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Traffic Conformance Study

In this chapter, we will apply stochastic network calculus to a traffic confor-
mance study.

To achieve a certain level of quality of service (QoS) assurance, a network
will have service level agreements (SLAs) with its users and neighboring do-
mains, which, in general, describe the QoS level that the service provider is
committed to provide and the specification of traffic that users or neighboring
domains are allowed to send for the subscribed QoS level. For example, in
a Differentiated Services network [10], all incoming flows must conform to a
certain pre-determined SLA and the conformance is measured by a policer at
the ingress router of the network. Based on the SLA, the network will pro-
vide a certain level of QoS to the conformant part of these flows. Since flows
may interact with each other and compete for resources at each node of a
network, an interesting and important question arises as to whether a flow is
still conformant to its original traffic specification after crossing the network.

This chapter considers conformance deterioration for both individual flows
and aggregates of flows. In some situations, an individual flow needs to nego-
tiate SLAs with networks along its end-to-end path. In this case, the per-flow
conformance deterioration along its end-to-end path is considered. Another
case is also considered where the individual user only needs to establish an
SLA with the first access network, and the access network will negotiate a
bulk SLA with its next intermediate network for the corresponding aggregate
of flows. For example, several users may subscribe to the same level of service,
each has its individual SLA with the first access network, and traffic from
these users is aggregated in the same class. When such an aggregate exits the
first network and enters the next network, the aggregate will be checked for
its conformance based on the bulk SLA between these two domains.

In this chapter, we study analytically the extent to which a flow and an
aggregate of flows become non-conformant in two typical network scenarios. In
particular, we investigate conformance deterioration in a per-flow scheduling
network where network servers guarantee a certain level of service to each
flow and in an aggregate scheduling network where network servers provide a
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certain level of service to each aggregation of flows to support scalable QoS
provisioning. Based on a relationship between the conformance deterioration
and stochastic burstiness increase that will be established in this chapter
and results from the previous chapters, analytical bounds on conformance
deterioration probability are presented for both the per-flow and the per-
aggregate cases.

8.1 Network Model

Consider a network as shown in Figure 8.1. In this network, every incoming
flow under consideration is shaped by a token bucket shaper at an ingress
router, whose token generation rate and bucket size are set based on some
pre-determined SLA. At the corresponding egress router a token bucket me-
ter with the same parameters as the ingress shaper checks the conformance
of its outgoing traffic. If the burstiness of the input flow increases and conse-
quently some packets of the flow do not conform to the token bucket meter at
the egress, they will be marked as OUT of profile. This chapter is concerned
with the conformance deterioration probability, which is defined as the ratio of
the number of OUT packets to that of received packets recorded in the token
bucket meter at the egress router. The two network scenarios under investi-
gation are per-flow scheduling networks, where network servers guarantee a
certain level of service to each flow, and aggregate scheduling networks, where
network servers provide a certain level of service to each aggregation of flows.

Fig. 8.1. Network model

The burstiness increase for a flow after crossing a certain network element
was first studied by Cruz [28][29] in a deterministic framework. Reference [28]
obtained the burstiness of an output flow given the burstiness of the input
flow. Some recent works [92][22] studied the worst-case burstiness increase un-
der aggregate scheduling. However, these deterministic bounds on worst-case
burstiness increase cannot be used to obtain the conformance deterioration
probability since the conformance deterioration probability is a stochastic
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metric. Hence, the stochastic burstiness increase needs to be investigated in
order to determine the conformance deterioration probability. To study the
stochastic burstiness increase of an input flow after crossing a network, the
initial stochastic characterization of the flow before being shaped by the to-
ken bucket is needed. The m.b.c stochastic arrival curve concept described in
previous chapters is used to model an input traffic process before it enters the
network. Here, it is assumed that the bounding functions for all input flows
of interest are known or can be easily obtained. The deterministic service
curve, stochastic service curve, and stochastic strict service curve concepts as
explained in previous chapters are used to model servers in this chapter.

8.1.1 Conformance Deterioration and Stochastic
Burstiness Increase

To analytically calculate the bound of the conformance deterioration proba-
bility for a flow checked by a token bucket meter, the same flow is fed to a
virtual server with a constant service rate that is the same as the token gener-
ation rate of the token bucket meter. This section will establish the relation-
ship between conformance deterioration probability and stochastic burstiness
increase measured in the virtual server fed with the same input flow. The fol-
lowing theorem shows that the probability that a packet is marked as OUT by
the token bucket meter is bounded by the probability that the queue length
in the virtual server exceeds the bucket depth of the token bucket meter.

Theorem 8.1 (Relationship between Non-conformance and Stochas-
tic Burstiness). Consider a flow fed into a token bucket meter and a virtual
initially empty constant-rate server, respectively. The token bucket has para-
meters (ρ, σth), where ρ is the token generation rate and σth is the bucket
depth. The constant-rate server has service rate ρ. Then, Pnonconf (t) ≤
PW (t;r)>σth

≤ PM(t;r)>σth
where Pnonconf (t) denotes the probability that one

packet is found to be OUT, W (t; r) ≡ sup0≤s≤t{A(s, t) − r(t − s)}, which
is the queue length at the constant-rate server, PW (t;r)>σth

is the probabil-
ity that the queue length W (t; r) in the constant rate server exceeds σth,
M(t; r) ≡ sup0≤s≤t sup0≤u≤s[A(u, s) − r(s − u)], which is the maximum up-
to-date backlog at time t for the constant-rate server, and PM(t;r)>σth

is the
probability that the maximum up-to-date backlog M(t) exceeds σth.

Proof. Consider the case where one packet arriving at time t has been found
non-conformant by the token bucket. Then, there exists some s < t for which
the amount of traffic arrival during [s, t) satisfies:

A(s, t) > ρ(t − s) + σth.

Therefore,
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Pnonconf (t) ≤ P {A(s, t) > ρ(t − s) + σth}
= P {A (s, t) − ρ (t − s) > σth}

≤ P

{

sup
0≤s∗≤t

{A (s∗, t) − ρ (t − s∗)} > σth

}

= PW (t;r)>σth

≤ P

{

sup
0≤s≤t

sup
0≤s∗≤s

{A (s∗, s) − ρ (s − s∗)} > σth

}

= PM(t;r)>σth
.

This completes the proof. ��

With Theorem 8.1, it is clear that to obtain the bound for the conformance
deterioration probability, one approach is to derive the queue length distrib-
ution of the output flow in the corresponding virtual server. Since the queue
length distribution in the virtual server is characterized by a bounding func-
tion in the m.b.c. stochastic arrival curve definition, the bounding function is
used here to characterize the stochastic burstiness for the flow of interested.
Therefore, the bounding function of the output flow at the egress of a network
is needed given the initial bounding function of the input flow at the ingress.

8.1.2 Property of Token Bucket Shaper

Since the token bucket shaper is the first network element passed by an in-
coming flow to the network, the following theorems provide insights into the
output burstiness of the token bucket shaper, which will be used for subse-
quent analysis of conformance deterioration analysis.

Theorem 8.2 (Property of Token Bucket Shaper). Consider a shaping
system with token bucket shaper (ρ, σ). Let A(t) and A∗(t) be the input process
and output process of the system, respectively. Assume that A(t) ∼mb 〈f, ρ〉.
Then, for any t ≥ 0,

A∗(t) ∼mb 〈g, ρ〉 , (8.1)

where

g(x) =
{

f(x) if x ≤ σ,
0 if x > σ.

(8.2)

Proof. Using a method similar to the proof of Theorem 5 in [140],

M∗(t; ρ) ≤ M(t; ρ),

where M (t; ρ) and M∗(t; ρ) denote the maximum up-to-date queue length
in the virtual constant server for the input process and output process, re-
spectively. In addition, the output traffic is constrained by the token bucket
regulator; i.e., A∗(s, t) ≤ ρ(t − s) + σ. Hence,
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M∗(t; ρ) = sup
0≤s≤t

sup
0≤u≤s

{A∗(s, u) − ρ(u − s)} ≤ σ,

which implies that, for any x > σ, P{M∗(t; ρ) ≥ x} = 0. This, together with
the above, ends the proof. ��

8.2 Conformance Study of Per-Flow Scheduling Network

This section studies conformance deterioration of a flow after crossing a per-
flow scheduling network. To study the end-to-end conformance deterioration,
the single-node case is considered first and then the results are extended to
the multi-node case.

8.2.1 Single-Node Case

Theorem 5.21 in Chapter 5 derived the stochastic burstiness of the output
flow after crossing a node that offers a stochastic service curve to the input
flow with an m.b.c. stochastic arrival curve. Then, based on the relationship
between stochastic burstiness and non-conformance derived in Theorem 8.1,
one can immediately obtain the following theorem on the non-conformance
probability of a flow after crossing a node that offers a service curve to the
input flow.

Theorem 8.3 (Single-Node Non-conformance Probability Bound).
Assume that a node offers a deterministic service curve β to its input. Let
A(t) be the input process of the node. Assume that A(t) ∼mb 〈f, r〉. The out-
put flow is checked for its conformance by a token bucket meter with token
generation rate r and token bucket depth σth. Let Pnonconf (t) denote the prob-
ability that one packet is found to be OUT. Thus,

Pnonconf (t) ≤ f (σth − α � β (0)) , (8.3)

where α(t) = rt and α � β(0) = sup
s≥0

{α(s) − β(s)}.

Reference [53] presents another general server model, which is the guar-
anteed rate (GR) server model. It has been proven that many well-known
schedulers belong to GR (e.g., see [68] and references therein), as mentioned
earlier in Chapter 2. The behavior of a GR server is determined by two pa-
rameters: a rate R and an error term E. In [92], it was proven that a GR
node has a rate-latency service curve β(t): β(t) = R(t − E − Lmax,i

R )+, where
Lmax,i is the maximum packet size of the input flow. Therefore, the following
corollary can be derived directly by using the service curve of a GR scheduler
to analyze the stochastic burstiness increase of a flow after it passes through
the GR scheduler.
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Corollary 8.4 (Non-conformance Probability Bound under a GR
Node). Consider a GR node with rate R and error term E. Let A(t) be
the input process of the node. Assume that A(t) ∼mb 〈f, ρ〉. The output flow
is checked for its conformance by a token bucket meter with token generation
rate ρ and token bucket depth σth. Let Pnonconf (t) denote the probability that
one packet is found to be OUT. Given ρ ≤ R, for any t > 0,

Pnonconf (t) ≤ f

(

σth − ρ

(

E +
Lmax,i

R

))

, (8.4)

where Lmax,i is the maximum packet size of the flow under consideration.

Remark. For a WFQ scheduler, the error term is E = L max
C , where C

is its total capacity and the Lmax is the maximum packet size among all
flows in the same server. Hence, it has a rate-latency service curve β (t) =

R
(
t − E − L max,i

R

)+

. According to the corollary above under WFQ, the out-
put traffic burstiness bounding function for an input flow with bounding
function f (x) will be g (x) = f (x − α � β (0)) = f

(
x − ρ

(
Lmax

C + Lmax,i

R

))
.

From this bounding function, it can be seen that, even for a WFQ sched-
uler that can provide service isolation among different service classes, if the
packet size Lmax of inter-class traffic is large enough compared with the packet
size Lmax,i of the flow under consideration, the effect of inter-class traffic on
conformance deterioration of the flow considered cannot be ignored.

8.2.2 Multi-node Case

This section studies the conformance deterioration of a flow crossing a network
of nodes in tandem. Suppose that there are a total of N nodes and each node
i provides a service curve βi to the flow. Then, according to the concatenation
property of a deterministic service curve as shown in Chapter 2, the network
provides to the flow a concatenated deterministic service curve to the flow
that is given by

βnet = β1 ⊗ β2 · · · ⊗βN . (8.5)

With this concatenated deterministic service curve and Theorem 8.1, the fol-
lowing result is immediately obtained.

Theorem 8.5 (Multi-node Non-conformance Probability Bound).
Consider a flow crossing a path with N nodes in tandem, and each node
i provides deterministic service curve βi to the flow. Let A (t) be the input
process of the flow and A(t) ∼mb 〈f, r〉 . The output flow is checked for its
conformance by a token bucket meter with token generation rate r and token
bucket depth σth. Then, the non-conformance probability Pnonconf (t) at the
egress is bounded by

Pnonconf (t) ≤ f (σth − α � βnet (0)) , (8.6)

where α(t) = rt and βnet = β1 ⊗ β2 · · · ⊗βN .
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By using Theorem 8.2, the m.b.c. bounding function can be obtained for
the input traffic after passing through the token bucket shaper at the ingress
of the network. Then, the end-to-end non-conformance probability of the out-
put flow at the egress of the network can be further obtained by applying
Theorem 8.5.

8.3 Conformance Study of Aggregate
Scheduling Network

To provide scalable support of QoS in a network, one method is to let each
node in the network provide service to aggregates of flows. By doing this,
the core node does not need to maintain per-flow state information. In such a
network, each node performs aggregate scheduling instead of per-flow schedul-
ing. This section first conducts conformance analysis for each flow within the
aggregate under aggregate scheduling and then analyzes conformance deteri-
oration for each aggregate.

8.3.1 Per-Flow in Single-Node Case

Following the same approach as in Section 8.2, this section studies the confor-
mance deterioration by analyzing the stochastic burstiness increase of input
flows, for which the per-flow service received by a flow within the aggregate
is required. From Theorem 2.27 in Chapter 2, we have the following results.
For a node serving two flows f and h, if the node guarantees a deterministic
service curve β to the aggregate of the two flows and flow h has an arrival
curve αh, then the node offers to the flow f a deterministic service curve
βf =

(
β − αh

)+.
Based on this per-flow service curve, one can obtain a result on the per-

flow stochastic burstiness increase under aggregate scheduling by applying
this leftover deterministic service curve to results in Chapter 5. Note that the
per-flow service curve used in this approach is a deterministic service curve
that is derived under the assumption that all the input flows are deterministi-
cally bounded. In addition, the resulting bound on conformance deterioration
is the worst-case bound. Since the traffic model used in this chapter is a sto-
chastically bounded traffic model, it would be possible to get a more accurate
characterization of the per-flow service in a stochastic form, which enables
tighter bounds to be obtained in conformance analysis.

Theorem 8.6 (Per-Flow Stochastic Burstiness Bound under Deter-
ministic Per-Flow Service Curve). Consider a node providing a deter-
ministic service curve β to two flows f and h, that are FIFO-aggregated. Let
Ai(t) and A∗

i (t) be the flow i (i = f, h) input process and output process of the
node, respectively. Suppose that Af (t) ∼mb

〈
ff , rf

〉
and Ah(t) is token bucket

bounded by (rh, σh). Then,
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A∗
f (t) ∼mb

〈[
gf
]
1
, rf
〉

(8.7)

with
gf (x) = ff

(
x − αf � βf (0)

)
, (8.8)

where αf (t) = rf t, βf =
(
β − αh

)+
.

Remark. Based on Theorem 8.6 on the per-flow stochastic burstiness and
Theorem 8.1, the following result on the non-conformance probability bound
is immediately obtained.

Theorem 8.7 (Per-Flow Non-conformance Bound under Determin-
istic Per-Flow Service Curve). Consider a node providing a deterministic
service curve β to two flows f and h that are FIFO-aggregated. Let Ai(t) be the
flow i (i = f, h) input process of the node. Suppose that Af (t) ∼mb

〈
ff , rf

〉

and Ah(t) is token bucket bounded by (rh, σh). The output flow is checked for
its conformance by a token bucket meter with token generation rate rf and
token bucket depth σth. Let Pnonconf (t) denote the probability that one packet
is found to be OUT. Then,

Pnonconf (t) = ff
(
σth − αf � βf (0)

)
, (8.9)

where αf (t) = rf t, βf =
(
β − αh

)+
.

Remark. The service curve used in this theorem is the worst-case leftover
deterministic service curve within an aggregate under aggregate scheduling.
However, if the cross traffic aggregated in the same aggregate is stochastically
bounded, one can have a tighter and more accurate characterization of the
per-flow service received by a flow under aggregate scheduling, which is de-
rived in Chapters 5 and 6. For this, we need to derive the stochastic leftover
service curve, then derive the burstiness increase for the input processes, and
then derive the non-conformance probabilities for these input processes after
passing a server under aggregate scheduling.

Lemma 8.8 (Stochastic Per-Flow Service Curve under Aggregate
Scheduling for General Case). Consider a server fed with a flow A that
is the aggregation of two constituent flows Af and Ah. Suppose the server
provides a deterministic service curve β to the aggregate flow A. If flow Ah

has an m.b.c. stochastic arrival curve Ah ∼mb 〈fh, rh〉 and βf ∈ F , then the
server guarantees to flow Af a stochastic service curve Sf ∼sc 〈fh, βf 〉, where

βf (t) = β(t) − rh(t), (8.10)
gf (x) = fh(x). (8.11)

Proof. Theorem 5.42 in Chapter 5 obtained the following result on the per-
flow stochastic service for a system with a stochastic service curve and m.b.c.
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stochastic arrival curve. Then, flow f receives a per-flow stochastic service
curve

(
ff , βf

)
from the node with

βf (t) = β(t) − rh (t) ,

ff (x) = fh ⊗ 0(x) = fh (x) .

��

Lemma 8.8 shows that a deterministic server under aggregate scheduling
can be considered a stochastic service providing a per-flow stochastic service
curve to its input flows. Based on this per-flow stochastic service curve, we
can derive the burstiness increase for these input processes.

Theorem 8.9 (Per-Flow Stochastic Burstiness Bound under Sto-
chastic Per-Flow Service Curve for General Case). Consider a node
providing a deterministic service curve β to two flows f and h that are FIFO-
aggregated. Let Ai(t) and A∗

i (t) be the flow i (i = f, h) input process and
output process of the node, respectively. Suppose that Ah (t) ∼mb

〈
fh, rh

〉
and

Af (t) ∼mb

〈
ff , rf

〉
. Then, we have A∗

f (t) ∼mb

〈
ff∗, rf∗〉 with

ff∗ (x) = ff ⊗ fh (x) , (8.12)
rf∗ (t) = rf (t) �

(
β (t) − rh (t)

)
. (8.13)

Proof. Based on the per-flow stochastic service derived in Lemma 8.8, the
stochastic burstiness increase of a flow under aggregate scheduling can be
derived according to Theorem 5.21 in Chapter 5. In this case, for any t ≥ 0,

A∗
f (t) ∼mb

〈
ff∗, rf∗〉

with

rf∗ (t) = rf (t) �
(
β (t) − rh (t)

)
,

ff∗ (x) = ff ⊗ fh (x) .

��

Note that the result above is derived under the case where it is not known
whether the two input processes are independent or not. If the server can
be modeled by a stochastic strict service curve and the service process is
independent of the two independent input processes, we can have the following
tighter results for the per-flow stochastic burstiness bound.

Lemma 8.10 (Stochastic Leftover Service Curve under Aggregate
Scheduling for Independent Case). Consider a server fed with a flow A
that is the aggregation of two constituent independent flows Af and Ah. Sup-
pose the server provides a deterministic strict service curve β to the aggregate
flow A. If flow Ah has the m.b.c. stochastic arrival curve Ah ∼mb 〈fh, rh〉 and
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βf ∈ F , then flow f receives a stochastic strict service curve β with impair-
ment process I = Ah (t)−Ah (t − s) . Then, the server guarantees to flow Af

stochastic service curve Sf ∼sc 〈fh, βf 〉, where

βf (t) = β(t) − rh(t), (8.14)
gf (x) = fh(x). (8.15)

Proof. According to the definition of a deterministic strict service curve,
during any backlogged period [s, t), we can have, for all t ≥ 0, A∗ (t) ≥
A (t − s) + β (s) . Then

A∗
f (t) + A∗

h (t) ≥ β (s) + Af (t − s) + Ah (t − s) .

Since A∗
h (t) ≤ Ah (t) ,

A∗
f (t) − Af (t − s) ≥ β (s) − (Ah (t) − Ah (t − s)) .

Since A∗
f (t − s) ≤ Af (t − s) , we have

A∗
f (t) − A∗

f (t − s) ≥ β (s) − (Ah (t) − Ah (t − s)) .

Then, according to the definition of a stochastic strict service curve in
Definition 4.11 in Chapter 4, flow f receives a stochastic strict service curve
β with impairment process I = Ah (t) − Ah (t − s) .

In addition, we have Ah (t) ∼mb

〈
fh, rh

〉
. According to Lemma 8.8, the

server provides a stochastic service curve Sf ∼sc 〈fh, βf 〉 for flow f with

βf (t) = β(t) − rh (t) .

��
Theorem 8.11 (Per-Flow Stochastic Burstiness Bound under Sto-
chastic Per-Flow Service Curve for Independent Case). Consider
a node providing a deterministic strict service curve β to two independent
flows f and h that are FIFO-aggregated. Let Ai(t) and A∗

i (t) be the flow i
(i = f, h) input process and output process of the node, respectively. Sup-
pose that Ah (t) ∼mb

〈
fh, rh

〉
and Af (t) ∼mb

〈
ff , rf

〉
. Then, we have

A∗
f (t) ∼mb

〈
ff∗, rf∗〉 with

rf∗ (t) = rf (t) �
(
β (t) − rh (t)

)
, (8.16)

ff∗ (x) = 1 − f̄f ∗ f̄h (x) , (8.17)

where f̄f (x) = 1 − [ff (x)]1 and f̄h(x) = 1 − [fh(x)]1.

Proof. Based on the leftover stochastic service curve obtained in Lemma 8.10,
the stochastic burstiness increase of a flow under aggregate scheduling can be
derived according to Theorem 6.5 in Chapter 6. In this case, for any t ≥ 0,

A∗
f (t) ∼mb

〈
ff∗, rf∗〉



8.3 Conformance Study of Aggregate Scheduling Network 175

with

rf∗ (t) = rf (t) �
(
β (t) − rh (t)

)
,

ff∗ (x) = 1 − f̄f ∗ f̄h (x) ,

where f̄f (x) = 1 − [ff (x)]1 and f̄h(x) = 1 − [fh(x)]1. ��

With Theorem 8.1, the following results on non-conformance probability
bound follow from Theorems 8.9 and 8.11.

Theorem 8.12 (Per-Flow Non-conformance Probability Bound un-
der Aggregation for General Case). Consider a node providing a service
curve β to two flows f and h that are FIFO-aggregated. Let A(t) be the input
process of the node. Suppose that Ah (t) ∼mb

〈
fh, rh

〉
and Af (t) ∼mb

〈
ff , rf

〉
.

The output of flow f is checked for its conformance by a token bucket meter
with token generation rate rf and token bucket depth σth. Let Pnonconf (t)
denote the probability that one packet is found to be OUT. Then

Pnonconf (t) ≤ ff ⊗ fh
(
σth − αf � βf (0)

)
, (8.18)

where αf (s) = rfs, αf�βf (0) = sup
s≥0

{αf (s)−βf (s)}, and βf (s) = β (s)−rhs.

Theorem 8.13 (Per-Flow Non-conformance Probability Bound un-
der Aggregation for Independent Case). Consider a node providing a
service curve β to two flows f and h that are FIFO-aggregated. Let A(t)
be the input process of the node. Suppose that Ah (t) ∼mb

〈
fh, rh

〉
and

Af (t) ∼mb

〈
ff , rf

〉
. The output of flow f is checked for its conformance by a

token bucket meter with token generation rate rf and token bucket depth σth.
Let Pnonconf (t) denote the probability that one packet is found to be OUT. If
the flows f and h are independent of each other, then

Pnonconf (t) ≤ 1 − f̄f ∗ f̄h
(
σth − αf � βf (0)

)
, (8.19)

where αf (t) = rf t, αf � βf (0) = sup
s≥0

{αf (s) − βf (s)}, βf (s) = β (s) − rhs,

f̄f (σ) = 1 −
[
ff (σ)

]
1
, and f̄h (σ) = 1 −

[
fh (σ)

]
1
.

Remark. When the per-flow non-conformance probability in the first
server is analyzed, Theorem 8.13 can be used since the two flows are inde-
pendent of each other. However, when they exit the first server, the result
derived for the general case in Theorem 8.12 needs to be used to analyze the
non-conformance probability in subsequent servers since they will no longer
be independent of one another when they exit the server.
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8.3.2 Per-Flow in Multi-node Case

As shown earlier, a series of stochastic service curves and stochastic strict
service curves in tandem can be concatenated as a network stochastic service
curve. Combining these results with the results derived above on the non-
conformance probability bounds for the single-node case, we can have the
following results on multi-node non-conformance probability bounds for the
general case and independent case, respectively.

Theorem 8.14 (Multi-node Non-conformance Probability Bound for
General Case). Consider a flow f crossing a path with N nodes in tandem,
and each node i provides a service curve βi to the flows f and hi, which
are FIFO-aggregated. Suppose that Ahi

(t) ∼mb

〈
fhi , rhi

〉
and Af (t) ∼mb〈

ff , rf
〉
. The output flow from the system is checked for its conformance by

a token bucket meter with token generation rate r and token bucket depth σth.
Then, the non-conformance probability Pnonconf (t) is bounded by

Pnonconf (t)

≤ ff ⊗ fh1 ⊗ · · · ⊗ fhN
(
σ − αf �

(
βf1 ⊗ · · · ⊗ βfN

)
(0)
)
, (8.20)

where αf (t) ≡ rf t, and βfi (t) = βi (t) − rhi (t), i = 1, · · ·, N.

For a special case where all cross flows along the end-to-end path is inde-
pendent with the flow of interested, a tighter bound can be obtained in the
same way as Theorem 8.13.

Theorem 8.15 (Multi-Node Non-Conformance Probability Bound
for Independent Case). Consider a flow f crossing a path with N nodes
in tandem and the i-th node providing a service curve βi to two flows f
and hi that are FIFO-aggregated. Suppose that Ahi

(t) ∼mb

〈
fhi , rhi

〉
and

Af (t) ∼mb

〈
ff , rf

〉
. The output flow f from the system is checked for its

conformance by a token bucket meter with token generation rate r and token
bucket depth σth. Then the non-conformance probability Pnonconf (t) of flow
f is bounded by

Pnonconf (t) ≤ 1−f̄f ∗f̄h1 ∗···∗f̄hN
(
σ − αf �

(
βf1 ⊗ · · · ⊗ βfN

)
(0)
)
, (8.21)

where f̄f (t) = 1−
[
ff (t)

]
1
, f̄hi = 1−

[
fhi
]
1
, αf (t) ≡ rf t, and βfi (t) =

βi (t) − rhi (t), i = 1, · · ·, N.

The results presented in this section provide an approach for analyzing
conformance deterioration of a flow after crossing an aggregate scheduling
network. In particular, as illustrated in Figure 8.2, the procedures are as
follows.
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S1~sc f h1 , f1 S2~sc f h2 , f2 Sn~sc f hn , f n

Snet~sc gnet , net

Fig. 8.2. Aggregate scheduling in multi-node case

Procedures to obtain the end-to-end non-conformance probabil-
ity bound:

1. Determine the initial bounding functions ff for the stochastic burstiness
of flow f under consideration with rate rf and each cross-flow in the same
aggregate at each hop along the end-to-end path with rate rhi .

2. Determine the bounding functions for the stochastic burstiness of flow
f after passing through a token bucket shaper according to Theorem 8.2.

3. Convert each aggregate scheduling server (providing a service curve to
the aggregate) to a per-flow scheduling server (providing a stochastic service
curve to the flow) according to Theorems 8.8 or 8.10 for general case or inde-
pendent case, respectively.

4. Obtain the end-to-end non-conformance probability bound according to
Theorems 8.14 or 8.15 for the general case or independent case, respectively.



178 8 Traffic Conformance Study

8.3.3 Per-Aggregate Case

All the results above can be used to analyze the conformance deterioration
of an individual flow when it negotiates SLAs with networks along its end-
to-end path. However, there is another service configuration mentioned in the
beginning of this chapter, where the individual user only establishes SLA with
its first access network and the access network will negotiate a bulk SLA for its
corresponding aggregate of flows with its next intermediate network. When
such an aggregate exits the first network and enters the next network, the
aggregate will be checked for its conformance based on the bulk SLA between
these two domains. To study conformance deterioration in this scenario, the
stochastic burstiness for the whole aggregate needs to be analyzed. According
the superposition property of m.b.c stochastic arrival curve, an aggregate
of flows with the m.b.c. stochastic arrival curves can be considered as one
flow with an m.b.c. stochastic service curve. Then, the following result for an
aggregate with N flows can be obtained.

Theorem 8.16 (Stochastic Burstiness for an Aggregate). Consider an
aggregate that consists of N flows with input process Ai (t), (i = 1, . . . , N).
Assume that, for each flow i, Ai(t) ∼mb 〈fi, ri〉. Let A (t) =

∑N
i=1 Ai(t) be the

input process of the aggregate. Then, for any t ≥ 0,

A (t) ∼
〈

g,
∑i=N

i=1
ri

〉

, (8.22)

where
g (σ) = f1 ⊗ f2 ⊗ · · · ⊗ fN (σ) , (8.23)

If all the flows in the aggregate are independent of each other,

g (σ) = 1 − f̄1 ∗ f̄2 ∗ · · · ∗ f̄N (σ) (8.24)

where f̄i (σ) = 1 − [fi (σ)]1 for i = 1, 2 · · · N .

Similarly, with the result above and Theorem 8.1, one can obtain a non-
conformance probability bound for the aggregate of flows.

Corollary 8.17 (Non-conformance Probability Bound for an Aggre-
gate). Consider an aggregate that consists of N flows with input process
Ai (t), (i = 1, . . . , N). Assume, for each flow i, Ai(t) ∼mb 〈fi, ri〉. The aggre-
gate is checked for its conformance by a token bucket meter with token gen-
eration rate

∑i=N
i=1 ri and token bucket depth σth. Then, the non-conformance

probability Pnonconf (t) is bounded by

Pnonconf (t) ≤ f1 ⊗ f2 · · · ⊗fN (σth) . (8.25)

If all the flows in the aggregate are independent of each other,

Pnonconf (t) ≤ 1 − f̄1 ∗ f̄2 · · · ∗f̄N (σth) , (8.26)

where fi (σ) = 1 − f̄i (σ), for i = 1, 2 · · · N .
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8.4 Simulation Results

In this section, the analytical results are verified with simulations using ns-
2 [106]. Figure 8.3 shows the network topology used in simulation, which
was also used in [57], where traffic is sent from source Si to destination Di.
There are two classes of traffic competing for resources at each node, which
is a GR server implementing the WFQ scheduler. Traffic from sources S2i+1,
i = 0, 1, 2, belongs to class 1 and traffic from sources S2i, i = 1, 2, belongs
to class 2 at each node. Before entering the network, traffic from each source
S2i+1 is shaped by a token bucket shaper to conform to a certain specification.
The conformance deterioration of flow F1 from S1 to D1 is investigated. The
conformance of flow F1 is checked at the output port R3 to D1 of node R3

using a token bucket meter. For simplicity, Poisson sources are used for flows in
traffic class 1 from S2i+1 to D2i+1, and exponential ON/OFF sources are used
for flows in traffic class 2 from S2i to D2i in the experiments. The theoretical
results on the conformance deterioration probability for the Poisson input flow
are verified. In [35], it has been shown that the queue length distribution of a
Poisson traffic input with mean arrival rate λ in a constant-rate server with
server rate ρ satisfies

Pr(B(∞) > x) = 1 −
(

1 − λ

ρ

) x∑

n=0

[λ
ρ (n − x)]n

n!
e−

λ
ρ (n−x). (8.27)

Clearly, by definition, Poisson traffic has a v.b.c. stochastic arrival curve whose
bounding function is given by (8.27). Since the Poisson process is i.i.d., accord-
ing to (3.38), Poisson traffic also has an m.b.c. stochastic arrival curve with
the same bounding function given by (8.27). Therefore, the non-conformance
probability bound of a Poisson traffic flow after crossing the network can be
obtained by applying this bounding function to the results derived in Sections
8.2 and 8.3.

8.4.1 Per-Flow Scheduling Network in Single-Node Case

The first experiment considers the single-node case. In this case, there are only
S1, S2,R1, R2,D1,D2 in the simulated network shown in Figure 8.3. Server
R1 guarantees per-flow service to flow F1 from S1 to D1 since there is no
other cross traffic in traffic class 1 for flow F1. This scenario investigates the
stochastic burstiness increase of flow F1 after it passes one WFQ node R1.
Poisson source S1 generates flow F1 at an average rate of 45 pkts/sec. The
size of each packet from flow F1 is fixed at 128 bytes. Therefore, the average
sending rate of flow F1 is 45 kbps. For the flow F2 from S2 to D2 in traffic
class 2, an ON/OFF source is used that has an average sending rate of 50
kbps and packet size 5 times that of flow F1. Only the flow F1 is shaped by
a token bucket shaper, whose token generation rate is 50 kbps and bucket
depth is 15 tokens. The token size in all experiments is 128 bytes. The access
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Fig. 8.3. Network topology used in simulation
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Fig. 8.4. Queue length tail distribution after crossing a single node in a per-flow
scheduling network

link capacity of link S1 to R1 is 10 Mbps. The network core link capacity
of R1 to R2 is 200 kbps and the weight ratio between class 1 and class 2
is 1 : 1 for the WFQ node in the core network. Flow F1 belongs to class 1
and F2 belongs to class 2. The link capacity of the last hop is 50 kbps. The
last hop R2 to D1 for F1 is a constant-rate server, since there is no other
traffic sharing this link, that has the same rate as the token generation rate
of the token bucket shaper. The queuing length distribution at this hop is the
virtual queuing length distribution for flow F1, which is used to measure the
stochastic burstiness of the output traffic.

Figure 8.4 shows the simulated queue length tail distribution of flow F1 at
the last hop, where the theoretical bound is obtained by substituting x with
x−ρ

(
T + Lmax,1

R

)
in (8.27) according to Corollary 8.4. For a WFQ scheduler
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Fig. 8.5. Non-conformance probability after crossing a single node in a per-flow
scheduling network

here, T = L max
C , where C is its total capacity and Lmax is the maximum

packet size among all flows in the same server. Lmax,1 is the maximum packet
size for F1 and R is the reserved rate for F1. The unit for the queue length is
a packet that has the same size as the packets from flow F1. As can be seen
from the figure, although flow F1 becomes more bursty after passing through
node R1 since its virtual queue length exceeds the token bucket depth 15, its
burstiness increase remains bounded by the theoretical result.

Next, the result for the non-conformance probability bound is verified.
Figure 8.5 shows the simulated non-conformance probability and its theoret-
ical bound. For this, a token bucket meter with the same token generation
rate (50 kbps) as the token bucket shaper is placed at the last hop of flow
F1 to check its conformance. The same experiment settings described above
were adopted, except that the bucket depth of the token bucket shaper at
the ingress and the token bucket meter at the last hop were changed in order
to investigate the effect on the non-conformance probability of flow F1. Note
that the token bucket shaper at the ingress node and the token bucket me-
ter at the last hop have the same parameters in all experiments in order to
check conformance for the considered flow F1. To obtain the non-conformance
probability bound, the following procedures are used:

1. Determine the initial bounding function for the input flow F1 with rate
r = 50 kbps by using Equation (8.27).

2. Determine the bounding functions for the stochastic burstiness of the
flow under consideration after passing through a token bucket shaper accord-
ing to Theorem 8.2.
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Fig. 8.6. Queue length tail distribution after crossing a single node in an aggregate
scheduling network

3. Obtain the non-conformance probability bound for different token
bucket depths σth by using the inequality (8.4) in Corollary 8.4.

Figure 8.5 shows the simulated non-conformance probability and its theo-
retical bound.

8.4.2 Aggregate Scheduling Network in Single-Node Case

The second experiment considers the single node case in an aggregate schedul-
ing network. In this experiment, all other settings are exactly the same as in
the first experiment except that a cross flow F3 from S3 to D3 with the same
source setting (including token bucket shaping) as flow F1 enters the network
and competes for resources with flows F1 and F2 at the WFQ node R1. F1 and
F3 are aggregated in the same class (class 1) to verify the analytical results
on the aggregate scheduling network. Flow F2 belongs to class 2.

Figure 8.6 shows the simulated queue length distribution of flow F1 at its
last hop. The theoretical bound 2 is obtained by Theorem 8.11, in which the
stochastic service curve is derived from Lemma 8.10. The theoretical bound
1 in Figure 8.6 is derived from Theorem 8.6. Figure 8.6 shows that the theo-
retical bound 2 is tighter than the theoretical bound 1. This results from the
fact that Theorem 8.11 makes use of the stochastic service curve offered to
flow F1 by the WFQ node under aggregate scheduling, which can be derived
from Lemma 8.10. In contrast, Theorem 8.6 uses the worst-case service curve
offered to the flow by the node under aggregate scheduling, which was derived
based on results from Theorem 2.27.

Next, the result for the non-conformance probability bound is verified with
the same experiment settings described above except that the bucket depth of
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Fig. 8.7. Non-conformance probability after crossing a single node in an aggregate
scheduling network

the token bucket shaper at the ingress node and the token bucket meter at the
last hop are changed in order to investigate the effect on the non-conformance
probability of flow F1. For the same reason as mentioned above, Figure 8.7
shows that the theoretical non-conformance probability bound 2 is also tighter
than the theoretical non-conformance probability bound 1.

8.4.3 Aggregate Scheduling Network in Multi-node Case

In the third experiment, the simulated network topology is exactly the same
as that shown in Figure 8.3. Traffic from sources S2i+1, i = 0, 1, 2, belongs to
class 1 and traffic from sources S2i, i = 1, 2, belongs to class 2 in each node. All
other settings are the same as in the experiments discussed above except that
Poisson sources S2i+1 generate flow F2i+1 at an average rate of 45 pkts/sec
and exponential ON/OFF flows F2i from S2i to D2i have an average sending
rate of 50 kbps and packet size five times that of flow F2i+1. The stochastic
burstiness increase of flow F1 is explored to verify the analytical results on
aggregate scheduling in the multi-node case.

Figure 8.8 shows that after passing through two WFQ nodes, flow 1 be-
comes more bursty since the simulated result shows that, at its last hop, the
queue length, which implies burstiness, can be larger than 15, the depth of
the token bucket shaper. Nevertheless, the simulation results are bounded by
the theoretical bound 1 derived from Theorem 8.6 and theoretical bound 2
derived from Theorem 8.11 by applying (8.27) to these two theorems. For the
same reason as explained in the second experiment above, theoretical bound
2 is shown to be tighter than theoretical bound 1, as expected.
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Fig. 8.8. Queue length tail distribution after crossing multi-nodes in an aggregate
scheduling network
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Fig. 8.9. Non-conformance probability after crossing multi-nodes in an aggregate
scheduling network
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The result on the non-conformance probability bound is also verified with
the same experiment settings, except that the bucket depth of the token bucket
shaper at the ingress node and the token bucket meter at the last hop are
changed in order to investigate the effect on the non-conformance probability
of flow F1. To obtain the non-conformance probability bound, the following
procedures are used:

1. Determine the initial bounding functions for the stochastic burstiness
of F1 with rate 50 kbps and each cross-flow with rate rhi = 50 kbps according
to (8.27).

2. Determine the bounding functions for the stochastic burstiness of F1

after passing through a token bucket shaper according to Theorem 8.2.
3. Convert each aggregate scheduling server (providing a service curve to

the aggregate) to a per-flow scheduling server (providing a stochastic service
curve to the flow) according to Lemma 8.10.

4. Obtain the end-to-end non-conformance probability bound for different
token bucket depths σth by using the inequality (8.21) in Theorem 8.15.

Figure 8.9 shows the non-conformance probability of flow F1 after pass-
ing through two WFQ nodes and the corresponding theoretical bounds. It is
shown that the theoretical bound 1 derived from Theorem 8.6 is close to 1,
which is overly conservative. The reason is that Theorem 8.6 uses the worst-
case deterministic per-flow service curve and each server will make the original
burstiness bounding function of flow F1 shift to the right by some constant
amount according to Theorem 8.6 and then the bound will be 1 in the range
between 0 and the accumulation of the constant amount. Therefore, if the
accumulation of the constant amount due to shifting is greater than the token
bucket depth, the non-conformance deterioration probability bound derived
from Theorem 8.6 will be close to 1, which is overly conservative and indeed
useless as a bound. On the other hand, since the theoretical bound 2 derived
from Theorem 8.11 makes use of the stochastic service curve instead of the
worse case deterministic service curve, the bound is tighter than the theoret-
ical bound 1.

8.5 Summary and Bibliographic Comments

In this chapter, we have analytically studied the conformance deterioration
problem in networks with service level agreements. We first established the
relationship between conformance deterioration and the stochastic burstiness
increase of a flow. Then, based on the analysis in previous chapters, the sto-
chastic characterization of the flow was utilized to analyze the stochastic
burstiness increase in a per-flow scheduling network and an aggregate schedul-
ing network.

To investigate the stochastic per-flow burstiness increase for individual
flows in the aggregate scheduling network, we also investigated the stochastic
behavior of a server providing deterministic service to the aggregate of flows.
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As discussed in Chapters 5 and 6, an aggregate scheduling server providing a
service curve to an aggregate can be regarded as a per-flow scheduling server
providing a stochastic service curve to each individual flow in the aggregate.
This has helped improve the bound on conformance deterioration. Further-
more, we have applied the concatenation property for analysis of stochastic
burstiness increase. These results are not only useful for the analysis of the
situation presented in this chapter but also shed some light on conformance
analysis in aggregate scheduling networks with other general topologies.

As shown by the simulation results in Section 8.4, there is still some
room for improvement on the non-conformance probability bound. The non-
conformance probability bound may be improved by further research. Note
that Figures 8.4, 8.6, and 8.8 show that the theoretical bounds on the queue
length tail distribution of output flows in the virtual queuing system are close
to the simulation results. However, the non-conformance probability checked
by the token bucket meter is bounded by the probability that the queue length
of the output flow in the virtual queuing system exceeds the token bucket
depth, as shown in Theorem 8.1. Therefore, the major cause for the looseness
of the non-conformance bounds is the difference between the non-conformance
probability and the probability that the queue length in the virtual queuing
system exceeds a certain threshold. Further study on the differences between
the token bucket meter and the virtual queuing system may lead to a much
tighter non-conformance probability bound.

The content of this chapter is mainly based on [99] by Liu, Tham and
Jiang. The problem of conformance deterioration was initially investigated
by Guerin and Pla [57] through extensive simulations. They studied the con-
formance deterioration caused by interactions among flows aggregated in the
same traffic class. Both per-flow and per-aggregate conformance deterioration
were investigated in [57]. The authors observed through simulations the im-
pact of link load, number of cross flows and number of hops traversed by the
flow on conformance deterioration. However, [57] does not provide any ana-
lytical study on what is the extent to which a flow becomes non-conformant
after crossing a network.

Besides [57], there are several other works addressing related issues that use
different methods. The work in [56] investigated the distortion of a constant
bit rate (CBR) flow when it is aggregated with other flows after crossing
several network elements. The work in [120] extended the results in [56] to
consider the same issue with variable packet sizes. Another related work is
[97], which studied conformance deterioration in a single-node case, a radio
access network under the UMTS framework.
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Problems

8.1. Prove Theorem 8.6.

8.2. Consider a system with the same setting as the example shown in
Section 8.4.1 except that each flow has the same m.b.c. stochastic arrival
curve,

〈
e−0.25t, 50kbps

〉
. Find the non-conformance probability for F1.

8.3. Consider a system with the same setting as the example shown in
Section 8.4.2 except that each flow has the same m.b.c. stochastic arrival
curve,

〈
e−0.25t, 50kbps

〉
. Find the non-conformance probability for F1.

8.4. Consider a system with the same setting as the example shown in
Section 8.4.3 except that each flow has the same m.b.c. stochastic arrival
curve,

〈
e−0.25t, 50kbps

〉
. Find the non-conformance probability for F1.

8.5. For the system shown in Problem 8.2, if there is an impairment process
I for the server, assume I ∼mb

〈
e−0.25t, 50kbps

〉
. Find the non-conformance

probability for F1.

8.6. For the system shown in Problem 8.3, if there is an impairment process
I for the server, assume I ∼mb

〈
e−0.25t, 50kbps

〉
. Find the non-conformance

probability for F1.

8.7. For the system shown in Problem 8.4, if there is an impairment process
I for each server, assume I ∼mb

〈
e−0.25t, 50kbps

〉
. Find the non-conformance

probability for F1.

8.8. Under the same condition as in Theorem 8.12 except that β is a strict
service curve and there is an impairment process I ∼mb 〈fi, αi〉 for the server,
find the non-conformance probability for flow f .

8.9. Under the same condition as in Theorem 8.13 except that β is a strict
service curve and there is an independent impairment process I ∼mb 〈fi, αi〉
for the server, find the non-conformance probability for flow f .


