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Basic Properties of Stochastic
Network Calculus

This chapter introduces the basic results of stochastic network calculus under
the various traffic models and server models discussed earlier in Chapters 3
and 4. We focus particularly on the five basic properties introduced in
Chapter 1 that are essential for network service guarantee analysis.

5.1 Service Guarantees

We start by deriving probabilistic bounds on the backlog and delay under
different combinations of traffic and server models.

5.1.1 Backlog Bound

Consider a system with arrival process A(t), service process S(t), and depar-
ture process A∗(t). By definition, the backlog in the system at time t ≥ 0
is

B(t) = A(t) − A∗(t), (5.1)

which implies that if both A(t) and A∗(t) were known, B(t) would be derived.
However, in most cases, A∗(t) needs to be derived from B(t); i.e., A∗(t) =
A(t) − B(t), which causes the chicken–egg problem.

The Lindley equation can be used to derive B(t):

B(t) = max{0, B(t − 1) + A(t − 1, t) − S(t − 1, t)}. (5.2)

By applying (5.2) iteratively to its right-hand side, the Lindley equation
results in

B(t) = sup
0≤s≤t

{A(s, t) − S(s, t)}, (5.3)

and consequently

A∗(t) = A(t) − B(t) = inf
0≤s≤t

{A(s) + S(s, t)}. (5.4)
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In the simple case where the system provides a constant service rate c to
the input, (5.2) becomes

B(t) = sup
0≤s≤t

{A(s, t) − c · (t − s)}.

Comparing the right-hand side of the equation above with the definitions of
the various stochastic traffic models defined in Chapter 3, we find that the
probabilistic bound of B(t) is easily derived if the input has a v.b.c. stochastic
arrival curve (SAC) or a m.b.c. SAC, or an θ-m.b.c. SAC. However, if the input
is known only with its (σ(θ), ρ(θ)) or t.a.c. SAC characterization, additional
effort is needed to derive B(t) from such input traffic characterizations.

For the more general case where the system provides stochastic service to
the input, the following method can be used to derive B(t). Specifically, (5.1)
can be rewritten for any functions α(t) and β(t) in F , as

B(t) = A(t) − A∗(t) = [A(t)−A ⊗ β(t)]+[A ⊗ β(t)−A∗(t)]
= sup

0≤s≤t
{A(s, t) − α(t − s) + α(t − s) − β(t − s)} + [A ⊗ β(t) − A∗(t)]

≤ sup
0≤s≤t

{A(s, t) − α(t − s)} + sup
0≤s≤t

{α(s) − β(s)} + [A ⊗ β(t) − A∗(t)]

≤ sup
0≤s≤t

{A(s, t) − α(t − s)} + sup
t≥0

{α(t) − β(t)}+[A ⊗ β(t)−A∗(t)]. (5.5)

The right-hand side of (5.5) implies a sufficient condition to obtain
P{B(t) > x}; that is, P{sup0≤s≤t{A(s, t)−α(t− s)} > x} and P{A⊗ β(t)−
A∗(t) > x} are known and

lim
t→∞

1
t

[α(t) − β(t)] ≤ 0. (5.6)

In the rest of the book, unless explicitly stated, we shall assume inequality
(5.6) holds.

Based on the analysis above, we present results for a probabilistic backlog
bound under different combinations of the traffic models and server models
introduced in Chapters 3 and 4.

For backlog, if the input has a v.b.c. SAC and the system provides a weak
stochastic service curve (SSC), we can conclude immediately from (5.5) that
P{B(t) > x} ≤ f ⊗ g(x − α � β(0)). Since both the m.b.c. SAC and θ-m.b.c
SAC imply a v.b.c. SAC, and both SSC and θ–SSC imply weak SSC, the
conclusion is readily extended to cases where the input has either an m.b.c.
SAC or a θ–m.b.c SAC and/or the system provides either an SSC or a θ-SSC.
Formally, we have Theorem 5.1 under these combinations.

Theorem 5.1. Consider a system S with input A. If the input has a v.b.c. (or
m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈
F̂ , (i.e., A ∼sac 〈f, α〉), where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mband
the system provides to the input a weak stochastic service curve (or stochastic
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service curve, or θ–stochastic service curve) β ∈ F with bounding function
g ∈ F̂ , i.e. S ∼ssc 〈g, β〉 where ∼ssc is either one of ∼ws, ∼sc,∼θ−sc, then
for all t ≥ 0 and x ≥ 0, the backlog B(t) is bounded by

P{B(t) > x} ≤ f ⊗ g(x − α � β(0)). (5.7)

Based on the relationship between t.a.c SAC and v.b.c SAC in Theorem 3.13
which is also shown in Figure 3.1, the following result is obtained.

Corollary 5.2. Consider a system S with input A. Suppose the input has
a t.a.c stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e.,
A ∼ta 〈f, α〉) and the system provides to the input a weak stochastic service
curve (or stochastic service curve or θ-stochastic service curve) β ∈ F with
bounding function g ∈ F̄ (i.e., S ∼ssc 〈g, β〉, where ∼sscis one of either ∼ws,
∼sc, or ∼θ−sc). Then, for all t ≥ 0 and x ≥ 0, the backlog B(t) is bounded by

P{B(t) > x} ≤ fθ ⊗ g(x − α � β(0)), (5.8)

where fθ(x) = f (x) + 1
θ

∫∞
x

f(y)dy for any θ > 0.

Actually, Theorems 5.1 and 5.2 show the backlog bounds under all com-
binations of the various SAC and SSC models defined in Chapters 3 and 4.

Similarly, the following theorem can be derived according to the map-
ping between the (σ(θ), ρ(θ)) upper constrained traffic characterization and
the t.a.c. SAC model shown in Theorem 3.4 and the mapping between the
(b(θ), r(θ)) lower constrained service characterization and the weak SSC model
as shown in Theorem 4.19.

Corollary 5.3. Consider a system S with input A. Suppose the input is
(σ(θ), ρ(θ)) upper constrained, and the service provided by the system is
(b(θ), r(θ)) lower constrained. Then, the backlog B(t) is bounded by

P{B(t) > x} ≤ fθ ⊗ gθ(x − α � β(0)), (5.9)

where fθ(x) = e−θx, α(t) = ρ(θ) · t + σ(θ), β(t) = r(θ) · (t − b(θ)), and
gθ(x) = e−θx for any θ > 0.

5.1.2 Delay Bound

Now we discuss the probabilistic delay bounds under different combinations
of traffic models and server models. For a delay in the system at time t ≥ 0,
by definition, it is

D(t) = inf{τ : A(t) ≤ A∗(t + τ)}, (5.10)

which implies that, for any x ≥ 0, if D(t) > x, there must be A(t) > A∗(t+x)
since otherwise if A(t) ≤ A∗(t + x) and D(t) ≤ x, that would contradict



86 5 Basic Properties of Stochastic Network Calculus

the condition D(t) > x. In other words, event {D(t) > x} implies event
{A(t) > A∗(t + x)}, or

{D(t) > x} ⊂ {A(t) > A∗(t + x)},

and hence
P{D(t) > x} ≤ P{A(t) > A∗(t + x)}. (5.11)

Following similar steps in (5.5), we can get

A(t) − A∗(t + x)
= sup

0≤s≤t+x
[A(t) − A(s) − α(t − s) + α(t − s) − β(t + x − s)]

+A ⊗ β(t + x) − A∗(t + x)
≤ sup

0≤s≤t+x
[A(t) − A(s) − α(t − s)]

+A ⊗ β(t + x) − A∗(t + x)
+ sup

0≤s≤t+x
[α(t − s) − β(t + x − s)] (5.12)

≤ sup
0≤s≤t

[A(t) − A(s) − α(t − s)]

+A ⊗ β(t + x) − A∗(t + x)
+ sup

0≤s≤t+x
[α(t − s) − β(t + x − s)], (5.13)

where the step from (5.12) to (5.13) holds because by default A(t) ≤ A(t + y)
for any y > 0, α(y) = 0 for any y < 0.

Under the same sufficient condition as for analyzing the backlog, the com-
plementary cumulative distribution function of the right-hand side of (5.13)
is bounded and so are the left-hand side of (5.13) and the delay.

With simple manipulation, we have from (5.13)

A(t) − A∗ (t + h(α + y, β))
≤ sup

0≤s≤t
[A(t) − A(s) − α(t − s)]

+A ⊗ β (t + h(α + y, β)) − A∗ (t + h(α + y, β)) − y, (5.14)

where h (α + y, β) is the maximum horizontal distance between functions
α(t) + y and β(t) for y ≥ 0. This is obtained by simply replacing x =
h (α + y, β) in (5.13), and with the definition of maximum horizontal distance
function h(·, ·), that implies α(u) + y ≤ β(u + h (α + y, β)) for any u.

Similar to the backlog, if the input has a v.b.c SAC and the system provides
a weak SSC, we immediately conclude from (5.14) and (5.11) that for any t ≥ 0
and y ≥ 0, the delay D(t) is bounded by P{D(t) > h (α + y, β)} ≤ f ⊗ g(y).

Since both the m.b.c. SAC and θ-m.b.c. SAC imply a v.b.c. SAC, and both
the SSC and θ-SSC imply a weak SSC, the conclusion is also readily extended
to cases where the input has either an m.b.c. SAC or a θ-m.b.c. SAC, and/or



5.1 Service Guarantees 87

the system provides either an SSC or a θ-SSC. Similar to the backlog analysis,
we have the following result for delay.

Theorem 5.4. Consider a system S with input A. Suppose that the input has
a v.b.c. (or m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding
function f ∈ F̄ ( i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or
∼θ−mb) and the system provides to the input a weak stochastic service curve
(or stochastic service curve or θ-stochastic service curve) β ∈ F with bounding
function g ∈ F̄ ( i.e., S ∼ssc 〈g, β〉, where ∼ssc is one of either ∼ws, ∼sc, or
∼θ−sc). Then, for all t ≥ 0 and x ≥ 0, the delay D(t) is bounded by

P{D(t) > h (α + x, β)} ≤ f ⊗ g(x). (5.15)

Based on the relationship between the t.a.c. SAC and v.b.c. SAC in
Theorem 3.13, the following result is obtained.

Corollary 5.5. Consider a system S with input A. Suppose the input has
a t.a.c. stochastic arrival curve α ∈ F with bounding function f ∈ Ĝ (i.e.,
A ∼ta 〈f, α〉) and the system provides to the input a weak stochastic service
curve (or stochastic service curve, or θ–stochastic service curve) β ∈ F with
bounding function g ∈ F̄ (i.e., S ∼ssc 〈g, β〉 where ∼ssc is one of either ∼ws,
∼sc, or ∼θ−sc). Then, for all t ≥ 0 and x ≥ 0, the delay D(t) is bounded by

P{D(t) > h (α + x, β)} ≤ fθ ⊗ g(x), (5.16)

where fθ(x) = f (x) + 1
θ

∫∞
x

f(y)dy for any θ > 0.

Actually, Theorems 5.4 and 5.5 show the stochastic delay bounds under
all combinations of the various SAC and SSC models defined in Chapters 3
and 4.

Similarly, the following theorem can be derived according to the mapping
between the (σ(θ), ρ(θ)) upper constrained traffic characterization and t.a.c.
SAC shown in Theorem 3.4 and the mapping between the (b(θ), r(θ)) lower
constrained service characterization and weak SSC as shown in Theorem 4.19.

Corollary 5.6. Consider a system S with input A. Suppose the input is
(σ(θ), ρ(θ)) upper constrained and the service provided by the system is
(b(θ), r(θ)) lower constrained. The delay D(t) is bounded by

P{D(t) > h (α + x, β)} ≤ fθ ⊗ gθ(x), (5.17)

where fθ(x) = e−θx, α(t) = ρ(θ) · t + σ(θ), β(t) = r(θ) · (t − σ(θ)), and
gθ(x) = e−θx for any θ > 0.

Example 5.7. Consider a server with constant service rate C. If the input is
an EBB (exponentially bounded burstiness) process, i.e.

P {A (s, t) − α (t − s) > x} ≤ f (x) ,
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where α = ρ · t, and f(x) = ae−bx. As shown in Chapter 2, EBB is a special
case of t.a.c. stochastic arrival curve. In addition, the constant-rate server
provides a deterministic service curve β (t) = Ct, which is a special case of
weak stochastic service curve. Then, according to Theorem 5.2, for all t ≥ 0
and x ≥ 0, the backlog B(t) of this system is bounded by

P{B(t) > x} ≤ fθ ⊗ g(x − α � β(0))
= fθ(x − α � β(0)) = fθ (x)

= ae−bx +
ae−bx

θb

for any θ > 0.

5.2 Output Characterization

This section presents results for characterizing the output traffic. The focus
is on using the same traffic model as the input for the characterization.

Equation (5.4) implies the following: for any t ≥ s ≥ 0,

A∗(t) − A∗(s) = A(t) − A(s) − (B(t) − B(s)).

If the backlog has an upper bound b (i.e., B(t) ≤ b for all t ≥ 0), we immedi-
ately get

A∗(t) − A∗(s) ≤ A(t) − A(s) − b,

and in this case it is easy to show that the output has the same characterization
as the input. Specifically, we have the following result.

Theorem 5.8. Consider a system S with input A. Suppose the backlog of A
in the system is upper-bounded by b for all times. If the input has a stochastic
arrival curve α(t) with bounding function f(x), denoted by A ∼sac 〈f(x), α(t)〉,
where ∼sac can be one of either ∼tac, ∼vbc, ∼mbc or ∼θ−mbc, then the output
also has a stochastic arrival curve α(t) with bounding function f(x + b); i.e.,
A∗ ∼sac 〈f(x + b), α(t)〉 .

In general, the backlog may not be deterministically upper-bounded. In
such cases, to characterize the output traffic requires some effort.

5.2.1 Output t.a.c Stochastic Arrival Curve

First, we focus on characterizing the output traffic with the t.a.c. stochastic
arrival curve model. For any t ≥ s ≥ 0 and any functions α, β ∈ F , there
holds
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A∗(t) − A∗(s) ≤ A(t) − A ⊗ β(s) + [A ⊗ β(s) − A∗(s)]
= sup

0≤u≤s
{A(u, t) − α(t − u) + α(t − u) − β(s − u)} + [A ⊗ β(s) − A∗(s)]

≤ sup
0≤u≤t

{A(u, t) − α(t − u)} + sup
0≤v≤s

{α(t − s + v) − β(v)}

+[A ⊗ β(t) − A∗(t)] (5.18)
≤ sup

0≤u≤t
{A(u, t) − α(t − u)} + α � β(t − s) + [A ⊗ β(s) − A∗(s)], (5.19)

where α � β(t) = supu≥0{α(t + u) − β(u)}.
Rewriting (5.19), we get

A∗(s, t) − α � β(t − s)
≤ sup

0≤u≤t
{A(u, t) − α(t − u)} + [A ⊗ β(s) − A∗(s)], (5.20)

which implies that if the input m.b.c SAC and the system’s weak SSC are
known, the output t.a.c SAC characterization is easily derived.

Since the m.b.c. SAC and θ-m.b.c. SAC imply the v.b.c. SAC and the SSC
and θ-SSC imply the weak SSC, we have the following theorem.

Theorem 5.9. Consider a system S with input A. If the input has a v.b.c. (or
m.b.c or θ–m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈
F̄ (i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb) and
the system provides to the input a weak stochastic service curve (or stochastic
service curve or θ-stochastic service curve) β ∈ F with bounding function
g ∈ F̄ (i.e., S ∼ssc 〈g, β〉 where ∼ssc is one of either ∼ws, ∼sc, or ∼θ−sc) then
the output has a t.a.c. stochastic arrival curve α � β with bounding function
f ⊗ g; i.e., A∗ ∼ta 〈f ⊗ g, α � β〉.

Based on the relationship between the t.a.c. SAC and v.b.c. SAC as shown
in Theorem 3.13, the following result is obtained.

Corollary 5.10. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a weak stochastic service curve (or
stochastic service curve or θ–stochastic service curve) β ∈ F with bounding
function g ∈ F̄ (i.e., S ∼ssc 〈g, β〉 where ∼ssc is one of either ∼ws, ∼sc,
or ∼θ−sc), then the output has a t.a.c. stochastic arrival curve αθ � β with
bounding function f⊗gθ, i.e., A∗ ∼ta 〈fθ⊗g, αθ�β〉, where αθ(t) = α(t)+θ ·t
and fθ(x) = f (x) + 1

θ

∫∞
x

f(x) for any θ > 0.

In addition, the following theorem follows from Theorem 5.9, the mapping
between the (σ(θ), ρ(θ)) upper constrained traffic characterization and v.b.c.
SAC shown in Example 3.18, and the mapping between (b(θ), r(θ))–lower
constrained service characterization and weak SSC shown in Theorem 4.19.
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Corollary 5.11. Consider a system S with input A. Suppose the input is
(σ(θ), ρ(θ)) upper constrained, a(t) ≡ A(t − 1, t), t = 1, 2, . . . , are i.i.d., and
the service provided by the system is (b(θ), r(θ)) lower constrained. Then, the
output has a t.a.c stochastic arrival curve α�β with bounding function f ⊗g;
i.e., A∗ ∼ta 〈f ⊗ g, α � β〉, where f(x) = eθσ(θ)

1−eθ(ρ(θ)−r) e
−θx, α(t) = r · t, β(t) =

r(θ) · (t − b(θ)), and g(x) = e−θx for any θ > 0, r < ρ(θ).

5.2.2 Output v.b.c. Stochastic Arrival Curve

We now characterize the output traffic with the v.b.c. stochastic arrival curve
model.

Based on (5.20), we can get

sup
0≤s≤t

{A∗(s, t) − α � β(t − s)}

≤ sup
0≤u≤t

{A(u, t) − α(t − u)} + sup
0≤s≤t

{A ⊗ β(s) − A∗(s)}, (5.21)

from this and the fact that the m.b.c. SAC and θ-m.b.c. SAC imply a v.b.c.
SAC, the following theorem can be easily verified.

Theorem 5.12. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉, where ∼sac is either one of ∼vb, ∼mb, or ∼θ−mb)
and the system provides to the input a stochastic service curve β ∈ F with
bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉), then the output has a v.b.c.
stochastic arrival curve α � β with bounding function f ⊗ g, i.e. A∗ ∼vb 〈f ⊗
g, α � β〉.

Based on the relationship between the stochastic service curve and θ-
stochastic service curve shown in Theorem 4.6, the following result is obtained.

Corollary 5.13. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉 , where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb)
and the system provides to the input a θ–stochastic service curve β ∈ F with
bounding function gθ ∈ F̄ (i.e. S ∼θ−sc 〈gθ, β〉), then the output has a v.b.c.
stochastic arrival curve α � β with bounding function f ⊗ gt; i.e., A∗ ∼vb

〈f ⊗ gt, α � β〉, where gt (x) = gθ (x − θ · t) .

In addition, based on the relationship between the stochastic service curve
and weak stochastic service curve shown in Theorem 4.4, the following result
can be easily verified.

Corollary 5.14. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb)
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and the system provides to the input a weak stochastic service curve β ∈ F
with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then the output has a v.b.c.
stochastic arrival curve α � β−θ with bounding function f ⊗ gθ

t ; i.e., A∗ ∼vb

〈f ⊗ gθ
t , α� β−θ〉, where β−θ(t) = β(t)− θ · t and gθ

t (x) =
[

1
θ

∫∞
x−θt

g (y) dy
]

1
.

Corollaries 5.13 and 5.14 are obtained directly from the relationship of
a θ-stochastic service curve or weak stochastic service curve with a stochas-
tic service curve. The resulting bounding functions for the output are time-
dependent. In the following, we present results for the output characterization
where the bounding function does not rely on time.

Let αθ(t) = α(t) + θ · t. Similar to (5.19), we get, for any θ > 0,

A∗(t) − A∗(s) − αθ � β(t − s)
≤ A(t) − A ⊗ β(s) + A ⊗ β(s) − A∗(s) − αθ � β(t − s)
≤ A(t) − A ⊗ β(s) − α � β(t − s) + A ⊗ β(s) − A∗(s) − θ · (t − s)

since supw≥0[α(t − s + w] + (t − s + w)θ − β(w)] ≥ supw≥0[α(t − s + w] −
β(w)] + (t − s)θ. Then, there holds:

sup
0≤s≤t

{A∗(t) − A∗(s) − αθ � β(t − s)}

≤ sup
0≤s≤t

[A(t) − A ⊗ β(s) − α � β(t − s)]

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)] (5.22)

≤ sup
0≤s≤t

[

sup
0≤u≤s

{A(t) − A(u) − β(s − u) − sup
w≥0

{α(t − s + w) − β(w)}}
]

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)]

≤ sup
0≤s≤t

sup
0≤u≤s

{A(t) − A(u) − α(t − u)}

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)] (5.23)

= sup
0≤u≤t

{A(t) − A(u) − α(t − u)} (5.24)

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)] . (5.25)

From (5.24), we can conclude the following theorem.

Theorem 5.15. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ–m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb)
and the system provides to the input a θ–stochastic service curve β ∈ F with
bounding function gθ ∈ F̄ (i.e., S ∼θ−sc 〈gθ, β〉), then the output has a v.b.c.
stochastic arrival curve αθ � β with bounding function f ⊗ gθ; i.e., A∗ ∼vb

〈f ⊗ gθ, αθ � β〉, where αθ(t) = α(t) + θ · t.
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Then, based on the relationship between the θ–stochastic service curve
and weak stochastic service curve, the following result is easily verified.

Corollary 5.16. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ–m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb)
and the system provides to the input a weak stochastic service curve β ∈ F
with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then the output has a
v.b.c. stochastic arrival curve αθ � β−θ with bounding function f ⊗ gθ; i.e.,
A∗ ∼vb 〈f ⊗ gθ, αθ � β−θ〉, where αθ(t) = α(t) + θ · t, β−θ(t) = β(t) − θ · t,
and gθ (x) = g(x) + 1

θ

∫∞
x

g (y) dy for any θ > 0.

If the input has a t.a.c. SAC, we can use the relationship between the t.a.c.
SAC and v.b.c. SAC to represent the input with a v.b.c. SAC and consequently
get the following results under the stochastic service curve, θ-stochastic service
curve, and weak stochastic service curve.

Corollary 5.17. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a stochastic service curve β ∈ F
with bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉), then the output has a v.b.c.
stochastic arrival curve αθ � β with bounding function fθ ⊗ g; i.e., A∗ ∼vb

〈fθ ⊗ g, αθ � β〉, where αθ(t) = α(t) + θ · t and fθ(x) = f (x) + 1
θ

∫∞
x

f(y)dy
for any θ > 0.

Corollary 5.18. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a θ-stochastic service curve β ∈ F
with bounding function gθ2 ∈ F̄ (i.e. S ∼θ−sc 〈gθ2 , β〉), then

• the output has a v.b.c. stochastic arrival curve α�β with bounding function
fθ1 ⊗ gt, (i.e., A∗ ∼vb 〈fθ1 ⊗ gt, αθ1 � β〉), where αθ1(t) = α(t) + θ1 · t,
fθ1(x) = f (x)+ 1

θ1

∫∞
x

f(y)dy, and gt (x) = gθ2 (x − θ2 · t) for any θ1, θ2 >
0) or

• the output has a v.b.c. stochastic arrival curve αθ �β with bounding func-
tion fθ1⊗gθ2 ; i.e., A∗ ∼vb 〈fθ1⊗gθ2 , αθ�β〉, where αθ(t) = α(t)+(θ1+θ2)·t
and fθ1(x) = f (x) + 1

θ1

∫∞
x

f(y)dy for any θ1, θ2 > 0.

Corollary 5.19. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a weak stochastic service curve
β ∈ F with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then

• the output has a v.b.c. stochastic arrival curve αθ1 � β−θ2 with bounding
function fθ1 ⊗ gθ2

t (i.e., A∗ ∼vb 〈fθ1 ⊗ gθ
t , αθ1 � β−θ2〉, where αθ1(t) =

α(t) + θ1 · t, β−θ2(t) = β(t) − θ2 · t, fθ1(x) = f (x) + 1
θ1

∫∞
x

f(y)dy and
gθ

t (x) = 1
θ2

∫∞
x−θ2t

g (y) dy, for any θ1, θ2 > 0) or
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• the output has a v.b.c stochastic arrival curve αθ�β with bounding function
fθ1 ⊗gθ2 , i.e., A∗ ∼vb 〈fθ1 ⊗gθ2 , αθ �β〉, where αθ(t) = α(t)+(θ1 +θ2) · t,
fθ1(x) = f (x)+ 1

θ1

∫∞
x

f(y)dy, and gθ2 (x) = g(x)+ 1
θ2

∫∞
x

g (y) dy for any
θ1, θ2 > 0.

As a special case, the following result follows from Corollary 5.16, the
mapping between the (σ(θ), ρ(θ)) upper constrained traffic characterization
and v.b.c. SAC shown in Example 3.18, and the mapping between the
(b(θ), r(θ)) lower constrained service characterization and weak SSC shown
in Theorem 4.19.

Corollary 5.20. Consider a system S with input A. Suppose the input is
(σ(θ), ρ(θ)) upper constrained, a(t) ≡ A(t − 1, t), t = 1, 2, . . . , are i.i.d., and
the service provided by the system is (b(θ), r(θ)) lower constrained. Then, the
output has a v.b.c. stochastic arrival curve αθ � β with bounding function
fθ ⊗ gθ; i.e., A∗ ∼vb 〈fθ ⊗ gθ, αθ �β〉, where f(x) = eθσ(θ)

1−eθ(ρ(θ)−r) e
−θx, αθ(t) =

(r + θ) · t, and gθ(x) = e−θx + 1
θ

∫∞
x

e−θydy for any θ > 0, r < ρ(θ).

5.2.3 Output m.b.c Stochastic Arrival Curve

We now characterize the output traffic with the m.b.c. stochastic arrival curve
model.

Based on (5.21), the following is obtained:

sup
0≤s≤t

sup
0≤u≤s

[A∗(u, s) − α � β(s − u)]

≤ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] + sup
0≤s≤t

[A ⊗ β(s) − A∗(s)]. (5.26)

Inequality (5.26) implies that the output m.b.c. stochastic arrival curve
characterization is easily derived if the input’s m.b.c. stochastic arrival curve
characterization and the system’s stochastic service curve characterization are
known. Specifically, we have the following result.

Theorem 5.21. Consider a system S with input A. If the input has an m.b.c.
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A ∼mb

〈f, α〉) and the system provides to the input a stochastic service curve β ∈
F with bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉), then the output has
an m.b.c. stochastic arrival curve α � β with bounding function f ⊗ g; i.e.,
A∗ ∼mb 〈f ⊗ g, α � β〉.

Based on the relationship between the weak stochastic service curve and
stochastic service curve shown in Theorem 4.4, we have the following.

Corollary 5.22. Consider a system S with input A. If the input has an m.b.c
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A ∼mb

〈f, α〉) and the system provides to the input a weak stochastic service curve
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β ∈ F with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then the output
has an m.b.c. stochastic arrival curve α� β−θ with bounding function f ⊗ gθ

t ;
i.e., A∗ ∼mb 〈f ⊗ gθ

t , α � β−θ〉, where gθ
t (x) = 1

θ

∫∞
x−θt

g (y) dy and β−θ(t) =
β(t) − θ · t for any θ > 0.

Based on the relationship between the stochastic service curve and θ-
stochastic service curve, we have the following.

Corollary 5.23. Consider a system S with input A. If the input has an m.b.c.
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A ∼mb

〈f, α〉) and the system provides to the input a θ-stochastic service curve β ∈ F
with bounding function gθ ∈ F̄ (i.e., S ∼sc 〈gθ, β〉), then the output has an
m.b.c. stochastic arrival curve α � β with bounding function f ⊗ gt(x); i.e.,
A∗ ∼mb 〈f ⊗ gt, α � β〉, where gt (x) = gθ (x − θt) .

Corresponding to Theorem 5.21, Corollary 5.22 and Corollary 5.23, where
the input is modeled with m.b.c stochastic arrival curve, Corollaries 5.24 to
Corollary 5.26 have the input modeled with a θ-m.b.c. stochastic arrival curve.

Corollary 5.24. Consider a system S with input A. If the input has a θ-
m.b.c. stochastic arrival curve α ∈ F with respect to θ(> 0) with bounding
function fθ ∈ F̄ (i.e., A ∼θ−mb 〈fθ, α〉) and the system provides to the input
a stochastic service curve β ∈ F with bounding function g ∈ F̄ (i.e., S ∼sc

〈g, β〉), then the output has an m.b.c. stochastic arrival curve α � β with
bounding function ft ⊗ g(x); i.e., A∗ ∼mb 〈ft ⊗ g, α � β〉, where ft (x) =
fθ (x − θt) for any θ > 0.

Corollary 5.25. Consider a system S with input A. If the input has a θ-
m.b.c. stochastic arrival curve α ∈ F with bounding function fθ1 ∈ F̄ (i.e.,
A ∼θ−mb 〈fθ1 , α〉) and the system provides to the input a weak stochastic
service curve β ∈ F with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then
the output has an m.b.c. stochastic arrival curve α�β with bounding function
ft ⊗ gθ2 ; i.e., A∗ ∼mb 〈ft ⊗ gθ2 , α � β〉, where ft (x) = fθ1 (x − θ1t) and
gθ2 (x) = 1

θ2

∫∞
x−θt

g (y) dy for any θ1, θ2 > 0.

Corollary 5.26. Consider a system S with input A. If the input has a θ-
m.b.c. stochastic arrival curve α ∈ F with bounding function fθ1 ∈ F̄ (i.e.,
A ∼θ−mb 〈fθ1 , α〉) and the system provides to the input a θ-stochastic service
curve β ∈ F with bounding function gθ2 ∈ F̄ (i.e., S ∼sc 〈gθ2 , β〉), then the
output has an m.b.c. stochastic arrival curve α � β with bounding function
ft ⊗ gt; i.e., A∗ ∼mb 〈ft ⊗ gt, α�β〉, where ft (x) = fθ1 (x − θ1t) and gt (x) =
gθ2 (x − θ2t) for any θ1, θ2 > 0.

We now consider that the input is modeled with a v.b.c. stochastic arrival
curve. Corresponding to Theorem 5.21, Corollary 5.22 and Corollary 5.23,
Corollaries 5.27 to 5.29 are easily obtained based on the relationship between
the v.b.c. stochastic arrival curve and m.b.c. stochastic arrival curve shown
in Theorem 3.24.
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Corollary 5.27. Consider a system S with input A. If the input has a v.b.c.
stochastic arrival curve α ∈ G with bounding function f ∈ Ḡ (i.e., A ∼vb

〈f, α〉) and the system provides to the input a stochastic service curve β ∈
F with bounding function g ∈ F̄ (i.e. S ∼sc 〈g, β〉), then the output has
an m.b.c. stochastic arrival curve α � β with bounding function ft ⊗ g; i.e.,
A∗ ∼mb 〈ft ⊗ g, α � β〉, where ft (x) = 1

θ

∫∞
x−θt

f (y) dy for any θ > 0.

Corollary 5.28. Consider a system S with input A. If the input has a v.b.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼vb

〈f, α〉) and the system provides to the input a weak stochastic service curve
β ∈ F with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then the output has
an m.b.c. stochastic arrival curve α � β−θ2 with bounding function ft ⊗ gθ2 ;
i.e., A∗ ∼mb 〈ft ⊗ gθ2 , α � β−θ2〉, where ft = 1

θ1

∫∞
x−θ1t

f(y)dy, gθ2 (x) =
1
θ2

∫∞
x−θ2t

g (y) dy and β−θ2(t) = β(t) − θ2 · t for any θ1, θ2 > 0.

Corollary 5.29. Consider a system S with input A. If the input has a v.b.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼vb

〈f, α〉) and the system provides to the input a θ-stochastic service curve β ∈ F
with bounding function gθ2 ∈ F̄ (i.e., S ∼θ−sc 〈gθ2 , β〉), then the output has
a m.b.c stochastic arrival curve α � β with bounding function ft ⊗ gθ2

t (x);
i.e., A∗ ∼mb 〈ft ⊗ gθ2

t , α � β〉, where ft = 1
θ1

∫∞
x−θ1t

f(y)dy, and gθ2
t (x) =

gθ2 (x − θ2t) for any θ1, θ2 > 0.

We then consider that the input is initially modeled with a v.b.c. stochastic
arrival curve. In this case, we can first convert it into a v.b.c. stochastic arrival
curve and then into an m.b.c. stochastic arrival curve. Afterwards, we can
apply Theorem 5.21, Corollary 5.22, and Corollary 5.23 and obtain Corollaries
5.30, 5.31, and 5.32, respectively.

Corollary 5.30. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a stochastic service curve β ∈ F
with the bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉), then the output has
an m.b.c. stochastic arrival curve αθ1 � β with bounding function ft ⊗ g; i.e.,
A∗ ∼mb 〈ft ⊗ g, αθ1 � β〉 where ft (x) = 1

θ2

∫∞
x−θ2t

f̂ (y) dy, f̂ (y) = f (y) +
1
θ1

∫∞
y

f (z) dz, and αθ1(t) = α(t) + θ1 · t for any θ1, θ2 > 0.

Corollary 5.31. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a weak stochastic service curve
β ∈ F with bounding function g ∈ F̄ (i.e., S ∼ws 〈g, β〉), then the output
has a m.b.c stochastic arrival curve αθ1 � β with bounding function ft ⊗ gθ2 ;
i.e., A∗ ∼mb 〈ft ⊗ gθ2 , αθ1 � β〉, where ft (x) = 1

θ3

∫∞
x−θ3t

f̂ (y) dy and f̂ (y) =
f (y) + 1

θ1

∫∞
y

f (z) dz, gθ2 (x) = 1
θ2

∫∞
x−θ2t

g (y) dy, and αθ1(t) = α(t) + θ1 · t
for any θ1, θ2, θ3 > 0.



96 5 Basic Properties of Stochastic Network Calculus

Corollary 5.32. Consider a system S with input A. If the input has a t.a.c
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a θ-stochastic service curve β ∈ F
with bounding function gθ2 ∈ F̄ (i.e., S ∼θ−sc 〈gθ2 , β〉), then the output has
an m.b.c stochastic arrival curve αθ1 � β with bounding function ft ⊗ gθ2 ;
i.e, A∗ ∼mb 〈ft ⊗ gθ2

t , αθ1 � β〉, where ft (x) = 1
θ3

∫∞
x−θ3t

f̂ (y) dy and f̂ (y) =
f (y) + 1

θ1

∫∞
y

f (z) dz, gθ2
t (x) = gθ2 (x − θ2t), and αθ1(t) = α(t) + θ1 · t for

any θ1, θ2, θ3 > 0.

5.2.4 Output θ-m.b.c. Stochastic Arrival Curve

Based on the relationships of the θ-m.b.c. stochastic arrival curve with the
m.b.c., v.b.c. and t.a.c. stochastic arrival curves, the output θ-m.b.c. stochas-
tic arrival curve characterization can be readily obtained from results in the
previous subsections, when the input is characterized using an m.b.c., v.b.c.
or t.a.c. stochastic arrival curve. We leave this to the reader to investigate
further.

In addition, when the input is characterized using the θ-m.b.c. stochastic
arrival curve model, we easily obtain from (5.21)

sup
0≤s≤t

[

sup
0≤u≤s

[A∗(u, s) − α � β(s − u)] − θ(t − s)
]

≤ sup
0≤s≤t

[

sup
0≤u≤s

[A(u, s) − α(s − u)] − θ(t − s)
]

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s)], (5.27)

from which we have the following result.

Theorem 5.33. Consider a system S with input A. If the input has an m.b.c.
or θ-m.b.c. stochastic arrival curve α ∈ F , with bounding function f ∈ F̄
(i.e., A ∼sac 〈f, α〉, where ∼sac can be either ∼mb or ∼θ−mb), and the system
provides to the input a stochastic service curve β ∈ F with bounding function
g ∈ F̄ , (i.e. S ∼sc 〈g, β〉), then the output has a θ-m.b.c. stochastic arrival
curve α � β with bounding function f ⊗ g, i.e., A∗ ∼θ−mb 〈f ⊗ g, α � β〉.

Then, based on the relationship between the stochastic service curve and
θ-stochastic service curve, the following result is obtained.

Corollary 5.34. Consider a system S with input A. If the input has a θ-
m.b.c. or m.b.c. stochastic arrival curve α ∈ F with bounding function f ∈ F̄
(i.e., A ∼sac 〈f, α〉, where ∼saccan be either ∼θ−mb or ∼mb), and the system
provides to the input a θ-stochastic service curve β ∈ F with bounding function
gθ ∈ F̄ (i.e. S ∼θ−sc 〈g, β〉), then the output has a θ-m.b.c. stochastic arrival
curve α� β with bounding function f ⊗ gθ

t (x); i.e., A∗ ∼θ−mb 〈f ⊗ gθ
t , α�β〉,

where gθ
t (x) = gθ(x − θ · t).



5.3 Concatenation Property 97

The following corollary is based on Theorem 5.33 and the relationship
between the stochastic service curve and weak stochastic service curve.

Corollary 5.35. Consider a system S with input A. If the input has a θ-
m.b.c. or m.b.c. stochastic arrival curve α ∈ F with bounding function f ∈ F̄
(i.e., A ∼sac 〈f, α〉, where ∼sac can be either ∼θ−mb or ∼mb) and the system
provides to the input a weak stochastic service curve β ∈ F with bounding
function g ∈ Ĝ (i.e., S ∼ws 〈g, β〉), then the output has a θ-m.b.c. stochastic
arrival curve α � β−θ with bounding function f ⊗ gθ

t (x); i.e., A∗ ∼θ−mb 〈f ⊗
gθ

t , α � β−θ〉, where β−θ(t) = β(t) − θ · t and gθ
t (x) = 1

θ

∫
x−θ·t g(y)dy for any

θ > 0.

5.3 Concatenation Property

This section presents the concatenation property of the stochastic service
curve, θ-stochastic service curve, and weak stochastic service curve for sto-
chastic network calculus.

Fig. 5.1. Concatenation property of stochastic service curve
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As illustrated in Figure 5.1, it can be proved that multiple systems in
tandem, each of which provides a stochastic service curve to the input, can
be concatenated and viewed as one system characterized by a stochastic ser-
vice curve. Particularly, we have the following concatenation property of a
stochastic service curve.

Theorem 5.36. Consider a flow passing through a network of N systems in
tandem. If each system n(= 1, 2, . . . , N) provides a stochastic service curve
Sn ∼sc 〈gn, βn〉 to its input, then the network guarantees to the flow a sto-
chastic service curve S ∼sc 〈g, β〉 with

β(t) = β1 ⊗ β2 ⊗ · · · ⊗ βN (t) (5.28)
g(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN (x). (5.29)

Proof. We shall only prove the two-node case, from which the proof can be
easily extended to the N -node case. For the two-node case, the departure of
the first node is the arrival at the second node, so A1∗(t) = A2(t). In addition,
the arrival at the network is the arrival to the first node, or A(t) = A1(t),
and the departure from the network is the departure from the second node,
or A∗(t) = A2∗(t), where A(t) and A∗(t) denote the arrival process at and
departure process from the network, respectively. We then have

sup
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)]

= sup
0≤s≤t

[(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)]. (5.30)

Now let us consider any s, (0 ≤ s ≤ t), for which we get

(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)
= (A1 ⊗ β1) ⊗ β2(s) − A2∗(s)
= inf

0≤u≤s
[A1 ⊗ β1(u) + β2(s − u) − A1∗ (u) + A2 (u)] − A2∗(s)

≤ sup
0≤u≤t

[
A1 ⊗ β1(u) − A1∗ (u)

]
+ inf

0≤u≤s
[A2 (u) + β2(s − u)] − A2∗(s)

= sup
0≤u≤t

[
A1 ⊗ β1(u) − A1∗ (u)

]
+ A2 ⊗ β (s) − A2∗(s). (5.31)

Applying (5.31) to (5.30), we obtain

sup
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)]

≤ sup
0≤u≤t

[A1 ⊗ β1(u) − A1∗(u)] + sup
0≤u≤t

[A2 ⊗ β2(u) − A2∗(u)], (5.32)

and with this, since both nodes provide a stochastic service curve to their
input, the theorem follows from Lemma 1.5 and the definition of a stochastic
service curve. ��
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In deriving (5.31), we have proved [(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)] ≤
sup0≤u≤s[A1 ⊗ β1(u) − A1∗(u)] + sup0≤u≤s[A2 ⊗ β2(u) − A2∗(u)] for all
s ≥ 0. However, if we want to prove the concatenation property for a weak
stochastic service curve, we need to prove [(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)] ≤
[A1 ⊗ β1(s) − A1∗(s)] + [A2 ⊗ β2(s) − A2∗(s)] for all s ≥ 0, which is difficult
to obtain and does not hold in general. This explains why a weak stochastic
service curve does not have property (P.2) when servers only provide weak
stochastic service curves.

Since a stochastic service curve implies a weak stochastic service curve, the
following result follows immediately from Theorem 5.36, particularly (5.31).

Corollary 5.37. Consider a flow passing through a network of N systems
in tandem. If each system n(= 1, 2, . . . , N − 1) provides a stochastic service
curve Sn ∼sc 〈gn, βn〉, and system N provides a weak stochastic service curve
SN ∼ws 〈gN , βN 〉 to their input, then the network guarantees to the flow a
weak stochastic service curve S ∼ws 〈g, β〉 with

β(t) = β1 ⊗ β2 ⊗ · · · ⊗ βN (t), (5.33)
g(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN (x). (5.34)

In the network of tandem systems, if each system provides a θ-stochastic
service curve, the following theorem holds.

Theorem 5.38. Consider a flow passing through a network of N systems in
tandem. If each system n(= 1, 2, . . . , N) provides a θ-stochastic service curve
Sn ∼θn−sc 〈gn, βn〉 to its input, then, if β ∈ F , the network guarantees to the
flow a weak stochastic service curve S ∼ws 〈g, β〉 with

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t),

g(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN (x),

where βn
−(n−1)θ(t) = βn(t) − (n − 1)θ, n = 1, . . . , N , for any θ > 0.

Theorem 5.38 is proved by iteratively applying the following result.

Lemma 5.39. Consider any functions A(t), A∗(t), b(t), c(t), d(t), e(t). The fol-
lowing relationships hold:

A ⊗ b ⊗ c(t) ≤ sup
0≤s≤t

[A ⊗ b(s) − A∗(s) − θ · (t − s)] + A∗ ⊗ cθ(t), (5.35)

[d ⊗ e]θ (t) = dθ ⊗ eθ(t), (5.36)
[d ⊗ e]−θ (t) = d−θ ⊗ e−θ(t), (5.37)

for any θ ≥ 0, where αθ(t) = α(t) + θ · t, α−θ(t) = α(t) − θ · t.
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Proof. For (5.35), we have

A ⊗ b ⊗ c(t)
= inf

0≤s≤t
{A ⊗ b(s) − A∗(s) − θ · (t − s) + A∗(s) + c(t − s) + θ · (t − s)}

≤ sup
0≤s≤t

[A ⊗ b(s) − A∗(s) − θ · (t − s)] + A∗ ⊗ cθ(t).

For (5.36), we have

[d ⊗ e]θ (t) = d ⊗ e(t) + θ · (t)
= inf

0≤s≤t
{d(s) + θ · s + e(t − s) + θ · (t − s)}

= inf
0≤s≤t

{dθ(s) + eθ(t − s)} = dθ ⊗ eθ(t)

and (5.37) can be verified similarly. ��
Lemma 5.39 may be used iteratively. For example, letting c(t) = d ⊗ e(t)

in (5.35), we immediately obtain from (5.36)

A⊗b⊗(d⊗e)(t) ≤ sup
0≤s≤t

[A⊗b(s)−A∗(s)−θ ·(t−s)]+A∗⊗dθ⊗eθ(t). (5.38)

By iteratively applying Lemma 5.39, we can get

A ⊗ β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t) − A∗(t)

≤ sup
0≤s≤t

[
A1 ⊗ β1(s) − A1∗(s) − θ · (t − s)

]

+ sup
0≤s≤t

[
A2 ⊗ β2(s) − A2∗(s) − θ · (t − s)

]
+ · · · +

+ sup
0≤s≤t

[
AN−1 ⊗ βN−1(s) − A(N−1)∗(s) − θ · (t − s)

]

+AN ⊗ β (t) − A∗(t), (5.39)

and with this, Theorem 5.38 can be easily verified since AN ⊗ β (t)−A∗(t) ≤
sup0≤s≤t

[
AN−1 ⊗ β2(s) − A(N−1)∗(s) − θ · (t − s)

]
.

Based on the relationship between the weak stochastic service curve and θ-
stochastic service curve shown in Theorem 4.7, the following corollary, which
presents the concatenation property for the θ-stochastic service curve model,
immediately follows from Theorem 5.38.

Corollary 5.40. Consider a flow passing through a network of N systems in
tandem. If each system n(= 1, 2, . . . , N) provides a θ-stochastic service curve
Sn ∼θn−ss 〈gn, βn〉 to its input and g ∈ Ḡ, then the network guarantees to
the flow a θ-stochastic service curve S ∼θ−sc 〈gθ, β〉, where gθ(x) = g(x) +
1
θ g(1)(x) and

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t),

g(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN (x),

with βn
−(n−1)θ(t) = βn(t) − (n − 1)θ, n = 1, . . . , N .
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Also based on the relationship between the weak stochastic service curve
and θ-stochastic service curve shown in Theorem 4.7, the following corol-
lary presents the concatenation property for the weak stochastic service curve
model, obtained particularly from (5.39).

Corollary 5.41. Consider a flow passing through a network of N systems in
tandem. If each system n(= 1, 2, . . . , N) provides weak stochastic service curve
Sn ∼ws 〈gn, βn〉 to its input and g ∈ Ḡ, then the network guarantees to the
flow a weak stochastic service curve S ∼ws 〈g, β〉, where

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t),

g(x) = g1,θ1 ⊗ g2,θ2 ⊗ · · · ⊗ gN,θN (x),

with βn
−(n−1)θ(t) = βn(t) − (n − 1)θ for n = 1, . . . , N , gn,θn(x) = g(x) +

1
θn

∫∞
x

g(y)dy for n=1, . . . , N − 1, and gN,θ(x)=gN (x) for any θ, θ1, · · · ,
θN>0.

5.4 Leftover Service Characterization

This section presents results for characterizing the leftover service under ag-
gregate scheduling. To ease the expression, we consider the case where there
are two flows competing for resources in a system under aggregate scheduling.
Consider a system fed with a flow A that is the aggregation of two constituent
flows A1 and A2. Suppose both the service characterization from the server
and traffic characterization from A2 are given, and we are interested in char-
acterizing the service received by A1, with which per-flow bounds for A1 can
then be easily obtained using earlier results.

For the output, there holds A∗(t) = A∗
1(t) + A∗

2(t). In addition, we have
A∗(t) ≤ A(t), A∗

1(t) ≤ A1(t), and A∗
2(t) ≤ A2(t). We now have for any s ≥ 0

A1 ⊗ (β − α2)(s) − A∗
1(s)

= inf
0≤u≤s

[A(u) + β(s − u) − α2(s − u) − A2(u)] − A∗(s) + A∗
2(s)

≤ [A ⊗ β(s) − A∗(s)] + A2(s) − inf
0≤u≤s

[A2(u) + α2(s − u)]

= [A ⊗ β(s) − A∗(s)] + sup
0≤u≤s

[A2(u, s) − α2(s − u)]. (5.40)

5.4.1 Leftover Weak Stochastic Service Curve

From (5.40), together with the fact that both the m.b.c SAC and θ-m.b.c
SAC imply v.b.c. SAC and both the SSC and θ-SSC imply a weak SSC, the
following theorem can be easily verified.
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Theorem 5.42. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a v.b.c. (or m.b.c. or
θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e.,
A2 ∼sac 〈f2, α2〉), where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb) and the
system provides to the input a weak stochastic service curve (or a stochastic
service curve or a θ-stochastic service curve) β ∈ F with bounding function
g ∈ F̄ ; i.e., S ∼ssc 〈g, β〉 where ∼ssc is one of either ∼ws or ∼sc and ∼θ−sc.
Then, if β − α2 ∈ F , A1 receives a weak stochastic service curve β − α2 with
bounding function f2 ⊗ g(x); i.e., S1 ∼ws 〈f2 ⊗ g(x), β − α2〉.

Based on the relationship between the t.a.c. SAC and v.b.c. SAC, we can
obtain the following result from Theorem 5.42.

Corollary 5.43. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a t.a.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼ta 〈f2, α2〉) and the
system provides to the input a weak stochastic service curve (or a stochastic
service curve or a θ-stochastic service curve) β ∈ F with bounding function
g ∈ F̂ ; i.e., S ∼ssc 〈g, β〉, where ∼ssc is one of either ∼ws or ∼sc and ∼θ−sc.
Then, if β − α2,θ ∈ F , A1 receives a weak stochastic service curve β − α2,θ

with bounding function fθ
2 ⊗ g(x); i.e., S1 ∼ws 〈fθ

2 ⊗ g(x), β − α2,θ〉, where
fθ
2 = f2 (x) + 1

θ

∫∞
x

f2(y)dy and α2,θ(t) = α(t) + θ · t for any θ > 0.

Since a deterministic service curve is a special case of a stochastic service
curve, we have the following result.

Corollary 5.44. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a v.b.c. (or m.b.c., or
θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e.,
A2 ∼sac 〈f2, α2〉, where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb. In addition,
the system provides to the input a deterministic service curve β ∈ F . Then, if
β −α2 ∈ F , A1 receives a weak stochastic service curve β −α2 with bounding
function f2; i.e., S1 ∼ws 〈f2, β − α2〉.

Corollary 5.44 can be easily verified since 0⊗f2(x)= min0≤u≤x [0+f2 (u)] ≤
f2 (x). An important implication of this corollary is that a deterministic server
with a deterministic service curve can be considered as a stochastic server with
weak stochastic service curve for each input flow. This property is very useful
for deriving stochastic QoS bounds per-flow under aggregate scheduling since
there are many types of servers that provide a deterministic service curve
as, introduced in Chapter 2.

5.4.2 Leftover Stochastic Service Curve

From (5.40), we easily get
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sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s)]

= A1 ⊗ (β − α2)(s0) − A∗
1 (s0)

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] + sup
0≤s≤t

sup
0≤u≤s

[A2(u, s) − α2(s − u)], (5.41)

and with this, the following theorem can be verified.

Theorem 5.45. Consider a system S with input A that is the aggregation
of two constituent flows, A1 and A2. Suppose A2 has an m.b.c stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼mb 〈f2, α2〉)
and the system provides to the input a stochastic service curve β ∈ F with
bounding function g ∈ F̄ ; (i.e., S ∼sc 〈g, β〉). Then, if β − α2 ∈ F , A1

receives a stochastic service curve β − α2 with bounding function f2 ⊗ g; i.e.,
S1 ∼sc 〈f2 ⊗ g, β − α2〉.

With Theorem 5.45 and based on the relationship between the weak sto-
chastic service curve and stochastic service curve, Corollary 5.46 is obtained.

Corollary 5.46. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has an m.b.c. stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼mb 〈f2, α2〉)
and the system provides to the input a weak stochastic service curve β ∈ F
with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉). Then, if β − α2 ∈ F , A1

receives a stochastic service curve β−α2 with bounding function f2⊗gθ
t ; (i.e.,

S1 ∼sc 〈f2 ⊗ gθ
t , β − α2〉), where gθ

t = 1
θ

∫∞
x−θt

g (y) dy for any θ > 0.

In addition, based on the relationship between the θ-stochastic service
curve and stochastic service curve, the following result is obtained.

Corollary 5.47. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has an m.b.c. stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼mb 〈f2, α2〉)
and the system provides to the input a θ–stochastic service curve β ∈ F with
bounding function gθ ∈ F̄ (i.e., S ∼θ−sc 〈gθ, β〉). Then, if β − α2 ∈ F , A1

receives a stochastic service curve β−α2 with bounding function f2 ⊗ gθ
t (i.e.,

S1 ∼sc 〈f2 ⊗ gt(x), β − α2〉), where gθ
t = gθ (x − θ · t) for any θ > 0.

Corresponding to Theorem 5.45, Corollary 5.46, and Corollary 5.47, the
following results are obtained based on the relationship between the v.b.c
stochastic arrival curve and m.b.c stochastic arrival curve.

Corollary 5.48. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼vb 〈f2, α2〉) and the
system provides to the input a stochastic service curve β ∈ F with bounding
function g ∈ F̄ (i.e., S ∼sc 〈g, β〉). Then, if β − α2 ∈ F , A1 receives a
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stochastic service curve β−α2,θ with bounding function fθ
2,t⊗g(x) (i.e., S1 ∼sc

〈fθ
2,t ⊗ g(x), β−α2,θ〉), where fθ

2,t (x) = 1
θ

∫∞
x−θt

f2 (y) dy, and α2,θ(t) = α(t)+
θ · t for any θ > 0.

Corollary 5.49. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼vb 〈f2, α2〉) and the
system provides to the input a θ-stochastic service curve β ∈ F with bounding
function gθ ∈ F̄ ; i.e., S ∼θ−sc 〈gθ, β〉. Then, if β − α2 ∈ F , A1 receives a
stochastic service curve β−α2,θ with bounding function fθ

2,t⊗gt(x); i.e., S1 ∼sc

〈fθ
2,t ⊗ gθ

t , β − α2〉, where fθ
2,t (x) = 1

θ2

∫∞
x−θ2t

f2 (y) dy, α2,θ(t) = α(t) + θ2 · t,
and gθ

t = gθ (x − θ1 · t) for any θ1, θ2 > 0.

Corollary 5.50. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼vb 〈f2, α2〉) and the sys-
tem provides to the input a weak stochastic service curve β ∈ F with bounding
function g ∈ Ḡ; i.e., S ∼ws 〈g, β〉. Then, if β − α2 ∈ F , A1 receives a sto-
chastic service curve β −α2,θ with bounding function fθ

2,t ⊗ gθ
t (x), i.e. S1 ∼sc

〈fθ
2,t ⊗ gt, β − α2〉, where fθ

2,t (x) = 1
θ2

∫∞
x−θ2t

f2 (y) dy, α2,θ(t) = α(t) + θ2 · t,
and gθ

t = 1
θ1

∫∞
x−θ1t

g (y) dy for any θ1, θ2 > 0.

Similarly, the following results correspond to Theorem 5.45, Corollaries
5.46 and 5.47 and are obtained based on the relationship between the θ-m.b.c.
stochastic arrival curve and m.b.c. stochastic arrival curve.

Corollary 5.51. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a θ-m.b.c stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼θ−mb 〈fθ

2 , α2〉)
and the system provides to the input a stochastic service curve β ∈ F with
bounding function g ∈ F̄ ; i.e., S ∼sc 〈g, β〉. Then, if β − α2 ∈ F , A1 receives
a stochastic service curve β − α2 with bounding function fθ

2,t ⊗ g; i.e., S1 ∼sc

〈fθ
2,t ⊗ g, β − α2〉, where fθ

2,t (x) = fθ
2 (x − θt) for any θ > 0.

Corollary 5.52. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a θ-m.b.c. stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ ; (i.e., A2 ∼θ−mb 〈fθ

2 , α2〉)
and the system provides to the input a θ–stochastic service curve β ∈ F with
bounding function gθ ∈ F̄ ; i.e., S ∼sc 〈gθ, β〉. Then, if β − α2 ∈ F , A1

receives a stochastic service curve β−α2 with bounding function fθ
2,t⊗gθ

t ; i.e.,
S1 ∼sc 〈fθ

2,t ⊗ gθ
t , β −α2〉, where fθ

2,t (x) = fθ2
2 (x − θ2t) and gθ

t = gθ (x − θ1t)
for any θ1, θ2 > 0.

Corollary 5.53. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a θ-m.b.c stochastic arrival
curve α ∈ F with bounding function f ∈ F̄ , i.e. A2 ∼θ−mb 〈fθ

2 , α2〉, and
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the system provides to the input a weak stochastic service curve β ∈ F with
bounding function g ∈ F̄ , i.e. S ∼ws 〈g, β〉. Then, if β − α2 ∈ F , A1 receives
a stochastic service curve β −α2 with bounding function fθ

2,t ⊗ gθ
t , i.e. S1 ∼sc

〈fθ
2,t⊗gθ

t , β−α2〉, where fθ
2,t (x) = fθ

2 (x − θ2t) and gθ
t = 1

θ1

∫∞
x−θ1t

gθ(y)dy for
any θ1, θ2 > 0.

Finally, we suppose the input A2 is characterized using a t.a.c. stochastic
arrival curve. The following results correspond to Theorem 5.45, Corollary
5.46, and Corollary 5.47 and are similarly obtained based on the relationship
between the t.a.c. stochastic arrival curve and m.b.c. stochastic arrival curve.

Corollary 5.54. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼ta 〈f2, α2〉) and the
system provides to the input a stochastic service curve β ∈ F with bounding
function g ∈ F̄ ; i.e., S ∼sc 〈g, β〉. Then, if β−α2 ∈ F , A1 receives a stochastic
service curve β−α2,θ with bounding function fθ

2,t⊗g; i.e., S1 ∼sc 〈fθ
2,t⊗g, β−

α2,θ〉, where fθ
2,t (x) = 1

θ2

∫∞
x−θ2t

f̂2 (y) dy, f̂2 (y) = f (y) + 1
θ1

∫∞
y

f (z) dz, and
α2,θ(t) = α2(t) + θ1 · t for any θ1, θ2 > 0.

Corollary 5.55. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼ta 〈f2, α2〉) and the
system provides to the input a θ-stochastic service curve β ∈ F with bounding
function gθ ∈ F̄ ; (i.e., S ∼θ−sc 〈gθ, β〉). Then, if β − α2 ∈ F , A1 receives
a stochastic service curve β − α2,θ with bounding function fθ

2,t ⊗ gθ
t ; (i.e.,

S1 ∼sc 〈fθ
2,t ⊗ gθ

t , β − α2,θ〉), where fθ
2,t (x) = 1

θ2

∫∞
x−θ2t

f̂2 (y) dy, f̂2 (y) =
f (y) + 1

θ1

∫∞
y

f (z) dz, gθ
t = gθ (x − θ3t), and α2,θ(t) = α2(t) + θ1 · t for any

θ1, θ2, θ3 > 0.

Corollary 5.56. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c. stochastic ar-
rival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼ta 〈f2, α2〉) and
the system provides to the input a weak stochastic service curve β ∈ F with
bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉). Then, if β − α2 ∈ F , A1 re-
ceives a stochastic service curve β − α2,θ with bounding function fθ

2,t ⊗ gθ
t ;

(i.e., S1 ∼sc 〈fθ
2,t ⊗gθ

t , β−α2,θ〉), where fθ
2,t (x) = 1

θ2

∫∞
x−θ2t

f̂2 (y) dy, f̂2 (y) =
f (y) + 1

θ1

∫∞
y

f (z) dz, gθ
t = 1

θ3

∫∞
x−θ3t

g (y) dy, and α2,θ(t) = α2(t) + θ1 · t for
any θ1, θ2, θ3 > 0.

5.4.3 Leftover θ-Stochastic Service Curve

From (5.40), we also obtain, for any θ1, θ2 > 0 and θ = θ1 + θ2,
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sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s) − θ (t − s)]

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ1 (t − s)]

+ sup
0≤s≤t

[

sup
0≤u≤s

[A2(u, s) − α2(s − u)] − θ2 (t − s)
]

(5.42)

and with this and the relationship between the m.b.c. SAC and θ-m.b.c. SAC
and the relationship between the stochastic service curve and θ-stochastic
service curve, the following theorem can be easily verified.

Theorem 5.57. Consider a system S with input A that is the aggrega-
tion of two constituent flows A1 and A2. Suppose A2 has an m.b.c. (or θ-
m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e.,
A2 ∼mb 〈f2, α2〉 (or A2 ∼θ−mb 〈f2, α2〉)) and the system provides to the input
a stochastic service curve (or θ-stochastic service curve) β ∈ F with bounding
function g ∈ F̄ (i.e., S ∼sc 〈g, β〉 (or S ∼θ−sc 〈g, β〉)). Then, if β−α2 ∈ F , A1

receives a θ-stochastic service curve β − α2 with bounding function f2 ⊗ g(x);
i.e., S1 ∼θ−sc 〈f2 ⊗ g(x), β − α2〉.

Based on the relationship between the weak stochastic service curve and
θ-stochastic service curve, the following corollary is obtained.

Corollary 5.58. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has an m.b.c. (or θ-m.b.c.)
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼mb

〈f2, α2〉 (or A2 ∼θ−mb 〈f2, α2〉)) and the system provides to the input a weak
stochastic service curve β ∈ F with bounding function g ∈ Ḡ, (i.e., S ∼ws

〈g, β〉). Then, if β − α2 ∈ F , A1 receives a θ-stochastic service curve β − α2

with bounding function f2 ⊗ gθ(x); i.e., S1 ∼θ−sc 〈f2 ⊗ gθ(x), β − α2〉, where
gθ = g (x) + 1

θ

∫∞
x

g(y)dy for any θ > 0.

Corresponding to Theorem 5.57 and Corollary 5.58, Corollaries 5.59 and
5.60 are obtained based on the relationship between the v.b.c. stochastic ar-
rival curve and θ–m.b.c. stochastic arrival curve.

Corollary 5.59. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ, i.e. A2 ∼vb 〈f2, α2〉 and the system
provides to the input a stochastic service curve (or θ-stochastic service curve)
β ∈ F with bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉 (or S ∼θ−sc 〈g, β〉)).
Then, if β − α2,θ ∈ F , A1 receives a θ-stochastic service curve β − α2,θ with
bounding function fθ

2 ⊗ g; i.e., S1 ∼θ−sc 〈fθ
2 ⊗ g(x), β − α2,θ〉, where fθ

2 =
f2 (x) + 1

θ

∫∞
x

f2(y)dy and α2,θ (t) = α2 (t) + θt for any θ > 0.

Corollary 5.60. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic ar-
rival curve α ∈ F with bounding function f ∈ Ḡ; (i.e., A2 ∼vb 〈f2, α2〉)
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and the system provides to the input a weak stochastic service curve β ∈ F
with bounding function g ∈ Ḡ; (i.e., S ∼ws 〈g, β〉). Then, if β − α2,θ ∈ F ,
A1 receives a θ-stochastic service curve β − α2,θ with bounding function
fθ
2 ⊗ gθ; i.e., S1 ∼θ−sc 〈fθ

2 ⊗ gθ, β −α2,θ〉, where fθ
2 = f2 (x)+ 1

θ2

∫∞
x

f2(y)dy,
gθ1 = g (x) + 1

θ1

∫∞
x

g(y)dy, and α2,θ (t) = α2 (t) + θ2t for any θ1, θ2 > 0.

Finally, based on the relationship between the t.a.c. stochastic arrival curve
and θ-m.b.c. stochastic arrival curve, we can have Corollaries 5.61 and 5.62,
which correspond to Theorem 5.57 and Corollary 5.58.

Corollary 5.61. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ; (i.e., A2 ∼ta 〈f2, α2〉) and the
system provides to the input a stochastic service curve (or θ-stochastic service
curve) β ∈ F with bounding function g ∈ F̄ ; i.e., S ∼sc 〈g, β〉 (or S ∼θ−sc

〈g, β〉). Then, if β − α2,θ ∈ F , A1 receives a θ-stochastic service curve β −
α2,θ with bounding function fθ

2 ⊗ g, i.e., S1 ∼θ−sc 〈fθ
2 ⊗ g, β − α2,θ〉, where

fθ
2 = f̂2 (x) + 1

θ2

∫∞
x

f̂2(y)dy, f̂2 (y) = f (y) + 1
θ1

∫∞
y

f (z) dz, and α2,θ2 (t) =
α2 (t) + θ2t, for any θ1, θ2 > 0.

Corollary 5.62. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c stochastic ar-
rival curve α ∈ F with bounding function f ∈ Ḡ; (i.e., A2 ∼ta 〈f2, α2〉) and
the system provides to the input a weak stochastic service curve β ∈ F with
bounding function g ∈ Ḡ; i.e., S ∼ws 〈g, β〉. Then, if β − α2,θ ∈ F , A1 re-
ceives a θ-stochastic service curve β − α2,θ with bounding function fθ

2 ⊗ gθ;
i.e., S1 ∼θ−sc 〈fθ

2 ⊗gθ, β−α2,θ〉, where fθ2
2 = f̂2 (x)+ 1

θ2

∫∞
x

f̂2(y)dy, f̂2 (y) =
f (y)+ 1

θ3

∫∞
y

f (z) dz, and gθ1 = g (x)+ 1
θ1

∫∞
x

g(y)dy and α2,θ (t) = α2 (t)+θ2t
for any θ1, θ2, θ3 > 0.

5.5 Superposition Property

The superposition property means that the superposition of flows can be
represented using the same traffic model. With this property, the aggregate of
(possibly many) individual flows may be considered as a single aggregate flow,
so that the QoS performance for the aggregate can be derived in the same
way as for a single flow. This section discusses the superposition property for
the various stochastic traffic models introduced in Chapter 2.

Consider N flows with arrival processes Ai(t), i = 1, . . . , N . Let A(t) be
the superposition of the N flows. In other words, we have for any s, t ≥ 0,

A(s, s + t) = A1(s, s + t) + · · · + AN (s, s + t).

Then, for any functions αi(t), i = 1, . . . , N , we have
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A(s, s + t) − [α1(t) + · · · + αN (t)]
= [A1(s, s + t) − α1(t)] + · · · + [AN (s, s + t) − αN (t)]. (5.43)

With (5.43), the superposition property of the t.a.c. stochastic arrival curve
can be easily verified.

Theorem 5.63. Consider N flows with arrival processes Ai(t), i = 1, . . . , N ,
respectively. Let A(t) denote the aggregate arrival process. If ∀i, Ai ∼ta

〈fi, αi〉, then A ∼ta 〈f, α〉 with α(t) =
∑N

i=1 αi(t) and f(x) = f1⊗· · ·⊗fN (x).

From (5.43), we can also obtain

sup
0≤s≤t

[A(s, t) − [α1(t − s) + · · · + αN (t − s)]]

≤ sup
0≤s≤t

[A1(s, t) − α1(t − s)] + · · · + sup
0≤s≤t

[AN (s, t) − αN (t − s)], (5.44)

and with this, the superposition property of the v.b.c. stochastic arrival curve
can be derived.

Theorem 5.64. Consider N flows with arrival processes Ai(t), i = 1, . . . , N ,
respectively. Let A(t) denote the aggregate arrival process. If ∀i, Ai ∼vb

〈fi, αi〉, then A ∼vb 〈f, α〉 with α(t) =
∑N

i=1 αi(t) and f(x) = f1⊗· · ·⊗fN (x).

Further, from (5.44), we get

sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − [α1(s − u) + · · · + αN (s − u)]]

≤ sup
0≤s≤t

sup
0≤u≤s

[A1(u, s) − α1(s − u)] + · · ·

+ sup
0≤s≤t

sup
0≤u≤s

[AN (u, s) − αN (s − u)] (5.45)

with which, the superposition property of the m.b.c. stochastic arrival curve
is obtained.

Theorem 5.65. Consider N flows with arrival processes Ai(t), i = 1, . . . , N ,
respectively. Let A(t) denote the aggregate arrival process. If ∀i, Ai ∼mb〈fi, αi〉,
then A ∼mb 〈f, α〉 with α(t) =

∑N
i=1 αi(t) and f(x) = f1 ⊗ · · · ⊗ fN (x).

Also from (5.44), we get for any θ1, . . . , θN > 0 and θ = θ1 + · · · + θN

sup
0≤s≤t

[

sup
0≤u≤s

{A(u, s) − [α1(s − u) + · · · + αN (s − u)]} − θ · (t − s)
]

≤ sup
0≤s≤t

[

sup
0≤u≤s

[A1(u, s) − α1(s − u)] − θ1 · (t − s)
]

+ · · ·

+ sup
0≤s≤t

[

sup
0≤u≤s

[AN (u, s) − αN (s − u)] − θN · (t − s)
]

, (5.46)

and with this, the superposition property of the m.b.c. stochastic arrival curve
is obtained.
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Theorem 5.66. Consider N flows with arrival processes Ai(t), i = 1, . . . , N ,
respectively. Let A(t) denote the aggregate arrival process. If ∀i, Ai ∼θ−mb

〈fi, αi〉, then A ∼θ−mb 〈fθ, α〉 with α(t) =
∑N

i=1 αi(t), and fθ(x) = fθ1
1 ⊗

· · · ⊗ fθN

N (x) for any θ1, . . . , θN > 0 and θ = θ1 + · · · + θN .

5.6 Scaling of End-to-End Delay Bound

As discussed earlier in Chapter 2, when we consider the deterministic network
with n nodes in tandem, we see that the end-to-end delay bound obtained is
a scaling in O

(
n2
)

from the node-by-node analysis approach. However, with
the concatenation property of the service curve, the end-to-end delay bound
is a scaling in O (n), which gives a much tighter bound. The scaling property
provides us an important metric for evaluating the tightness and scalability
of performance bounds under different approaches.

In this section, we investigate the scaling property of end-to-end delay
bounds under a stochastic setting to demonstrate the use of stochastic network
calculus results introduced in this chapter.

Consider the scenario shown in Figure 5.2.A. Flow F passes n servers in
tandem. Each server is a constant-rate server with capacity C. At each server,
a cross-flow joins and leaves. Assume flow F and all cross-flows have the same
m.b.c. stochastic arrival curve (SAC) A ∼mb 〈r, f〉 with f (x) = ae−bx. To
ensure the stability of the system, we also assume 2r < C. We are interested
in deriving the stochastic end-to-end delay bound for flow F and investigate
how the delay bound increases as the number of servers increases.

To facilitate the explanation, we introduce a useful lemma as follows, which
can also be found from [24].

Lemma 5.67. For any positive numbers ak, bk, k = 1, · · ·,K and any x ≥ 0,
we have

inf
x1+···+xK=x

K∑

k=1

ake−bkxk = e
−x
w

K∏

k=1

(akbkw)
1

bkw ,

where w =
∑K

k=1
1
bk

.

Proof. Let
akbke−bkxk = λ, k = 1, · · ·,K.

Then,
K∑

k=1

ake−bkxk =
K∑

k=1

λ

bk
. (5.47)

Let w =
∑K

k=1
1
bk

and pk = 1
bkw . Since

∑K
i=1 pi = 1, we have

λ =
K∏

k=1

λpk = e−x/w
K∏

k=1

(
ak

wpk

)pk

. (5.48)
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Fig. 5.2. Stochastic servers in tandem

Combining (5.47) and (5.48), this lemma follows. ��

We now derive end-to-end stochastic delay bounds for the flow F . We first
base the derivation on the concatenation property and then derive if using the
node-by-node analysis approach.

5.6.1 Delay Bound From the Concatenation Property

As shown in Figure 5.2.B, according to Theorem 5.45, each node provides a
leftover stochastic service curve

Si ∼sc

〈
βi, Γ i

〉
,

where
βi (t) = (C − r) t

and
Γ i (x) = f (x) .
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Then, as shown in Figure 5.2 C, according to the concatenation property
of the stochastic service curve, we have

Snet ∼sc (βnet, Γnet) ,

where
βnet = β1 ⊗ · · · ⊗ βn = (C − r) t

and
fnet = Γ 1 ⊗ · · · ⊗ Γn.

In addition, according to Theorem 5.4, we can have the stochastic end-to-
end delay bound for flow F

P {D > h (α + x, βnet)} ≤ f ⊗ Γ 1 ⊗ · · · ⊗ Γn(x),

and with this and Lemma 5.67, we have

P

{

D >
x

C − r

}

≤ e−
xb

n+1 (a(n + 1)) . (5.49)

Then, we determine the delay bound d such that P {D > d} ≤ ε, where ε
is a small delay bound violation probability.

Let d = x
C−r and set the right side of (5.49) equal to ε. We have for the

delay bound d

d =
n + 1

(C − r) b
log

(a(n + 1))
ε

. (5.50)

It is found from (5.50) that the delay bound derived from the concatenation
property scales in O (n log n), where n is the number of nodes the flow passes
through.

5.6.2 Delay Bound from Node-by-Node Analysis

Now we derive the stochastic end-to-end delay bound by using the node-by-
node analysis approach. As shown in Figure 5.2.B, for the first node, according
to Theorem 5.4, we can have the following delay bound at the first node

P

{

D1 >
x

C − r

}

≤ f ⊗ Γ 1 (x) .

For the second node, we need to have the input burstiness of flow F at the
second node, which is the output burstiness of flow F at the first node. Accord-
ing to Theorem 5.21, the input of flow F has an m.b.c. SAC

〈
f ⊗ Γ 1 (x) , r

〉
.

Then we have the following delay bound at the second node:

P

{

D2 >
x

C − r

}

≤ f ⊗ Γ 1 ⊗ Γ 2 (x) .
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Similarly, we have the following delay bound at each node i on the path

P

{

Di >
x

C − r

}

≤ f ⊗ Γ 1 ⊗ · · · ⊗ Γ i,

and with this, following the same approach as in getting (5.49), we obtain

P

{

Di >
x

C − r

}

≤ e−
xb

i+1 (a(i + 1)) . (5.51)

Now we consider the distribution of D1 + D2 + · · · + Dn. According to
Lemma 5.67, we have

P

{

D >
x

C − r

}

≤ e−
2xb

(n+1)(n+3)

(

a
(n + 1)(n + 3)

2

)

(5.52)

Then, we determine the delay bound d such that P {D > d} ≤ ε, where ε
is a small delay bound violation probability.

Letting d = x
C−r and setting the right side of (5.49) equal to ε, we have

d =
(n + 1)(n + 3)

2 (C − r) b
log

(
a (n+1)(n+3)

2

)

ε
. (5.53)

It is found from (5.53) that the delay bound derived through node-by-
node analysis scales in O

(
n2 log n

)
. Comparing this with the stochastic delay

bound obtained in (5.50) by using the concatenation property, it is clear that
the one in (5.50) is much better than the one obtained in (5.53) through
node-by-node analysis.

5.7 Calculus on Traffic and Service Envelope Processes

In Chapters 2 and 3, the traffic envelope process and service envelope process
respectively were introduced. This section presents results based on these
processes. Theorems 5.68 to 5.73 correspond to the five basic properties.
Their proofs follow similarly from their deterministic counterpart theorems
and the definitions of stochastic envelope process in Definition 3.28, service
envelope process in Definition 4.15, and strict service envelope process in
Definition 4.16.

Theorem 5.68 (Delay Bound). Consider a system that provides a ser-
vice envelope process Ŝ(t) to the input flow A(t). Suppose A has a stochastic
envelope process Â. Then, the delay D (t) of the flow at time t satisfies

D (t) ≤ h
(
Â(t), Ŝ(t)

)
.
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Theorem 5.69 (Backlog Bound). Consider a system that provides a ser-
vice envelope process Ŝ(t) to the input flow A(t). Suppose A has a stochastic
envelope process Â. Then, the backlog B (t) of the flow at time t satisfies

B (t) ≤ Â � Ŝ (0) .

Theorem 5.70 (Output Characterization). Consider a system that pro-
vides a service envelope process Ŝ(t) to the input flow A(t). Suppose A has a
stochastic envelope process Â. Then, the output A∗ has a stochastic envelope
process Â∗, i.e., for all s, t ≥ 0, A∗(s, s + t) ≤ Â∗(t), where

Â∗(t) = Â � Ŝ(t).

Theorem 5.71 (Concatenation Property). Consider a flow passing
through systems Sh, h = 1, . . . , H, in sequence. Suppose each system Sh

provides a service envelope process Ŝh(t) to the input. Then the concatenation
of these systems offers a service envelope process Ŝ to the flow, where

Ŝ(t) = Ŝ1 ⊗ Ŝ2 · · · ⊗ŜH(t). (5.54)

Theorem 5.72 (Leftover Service). Consider a system serving an aggre-
gate of two (possibly aggregate) flows A1 and A2. Assume the system provides
a service envelope process Ŝ to the aggregate, and A2 has a stochastic envelope
process Â2. Then, the system offers to the flow A1 a service envelope process
Ŝ1(t), where

Ŝ1(t) = (Ŝ − Â2)(t). (5.55)

Theorem 5.73 (Superposition). Consider the superposition of n flows Ai,
i = 1, . . . , n. If each flow Ai has a stochastic envelope process Âi(t), then
the aggregate flow A =

∑n
i=1 Ai has a stochastic envelope process Â(t) =

∑n
i=1 Âi(t).

While looking similar to the corresponding deterministic results,
Theorems 5.68 to 5.73 indeed have critical differences from their determin-
istic counterparts. One is that all envelope processes in Theorems 5.68 to 5.73
are random processes. Due to this, another difference is that in order to use
Theorems 5.68 to 5.73 in real network analysis, the statistical properties of
the various envelope processes have to be known and explored. The third dif-
ference is that to apply Theorems 5.68 to 5.73, strict service envelope process
is often needed instead of service envelope process. This is because, as shown
by its definition, the service envelope process model is dependent on the input
process, which complicates finding the service envelope process. In Chapter 6,
moment generating functions of the various envelope processes will be used
to derive the five basic properties, where strict service envelope processes are
implicitly required and the analysis generally assumes independence between
the envelope processes considered.
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Table 5.1. Properties provided by a combination of traffic model and server model

weak SSC SSC θ-SSC

t.a.c. SAC (P.1), (P.5) (P.1), (P.3), (P.5) (P.1), (P.3), (P.5)

v.b.c. SAC (P.1), (P.4), (P.5) (P.1)–(P.3), (P.5) (P.1), (P.3), (P.5)

m.b.c. SAC (P.1), (P.4), (P.5) (P.1)–(P.5) (P.1)–(P.5)

θ-m.b.c. SAC (P.1), (P.4), (P.5) (P.1), (P.5) (P.1)–(P.5)

5.8 Summary and Bibliographic Comments

In this chapter, we presented the five basic properties of stochastic network
calculus under the various traffic models and server models introduced in
Chapters 3 and 4.

Table 5.1 summarizes the properties that are provided by the combination
of a traffic model, chosen from t.a.c., v.b.c., m.b.c., and θ-m.b.c. stochastic
arrival curve (SAC), and a server model, chosen from weak stochastic service
curve, stochastic service curve (SSC), and θ–stochastic service curve, without
any additional constraints on the traffic model or the server model, where, as
introduced in Chapter 1, (P.1)–(P.5) denote the following properties:

• (P.1) – Service Guarantees
• (P.2) – Output Characterization
• (P.3) – Concatenation Property
• (P.4) – Leftover Service
• (P.5) – Superposition Property

In Chapter 3, we discussed that under the context of network calculus,
many (if not most) traffic models used in the literature [138] [31] [128] [140]
[14] [95] [98] [5] [74] [73] [24] belong to the t.a.c. and/or v.b.c. stochastic arrival
curve. In Chapter 4, many (if not most) server models [93][31][14][95][98][5][24]
were shown to belong to the weak stochastic service curve. Table 5.1 shows
that, without additional constraints, these works can only support part of the
five required properties for stochastic network calculus. In contrast, under the
combination of the m.b.c. stochastic arrival curve and stochastic service curve,
all five basic properties have been proved in this chapter without additional
constraints added to these two models. While appealing, this combination
has a potential problem in the bounding function under the m.b.c. stochastic
arrival curve or stochastic service curve may be dependent on time.

Note that with some additional constraints on the bounding functions in
the models discussed in Table 5.1, one combination may have more properties
among (P.1)–(P.5) than those listed in the table. The most frequently used
constraint in this book is the bounding function belonging to Ḡ. This con-
straint, initially suggested by Starobinski and Sidi [128], is that the bounding
function belongs to a specific subset of F̄ , denoted by Ḡ, which consists of
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all functions in F̄ whose nth-fold integration still belongs to the subset for
any n ≥ 1. Under this constraint, as presented in this chapter, the unlisted
properties among (P.1)–(P.5) can be proved for the combination of the t.a.c.
or v.b.c. stochastic arrival curve and weak stochastic service curve, and par-
ticularly for the combination of a θ-stochastic arrival curve and θ-stochastic
service curve. It is worth highlighting that if the bounding functions consid-
ered are in Ḡ, the set of results for the combination of a θ-stochastic arrival
curve and θ-stochastic service curve can be used as the basis for deriving the
basic properties for all other combinations. Except for combinations where
an m.b.c. stochastic arrival curve and/or stochastic service curve is used,
the results can have bounding functions independent on time. This makes the
θ-stochastic arrival curve and θ-stochastic service curve models attractive.

Another constraint, which was recently proposed by Li, et al. [96], assumes
that there is a timescale T that bounds the convolution in the definition of
a weak stochastic service curve. In [96], Li et al. also discussed network cases
where such timescales exist. As an analogy, we may assume the existence of a
timescale T that bounds the convolution in the m.b.c. stochastic arrival curve
model and stochastic service curve model. Consequently, we conjecture that all
results presented in this chapter under combinations where the m.b.c. stochas-
tic arrival curve and/or stochastic service curve are used will be bounded by
such timescales, and this solves the possibly time-dependent bounding func-
tion problem with the m.b.c. stochastic arrival curve and stochastic service
curve.

Also note that Table 5.1 only provides a comparison of the basic properties
supported by a combination of the four types of stochastic arrival curves and
the three types of stochastic service curves. While we believe they cover a
wide range of traffic models and server models proposed and studied in the
literature as discussed in Chapters 3 and 4, there are other types of traffic
and server models that are not covered by them.

One type uses a sequence of random variables to stochastically bound
the arrival process [87] or the service process [115]. Properties similar to
(P.1), (P.3), (P.4), and (P.5) have been studied [87][115]. These studies gen-
erally need the independence assumption. Under these types of traffic and
service models, several problems remain open. One is the concatenation prop-
erty (P.2), another is the general case analysis, and the third is research-
ing/designing approaches to map known traffic and service characterizations
to the required sequences of random variables.

Another type is built upon moments or moment generating functions. This
type was initially used for traffic (see e.g. Chang [15] and Knightly [85]) and
has also been extended to service (see, e.g., Chang [18], Wu and Negt [133],
and Fidler [44]). The independence assumption is generally required between
arrival and service processes. Extensive studies have been conducted for deriv-
ing the characteristics of a process under this type of model from some known
characterization of the process [15][16][18]. The main challenges for this type
are the concatenation property and the general case analysis. For these, we



116 5 Basic Properties of Stochastic Network Calculus

have presented results in Section 3.5 in Chapter 3 that allow us to further
relate known traffic/service characterizations to the traffic and service models
discussed in this book.

Scaling of end-to-end performance bounds has recently attracted research
interest in the context of stochastic network calculus. The purpose is to study
similar scaling properties found in deterministic network calculus. Essentially
the study is related to investigating the concatenation property under stochas-
tic settings. In Section 5.6, it is shown that with the concatenation property,
the end-to-end stochastic delay bound obtained scales in O (n log n). However,
if the node-by-node analysis is used, the bound scales in O

(
n2 log n

)
. Simi-

lar observations were made by Fidler [44] and Ciucu et al. [25]. It should be
noted that the scalings from the analysis in Section 5.6 and [25] do not assume
the independence between arrival processes and service processes. With the
independence assumption, a scaling of O (n) can indeed be obtained for the
end-to-end stochastic delay bound as discussed by Fidler [44] and as will also
be shown in the next chapter.

All the results in this chapter are proved for the general case where flows
and servers could be dependent. In the next chapter, the independent case will
be investigated, and the investigation can help improve performance bounds
significantly.

Problems

5.1. Consider a server fed with a flow A that is the aggregation of two con-
stituent flows A1 and A2. Suppose the server provides a deterministic service
curve β to the aggregate flow A. Also suppose flows A1 and A2 have v.b.c
stochastic arrival curve Ai ∼vb 〈fi, αi〉, i = 1, 2. Derive the leftover service
curve received by A1 and stochastic delay bound for A1.

5.2. Consider a server fed with a flow A that is the aggregation of two con-
stituent flows A1 and A2. Suppose that the server provides a deterministic
service curve β to the aggregate flow A, and flows A1 and A2 have m.b.c.
stochastic arrival curve Ai ∼mb 〈fi, αi〉, i = 1, 2. Derive the leftover service
curve received by A1.

5.3. Consider a system with three servers S1, S2, and S3 in tandem, where S1

provides a deterministic service curve β1, S2 ∼wc 〈g2, β2〉, and S3 ∼sc 〈g3, β3〉.
Derive an end-to-end service curve for this system.

5.4. Consider a constant-rate server with capacity C fed with a Poisson input
flow with average arrival rate λ. The packet size is exponentially distributed
with mean value µ but limited by a maximum packet size M.

(i) Derive a probabilistic delay bound for the flow using the methods discussed
in this chapter.
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(ii) Derive a delay distribution for the flow using queuing theory, and explain
the difference with the results obtained in (i).

5.5. A server is called a fluctuation constrained server if [93]
∫ b

a

C (t) dt ≥ (µ (b − a) − δ)+ ,

where C (t) is the instantaneous output capacity of a server. The server is fed
by constant input traffic with rate ρ.

(i) Derive the backlog bound for the system.
(ii) Derive the delay bound for the system.

5.6. A stochastic process A is called an exponentially bounded bursty (EBB)
process if for any x ≥ 0, [138]

P {A (t) ≥ x} ≤ ae−bx.

Consider a system with an EBB input and a constant-rate server with capacity
C.

(i) Derive the backlog bound for the system.
(ii) Derive the delay bound for the system.

5.7. Prove Theorem 5.68.

5.8. Prove Theorem 5.69.

5.9. Prove Theorem 5.70.

5.10. Prove Theorem 5.71.

5.11. Prove Theorem 5.72.

5.12. Prove Theorem 5.73.

5.13. Suppose traffic is characterized by

E[A(s, s + t) − αε(t)] ≤ ε(t)

and service by [58]
E[A ⊗ βξ(t) − A∗(t)] ≤ ξ(t).

Derive the five basic properties under this combination of traffic model and
server model directly from the definitions of these two models, and discuss
what additional constraints are needed to allow the derivation.

5.14. Based on the basic properties of the various stochastic arrival curve and
stochastic service curve models presented in this chapter, find the five basic
properties for the combination of traffic model and server model introduced
in the previous problem. Compare them with the results obtained from the
previous problem.


