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Independent Case Analysis

In this chapter, we exploit the independence between traffic processes and
service processes to improve performance bounds. Two approaches will be
introduced. One is based on the concept of a stochastic strict service process
due to impairment, introduced in Section 4.3. Another is based on the concepts
of traffic and service envelope processes introduced in Section 5.7 and applies
moment generating functions (MGF) for the analysis.

In Chapter 5, various results for stochastic network calculus were pre-
sented. These results were obtained without considering the dependence con-
dition between flows and servers. In this chapter, we focus on independent
case analysis and introduce the five basic properties (P.1)–(P.5) when flows
and servers are independent.

6.1 Introduction

We start with a lemma, which is followed by a simple example to demonstrate
the importance of independent case analysis.

Lemma 6.1. Consider non-negative random variables X and Y . Suppose
they are independent and F̄X(x) ≤ f(x) and F̄Y (x) ≤ g(x), where F̄X(x)
and F̄Y (x), respectively, denote their complementary cummulative distribu-
tion functions (CCDF), and f, g ∈ F̄ . Then, for all x ≥ 0, there holds

P{X + Y > x} ≤ 1 − (f̄ ∗ ḡ)(x), (6.1)

where f̄(x) = 1 − [f(x)]1 and ḡ(x) = 1 − [g(x)]1.

Proof. For independent random variables X and Y , it is well known that
FX+Y = FX ∗FY ≡

∫ +∞
−∞ FX(x− y)dFY (y). Since X and Y are non-negative,

FX(x) = 0 and FY (x) = 0 for all x < 0. Hence, FX+Y =
∫ x

0
FX(x−y)dFY (y).

Notice that FX , FY , f̄ , and ḡ are wide-sense increasing, f̄ ≤ FX and ḡ ≤ FY ,
and the Stieltjes convolution operation is commutative. Then
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FX ∗ FY (x) =
∫ x

0

FX(x − y)dFY (y)

≥
∫ x

0

f̄(x − y)dFY (y) =
∫ x

0

FY (x − y)df̄(y)

≥
∫ x

0

ḡ(x − y)df̄(y) = (f̄ ∗ ḡ)(x),

and with this and P{X + Y > x} = F̄X+Y = 1 − FX ∗ FY , the lemma is
proved. ��
Example 6.2. In Lemma 1.5, it was proved that P{X + Y > x} ≤ (f ⊗ g)(x).
If X and Y are independent, we then have two bounds for P{X + Y > x},
which are (1.12) and (6.1). Suppose f(x) = g(x) = e−x. With Lemma 1.5, we
obtain

P{X + Y > x} ≤ 2e−x/2,

and with Lemma 6.1, we get

P{X + Y > x} ≤ (1 + x)e−x.

These two bounds are plotted in Figure 6.1. The figure clearly shows that
the bound obtained from Lemma 6.1 is much better than the bound from
Lemma 1.5.
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Fig. 6.1. Comparison of Lemmas 6.1 and 1.5

This example implies that by considering the independence condition, sig-
nificant improvement may be obtained for the result.
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From the example above, we expect that when flows and servers are inde-
pendent in a network, much better results or tighter bounds can be obtained
for properties (P.1)–(P.5). However, except for the superposition property
(P.5), it is not straightforward to obtain properties (P.1)–(P.4) for the inde-
pendent case.

The difficulty relates to the dependences implied in the definitions of the
various stochastic service curve server models introduced in Chapter 4. For
example, the weak stochastic service curve model is defined on the following
inequality that duplicates (4.1):

P{A ⊗ β(t) − A∗(t) > x} ≤ g(x). (6.2)

The definition of the weak stochastic service curve model implies that a weak
stochastic service curve β(t) is generally dependent on the arrival process
A(t) and the output process A∗(t). Similar dependence can be found in the
stochastic service curve model and the θ-the stochastic service curve model,
as well as in the stochastic service envelope process definition.

The difficulty also relates to the inherent dependences found in interme-
diate results obtained by using the analysis approach in the previous chapter.
For example, in (5.26), we obtain

sup
0≤s≤t

sup
0≤u≤s

[A∗(u, s) − α∗(s − u)]

≤ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] + sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] (6.3)

where both sup0≤s≤t sup0≤u≤s[A(u, s) − α(s − u)] and sup0≤s≤t[A ⊗ β(s) −
A∗(s)] are defined to depend on the arrival process A, which further makes
them dependent on each other.

In deterministic network calculus, the dependences mentioned above do
not cause any difficulties in the analysis since only deterministic worst case
scenarios are considered and the dependences need not be taken into account.

In stochastic network calculus, however, the dependences make it diffi-
cult to obtain independent case results directly. For example, even when the
bounds on the complementary probability distribution functions (CPDF) of
the two terms on the right-hand side of (6.3) are given, we cannot apply
Lemma 6.1 to (6.3) since these two terms are inherently dependent, as dis-
cussed above.

In the following section, the concept of a stochastic strict server, which
was introduced earlier in Chapter 4, is used to help decouple the dependences
discussed above. As a result, a further independent case analysis on properties
(P.1)–(P.4) can be conducted.

6.2 Analysis Based on Stochastic Strict Server

In Section 4.3, we introduced the concept of a stochastic strict server . In addi-
tion, we defined a special type of stochastic strict server. In such a stochastic
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server, the stochastic nature of service is due to some random impairment
processes. Particularly, a system is said to be a stochastic strict server pro-
viding strict service curve β̂ ∈ F with impairment process I if, during any
period (s, t], the actual service S(s, t) provided by the system satisfies

S(s, t) ≥ β̂(t − s) − I(s, t). (6.4)

Note that in defining stochastic strict server due to impairment only one
impairment process I is used, which can actually be the superposition of mul-
tiple constituent processes that cause the system to be unable to deliver the
corresponding service to the input considered. Two important types of such
processes are worth highlighting. One is the process describing the actually
impaired service. For example, due to random errors, a wireless channel fails
to deliver the corresponding service to its users. In this case, the error process
can be considered an impairment process. Another important type of processes
that can be viewed as an impairment processes to the flow considered is due
to cross traffic or flows competing service with the flow considered.

Also in Section 4.3, it has been shown that when the stochastic arrival
curve characterization of the impairment process is known, the stochastic
service curve characterization of the stochastic strict server can be found as
shown by Theorems 4.12 and 4.13.

In the rest of this section, we further exploit the concept of a stochastic
strict server due to impairment and present results under independent case
analysis. The focus is on the five basic properties introduced in Chapter 1.

6.2.1 Backlog and Delay Bounds

We start with the backlog bound and delay bound. We proved in (5.5) that

B(t)
≤ sup

0≤s≤t
{A(s, t) − α(t − s)} + sup

t≥0
{α(t) − β(t)} + A ⊗ β(t) − A∗(t). (6.5)

In addition, assuming the server is a stochastic strict server providing strict
service curve β̂ with impairment process I ∼ta 〈g, γ〉, we have from (4.12)
that

A ⊗ β(t) − A∗(t) ≤
(

sup
0≤s≤t

[I(s, t) − γ(t − s)]
)+

, (6.6)

where β(t) = β̂(t) − γ(t). Applying (6.6) to (6.5), we get

B(t) ≤ sup
0≤s≤t

{A(s, t) − α(t − s)} +
(

sup
0≤s≤t

[I(s, t) − γ(t − s)]
)+

+α � β(0). (6.7)

If A and I are independent random processes, since α, β, and γ are non-
random functions, the first two terms on the right-hand side of (6.7) are also
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independent. Then, together with the fact the m.b.c. stochastic arrival curve
and θ-m.b.c stochastic arrival curve imply a v.b.c. stochastic arrival curve, we
have the following theorem.

Theorem 6.3. Consider a system S with input A. Let ∼sac be either ∼vb,
∼mb, or ∼θ−mb. Suppose the input has a stochastic arrival curve α ∈ F with
bounding function f ∈ F̄ ; i.e., A ∼sac 〈f, α〉. Also suppose the server is a sto-
chastic strict server providing strict service curve β̂ with impairment process
I ∼sac 〈g, γ〉. If A and I are independent, the backlog B(t) is guaranteed such
that, for all x ≥ 0,

P{B(t) > x} ≤ 1 − f̄ ∗ ḡ

(

x + inf
s≥0

[β(s) − α(s)]
)

where β(t) = β̂(t) − γ(t), f̄(x) = 1 − [f(x)]1, and ḡ(x) = 1 − [g(x)]1.

If the input process and/or the impairment process is characterized by a
t.a.c. stochastic arrival curve, the corresponding results of Theorem 6.3 easily
follow from the relationship between the t.a.c. stochastic arrival curve and
v.b.c. stochastic arrival curve introduced in Theorem 3.13.

For the delay D(t), under the same assumption as for (6.6), we proved in
(5.13) that

P{D(t) > x} ≤ P{X1 + X2 > inf
s≥0

[β(s) − α(s − x)]}

≤ P{X1 + X3 > inf
s≥0

[β(s) − α(s − x)]} (6.8)

with

X1 = sup
0≤s≤t

[A(s, t) − α(t − s)],

X2 = A ⊗ β(t + x) − A∗(t + x),

X3 =
(

sup
0≤s≤t+x

[I(s, t + x) − γ(t + x − s)]
)+

,

where we have used X2 ≤ X3 based on (4.12).
If A and I are independent, X1 and X3 are also independent. Then, to-

gether with the fact that the m.b.c. stochastic arrival curve and θ-m.b.c.
stochastic arrival curve imply the v.b.c. stochastic arrival curve, we have the
following theorem.

Theorem 6.4. Consider a system S with input A. Let ∼sac be either ∼vb,
∼mb, or ∼θ−mb. Suppose the input has a stochastic arrival curve α ∈ F with
bounding function f ∈ F̄ ; i.e., A ∼sac 〈f, α〉. Also suppose the server is
a stochastic strict server providing strict service curve β̂ with impairment
process I ∼sac 〈g, γ〉. If A and I are independent, the delay D(t) is guaranteed
such that, for all x ≥ 0,
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P{D(t) > h (α + x, β)} ≤ 1 − f̄ ∗ ḡ(x),

where β(t) = β̂(t) − γ(t), f̄(x) = 1 − [f(x)]1 and ḡ(x) = 1 − [g(x)]1.

If the input process and/or the impairment process are characterized by
a t.a.c. stochastic arrival curve, the corresponding results of Theorem 6.4 can
be obtained from Theorem 6.3 and based on the relationship between the
t.a.c. stochastic arrival curve and v.b.c. stochastic arrival curve introduced in
Theorem 3.13.

6.2.2 Output Characterization

First, we consider the output t.a.c. stochastic arrival curve characterization.
Assuming the server is a stochastic strict server providing strict service curve
β̂ with impairment process I ∼ta 〈g, γ〉, we get from (5.20) and (4.12)

A∗(s, t) − α � β(t − s)
≤ sup

0≤u≤t
{A(u, t) − α(t − u)} + [A ⊗ β(s) − A∗(s)]

≤ sup
0≤u≤t

{A(u, t) − α(t − u)} +
(

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

. (6.9)

If A and I are independent, the two terms on the right-hand side of (6.9)
are also independent. Then, together with the relationship between the t.a.c.
stochastic arrival curve and v.b.c. stochastic arrival curve introduced in
Theorem 3.13, we have the following result on output traffic characterization
from (6.9).

Theorem 6.5. Consider a system S with input A. Let ∼sac be either ∼vb,
∼mb, or ∼θ−mb. Suppose the input has a stochastic arrival curve α ∈ F with
bounding function f ∈ F̄ ; i.e., A ∼sac 〈f, α〉. Also suppose the server is
a stochastic strict server providing strict service curve β̂ with impairment
process I ∼sac 〈g, γ〉. If A and I are independent, the output has a t.a.c.
stochastic arrival curve A∗ ∼ta 〈f∗, α∗〉 with

α∗(t) = α � β(t),
f∗(x) = 1 − f̄ ∗ ḡ(x),

where β(t) = β̂(t) − γ(t), f̄(x) = 1 − [f(x)]1, and ḡ(x) = 1 − [g(x)]1.

If the input process and/or the impairment process are characterized by a
t.a.c. stochastic arrival curve, the output t.a.c. stochastic arrival curve charac-
terization can be derived from Theorem 6.5 based on the relationship between
the t.a.c. stochastic arrival curve and v.b.c. stochastic arrival curve introduced
in Theorem 3.13.
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Let us now consider the output t.a.c. stochastic arrival curve characteriza-
tion. Under the same conditions as in Theorem 6.5, if f∗ ∈ Ḡ, the output v.b.c.
stochastic arrival curve characterization can also be obtained from Theorem
6.5 based on the relationship between the t.a.c. stochastic arrival curve and
v.b.c. stochastic arrival curve. Specifically, we have the following corollary.

Corollary 6.6. Under the same conditions as Theorem 6.5, if f∗ ∈ Ḡ, the
output has a v.b.c stochastic arrival curve A∗ ∼vb 〈f∗,θ, α∗

θ〉 with

α∗
θ(t) = α � β(t) + θ · t,

f∗,θ(x) = f∗(x) +
1
θ

∫ ∞

x

f∗(y)dy,

where β(t) = β̂(t) − γ(t), f∗(x) = 1 − f̄ ∗ ḡ(x), f̄(x) = 1 − [f(x)]1 and
ḡ(x) = 1 − [g(x)]1, for any θ > 0.

Alternatively, for the output v.b.c. stochastic arrival curve characteriza-
tion, we get from (6.9) that

sup
0≤s≤t

{A∗(s, t) − α � β(t − s)}

≤ sup
0≤s≤t

{A(s, t) − α(t − s)}

+
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

(6.10)

and

sup
0≤s≤t

{A∗(s, t) − α � β(t − s) − θ · (t − s)}

≤ sup
0≤s≤t

{A(s, t) − α(t − s)}

+ sup
0≤s≤t

[(

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

− θ · (t − s)

]

, (6.11)

and with this we can conclude the following theorem.

Theorem 6.7. Consider a system S with input A. Suppose the input has a
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ ; i.e., A ∼sac

〈f, α〉, where ∼sac is either ∼vb, ∼mb, or ∼θ−mb. Also suppose the server
is a stochastic strict server providing strict service curve β̂ with impairment
process I. Assume A and I are independent.

• If I ∼mb 〈g, γ〉, the output has a v.b.c stochastic arrival curve A∗ ∼vb

〈f∗, α∗〉 with α∗(t) = α � β(t) and f∗(x) = 1 − f̄ ∗ ḡ(x);
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• If I ∼θ−mb 〈gθ, γ〉, the output has a v.b.c stochastic arrival curve A∗ ∼vb

〈f∗,θ, α∗
θ〉 with α∗

θ(t) = α � β(t) + θ · t and f∗,θ(x) = 1 − f̄ ∗ ḡθ(x), where
β(t) = β̂(t) − γ(t), f̄(x) = 1 − [f(x)]1, ḡ(x) = 1 − [g(x)]1 and ḡθ(x) =
1 − [gθ(x)]1, for any θ > 0.

Under the same conditions as in Theorem 6.5, if the input is characterized
by a t.a.c. stochastic arrival curve and/or the impairment process is by other
types of stochastic arrival curves, the output v.b.c. stochastic arrival curve
characterization can also be obtained from Theorem 6.5 based on its relation-
ship with the v.b.c. stochastic arrival curve for the input, m.b.c. stochastic
arrival curve, or θ-m.b.c. stochastic arrival curve for the impairment process.

We now consider the output m.b.c. stochastic arrival curve characteriza-
tion. Under the same conditions as in Theorem 6.5, if f∗ ∈ Ḡ, the output m.b.c.
stochastic arrival curve characterization can also be obtained from Theorem
6.5 based on the relationship between the m.b.c. stochastic arrival curve and
v.b.c. stochastic arrival curve. Specifically, we have the following corollary.

Corollary 6.8. Under the same conditions as Theorem 6.5, if f∗ ∈ Ḡ, the
output has an m.b.c. stochastic arrival curve A∗ ∼mb 〈f∗,θ

t , α∗
θ〉 with α∗

θ(t) =
α � β(t) + θ · t and f∗,θ

t (x) = 1
θ

∫∞
x−θt

f∗(y)dy, where β(t) = β̂(t) − γ(t),
f∗(x) = 1− f̄ ∗ ḡ(x), f̄(x) = 1− [f(x)]1, and ḡ(x) = 1− [g(x)]1 for any θ > 0.

Alternatively, from (5.26), it is known that

sup
0≤s≤t

sup
0≤u≤s

[A∗(u, s) − α∗(s − u)]

≤ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] + sup
0≤s≤t

[A ⊗ β(s) − A∗(s)]. (6.12)

In addition, with the strict stochastic server assumption, it has been shown
in (4.13) that

sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] ≤
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

. (6.13)

Applying (6.13) to (6.12), we get

sup
0≤s≤t

sup
0≤u≤s

[A∗(u, s) − α∗(s − u)]

≤ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] + (6.14)

(

sup
0≤u≤t

sup
u≤s≤t

[I(u, s) − γ(s − u)]
)+

. (6.15)

Since A and I are independent and so are the first two terms on the right-hand
side of (6.14), the following theorem follows easily.
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Theorem 6.9. Consider a system S with input A. Suppose the input has an
m.b.c. stochastic arrival curve α ∈ F with bounding function f ∈ F̄ ; i.e.,
A ∼mb 〈f, α〉. Also suppose the server is a stochastic strict server providing
strict service curve β̂ with impairment process I and the impairment process
has an m.b.c. stochastic arrival curve I ∼mb 〈g, γ〉. If A and I are inde-
pendent, the output has an m.b.c. stochastic arrival curve A∗ ∼mb 〈f∗, α∗〉
with α∗(t) = α � β(t) and f∗(x) = 1 − f̄ ∗ ḡ(x), where β(t) = β̂(t) − γ(t),
f̄(x) = 1 − [f(x)]1, and ḡ(x) = 1 − [g(x)]1.

Under other types of traffic arrival curves for the input and the impair-
ment process, the corresponding output m.b.c. stochastic arrival curve can
be derived from Corollary 6.8 and Theorem 6.9 based on the relationships
among the various types of traffic arrival curve characterizations presented in
Chapter 3.

Finally, we consider the output θ–m.b.c. stochastic arrival curve charac-
terization. Under the same conditions as in Theorem 6.5, if f∗ ∈ Ḡ, the out-
put m.b.c. stochastic arrival curve characterization can also be obtained from
Theorem 6.5 based on the relationship between the t.a.c. stochastic arrival
curve and m.b.c. stochastic arrival curve. Specifically, we have the following
corollary.

Corollary 6.10. Under the same conditions as in Theorem 6.5, if f∗ ∈ Ḡ,
the output has a v.b.c. stochastic arrival curve A∗ ∼vb 〈f∗,θ, α∗

θ〉 with

α∗
θ(t) = α � β(t) + (θ1 + θ2) · t,

f∗,θ(x) = f̂∗(x) +
1
θ2

∫ ∞

x

f̂∗(y)dy,

where β(t) = β̂(t)−γ(t), f̂∗(x) = f∗(x)+ 1
θ1

∫∞
x

f∗(y)dy, f∗(x) = 1− f̄ ∗ ḡ(x),
f̄(x) = 1 − [f(x)]1, and ḡ(x) = 1 − [g(x)]1 for any θ1, θ2 > 0.

Alternatively, from (5.27), it is known that

sup
0≤s≤t

[

sup
0≤u≤s

[A∗(u, s) − α � β(s − u)] − θ(t − s)
]

≤ sup
0≤s≤t

[

sup
0≤u≤s

[A(u, s) − α(s − u)] − θ(t − s)
]

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s)], (6.16)

which, with (6.13) applied, results in

sup
0≤s≤t

[

sup
0≤u≤s

[A∗(u, s) − α � β(s − u)] − θ(t − s)
]

≤ sup
0≤s≤t

[

sup
0≤u≤s

[A(u, s) − α(s − u)] − θ(t − s)
]

+
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

. (6.17)



128 6 Independent Case Analysis

Then, we similarly have the following result.

Theorem 6.11. Consider a system S with input A. Suppose the input has
a θ-m.b.c. stochastic arrival curve α ∈ F with bounding function f ∈ F̄ ;
i.e., A ∼θ−mb 〈f, α〉. Also suppose the server is a stochastic strict server
providing strict service curve β̂ with impairment process I, and the impairment
process has an m.b.c. stochastic arrival curve I ∼mb 〈g, γ〉. If A and I are
independent, the output has a θ-m.b.c stochastic arrival curve A∗ ∼mb 〈f∗, α∗〉
with α∗(t) = α � β(t) and f∗(x) = 1 − f̄ ∗ ḡ(x), where β(t) = β̂(t) − γ(t),
f̄(x) = 1 − [f(x)]1 and ḡ(x) = 1 − [g(x)]1.

Under other types of traffic arrival curves for the input and the impair-
ment process, the corresponding output θ-m.b.c stochastic arrival curve can
be derived from Corollary 6.10 and Theorem 6.11 based on the relationships
among the various types of traffic arrival curve characterizations presented in
Chapter 3.

6.2.3 Concatenation Property

Consider two servers in tandem. If each server provides a stochastic service
curve βn, n = 1, 2, we have shown in (5.32) that

sup
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)]

≤ sup
0≤s≤t

[A1 ⊗ β1(s) − A1∗(s)] + sup
0≤s≤t

[A2 ⊗ β2(s) − A2∗(s)]. (6.18)

Assume each server is a stochastic strict server providing strict service
curve β̂n, n = 1, 2, with impairment process In ∼mb 〈gn, γn〉. Let βn(t) =
β̂n(t) − γn(t). We then have (6.13), and applying it to (6.18), we obtain

sup
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)]

≤
(

sup
0≤s≤t

sup
0≤u≤s

[I1(u, s) − γ1(s − u)]
)+

+
(

sup
0≤s≤t

sup
0≤u≤s

[I2(u, s) − γ2(s − u)]
)+

. (6.19)

If I1 and I2 are independent, so are the two terms of the right-hand side of
(6.19). The discussion above can be easily extended to more than two nodes,
and the following theorem is obtained that corresponds to the concatenation
property of the stochastic service curve.

Theorem 6.12. Consider a flow passing through a network of N nodes in
tandem, and assume each node is a stochastic strict server providing stochastic
strict service curve β̂n with impairment process In ∼mb 〈gn, γn〉. If In are
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independent and βn ∈ F , (n = 1, 2, . . . , N), then the network guarantees to
the flow a stochastic service curve S ∼sc 〈g, β〉 with

β(t) = β1 ⊗ β2 ⊗ · · · ⊗ βN (t),
g(x) = 1 − ḡ1 ∗ ḡ2 ∗ · · · ∗ ḡN (x),

where βn(t) = β̂n(t) − γn(t), ḡn(x) = 1 − [gn(x)]1, n = 1, 2, . . . , N .

By iteratively applying Lemma 5.39, we have in (5.39) that

A ⊗ β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t) − A∗(t)

≤ sup
0≤s≤t

[
A1 ⊗ β1(s) − A1∗(s) − θ · (t − s)

]

+ sup
0≤s≤t

[
A2 ⊗ β2(s) − A2∗(s) − θ · (t − s)

]
+ · · · +

+ sup
0≤s≤t

[
AN−1 ⊗ βN−1(s) − A(N−1)∗(s) − θ · (t − s)

]

+AN ⊗ β (t) − A∗(t). (6.20)

Assume each server is a stochastic strict server providing strict service
curve β̂n, n = 1, 2, . . . , N , with impairment process In ∼θ−mb 〈gn, γn〉. Let
βn(t) = β̂n(t) − γn(t). We then have (4.14), and applying it to (6.20), we
obtain

A ⊗ β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t) − A∗(t)

≤
(

sup
0≤s≤t

[

sup
0≤u≤s

[I1(u, s) − γ1(s − u)] − θ · (t − s)
])+

+
(

sup
0≤s≤t

[

sup
0≤u≤s

[I2(u, s) − γ2(s − u)] − θ · (t − s)
])+

+ · · · +

+
(

sup
0≤s≤t

[

sup
0≤u≤s

[IN−1(u, s) − γN−1(s − u)] − θ · (t − s)
])+

+
(

sup
0≤s≤t

[IN (s, t) − γN (t − s)]
)+

. (6.21)

If In, n = 1, 2, . . . , N , are independent, so are the terms on the right-hand
side of (6.21), and hence the following result is obtained.

Theorem 6.13. Consider a flow passing through a network of N nodes in
tandem, and assume each node is a stochastic strict server providing stochastic
strict service curve β̂n with impairment process In ∼θ−mb 〈gn, γn〉. If In are
independent, βn

−(n−1)θ ∈ F , and gn ∈ F̄ , (n = 1, 2, . . . , N), then the network
guarantees to the flow a weak stochastic service curve S ∼ws 〈g, β〉 with

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t), (6.22)

g(x) = 1 − ḡ1 ∗ ḡ2 ∗ · · · ∗ ḡN (x), (6.23)
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where

βn
−(n−1)θ(t) = β̂n(t) − γn(t) − (n − 1)θ · t, n = 1, 2, . . . , N,

ḡn(x) = 1 − [gn(x)]1 , n = 1, 2, . . . , N,

for any θ > 0.

Based on the relationship between the weak stochastic service curve and θ-
stochastic service curve, the following result corresponds to the concatenation
property of the θ-stochastic service curve.

Corollary 6.14. Under the same conditions as in Theorem 6.13, if g ∈ Ḡ,
the network guarantees to the flow a θ-stochastic service curve S ∼θ−sc 〈gθ, β〉
with gθ(x) = g(x) + 1

θ

∫ y

x
g(y)dy, where β(t) and g(x) are as shown in (6.22)

and (6.23), respectively.

Based on the relationship between the v.b.c. stochastic arrival curve and
θ-m.b.c. stochastic arrival curve, the following result corresponds to the con-
catenation property of the weak stochastic service curve.

Corollary 6.15. Consider a flow passing through a network of N nodes in
tandem, and assume each node is a stochastic strict server providing stochastic
strict service curve β̂n with impairment process In ∼vb 〈gn, γn〉. If In are
independent, βn

−(n−1)θ ∈ G, and gn ∈ Ḡ, (n = 1, 2, . . . , N), then the network
guarantees to the flow a weak stochastic service curve S ∼ws 〈g, β〉 with

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t), (6.24)

g(x) = 1 − ḡ1,θ1 ∗ ḡ2,θ2 ∗ · · · ∗ ḡN,θN (x), (6.25)

where

βn
−(n−1)θ(t) = β̂n(t) − γn(t) − (n − 1)θ · t, n = 1, 2, . . . , N,

ḡn,θn(x) = 1 −
[

gn(x) +
1
θn

∫ ∞

x

gn(y)dy

]

1

, n = 1, 2, . . . , N − 1,

ḡN,θN (x) = 1 −
[
gN (x)

]
1
,

for any θ, θ1, . . . , θN−1 > 0.

6.2.4 Leftover Service Characterization

Consider a system fed with a flow A that is the aggregation of two constituent
flows, A1 and A2. For the output, there holds A∗(t) = A∗

1(t) + A∗
2(t). In

addition, we have A∗(t) ≤ A(t), A∗
1(t) ≤ A1(t), and A∗

2(t) ≤ A2(t). As in
(5.40), we have for functions β, α2 and any t ≥ 0
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A1 ⊗ (β − α2)(t) − A∗
1(t)

≤ [A ⊗ β(t) − A∗(t)] + sup
0≤s≤t

[A2(s, t) − α2(t − s)], (6.26)

from which we also have as in (5.41) and (5.42),

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s)]

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] + sup
0≤s≤t

sup
0≤u≤s

[A2(u, s) − α2(s − u)] (6.27)

and

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s) − θ (t − s)]

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ1 (t − s)]

+ sup
0≤s≤t

[

sup
0≤u≤s

[A2(u, s) − α2(s − u)] − θ2 (t − s)
]

(6.28)

for any θ1, θ2 > 0 and θ = θ1 + θ2.
Assume the system is a stochastic strict server providing strict service

curve β̂ with impairment process I ∼sac 〈g, γ〉, where ∼sac may be ∼vb, ∼mb,
or ∼θ−mb. Let β(t) = β̂(t) − γ(t). We then have (4.12), (4.13) and (4.14),
and applying them respectively to (6.26), (6.27), and (6.28), we obtain the
following theorems.

Theorem 6.16 (Leftover Weak Stochastic Service Curve). Consider a
server fed with a flow A that is the aggregation of two constituent flows A1 and
A2. Assume the server is a stochastic strict server to the aggregate, providing
stochastic strict service curve β̂ with impairment process I ∼vb 〈g, γ〉.

(i) The server guarantees that

A1 ⊗ (β − α2)(t) − A∗
1(t)

≤
(

sup
0≤s≤t

[I(s, t) − γ(t − s)]
)+

+ sup
0≤s≤t

[A2(s, t) − α2(t − s)]. (6.29)

(ii)If A2 and I are independent, A2 ∼mb 〈f2, α2〉, and β′
1 ∈ F , then the server

guarantees to flow A1 a weak stochastic service curve S1 ∼ws 〈g′1, β′
1〉,

where
g′1(x) = 1 − ḡ ∗ f̄2(x), β′

1(t) = β(t) − α2(t),

with β(t) = β̂(t) − γ(t), ḡ(x) = 1 − [g(x)]1, and f̄2(x) = 1 − [f2(x)]1.

Theorem 6.17 (Leftover Stochastic Service Curve). Consider a server
fed with a flow A that is the aggregation of two constituent flows A1 and
A2. Assume the server is a stochastic strict server to the aggregate, providing
stochastic strict service curve β̂ with impairment process I ∼mb 〈g, γ〉.
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(i) The server guarantees that

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s)]

≤
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

+ sup
0≤s≤t

sup
0≤u≤s

[A2(u, s) − α2(s − u)]. (6.30)

(ii) If A2 and I are independent, A2 ∼mb 〈f2, α2〉, and β′
1 ∈ F , then the server

guarantees to flow A1 a stochastic service curve S1 ∼sc 〈g′1, β′
1〉, where

g′1(x) = 1 − ḡ ∗ f̄2(x), β′
1(t) = β(t) − α2(t),

with β(t) = β̂(t) − γ(t), ḡ(x) = 1 − [g(x)]1, and f̄2(x) = 1 − [f2(x)]1.

Theorem 6.18 (Leftover θ-Stochastic Service Curve). Consideraserver
fedwithaflowA that is theaggregationof twoconstituentflowsA1 andA2.Assume
the server is a stochastic strict server to the aggregate, providing stochastic strict
service curve β̂ with impairment process I ∼θ−mb 〈g, γ〉.

(i) The server guarantees that

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s) − θ (t − s)]

≤
(

sup
0≤s≤t

[

sup
0≤u≤s

[I(u, s) − γ(s − u)] − θ1 · (t − s)
])+

+ sup
0≤s≤t

[

sup
0≤u≤s

[A2(u, s) − α2(s − u)] − θ2 (t − s)
]

(6.31)

for any θ1, θ2 > 0 and θ = θ1 + θ2.
(ii)If A2 and I are independent, A2 ∼θ−mb 〈f2, α2〉, and β′

1 ∈ F , then the
server guarantees to flow A1 a θ-stochastic service curve S1 ∼θ−sc 〈g′1, β′

1〉,
where

g′1(x) = 1 − ḡ ∗ f̄2(x), β′
1(t) = β(t) − α2(t)

with β(t) = β̂(t) − γ(t), ḡ(x) = 1 − [g(x)]1, and f̄2(x) = 1 − [f2(x)]1.

Note that in Theorems 6.16 to 6.18, the first part is an intermediate step
for getting the second part. The intention of including the first part is as
follows: When the leftover service property is used to derive other results,
such as the concatenation property, the first part can be applied to their
derivations. Then, if flows and the impairment processes of servers are inde-
pendent, Lemma 6.1 can be used to derive the corresponding independent case
bounds. However, if we were only given the second part, such an independent
case analysis could not be applied and the general case (min, +) analysis in
Chapter 5 would have to be used. As a result, looser bounds may be obtained.
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Also note that from the viewpoint of the service provided to flow A1, A2(t)
can be considered as an impairment process. In other words, for flow A1, the
server has two independent impairment processes I(t) and A2(t). From this
viewpoint, Theorems 6.16 to 6.18 can also be proved based on the independent
case superposition property in the next subsection and the results for the
stochastic strict server due to impairment in Section 4.3.1.

Based on the relationships between the stochastic arrival curve models
and between the stochastic service curve models, the corresponding results of
Section 5.4 can be derived from Theorems 6.16 to 6.18 for the independent
case.

6.2.5 Superposition Property

The superposition property means that the superposition of flows can be
represented using the same traffic model. With this property, the aggregate of
(possibly many) individual flows may be considered as a single aggregate flow,
so that the QoS performance for the aggregate can be derived in the same
way as for a single flow. This section discusses the superposition property for
the various stochastic traffic models introduced in Chapter 2.

Consider N flows with arrival processes Ai(t), i = 1, . . . , N . Let A(t) be
the superposition of the N flows. In other words, we have for any s, t ≥ 0,

A(s, s + t) = A1(s, s + t) + · · · + AN (s, s + t).

It has been shown in (5.43), (5.44), (5.45), and (5.46) that, for any functions
αi(t), i = 1, . . . , N , we have

A(s, s + t) − [α1(t) + · · · + αN (t)]
= [A1(s, s + t) − α1(t)] + · · · + [AN (s, s + t) − αN (t)], (6.32)

sup
0≤s≤t

[A(s, t) − [α1(t − s) + · · · + αN (t − s)]]

≤ sup
0≤s≤t

[A1(s, t) − α1(t − s)] + · · · + sup
0≤s≤t

[AN (s, t) − αN (t − s)],(6.33)

sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − [α1(s − u) + · · · + αN (s − u)]]

≤ sup
0≤s≤t

sup
0≤u≤s

[A1(u, s) − α1(s − u)] + · · ·

+ sup
0≤s≤t

sup
0≤u≤s

[AN (u, s) − αN (s − u)]

(6.34)



134 6 Independent Case Analysis

sup
0≤s≤t

[

sup
0≤u≤s

{A(u, s) − [α1(s − u) + · · · + αN (s − u)]} − θ · (t − s)
]

≤ sup
0≤s≤t

[

sup
0≤u≤s

[A1(u, s) − α1(s − u)] − θ1 · (t − s)
]

+ · · ·

+ sup
0≤s≤t

[

sup
0≤u≤s

[AN (u, s) − αN (s − u)] − θN · (t − s)
]

. (6.35)

Assume Ai(t), i = 1, . . . , N , are independent. Then, the independent case
superposition properties in Theorems 6.19 to 6.22 follow from (6.32) to (6.35),
respectively.

Theorem 6.19. Consider N flows with arrival processes Ai(t), i = 1, . . . , N .
Let A(t) denote the aggregate arrival process. If Ai(t) are independent processes
and ∀i, Ai ∼ta 〈fi, αi〉, then A ∼ta 〈f, α〉 with α(t) =

∑N
i=1 αi(t) and

f(x) = 1 − f̄1 ∗ · · · ∗ f̄N (x), where f̄i = 1 − fi and ∗ denotes the Stieltjes
convolution.

Theorem 6.20. Consider N flows with arrival processes Ai(t), i = 1, . . . , N .
Let A(t) denote the aggregate arrival process. If Ai(t) are independent processes
and ∀i, Ai ∼vb 〈fi, αi〉, then A ∼vb 〈f, α〉 with α(t) =

∑N
i=1 αi(t) and

f(x) = 1 − f̄1 ∗ · · · ∗ f̄N (x), where f̄i = 1 − fi and ∗ denotes the Stieltjes
convolution.

Theorem 6.21. Consider N flows with arrival processes Ai(t), i = 1, . . . , N .
Let A(t) denote the aggregate arrival process. If Ai(t) are independent processes
and ∀i, Ai ∼mb 〈fi, αi〉, then A ∼mb 〈f, α〉 with α(t) =

∑N
i=1 αi(t) and

f(x) = 1 − f̄1 ∗ · · · ∗ f̄N (x), where f̄i = 1 − fi and ∗ denotes the Stieltjes
convolution.

Theorem 6.22. Consider N flows with arrival processes Ai(t), i = 1, . . . , N .
Let A(t) denote the aggregate arrival process. If Ai(t) are independent processes
and ∀i, Ai ∼θ−mb 〈fi, αi〉, then A ∼θ−mb 〈fθ, α〉 with α(t) =

∑N
i=1 αi(t) and

fθ(x) = 1 − f̄θ1
1 ∗ · · · ∗ f̄θN

N (x), where f̄θ
i = 1 − fθ

i and ∗ denotes the Stieltjes
convolution for any θ1, . . . , θN > 0 and θ = θ1 + · · · + θN .

6.2.6 Scaling of End-to-End Delay Bound

In Section 5.6, it was introduced that the end-to-end delay bound is a scaling
in O

(
n2 log n

)
from the node-by-node analysis approach and a scaling in

O (n log n) from the concatenation property of the stochastic service curve. In
Section 5.6, the possible independence between flows and servers is not taken
into account. To demonstrate the use of independent case analysis results, we
consider the same network as studied in Section 5.6 and show that the end-
to-end delay bound is a scaling in O(n) when some independence conditions
are satisfied.
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Specifically, we consider a network of n servers in tandem through which
flow A passes. Each server is a constant-rate server with capacity C. At each
server, there is a cross-flow that joins and leaves. Assume the considered flow A
and all the cross flows are independent. For ease of expression, we also assume
that flow considered and all cross-flows have the same m.b.c. stochastic arrival
curve (SAC) r · t with bounding function f (x) = e−x and 2r < C.

As discussed in Section 4.3.1, each server along the end-to-end path of the
flow F considered can be viewed as a stochastic strict server with impairment
process. Particularly, it is a stochastic strict server S providing strict service
curve β̂(t) = Ct with impairment process Ii ∼mb 〈f, r〉, i = 1, . . . , n. Then, it
is known from Theorem 6.12 that the network provides to the flow an end-to-
end stochastic service curve β(t). More specifically, iteratively applying (6.18)
and (6.13), we can obtain

sup
0≤s≤t

[A ⊗ β(t) − A∗(s)]

≤
(

sup
0≤s≤t

[

sup
0≤u≤s

[I1(u, s) − r(s − u)]
])+

+ · · ·

+
(

sup
0≤s≤t

[

sup
0≤u≤s

[In(u, s) − r(s − u)]
])+

. (6.36)

For the end-to-end delay D(t), (6.36) can be applied to Theorem 6.4 and
particularly (6.8). Then, one easily obtains

P{D(t) > x} ≤ P{X + Y1 + · · · + Yn > rx}

with

X = sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − r(s − u)],

Yi =
(

sup
0≤s≤t

[

sup
0≤u≤s

[Ii(u, s) − r(s − u)]
])+

, i = 1, . . . , n.

Since A and Ii, i = 1, . . . , n are independent, so are X and Yi, i = 1, . . . , n.
In addition, we have simply assumed the same bounding function e−x for X
and Yi. So, X+Y1+· · ·+Yn is Gamma-distributed with parameters Γ (n+1, 1).
Then, we get for the end-to-end delay bound

P{D(t) > x} ≤ 1 − γ(n + 1, rx)
(n + 1)!

, (6.37)

where the function γ(n, x) is defined as

γ(n, x) =
∫ x

0

yn−1e−ydy.

While (6.37) provides a good delay bound, it is difficult to see how it
scales with respect to the number of servers in the network. In the following,
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we consider a possibly looser bound, but it is easy to see its scaling. From the
Chernoff bound, we get

P{D(t) > x} ≤ e−θrxMX+Y1+···+Yn
(θ)

= e−θrx [MX(θ)]n+1 (6.38)

=
1

(1 − θ)n+1
e−θrx. (6.39)

Suppose ε is the allowed delay violation probability. Letting the right-hand
side of (6.38) equal ε, we then have the corresponding delay bound

d =
1
θr

[

log
1
ε

+ (n + 1) log
1

(1 − θ)

]

,

which clearly scales in O(n).
Note that the right-hand side of (6.37) is obtained directly from the dis-

tribution function of X + Y1 + · · · + Yn, while the right-hand side of (6.38) is
an upper bound on the distribution function. It can hence be concluded that
the end-to-end delay bound under the independent case is a scaling of O(n).

6.3 Calculus with Moment Generating Functions

This section presents stochastic network calculus results based on moment
generating functions (MGFs). In Chapters 3 and 4, respectively we introduced
the concepts of the traffic envelope process and service envelope process. In
Chapter 5, we showed that the five basic properties can be represented us-
ing traffic and service envelope processes. In this section, we further present
the corresponding results using the moment generating functions of these
processes.

6.3.1 Moment Generating Function Basics

As introduced in Chapter 1, the moment generating function of a random
variable X is defined, for any θ ≥ 0

MX (θ) = EeθX , (6.40)

where E is the expectation of its argument.
Let MX (−θ) = Ee−θX . It can be easily verified that

Mmin[X,Y ] (θ) ≤ min [MX (θ) ,MY (θ)] , (6.41)
Mmax[X,Y ] (−θ) ≤ min [MX (−θ) ,MY (−θ)] . (6.42)

For two independent variables, it is known that
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MX+Y (θ) = MX (θ) MY (θ) , (6.43)
MX−Y (θ) = MX (θ) MY (−θ) , (6.44)

and

MX+Y (−θ) = MX (−θ) MY (−θ) , (6.45)
MX−Y (−θ) = MX (−θ) MY (θ) . (6.46)

Once the MGF is obtained for a random variable X, the complementary
cumulative distribution function (CCDF) of X is bounded by the well-known
Chernoff bound as follows:

P {X ≥ x} ≤ e−θxEeθX = e−θxMX (θ) . (6.47)

Throughout this book, we often deal with min-plus convolutions or decon-
volutions of functions or random processes. To deal with them using moment
generating functions, we define the operators � and ◦ as

X � Y (t) =
t∑

s=0

X(s)Y (t − s), (6.48)

X ◦ Y (τ, t) =
τ∑

s=0

X(s + t)Y (s), (6.49)

where X(t) and Y (t) are two processes. The operator � indeed defines the
discrete convolution operation. When τ → ∞ in (6.49), we denote

X ◦ Y (t) ≡
∞∑

s=0

X(s + t)Y (s).

We then have the following result for min-plus convolution X ⊗ Y (t).

Lemma 6.23. Let X(t) and Y (t) be independent random processes. The mo-
ment generating function of their min-plus convolution is upper-bounded:

MX⊗Y (t)(−θ) ≤ [MX(−θ) � MY (−θ)] (t).

Proof. We have from the definition

MX⊗Y (t)(−θ) = Ee−θ inf0≤s≤t[X(s)+Y (t−s)].

An upper bound on MX⊗Y (−θ, t) for any θ ≥ 0 is

MX⊗Y (t)(−θ) ≤ E sup
0≤s≤t

[e−θ[X(s)+Y (t−s)]]

≤ E

t∑

s=0

e−θ[X(s)+Y (s−t)]

=
t∑

s=0

E
[
e−θX(s)

]
· E
[
e−θY (t−s)

]
.

��
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An important property of Lemma 6.23 is that it can be easily extended to
the min-plus convolution of multiple random processes,

MX1⊗X2⊗···⊗Xn(t)(−θ) ≤ [MX1(−θ) � MX2(−θ) � · · · � MXn
(−θ)] (t).

For ease of expression, we define a generalized version of the min-plus
de-convolution as

(x�y) (τ, t) = sup
0≤s≤τ

[x (s + t) − y (s)] ,

which reduces to the normal min-plus deconvolution definition when τ → ∞.
We now have the following result for the generalized min-plus deconvolution.

Lemma 6.24. Let X(t) and Y (t) be independent random processes. The mo-
ment generating function of their min-plus deconvolution is upper-bounded:

MX�Y (τ,t)(θ) ≤ [MX(θ) ◦ MY (−θ)] (τ, t).

Proof. We have from the definition

MX�Y (τ,t)(θ) = Eeθ sup0≤s≤τ [X(s+t)−Y (s)]

≤ E

[
τ∑

s0

eθ[X(s+t)−Y (s)]

]

≤
τ∑

s=0

E
[
eθX(s+t)

]
E
[
e−θY (s)

]
.

��

6.3.2 Basic Properties and Performance Bounds

In Section 5.7, the basis network calculus properties have been introduced
based on the concepts of the traffic envelope process and service envelope
process. In the rest of this section, these results are reproduced by applying
the corresponding moment generating functions, Lemma 6.23 and the Cher-
noff bound. We shall only present in detail the delay analysis using moment
generating functions. For other properties, they follow similarly based on the
results in Section 5.7.

By definition, the delay in a system at time t is

D(t) = inf{τ : A(t) ≤ A∗(t + τ)}.

Suppose A has a traffic envelope process Â and the system provides a service
envelope process Ŝ(t). Then, we have
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A(t) − A∗(t + τ)
= sup

0≤s≤t+τ
[A(t) − A(s) − Â(t − s) + Â(t − s) − Ŝ(t + τ − s)]

+A ⊗ Ŝ(t + τ) − A∗(t + τ)
≤ sup

0≤s≤t+τ
[A(t) − A(s) − Â(t − s)] + A ⊗ Ŝ(t + τ) − A∗(t + τ)

+ sup
0≤s≤t+τ

[Â(t − s) − Ŝ(t + τ − s)]. (6.50)

For the first term on the right-hand side of (6.50), when 0 ≤ s ≤ t, A(t) −
A(s)−Â(t−s) ≤ 0 by the definition of a traffic envelope process, and when t <
s ≤ t+τ , we also have A(t)−A(s)−Â(t−s) ≤ 0 because Â ≥ 0 and A is a non-
decreasing function. For the second term, we have A⊗ Ŝ(t+τ)−A∗(t+τ) ≤ 0
from the definition of a service envelope process. Applying both to (6.50), we
obtain

A(t) − A∗(t + τ) ≤ sup
0≤s≤t+τ

[Â(t − s) − Ŝ(t + τ − s)],

where we always have Â(t − s) − Ŝ(t + τ − s) ≤ 0 when t < s ≤ t + τ . It is
hence sufficient to consider only 0 ≤ s ≤ t:

D(t) ≤ inf
{

τ : sup
0≤s≤t

[Â(s) − Ŝ(s + τ)] ≤ 0
}

.

In addition, as shown by (5.11) in Section 5.1, we have, for all x ≥ 0,

P{D(t) > x} ≤ P{A(t) > A∗(t + x)}.

Following the discussion above, we easily get from the Chernoff bound

P{D(t) > x} ≤ P

{

sup
0≤s≤t

[Â(s) − Ŝ(s + x)] > 0
}

≤ Eeθ sup0≤s≤t[Â(s)−Ŝ(s+x)],

and if A(t) and Ŝ(t) are independent,

P{D(t) > x} ≤
t∑

s=0

MÂ(s)(θ)MŜ(s+x)(−θ)

=
[
MŜ(−θ) ◦ MÂ(θ)

]
(t, x)

for any θ ≥ 0.
Formally, we have derived the following result.

Corollary 6.25 (Delay Bound). Consider a system that provides a strict
service envelope process Ŝ(t) to the input flow A(t). Suppose A has a stochastic
envelope process Â. Then, the delay D (t) of the flow at time t satisfies
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D(t) ≤ inf
{

τ : sup
0≤s≤t

[Â(s) − Ŝ(s + τ)] ≤ 0
}

,

and if Â and Ŝ(t) are independent, there holds

P{D(t) > x} ≤
[
MŜ(−θ) ◦ MÂ(θ)

]
(t, x)

for any θ ≥ 0.

Corollary 6.26 (Backlog Bound). Consider a system that provides a
strict service envelope process Ŝ(t) to the input flow A(t). Suppose A has
a stochastic envelope process Â. Then the backlog B (t) of the flow at time t
satisfies

B (t) ≤ Â � Ŝ (0) ,

and particularly if Â and Ŝ are independent, there holds

MB(t)(θ) ≤
[
MÂ(θ) ◦ MŜ(−θ)

]
(t, 0)

and
P{B(t) > x} ≤ e−θx

[
MÂ(θ) ◦ MŜ(−θ)

]
(t, 0)

for any θ ≥ 0.

Corollary 6.27 (Output Characterization). Consider a system that pro-
vides a strict service envelope process Ŝ(t) to the input flow A(t). Suppose
A has a stochastic envelope process Â. Then, the output A∗ has a stochastic
envelope process

Â = Â � Ŝ(t),

and particularly, if Â and Ŝ are independent, there holds

MÂ∗(t)(θ) ≤
[
MÂ(θ) ◦ MŜ(−θ)

]
(t)

and, for any s, t ≥ 0,

P{Â∗(s, s + t) > x} ≤ e−θx
[
MÂ(θ) ◦ MŜ(−θ)

]
(t)

for any θ ≥ 0.

Corollary 6.28 (Concatenation Property). Consider a flow passing
through systems Sh, h = 1, . . . , H, in sequence. Suppose each system Sh

provides a strict service envelope process Ŝh(t) to the input, and Ŝh(t),
h = 1, . . . , H are independent. Then, the concatenation of these systems offers
to the flow a service envelope process

Ŝ(t) = Ŝ1 ⊗ Ŝ2 · · · ⊗ŜH(t),

and particularly, if Sh, h = 1, . . . , H, are independent, there holds

MŜ(t)(−θ) ≤ MŜ1(t)(−θ) � · · · � MŜH(t)(−θ). (6.51)
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Corollary 6.29 (Leftover Service). Consider a system serving an aggre-
gate of two (possibly aggregate) flows A1 and A2. Assume the system provides
a strict service envelope process Ŝ to the aggregate, and A2 has a stochastic
envelope process Â2. Then, the system offers to the flow A1 a service envelope
process

Ŝ1(t) = (Ŝ − Â2)(t),

and particularly, if Ŝ and Â2 are independent, there holds

MŜ1(t)
(θ) = MŜ(t)(θ) · MÂ2(t)

(−θ). (6.52)

Corollary 6.30 (Superposition). Consider the superposition of n flows Ai,
i = 1, . . . , n. If each flow Ai has a stochastic envelope process Âi(t), then the
aggregate flow A =

∑n
i=1 Ai has a stochastic envelope process

Â(t) =
n∑

i=1

Âi(t),

and particularly, if Ai, i = 1, . . . , n, are independent, there holds

MÂ(t)(θ) = MÂ1(t)
· · ·MÂn(t)(θ).

It is worth highlighting that in the results above, strict service envelope
processes are required instead of service envelope processes. This is because
by definition the service envelope process of a server is coupled with both its
arrival process and departure process; i.e., the stochastic envelope process,
the arrival process, and the departure process are dependent. If we had only
assumed service envelope processes, the independence analysis would not have
been applicable.

Note that, based on Corollary 6.25 for delay and Corollary 6.28 for con-
catenation, it is easily seen that the end-to-end delay in a tandem network
satisfies

P{De2e(t) > x} ≤
[(

MŜ1(t)(−θ) � · · · � MŜH(t)(−θ)
)
◦ MÂ(θ)

]
(t, x)

for any θ ≥ 0.
For the tandem network considered in Sections 5.6 and 6.2.6, if the cross

traffic is (σ(θ), ρ(θ)) constrained, it is shown in [44] that the end-to-end delay
scales in O(n), which is consistent with the finding in Section 6.2.6, where a
different approach is used for independent case analysis.

6.4 Summary and Bibliographic Comments

We began this chapter with a simple example demonstrating the performance
improvement when the independence condition is taken into account. We then
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introduced two approaches to independent case analysis. One is based on the
concept of a stochastic strict server. This approach is the focus of this chapter.
We showed that the five basic properties can be proved for the independent
case. As an example, we considered the scaling issue of the end-to-end delay
bound of a tandem network that was also studied in Chapter 5. It was shown
in Section 5.6 that while the end-to-end delay bound obtained from node-by-
node analysis scales in O

(
n2 log n

)
, it has a scaling in O (n log n) by utilizing

the concatenation property. In this chapter, we further showed in Section 6.2.6
that, by exploiting the independence condition, the end-to-end delay bound
has a scaling in O(n).

In Section 6.3, we introduced another approach that can be used for the
independent case analysis. In this approach, moment generating functions
are applied to the traffic and service envelope processes and the five basic
properties based on these processes introduced in Section 5.7. Comparing
this with the approach introduced in Section 6.2, the approach based on the
moment generating function is perhaps conceptually easier to adopt since
the moment generating function is a well-known concept used in analyzing
stochastic processes. However, when it comes to deriving closed-form bounds,
the approach based on the moment generating function may need some hard
work. In addition, the bounds obtained may be looser than those from the
approach based on the stochastic strict server.

In the stochastic network calculus literature, independence has long been
considered in the analysis. Particularly, independence is often assumed be-
tween flows in the vast effective bandwidth literature (e.g., [36] [81] [80]) and
early stochastic network calculus works (e.g., [138] [15]). However, these works
mainly focused on the superposition property and the single-node determinis-
tic server case. The independent case analysis approach introduced in Section
6.2 was initially proposed by Jiang [69]. The paper [69] provides the first full
analysis of the five basic properties for the independent case. The concept of a
stochastic strict server due to impairment, an important concept for indepen-
dent case analysis, was initially proposed by Jiang and Emstad [73]. Applying
moment generating functions to the independent case analysis of the full five
basic properties was first made by Fidler [44]. Also in [44], it was reported
that the end-to-end delay bound for the tandem network as studied in Section
6.2.6 has a scaling in O(n). While this conclusion comes after some complex
analysis in [44], it can be easily obtained from the approach based on the
stochastic strict server as shown in Section 6.2.6.

Problems

6.1. Consider a server fed with a flow A that is the aggregation of two con-
stituent independent flows Af and Ah. Suppose the server provides a deter-
ministic strict service curve β to the aggregate flow A. Flow Ah has m.b.c.
stochastic arrival curve Ah ∼mb 〈fh, rh〉 and βf ∈ F .
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(i) Prove that flow Af receives a stochastic strict service curve β with impair-
ment process I = Ah (t) − Ah (t − s) .

(ii) Derive the per-flow service curve received by Af .

6.2. Consider a constant-rate server with link capacity C fed with N input
flows with maximum packet size M. All flows are independent of each other
and all are (σ(θ), ρ(θ)) upper constrained with the same parameters. The
buffer size is B.

(i) How many such flows can be admitted into the system such that the buffer
overflow probability is less than Ploss?

(ii) How many such flows can be admitted into the system such that the prob-
ability that the delay experienced by a packet in this system is greater
than D is less than Pdelay?

6.3. What is the MGF of the service process for a constant-rate server with
link capacity C?

6.4. What is the MGF of a Poisson process with mean arrival rate λ and
mean packet size µ?

6.5. Consider a constant-rate server with link capacity C fed with a Poisson
input flow with arrival rate λ. The packet size is exponentially distributed
with mean µ but limited by a maximum packet size M. Analyze the delay
distribution using the MGF-based approach and compare it with the results
obtained by queuing theory and the approach based on stochastic network
calculus.

6.6. Prove Theorem 6.18.

6.7. Prove Corollary 6.26.

6.8. Prove Corollary 6.27.

6.9. Prove Corollary 6.28.

6.10. Prove Corollary 6.29.


