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Introduction

Network calculus is a theory dealing with queuing systems found in computer
networks. Specifically, network calculus is a theory for delay and other service
guarantee analysis of computer networks. Its essential idea is to use alternate
algebras, particularly the min-plus algebra and max-plus algebra, [6] to trans-
form complex non-linear network systems into analytically tractable linear
systems. Since its introduction in the early 1990s [28][29][138], network calcu-
lus has developed along two tracks—deterministic and stochastic. Determinis-
tic network calculus has been employed in the design of computer networks to
provide deterministic service guarantees for regulated flows. Excellent books
summarizing results for deterministic network calculus are available [18][92].
However, service guarantees are typically required by multimedia flows in the
network [42][43], which often can tolerate some amount of loss or (excess)
delay. For such flows, the provision of stochastic service guarantees is more
important because stochastic service guarantees can make better use of the
multiplexing gain in the network. This is where stochastic network calculus
makes an appearance. In addition, many networks, such as wireless networks
and multi-access networks, may only provide stochastic service guarantees.
In wireless networks, the capacity of a wireless channel varies over time in a
random manner due to channel impairment, contention, and other causes. In
multi-access networks such as CSMA (carrier sense multiple access) networks,
the server capacity seen by a user is highly dependent on the traffic charac-
teristics of other users. For the analysis and provision of service guarantees in
such networks, stochastic network calculus becomes even more important.

This book is devoted to summarizing results for stochastic network cal-
culus and organized as follows. The first chapter gives an introduction to
service guarantee analysis, the basic properties required from a theory for
tractable analysis of computer networks, and the mathematical background
used in the book. The second chapter introduces fundamental concepts and
results of deterministic network calculus. The concepts include arrival curve,
service curve, and strict service curve. The results include the basic proper-
ties supported by deterministic network calculus. Starting in Chapter 3, we
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2 1 Introduction

introduce fundamental concepts and results for stochastic network calculus.
Specifically, Chapter 3 introduces traffic models for stochastic network calcu-
lus and their relations with each other as well as with some well-known traffic
models such as the effective bandwidth model. Chapter 4 defines server models
for stochastic network calculus and introduces their relations with each other.
Chapter 5 summarizes results related to the basic properties for stochastic
network calculus under different combinations of traffic and server models in-
troduced in Chapters 2 to 4. These results are presented without considering
the possible independence of flows and servers. Similar to Chapter 5, Chapter
6 also presents results under various combinations of traffic and server models.
The key difference between these two chapters is that Chapter 6 is devoted
to independent case analysis, where flows and service processes are indepen-
dent. From Chapter 7 to Chapter 9, several extensions and/or applications of
stochastic network calculus are presented under different network cases. The
appendix summarizes the book and discusses open research challenges in the
area.

1.1 Quality of Service Guarantees

With the development and deployment of multimedia and network technolo-
gies, multimedia has become an indispensable feature on the Internet. Mul-
timedia applications such as Internet telephony and Internet video make di-
verse requirements on the services provided by the network. Quality of Service
(QoS) refers to the nature of the packet delivery service provided by the net-
work and is the collective effect of service performances determining the degree
of satisfaction of a user of the service.

A quality of service guarantee, or service guarantee for short, is either de-
terministic or stochastic.1 A deterministic service guarantee guarantees that
all packets of a flow arrive at the destination within its required performance
measures such as throughput, delay, and loss bounds. While such determin-
istic service provides the highest QoS level, its most important drawback is
that it must reserve network resources based on the worst-case scenario and
hence leaves a significant portion of network resources unused on average. A
stochastic service guarantee allows the QoS objectives specified by a flow to
be guaranteed with a probability smaller than one. By allowing some packets
to violate the required QoS measures, stochastic service guarantees can better
exploit the statistical multiplexing gain at network links and hence improve
network utilization.

A deterministic service guarantee may be modeled such that the experi-
enced service must never be worse than the desired service, which may be
expressed in the following form:

1 The literature also uses statistical service guarantee or probabilistic service guar-
antee rather than the stochastic service guarantee in this book.
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Pr {Experienced service is not worse than desired service} = 1. (1.1)

Many methods have been proposed in the literature to derive the worst-case
bounds. The works, including [28][29][15][18][19] on deterministic QoS guar-
antee analysis, have been developed into an elegant theory under the name
of network calculus [92], which will be referred to as deterministic network
calculus in this book.

Similarly, a stochastic service guarantee may be expressed as

Pr {Experienced service is worse than desired service} ≤ ε, (1.2)

where ε is the permissible probability that a packet violates the desired per-
formance [42][43]. It can be seen that the deterministic service guarantee is a
special case of the stochastic service guarantee with ε = 0 in (1.2). The focus
of this book is on stochastic service guarantee analysis.

1.2 Basic Properties for Network Analysis

A computer network consists of data flows and network elements. Correspond-
ingly, a theory for network analysis is typically built on two fundamental con-
cepts: traffic model and server model. A traffic model characterizes the traffic
behavior of a flow, and a server model characterizes the service behavior of a
network element.

In order to easily apply a theory to network analysis, its traffic models and
server models should satisfy some basic properties. The requirement of these
basic properties is illustrated in the following example.

Consider a simple network domain consisting of three network nodes S1—
S3 and three flows F1—F3, as shown in Figure 1.1. Assume F1 and F2
belong to the same traffic class and share the same edge-to-edge path crossing
the network domain. At the second node S2, there is a crossing flow F3 that
shares the server capacity of S2 with F1 and F2. Suppose we are interested
in and want to analyze the edge-to-edge delay performance of the path on
which F1 and F2 cross the network. While there can be many approaches to
the analysis, the following is an intuitively simple one.

First, a certain traffic model AM and a certain server model SM should
be properly chosen to represent flows and nodes, so that single-node analysis
can be conducted to obtain the delay performance of a flow crossing the node.
In addition, the single-node analysis should also give the characterization of
the output, which can be represented with the same traffic model AM, so
that the single-node delay analysis can be repeatedly extended to a sequence
of nodes. Given these, third in the simple approach, since F1 and F2 belong to
the same traffic class and share the same path, an immediate idea is to use an
aggregate flow F1, 2 to represent the two flows before entering the first node
S1. This implicitly requires that the aggregate flow F1, 2 be represented using
characteristics of both F1 and F2. With the first point in mind, the aggregate
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Fig. 1.1. Analysis of a simple network

flow F1, 2 should be represented using the same traffic model AM as F1 and
F2. Fourth, at the second node, the aggregate flow F1, 2 is competing for
service capacity with the crossing flow F3. A simple way for analysis is to find
an equivalent server S2′ for the aggregate flow F1, 2. Under this equivalent
server, the aggregate flow is the only input and there is no crossing traffic.
Again with the first point in mind, the equivalent server should be represented
using the same server model SM as S2 and other nodes. Now, as shown by the
middle figure of Figure 1.1, the network is simplified to a sequence of (possibly
equivalent) servers on which the node-by-node analysis can be conducted to
obtain the delay performance at each node on the path. Then, the edge-to-
edge delay performance can be easily derived from the delay performance at
each node. However, this is not the end since, as will be shown later (e.g., see
Chapter 2), the results from node-by-node analysis can often be significantly
improved if the so-called concatenation property exists. This property tells
us that the concatenation of nodes can be treated as an equivalent node. As
shown by the lower figure of Figure 1.1, with the concatenation property, based
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on the middle figure, the network can be treated as a single black box node.
By applying single-node analysis to the black-box, the desired edge-to-edge
delay result is derived, which can be much better than the result obtained
from the node-by-node analysis.

In summary, as discussed in the above example, a theory should ideally
have the following five basic properties (P.1)—(P.5) to ease tractable network
analysis.

• (P.1) – Service Guarantees
Under a chosen traffic model and a chosen server model, single-node sto-
chastic service guarantees such as backlog and delay guarantees can be
derived.

• (P.2) – Output Characterization
The output of a flow from a server can be represented using the same
traffic model as for the input flow.

• (P.3) – Concatenation Property
The concatenation of servers can be represented using the same server
model.

• (P.4) – Leftover Service
The service available to a flow at a server with competing flows can be
represented using the same server model.

• (P.5) – Superposition Property :
The superposition of flows can be represented using the same traffic model.

In traditional queuing theory, many models have been proposed to charac-
terize arrival and service. Examples are Poisson arrival processes and service
processes with negative exponentially distributed service times for M/M/1
systems. Also, a lot of results for single-node systems are available, which
correspond to (P.1). Many results are also available from traditional queuing
theory that corresponding to (P.5), particularly when sources are independent.
For example, the aggregate of two Poisson arrival processes, if they are inde-
pendent, results in a new Poisson arrival process. Under certain conditions,
the output of an M/M/1 system can be considered to have a Poisson arrival
process, which corresponds to (P.2). However, it is generally hard to conclude
that the output can be represented using the same arrival process as the input
in traditional queuing theory. In addition, very few results have so far been
derived for (P.3) and (P.4) in traditional queuing theory. This partly explains
why it is difficult to apply traditional queuing theory to network analysis.

Throughout the rest of this book, we will see that with the five basic
properties (P.1)—(P.5), network service guarantee analysis can be conducted.
Unless specially highlighted, the networks considered in this book are feedfor-
ward networks where there are no feedback flows.
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1.3 Notation and Mathematical Background

In this book, we consider a discrete time domain with a unit discretization
step. We adopt the convention that a packet is considered to be received by a
network element when and only when its last bit has arrived at the network
element, and a packet is considered out of a network element when and only
when its last bit has been transmitted by the network element. A packet can
be served only when its last bit has arrived. All queues are assumed to be
empty at time 0. Packets within a flow are served in first-in-first-out (FIFO)
order.

1.3.1 Notation

We use various processes to model a network that is assumed to be lossless. A
process is defined to be a function of time t(≥ 0). It could count the (cumula-
tive) amount of traffic (in number of bits) arriving at some network element,
the amount of traffic (in number of bits) departing from the network element,
the amount of service (in number of bits) provided by the network element,
or the amount of service (in number of bits) that failed to be provided by
the network element due to some impairment to it. In this case, we call the
process (cumulative) arrival process, denoted by A(t), (cumulative) departure
process, denoted by A∗(t), (cumulative) service process, S(t), or (cumulative)
impairment process, I(t), respectively. We assume all such processes are de-
fined on t ≥ 0 and by convention have zero value at t = 0. We also assume
these functions are left-continuous.2

Wherever necessary, we use subscripts to distinguish different flows and
superscripts to distinguish different network elements. Specifically, Ah

i and
Ah∗

i represent the arrival and departure processes of flow i from network ele-
ment h, respectively, Sh

i the service process provided to flow i by the network
element, and Ih the impairment process suffered by the network element.

For any 0 ≤ s ≤ t, we denote A(s, t) ≡ A(t) − A(s), A∗(s, t) ≡ A∗(t) −
A∗(s), S(s, t) ≡ S(t) − S(s), and I(s, t) ≡ I(t) − I(s).

In this book, the following function sets are often used. Specifically, we
denote by F the set of non-negative wide-sense increasing functions, where
for each function a(·) there holds

F = {a(·) : ∀0 ≤ x ≤ y, 0 ≤ a(x) ≤ a(y)}

and for any function a ∈ F we set a(x) = 0 for ∀x < 0.
We denote by F̄ the set of non-negative wide-sense decreasing functions

where for each function a(·) there holds

2 Whether the functions are left-continuous or right-continuous does not make any
difference to the results in this book (e.g., see Chapter 1.1 of [92] for the discus-
sion).
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F̄ = {a(·) : ∀0 ≤ x ≤ y, 0 ≤ a(y) ≤ a(x)}
and for any function a ∈ F̄ we also set a(x) = 1 for ∀x < 0.

We denote by Ḡ the set of functions in F̄ where for each function a(·) ∈ Ḡ
its nth-fold integration, denoted by f (n)(x) ≡ (

∫∞
x

dy)nf(y), is bounded for
any x ≥ 0 and still belongs to Ḡ for any n ≥ 0, or

Ḡ = {a(·) : ∀n ≥ 0,

(∫ ∞

x

dy

)n

a(y) ∈ Ḡ}.

A function a is said to be additive if and only if, for all x, y a(x + y) =
a(x) + a(y). The function is said to be sub-additive if and only if a(x + y) ≤
a(x) + a(y) for all x and y.

For any non-negative functions a, b, the following inequalities hold trivially:

sup
0≤y≤x

[a(y) + b(y)] ≤ sup
0≤y≤x

a(y) + sup
0≤y≤x

b(y), (1.3)

inf
0≤y≤x

[a(y) − b(y)] ≥ inf
0≤y≤x

a(y) − sup
0≤y≤x

b(y). (1.4)

By definition, A(t), A∗(t), S(t), and I(t) belong to F . In addition, it can be
shown that all the exponentially decaying functions and functions exhibiting
sub-exponential decay belong to Ḡ.

For any random variable X, its cumulative distribution function (CDF),
denoted by FX(x) ≡ P{X ≤ x}, belongs to F and its complementary cumu-
lative distribution function (CCDF), denoted by F̄X ≡ P{X > x}, belongs to
F̄ .

The conventional convolution of two functions a, b is defined as

(a � b)(x) =
∫ ∞

−∞
a(x − y)b(y)dy,

and the Stieltjes convolution of two functions a, b is defined as

(a ∗ b)(x) =
∫ ∞

−∞
a(x − y)db(y).

We use [·]+ to express the maximum of 0 and a given number, or [x]+ ≡
max{x, 0}. We shall also use [·]1 to denote the minimum of 1 and the given
number, i.e., [x]1 ≡ min{x, 1}.

For service guarantee analysis of a system, which could be a network el-
ement or a network of elements, we are mainly interested in the backlog and
delay, which are defined as follows [30][18][92]:

Definition 1.1. Let A(t) and A∗(t) respectively be the arrival process and
departure process of a lossless system. The backlog B(t) in the system at time
t ≥ 0 is defined as

B(t) = A(t) − A∗(t).
Assuming first-in-first-out (FIFO) ordering, the delay D(t) at time t ≥ 0 is
defined as

D(t) = inf{d ≥ 0 : A(t) ≤ A∗(t + d)}.
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1.3.2 Min-Plus Algebra Basics

In conventional algebra, addition + and multiplication × are the two most
common operations on elements of R = (−∞,+∞). These two operations
have a number of properties, such as the closure property, associativity, com-
mutativity, and distributivity, which make the algebraic structure (R,+,×)
a commutative field.

In min-plus algebra, an algebra structure of interest is (R∪ {+∞},∧,+).
Here, the “addition” operation is ∧ and the “multiplication” operation is +,
where ∧ denotes the infimum or, when it exists, the minimum. It can be
verified that (R∪ {+∞},∧,+) has the following properties, and it is called a
commutative dioid with zero element ε̄ = +∞ and identity element e = 0:

• Closure property: ∀a, b ∈ (R ∪ {+∞}), a ∧ b ∈ (R ∪ {+∞}); a + b ∈
(R∪ {+∞}).

• Associativity: ∀a, b ∈ (R∪ {+∞}), (a ∧ b) ∧ c = a ∧ (b ∧ c); (a + b) + c =
a + (b + c).

• Commutativity: ∀a, b ∈ (R∪ {+∞}), a ∧ b = b ∧ a; a + b = b + a.
• Distributivity: ∀a, b, c ∈ (R∪ {+∞}), (a ∧ b) + c = (a + b) ∧ (b + c).
• Zero element: ∀a ∈ (R∪ {+∞}), a ∧ ε̄ = a.
• Absorbing zero element: ∀a ∈ (R∪ {+∞}), a + ε̄ = ε̄ + a = ε̄.
• Identity element: ∀a ∈ (R∪ {+∞}), a + e = e + a = a.
• Idempotency of addition: ∀a ∈ (R∪ {+∞}), a ∧ a = a.

For functions in min-plus algebra, the following operations are often used.
The pointwise infimum, or pointwise minimum if it exists, of functions a

and b is
(a ∧ b)(x) = inf[a(x), b(x)].

The pointwise supremum, or pointwise maximum if it exists, of functions
a and b is

(a ∨ b)(x) = sup[a(x), b(x)].

The min-plus convolution of functions a and b is

(a ⊗ b)(x) = inf
0≤y≤x

[a(y) + b(x − y)],

where, when it applies, “infimum” should be interpreted as “minimum”.
The min-plus deconvolution of functions a and b is

(a � b)(x) = sup
y≥0

[a(x + y) − b(y)],

where, when it applies, “supremum” should be interpreted as “maximum”.
It can be verified that (F ,∧,⊗) also has the following properties and is a

commutative dioid with zero element ε̄ and identity element e, where ε̄(x) =
+∞ for all x ≥ 0 and e(x) = 0 if x = 0 and otherwise +∞ [6][19][92]:
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• Closure property: ∀a, b ∈ F , a ∧ b ∈ F ; a ⊗ b ∈ F .
• Associativity: ∀a, b ∈ F , (a ∧ b) ∧ c = a ∧ (b ∧ c); (a⊗ b)⊗ c = a⊗ (b⊗ c).
• Commutativity: ∀a, b ∈ F , a ∧ b = b ∧ a; a ⊗ b = b ⊗ a.
• Distributivity: ∀a, b, c ∈ F , (a ∧ b) ⊗ c = (a ⊗ b) ∧ (b ⊗ c).
• Zero element: ∀a ∈ F , a ∧ ε̄ = a.
• Absorbing zero element: ∀a ∈ F , a ⊗ ε̄ = ε̄ ⊗ a = ε̄.
• Identity element: ∀a ∈ F , a ⊗ e = e ⊗ a = a.
• Idempotency of addition: ∀a ∈ F , a ∧ a = a.

The following properties also hold for (F ,∧,⊗):

• Comparison: For ∀a1, a2, b1, b2 ∈ F , a1 ⊗ a2 ≤ a1 ∧ a2 ≤ a1 ∨ a2.
• Monotonicity: For ∀a1, a2, b1, b2 ∈ F , if a1 ≤ b1 and a2 ≤ b2, then a1⊗a2 ≤

b1 ⊗ b2; a1 ∧ a2 ≤ b1 ∧ b2; a1 ∨ a2 ≤ b1 ∨ b2.

Similarly, it can be shown that (F̄ ,∧,⊗) is a commutative dioid, but with
zero element ε̄ and identity element ē, where ε̄(x) = +∞ for all x ≥ 0 and
ē(x) = 0 for all x ≥ 0. Specifically, (F̄ ,∧,⊗) has the following properties:

• Closure property: ∀a, b ∈ F̄ , a ∧ b ∈ F̄ ; a ⊗ b ∈ F̄ .
• Associativity: ∀a, b, c ∈ F̄ , (a∧ b)∧ c = a∧ (b∧ c); (a⊗ b)⊗ c = a⊗ (b⊗ c).
• Commutativity: ∀a, b ∈ F̄ , a ∧ b = b ∧ a; a ⊗ b = b ⊗ a.
• Distributivity: ∀a, b, c ∈ F̄ , (a ∧ b) ⊗ c = (a ⊗ b) ∧ (b ⊗ c).
• Zero element: ∀a ∈ F̄ , a ∧ ε̄ = a.
• Absorbing zero element: ∀a ∈ F̄ , a ⊗ ε̄ = ε̄ ⊗ a = ε̄.
• Identity element: ∀a ∈ F̄ , a ⊗ ē = ē ⊗ a = a.
• Idempotency of addition: ∀a ∈ F̄ , a ∧ a = a.
• Comparison: a1 ∧ a2 ≤ a1 ∨ a2 ≤ a1 ⊗ a2.
• Monotonicity: If a1 ≤ b1 and a2 ≤ b2, then a1 ⊗ a2 ≤ b1 ⊗ b2; a1 ∧ a2 ≤

b1 ∧ b2; a1 ∨ a2 ≤ b1 ∨ b2.

Besides the various properties summarized above, the min-plus convolu-
tion ⊗ implies the following [92].

Lemma 1.2. If a is left-continuous and b is continuous, then for any t there
exists some t0 such that

a ⊗ b (t) ≡ a (t − t0) + b (t0) . (1.5)

Additionally, it can be verified that for any functions α and β, there holds

(α + c) ⊗ β = α ⊗ β + c, (1.6)

where c is any constant.
If α and β are sub-additive and α(0) = β(0) = 0, there hold

α ⊗ α = α, (1.7)
α ⊗ β = α if α ≤ β, (1.8)

where c is any constant.
Furthermore, if functions α and β are sub-additive, so are α ⊗ β, α ∧ β,

and α � β.
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1.3.3 Maximum Horizontal Distance and Maximum
Vertical Distance

For ease of exposition of results, we adopt the following definitions [31] [92],
which will be used throughout the rest of the book.

Definition 1.3. Consider two functions α(t) and β(t). The maximum hori-
zontal distance between them, denoted by h(α, β), is defined as

h (α, β) = sup
s≥0

{inf {τ ≥ 0 : α (s) ≤ β (s + τ)}} ,

and the maximum vertical distance between them, denoted by v(α, β), is de-
fined as

v (α, β) = sup
s≥0

{α(s) − β(s)} ≡ α � β(0).

Figure 1.2 illustrates these two concepts using functions α(t) and β(t).

α(t)/β(t)

t

β(t) α(t)

Max. horizontal 
distance

M
ax. vertical 
distance

Fig. 1.2. Maximum horizontal and vertical distances between two functions

1.4 Random Variable and Stochastic Process Basics

1.4.1 Random Variables

A random variable X is characterized by its cumulative distribution function
(CDF) FX(x), defined as

FX(x) = P{X ≤ x},−∞ < x < ∞.

FX(x) is a non-negative, never decreasing function of x and belongs to F .
In addition, F (−∞) = 0 and F (∞) = 1. The complementary cumulative
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distribution function (CCDF) of the random variable X, denoted by F̄X , is
defined as

F̄X = P{X > x},−∞ < x < ∞.

It is trivial that FX(x)+ F̄X(x) = 1 for any x. In addition, F̄X is non-negative
and non-increasing, belonging to F̄ . Furthermore, F̄ (−∞) = 1 and F̄ (∞) = 0.

The probability density function (pdf) of a random variable X, denoted by
fX(x), is defined as

fX(x) ≡ dFX(x)
dx

.

Given the probability density function of a random variable X, its cumulative
distribution function is found as

FX(x) =
∫ x

−∞
fX(y)dy.

The moment generating function (MGF) of a random variable X, denoted
by MX(θ), is defined as

MX(θ) ≡ E[eθX ]

=
∫ ∞

−∞
eθxfX(x)dx,

where θ is a real variable.
The following inequality, known as the Chernoff bound, gives an upper

bound on the CCDF of a random variable X:

P{X ≥ x} ≤ e−θxE[eθX ]

for all θ ≥ 0.

Lemma 1.4. Consider a random variable X. For any x ≥ 0, P{(X)+ > x} =
P{X > x}.

In this book, we are often concerned about the sum of a collection of
random variables {Xi}, namely

Z =
n∑

i=1

Xi.

For Z (=
∑n

i=1 Xi), if X1,X2, . . . , Xn are independent, it is known that

fZ(z) = fX1 � fX2 � · · · � fXn
(z), (1.9)

where the convolution is commutative. In addition,

MZ(θ) = MX1(θ) · MX2(θ) · · · · · MXn
(θ). (1.10)
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In this book, corresponding to (1.9), if X1,X2, . . . , Xn are independent,
we often use Stieltjes convolution for FZ ,

FZ(z) = FX1 ∗ FX2 ∗ · · · ∗ FXn
(z), (1.11)

where the Stieltjes convolution is also commutative.
In addition, if X1,X2, . . . , Xn are possibly dependent, the following result

is important.

Lemma 1.5. For the sum of a collection of random variables Z =
∑n

i=1 Xi,
no matter whether they are independent or not, there holds for the CCDF of
Z

F̄Z(z) ≤ F̄X1 ⊗ · · · ⊗ F̄Xn
(z). (1.12)

Proof. We only prove for the sum of two random variables X1 and X2, and
the proof can be easily extended to n > 2.

For any z ≥ x ≥ 0, {X1 + X2 > z}∩ {X1 ≤ x}∩ {X2 ≤ z − x} = φ, where
φ denotes the null set. We then have

{X1 + X2 > z} ⊂ {X1 > x} ∪ {X2 > z − x}

and hence

P{X1 + X2 > z} ≤ P{X1 > x} + P{X2 > z − x}.

Since the above inequality holds for all x, (0 ≤ x ≤ z), we get

P{X1 + X2 > z} ≤ inf
0≤x≤z

[P{X1 > x} + P{X2 > z − x}]

or
F̄X1+X2(z) ≤ F̄X1 ⊗ F̄X2(z).

While we shall mainly use forms similar to (1.12) to ease expressing results
related to the sum of random variables, there are other inequalities that can be
used to find upper bounds on the CCDF of Z. These inequalities can indeed
be applied to all corresponding results in this book concerning the sum of
multiple random variables. One of these inequalities is as follows.

Lemma 1.6. For the sum of a collection of random variables Z =
∑n

i=1 Xi,
no matter whether they are independent or not, there holds for the CCDF of
Z

F̄Z(z) ≤ inf
p1+···+pn=1

{F̄X1(p1z) + · · · + F̄Xn
(pnz)} (1.13)

for any 1 > pi > 0, i = 1, . . . , n, satisfying
∑n

i=1 pi = 1.
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1.4.2 Stochastic Processes

A stochastic process X(t) is a collection of random variables {X(t), t ∈ T}
defined for each t in the index set T . The stochastic process is similarly char-
acterized by its cumulative distribution function (CDF) FX(x, t), defined as
for any (allowed) t,

FX(x, t) = P{X(t) ≤ x},−∞ < x < ∞.

For any t, FX(x, t) is also non-negative, never decreasing on x, and belongs
to F . In addition, F (−∞, t) = 0 and F (∞, t) = 1.

The complementary cumulative distribution function (CCDF) of the sto-
chastic process X(t) is defined as

F̄X(X, t) = P{X(t) > x},−∞ < x < ∞.

For any t, F̄X(x, t) is non-negative and non-increasing and belongs to F̄ . In
addition, F̄ (−∞, t) = 1 and F̄ (∞, t) = 0. Furthermore, FX(x, t)+F̄X(x, t) = 1
for all x and any t.

The probability density function (pdf) and the moment generating function
of a stochastic process X(t) are respectively defined as

fX(x, t) ≡ dFX(x, t)
dx

and

MX(θ(t), t) ≡ E[eθ(t)X(t)]

=
∫ ∞

−∞
eθ(t)xfX(x, t)dx,

where θ(t) is a real variable possibly dependent on t.
A stochastic process X(t) is said to be stationary if FX(x, t) remains un-

changed when t shifts, that is, for any given constant τ , there holds

FX(x, t + τ) = FX(x, t).

In the stationary case, for ease of expression, we often simply use FX(x) and
F̄X(x) to represent the CDF and CCDF, respectively.

1.4.3 Stochastic Ordering

For any two random variables X and Y , if F̄X(x) ≤ F̄Y (x) for all x, or in
other words,

P{X > x} ≤ P{Y > x} for all x,

we then say X is stochastically smaller than Y [130][118], written as
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X ≤st Y.

The same notation applies when X and Y are random vectors.
Similarly, for any two stochastic processes X(t) and Y (t), we say X(t) is

stochastically smaller than Y (t), written X(t) ≤st Y (t), if, for any t and all
x, P{X(t) > x} ≤ P{Y (t) > x}.

For two random variables X and Y , the following result holds [130]:

Lemma 1.7. If X ≤st Y , then f (X) ≤st f (Y ) for any increasing function
f .

For the same mapping function of random variables, if these random vari-
ables are independent, the following result holds (see, e.g., Theorem 2.2.3 in
[130]).

Lemma 1.8. Let X1, . . . , Xn be independent and Y1, . . . , Yn be independent.
If Xi ≤st Yi, then for any wide-sense increasing function Φ(z1, . . . , zn) on zi

(i = 1, . . . , n), there holds

Φ (X1, . . . , Xn) ≤st Φ (Y1, . . . , Yn) .

Example 1.9. As an example of Lemma 1.8, letting Φ(z1, . . . , zn) =
∑n

i=1 zi, if
X1, . . . , Xn and Y1, . . . , Yn are independent and Xi ≤st Yi for all i = 1, . . . , n,
we get

∑n
i=1 Xi ≤st

∑n
i=1 Yi.

Example 1.10. Let Φ(z1, . . . , zn) = max{z1, . . . , zn}, which can be verified to
be wide-sense increasing on zi. Then, from Lemma 1.8, if X1, . . . , Xn and
Y1, . . . , Yn are independent and Xi ≤st Yi for all i = 1, . . . , n, we can conclude
that max{X1, . . . , Xn} ≤st max{Y1, . . . , Yn}. The conclusion holds also for
mapping Φ(z1, . . . , zn) = min{z1, . . . , zn}.

For the same mapping function of random variables that are unknown if
they are independent, if certain conditions hold, we have the following result
(see, e.g., Theorem 2.2.4 in [130] or Theorem 4.3.3 in [108]).

Lemma 1.11. Suppose that for random variables {X1, . . . , Xn} and
{Y1, . . . , Yn}, there holds {X1, . . . , Xn} ≤st {Y1, . . . , Yn}. Then, for the map-
ping Z(t) = Φ(z1, . . . , zn), if it is nondecreasing in {z1, . . . , zn}, one has
Z ′(t) ≤st Z ′′(t), where Z ′(t) = Φ(X1, . . . , Xn) and Z ′′ = Φ(Y1, . . . , Yn).

Example 1.12. For the mappings in Examples 1.9 and 1.10, if {X1, . . . , Xn} ≤st

{Y1, . . . , Yn}, then, based on Lemma 1.11, the same stochastic ordering conclu-
sions hold: i.e.,

∑n
i=1 Xi ≤st

∑n
i=1 Yi, max{X1, . . . , Xn} ≤st max{X1, . . . , Xn},

and min{X1, . . . , Xn} ≤st min{X1, . . . , Xn}.
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1.5 Min-Plus Linearity of Queuing Systems

Consider a lossless network queuing system with arrival process A(t), service
process S(t), and departure process A∗(t). In this system, the input is A(t)
and the output is A∗(t).

By the definition of backlog in the system, the following relationship holds:

A∗(t) = A(t) − B(t). (1.14)

The Lindley equation can be used to derive B(t), which is

B(t) = max{0, B(t − 1) + A(t − 1, t) − S(t − 1, t)}. (1.15)

Equation (1.15) is intuitively clear and says that the amount of traffic back-
logged in the system at time t equals the amount of traffic backlogged at time
t − 1 plus the amount of traffic that arrived between t − 1 and t minus the
amount of traffic serviced between t − 1 and t. By applying (1.15) iteratively
to its right-hand side, it becomes

B(t) = sup
0≤s≤t

{A(s, t) − S(s, t)}. (1.16)

Applying (1.16) to (1.14) results in

A∗(t) = inf
0≤s≤t

{A(s) + S(s, t)} = A ⊗ S(t). (1.17)

Equation (1.17) establishes the relationship between the output and the input
of the queuing system considered.

Relationship (1.17) is very similar to a relationship commonly found for
conventional linear communication systems where there holds

A∗(t) = A � S(t) (1.18)

with S(t) being the impulse response of the system. For such a system, suppose
A(t) = a1 ×A1(t) + a2 ×A2(t) and denote by A∗

i (t) the output of the system
when there is only Ai(t) as the input, i = 1, 2. The following linearity property
holds: For any non-negative constants a1 and a2,

A∗(t) = [a1 × A1(t) + a2 × A2(t)] � S(t)
= a1 × A1 � S(t) + a2 × A2 � S(t)
= a1 × A∗

1(t) + a2 × A∗
2(t). (1.19)

Relationship (1.17), however, implies that the queuing system considered
is non-linear in the conventional sense with the algebra structure (R,+,×).

Suppose now that the input process is the min-plus addition of two
processes A1(t) and A2(t) in the form

A(t) = (a1 + A1(t)) ∧ (a2 + A2(t)), (1.20)
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where a1 and a2 are any two non-negative constants. Similarly, let us denote
by A∗

i (t) the output of the system when there is only Ai(t) as the input,
i = 1, 2.

Then, from (1.17) and the properties of ∧, + and ⊗, we obtain the output
from the system as

A∗(t) = [(a1 + A1(t)) ∧ (a2 + A2(t))] ⊗ S(t)
= [(a1 + A1(t)) ⊗ S(t)] ∧ [(a2 + A2(t)) ⊗ S(t)]
= [a1 + A1 ⊗ S(t)] ∧ [a2 + A2 ⊗ S(t)]
= [a1 + A∗

1(t)] ∧ [a2 + A∗
2(t)]. (1.21)

Relationship (1.21) implies that the queuing system considered is linear
with the min-plus algebra structure (R∪ {+∞},∧,+).

1.6 Summary and Bibliographic Comments

This chapter gives a brief introduction to network service guarantee analysis.
The five basic properties needed by a theory for systematic network analysis
are discussed. To help understand the analysis in the subsequent chapters,
some useful notations and mathematical background are introduced that in-
clude min-plus algebra, random variable, and stochastic process basics.

The need for the five basic properties has been extensively discussed in the
literature. For deterministic network calculus, a complete study of these prop-
erties can be found in [18] [92]. For stochastic network calculus, they have also
been studied in the literature, although in most cases separately. For exam-
ple, the superposition property, the output characterization property, and the
service guarantee property were studied in [87] [138] [15]. The leftover service
property was addressed in [99] [115]. The need for the concatenation prop-
erty was independently discussed in [73] [24]. The initial effort of addressing
the five basic properties together was made by Jiang and Emstad [73]. Jiang
[69] proved for the first time all the five basic properties for both the general
case and independent case under some specific traffic and server models to be
introduced in Chapters 2 and 3.

The notation (
∫∞

x
dy)nf(y) and the special function set Ḡ were initially in-

troduced by Starobinski and Sidi [128] to stochastic service guarantee analysis.
The requirement that functions belong to Ḡ comes from relations that will be
shown in Chapter 5, between the output and the input of a network element,
between the delay and backlog performances and the input and the service of
the network element, as well as between the service of a concatenation of net-
work elements and the service of each network element. In this book, we often
require for any order n that the multiple integral (

∫∞
x

dy)nf(y) be bounded.
However, if the size of the network is known a priori, this requirement can be
correspondingly relaxed for n.
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Problems

1.1. Prove the properties of (F ,∧,⊗).

1.2. Prove the properties of (F̄ ,∧,⊗).

1.3. Prove the commutativity property of the conventional convolution oper-
ation �.

1.4. Prove the commutativity property of the Stieltjes convolution operation ∗
when the two functions are cumulative distribution functions.

1.5. Prove Lemma 1.2.

1.6. Show the maximum horizontal and vertical distances for α (t) and β (t)
as shown in Figure 1.2.

1.7. Let α (t) = min {M + C · t, ρt + σ} and β (t) = r · t + θ with r ≥ ρ > 0
and C > ρ > 0. Show the maximum horizontal and vertical distances for α (t)
and β (t).

1.8. Prove Lemma 1.4.

1.9. Prove Lemma 1.6.

1.10. Prove Lemma 1.7.

1.11. Prove Lemma 1.8.


