i’s backlog

QGPS,γ
i (t) in the GPS system when there exists a very heavy-tailed LRD flow

with the smallest index parameter (as well as the smallest decay rate). One
implication of Theorem 9.13, similar to Theorem 9.12, is that it is desirable
to order the flows that are heavier-tailed as close to the end of a feasible
ordering as possible, again since the index parameter in the upper bound for
the individual queue length of flow i will not be affected if and only if the
flows 1 through i − 1 are all lighter-tailed than flow i.

9.4 Technique to Check and Ensure LRD Isolation

Recall from the discussion immediately following Definition 9.1 that in a stable
GPS system where

∑N
j=1 λj < γ, there exists at least one feasible ordering

for a given weight assignment. Before we discuss LRD isolation, it is useful to
revisit the concept of flow isolation with Lemma 9.14.
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Lemma 9.14. In a stable GPS system, if flow i satisfies the condition:

λi < γ
φi

∑N
j=1 φj

, (9.29)

then the flow is flow-isolated.

Proof. The proof is straightforward since the right-hand side of (9.29) is the
minimum guaranteed rate. Yet, we still provide the required proof for this
lemma since several intermediate results of this proof will be used later to
prove newer results pertaining to LRD isolation. Relabel flow i as flow 1 and
all other N − 1 flows to be flows 2 to N . Note that flow 1 now satisfies (9.3),
and hence all we need to show is that the remaining N−1 flows can be feasibly
ordered after flow 1. To this end, consider a new GPS system with service rate
γ′ = γ−λ1. Since γ′ >

∑N
j=2 λj , the new GPS system is also stable, and hence

there always exists a feasible ordering such that (after relabeling the flows 2
to N) we have for any flow 2 ≤ i ≤ N

λi <
φi

∑N
j=i φj

⎛

⎝γ′ −
i−1∑

j=2

λj

⎞

⎠

=
φi

∑N
j=i φj

⎛

⎝γ −
i−1∑

j=1

λj

⎞

⎠ . (9.30)

Note that the equations above becomes the same as (9.3), which means that
if flow 1 is ordered first, the remaining N − 1 flows can also be ordered to
yield a feasible ordering. Therefore, flow 1 is flow-isolated. ��

It should be noted that (9.29) is only a sufficient condition for flow isola-
tion, not a necessary condition. In fact, it is a sufficient condition to guarantee
a flow to be flow-isolated. However, as mentioned earlier, a flow can still be
isolated even if it cannot be “guaranteed” to be flow-isolated, or even if it
does not satisfy (9.29).

Based on Lemma 9.14, an obvious method to guarantee the flow isolation
of every flow is to assign the weight of every flow according to (9.29) such
that every flow i can be ordered in the first place in a feasible ordering. As
mentioned earlier, being able to order a flow first in any feasible ordering is
the most applicable condition to guarantee a flow to be flow-isolated for, say,
admission control purposes. That, however, is not necessary to guarantee just
LRD isolation of a flow, which is less strict than flow isolation, as will be
discussed later.

9.4.1 Limitations of Existing Methods

In this subsection, we discuss the shortcomings of the existing methods for
assigning weights to achieve flow isolation and testing whether a flow can be
flow-isolated for a given weight assignment.
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A GPS system may support the following three types (or service classes)
of flows. A Type 1 flow requires a higher QoS than that provided by flow
isolation, so it requires a contract weight that is much larger than λi

γ

∑N
j=1 φj ;

A Type 2 flow requires flow isolation and thus needs a contract weight that is a
little larger than λi

γ

∑N
j=1 φj . A Type 3 flow only requires LRD isolation (but

not flow isolation) and thus can have a contract weight less than λi

γ

∑N
j=1 φj .

Note that the contract weight cannot be changed as long as the service level
agreement (SLA) is in effect. On the other hand, a (lightly loaded) GPS
system may assign a flow an extra weight (if available) to provide the flow
with better service, and such extra weights can be adjusted (e.g., transferred
to other flows) by the GPS system.

The method of assigning weights based on (9.29) has a limited applicabil-
ity in supporting Types 1 and 2 but is not applicable to Type 3 flows. From
users or applications’ viewpoint, having Type 3 flows is useful because cer-
tain applications may require a less strict performance guarantee than that
given by flow isolation, and such flows can be admitted into a GPS system
and with less costs to the users or applications. In addition, from the GPS
system’s viewpoint, supporting Type 3 flows allows it to admit more flows
than otherwise possible, thus increasing its utilization and potential revenues.

For example (hereafter referred to as Example 1), consider a GPS system
with γ = 16 and five flows numbered 1 through 5 in descending order of their
index parameters whose λi = i where, 1 ≤ i ≤ 5. Assume that the total weight
is
∑5

j=1 φj = 16, and in addition flows 1 and 2 have been assigned contract
weights of φ1 = 1.1 and φ2 = 4, respectively. Since the remaining weight for
flows 3, 4 and 5 is 10.9 but the sum of their arrival rates is 12, it is clear that
(9.29) cannot be used to assign the weights to all three remaining flows to
guarantee their flow isolation.

In general, due to the existence of Type 1 flows (e.g., flow 2 in Example 1),
flow isolation may not always be achievable by every flow, and accordingly the
existing approach based on (9.29) may not be useful. Note that, even if flow
i does not satisfy (9.29), it may still be LRD isolated. In Example 1, one can
assign 2.6 to flow 3 to ensure its LRD isolation (which can be verified using
the technique to be proposed later), even though such a weight violates (9.29).

As another example (hereafter called Example 2) showing the deficiency
of the existing approaches, assume that the weight assignment for the same
five flows as in Example 1 is now {1.1, 2.1, 1, 4, 7.8}. It is clear that (9.29)
cannot be used to test if flows 3 and 4 (both of which violate (9.29)) are
LRD-isolated or not. In addition, (9.3) in Definition 9.1 is not effective either.
More specifically, in order to use it to test whether flow 4 can be guaranteed
to be LRD isolated or not, a naive approach will test if the ordering of 1, 2,
3, 4, 5 is feasible, and because it is not, it will have to examine the ordering
of 1, 3, 2, 4, 5 and then the ordering of 2, 3, 1, 4, 5 and so on. In the worst
case, to test if flow i can be guaranteed to be LRD-isolated or not, all possible
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orderings involving j lighter-tailed flows, where 0 ≤ j ≤ (i − 1), have to be
tested. Thus, the (worst-case) time complexity of the testing process is O(i!).
When the number of flows is large, such an approach is clearly infeasible.

9.4.2 Necessary and Sufficient Condition

We now determine, for a given flow i, not only the set of lighter-tailed flows,
denoted by fi, that can be ordered before flow i in a feasible ordering, but
also the minimum contract weight to ensure the LRD isolation of flow i. To
this end, we first initialize fi to be empty. Then, if there exists a flow k where
1 ≤ k < i that satisfies

λk

φk
<

γ −
∑

j∈fi
λj

∑N
j=1 φj −

∑
j∈fi

φj

, (9.31)

we add flow k to fi and update the right-hand side of (9.31), which will be
denoted by R(fi). We repeat the process above until no such flow k exists
and denote the resulting set by Fi and accordingly the final value of R(fi)
by R(Fi). Note that this process of obtaining Fi has the worst-case time
complexity of O(i2).

One can easily verify that when a flow k that satisfies (9.31) is added to
fi, the resulting R(fi) increases; i.e., R(fi) < R(fi ∪ k) ≤ R(Fi) if fi ⊆ Fi.
Conversely, if we were to add a flow k′ that does not satisfy (9.31) to fi, then
R(fi ∪ k′) ≤ R(fi). In other words, R(Fi) is the maximum value that flow i
can obtain from all flows that are lighter-tailed than flow i. This observation is
important for proving the following theorem, which provides a both necessary
and sufficient condition for the LRD isolation guarantee of flow i.

Theorem 9.15. Suppose there are N flows in a GPS system that are num-
bered in the descending order of their index parameters as 1, 2, ..., N , and their
contract weights are φ1, φ2, ..., φN , respectively. Then flow i is guaranteed to
be LRD-isolated from other flows if and only if

λi

φi
<

γ −
∑

j∈Fi
λj

∑N
j=1 φj −

∑
j∈Fi

φj

= R(Fi). (9.32)

Proof. (i) To show that (9.32) is a sufficient condition, we note that flow i
also satisfies (9.31), just as any flow k < i in Fi does. Accordingly, if we let
F ′

i = Fi ∪ {i} and note that when fi is empty R(fi) = γ∑N
j=1 φj

, we have the

following (based on the observation drawn preceding the theorem):

γ −
∑

j∈F ′
i
λj

∑N
j=1 φj −

∑
j∈F ′

i
φj

>
γ −

∑
j∈Fi

λj
∑N

j=1 φj −
∑

j∈Fi
φj

>
γ

∑N
j=1 φj

.

Accordingly, we can easily conclude that
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∑
j∈F ′

i
λj

∑
j∈F ′

i
φj

<
γ

∑N
j=1 φj

.

The above means that if we treat the flows in F ′
i as one big flow with arrival

rate
∑

j∈F ′
i
λj and weight

∑
j∈F ′

i
φ, it satisfies (9.29). Hence, according to

Lemma 5.1, there exists a feasible ordering with this big flow ordered first.
In other words, flow i can be feasibly ordered before any heavier-tailed flow.
Note that the exact ordering of the flows within Fi will not affect the LRD
isolation of flow i. In fact, the flows in Fi can be feasibly ordered according to
the order in which they are added to Fi in (9.31), with flow i being ordered
right after them.

(ii) We now prove that (9.32) is necessary by contradiction. Suppose (9.32)
does not hold for flow i but there still exists a feasible ordering with flow i
ordered before any heavier-tailed flows. Denote the set of all the (lighter-
tailed) flows that are feasibly ordered before flow i by F ∗

i (which may be
empty). According to (9.3), we should have:

λi

φi
<

γ −
∑

j∈F∗
i

λj

∑N
j=1 φj −

∑
j∈F∗

i
φj

= R(F ∗
i ).

However, since F ∗
i contains zero or more flows in Fi and zero or more flows not

in Fi, we have R(F ∗
i ) ≤ R(Fi) based on the discussion preceding the theorem;

or in other words,
λi

φi
< R(F ∗

i ) ≤ R(Fi),

which contradicts the assumption that (9.32) does not hold for flow i. ��

Note that if a flow satisfies (9.29), it will satisfy (9.31) but not vice versa.
With (9.32), whether a flow is guaranteed to be LRD isolated or not depends
only on the weights assigned to the flows in Fi, and flow i itself. In Example
1, one can easily verify that F3 = {1, 2} and R(F3) = (16 − 3)/(16 − 5.1) =
1.19. Hence, if φ3 = 2.6, flow 3 satisfies (9.32) and thus is guaranteed to be
LRD-isolated. On the other hand, in previous Example 2 (where the weight
assignment for five flows is {1.1, 2.1, 1, 4, 7.8}), one can easily verify that since
F3 = F4 = {1, 2} and R(F3) = R(F4) = 13/12.8, (9.32) cannot be satisfied by
flow 3, and thus flow 3 is not guaranteed to be LRD-isolated. On the other
hand, flow 4 satisfies (9.32) and thus is guaranteed to be LRD-isolated.

9.4.3 Weight Adjustment and Assignment

Theorem 9.15 is also useful for weight assignment and adjustment in order
to guarantee a flow’s LRD isolation. More specifically, the observation drawn
preceding the theorem (i.e., R(Fi) is maximum with respect to flow i) serves
as the base for determining a minimal φi to guarantee the LRD isolation of
flow i.
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For instance, consider again Example 2, but now assume that only the
weights assigned to flows 1, 2, and 4 are contract weights (i.e., non-adjustable).
If we want to ensure LRD isolation of flow 3, we must increase φ3 to above
13/12.8. Such an increase can be accomplished if φ5 has an extra weight of
2 that can be transferred to flow 3 (and, as a result, φ5 is reduced to 5.8
from 7.8).

The technique above to adjust the weight of a single flow to ensure its
LRD isolation can certainly be extended to ensure LRD isolation of more
than one flow provided that there are extra weights in the GPS system that
can be adjusted or transferred. As a slightly different example from those
above (which we call Example 3), consider five flows numbered in descending
order of their index parameters whose arrival rates are more or less randomly
distributed as {2, 4, 5, 1, 3}. Suppose that γ = 17 (which is sufficient to make
the system stable) and the total weight is a constant 17. In addition, suppose
that flow 2 (which is a Type 1 flow) has been assigned a contract weight of 7
(and thus the method based on (9.29) cannot be used for weight assignment
to guarantee flow isolation of all the other flows, as discussed earlier). If all
four other flows are Type 3 flows that only require LRD isolation, we can
use Theorem 9.15 to assign contract weights to them to guarantee their LRD
isolation as follows (note that one can easily verify that flow 2 can be ordered
first in any feasible ordering, so it is already flow-isolated).

For the first flow, from Theorem 9.15, we need to have φ1 > λ1 = 2, so
we set φ1 = 2.1 (theoretically speaking, we can set φ1 = 2 + ε, where ε > 0
can have a very small value). For flow 3, we first obtain F3 = {1, 2}, and then
from (9.32) we have

φ3 > λ3

∑5
1 φ − φ1 − φ2

γ − λ1 − λ2

= 5 · 17 − 2.1 − 7
17 − 2 − 4

= 3.59.

Accordingly, we set φ3 = 3.6 to flow 3. Similarly, we set φ4 = 0.72 and φ5 = 03.
The extra weight available in the system is 17 − 2.1 − 7 − 3.6 − 0.72 = 1.58,
which may be distributed among the five flows in an arbitrary manner.

To further illustrate the usefulness of the proposed technique, let us con-
sider the following corollary of Theorem 9.15 that may be used in the case of
online admission control.

Corollary 9.16. If a flow i is provided a contract weight φi that guarantees
it to be either flow-isolated or just LRD-isolated, it will be guaranteed to be
flow-isolated or just LRD-isolated after a new flow j is admitted as long as
the system remains stable.

Proof. Note that, in the corollary, flow j cannot take away any existing
contract weights already assigned to the other flows, so its contract weight
3 Note that, with φ5 = 0, flow 5 gets best-effort service.
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can only come from the extra weight available in the system before it was
admitted.

If flow i is guaranteed to be flow-isolated before flow j is admitted, flow i
must satisfy (9.29). Hence, flow i is guaranteed to be flow-isolated after flow
j is admitted.

Now assume flow i was only guaranteed to be LRD-isolated but not guar-
anteed to be flow-isolated before flow j was admitted. Under this assumption,
there existed a feasible ordering in which the set of flows ordered in front of
flow i, Fi, are all lighter-tailed than flow i. Now treat Fi ∪ {i} as one big flow
F ′

i . Just as shown in Part (i) of the proof for Theorem 9.15, this big flow F ′
i

satisfies (9.29) and thus can be ordered in the first place in a feasible ordering.
Thus, flow i is still guaranteed to be LRD-isolated. ��

Let us continue Example 3 by assuming that the online admission control
receives a request for a new flow (flow 6). Suppose that its arrival rate is
λ6 = 1, and its index parameter is in between those of flows 2 and 3. To
ensure its LRD isolation, we first obtain F6 = {1, 2} and then conclude that
we need a contract φ6 > 0.718. Since we have an extra weight of 1.58, we can
assign φ6 = 0.72 and redistribute the remaining extra weight 1.58−0.72 = 0.86
among all six flows.

Note that, from Corollary 9.16, admitting flow 6 as done in the case above
will not affect either the flow isolation or LRD isolation of any flows, or in
other words, their guaranteed (contracted) performance. There are, however,
cases where a heavy-tailed flow has been assigned a weight more than its
arrival rate, and hence the remaining weight is not enough to ensure the LRD
isolation of the newly arrived flow. An example is that for the same set of five
flows described in Example 3, but this time flow 4 instead of flow 2 is a Type 1
flow that requires a contract weight of 5. To ensure each of the four other flows
are LRD-isolated, we need the assignment {2.1, 4.1, 5.1, 5, 0}, which leaves an
extra weight of only 0.7. Hence, when flow 6 arrives, it needs φ6 > 1 to ensure
its LRD isolation. In such a case, the system may decide not to admit flow 6
or admit it without ensuring its LRD isolation.

9.5 Sample Path Behavior of LRD Traffic
in a PGPS System

The results obtained for the GPS system are now extended to the PGPS
system. While the GPS discipline assumes that the input traffic behaves like
a fluid such that multiple sessions can be served bit by bit, the packet-based
GPS (PGPS) is a more practical discipline in that only one packet at a time
may be served. In other words, a PGPS server considers the arrival of a packet
only after its last bit has been received. To manage this difference, the PGPS
server is often taken to consist of two parts, a regulator and a PGPS core
that is a GPS scheduler (see Chapter 4 in [112]), as illustrated in Figure 9.2.
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Regulator GPS

PGPS

Fig. 9.2. PGPS server

Partially complete (or partially arrived) packets are queued in the regulator,
which passes only complete (or arrived) packets to the PGPS core. The output
of this regulator, which is the input to the PGPS core, is a series of impulses
whose heights represent the sizes of the packets.

Let Ai be the session i input traffic to the PGPS server, which is also the
input to the regulator, Ai,reg be the output traffic from the regulator, which
is the input traffic to the PGPS core, and finally A(s, t) be the total amount
of traffic that arrived in time interval [s, t].

It is not difficult to verify that the queuing process of Ai,reg(s, t) is also
bounded by the queuing process of Ai(s, t) with an extra length L; i.e.,
QPGPS

i (s, t) ≤ QGPS
i (s, t) + L, where L is the maximum length of all ar-

rived packets (e.g. see Corollary 1 in [113]). From the queuing process Qi of
Ai, which is WB(C, η, υ), we obtain the queuing process QPGPS

i of Ai,reg,

P{QPGPS
i (s, t) > q} ≤ P{QGPS

i (s, t) + L > q}
= P{QGPS

i (s, t) > q − L}
< Cie

−ηi(q−L)υi

≤ Cie
ηiL

υi
e−ηiq

υi
, (9.33)

which is WB(CeηLυi
, η, υ). In other words, the two GPS upper bounds derived

in Theorems 9.12 and 9.13 in the previous section can be extended to the
PGPS domain via a simple transformation of the asymptotic constant Ci →
Cie

ηiL
υi provided that the queue length or backlog is large enough to exceed

the maximum packet length L; i.e., q > L. Note that this assumption (q > L)
is reasonable because in practice the buffer size B is much larger than L (i.e.,
B � L) and, in addition, since the main concern is whether the backlog is
about to exceed B, the values of q that are of interest should be close to B
and thus larger than L.

For completeness, we now present Theorems 9.17 and 9.18 which are de-
rived from Theorems 9.12 and 9.13 respectively via the use of the simple
transformation Ci → Cie

ηiL
υi as follows.

Theorem 9.17. Let QPGPS,γ
i , 1 ≤ i ≤ N represent the ith queuing process

of the PGPS system with N LRD arrival processes. Then, at any time t, for
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any queue length q > L, where L is the maximum packet length of all the N
sessions, we have

P
{

QPGPS,γ
i > q

}
< CPGPS

i e−ηGP S
i qυGP S

i , (9.34)

where υGPS
i , and ηGPS

i have already been defined in (9.17) and (9.18), and

CPGPS
i =

⎛

⎝
i∑

j=1

Cje
η̄jLυj + C∗

⎞

⎠ ,

where C∗ can be obtained similarly as in Theorem 9.8.

Theorem 9.18. Under the same assumptions used for Theorem 9.13 except
that the server is now a PGPS server, at any time t, for any q > L > 2, where
L is the maximum packet length of all the N sessions

Pr{QPGPS,γ
i > q} < CPGPS

i (q)e−ηGP S
i qυGP S

i , (9.35)

where υGPS
i , and ηGPS

i have already been defined in (9.25) and (9.18), and

CPGPS
i (q) = Ckeη̄kLυk

i∏

l=1,l �=k

hGPS
i (Cle

ηlL
υl )

+
i∑

j=1,j �=k

⎡

⎣Cje
η̄jLυj

j−1∏

l=1,l �=k

hGPS
i (Cle

ηlL
υl )

⎤

⎦

with

hGPS
i (Cle

ηlL
υl ) = (1 + Cle

η̄lL
υl

υGPS
i ηGPS

i (eηGP S
i − 1)

+Cle
η̄lL

υl
qυGP S

i ηGPS
i )

and, by convention,
∏j−1

l=1,l �=k hGPS
i (Cle

ηlL
υl ) = 1 when j = 1.

Note that the bounds above shed light on the LRD isolation among LRD
sources sharing a PGPS server. To illustrate this, consider a simple case of two
independent LRD sources with a feasible ordering of 1, 2. From Theorem 9.12,
the source that appears first in the feasible ordering is always guaranteed to
be LRD-isolated. Therefore, the queuing process that is of interest is the last
queuing process in the feasible ordering, i.e., QPGPS,γ

2 . By applying Theorems
9.17 and 9.18, three possible sets of bounds can be obtained as follows:
(i) If η1 ≤ η2 and υ1 ≤ υ2 then from Theorem 9.18 we have

P{QPGPS,γ
2 > q} < CPGPS

2′ (q)e−η1qυ1
, (9.36)
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where
CPGPS

2′ (q) = C1e
η1Lυ1

h(C2e
η2Lυ2 ) + C2e

η2Lυ2
.

(ii) Otherwise, η2 ≤ η1 and υ2 ≤ υ1, then from Theorem 9.18

P{QPGPS,γ
2 > q} < CPGPS

2 (q)e−η2qυ2
, (9.37)

where
CPGPS

2 (q) = C2e
η2Lυ2

h(C1e
η1Lυ1 ) + C1e

η1Lυ1
.

(iii) In general, regardless of the relationship between η1 and η2 and that
between υ1 and υ2, from Theorem 9.17, we have

P{QPGPS,γ
2 > q} < (C1e

η1Lυ1 + C2e
η2Lυ2 ) ×

e−η(qυmax
0 −qυ

0 )e−ηqυ

, (9.38)

where
η =

η1η2

η1 + η2
and υ = min {υ1, υ2}.

The index parameter (as well as the decay rate parameter) of the three
bounds shown in (9.36)–(9.38) indicates the influence of source 1 on source 2.
In the first case, the bound on QPGPS,γ

2 decays slower, and in fact it adopts
the same index parameter as that in the bound on the heavier-tailed queuing
process δSSQ,γ1

1 . This means that source 2 is not guaranteed to be LRD-
isolated from source 1. In the second case, source 2 is not much affected by
source 1 since the bound on QPGPS,γ

2 adopts the same index parameter as
the bound on δSSQ,γ2

2 . Finally, in the third case, which is useful when neither
of the first two cases is applicable, the bound on QPGPS,γ

2 decays slower than
both the bound on δSSQ,γ1

1 and the bound on δSSQ,γ2
2 .

9.6 Summary and Bibliographic Comments

In this chapter, by applying the relationship between the t.a.c. stochastic
arrival curve and v.b.c. stochastic arrival curve, we have established the re-
lationship between a Weibull bounded burstiness (WBB) arrival process and
a Weibull bounded (WB) queuing process, which brings more validity to the
analysis of the upper bounds on the queuing process with long-range depen-
dent (LRD) traffic inputs.

In addition, this chapter develops several upper bounds on the queue
length distribution of the generalized processor sharing (GPS) scheduling dis-
cipline with LRD traffic inputs. The GPS bounds have also been extended to
a packet-based GPS (PGPS) system. These explicit bounds contribute addi-
tional results to stochastic network calculus. In addition, they show that the
long range dependency and queue length distribution of an LRD source in
a GPS system will in general not be adversely affected despite the presence
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of other admitted sources as long as it can be feasibly ordered before other
heavier tailed flows.

The content of this chapter is mainly based on [141] by Yu, Thng, Jiang,
and Qiao. Also in [141], some numerical results on a PGPS system with LRD
input flows are given to demonstrate the usefulness of the bounds. There is a
vast body of literature on GPS and PGPS. Some closely related works include
[131] [139] [143]. While in [131] the focus is on deterministic constraint inputs,
an upper bound is developed for the individual session queue length when
the input traffic is short-range dependent and particularly has exponentially
bounded burstiness (EBB) [138]. The notion of flow isolation can be found in
[88] and the notion of LRD isolation was initially introduced by Yu, Thng,
Jiang and Qiao in [141].

Problems

9.1. It is said that (9.29) is only a sufficient condition for flow isolation but
not a necessary condition. Give an example scenario where flow is isolated but
the condition (9.29) is not satisfied.

9.2. Prove Lemma 9.9.

9.3. Prove Lemma 9.11.

9.4. Prove Theorem 9.17.

9.5. Prove Theorem 9.18.

9.6. For Example 2 where the weight assignment for five flows is {1.1, 2.1, 1,
4, 7.8}, assume that only weights assigned to flows 1, 2, and 3 are contract
weights. Find how to adjust the weight to ensure LRD isolation for flow 4.

9.7. In Example 2, let the weight assignment for five flows be {1.3, 0.9, 1.2,
3.8, 7.6}. Find which flows are guaranteed to be flow-isolated and which flows
are guaranteed to be LRD-isolated.


