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Preface

Network calculus is a theory dealing with queuing systems found in computer
networks. Its focus is on performance guarantees. Central to the theory is the
use of alternate algebras such as the min-plus algebra to transform complex
network systems into analytically tractable systems. To simplify the analy-
sis, another idea is to characterize traffic and service processes using various
bounds. Since its introduction in the early 1990s, network calculus has devel-
oped along two tracks—deterministic and stochastic. This book is devoted to
summarizing results for stochastic network calculus that can be employed in
the design of computer networks to provide stochastic service guarantees.

Overview and Goal
Like conventional queuing theory, stochastic network calculus is based on

properly defined traffic models and service models. However, while in con-
ventional queuing theory an arrival process is typically characterized by the
inter-arrival times of customers and a service process by the service times of
customers, the arrival process and the service process are modeled in net-
work calculus respectively by some arrival curve that (maybe probabilisti-
cally) upper-bounds the cumulative arrival and by some service curve that
(maybe probabilistically) lower-bounds the cumulative service. The idea of
using bounds to characterize traffic and service was initially introduced for de-
terministic network calculus. It has also been extended to stochastic network
calculus by exploiting the stochastic nature of arrival and service processes.
While stochastic network calculus can be considered as generalized from de-
terministic network calculus, this generalization is not straightforward. De-
terministic network calculus is based on a worst-case analysis that usually
does not need to worry about the stochastic behavior of traffic and service.
On the other hand, stochastic network calculus must take into consideration
in the analysis the stochastic characteristics of traffic and service processes
to better make use of their statistical multiplexing gains. For example, while
independent case analysis is not considered in deterministic network calculus,
it is critical in stochastic network calculus since it can usually provide much
better results.
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The main goal of this book is to summarize results for stochastic service
guarantee analysis using the theory of stochastic network calculus. Since many
networks (such as wireless networks) provide only stochastic service guaran-
tees, and many applications (such as multimedia applications) perform well
with stochastic service guarantees, the results in this book will be useful for
analysis and provision of service guarantees in such network scenarios.

Structure
This book is structured as follows. Chapter 1 gives an introduction to the

basic properties required from a theory for tractable performance analysis of
computer networks. Also in this chapter, the background knowledge useful
for helping understand the rest of the book is presented. Chapter 2 reviews
fundamental concepts and results of deterministic network calculus. They in-
clude the arrival curve traffic model, the service curve server model, and the
basic properties supported by deterministic network calculus. From Chapter
3 to Chapter 9, we focus on introducing important concepts and results in the
context of stochastic network calculus. Specifically, Chapter 3 introduces vari-
ous stochastic traffic models and their relationships with each other as well as
with some well-known traffic models such as the effective bandwidth model.
Chapter 4 defines stochastic server models for stochastic network calculus and
introduces their relationships with each other. Chapter 5 summarizes the ba-
sic properties of stochastic network calculus under different combinations of
traffic and server models introduced in Chapters 3 and 4, that are obtained
without considering the possible independence of arrival and service processes.
Chapter 6 focuses on independent case analysis, under which the basic prop-
erties of stochastic network calculus under different combinations of traffic
and server models are presented. In Chapter 7, the analysis is on stochastic
service guarantees under different scheduling disciplines. Also in this chapter,
an application using the analysis results in admission control is presented. In
Chapter 8, stochastic network calculus is extended and applied to study to
the extent to which a flow becomes non-conformant with respect to its initial
traffic characterization after it passes through a network. Finally, in Chapter
9, the theory of stochastic network calculus is applied to study generalized
processor sharing systems with long-range dependent traffic inputs. In order
to provide a more complete picture of the field, an appendix is presented that
summarizes the book and discusses open research challenges in the area of
stochastic network calculus.

Use of the Book
This book presents an overall picture of the state of the art of stochastic

service guarantee analysis and a comprehensive treatment of this active re-
search area. The content of the book can be divided into two parts. The first
part, consisting of Chapters 1 to 6, provides the main set of results. The second
part, Chapters 7 to 9, extends the first part with more results and example
applications of stochastic network calculus. In the appendix, a comprehensive
discussion of open research challenges in the area of stochastic network calcu-
lus is provided. The book can be used in advanced undergraduate or graduate
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courses on performance evaluation of computer networks. Such a course should
cover the full first part of the book, which provides a first course on stochastic
network calculus. The second part can be used flexibly, where each chapter
is self-contained. In addition, researchers in the area of performance evalua-
tion of computer networks and provision and analysis of service guarantees
in computer networks can also benefit from the comprehensive discussion of
stochastic service guarantee issues in this book.

Notes and Acknowledgments
Part of content of this book has been lectured by the first author in two

graduate courses related to traffic analysis of communication networks at the
Norwegian University of Science and Technology since 2006. Many results in
the book are based on works authored or co-authored by the two authors.
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They include Dr. Peder J. Emstad, Dr. Markus Fidler, Dr. Shengming Jiang,
Ms. Anne Nevin, Dr. Victor F. Nicola, Dr. Chunming Qiao, Dr. Chen-Khong
Tham, Dr. Ian L.-J. Thng, Dr. Qinghe Yin, and Dr. Xiang Yu. In addition,
we would like to thank the publisher and Ms. Catherine Brett and Mr. Wayne
Wheeler there for their patience, support, and help.
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1

Introduction

Network calculus is a theory dealing with queuing systems found in computer
networks. Specifically, network calculus is a theory for delay and other service
guarantee analysis of computer networks. Its essential idea is to use alternate
algebras, particularly the min-plus algebra and max-plus algebra, [6] to trans-
form complex non-linear network systems into analytically tractable linear
systems. Since its introduction in the early 1990s [28][29][138], network calcu-
lus has developed along two tracks—deterministic and stochastic. Determinis-
tic network calculus has been employed in the design of computer networks to
provide deterministic service guarantees for regulated flows. Excellent books
summarizing results for deterministic network calculus are available [18][92].
However, service guarantees are typically required by multimedia flows in the
network [42][43], which often can tolerate some amount of loss or (excess)
delay. For such flows, the provision of stochastic service guarantees is more
important because stochastic service guarantees can make better use of the
multiplexing gain in the network. This is where stochastic network calculus
makes an appearance. In addition, many networks, such as wireless networks
and multi-access networks, may only provide stochastic service guarantees.
In wireless networks, the capacity of a wireless channel varies over time in a
random manner due to channel impairment, contention, and other causes. In
multi-access networks such as CSMA (carrier sense multiple access) networks,
the server capacity seen by a user is highly dependent on the traffic charac-
teristics of other users. For the analysis and provision of service guarantees in
such networks, stochastic network calculus becomes even more important.

This book is devoted to summarizing results for stochastic network cal-
culus and organized as follows. The first chapter gives an introduction to
service guarantee analysis, the basic properties required from a theory for
tractable analysis of computer networks, and the mathematical background
used in the book. The second chapter introduces fundamental concepts and
results of deterministic network calculus. The concepts include arrival curve,
service curve, and strict service curve. The results include the basic proper-
ties supported by deterministic network calculus. Starting in Chapter 3, we
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2 1 Introduction

introduce fundamental concepts and results for stochastic network calculus.
Specifically, Chapter 3 introduces traffic models for stochastic network calcu-
lus and their relations with each other as well as with some well-known traffic
models such as the effective bandwidth model. Chapter 4 defines server models
for stochastic network calculus and introduces their relations with each other.
Chapter 5 summarizes results related to the basic properties for stochastic
network calculus under different combinations of traffic and server models in-
troduced in Chapters 2 to 4. These results are presented without considering
the possible independence of flows and servers. Similar to Chapter 5, Chapter
6 also presents results under various combinations of traffic and server models.
The key difference between these two chapters is that Chapter 6 is devoted
to independent case analysis, where flows and service processes are indepen-
dent. From Chapter 7 to Chapter 9, several extensions and/or applications of
stochastic network calculus are presented under different network cases. The
appendix summarizes the book and discusses open research challenges in the
area.

1.1 Quality of Service Guarantees

With the development and deployment of multimedia and network technolo-
gies, multimedia has become an indispensable feature on the Internet. Mul-
timedia applications such as Internet telephony and Internet video make di-
verse requirements on the services provided by the network. Quality of Service
(QoS) refers to the nature of the packet delivery service provided by the net-
work and is the collective effect of service performances determining the degree
of satisfaction of a user of the service.

A quality of service guarantee, or service guarantee for short, is either de-
terministic or stochastic.1 A deterministic service guarantee guarantees that
all packets of a flow arrive at the destination within its required performance
measures such as throughput, delay, and loss bounds. While such determin-
istic service provides the highest QoS level, its most important drawback is
that it must reserve network resources based on the worst-case scenario and
hence leaves a significant portion of network resources unused on average. A
stochastic service guarantee allows the QoS objectives specified by a flow to
be guaranteed with a probability smaller than one. By allowing some packets
to violate the required QoS measures, stochastic service guarantees can better
exploit the statistical multiplexing gain at network links and hence improve
network utilization.

A deterministic service guarantee may be modeled such that the experi-
enced service must never be worse than the desired service, which may be
expressed in the following form:

1 The literature also uses statistical service guarantee or probabilistic service guar-
antee rather than the stochastic service guarantee in this book.
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Pr {Experienced service is not worse than desired service} = 1. (1.1)

Many methods have been proposed in the literature to derive the worst-case
bounds. The works, including [28][29][15][18][19] on deterministic QoS guar-
antee analysis, have been developed into an elegant theory under the name
of network calculus [92], which will be referred to as deterministic network
calculus in this book.

Similarly, a stochastic service guarantee may be expressed as

Pr {Experienced service is worse than desired service} ≤ ε, (1.2)

where ε is the permissible probability that a packet violates the desired per-
formance [42][43]. It can be seen that the deterministic service guarantee is a
special case of the stochastic service guarantee with ε = 0 in (1.2). The focus
of this book is on stochastic service guarantee analysis.

1.2 Basic Properties for Network Analysis

A computer network consists of data flows and network elements. Correspond-
ingly, a theory for network analysis is typically built on two fundamental con-
cepts: traffic model and server model. A traffic model characterizes the traffic
behavior of a flow, and a server model characterizes the service behavior of a
network element.

In order to easily apply a theory to network analysis, its traffic models and
server models should satisfy some basic properties. The requirement of these
basic properties is illustrated in the following example.

Consider a simple network domain consisting of three network nodes S1—
S3 and three flows F1—F3, as shown in Figure 1.1. Assume F1 and F2
belong to the same traffic class and share the same edge-to-edge path crossing
the network domain. At the second node S2, there is a crossing flow F3 that
shares the server capacity of S2 with F1 and F2. Suppose we are interested
in and want to analyze the edge-to-edge delay performance of the path on
which F1 and F2 cross the network. While there can be many approaches to
the analysis, the following is an intuitively simple one.

First, a certain traffic model AM and a certain server model SM should
be properly chosen to represent flows and nodes, so that single-node analysis
can be conducted to obtain the delay performance of a flow crossing the node.
In addition, the single-node analysis should also give the characterization of
the output, which can be represented with the same traffic model AM, so
that the single-node delay analysis can be repeatedly extended to a sequence
of nodes. Given these, third in the simple approach, since F1 and F2 belong to
the same traffic class and share the same path, an immediate idea is to use an
aggregate flow F1, 2 to represent the two flows before entering the first node
S1. This implicitly requires that the aggregate flow F1, 2 be represented using
characteristics of both F1 and F2. With the first point in mind, the aggregate
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Fig. 1.1. Analysis of a simple network

flow F1, 2 should be represented using the same traffic model AM as F1 and
F2. Fourth, at the second node, the aggregate flow F1, 2 is competing for
service capacity with the crossing flow F3. A simple way for analysis is to find
an equivalent server S2′ for the aggregate flow F1, 2. Under this equivalent
server, the aggregate flow is the only input and there is no crossing traffic.
Again with the first point in mind, the equivalent server should be represented
using the same server model SM as S2 and other nodes. Now, as shown by the
middle figure of Figure 1.1, the network is simplified to a sequence of (possibly
equivalent) servers on which the node-by-node analysis can be conducted to
obtain the delay performance at each node on the path. Then, the edge-to-
edge delay performance can be easily derived from the delay performance at
each node. However, this is not the end since, as will be shown later (e.g., see
Chapter 2), the results from node-by-node analysis can often be significantly
improved if the so-called concatenation property exists. This property tells
us that the concatenation of nodes can be treated as an equivalent node. As
shown by the lower figure of Figure 1.1, with the concatenation property, based
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on the middle figure, the network can be treated as a single black box node.
By applying single-node analysis to the black-box, the desired edge-to-edge
delay result is derived, which can be much better than the result obtained
from the node-by-node analysis.

In summary, as discussed in the above example, a theory should ideally
have the following five basic properties (P.1)—(P.5) to ease tractable network
analysis.

• (P.1) – Service Guarantees
Under a chosen traffic model and a chosen server model, single-node sto-
chastic service guarantees such as backlog and delay guarantees can be
derived.

• (P.2) – Output Characterization
The output of a flow from a server can be represented using the same
traffic model as for the input flow.

• (P.3) – Concatenation Property
The concatenation of servers can be represented using the same server
model.

• (P.4) – Leftover Service
The service available to a flow at a server with competing flows can be
represented using the same server model.

• (P.5) – Superposition Property :
The superposition of flows can be represented using the same traffic model.

In traditional queuing theory, many models have been proposed to charac-
terize arrival and service. Examples are Poisson arrival processes and service
processes with negative exponentially distributed service times for M/M/1
systems. Also, a lot of results for single-node systems are available, which
correspond to (P.1). Many results are also available from traditional queuing
theory that corresponding to (P.5), particularly when sources are independent.
For example, the aggregate of two Poisson arrival processes, if they are inde-
pendent, results in a new Poisson arrival process. Under certain conditions,
the output of an M/M/1 system can be considered to have a Poisson arrival
process, which corresponds to (P.2). However, it is generally hard to conclude
that the output can be represented using the same arrival process as the input
in traditional queuing theory. In addition, very few results have so far been
derived for (P.3) and (P.4) in traditional queuing theory. This partly explains
why it is difficult to apply traditional queuing theory to network analysis.

Throughout the rest of this book, we will see that with the five basic
properties (P.1)—(P.5), network service guarantee analysis can be conducted.
Unless specially highlighted, the networks considered in this book are feedfor-
ward networks where there are no feedback flows.
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1.3 Notation and Mathematical Background

In this book, we consider a discrete time domain with a unit discretization
step. We adopt the convention that a packet is considered to be received by a
network element when and only when its last bit has arrived at the network
element, and a packet is considered out of a network element when and only
when its last bit has been transmitted by the network element. A packet can
be served only when its last bit has arrived. All queues are assumed to be
empty at time 0. Packets within a flow are served in first-in-first-out (FIFO)
order.

1.3.1 Notation

We use various processes to model a network that is assumed to be lossless. A
process is defined to be a function of time t(≥ 0). It could count the (cumula-
tive) amount of traffic (in number of bits) arriving at some network element,
the amount of traffic (in number of bits) departing from the network element,
the amount of service (in number of bits) provided by the network element,
or the amount of service (in number of bits) that failed to be provided by
the network element due to some impairment to it. In this case, we call the
process (cumulative) arrival process, denoted by A(t), (cumulative) departure
process, denoted by A∗(t), (cumulative) service process, S(t), or (cumulative)
impairment process, I(t), respectively. We assume all such processes are de-
fined on t ≥ 0 and by convention have zero value at t = 0. We also assume
these functions are left-continuous.2

Wherever necessary, we use subscripts to distinguish different flows and
superscripts to distinguish different network elements. Specifically, Ah

i and
Ah∗

i represent the arrival and departure processes of flow i from network ele-
ment h, respectively, Sh

i the service process provided to flow i by the network
element, and Ih the impairment process suffered by the network element.

For any 0 ≤ s ≤ t, we denote A(s, t) ≡ A(t) − A(s), A∗(s, t) ≡ A∗(t) −
A∗(s), S(s, t) ≡ S(t) − S(s), and I(s, t) ≡ I(t) − I(s).

In this book, the following function sets are often used. Specifically, we
denote by F the set of non-negative wide-sense increasing functions, where
for each function a(·) there holds

F = {a(·) : ∀0 ≤ x ≤ y, 0 ≤ a(x) ≤ a(y)}

and for any function a ∈ F we set a(x) = 0 for ∀x < 0.
We denote by F̄ the set of non-negative wide-sense decreasing functions

where for each function a(·) there holds

2 Whether the functions are left-continuous or right-continuous does not make any
difference to the results in this book (e.g., see Chapter 1.1 of [92] for the discus-
sion).
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F̄ = {a(·) : ∀0 ≤ x ≤ y, 0 ≤ a(y) ≤ a(x)}
and for any function a ∈ F̄ we also set a(x) = 1 for ∀x < 0.

We denote by Ḡ the set of functions in F̄ where for each function a(·) ∈ Ḡ
its nth-fold integration, denoted by f (n)(x) ≡ (

∫∞
x

dy)nf(y), is bounded for
any x ≥ 0 and still belongs to Ḡ for any n ≥ 0, or

Ḡ = {a(·) : ∀n ≥ 0,

(∫ ∞

x

dy

)n

a(y) ∈ Ḡ}.

A function a is said to be additive if and only if, for all x, y a(x + y) =
a(x) + a(y). The function is said to be sub-additive if and only if a(x + y) ≤
a(x) + a(y) for all x and y.

For any non-negative functions a, b, the following inequalities hold trivially:

sup
0≤y≤x

[a(y) + b(y)] ≤ sup
0≤y≤x

a(y) + sup
0≤y≤x

b(y), (1.3)

inf
0≤y≤x

[a(y) − b(y)] ≥ inf
0≤y≤x

a(y) − sup
0≤y≤x

b(y). (1.4)

By definition, A(t), A∗(t), S(t), and I(t) belong to F . In addition, it can be
shown that all the exponentially decaying functions and functions exhibiting
sub-exponential decay belong to Ḡ.

For any random variable X, its cumulative distribution function (CDF),
denoted by FX(x) ≡ P{X ≤ x}, belongs to F and its complementary cumu-
lative distribution function (CCDF), denoted by F̄X ≡ P{X > x}, belongs to
F̄ .

The conventional convolution of two functions a, b is defined as

(a � b)(x) =
∫ ∞

−∞
a(x − y)b(y)dy,

and the Stieltjes convolution of two functions a, b is defined as

(a ∗ b)(x) =
∫ ∞

−∞
a(x − y)db(y).

We use [·]+ to express the maximum of 0 and a given number, or [x]+ ≡
max{x, 0}. We shall also use [·]1 to denote the minimum of 1 and the given
number, i.e., [x]1 ≡ min{x, 1}.

For service guarantee analysis of a system, which could be a network el-
ement or a network of elements, we are mainly interested in the backlog and
delay, which are defined as follows [30][18][92]:

Definition 1.1. Let A(t) and A∗(t) respectively be the arrival process and
departure process of a lossless system. The backlog B(t) in the system at time
t ≥ 0 is defined as

B(t) = A(t) − A∗(t).
Assuming first-in-first-out (FIFO) ordering, the delay D(t) at time t ≥ 0 is
defined as

D(t) = inf{d ≥ 0 : A(t) ≤ A∗(t + d)}.
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1.3.2 Min-Plus Algebra Basics

In conventional algebra, addition + and multiplication × are the two most
common operations on elements of R = (−∞,+∞). These two operations
have a number of properties, such as the closure property, associativity, com-
mutativity, and distributivity, which make the algebraic structure (R,+,×)
a commutative field.

In min-plus algebra, an algebra structure of interest is (R∪ {+∞},∧,+).
Here, the “addition” operation is ∧ and the “multiplication” operation is +,
where ∧ denotes the infimum or, when it exists, the minimum. It can be
verified that (R∪ {+∞},∧,+) has the following properties, and it is called a
commutative dioid with zero element ε̄ = +∞ and identity element e = 0:

• Closure property: ∀a, b ∈ (R ∪ {+∞}), a ∧ b ∈ (R ∪ {+∞}); a + b ∈
(R∪ {+∞}).

• Associativity: ∀a, b ∈ (R∪ {+∞}), (a ∧ b) ∧ c = a ∧ (b ∧ c); (a + b) + c =
a + (b + c).

• Commutativity: ∀a, b ∈ (R∪ {+∞}), a ∧ b = b ∧ a; a + b = b + a.
• Distributivity: ∀a, b, c ∈ (R∪ {+∞}), (a ∧ b) + c = (a + b) ∧ (b + c).
• Zero element: ∀a ∈ (R∪ {+∞}), a ∧ ε̄ = a.
• Absorbing zero element: ∀a ∈ (R∪ {+∞}), a + ε̄ = ε̄ + a = ε̄.
• Identity element: ∀a ∈ (R∪ {+∞}), a + e = e + a = a.
• Idempotency of addition: ∀a ∈ (R∪ {+∞}), a ∧ a = a.

For functions in min-plus algebra, the following operations are often used.
The pointwise infimum, or pointwise minimum if it exists, of functions a

and b is
(a ∧ b)(x) = inf[a(x), b(x)].

The pointwise supremum, or pointwise maximum if it exists, of functions
a and b is

(a ∨ b)(x) = sup[a(x), b(x)].

The min-plus convolution of functions a and b is

(a ⊗ b)(x) = inf
0≤y≤x

[a(y) + b(x − y)],

where, when it applies, “infimum” should be interpreted as “minimum”.
The min-plus deconvolution of functions a and b is

(a 
 b)(x) = sup
y≥0

[a(x + y) − b(y)],

where, when it applies, “supremum” should be interpreted as “maximum”.
It can be verified that (F ,∧,⊗) also has the following properties and is a

commutative dioid with zero element ε̄ and identity element e, where ε̄(x) =
+∞ for all x ≥ 0 and e(x) = 0 if x = 0 and otherwise +∞ [6][19][92]:
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• Closure property: ∀a, b ∈ F , a ∧ b ∈ F ; a ⊗ b ∈ F .
• Associativity: ∀a, b ∈ F , (a ∧ b) ∧ c = a ∧ (b ∧ c); (a⊗ b)⊗ c = a⊗ (b⊗ c).
• Commutativity: ∀a, b ∈ F , a ∧ b = b ∧ a; a ⊗ b = b ⊗ a.
• Distributivity: ∀a, b, c ∈ F , (a ∧ b) ⊗ c = (a ⊗ b) ∧ (b ⊗ c).
• Zero element: ∀a ∈ F , a ∧ ε̄ = a.
• Absorbing zero element: ∀a ∈ F , a ⊗ ε̄ = ε̄ ⊗ a = ε̄.
• Identity element: ∀a ∈ F , a ⊗ e = e ⊗ a = a.
• Idempotency of addition: ∀a ∈ F , a ∧ a = a.

The following properties also hold for (F ,∧,⊗):

• Comparison: For ∀a1, a2, b1, b2 ∈ F , a1 ⊗ a2 ≤ a1 ∧ a2 ≤ a1 ∨ a2.
• Monotonicity: For ∀a1, a2, b1, b2 ∈ F , if a1 ≤ b1 and a2 ≤ b2, then a1⊗a2 ≤

b1 ⊗ b2; a1 ∧ a2 ≤ b1 ∧ b2; a1 ∨ a2 ≤ b1 ∨ b2.

Similarly, it can be shown that (F̄ ,∧,⊗) is a commutative dioid, but with
zero element ε̄ and identity element ē, where ε̄(x) = +∞ for all x ≥ 0 and
ē(x) = 0 for all x ≥ 0. Specifically, (F̄ ,∧,⊗) has the following properties:

• Closure property: ∀a, b ∈ F̄ , a ∧ b ∈ F̄ ; a ⊗ b ∈ F̄ .
• Associativity: ∀a, b, c ∈ F̄ , (a∧ b)∧ c = a∧ (b∧ c); (a⊗ b)⊗ c = a⊗ (b⊗ c).
• Commutativity: ∀a, b ∈ F̄ , a ∧ b = b ∧ a; a ⊗ b = b ⊗ a.
• Distributivity: ∀a, b, c ∈ F̄ , (a ∧ b) ⊗ c = (a ⊗ b) ∧ (b ⊗ c).
• Zero element: ∀a ∈ F̄ , a ∧ ε̄ = a.
• Absorbing zero element: ∀a ∈ F̄ , a ⊗ ε̄ = ε̄ ⊗ a = ε̄.
• Identity element: ∀a ∈ F̄ , a ⊗ ē = ē ⊗ a = a.
• Idempotency of addition: ∀a ∈ F̄ , a ∧ a = a.
• Comparison: a1 ∧ a2 ≤ a1 ∨ a2 ≤ a1 ⊗ a2.
• Monotonicity: If a1 ≤ b1 and a2 ≤ b2, then a1 ⊗ a2 ≤ b1 ⊗ b2; a1 ∧ a2 ≤

b1 ∧ b2; a1 ∨ a2 ≤ b1 ∨ b2.

Besides the various properties summarized above, the min-plus convolu-
tion ⊗ implies the following [92].

Lemma 1.2. If a is left-continuous and b is continuous, then for any t there
exists some t0 such that

a ⊗ b (t) ≡ a (t − t0) + b (t0) . (1.5)

Additionally, it can be verified that for any functions α and β, there holds

(α + c) ⊗ β = α ⊗ β + c, (1.6)

where c is any constant.
If α and β are sub-additive and α(0) = β(0) = 0, there hold

α ⊗ α = α, (1.7)
α ⊗ β = α if α ≤ β, (1.8)

where c is any constant.
Furthermore, if functions α and β are sub-additive, so are α ⊗ β, α ∧ β,

and α 
 β.
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1.3.3 Maximum Horizontal Distance and Maximum
Vertical Distance

For ease of exposition of results, we adopt the following definitions [31] [92],
which will be used throughout the rest of the book.

Definition 1.3. Consider two functions α(t) and β(t). The maximum hori-
zontal distance between them, denoted by h(α, β), is defined as

h (α, β) = sup
s≥0

{inf {τ ≥ 0 : α (s) ≤ β (s + τ)}} ,

and the maximum vertical distance between them, denoted by v(α, β), is de-
fined as

v (α, β) = sup
s≥0

{α(s) − β(s)} ≡ α 
 β(0).

Figure 1.2 illustrates these two concepts using functions α(t) and β(t).

α(t)/β(t)

t

β(t) α(t)

Max. horizontal 
distance

M
ax. vertical 
distance

Fig. 1.2. Maximum horizontal and vertical distances between two functions

1.4 Random Variable and Stochastic Process Basics

1.4.1 Random Variables

A random variable X is characterized by its cumulative distribution function
(CDF) FX(x), defined as

FX(x) = P{X ≤ x},−∞ < x < ∞.

FX(x) is a non-negative, never decreasing function of x and belongs to F .
In addition, F (−∞) = 0 and F (∞) = 1. The complementary cumulative
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distribution function (CCDF) of the random variable X, denoted by F̄X , is
defined as

F̄X = P{X > x},−∞ < x < ∞.

It is trivial that FX(x)+ F̄X(x) = 1 for any x. In addition, F̄X is non-negative
and non-increasing, belonging to F̄ . Furthermore, F̄ (−∞) = 1 and F̄ (∞) = 0.

The probability density function (pdf) of a random variable X, denoted by
fX(x), is defined as

fX(x) ≡ dFX(x)
dx

.

Given the probability density function of a random variable X, its cumulative
distribution function is found as

FX(x) =
∫ x

−∞
fX(y)dy.

The moment generating function (MGF) of a random variable X, denoted
by MX(θ), is defined as

MX(θ) ≡ E[eθX ]

=
∫ ∞

−∞
eθxfX(x)dx,

where θ is a real variable.
The following inequality, known as the Chernoff bound, gives an upper

bound on the CCDF of a random variable X:

P{X ≥ x} ≤ e−θxE[eθX ]

for all θ ≥ 0.

Lemma 1.4. Consider a random variable X. For any x ≥ 0, P{(X)+ > x} =
P{X > x}.

In this book, we are often concerned about the sum of a collection of
random variables {Xi}, namely

Z =
n∑

i=1

Xi.

For Z (=
∑n

i=1 Xi), if X1, X2, . . . , Xn are independent, it is known that

fZ(z) = fX1 � fX2 � · · · � fXn
(z), (1.9)

where the convolution is commutative. In addition,

MZ(θ) = MX1(θ) · MX2(θ) · · · · · MXn
(θ). (1.10)
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In this book, corresponding to (1.9), if X1, X2, . . . , Xn are independent,
we often use Stieltjes convolution for FZ ,

FZ(z) = FX1 ∗ FX2 ∗ · · · ∗ FXn
(z), (1.11)

where the Stieltjes convolution is also commutative.
In addition, if X1, X2, . . . , Xn are possibly dependent, the following result

is important.

Lemma 1.5. For the sum of a collection of random variables Z =
∑n

i=1 Xi,
no matter whether they are independent or not, there holds for the CCDF of
Z

F̄Z(z) ≤ F̄X1 ⊗ · · · ⊗ F̄Xn
(z). (1.12)

Proof. We only prove for the sum of two random variables X1 and X2, and
the proof can be easily extended to n > 2.

For any z ≥ x ≥ 0, {X1 + X2 > z}∩ {X1 ≤ x}∩ {X2 ≤ z − x} = φ, where
φ denotes the null set. We then have

{X1 + X2 > z} ⊂ {X1 > x} ∪ {X2 > z − x}

and hence

P{X1 + X2 > z} ≤ P{X1 > x} + P{X2 > z − x}.

Since the above inequality holds for all x, (0 ≤ x ≤ z), we get

P{X1 + X2 > z} ≤ inf
0≤x≤z

[P{X1 > x} + P{X2 > z − x}]

or
F̄X1+X2(z) ≤ F̄X1 ⊗ F̄X2(z).

While we shall mainly use forms similar to (1.12) to ease expressing results
related to the sum of random variables, there are other inequalities that can be
used to find upper bounds on the CCDF of Z. These inequalities can indeed
be applied to all corresponding results in this book concerning the sum of
multiple random variables. One of these inequalities is as follows.

Lemma 1.6. For the sum of a collection of random variables Z =
∑n

i=1 Xi,
no matter whether they are independent or not, there holds for the CCDF of
Z

F̄Z(z) ≤ inf
p1+···+pn=1

{F̄X1(p1z) + · · · + F̄Xn
(pnz)} (1.13)

for any 1 > pi > 0, i = 1, . . . , n, satisfying
∑n

i=1 pi = 1.
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1.4.2 Stochastic Processes

A stochastic process X(t) is a collection of random variables {X(t), t ∈ T}
defined for each t in the index set T . The stochastic process is similarly char-
acterized by its cumulative distribution function (CDF) FX(x, t), defined as
for any (allowed) t,

FX(x, t) = P{X(t) ≤ x},−∞ < x < ∞.

For any t, FX(x, t) is also non-negative, never decreasing on x, and belongs
to F . In addition, F (−∞, t) = 0 and F (∞, t) = 1.

The complementary cumulative distribution function (CCDF) of the sto-
chastic process X(t) is defined as

F̄X(X, t) = P{X(t) > x},−∞ < x < ∞.

For any t, F̄X(x, t) is non-negative and non-increasing and belongs to F̄ . In
addition, F̄ (−∞, t) = 1 and F̄ (∞, t) = 0. Furthermore, FX(x, t)+F̄X(x, t) = 1
for all x and any t.

The probability density function (pdf) and the moment generating function
of a stochastic process X(t) are respectively defined as

fX(x, t) ≡ dFX(x, t)
dx

and

MX(θ(t), t) ≡ E[eθ(t)X(t)]

=
∫ ∞

−∞
eθ(t)xfX(x, t)dx,

where θ(t) is a real variable possibly dependent on t.
A stochastic process X(t) is said to be stationary if FX(x, t) remains un-

changed when t shifts, that is, for any given constant τ , there holds

FX(x, t + τ) = FX(x, t).

In the stationary case, for ease of expression, we often simply use FX(x) and
F̄X(x) to represent the CDF and CCDF, respectively.

1.4.3 Stochastic Ordering

For any two random variables X and Y , if F̄X(x) ≤ F̄Y (x) for all x, or in
other words,

P{X > x} ≤ P{Y > x} for all x,

we then say X is stochastically smaller than Y [130][118], written as
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X ≤st Y.

The same notation applies when X and Y are random vectors.
Similarly, for any two stochastic processes X(t) and Y (t), we say X(t) is

stochastically smaller than Y (t), written X(t) ≤st Y (t), if, for any t and all
x, P{X(t) > x} ≤ P{Y (t) > x}.

For two random variables X and Y , the following result holds [130]:

Lemma 1.7. If X ≤st Y , then f (X) ≤st f (Y ) for any increasing function
f .

For the same mapping function of random variables, if these random vari-
ables are independent, the following result holds (see, e.g., Theorem 2.2.3 in
[130]).

Lemma 1.8. Let X1, . . . , Xn be independent and Y1, . . . , Yn be independent.
If Xi ≤st Yi, then for any wide-sense increasing function Φ(z1, . . . , zn) on zi

(i = 1, . . . , n), there holds

Φ (X1, . . . , Xn) ≤st Φ (Y1, . . . , Yn) .

Example 1.9. As an example of Lemma 1.8, letting Φ(z1, . . . , zn) =
∑n

i=1 zi, if
X1, . . . , Xn and Y1, . . . , Yn are independent and Xi ≤st Yi for all i = 1, . . . , n,
we get

∑n
i=1 Xi ≤st

∑n
i=1 Yi.

Example 1.10. Let Φ(z1, . . . , zn) = max{z1, . . . , zn}, which can be verified to
be wide-sense increasing on zi. Then, from Lemma 1.8, if X1, . . . , Xn and
Y1, . . . , Yn are independent and Xi ≤st Yi for all i = 1, . . . , n, we can conclude
that max{X1, . . . , Xn} ≤st max{Y1, . . . , Yn}. The conclusion holds also for
mapping Φ(z1, . . . , zn) = min{z1, . . . , zn}.

For the same mapping function of random variables that are unknown if
they are independent, if certain conditions hold, we have the following result
(see, e.g., Theorem 2.2.4 in [130] or Theorem 4.3.3 in [108]).

Lemma 1.11. Suppose that for random variables {X1, . . . , Xn} and
{Y1, . . . , Yn}, there holds {X1, . . . , Xn} ≤st {Y1, . . . , Yn}. Then, for the map-
ping Z(t) = Φ(z1, . . . , zn), if it is nondecreasing in {z1, . . . , zn}, one has
Z ′(t) ≤st Z ′′(t), where Z ′(t) = Φ(X1, . . . , Xn) and Z ′′ = Φ(Y1, . . . , Yn).

Example 1.12. For the mappings in Examples 1.9 and 1.10, if {X1, . . . , Xn} ≤st

{Y1, . . . , Yn}, then, based on Lemma 1.11, the same stochastic ordering conclu-
sions hold: i.e.,

∑n
i=1 Xi ≤st

∑n
i=1 Yi, max{X1, . . . , Xn} ≤st max{X1, . . . , Xn},

and min{X1, . . . , Xn} ≤st min{X1, . . . , Xn}.
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1.5 Min-Plus Linearity of Queuing Systems

Consider a lossless network queuing system with arrival process A(t), service
process S(t), and departure process A∗(t). In this system, the input is A(t)
and the output is A∗(t).

By the definition of backlog in the system, the following relationship holds:

A∗(t) = A(t) − B(t). (1.14)

The Lindley equation can be used to derive B(t), which is

B(t) = max{0, B(t − 1) + A(t − 1, t) − S(t − 1, t)}. (1.15)

Equation (1.15) is intuitively clear and says that the amount of traffic back-
logged in the system at time t equals the amount of traffic backlogged at time
t − 1 plus the amount of traffic that arrived between t − 1 and t minus the
amount of traffic serviced between t − 1 and t. By applying (1.15) iteratively
to its right-hand side, it becomes

B(t) = sup
0≤s≤t

{A(s, t) − S(s, t)}. (1.16)

Applying (1.16) to (1.14) results in

A∗(t) = inf
0≤s≤t

{A(s) + S(s, t)} = A ⊗ S(t). (1.17)

Equation (1.17) establishes the relationship between the output and the input
of the queuing system considered.

Relationship (1.17) is very similar to a relationship commonly found for
conventional linear communication systems where there holds

A∗(t) = A � S(t) (1.18)

with S(t) being the impulse response of the system. For such a system, suppose
A(t) = a1 ×A1(t) + a2 ×A2(t) and denote by A∗

i (t) the output of the system
when there is only Ai(t) as the input, i = 1, 2. The following linearity property
holds: For any non-negative constants a1 and a2,

A∗(t) = [a1 × A1(t) + a2 × A2(t)] � S(t)
= a1 × A1 � S(t) + a2 × A2 � S(t)
= a1 × A∗

1(t) + a2 × A∗
2(t). (1.19)

Relationship (1.17), however, implies that the queuing system considered
is non-linear in the conventional sense with the algebra structure (R,+,×).

Suppose now that the input process is the min-plus addition of two
processes A1(t) and A2(t) in the form

A(t) = (a1 + A1(t)) ∧ (a2 + A2(t)), (1.20)
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where a1 and a2 are any two non-negative constants. Similarly, let us denote
by A∗

i (t) the output of the system when there is only Ai(t) as the input,
i = 1, 2.

Then, from (1.17) and the properties of ∧, + and ⊗, we obtain the output
from the system as

A∗(t) = [(a1 + A1(t)) ∧ (a2 + A2(t))] ⊗ S(t)
= [(a1 + A1(t)) ⊗ S(t)] ∧ [(a2 + A2(t)) ⊗ S(t)]
= [a1 + A1 ⊗ S(t)] ∧ [a2 + A2 ⊗ S(t)]
= [a1 + A∗

1(t)] ∧ [a2 + A∗
2(t)]. (1.21)

Relationship (1.21) implies that the queuing system considered is linear
with the min-plus algebra structure (R∪ {+∞},∧,+).

1.6 Summary and Bibliographic Comments

This chapter gives a brief introduction to network service guarantee analysis.
The five basic properties needed by a theory for systematic network analysis
are discussed. To help understand the analysis in the subsequent chapters,
some useful notations and mathematical background are introduced that in-
clude min-plus algebra, random variable, and stochastic process basics.

The need for the five basic properties has been extensively discussed in the
literature. For deterministic network calculus, a complete study of these prop-
erties can be found in [18] [92]. For stochastic network calculus, they have also
been studied in the literature, although in most cases separately. For exam-
ple, the superposition property, the output characterization property, and the
service guarantee property were studied in [87] [138] [15]. The leftover service
property was addressed in [99] [115]. The need for the concatenation prop-
erty was independently discussed in [73] [24]. The initial effort of addressing
the five basic properties together was made by Jiang and Emstad [73]. Jiang
[69] proved for the first time all the five basic properties for both the general
case and independent case under some specific traffic and server models to be
introduced in Chapters 2 and 3.

The notation (
∫∞

x
dy)nf(y) and the special function set Ḡ were initially in-

troduced by Starobinski and Sidi [128] to stochastic service guarantee analysis.
The requirement that functions belong to Ḡ comes from relations that will be
shown in Chapter 5, between the output and the input of a network element,
between the delay and backlog performances and the input and the service of
the network element, as well as between the service of a concatenation of net-
work elements and the service of each network element. In this book, we often
require for any order n that the multiple integral (

∫∞
x

dy)nf(y) be bounded.
However, if the size of the network is known a priori, this requirement can be
correspondingly relaxed for n.
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Problems

1.1. Prove the properties of (F ,∧,⊗).

1.2. Prove the properties of (F̄ ,∧,⊗).

1.3. Prove the commutativity property of the conventional convolution oper-
ation �.

1.4. Prove the commutativity property of the Stieltjes convolution operation ∗
when the two functions are cumulative distribution functions.

1.5. Prove Lemma 1.2.

1.6. Show the maximum horizontal and vertical distances for α (t) and β (t)
as shown in Figure 1.2.

1.7. Let α (t) = min {M + C · t, ρt + σ} and β (t) = r · t + θ with r ≥ ρ > 0
and C > ρ > 0. Show the maximum horizontal and vertical distances for α (t)
and β (t).

1.8. Prove Lemma 1.4.

1.9. Prove Lemma 1.6.

1.10. Prove Lemma 1.7.

1.11. Prove Lemma 1.8.
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Deterministic Network Calculus

This chapter introduces the basic concepts and results of deterministic net-
work calculus. The concepts include the (deterministic) arrival curve, (deter-
ministic) service curve, and strict service curve. The results include the basic
properties (P.1)–(P.5) supported by deterministic network calculus using min-
plus algebra.

2.1 Traffic Models

In the context of network calculus, a flow is characterized by its (cumulative)
arrival process. In this section, we start with the (σ, ρ) traffic characterization
initially proposed by Cruz [28] and then introduce the concept of an arrival
curve that is a generalization of the (σ, ρ) traffic model.

2.1.1 (σ, ρ) Traffic Characterization

Consider a flow that generates traffic at rate a(t), which is the amount of
traffic generated by the flow in (t − 1, t]. Then, the cumulative amount of
traffic during (s, t] is A(s, t) =

∑t
τ=s+1 a(τ). Here we adopt the convention

that
∑n

j=m a(j) = 0 if m < n.
For such an arrival process, Cruz’s (σ, ρ) traffic characterization is defined

as follows [28].

Definition 2.1. A flow is said to be (σ, ρ)-upper constrained, denoted by A ∼
(σ, ρ), if for all 0 ≤ s ≤ t, there holds

A(s, t) ≤ ρ · (t − s) + σ. (2.1)

In Definition 2.1, σ is called the burstiness parameter and ρ an upper
bound on the long-term average rate of the traffic flow.

Y. Jiang, Y. Liu, Stochastic Network Calculus, 19
DOI: 10.1007/978-1-84800-127-5 2,
c© Springer-Verlag London Limited 2008
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Example 2.2. In real networks, the traffic generating rate of a flow is always
limited by the capacity of the link on which the flow is transmitted. Let C
denote the link capacity. We have for all t ≥ 0, a(t) ≤ C. Suppose the flow
has a maximum packet size L. Then, it can be verified that the flow is (L,C)
upper constrained.

To generate (σ, ρ)-constrained traffic, a traffic shaper or traffic regulator
may be used. A popular implementation of such a regulator is a token bucket .

r

s

(σ, ρ)-constrained 

Fig. 2.1. Token bucket regulator

A token bucket is a control mechanism that decides when traffic can be
transmitted. Specifically, as depicted in Figure 2.1, the token bucket with
token generation rate ρ and token bucket depth σ works as follows:

(i) The bucket can hold σ tokens and is initially full of tokens.
(ii) A token is added to the bucket every 1

ρ seconds. When a token arrives
and the bucket is full, the token is discarded.

(iii) When a packet of length l bits arrives, if the number of tokens in the
bucket is not smaller than l, then l tokens are removed from the bucket
and the packet is immediately sent out of the token bucket.

(iv) When the packet arrives, if there are fewer than l tokens in the bucket,
then the packet may either be dropped or queued until there are enough
tokens in the bucket, in which case step (iii) will be repeated.

2.1.2 Arrival Curve

In order to deterministically guarantee a certain level of QoS for a flow, the
traffic sent by the flow must be limited. In deterministic network calculus,
this is represented by using the concept of the (deterministic) arrival curve,
defined as follows [92].

Definition 2.3 (Arrival Curve). A flow is said to have a (deterministic)
arrival curve α ∈ F if its arrival process A(t) satisfies, for all 0 ≤ s ≤ t,
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A (t) − A (s) ≤ α (t − s) (2.2)

or equivalently A(s, t) ≤ α (t − s).

The arrival curve model has the following triplicity principle [69].

Lemma 2.4 (Triplicity Principle of Arrival Curve). The following state-
ments are equivalent:

(i) ∀0 ≤ s ≤ t, A(s, t) ≤ α(t − s) + x for all x ≥ 0;
(ii) ∀t ≥ 0, sup0≤s≤t[A(s, t) − α(t − s)] ≤ x for all x ≥ 0;
(iii) ∀t ≥ 0, sup0≤s≤t sup0≤u≤s[A(u, s) − α(s − u)] ≤ x for all x ≥ 0,

where α ∈ F .

Proof. It is trivially true that A(s, t)−α(t− s) ≤ sup0≤s≤t[A(s, t)−α(t− s)],
from which (ii) implies (i). In addition,

sup
0≤s≤t

[A(s, t) − α(t − s)]

≤ sup
0≤s≤t

sup
s≤v≤t

[A(s, v) − α(v − s)]

= sup
0≤v≤t

sup
0≤s≤v

[A(s, v) − α(v − s)]

= sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)],

with which (iii) implies (ii).
For (i) → (ii), it holds since A(s, t) − α(t − s) ≤ x for all 0 ≤ s ≤ t. For

(ii) → (iii), sup0≤s≤t sup0≤u≤s[A(u, s) − α(s − u)] ≤ sup0≤s≤t[x] = x.
Hence (i), (ii), and (iii) are equivalent. ��
By the definition of arrival curve, the right-hand side of A(s, t) ≤ α(t −

s) + x in Lemma 2.4 (i) defines an arrival curve α(t − s) + x, or the traffic
amount A(s, t) is upper-bounded by α(t− s)+x. In addition, let us construct
a virtual single-server queue system that is initially empty, fed with the same
traffic A, and has service curve α making A∗(t) ≥ A⊗α(t). Then, the backlog
in the virtual system is upper-bounded by A(t) − A∗(t) ≤ sup0≤s≤t[A(s, t) −
α(t − s)] ≤ x, and the maximum backlog up-to-date in the virtual system
is upper-bounded by sup0≤s≤t[A(s) − A∗(s)] ≤ sup0≤s≤t sup0≤u≤s[A(u, s) −
α(s−u)] ≤ x. Calling Lemma 2.4 (i) the traffic amount property of the arrival
curve, Lemma 2.4 (ii) its virtual backlog property, and Lemma 2.4.(iii) its
maximum virtual backlog property, Lemma 2.4 states that the three properties
of deterministic arrival curve are equivalent. It is in this sense that we call
Lemma 2.4 the triplicity principle of the arrival curve.

In addition, the definition of arrival curve is equivalent to enforcing that
for all t ≥ 0 there holds

A(t) ≤ A ⊗ α(t) = inf
0≤s≤t

{A(s) + α(t − s)}. (2.3)
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Example 2.5. Under the Integrated Services (IntServ) framework of the Inter-
net [12], a 4-tuple (p,M, r, b) is used to specify traffic, where M represents
the maximum packet size, p the peak rate, r the token rate, and b the token
depth. With such a traffic specification, the flow is constrained by a dual-token
bucket and has an arrival curve as illustrated in Figure 2.2:

α(t) = (pt + M) ∧ (rt + b) ≡ min{pt + M, rt + b}.

t

rt+bpt+M

M

b

A(t)

0

The real traffic flow 

 

Fig. 2.2. Dual-token bucket constrained traffic

Example 2.6. In the previous example, a dual-token bucket has been consid-
ered. Along the same line, the (σ, ρ) model can be extended to the (−→σ ,−→ρ )
model that maintains (σ, ρ) pairs. More specifically, if there are n such pairs
(σi, ρi), i = 1, . . . , n, the traffic is constrained by A(s, t) ≤ ∧n

i=1{ρi · (t − s) +
σi} ≡ min1≤i≤n{ρi · (t − s) + σi}. It is clear that if a flow is constrained by
(−→σ ,−→ρ ), it has an arrival curve

α(t) = min
1≤i≤n

{ρi · t + σi}.

It is worth highlighting that for a given flow, its arrival curves are not
unique since they are just upper bounds. In the dual-token bucket example,
both pt+M and rt+b satisfy the definition of arrival curve and hence are also
arrival curves of the dual-token bucket constrained flow. Another example is
that, supposing α(t) is an arrival curve of a flow, then for any k ≥ 1, k · α(t)
is also an arrival curve of the flow.

2.1.3 Envelope Process

In the context of deterministic network calculus, another concept is often used
interchangeably with arrival curve, which is traffic envelope process, defined
as follows [15].
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Definition 2.7. A flow is said to have an envelope process Â on its traffic if
its arrival process A(t) satisfies, for all s, t ≥ 0,

A(s, s + t) ≤ Â (t) . (2.4)

In this chapter, we shall interpret Â(t) as a process satisfying (2.4) to
deterministically bound the arrival process. In this sense, the envelope process
model is the same as the arrival curve model. Later, in Chapter 3, we shall
interpret Â(t) as a possibly stochastic process. In this way, statistical properties
of Â(t) may be further explored in stochastic network calculus.

Similar to the arrival curve, a flow’s envelope process is not unique. Nev-
ertheless, the flow has a minimum envelope process (MEP),

ÂMEP (t) = sup
s≥0

A(s, s + t). (2.5)

It is clear that 0 ≤ ÂMEP (t) ≤ ÂMEP (t + τ) for any τ ≥ 0 and hence
the MEP is wide-sense increasing and belongs to F . In addition, the MEP is
sub-additive, which is

ÂMEP (t1 + t2) ≤ ÂMEP (t1) + ÂMEP (t2)

since there holds

ÂMEP (t1 + t2) = sup
s≥0

A(s, s + t1 + t2)

= sup
s≥0

[A(s, s + t1) + A(s + t1, s + t1 + t2)]

≤ sup
s≥0

A(s, s + t1) + sup
s≥0

A(s + t1, s + t1 + t2)

= sup
s≥0

A(s, s + t1) + sup
τ≥t1

A(τ, τ + t2)

≤ ÂMEP (t1) + ÂMEP (t2).

2.2 Server Models

For the provision and analysis of deterministic service guarantees, many server
models have been proposed, which include the latency rate (LR) server model
[129] and the guaranteed rate (GR) server model [53]. These server models
can often be abstracted or mapped to the general service curve server model.

2.2.1 Service Curve

Essentially, a service curve defines a lower bound on the service provided by
a server. Formally, the service curve model is defined as follows [92].
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Definition 2.8 (Service Curve). Consider a system S with input process
A(t) and output process A∗(t). The system is said to provide to the input a
(deterministic) service curve β (t) ∈ F if for all t ≥ 0

A∗(t) ≥ A ⊗ β(t). (2.6)

The service curve model has the following duality principle [69][73].

Lemma 2.9 (Duality Principle of Service Curve). For any x ≥ 0, A ⊗
β(t) − A∗(t) ≤ x for all t ≥ 0 if and only if sup0≤s≤t[A ⊗ β(s) − A∗(s)] ≤ x
for all t ≥ 0, where β ∈ F .

Proof. For the “if” part, it holds trivially since A⊗β(t)−A∗(t) ≤ sup0≤s≤t[A⊗
β(s)−A∗(s)]. For the “only if” part, since A⊗ β(t)−A∗(t) ≤ x for all t ≥ 0,
sup0≤s≤t[A ⊗ β(s) − A∗(s)] ≤ sup0≤s≤t[x] = x. ��

By the definition of service curve, it is clear that the first part of Lemma 2.9
defines a service curve β(t) − x. Lemma 2.9 states that if a server provides a
service curve β(t) − x, then there holds sup0≤s≤t[A ⊗ β(s) − A∗(s)] ≤ x and
vice versa. In this sense, we call Lemma 2.9 the duality principle of the service
curve.

When β is continuous, the service curve property (2.6) is equivalent to
saying that for all t ≥ 0 there exists some 0 ≤ t0 ≤ t such that [92]

A∗(t) ≥ A(t0) + β(t − t0). (2.7)

Throughout the rest of this book, the function β is assumed to be continuous
on t as used in [92].

For a constant rate FIFO server, t0 in (2.7) is the beginning of the busy
period corresponding to t. In the case where the service curve is latency-rate
type (i.e., β(t) = R · t − T ), t0 may be loosely interpreted as the start of
the burst period in which traffic from the input considered arrives with rate
greater than or equal to R, or A(t0, t) ≥ R · (t − t0) [68][129].

It is also worth highlighting that the service curves of a system are not
unique either since they are just lower bounds. With the monotonicity prop-
erty of ⊗, it is easy to show that if β(t) is a service curve, then any function
β′(t) ≤ β(t) is also a service curve.

2.2.2 Network Elements Offering Service Curves

This subsection introduces three important types of network elements offering
service curves.

A widely used service curve type is the latency-rate service curve type,
where the service curve is represented using a linear function β(t) = R · t + T
with R as the rate term and T the latency term. Under the LR and GR mod-
els, the literature has proved similar terms for many well-known schedulers,
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Table 2.1. Latency and rate terms of some schedulers

Scheduler Latency Rate

GPS 0 φi∑
i φi

C

FIFO Lmax/C C

SP Lmax/C C

PGPS/WFQ Lmax/r + Lmax/C φi∑
i φi

C

SFQ Lmax/r +
∑

m�=f Lmax/C φi∑
i φi

C

DRR
(
3
∑

i Qi − 2Qi

)
/C Qi∑

i Qi
C

such as first-in-first-out (FIFO), strict priority (SP), (ideal) general proces-
sor sharing (GPS) [84], packetized general processor sharing (PGPS) [112] or
weighted fair queuing (WFQ) [33] [112], virtual clock [142], start-time fair
queuing (SFQ), and deficit round robin (DRR) [126] [134]. In [68], the follow-
ing relationship between LR, GR and service curve has been proved.

Lemma 2.10. If a scheduler is a latency-rate server (respectively guaranteed-
rate server) with rate R and latency T (respectively error term E) to a flow,
then the scheduler offers the flow a latency-rate service curve with rate R and
latency T (respectively E + Lmax

R , where Lmax denotes the maximum packet
size of the flow).

With Lemma 2.10, the rate and latency terms can be found for many
schedulers under the service curve model. Table 2.1 presents the rate and
latency terms for some of them, where C denotes the capacity of the scheduler.
For SP, the two terms are for the traffic class at the highest priority level;
for GPS, PGPS/WFQ and SFQ, φi is the weight parameter for the input
considered and for DRR, Qi denotes the quantum size allocated to the input
considered. For other schedulers, their rate and latency terms may be found
from the literature (e.g., [68] [129] [53] [71]).

Another important type of network element that offers service curves is the
greedy shaper . A greedy shaper is a shaper that outputs as soon as possible,
but delays the input bits in a buffer whenever sending a bit would violate the
shaping curve [70] [92]. A greedy shaper has the following property [70] [92].

Lemma 2.11. For a greedy shaper with shaping curve α, if the shaper buffer
is large enough to ensure no loss and is empty at time 0, then its output and
input have the following relation:

A∗(t) = A ⊗ α(t). (2.8)

Equation (2.8) has two implications. One is that the greedy shaper offers
a service curve α to the input. Another is that the output is constrained by
arrival curve α.

The following result introduces the third type of network element that
offers service curves, which is the delay element.
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Lemma 2.12. If a system guarantees a bounded delay T to the input flow,
then it offers a service curve δT (t) to the flow,

A∗(t) ≥ A ⊗ δT (t), (2.9)

where δT (t), called the network calculus impulse function, is defined as δT (t) =
0 for 0 ≤ t ≤ T and δT (t) = ∞ for t > T .

2.2.3 Strict Service Curve

An important concept, called the strict service curve has often been used to
find the service curve of a system and is defined as follows.

Definition 2.13 (Strict Service Curve). A system S is said to offer a
strict service curve β to a flow A if, during any backlogged period (s, s + t] of
the flow, the output satisfies A∗(s, s + t) ≥ β(t).

It is easy to verify that Definition 2.13 implies Definition 2.8, or, in other
words, the following.

Lemma 2.14. If a system offers a strict service curve β to a flow, then it
also offers a service curve β to the flow.

2.2.4 Service Envelope Process

We define in the following a concept related to the service curve, which is
called the service envelope process.

Definition 2.15 (Service Envelope Process). A system is said to provide
a service envelope process Ŝ(t) to the input if for any t ≥ 0 there holds

A∗(t) ≥ A ⊗ Ŝ(t). (2.10)

Just like what has been discussed for the arrival curve and envelope
process, the difference in definitions between service curve and service en-
velope process is also subtle. Later, however, we shall interpret the envelope
process as a random process with statistical properties that may be explored
in stochastic network calculus and consider the (deterministic) service curve
as a deterministic service envelope process.

When a service envelope process makes (2.10) an equality, we call it the
maximum service envelope process, defined as follows.

Definition 2.16 (Maximum Service Envelope Process). The maximum
service envelope process of a system, denoted by ŜMSP (t), is a process with
which, for any t ≥ 0, the following equality holds:

A∗(t) = A ⊗ ŜMSP (t). (2.11)
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Similarly, a concept related to the strict service curve is the strict service
envelope process, defined as follows:

Definition 2.17 (Strict Service Envelope Process). A system is said to
provide a strict service envelope (SSE) process Ŝ(t) if the amount of service
S(s, s + t) provided by the system in (s, s + t] satisfies, for any t ≥ 0 and all
s ≥ 0,

S(s, s + t) ≥ ŜSSE (t) . (2.12)

The difference in definitions between strict service curve and strict service
envelope process is also subtle. While the former is defined on a backlogged
period, the latter describes the behavior of the system in general. Particularly,
the following relation is straightforward.

Lemma 2.18. If a system has a strict service envelope process Ŝ(t), it pro-
vides a strict service curve β(t) = Ŝ(t).

Another difference in definitions between strict service curve and strict
service envelope process is that, later in this book, we shall interpret the
envelope process as a random process with statistical properties that may be
explored in stochastic network calculus and consider the (deterministic) strict
service curve as a deterministic service envelope process.

It is clear that the strict service envelope process definition is stronger
than the service envelope process definition. In other words, if a system has
a strict service envelope process Ŝ(t), it also has a service envelope process
Ŝ(t).

In addition, it can be noticed from Definition 2.15 that the definition of
a service envelope process is dependent on the arrival process A(t). However,
Definition 2.17 generally describes the behavior of the system independent of
the arrival.

Similar to envelope process, a system’s service envelope process or strict
service envelop process is not unique either. Nevertheless, the system has a
maximum strict service envelope process (MSS)

ŜMSS(t) = inf
s≥0

S(s, s + t).

It is clear that 0 ≤ ŜMSS(t) ≤ ŜMSS(t + τ) for any τ ≥ 0 since we always
have S(s, s+ t) ≤ S(s, s+ t+τ) for all s ≥ 0, and hence the MSS is wide-sense
increasing and belongs to F .

2.3 Basic Results

This section presents basic results of deterministic network calculus that cor-
respond to the five basic properties (P.1)–(P.5) for network analysis discussed
in Chapter 1. These results are based on the concepts of the arrival curve for
the traffic model and the service curve for the server model.
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2.3.1 Service Guarantees

The service guarantee property means that the QoS performance bounds such
as the delay bound and backlog bound can be derived under the given traffic
model and server model. For deterministic network calculus, if the input flow
to a system has an arrival curve and the system provides a service curve to the
flow, Theorem 2.19 and Theorem 2.21 respectively present the delay bound
and backlog bound of the flow at the system.

Theorem 2.19 (Delay Bound). Consider a system offering a (determin-
istic) service curve β to the input flow A. Suppose A has a (deterministic)
arrival curve α. Then, the delay D (t) of the flow at time t is bounded by

D (t) ≤ h (α, β) .

Proof. For the delay, by definition,

D(t) = inf{τ ≥ 0 : A(t) ≤ A∗(t + τ)},

with which the theorem is equivalent to proving that for any 0 ≤ τ ≤ D (t)
there holds

τ ≤ h(α, β).

In the following, we consider any (0 ≤)τ < D (t). The delay definition
implies that

A(t) > A∗(t + τ),

since otherwise if there were be A(t) ≤ A∗(t + τ) we would have D(t) ≤ τ,
which contradicts the condition D(t) > τ .

Since the system offers a service curve β, according to (2.7) there exists a
certain t0 such that

A∗ (t + τ) > A (τ0) + β (t + τ − τ0) .

We hence have, with this τ0,

A (t) > A (τ0) + β (t + τ − τ0) .

Since the input A has an arrival curve α,

α (t − τ0) ≥ A(t) − A(τ0) > β (t − τ0 + τ) ,

which implies
τ ≤ dα,β (t − τ0) ,

where
dα,β (t − τ0) ≡ inf{τ ≥ 0 : α(t − τ0) ≤ A∗(t − τ0 + τ)}.

It is trivial that
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dα,β (t − τ0) ≤ sup
t−τ0≥0

{inf{τ ≥ 0 : α(t − τ0) ≤ A∗(t − τ0 + τ)}}

= sup
s≥0

{inf{τ ≥ 0 : α(s) ≤ A∗(s + τ)}} = h(α, β),

and hence τ ≤ h (α, β) , which concludes the proof. ��
Example 2.20. Consider that a network element offers a latency-rate service
curve β(t) = r · (t − T )+ to the input flow that is constrained by a token
bucket with token generation rate ρ and bucket size σ. For this input flow, it
has an arrival curve α(t) = ρ · t + σ. From Theorem 2.19, it is clear that, if
ρ ≤ r, the flow experiences a delay bounded by

D(t) ≤ h
(
ρ · t + σ, r · (t − T )+

) ≤ σ

r
+ T.

Theorem 2.21 (Backlog Bound). Consider a system offering a (determin-
istic) service curve β to the input flow A. Suppose A has a (deterministic)
arrival curve α. Then, the backlog B (t) of the flow at time t is bounded by

B (t) ≤ α 
 β (0) ,

where α 
 β (0) = sups≥0 {α (s) − β (s)} .

Proof. According to the definition of deterministic service curve, we have, for
all t ≥ 0,

A∗(t) ≥ A ⊗ β(t).

Then, for all t ≥ 0,

B (t) = A (t) − A∗ (t)
≤ A (t) − A ⊗ β(t)
= A (t) − inf

0≤s≤t
{A (t − s) + β (s)}

≤ sup
0≤s≤t

{A (t) − A (t − s) − β (s)}

≤ sups≥0 {α (s) − β (s)} .

��
Example 2.22. Consider the same network element as in the previous example,
which offers a latency-rate service curve β(t) = r · (t − T )+ to the input flow
that is constrained by a token bucket with token generation rate ρ and bucket
size σ. The input flow has an arrival curve α(t) = ρ ·t+σ. From Theorem 2.21,
it is clear that, if ρ ≤ r, the backlog of the flow in the node is bounded by

B(t) ≤ sup
t≥0

{
(ρ · t + σ) − (r · (t − T )+)

}
= σ + ρT.
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2.3.2 Output Characterization

The output characterization property means that the output of a flow from a
system can be represented using the same traffic model as the input flow. This
property facilitates the QoS analysis at subsequent nodes. For deterministic
network calculus, the property is shown by the following theorem.

Theorem 2.23 (Output Characterization). Consider a system offering
a (deterministic) service curve β to the input flow A. Suppose A has a (deter-
ministic) arrival curve α. Then, the output A∗ is also bounded, for all s, t ≥ 0,
by a (deterministic) arrival curve α∗(t) = α 
 β (t) as

A∗ (s, s + t) ≤ α 
 β (t) .

Proof. According to the definition of deterministic service curve, we have for
all 0 ≤ s ≤ t that there exists a certain s0(≤ t − s) such that A∗ (t − s) ≥
A (t − s − s0) + β (s0).

Then,

A∗ (t) − A∗ (t − s) ≤ A∗ (t) − A (t − s − s0) − β (s0)
≤ A (t) − A (t − s − s0) − β (s0)
≤ α (s + s0) − β (s0)
≤ α 
 β (s) .

Hence, we have
α∗ (t) = α 
 β (t) .

��
With the service guarantee property (P.1) and the output characterization

property (P.2), the end-to-end QoS performance of a sequence of nodes in tan-
dem can be investigated using the so-called node-by-node analysis approach.
With this approach, the QoS performance at the first node is derived. So is
the output characterization from the first node, with which is further applied
to the second node to derive the QoS performance at the second node and the
output characterization of the second node. This process is repeated until the
QoS performance at all the nodes is derived, with which, the end-to-end QoS
performance is obtained. To demonstrate this node-by-node network analysis
approach, we consider an example below.

Example 2.24. Consider a network of H(≥1) nodes in tandem, where the prop-
agation delay is not taken into account. The input flow to the network is con-
strained by a token bucket with token rate ρ and bucket size σ before entering
the network. In other words, the flow has an arrival curve α1 = ρ · t+σ to the
first node. In addition, we assume each node h offers to the flow a latency-rate
service curve βh = r · (t − T )+, where r ≥ ρ and T ≥ 0. We want to derive a
bound on the end-to-end delay of the flow in the network.
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At the first node, the delay bound and the output can be derived from
Theorem 2.19 and Theorem 2.23 respectively as follows:

D1(t) ≤ h(α1, β1} =
σ

r
+ T,

α1∗(t) = α1 
 β1(t) = ρ · t + σ + r · T.

Since in the network nodes are placed in tandem, the output from the first
node is the input to the second node, which has an arrival curve α2 = α1∗.
With this and Theorems 2.19 and 2.23, we can further get the delay bound
and the output characterization at the second node. This can be repeatedly
applied to the network. In general, we have, for h ≥ 1,

Dh(t) ≤ σ

r
+ h · T ; (2.13)

αh∗ = ρ · t + σ + h · r · T. (2.14)

Based on the node delay bounds, an end-to-end delay bound is derived as

D(t) =
H∑

h=1

Dh(t)

≤ H · σ

r
+ H · T +

H(H − 1)
2

T. (2.15)

2.3.3 Concatenation Property

The concatenation property means that the concatenation of a series of servers
in tandem can be considered as one single server and represented using the
same server model. Like the output characterization property, the concatena-
tion property can also facilitate the end-to-end QoS performance analysis and
improve results obtained from the node-by-node analysis.

Theorem 2.25 (Concatenation Property). Consider a flow passing
through systems Sh, h = 1, . . . , H, in sequence. Suppose each system Sh pro-
vides a deterministic service curve βh ∈ F to the flow. Then the concatenation
of these systems offers a deterministic network service curve β to the flow,
which is given by

β = β1 ⊗ β2 · · · ⊗βH . (2.16)

Proof. We shall only consider the two-system case, from which the proof can
be easily extended to the H-system case. Let Ah and Ah∗ be the arrival process
and departure process of the hth system, respectively, and A and A∗ the arrival
process and departure process of the concatenated system, respectively. Then,
we have A = A1 and A∗ = A2∗.

Since the departure of the first system is the arrival at the second system,
we get A1∗ = A2. According to the definition of deterministic service curve,
we have
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A2∗ ≥ A2 ⊗ β2

= A1∗ ⊗ β2

≥ (A1 ⊗ β1(t)
)⊗ β2

= A ⊗ (β1 ⊗ β2
)
,

with which we can conclude that the concatenated system provides a service
curve β1 ⊗ β2 to the flow. ��

The concatenation property is an important result of deterministic network
calculus. With the network service curve, the edge-to-edge QoS bounds can
be obtained by applying the single- system analysis, and we call this network
analysis approach the edge-to-edge analysis approach. In addition, the edge-
to-edge analysis approach can result in much improved results over the node-
by-node analysis. To demonstrate, the same network is considered as for the
node-by-node analysis approach.

Example 2.26. Consider the same network as in the example for the node-by-
node analysis. With Theorem 2.25, it is known that the network provides a
service curve to the flow as

β = β1 ⊗ β2 · · · ⊗βH

= r · (t − H · T ).

With the network service curve β and Theorem 2.19, the end-to-end delay is
bounded by

D ≤ σ

r
+ H · T. (2.17)

Comparing (2.17) with (2.15), it is clear that the edge-to-edge analysis gives a
much better bound on the end-to-end delay than the node-by-node approach.
This improvement comes from two parts. First, the initial burstiness σ is
counted only once in (2.17), whereas (2.15) it is counted H times. Second,
the term H(H−1)

2 · θ in (2.15) does not appear in (2.17) due to a burstiness
increase after passing through nodes . Because of these, facts the literature
calls (2.17) the “pay-bursts-only-once” phenomenon [92]. To illustrate the
difference between (2.17) and (2.15), Figure 2.3 is presented, where σ = 3,
r = 10, and T = 2.

Recently, the scaling of end-to-end performance bounds has attracted re-
search attention in the field of network calculus [24]. According to the analysis
in Examples 2.24 and 2.26 above, when considering the case with H nodes in
tandem, we can see that the end-to-end delay bound obtained from the node-
by-node analysis approach scales in O (H2

)
. However, with the concatenation

property of the service curve, the end-to-end delay bound obtained scales in
O (H), which gives a much tighter bound.
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Fig. 2.3. Comparison of node-by-node analysis and edge-to-edge analysis

2.3.4 Leftover Service

In order to provide QoS in a scalable manner, aggregate scheduling has been
studied as an important approach. For example, in Differentiated Services
(DiffServ) networks [10], service guarantees are provided to aggregates and
aggregate scheduling is used instead of per-flow scheduling. For such networks,
to derive per-flow QoS bounds, it is desirable to study the per-flow service
received by each flow in an aggregate, which is sometimes called per-flow
service under aggregation [100] and often also called leftover service given to
a flow by a system where there are more flows competing for the service.

The leftover service property means that the service received by a flow in
an aggregate can be represented using the same server model. This property
enables the analysis of per-flow QoS under aggregate scheduling. For deter-
ministic network calculus, the leftover service property is presented below.

Theorem 2.27 (Leftover Service). Consider a system serving an aggre-
gate of two (possibly aggregate) flows A1 and A2. Assume the system offers a
service curve β to the aggregate, and A2 has an arrival curve α2. Then, the
system offers to the flow A1 such that, for any t ≥ 0,

A∗
1(t) ≥ A1 ⊗ (β − α2)+(t), (2.18)

and if (β − α2)+ ∈ F , it is a service curve to flow A1.

Proof. Let A be the aggregate. Then, A(t) = A1(t) + A2(t). In addition,
A∗ = A∗

1(t) + A∗
2(t), from which, together with A∗

2(t) ≤ A2(t), A∗
1(t) ≥ 0, and

A1(0) = 0, we get
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A∗
1 = A∗ − A∗

2(t)
≥ (A ⊗ β(t) − A2(t))

+

=
(

inf
0≤s≤t

{A1(s) + β(t − s) − [A2(t) − A2(s)]}
)+

≥
(

inf
0≤s≤t

{A1(s) + (β − α)(t − s)}
)+

= inf
0≤s≤t

{A1(s) + (β − α)+(t − s)}
= A1 ⊗ (β − α2)+(t).

��

2.3.5 Superposition

The superposition property means that the superposition of flows can be
represented using the same traffic model. With this property, the aggregate of
(possibly many) individual flows can be considered as a single aggregate flow,
so that the QoS performance for the aggregate can be derived in the same
way as for a single flow.

Consider two flows A1 and A2. Suppose A1 has an arrival curve α1(t) and
A2 an arrival curve α2(t), and A(= A1 + A2) is the aggregate flow. Then, for
the aggregate A, we have, for any 0 ≤ s ≤ t, A(s, t) = A1(s, t) + A2(s, t) ≤
α1(t − s) + α2(t − s). In other words, the aggregate flow has an arrival curve
α1 + α2. The analysis can be easily extended to cases where the aggregate is
formed by more than two flows. The result is as follows.

Theorem 2.28 (Superposition). Consider the superposition of n flows Ai,
i = 1, . . . , n. If each flow Ai has an arrival curve αi ∈ F , the aggregate flow
A =

∑n
i=1 Ai has an arrival curve α(t) =

∑n
i=1 αi(t).

2.3.6 Example: Analysis of a Network
of Arbitrary Topology

To further demonstrate the use of the deterministic network calculus results,
let us consider an aggregate scheduling network of arbitrary topology. We
assume each flow has a latency-rate arrival curve αi(t) = ρ·t+σ when entering
the network. Flows are aggregated in the FIFO manner in the network. Each
node in the network provides a latency-rate service curve βh(t) = r · (t − T )
to the aggregate input. The maximum hop count used by any flow is bounded
by H(≥1). Define uh = nhρ

r , where nh denotes the number of flows sharing
the same output link as flow Ai and uh the utilization level of the link. In the
following, we derive the nodal delay bound, the delay bound for the network,
and the buffer required to size ensure no loss.
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Consider any node in the network. The maximum delay for any flow Ai to
arrive at the node is bounded by (H − 1) · d. Then, the path up to the node
for the flow can be considered as a delay element with service curve δ(H−1)·d.
With Theorem 2.23, it is clear that the output of the flow from this delay
element has an arrival curve αi 
 δ(H−1)·d = ρ · t + σ + ρ(H − 1)d. When
nhρ ≤ r, we have

d ≤ h
(
αh, βh

)
=

nhσ + nhρ(H − 1)d
r

+ T

= uh(H − 1)d +
nhσ

r
+ T,

from which, when uh < 1
H−1 , we obtain the delay bound on node h

d ≤ 1
1 − uh(H − 1)

(
nhσ

r
+ T

)

≤ 1
1 − uh(H − 1)

(
1

H − 1
σ

ρ
+ T

)
, (2.19)

where we have used uh ≡ nhρ
r < 1

H−1 . Let u be the maximum link utilization
level in the network, or u = max{uh}, for every node h in the network. Then,
there follows immediately from (2.19) the nodal delay bound.

d ≤ 1
1 − u(H − 1)

(
1

H − 1
σ

ρ
+ T

)
, (2.20)

and the corresponding condition becomes

u <
1

H − 1
. (2.21)

In addition, we have as a delay bound for the network

D ≤ H

1 − u(H − 1)

(
1

H − 1
σ

ρ
+ T

)
. (2.22)

For any node h, we know that the buffer size satisfies

Bh(t) ≤ v
(
αh, βh

)
.

Using an approach similar to that deriving the nodal delay bound (2.20), we
obtain that, under condition (2.21), for any node h,

Bh(t) ≤ r

1 − u(H − 1)

(
1

H − 1
σ

ρ
+ θ

)
. (2.23)
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The right-hand side of (2.23) gives the buffer size required to ensure no loss.
Comparing this with the tandem network considered in Examples 2.24

and 2.26, it can be found that the pay-bursts-only-once phenomenon does not
hold from (2.22) for the network of arbitrary topology where loops may exist.
Inequality (2.22) and condition (2.21) imply that, for the network of arbitrary
topology, the network delay may not be bounded if condition (2.21) does not
hold. This additionally implies that fixing a certain node utilization level may
lead to condition (2.21) being unsatisfied and consequently no bounded delay
concluded, when H increases. In other words, the scaling on the number of
hops may not hold when the node utilization level is fixed. This is contrary to
the tandem network case. On the other hand, keeping u(H − 1) unchanged,
the delay bound given by (2.20) scales in O(H).

2.4 Summary and Bibliographic Comments

This chapter introduces the basic results of deterministic network calculus.
Some important concepts, such as the arrival curve, service curve, and strict
service curve have been discussed. Based on these concepts, worst-case back-
log, delay and output bounds, and other results corresponding to the five basic
properties are also presented under the min-plus algebra.

The (σ, ρ) model was initially addressed by Cruz in [28][29], and its idea
of using a curve to upper-bound the cumulative arrival process has greatly
simplified and indeed enabled the network case analysis. A generalized form
of the (σ, ρ) model was also found in [28], which is called the arrival curve or
envelope process in this book.

The latency rate (LR) server model was initially defined by Stiliadis and
Varma in [129]. The guaranteed rate (GR) server model was defined by Goyal,
Lam, and Vin in [52] and later generalized in [54]. The idea of GR is to
capture the deadline guarantee with regard to a virtual time function, which
was initially used by Xie and Lam in [135]. The relationship between LR and
GR was studied by Jiang in [68]. The idea of using a curve or envelope to
lower-bound the service was first considered by Parekh and Gallager [112],
Cruz [30], and Sariowan [122]. This idea was later further explored by Chang
[17], Le Boudec [90], and Cruz, et al. [2] to study service guarantees. The strict
service curve concept was referred to as the strong service curve in Cruz’s work
[32]. A review of various deterministic server models was made by Jiang [68],
where the relationships between these models were also investigated.

The study of deterministic QoS performance bounds was pioneered by
Cruz with the concept of (σ, ρ) traffic characterization on burstiness con-
straints for single-node and multiple-node cases in [28][29]. Some subsequent
works [15][30][112][113][122][17][90][2] investigated various deterministic per-
formance bounds under more general traffic models and server models. The
works in this direction was later systematically summarized by Chang [18]
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and Le Boudec and Thiran [92] into an elegant theory deterministic network
calculus, mainly by using the concepts of the arrival curve and service curve
or their equivalents with the application of min-plus or max-plus algebra [6].

The analysis of the arbitrary topology network was initially made by
Charny and Le Boudec in [20]. The analysis was extended by Jiang [67] to
consider packetization effects and link capacity constraints.

In recent years, another deterministic server model, called packet scale rate
guarantee (PSRG), has been used to define Expedited Forwarding behavior
for DiffServ [10] networks. This PSRG concept was defined by Bennett et al.
[8] initially for per-hop behavior and later extended to per-domain behavior
by Jiang [71]. The single-hop definition of PSRG is indeed equivalent to the
adaptive service curve server model that was initially introduced in [110] and
published in [2]. Some more results for PSRG can be found in [92] and [70].

Problems

2.1. Prove Lemma 2.11.

2.2. Prove Lemma 2.12.

2.3. We were given a token bucket constrained input traffic A ∼ (σ, ρ) and a
rate-guaranteed scheduler providing a service curve in the form of

β (t) = R (t − T )+ .

The buffer size for the scheduler is B.

(i) What is the minimum value of B to guarantee no packet loss in the
system?

(ii) What is the minimum rate R guaranteeing that the maximum delay ex-
perienced by any packet in the system is less than D?

(iii) What happens if R < ρ?

2.4. Consider a system with a rate-guaranteed scheduler providing a service
curve in the form of

β (t) = R (t − T )+ .

There are N token bucket constrained input flows to this system, each shaped
by a token bucket shaper with the same parameters (σ, ρ) . The buffer size is
B.

(i) How many such flows can be admitted into the system if no packet loss is
allowed?

(ii) How many such flows can be admitted into the system if the maximum
delay experienced by any packet in this system is required to be less than
D?
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2.5. Consider a constant-rate server with link capacity C fed with an input
traffic flow with maximum packet size M .

(i) What is the arrival curve for the output process of the constant-rate
server?

(ii) Suppose the input traffic is also token bucket constrained with token
generation rate r and token bucket size b. What is the arrival curve for
the output process of the constant-rate server?

(iii) Following the same condition as in (ii), if the output traffic of the constant
rate server is fed into a rate-guaranteed scheduler providing a service
curve in the form of

β (t) = R (t − T )+ ,

what is the buffer size that guarantees that there is no packet loss in the
system? What is the maximum delay a packet may have in the system?
What is the arrival curve of the departure process?

2.6. Consider a system with two rate-guaranteed servers in tandem serving
two flows A1 and A2 that are FIFO-aggregated as shown in Figure 2.4. Assume
flow Ai ∼

(
σi, ρi

)
, i = 1, 2. Assume that each server guarantees a service curve

βk = Rk (t − Tk)+ , k = 1, 2 to the aggregate of the two flows.

S1

A1

A2

A1

A2

S2

Fig. 2.4. Two servers in tandem

(i) What are the buffer sizes needed for the first server and the second server,
respectively, to guarantee that there is no packet loss in the system?

(ii) There are two approaches to analyzing the QoS experienced by packets
from A1 in the system. The first one is to derive the leftover service
curve received by A1 at each server. After that, the network service curve
received for A1 can be obtained by concatenation. Then, what is the
maximum delay a packet may have in the system using this approach?

(iii) The second approach is to derive the network service curve for the ag-
gregate flow using the concatenation property. After that, the leftover
service curve for A1 can be derived under aggregate scheduling. Then,
what is the maximum delay a packet may have in the system using this
approach?

(iv) Compare and explain the difference between the delay bounds derived
from (ii) and (iii).



Problems 39

2.7. In Example 2.3.6, suppose that at the network ingress each flow is con-
strained by a dual-token bucket with an arrival curve α(t) = min{ρ · t + σ, p ·
t+L}. Then, what is the nodal delay bound, what is the network delay bound,
what is the buffer size ensuring no loss, and what is the condition for having
these finite bounds?

2.8. Consider a system with N servers in tandem providing service to a flow A.
Each server is running the WFQ scheduling algorithm with the same capacity
C and allocates the same bandwidth to flow A. Assume A ∼ (σ, ρ). Derive
the end-to-end delay bound. To guarantee a certain end-to-end delay, find the
minimum bandwidth that should be allocated at each server.

2.9. Consider a system with two servers in tandem providing service to a flow
A. The first server guarantees a bounded delay D. The second server offers a
strict service curve β. Find the concatenated service curve for this system.

2.10. For the system described in Problem 2.9, if flow A ∼ (σ, ρ) , find the
network delay bound using the node-by-node analysis approach.

2.11. For the system described in Problem 2.9, if flow A ∼ (σ, ρ) , find the
network delay bound using the concatenation property.

2.12. For the system described in Problem 2.9, if the flow has an arrival
curve α(t) = min{ρ · t + σ, p · t + L}, find the network delay bound using the
concatenation property.
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Traffic Models for Stochastic Network Calculus

In Chapter 2, we introduced important concepts and results from deterministic
network calculus. In this and subsequent chapters, we will focus on stochastic
network calculus. Particularly here in Chapter 3 we introduce traffic models
that have been proposed for stochastic network calculus. These traffic mod-
els include three variations of the stochastic arrival curve and traffic models
abstracted from the moment generating function of the arrival process. Ex-
amples will be given to demonstrate the use of the traffic models introduced
in characterizing well-known traffic processes. In addition, the relationships
between these stochastic traffic models will be discussed.

3.1 (σ(θ), ρ(θ)) Traffic Characterization

To better understand the (σ(θ), ρ(θ)) stochastic traffic model, let us start
with the moment generating function (MGF) of an arrival process A(s, s+ t),
t, s ≥ 0, which is

MA(s,s+t)(θ) = E
[
eθ(A(s+t)−A(s))

]
. (3.1)

An upper bound on MA(s,s+t)(θ) is sups≥0 MA(s,s+t)(θ), if it exists, or

MA(s,s+t)(θ) ≤ sup
s≥0

MA(s,s+t)(θ)

= sup
s≥0

E
[
eθ(A(s+t)−A(s))

]
. (3.2)

With simple manipulation, (3.2) becomes

1
θ

log E
[
eθ(A(s+t)−A(s))

]
≤ 1

θ
sup
s≥0

log E
[
eθ(A(s+t)−A(s))

]
. (3.3)
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The right-hand side of (3.3) is called the minimum envelope process of
process A with respect to θ (θ-MEP), denoted by ÅMEP (θ, t) or

ÅMEP (θ, t) =
1
θ

sup
s≥0

log E
[
eθ(A(s+t)−A(s))

]
, (3.4)

for which the minimum envelope rate (MER) of A with respect to θ (θ-MER),
denoted by åMEP (θ), is defined to be [15]

åMEP (θ) = lim supt→∞
1
θt

sup
s≥0

log E
[
eθ(A(s+t)−A(s))

]
. (3.5)

Suppose A(t) has stationary increments; i.e., for any s, A(s, s + t) has the
same distribution as A(t). Then (3.5) becomes

åMEP (θ) = lim supt→∞
1
θt

log E
[
eθA(t)

]
, (3.6)

which is commonly called the effective bandwidth of A [18]. Effective band-
width [36][81][80], is a widely used stochastic traffic model for stochastic QoS
analysis in computer networks. It is used particularly to estimate the mini-
mum bandwidth required to guarantee a certain probabilistic QoS for multiple
flows under multiplexing. The effective bandwidth of a flow lies between its
mean and peak rates. From (3.6), it is clear that if two flows are independent,
then the effective bandwidth of the aggregate of the two flows is simply the
sum of the effective bandwidths of each flow. This elegant property leads to
many applications of effective bandwidth.

Similar to the (σ, ρ) traffic model, it is interesting to study cases where
the right-hand side of (3.3) is upper-bounded by a function ρ(θ) · t+σ(θ) with
respect to a chosen θ. Specifically, the (σ(θ), ρ(θ)) stochastic traffic model is
defined as follows [15][18].

Definition 3.1. A process A(t) is said to be (σ(θ), ρ(θ)) upper constrained
(for some θ > 0) if, for all s, t ≥ 0,

1
θ

log E
[
eθA(s,s+t)

]
≤ ρ(θ) · t + σ(θ). (3.7)

It has been shown that many types of traffic can be represented using this
(σ(θ), ρ(θ)) model [15][18], which includes exponential on-off, markov modu-
lated process (MMP), and effective bandwidth.

3.2 t.a.c. Stochastic Arrival Curve

In this and subsequent sections, three variations of the stochastic arrival curve
are introduced, namely the traffic-amount-centric (t.a.c.) stochastic arrival
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curve, virtual-backlog-centric (v.b.c.) stochastic arrival curve, and maximum-
(virtual)-backlog-centric (m.b.c.) stochastic arrival curve. These stochastic
traffic models play critical role in stochastic network calculus.

The t.a.c. stochastic arrival curve model is defined based on the amount of
traffic generated by a flow in a time interval. Intuitively, a deterministic arrival
curve α tells us that the amount of traffic generated by the flow in any time
interval (s, t] is upper-bounded by α(t−s). This traffic amount property of the
deterministic arrival curve can be used to find its probabilistic counterpart.
Particularly, based on the traffic amount intuition, the t.a.c. stochastic arrival
curve is defined as follows.

Definition 3.2 (t.a.c. Stochastic Arrival Curve). A flow is said to have
a traffic-amount-centric (t.a.c.) stochastic arrival curve α ∈ F with bounding
function f ∈ F̄ , denoted by A ∼ta 〈f, α〉, if for all 0 ≤ s ≤ t and all x ≥ 0
there holds

P{A(s, t) − α(t − s) > x} ≤ f(x). (3.8)

Many stochastic traffic models have been proposed in the literature for
stochastic service guarantee analysis that can be considered as special cases
of Definition 3.2, as demonstrated below.

Example 3.3. In this example, we show that the (σ(θ), ρ(θ)) model can be
easily mapped to the t.a.c. stochastic arrival curve. Specifically, suppose the
arrival process A(t) of a flow is (σ(θ), ρ(θ))-upper constrained. From the def-
inition, it is known that

1
θ

log E
[
eθA(s,s+t)

]
≤ ρ(θ) · t + σ(θ),

or equivalently
E
[
eθA(s,s+t)

]
≤ eθ[ρ(θ)·t+σ(θ)].

Applying the Chernoff bound yields

P{A(s, s + t) − α(t) > x} ≤ e−θxE
[
eθ(A(s,s+t)−α(t))

]
≤ e−θxeθ[ρ(θ)·t+σ(θ)−α(t)]. (3.9)

The right-hand side of (3.9) implies that for any function α(t) satisfying
α(t) ≥ ρ(θ) · t + σ(θ), it is a t.a.c. stochastic arrival curve of the flow with
bounding function e−θx. To conclude, we have the following result.

Theorem 3.4. If a flow is (σ(θ), ρ(θ)) upper constrained, then it has a t.a.c.
stochastic arrival curve α(t) = ρ(θ) · t + σ(θ) with bounding function f(x) =
e−θx, or A ∼ta 〈e−θx, ρ(θ) · t + σ(θ)〉.
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Example 3.5. As a special case of the previous example, we can map the effec-
tive bandwidth model to the t.a.c. stochastic arrival curve model. Specifically,
suppose the flow has an effective bandwidth ρ(θ), which by definition is

ρ(θ) = lim sup
t→∞

1
θt

log E
[
eθA(t)

]
. (3.10)

Suppose A(t) has stationary increments, which is a condition often assumed
when deriving the effective bandwidth. We then have for any s, t ≥ 0,

A(s, s + t) =st A(t).

Note that the effective bandwidth definition (3.10) implies that for every
ε > 0 there exists some t0 < ∞ such that

1
θ

log E
[
eθA(s,s+t)

]
≤ (ρ(θ) + ε)t (3.11)

for all t ≥ t0. For any t < t0, since A(s, s + t) is non-decreasing, we get

1
θ

log E
[
eθA(s,s+t)

]
≤ (ρ(θ) + ε)t0. (3.12)

Combining (3.11) and (3.12), we can conclude that

1
θ

log E
[
eθA(s,s+t)

]
≤ max{(ρ(θ) + ε) t, (ρ(θ) + ε) t0}
≤ (ρ(θ) + ε) t + (ρ(θ) + ε) t0.

Letting σε(θ) = (ρ(θ) + ε) t0, we get

1
θ

log E
[
eθA(s,s+t)

]
≤ (ρ(θ) + ε) t + σε(θ)

and hence A is (σε(θ), ρ(θ) + ε) upper constrained. Then, from the previous
example, its t.a.c stochastic arrival curve characterization is obtained.

Example 3.6. It is also easy to verify that the (deterministic) arrival curve
model is a special case of Definition 3.2 in which f(x) = 0 for x ≥ 0.

Example 3.7. In [138], a stochastic traffic model called exponentially bounded
burstiness (EBB), is proposed, which is later extended in [128] to the stochas-
tically bounded burstiness (SBB) model.

A flow is said to have EBB if for all s, t ≥ 0 and all x > 0

P {A(s, s + t) − ρ · t > x} ≤ ae−bx, (3.13)

where ρ, a and b are constants.
A flow is said to be stochastically bounded bursty with upper rate ρ and

bounding function f if there exists f ∈ Ḡ and for all s, t ≥ 0 and all x > 0
there holds for the arrival process A(t)
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P {A(s, s + t) − ρ · t > x} ≤ f(x). (3.14)

Both EBB and SBB are special cases of Definition 3.2. Particularly, let-
ting α(t) = ρ · t and f(x) = ae−bx in Definition 3.2 where a and b are two
nonnegative parameters, it reduces to EBB.

In Definition 3.2 letting α(t) = ρ · t and f(x) the function satisfying some
constraint, it reduces to SBB. The constraint on the bounding function f(x)
in SBB is f ∈ Ḡ, where Ḡ, as defined in Chapter 1, denotes the function class
that contains all the functions defined on [0,∞] with the following properties:
(i) any f ∈ Ḡ is non-negative and non-increasing; and (ii) for f ∈ Ḡ, letting
f (n)(x) be the n-fold integration of function f(x), (e.g., f (1)(x) =

∫∞
x

f(u)du),
then f (n) ∈ Ḡ for any order n ≥ 0.

Example 3.8. In [95], a stochastic traffic model called the effective envelope
was used to study stochastic service guarantees, which is also a special case
of the model defined in Definition 3.2. Specifically, letting x = 0 and f(0) = ε
in (3.8), Definition 3.2 reduces to the effective envelope model.

Example 3.9. Consider a flow with fixed unit packet size. Suppose its packets
arrive according to a Poisson process with mean rate λ. Then, in any time
interval (s, s + t], A(s, s + t) satisfies, for any x ≥ 0,

P{A(s, s + t) − λt > x} ≤
∞∑

k=�x+λt	

{
e−λt[λt]k

k!

}
,

where �x� denotes the minimum integer larger than or equal to x.

Example 3.10. Let a(t) denote the traffic that arrived at (t−1, t]. Then A(s, s+
t) =

∑s+t
u=s a(u). Assume a(u), u = 1, 2, . . . , are independent and identically

distributed. Then, from the central limit theory, A(s, s + t) converges to a
Gaussian process as t → ∞. Because of this, a Gaussian process is often used
to approximate the cumulative arrival process. Suppose a(t) has a mean given
by λ and a variance v. Then, from a Gaussian distribution, we get for any
ρ > λ

P{A(s, s + t) − ρt > x} ≤ Ψ

(
(ρ − λ)t + x√

t2v

)
,

where Ψ(x) ≡ 1√
2π

∫∞
x

e−
u2
2 du.

3.2.1 Difficulties and Additional Constraints

While promising and intuitively simple, the t.a.c. stochastic arrival curve
model has limited use if no additional constraint is enforced. To demonstrate
this, let us consider a simple node with constant service rate C and with its
input flow A satisfying A ∼ta 〈f, ρ·t〉, where ρ ≤ C. Suppose we are interested
in the backlog B(t). Then, by definition, B(t) = A(t)−A∗(t). Since the node
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has constant service rate C, it has a (deterministic) service curve C · t. In
other words, A∗(t) ≥ inf0≤s≤t{A(s) + C · (t − s)}. Then, we get

B(t) ≤ A(t) − inf
0≤s≤t

{A(s) + C · (t − s)}
= sup

0≤s≤t
{A(s, t) − C · (t − s)} (3.15)

≤ sup
0≤s≤t

{A(s, t) − ρ · (t − s)}. (3.16)

Here, we have difficulty in further deriving results from (3.15) or (3.16) if
no additional constraint is added since what we have is P{A(s, t)−ρ ·(t−s) >
x} ≤ f(x). A similar difficulty will also be met if other performance metrics
need to be investigated. Since a constant-rate node is the simplest network
case, we hence believe that without additional constraints on the model, it
is difficult to apply the stochastic traffic model defined in Definition 3.2 to
perform stochastic service guarantee analysis.

To address the difficulty of using a t.a.c. stochastic arrival curve in service
guarantee analysis, additional constraints on the bounding function f are
needed. Essentially, these constraints are introduced to allow us to find a
bounding function on the complementary cummulative distribution function
(CCDF) of the right-hand side of (3.15); i.e., for any x ≥ 0,

P

{
sup

0≤s≤t
[A(s, t) − ρ · (t − s)] > x

}

≤ P

{
sup

0≤s≤t
[A(s, t) − ρ · (t − s)]+ > x

}
(3.17)

≤
t∑

s=0

P{[A(s, t) − ρ · (t − s)]+ > x}

=
t∑

s=0

P {[A(s, t) − ρ · (t − s)] > x}

≤
t∑

s=0

fs,t(x), (3.18)

where, as in the definition of a t.a.c. stochastic arrival curve, we suppose

P{[A(s, t) − ρ · (t − s)] > x} ≤ fs,t(x). (3.19)

Note that, s and t are both explicitly included in the bounding function fs,t(x).
In many cases, such as when A(t) has stationary increments or has a stochas-
tic envelope process as to be discussed in Section 3.5, a bounding function
dependent only on t − s, denoted by ft−s(x), may be sufficient, which is

P{[A(s, t) − ρ · (t − s)] > x} ≤ ft−s(x). (3.20)
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We then get

P

{
sup

0≤s≤t
[A(s, t) − ρ · (t − s)] > x

}
≤

t∑
τ=0

fτ (x), (3.21)

which is meaningful only when its right-hand side is upper-bounded by
one. For this reason, one constraint is to assume

∑∞
τ=0 fτ (x) exists. Letting

f ′(x) =
∑∞

τ=0 fτ (x), this constraint implies there is some f ′(x) that makes
P{sup0≤s≤t[A(s, t) − ρ · (t − s)] > x} ≤ f ′(x) hold, from which a bound on
the CCDF of backlog is easily derived from (3.16). This idea has been used to
develop new variations of the stochastic arrival curve, such as the generalized
stochastically bounded bursty (gSBB) traffic model [140], the v.b.c. stochastic
arrival curve model that is generalized from gSBB, and the m.b.c. stochastic
arrival curve model. They will be introduced and discussed in detail in the
subsequent sections.

Another constraint that will also often be used in this book is to assume
that the bounding function f(x) in (3.8), (3.19), or (3.21) is in Ḡ; i.e., f ∈ Ḡ,
as for the SBB model. Here, the subscript has been removed from fs,t(x) or
fτ (x) to implicitly show that this f(x) is no longer dependent on time. With
this constraint, since one can get from (3.15)

B(t) ≤ sup
0≤s≤t

{A(s, t) − ρ · (t − s) − (C − ρ) · (t − s)},

the analysis becomes to find a bound on the CCDF of the right hand side of
the inequality above. This is achieved using an analysis similar to that above,

P

{
sup

0≤s≤t
{A(s, t) − ρ · (t − s) − (C − ρ) · (t − s)

}
> x}

≤
t∑

s=0

P{[A(s, t) − ρ · (t − s)] > x + (C − ρ) · (t − s)}

≤
t∑

τ=0

f(x + (C − ρ) · τ) (3.22)

≤ f(x) +
1

C − ρ

∫ ∞

x

f(y)dy,

where step (3.22) implies a requirement similar to that for the constraint
discussed above for (3.21).

For (σ(θ), ρ(θ))-constrained traffic, its bounding functions under the t.a.c.
stochastic arrival curve characterization can be obtained from (3.9). In-
terestingly, the bounding function shown as the right-hand side of (3.9)
satisfies the first constraint, while the simplified bounding function from (3.9)
in Theorem 3.4 satisfies the second constraint. Since the latter bounding
function is derived from and looser than (3.9), the bound on the CCDF of
backlog obtained based on the first constraint is better.
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3.3 v.b.c. Stochastic Arrival Curve

The virtual-backlog-centric (v.b.c.) stochastic arrival curve model explores the
virtual backlog property of the deterministic arrival curve, which is that the
queue length of a virtual single-server queue (SSQ) fed with the same flow
with a deterministic arrival curve is upper-bounded.

Specifically, for a flow having an arrival curve, we can construct a virtual
single-server queue system fed with the flow that has infinite buffer space,
and the buffer is initially empty. Then, suppose the virtual SSQ provides a
deterministic service curve α to the flow or A∗(t) = A ⊗ α(0, t) for all t ≥ 0.
We now have that the unfinished work or backlog in the SSQ system at time t
is B(t) = A(t)−A∗(t) = sup0≤s≤t{A(s, t)−α(t−s)}. If the flow is constrained
by arrival curve α(t)+x for all t ≥ 0, it is clear that the backlog at the virtual
SSQ is also upper-bounded by x. This is indeed Part (ii) of Lemma 2.4.

Based on the virtual backlog property, we define a virtual-backlog-centric
(v.b.c.) stochastic arrival curve as follows.

Definition 3.11 (v.b.c. Stochastic Arrival Curve). A flow is said to have
a virtual-backlog-centric (v.b.c.) stochastic arrival curve α ∈ F with bounding
function f ∈ F̄ , denoted by A(t) ∼vb 〈f, α〉, if for all t ≥ 0 and all x ≥ 0 there
holds

P

{
sup

0≤s≤t
{A(s, t) − α(t − s)} > x

}
≤ f(x). (3.23)

As discussed in Section 3.2.1, the v.b.c. stochastic arrival curve model im-
plies the first constraint introduced there, with which the difficulty discussed
in Section 3.2.1 for the t.a.c. stochastic arrival curve is addressed.

We now present a principle of the v.b.c stochastic arrival curve similar to
that for the deterministic arrival curve model.

Theorem 3.12. Let X be some non-negative random variable.

(i) If Â(t; ρ) ≤st X for all t ≥ 0, then A(s, t)−α(t−s) ≤st X for all 0 ≤ s ≤ t.
(ii)If A(s, t) − α(t − s) ≤st X for all 0 ≤ s ≤ t and particularly {A(0, t) −

α(t), . . . , A(t−1, t)−α(1)} ≤st {X, . . . , X}, then sup0≤s≤t{A(s, t)−α(t−
s) ≤st X for all t ≥ 0.

Proof. The first part holds trivially since it is always true that A(s, t)− ρ(t−
s) ≤ sups≤t{A(s, t) − ρ(t − s)} = Â(t; ρ).

For the second part, the proof is based on a known result for stochastic
ordering (see, e.g., Theorem 2.2.3 in [130] or Theorem 4.3.3 in [108]), which
is introduced as Lemma 1.8 in this book.

Suppose that for random variables {X(1), . . . , X(t)} and {Y (1), . . . , Y (t)},
there holds {X(1), . . . , X(t)} ≤st {Y (1), . . . , Y (t)}. Then, for the mapping
Z(t) = Φ(X1, . . . , Xt), if it is non-decreasing in {x1, . . . , xt}, one has Z ′(t) ≤st

Z ′′(t), where Z ′(t) = Φ(X(1), . . . , X(t)) and Z ′′ = Φ(Y (1), . . . , Y (t)).
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For the proof of the second part, it is known that sup0≤s≤t{A(s, t)−α(t−
s)} = max(A(0, t)−α(t), . . . , A(t− 1, t)−α(1))+. Let the mapping be Z(t) =
Φ(X1, . . . , Xt) = max(Xt, . . . , X1)+ which is clearly non-decreasing. With the
given condition, we obtain sup0≤s≤t{A(s, t)−α(t−s)} ≤st max(X, . . . , X)+ =
X and the second part is proved. ��

In Theorem 3.12, by letting f(x) = P{X > x}, the first part (i.e., A(s, t)−
α(t − s) ≤st X) implies the definition of a t.a.c. stochastic arrival curve, and
the second part (i.e., sups≤t{A(s, t) − α(t − s)} ≤st X) implies the definition
of a v.b.c. stochastic arrival curve.

Comparing Lemma 2.4 with Theorem 3.12, we can see that the former is
more general than the latter in the sense that less restriction or assumption
is needed for establishing the principle of the arrival curve. In addition, while
Lemma 2.4 shows that the traffic amount property is equivalent to its virtual
backlog property, the duality of the t.a.c. stochastic arrival curve and v.b.c.
stochastic arrival curve holds only in the context of stochastic ordering and
with some additional requirements on A(t).

The requirements for the second part of Theorem 3.12 to hold seem to
be very restrictive. Because of this, Theorem 3.13 establishes a more general
relationship between the t.a.c. stochastic arrival curve and v.b.c. stochastic
arrival curve. It is worth highlighting that the second part of Theorem 3.13
does not hold in general if the requirement on the bounding function is relaxed
to f ∈ F̄ .

Theorem 3.13. (i) If a flow has a v.b.c. stochastic arrival curve α ∈ F with
bounding function f ∈ F̄ , then the flow has a t.a.c. stochastic arrival curve
α ∈ F with bounding function f ∈ F̄ .

(ii)Conversely, if a flow has a t.a.c. stochastic arrival curve α ∈ F with
bounding function f ∈ Ḡ, it also has a v.b.c. stochastic arrival curve αθ ∈
F with bounding function fθ ∈ Ḡ, where

αθ(t) = α(t) + θ · t, (3.24)

fθ(x) =
[
f (x) +

1
θ

∫ ∞

x

f(y)dy

]
1

, (3.25)

for any θ > 0.

Proof. The first part follows easily from the fact that for any 0 ≤ s ≤ t,
A(s, t) − α(t − s) ≤ sup0≤s≤t{A(s, t) − α(t − s)}.

For the second part, there holds

sup
0≤s≤t

{A(s, t) − αθ(t − s)} ≤st sup
0≤s≤t

{A(s, t) − αθ(t − s)}+.

Since, for any x ≥ 0, P{[A(s, t)−α(t− s)− θ(t− s)]+ > x} = P{A(s, t)−
α(t − s) − θ · (t − s) > x} ≤ f(x + θ · (t − s)), we then have
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P

{
sup

0≤s≤t
{A(s, t) − αθ(t − s)} > x

}

≤
t∑

s=0

P
{
[A(s, t) − αθ(t − s)]+ > x

}

≤
t∑

s=0

f(x + θ · (t − s)) =
t∑

τ=0

f(x + θ · τ)

≤
∞∑

τ=0

f(x + θ · τ) = f (x) +
∞∑

τ=1

f(x + θ · τ)

≤ f (x) +
1
θ

∫ ∞

x

f(y)dy.

The second part follows from the inequality above and the fact that the prob-
ability is always not greater than one. ��
Example 3.14. It can be verified that a flow has a (deterministic) arrival curve
α, if and only if it has a v.b.c. stochastic arrival curve A ∼vb 〈0, α〉.

With Theorem 3.13, it is easy to verify that many types of traffic discussed
in the previous subsection also have v.b.c. stochastic arrival curves, which
include EBB and SBB.

In addition, based on the following Lemma 3.15, many other types of traffic
can also be shown to have v.b.c stochastic arrival curves.

Lemma 3.15. For a flow, if the arrivals a(t) ≡ A(t − 1, t), t = 1, 2, . . . , are
independent and identically distributed (i.i.d.), then there holds

W (t) ≤st W (t + 1) ≤st W (∞), (3.26)

where W (t) = sup0≤s≤t{A(s, t) − r · (t − s)}and W (∞) denotes the steady-
state of W (t). In addition, if W (∞) exists, the corresponding flow has a m.b.c
stochastic arrival curve α(t) = r · t with bounding function P{W (∞) > x}, or
A ∼vb (r · t, P{W (∞) > x}).
Proof. For any t(≥ 0), consider the mapping function of random variables
X1, . . . , Xt

Φ(X1, . . . , Xt) = sup
0≤s≤t

{
t∑

u=s+1

Xu − r · (t − s)

}
, (3.27)

which is clearly wide-sense increasing.
Letting X1 = a(1), . . . , Xt = a(t) and X1 = a(2), . . . , Xt = a(t +

1) in the mapping function provides two mappings Φ(a(1), . . . , a(t)) and
Φ(a(2), . . . , a(t + 1)), respectively. It is easily verified that Φ(a(1), . . . , a(t)) =
W (t) and Φ(a(2), . . . , a(t + 1)) = sup0≤s≤t{A(s + 1, t + 1) − r(t − s)}.
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Since a(t), t = 1, 2, . . . , are i.i.d., then from Lemma 1.8 it can be concluded
that,

Φ(a(1), . . . , a(t)) =st Φ(a(2), . . . , a(t + 1))

and hence

W (t) = st sup
0≤s≤t

{A(s + 1, t + 1) − r(t − s)}

= sup
0≤u−1≤t

{A(u, t + 1) − r(t + 1 − u)}

= sup
1≤u≤t+1

{A(u, t + 1) − r(t + 1 − u)}

≤ sup
0≤u≤t+1

{A(u, t + 1) − r(t + 1 − u)} = W (t + 1). (3.28)

The conclusion is obtained by iteratively applying (3.28) together with the
definition of a v.b.c. stochastic arrival curve. ��

The following examples show that under the same condition as Lemma 3.15,
many types of traffic can be readily represented using the v.b.c stochastic arrival
curve model.

Example 3.16. We begin with Poisson traffic. Suppose all packets of a flow have
the same size L and they arrive according to a Poisson process with mean arrival
rateλ. Then, based onFry’s state equations forM/D/1 [47], it is straightforward
to get the steady-state queue length distribution, from which we can conclude
that the flow has a v.b.c. stochastic arrival curve A(t) ∼vb 〈fPoisson, r · t〉 for
any r > λL, where, with a = λL/ρ and k = � x

L�,

fPoisson(x) = 1 − (1 − a)
k∑

i=0

[
[a(i − k)]i

i!
e−a(i−k)

]
. (3.29)

Example 3.17. We next consider Gaussian traffic that has a stationary Gaussian
arrival process. Let r̂ ·t and v̂(t) be the mean and variance of the Gaussian arrival
processA(t),respectively.Then,availablesimulationandanalytical results inthe
literature [21] [83] [1] [104] suggest that, for all r > r̂, exp

(
−infs≥0

(x+(r−r̂)s)2

2v̂(s)

)
,

is likely an upper bound on P{sup0≤s≤t{A(s, t) − r · (t − s)} > x}. Hence,
for Gaussian traffic, it (approximately) has a v.b.c. stochastic arrival curve
A(t) ∼vb 〈fGaussian, r · t〉 with

fGaussian(x) = exp
(
− (x + (r − r̂)s)2

2v̂∗

)
, (3.30)

where v̂∗ ≡ v̂(s∗) and s∗ is chosen such that (x+(r−r̂)s)2

2v̂(s) reaches its minimum
at s∗.
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Example 3.18. In Section 3.1, the (σ(θ), ρ(θ)) model called θ-MER (minimum
envelope rate with respect to θ) was introduced. The literature has proved
that many types of traffic can be represented using this (σ(θ), ρ(θ)) model
[15] [18], which include exponential on-off, Markov modulated process (MMP),
and effective bandwidth.

In Example 3.3, the t.a.c. stochastic arrival curve representation of the
(σ(θ), ρ(θ)) model was presented. Then, using the second part of Theorem
3.13, its v.b.c. stochastic arrival curve representation can also be obtained
easily. Alternatively, assume a(t), t ≥ 0, are i.i.d. as normally implied by
the (σ(θ), ρ(θ)) model, and the corresponding A(t) is (σ(θ), ρ(θ)) upper con-
strained. Then, it can be verified by applying fτ (x) = e−θxeθ[ρ(θ)τ−r·τ+σ(θ)]

from (3.9) to (3.21) that

P

{
sup

0≤s≤t
{A(s, t) − r(t − s)} > x

}
≤ eθσ(θ)

1 − eθ(ρ(θ)−r)
e−θx (3.31)

for any r > ρ(θ).
Inequality (3.31) implies that the traffic has v.b.c. stochastic service curve

A(t) ∼vb 〈fMER, rt〉 with all r > ρ(θ) and

fMER(x) = β(θ)e−θx, (3.32)

where
β(θ) = eθσ(θ)(1 − eθ(ρ(θ)−r))−1.

An immediate implication of this is that exponential on-off, Markov mod-
ulated process (MMP) and effective bandwidth types of traffic can be readily
represented using the v.b.c. stochastic arrival curve, and their corresponding
bounding functions can be found [15] [18].

Example 3.19. It is worth highlighting that the traffic models discussed in the
examples above have bounding functions with exponential forms and/or be-
longing to the function set Ḡ for which any f ∈ Ḡ implies its n-fold integration
f (n) also belongs to Ḡ. However, some traffic models may not have bounding
functions in Ḡ. One example is the α−stable traffic model [78][79].

The α−stable traffic model characterizes the self-similar behavior of traffic
[78] [79]. The model is defined by the four parameters (α,H, c1, c2). In [78],
it is shown that the queue length of a constant-rate server fed with α-stable

traffic satisfies P{W (t; r) > x} ≤ Cα

(
r−m

c1

)−α

, where r denotes the rate
of the server, and Cα and m are parameters determined from (α,H, c1, c2).
Clearly, such α-stable traffic can also be modeled using a v.b.c. stochastic
arrival curve with A(t) ∼vb 〈fAlpha, rt〉, where

fAlpha(x) = Cα

(
r − m

c1

)−α

. (3.33)
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Example 3.20. A probabilistic burstiness curve (PBC) uses a stationary ran-
dom process to model real-time multimedia traffic [23]. Particularly, it uses
the steady-state queue distribution of a constant rate server fed with a flow
to represent the traffic of the flow: P{q ≥ x|r}, where r is the service rate of
the server and the random variable q denotes the steady-state queue length.
Comparing PBC with the definition of stochastic arrival curve, it follows
from Lemma 3.15 that PBC is a special case of the latter. In other words,
if a flow has a PBC P{q ≥ x|r}, it also has v.b.c stochastic arrival curve
A(t) ∼vb 〈fPBC , rt〉 where

fPBC(x) = P{q ≥ x|r}. (3.34)

3.4 m.b.c. Stochastic Arrival Curve

The maximum (virtual)-backlog-centric (m.b.c.) stochastic arrival curve model
explores the maximum virtual backlog property of the deterministic arrival
curve, which is that the maximum queue length of a virtual single-server
queue (SSQ) fed with the same flow with a deterministic arrival curve is
upper-bounded.

Similar to the discussion for the v.b.c. stochastic arrival curve, for a flow
having an arrival curve, we can construct a virtual SSQ system fed with the
flow that has infinite buffer space, and the buffer is initially empty. Then,
suppose the virtual SSQ provides a deterministic service curve α to the flow
or A∗(t) = A ⊗ α(t) for all t ≥ 0. As discussed for Lemma 2.4, we have
the maximum backlog in the SSQ system at time t as sup0≤s≤t W (s) =
sup0≤s≤t sup0≤u≤s{A(u, s) − α(s − u)}. If the flow is constrained by arrival
curve α(t)+x for all t ≥ 0, it is clear that the maximum backlog at the virtual
SSQ is also upper-bounded by x.

Based on the maximum virtual backlog property, we define an m.b.c. sto-
chastic arrival curve as follows.

Definition 3.21 (m.b.c. Stochastic Arrival Curve). A flow is said to
have a maximum (virtual)-backlog-centric (m.b.c.) stochastic arrival curve
α ∈ F with bounding function ft ∈ F̄ , denoted by A(t) ∼mb 〈ft, α〉, if for all
t ≥ 0 and all x ≥ 0 there holds

P

{
sup

0≤s≤t
sup

0≤u≤s
{A(u, s) − α(s − u)} > x

}
≤ ft(x). (3.35)

It is worth highlighting that in Definition 3.21 the bounding function ft

has a subscript t that explicitly states that the function may be dependent on
time t.

Example 3.22. It can be verified that a flow has a (deterministic) arrival curve
α, if and only if it has an m.b.c. stochastic arrival curve A ∼mb 〈0, α〉.
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Based on the definitions of t.a.c. stochastic arrival curve, v.b.c. stochastic
arrival curve, and m.b.c. stochastic arrival curve, since A(s, t) − α(t − s) ≤
sup0≤s≤t[A(s, t)−α(t−s)] ≤ sup0≤s≤t sup0≤u≤s[A(u, s)−α(s−u)], the follow-
ing relationship between them is immediately obtained, whose deterministic
counterpart is Lemma 2.4.

Lemma 3.23. A ∼mb 〈f, α〉 −→ A ∼vb 〈f, α〉 −→ A ∼ta 〈f, α〉, where X −→
Y means X implies Y .

It is worth highlighting that while for the (deterministic) arrival curve
model, both Lemma 2.4 (i) → (ii) → (iii) and Lemma 2.4 (i) ← (ii) ← (iii)
hold, for the stochastic arrival curve, we generally do not have A ∼mb 〈f, α〉
← A ∼vb 〈f, α〉 ← A ∼ta 〈f, α〉.

Let us denote by M(t) the maximum up-to-date backlog at time t in an
initially empty system with constant service rate r and arrival process A(t),
or formally

M(t) ≡ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − r(s − u)]. (3.36)

It can be easily verified that, for M(t), the equation

M(t + 1) = max[M(t),W (t + 1)] (3.37)

holds, where

W (t + 1) = sup
0≤s≤t+1

[A(s, t + 1) − r(t + 1 − s)].

With (3.37), it is clear that

M(t) ≤ M(t + 1) ≤ · · · ≤ M(∞). (3.38)

Equations (3.36) and (3.38) present a technique for possibly finding the
m.b.c. stochastic arrival curve characterization of an arrival process. They
imply that if for some r the complementary probability distribution function
(CPDF) P{M(t) > x} can be found, then the process has A ∼mb 〈P{M(t) >
x}, rt〉. In addition, if P{M(∞) > x} exists, then it can also be used as
the bounding function and we can conclude that A ∼mb 〈P{M(∞) > x}, rt〉.
However, (3.38) shows that M(t) increases over t, which implies that in general
M(∞) may not be bounded above, and M(t) could not have a limit distribu-
tion. Indeed, there are literature results showing how maximum queue length
and maximum weighting time, which are similar to the m.b.c. stochastic ar-
rival curve, may grow with time (e.g., see [3][123][119]).

In the following result, we try to relate the m.b.c. stochastic arrival curve
with the v.b.c. stochastic arrival curve, which can be used to further relate
the m.b.c. stochastic arrival curve with the t.a.c. stochastic arrival curve.

Theorem 3.24. (i) If a flow A has an m.b.c. stochastic arrival curve α with
bounding function f(x) or A ∼mb 〈f, α〉, then it has a v.b.c. stochastic
arrival curve α with the same bounding function f(x).
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(ii)If a flow A has a v.b.c. stochastic arrival curve α with bounding function
f or A ∼vb 〈f, α〉, then it has an m.b.c. stochastic arrival curve α with
bounding function fθ

t , where

fθ
t (x) =

[
1
θ

∫ t

x−θt

f (y) dy

]
1

(3.39)

for any θ > 0.

Proof. The first part follows easily from the fact that sup0≤s≤t[A(s, t)−α(t−
s)] ≤ sup0≤s≤t sup0≤u≤s[A(u, s) − α(s − u)].

For the second part, we have

sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] ≤ sup
1≤s≤t

{W (s) − θ · s}+ + θ · t,

where W (s) = sup0≤u≤s[A(u, s) − α(s − u)], for which it is known that

P

{
sup

1≤s≤t
{W (s) − θ · s}+ + θ · t > x

}
≤

t∑
s=1

P {[W (s) − θ · s]+ + θ · t > x}.

We then conclude that

P

{
sup

0≤s≤t
sup

0≤u≤s
[A(u, s) − αθ(t − s)] > x

}

≤
t∑

s=1

P {[W (s) − θ · s]+ + θ · t > x}

≤
t∑

s=1

f(x − θ · t + θ · s) (3.40)

≤ 1
θ

∫ t

x−θ·t
f(y)dy.

��
With the relationship established in Theorem 3.24, the m.b.c. stochastic

arrival curve of the various types of traffic discussed in the previous section for
the v.b.c. stochastic arrival curve can be obtained readily. It is interesting to
notice that when t becomes large, the right-hand side of (3.39) tends toward
1. This is consistent with (3.38) and the literature results [3][123][119], which
is that the maximum virtual backlog M(t) is increasing on t.

Recent literature suggests an idea that may be used to resolve the time-
increasing problem, which is to assume the existence of a timescale T enforced
on the traffic and service [96]. For example, one could assume the maximum
virtual backlog M(t) is limited by

M(t) ≤ sup
t−T≤s≤t

sup
0≤u≤s

[A(u, s) − r(s − u)]. (3.41)
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Or, one might assume there exists a time scale T such that the following would
be used to define the m.b.c. stochastic arrival curve:

P

{
sup

t−T≤s≤t
sup

0≤u≤s
[A(u, s) − r(s − u)] > x

}
≤ f(x). (3.42)

If either (3.41) or (3.42) had been used, the bounding function in (3.39) would
have become (T + 1) · f(x).

In this book, however we shall not focus on the timescale approach. In-
stead, we consider a new model that is a variation of the m.b.c. stochastic
arrival curve and is introduced in the following subsection, where the time-
increasing problem can be avoided.

3.4.1 θ-m.b.c. Stochastic Arrival Curve

Taking into consideration the time-increasing nature of M(t), we modify
(3.35). In the following, we introduce a variation of the m.b.c. stochastic arrival
curve that tries to make the bounding function possibly independent of time
t by explicitly considering the ever-increasing nature of M(t) in formulating
the definition.

Definition 3.25 (θ-m.b.c. Stochastic Arrival Curve). A flow is said to
have a θ-m.b.c. stochastic arrival curve α ∈ F with respect to θ, with bounding
function fθ(x) ∈ F̄ , denoted by A(t) ∼θ−mb 〈fθ, α〉, if for all t ≥ 0 and all
x ≥ 0, there holds

P

{
sup

0≤s≤t

[
sup

0≤u≤s
(A(u, s) − α(s − u)) − θ · (t − s)

]
> x

}
≤ fθ(x), (3.43)

where θ is some non-negative real value.

Definition 3.21 may be considered as a special case of Definition 3.25 by
setting θ = 0 in (3.43). Additionally, the following result for the two models
can be easily verified.

Theorem 3.26. If a flow has an m.b.c. stochastic arrival curve α with bound-
ing function f , it provides a θ-stochastic arrival curve α with bounding func-
tion fθ = f for any θ ≥ 0. Conversely, if the flow has a θ-m.b.c. stochastic
arrival curve α ∈ F with respect to θ, with bounding function fθ(x), it has an
m.b.c. stochastic arrival curve α with bounding function ft = fθ(x − θ · t).

One appealing aspect of the θ-m.b.c. stochastic arrival curve model is that
the bounding function is not necessarily dependent on time t, which is often
more desirable than a time-dependent bounding function in the analysis.

The following theorem establishes the relationship between the θ-m.b.c.
stochastic arrival curve and the v.b.c. stochastic arrival curve.
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Theorem 3.27. (i) If a flow has a θ-m.b.c. stochastic arrival curve α ∈ F
with bounding function fθ(x) ∈ F̄ , it has a v.b.c. stochastic arrival curve
α with bounding function fθ(x).

(ii)Conversely, if a flow has a v.b.c. stochastic arrival curve α(t) with bound-
ing function f(x) ∈ Ḡ, it has a θ-m.b.c. stochastic arrival curve αθ(t) with
bounding function fθ(x), where

fθ(x) =
[
f(x) +

1
θ

∫ ∞

x

f(y)dy

]
1

for any θ > 0.

Proof. The first part follows immediately by setting s = t on the left hand
side of (3.43).

For the second part, it is known that

sup
0≤s≤t

[
sup

0≤u≤s
(A(u, s) − α(s − u)) − θ · (t − s)

]

≤ sup
0≤s≤t

{W (s) − θ · (t − s)}+
, (3.44)

where W (s) = sup0≤u≤s[A(u, s) − α(s − u)].
Since P{W (t) > x} ≤ f(x), there holds for any x ≥ 0

P

{
sup

0≤s≤t
[W (s) − θ · (t − s)]+ > x

}

≤
t∑

s=0

P {W (s) − θ · (t − s) > x}

≤
t∑

s=0

f(x + θ · (t − s))

≤
∞∑

u=0

f(x + θ · u) ≤ f (x) +
1
θ

∫ ∞

x

f(y)dy, (3.45)

and with this and (3.44), the second part is easily verified. ��
With Theorem 3.27, the θ-m.b.c. stochastic arrival curve model can be fur-

ther related to the t.a.c. stochastic arrival curve model through Theorem 3.13.

3.5 Stochastic Envelope Process

In the previous sections, the (σ(θ), ρ(θ)) traffic characterization and several
variations of stochastic arrival curve have been introduced. In this section, we
discuss stochastic envelope processes.

The stochastic envelope process of a flow is defined as follows [15].
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Definition 3.28 (Stochastic Envelope Process). A flow is said to have
a stochastic envelope process Â if its arrival process A(t) satisfies, for all
s, t ≥ 0,

A(s, s + t) ≤ Â (t) . (3.46)

The difference in definitions between envelope process defined in Definition
2.7 and the stochastic envelope process defined above is subtle. While Â is
non-random in Definition 2.7, it can be stochastic in Definition 3.28. Hence,
Definition 2.7 is a special case of Definition 3.28. For ease of exposition,
throughout the rest of the book, we shall use envelope process for both.

As discussed in Chapter 2, a flow’s envelope process is not unique. We
define the minimum envelope process (MEP) of the flow as

ÂMEP (t) = sup
s≥0

A(s, s + t). (3.47)

It is clear that the MEP is wide-sense increasing, belonging to F , and the
MEP is sub-additive, or

ÂMEP (t1 + t2) ≤ ÂMEP (t1) + ÂMEP (t2). (3.48)

The moment generating function (MGF) of process A(s, s + t) has the
following relation with the MGF of its envelope process Â(t): for any s, t ≥ 0,

MA(s, s + t) ≤ MÂ(t), (3.49)

where MA(s, s + t) = E
[
eθA(s,s+t)

]
and MÂ(t) = E

[
eθÂ(t)

]
.

Let a(t) = A(t)−A(t−1), t = 1, 2, . . . . If a(t) is a sequence of independent
random variables, we then have for any s, t1, t2 ≥ 0,

A(s, s + t1 + t2) = A(s, s + t1) + A(s + t1, s + t1 + t2), (3.50)

where A(s, s + t1) and A(s + t1, s + t1 + t2) are independent. Consequently,
we have

MA(s, s + t1 + t2) = MA(s, s + t1)MA(s + t1, s + t1 + t2)
≤ MÂ(t1)MÂ(t2). (3.51)

Since A(t) has stationary increments, we further have, for any t1, t2 ≥ 0,

MA(t1 + t2) ≤ MÂ(t1)MÂ(t2). (3.52)

It can be easily verified that a relation similar to (3.52) holds for the minimum
envelope process when a(t) is a sequence of independent random variables,

MÂMEP (t1 + t2) ≤ MÂMEP (t1)MÂMEP (t2). (3.53)

Theorem 3.29. Consider a flow A(t). Suppose its minimum envelope process
is (σ(θ), ρ(θ))-constrained.
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(i) The flow has a v.b.c. stochastic arrival curve α(t) = r · t with bounding
function f(x) =

[
eθσ(θ)

1−eθ(ρ(θ)−r) e
−θx
]
1

for any r > ρ(θ) and x ≥ 0.

(ii)The flow has an m.b.c. stochastic arrival curve α(t) = r · t with bounding
function f(x) =

[
eθσ(θ)

1−eθ(ρ(θ)−r) e
−θx
]
1

for any r > ρ(θ) and x ≥ 0.

Proof. For the first part, the definition of a minimum envelop process, (3.47),
implies that

sup
0≤s≤t

(A(s, t) − α(t − s))

≤ sup
0≤s≤t

(ÂMEP (t − s) − r · (t − s))

and hence

P

{
sup

0≤s≤t
(A(s, t) − r · (t − s)) > x

}

≤
t∑

s=0

P{ÂMEP (t − s) − r · (t − s) > x}

≤
t∑

u=0

e−θxE
[
eθ(ÂMEP (u)−r·(u))

]

≤
t∑

u=0

e−θxeθ[σ(θ)+(ρ(θ)−r)·u]

≤ e−θx eθσ(θ)

1 − eθ(ρ(θ)−r)
. (3.54)

For the second part, we get

sup
0≤s≤t

[
sup

0≤u≤s
(A(u, s) − r · (s − u))

]

≤ sup
0≤s≤t

[
sup

0≤u≤s
(ÂMEP (s − u) − α(s − u))

]

≤ sup
0≤s≤t

[
sup

0≤v≤s
(ÂMEP (v) − α(v))

]

≤ sup
0≤v≤t

(ÂMEP (v) − α(v)),

and with this and following the same approach as in (3.54), we obtain

P

{
sup

0≤s≤t

[
sup

0≤u≤s
(A(u, s) − α(s − u))

]
> x

}
≤ e−θx eθσ(θ)

1 − eθ(ρ(θ)−r)
.

��
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At the beginning of this chapter, the minimum envelope process with re-
spect to θ of a flow A(t), denoted by ÅMEP (θ, t), is defined by (3.4) or

ÅMEP (θ, t) =
1
θ

sup
s>0

log E[eθA(s,s+t)].

Similar to inequality (3.53), it is easy to verify that the minimum envelop
process with respect to θ is sub-additive, or

ÅMEP (θ, t1 + t2) ≤ ÅMEP (θ, t1) + ÅMEP (t2). (3.55)

Because of the arbitrariness of t1 and t2 in (3.52), (3.53), and (3.55), the
following result is obtained.

Theorem 3.30. Consider a sequence of independent and identically distrib-
uted random variables, a(t), t = 1, 2, . . . .

(i) If Â(t) is an envelope process of the cumulative arrival process A(t), there
holds

MA(t) ≤ inf
0≤s≤t

[
MÂ(s)MÂ(t − s)

]
(ii) For the minimum envelope process ÂMEP (t), there holds

MÂMEP (t) ≤ inf
0≤s≤t

[
MÂMEP (s)MÂMEP (t − s)

]
.

(iii) For the minimum envelope process with respect to θ, ÂMEP (θ, t), there
holds

ÅMEP (θ, t) ≤ ÅMEP (θ, t) ⊗ ÅMEP (θ, t),

where

ÅMEP (θ, t) ⊗ ÅMEP (θ, t) ≡ inf
0≤s≤t

[
ÅMEP (θ, s) + ÅMEP (θ, t − s)

]
.

3.6 Summary and Bibliographic Comments

This chapter introduces several traffic models for stochastic network calcu-
lus, which include the (σ (θ) , ρ (θ)) model, the traffic-amount-centric (t.a.c.)
stochastic arrival curve model, the virtual-backlog-centric (v.b.c.) stochastic
arrival curve model, and the maximum (virtual)-backlog-centric (m.b.c.) sto-
chastic arrival curve model and its variation the θ-m.b.c. stochastic arrival
curve. Their relationships have also been discussed. It is also shown that many
well-known traffic models can be characterized by these traffic models for sto-
chastic network calculus.

The (σ (θ) , ρ (θ)) model was proposed by Chang in [15] to extend the
deterministic (σ, ρ) model, which was initially introduced by Cruz [28][29], to
the stochastic case. In [18], Chang summarized how the (σ (θ) , ρ (θ)) model
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can be used to represent various well-known traffic models, such as exponential
on-off, Markov modulated processes (MMP), and effective bandwidth. The
effective bandwidth model was introduced in [36][81][80].

The exponentially bounded burstiness (EBB) model was another effort to
extend the deterministic (σ, ρ) model to the stochastic case, which was made
by Yaron and Sidi [138]. Starobinski and Sidi [128] extended EBB to the
stochastically bounded burstiness (SBB) model by replacing the exponential
function with a generalized function. Also in [128], the function set Ḡ was
initially introduced. The t.a.c. stochastic arrival curve model can be considered
as a generalization of SBB by considering a more general form of the arrival
curve function in the definition.

The generalized stochastically bounded burstiness (gSBB) model is the
predecessor and a special case of the v.b.c. stochastic arrival curve model,
which was initially defined by Yin, Jiang et al. [140]. Jiang et al. further
studied the two models in [74][77]. The m.b.c. stochastic arrival curve model
was initially introduced by Jiang [69].

The moment generating function (MGF)-based traffic model proposed by
Fidler [44] can be considered as a special case of the general stochastic envelope
process representation of traffic. A detailed definition and properties of the
MGF-based model can be found in [44].

A recent attempt defines a traffic model directly based on the mean char-
acterization of the arrival process [58]. While this attempt is interesting, it is
worth highlighting that all the traffic models introduced in this chapter can
be easily extended to study such a mean characterization.

The conversions and relationships between t.a.c., v.b.c, θ-m.b.c, and m.b.c.
stochastic arrival curve models are shown in Figures 3.1 and 3.2. The required
conversions are indicated by the label of each arc. For those arcs without any
labels, those bounding functions can be used directly without any conversion.
It has also been shown in this chapter that various stochastic traffic models in
the literature can be mapped to these stochastic models, which include effec-
tive envelope [95], exponential on-off, Markov modulated processes (MMP),
(σ (θ) , ρ (θ)), and effective bandwidth [36][81][80].
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Fig. 3.1. Conversions between stochastic arrival curve models

Fig. 3.2. Relationships between stochastic arrival curve models
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Problems

3.1. For (σ(θ), ρ(θ))-constrained traffic, the right-hand side of (3.9) provides
a bounding functions for its t.a.c. stochastic arrival curve characterization,
which satisfies the first constraint discussed in Section 3.2.1. In addition, an-
other bounding function that is derived from (3.9) is provided in Theorem
3.4 and satisfies the second constraint discussed in Section 3.2.1. Derive and
compare the bounds on the CCDF of backlog for the system considered in
Section 3.2.1 using the methods based on the two constraints in Section 3.2.1.

3.2. Prove the statement in Example 3.14.

3.3. Prove (3.48).

3.4. Prove Lemma 3.23.

3.5. A flow is (σ (θ) , ρ (θ)) upper constrained. Find an m.b.c. stochastic arrival
curve for this flow.

3.6. Assume that an aggregated flow consists of two flows A1 and A2. A1

has a t.a.c stochastic arrival curve α1 with bounding function f1 (i.e. A1 ∼ta

〈f1, α1〉), and A2 is a token bucket constrained traffic with A2 ∼ (σ, ρ). Find
a t.a.c. stochastic arrival curve of the aggregate traffic flow.

3.7. Assume that an aggregated flow consists of two flows A1 and A2. They
have t.a.c. stochastic arrival curve αi with bounding function fi; i.e., Ai ∼ta

〈fi, αi〉, i = 1, 2. Find a t.a.c. stochastic arrival curve of the aggregated flow.

3.8. Assume that an aggregated flow consists of two flows A1 and A2.
A1 ∼ta 〈f1, α1〉, A2 ∼vb 〈f2, α2〉. Find a t.a.c. stochastic arrival curve for
the aggregated flow.

3.9. Assume that an aggregated flow consists of three flows A1, A2, and A3.
A1 ∼ta 〈f1, α1〉, A2 ∼vb 〈f2, α2〉, and A3 ∼mb 〈f3, α3〉. Find a t.a.c. stochastic
arrival curve, a v.b.c. stochastic arrival curve, and an m.b.c. stochastic arrival
curve for the aggregated flow.

3.10. Assume that a server offers a deterministic service curve β to an input
flow. Let A(t) be the input process of the flow with A (t) ∼vb 〈f, α〉. Let B (t)
be the backlog at time t. Let d (t) be the virtual delay at time t. Prove that

Pr
{
B (t) > Bx

sup

} ≤ f (x) ,

where Bx
sup = sup

s≥0
{αx (s) − β (s)} and αx (s) = α (s) + x. In addition, prove

that
Pr
{
d (t) > dx

sup

} ≤ f (x) ,
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where dx
sup = h (αx, β) = sups≥0 {inf {τ ≥ 0 : αx (s) ≤ β (s + τ)}} and

αx (s) = α (s) + x. Furthermore, the departure process of the flow from the
server has a v.b.c. stochastic arrival curve

A∗ ∼vb 〈f, α∗〉,

where
α∗(t) = α 
 β(t).

3.11. Assume that a server offers a deterministic service curve β to an input
flow. Let A(t) be the input process of the flow with A (t) ∼mb 〈f, α〉. Let B (t)
be the backlog at time t. Let d (t) be the virtual delay at time t. Prove that

Pr
{
B (t) > Bx

sup

} ≤ f (x) ,

where Bx
sup = sup

s≥0
{αx (s) − β (s)} and αx (s) = α (s) + x. In addition,

Pr
{
d (t) > dx

sup

} ≤ f (x) ,

wheredx
sup = h (αx, β)= sups≥0 {inf {τ ≥ 0 : αx (s) ≤ β (s + τ)}}andαx (s) =

α (s) + x. Moreover, the departure process of the flow from the server has an
m.b.c. stochastic arrival curve

A∗ ∼mb 〈f, α∗〉,

where
α∗(t) = α 
 β(t).

3.12. Consider a flow that has a t.a.c stochastic arrival curve α ∈ F with
bounding function f ∈ Ḡ. Find its θ-m.b.c. stochastic arrival curve character-
ization.

3.13. Suppose we are interested in characterizing traffic based on its mean
and specifically using the form [58]

E[A(s, s + t) − αε(t)] ≤ ε(t).

Find the relationship between this traffic characterization and the t.a.c. (re-
spectively v.b.c., m.b.c. and θ-m.b.c.) stochastic arrival curve characterization.

3.14. Suppose a flow is (σ(θ), ρ(θ)) upper constrained. Find its characteriza-
tion using the traffic model defined in the proceeding problem.
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Server Models for Stochastic Network Calculus

In deterministic network calculus, a (deterministic) service curve is used to
model the service provided by a system. However, there are many types of
systems that may only provide stochastic service. One example is a wireless
link in wireless networks. Due to channel impairment, the link is prone to
random errors. Consequently, the service provided by the link is stochastic in
nature. Even in wired networks, the service provided by a system may also be
stochastic. For example, under contention-based multi-access control, such as
CSMA/CD in Ethernet, the bandwidth allocated to a host is highly affected
by the load from other hosts within the same network. As a result, the service
provided by the host to its upper-layer applications is stochastic. In this chap-
ter, several server models for stochastic network calculus will be introduced.
In addition, their relationships with each other will also be presented.

4.1 Weak Stochastic Service Curve

In Lemma 2.9, we proved the duality principle of the (deterministic) service
curve, which states that for any x ≥ 0, A ⊗ β(t) − A∗(t) ≤ x for all t ≥ 0 if
and only if sup0≤s≤t[A⊗ β(s)−A∗(s)] ≤ x for all t ≥ 0, where β ∈ F . Based
on the former part, we define its probabilistic counterpart as follows.

Definition 4.1 (Weak Stochastic Service Curve). A system S is said to
provide a weak stochastic service curve β ∈ F with bounding function g ∈ F̄ ,
denoted by S ∼ws 〈g, β〉, if for all t ≥ 0 and all x ≥ 0 there holds

P{A ⊗ β(t) − A∗(t) > x} ≤ g(x). (4.1)

The weak stochastic service curve model can be understood in the following
way. By the definition of a deterministic service curve, the actual output of a
deterministic server A∗(t) is always not less than A⊗β(t). Thus, A⊗β(t) can
be considered as the deterministically guaranteed service by the deterministic
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server without any errors. However, for a stochastic server, such as a wireless
link, that is prone to errors, A⊗ β(t) cannot be deterministically guaranteed.
There is a difference between the ideal service A⊗ β(t) provided to the input
and the actual output A∗(t). A weak stochastic service curve characterizes this
difference x, by introducing a bounding function g (x) for the distribution of
the difference x as shown by (4.1).

Comparing Definition 4.1 with the definition of deterministic service curve
in Chapter 2, it is clear that the weak stochastic service curve model is an
intuitively simple generalization of the deterministic service curve model.

Example 4.2. One can easily verify that if a server has a deterministic service
curve β, it has a weak stochastic service curve S ∼ws 〈0, β〉.

In Chapter 5, we will show that many results can be derived for the single-
node case based on the weak stochastic service curve model. However, without
additional constraints, it is difficult to prove the concatenation property (P.3)
for a weak stochastic service curve.

To address this difficulty, two approaches have been considered. One is to
make an additional constraint on the bounding function g. Specifically, the
constraint, which will often be used in this book, is that the bounding function
be in the function set Ḡ. Another approach is to introduce a stronger definition.
The stochastic service curve model introduced in the following section belongs
to the second approach, utilizing the constraint to derive the relationship
between the weak stochastic service curve model and the stochastic service
curve model, which will also be discussed.

4.2 Stochastic Service Curve

The stochastic service curve model is generalized from the (deterministic)
service curve model based on its duality principle. Particularly, it is known
from Lemma 2.9 that a system with input A(t) and output A∗(t) has a service
curve β(t) if and only if for all t ≥ 0

sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] ≤ x. (4.2)

Inequality (4.2) provides the basis to generalize the (deterministic) service
curve model to the stochastic service curve model defined as follows.

Definition 4.3 (Stochastic Service Curve). A system S is said to provide
a stochastic service curve β ∈ F with bounding function gt ∈ F̄ , denoted by
S ∼sc 〈gt, β〉, if for all t ≥ 0 and all x ≥ 0 there holds

P

{
sup

0≤s≤t
[A ⊗ β(s) − A∗(s)] > x

}
≤ gt(x). (4.3)
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It will be shown in Chapter 5 that the stochastic service curve model has
the concatenation property. As in the m.b.c. stochastic arrival curve model, an
explicit subscript t is used in the bounding function in the stochastic service
curve model, highlighting that the bounding function may be dependent on
time t.

The following result shows the relationship between the weak stochastic
service curve model and the stochastic service curve model.

Theorem 4.4. (i) If a server S provides to its input A a stochastic service
curve β(t) with bounding function g(x) or S ∼sc 〈g, β〉, it also provides to the
input A a weak stochastic service curve β(t) with the same bounding function
g(x) or S ∼ws 〈g, β〉.

(ii) If the server provides to the input a weak stochastic service curve
β(t) with bounding function g(x) or S ∼ws 〈g, β〉, it provides to the input a
stochastic service curve β(t) with bounding function gθ

t (x) or S ∼sc 〈gθ
t , β−θ〉,

where

gθ
t (x) =

[
1
θ

∫ t

x−θ·t
g(y)dy

]
1

(4.4)

for any θ > 0.

Proof. The first part follows easily since we always have A ⊗ β(t) − A∗(t) ≤
sup0≤s≤t[A ⊗ β(s) − A∗(s)].

For the second part, there holds for any t ≥ s

A ⊗ β(s) ≤ A ⊗ β(s) − θ · s + θ · t
and hence

P

{
sup

0≤s≤t
[A ⊗ β−θ(s) − A∗(s)] > x

}

≤ P

{
sup

1≤s≤t
[A ⊗ β(s) − A∗(s) − θ · s]+ > x − θ · t

}
,

for which when x−θ · t < 0, the right hand side is equal to 1. In the following,
we assume x − θ · t ≥ 0, under which there holds

P

{
sup

0≤s≤t
[A ⊗ β−θ(s) − A∗(s)] > x

}

≤
t∑

s=1

P {[A ⊗ β(s) − A∗(s) − θ · s] > x − θ · t}

≤
t∑

s=1

f(x − θ · t + θ · s)

≤ 1
θ

∫ t

x−θ·t
f(y)dy.

Combining both cases, the second part is proved. ��
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With the relationship established in Theorem 4.4, if a weak stochastic ser-
vice curve of a server is known, the server is shown to also provide a stochastic
service curve with bounding function shown by (4.4). It is interesting to notice
that when t becomes large, the right-hand side of (4.4) tends toward 1, which
may make the bounding function less useful. Recent literature has suggested
an idea that may be used to resolve this problem that assumes the existence
of a timescale T enforced on the traffic and service [96]. For example, one
might assume that the following could hold for all t:

sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] ≤ sup
t−T≤s≤t

[A ⊗ β(s) − A∗(s)]. (4.5)

Or, one could assume there exists a timescale T such that the following would
be used to define a stochastic service curve:

P

{
sup

t−T≤s≤t
[A ⊗ β(s) − A∗(s)] > x

}
≤ g(x). (4.6)

If either (4.5) or (4.6) had been used, the bounding function (4.4) would have
become (T + 1) · g(x).

In this book, we shall not focus on the timescale approach. Instead, we
consider a new model that is a variation of the stochastic service curve and
is introduced in the following subsection, where the time-increasing problem
can be avoided.

4.2.1 θ-Stochastic Service Curve

In the following, we introduce a variation of the stochastic service curve in
which the bounding function can be independent of time t.

Definition 4.5 (θ-Stochastic Service Curve). A system S is said to pro-
vide a θ-stochastic service curve β ∈ F with respect to θ, with bounding func-
tion gθ ∈ F̄ , denoted by S ∼θ−sc 〈gθ, β〉 if, for all t ≥ 0 and all x ≥ 0, there
holds

P

{
sup

0≤s≤t
[A ⊗ β(s) − A∗(s) − θ · (t − s)] > x

}
≤ gθ(x), (4.7)

where θ is some non-negative real value.

One may view Definition 4.3 as a special case of Definition 4.5 by setting
θ = 0 in (4.7). Additionally, the following result for the two models can be
easily verified.

Theorem 4.6. (i) If a system provides a stochastic service curve β with
bounding function g, it provides a θ–stochastic service curve β with the
same bounding function gθ = g for any θ ≥ 0.

(ii)Conversely, if the system provides a θ-stochastic service curve β with re-
spect to θ, with bounding function gθ, it provides a stochastic service curve
β with bounding function gθ

t = gθ(x − θ · t).
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One appealing aspect of the θ-stochastic service curve model is that its
bounding function is not necessarily dependent on time t, which is often more
desirable than a time-dependent bounding function in the analysis. In con-
trast, the stochastic service curve model may generally have a time-dependent
bounding function.

The relationship between the weak stochastic service curve model and the
θ–stochastic service curve model is as follows.

Theorem 4.7. (i) If a system provides a θ-stochastic service curve β with
respect to θ, with bounding function gθ ∈ F̄ , it provides a weak stochastic
service curve β with the same bounding function gθ.

(ii)Conversely, if the system provides a weak stochastic service curve β with
bounding function g ∈ Ḡ, it provides a θ-stochastic service curve β with
bounding function gθ for any θ > 0, where

gθ(x) =
[
g (x) +

1
θ

∫ ∞

x

g(y)dy

]
1

Proof. The first part follows easily since A ⊗ β(t) − A∗(t) ≤ sup0≤s≤t[A ⊗
β(s) − A∗(s) − θ · (t − s)] by letting s = t on the right-hand side.

For the second part, there holds

sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)]

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)]+ ,

and hence, for any x ≥ 0,

P

{
sup

0≤s≤t
[A ⊗ β(s) − A∗(s) − θ · (t − s)] > x

}

≤
t∑

s=0

P {[A ⊗ β(s) − A∗(s) − θ · (t − s)] > x}

≤
t∑

u=0

g(x + θ · u) ≤ g (x) +
∞∑

u=1

g(x + θ · u)

≤ g (x) +
1
θ

∫ ∞

x

g(y)dy.

��

4.3 Stochastic Strict Service Curve

In deterministic network calculus, several server models can be used to find the
service curve of a (deterministic) server, which include the latency rate (LR)
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server model [129], the guaranteed rate (GR) server model [53], the worst-case
service guarantee server model [91], and the strict server model [32]. In order
to make use of results developed for the weak stochastic service curve and a
stochastic service curve, it is critical to find a such stochastic service curve
characterization of a server. In this section, we introduce a stochastic strict
server to help find the stochastic service curve of a server, which is defined as
follows.

Definition 4.8 (Stochastic Strict Service Curve). A system is said to
be a stochastic strict server providing stochastic strict service curve β(t) with
bounding function g(x) ∈ F̄ if during any period (s, t] the amount of service
S(s, t) provided by the system1 satisfies

P{S(s, t) < β(t − s) − x} ≤ g(x) (4.8)

for any x ≥ 0.

The stochastic strict server model is the generalization of the strict server
model presented in Chapter 2 for deterministic network calculus. The following
result establishes its relationship with the weak stochastic service curve model
and the stochastic service curve model.

Theorem 4.9. Consider a system that is a stochastic strict server providing
stochastic strict service curve β(t) with bounding function g(x) ∈ F̄ .

(i) It provides a weak stochastic service curve β(t) with the same bounding
function g(x).

(ii) If g(x) ∈ Ḡ, it provides a stochastic service curve β−θ(t) = β(t) − θ · t
with bounding function gθ

t (x),

gθ
t (x) =

[
g(x) +

1
θ

∫
x−θ·t

g(y)dy

]
1

.

(iii) If g(x) ∈ Ḡ, it provides a θ–stochastic service curve β(t) with bounding
function gθ(x):

gθ(x) =
[
g (x) +

1
θ

∫ ∞

x

g(y)dy

]
1

.

Proof. For any time t ≥ 0, there are two cases. In case 1, t is not within any
backlogged period. In this case, there is no backlog in the system at t, which
implies that all traffic that arrived up to time t has left the server. Hence,
A∗(t) = A(t) and consequently A ⊗ β(t) − A∗(t) ≤ A(t) + β(0) − A∗(t) ≤ 0.

1 If the period (s, t] is a backlogged period for the input flow, S(s, t) is the actual
amount of service provided by the system to the input flow within (s, t] or, in
other words, A∗(s, t) = S(s, t). Otherwise, S(s, t) denotes the amount of service
that the system is capable of providing in this period.
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In case 2, t is within a backlogged period. Without loss of generality, assume
the backlogged period starts from t0. Then, A∗(t0) = A(t0) and

A ⊗ β(t) − A∗(t)
≤ A(t0) + β(t − t0) − A∗(t)
= β(t − t0) + A∗(t0) − A∗(t) = β(t − t0) − S(t0, t).

Combining both cases and with (4.8), part (i) is proved. With Part (i) proved,
Part (ii) follows from Theorem 4.4 (ii) and Part (iii) from Theorem 4.7 (ii).
��
Example 4.10. Consider an exponential server where the input has fixed unit
packet size and the service time of each packet has a negative exponential
distribution with mean μ−1. Then, during any backlogged period (s, t], it is
known that the packets departing from the server have negative-exponentially
distributed inter-arrival times with mean μ−1. This is equivalent to saying that
the departure has a Poisson process with mean μ−1. In other words, during
(s, t], the probability of n packets departing from the server is given by

P{S(s, t) = n} =
μn(t − s)n

n!
e−μ(t−s),

with which we further get, for β(t) = μ · t,

P{S(s, t) < β(t − s) − x} ≤
�μ(t−s)−x	∑

m=0

μm(t − s)m

m!
e−μ(t−s), (4.9)

where �x� denotes the minimum integer larger than or equal to x. So, the
server is a stochastic strict server with stochastic strict service curve β(t) = μ·t
and bounding function given by (4.9). Then, based on Theorem 4.9, the weak
stochastic service curve, the stochastic service curve, and the θ-stochastic
service curve characterizations of the server are easily obtained.

4.3.1 Stochastic Strict Server due to Impairment

In this subsection, we introduce an important type of stochastic strict server.
In such a stochastic server, the stochastic nature of service is due to some
random impairment process.

For example, a wireless channel is a stochastic server, which typically can
be considered to operate in two states. If the channel is in “good” condition,
data can be sent and received correctly; if the channel is in “bad” condition
due to some impairment, no data can be sent or received correctly. Another
example is a server shared by multiple flows. In this case, the service provided
to a certain flow is affected by the characteristics of the other flows, and we
may view these flows together as an impairment process interfering with the
service provided by the server to the flow considered.
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Based on the discussion above, we may use two processes to characterize
the behavior of a stochastic server. These two processes are an ideal service
process Ŝ(t) and an impairment process I(t). Let Ŝ(s, t) ≡ Ŝ(t)− Ŝ(s) denote
the amount of service that the server would have delivered in interval (s, t] if
there had been no service impairment in the interval, and I(s, t) the amount
of service, called impaired service, that cannot be delivered in the interval due
to some impairment. Particularly, the service S(t) actually delivered to the
input satisfies, for all t ≥ 0,

S(t) = Ŝ(t) − I(t), (4.10)

with Ŝ(0) = 0, I(0) = 0 by convention. It is clear that S, Ŝ, and I are in F .
In Definition 4.8, we have defined stochastic strict server in the general

form. In the following, we define a special type of stochastic strict server.

Definition 4.11. A system S is said to be a stochastic strict server providing
strict service curve β̂ ∈ F with impairment process I if, during any period
(s, t], the actual service S(s, t) provided by the system satisfies

S(s, t) ≥ β̂(t − s) − I(s, t). (4.11)

Note that Definition 4.11 implies β̂(0) = 0.
Under deterministic network calculus, a similar concept, called strict ser-

vice curve, is defined that states that a strict server is providing strict service
curve β̂ if during any backlogged period (s, t] the service provided or the out-
put A∗(s, t) ≥ β̂(t − s). From Definition 4.11, it is clear that if there is no
impairment or I(s, t) = 0 for all 0 ≤ s ≤ t, a stochastic strict server due
to impairment becomes a (deterministic) strict server providing strict service
curve β̂.

Theorem 4.12 establishes the relationship between Definition 4.11 and
Definition 4.8.

Theorem 4.12. Consider a stochastic strict server S providing strict service
curve β̂ with impairment process I. If the impairment process has a stochastic
arrival curve (SAC), or I ∼sac 〈g, γ〉, where ∼sac can be any of ∼ta, ∼vb, ∼mb,
or ∼θ−mb, then the server is a stochastic strict server providing stochastic
strict service curve β with bounding function g, where β(t) = β̂(t) − γ(t).

Proof. We shall only prove the theorem when the impairment process has a
t.a.c. SAC, i.e., ∼sac is ∼ta, since a v.b.c. SAC, m.b.c. SAC, and θ-m.b.c. SAC
all imply a t.a.c. SAC.

Consider any backlogged period (s, t]. By definition, since I ∼ta 〈g, γ〉,
there holds for this period (s, t]

P{I(s, t) − γ(t − s) > x} ≤ g(x).
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In addition, since the server is a stochastic strict server providing strict service
curve β̂ with impairment process I, we have for this backlogged period (s, t],
by definition,

β̂(t − s) − S(s, t) − γ(t − s) ≤ I(s, t) − γ(t − s).

Hence we get

P{β(t − s) − S(s, t) > x} ≤ P{I(s, t) − γ(t − s) > x} ≤ g(x),

which ends the proof. ��
When the stochastic arrival curve characterization of the impairment

process is known, Theorem 4.12 can be used together with Theorem 4.9 to
find the stochastic service curve characterization of the server. Theorem 4.13
can also be useful.

Theorem 4.13. Consider a stochastic strict server S providing strict service
curve β̂ with impairment process I.

(i) If the impairment process has a t.a.c. stochastic arrival curve, or I ∼ta

〈g, γ〉, then the server provides a weak stochastic service curve S ∼ws 〈g, β〉
with β(t) =

[
β̂(t) − γ(t)

]+
if β ∈ F .

(ii) If the impairment process has a v.b.c. stochastic arrival curve, or I ∼vb

〈g, γ〉, then the server provides a weak stochastic service curve S ∼ws 〈g, β〉
with β(t) =

[
β̂(t) − γ(t)

]+
if β ∈ F .

(iii) If the impairment process has an m.b.c. stochastic arrival curve, or
I ∼mb 〈gt, γ〉, then the server provides a stochastic service curve S ∼sc

〈gt, β〉 with β(t) =
[
β̂(t) − γ(t)

]+
if β ∈ F .

(iv) If the impairment process has a θ-m.b.c. stochastic arrival curve, or
I ∼θ−mb 〈gθ, γ〉, then the server provides a θ-stochastic service curve
S ∼θ−sc 〈gθ, β〉 with β(t) = β̂(t) − γ(t) if β ∈ F .

Proof. Part (i) follows directly from Theorem 4.12 and Theorem 4.9. While
part (ii) can also be proved from Theorem 4.12 and Theorem 4.9, we introduce
the following detailed proof that will be used to prove Parts (iii) and (iv).

For any time s ≥ 0, there are two cases. In case 1, s is not within any
backlogged period. In this case, there is no backlog in the server at s, which
implies that all traffic that arrived up to time s has left the server. Hence,
A∗(s) = A(s) and consequently A⊗ β(s) −A∗(s) ≤ A(s) + β(0) −A∗(s) ≤ 0.
In case 2, s is within a backlogged period. Without loss of generality, assume
the backlogged period starts from s0. Then, A∗(s0) = A(s0), and
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A ⊗ β(s) − A∗(s)
≤ A(s0) + β(s − s0) − A∗(s)
= β(s − s0) + A∗(s0) − A∗(s) = β(s − s0) − A∗(s0, s)

≤ I(s0, s) + β(s − s0) − β̂(s − s0)
= I(s0, s) − γ(s − s0)
≤ sup

0≤u≤s
[I(u, s) − γ(s − u)].

Combining both cases, we conclude that, for any s ≥ 0,

A ⊗ β(s) − A∗(s) ≤
(

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

, (4.12)

and with this, together with the assumption that the impairment process has
a v.b.c. stochastic arrival curve, Part (ii) is proved.

From (4.12), we also have

sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] ≤
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

, (4.13)

and with this, I ∼mb 〈gt, γ〉, and the definition of a stochastic service
curve, Part (iii) is easily proved.

Also from (4.12), we can get

sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)]

≤
(

sup
0≤s≤t

[
sup

0≤u≤s
[I(u, s) − γ(s − u)] − θ · (t − s)

])+

, (4.14)

and with this, I ∼θ−mb 〈gθ, γ〉, and the definition of a θ–stochastic service
curve, Part (iv) is proved. ��
Example 4.14. Consider a wireless system consisting of a constant-rate server
and a wireless link. The constant-rate server provides a strict service curve
β = Ct. The wireless link is prone to error, which can be modelled by an
impairment process I. Then, according to Theorem 4.12, the wireless system
can be modelled by a stochastic strict server providing various stochastic strict
service curves that can be obtained according to the stochastic model of the
impairment process from Theorem 4.13.

4.4 Service Envelope Process

In Section 2.2.4 of Chapter 2, the service envelope process and the strict service
envelope process were defined. Their definitions are repeated below.
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Definition 4.15 (Service Envelope Process). A system is said to provide
a service envelope process Ŝ(t) to the input if for any t ≥ 0 there holds

A∗(t) ≥ A ⊗ Ŝ(t). (4.15)

Definition 4.16 (Strict Service Envelope Process). A system is said to
provide a strict service envelope process Ŝ(t) if the amount of service S(s, s+t)
provided by the system in (s, s + t] satisfies, for any t ≥ 0 and all s ≥ 0,

S(s, s + t) ≥ ŜSSE (t) . (4.16)

In Section 2.2.4 of Chapter 2, Ŝ(t) and ŜSSE(t) are interpreted as deter-
ministic curves. In this sense, Definition 3.46 implies a (deterministic) service
curve Ŝ(t) and Definition 2.17 implies a (deterministic) strict service curve
ŜSSE(t).

In the rest of this book, we shall treat Ŝ(t) and ŜSSE(t) as possibly ran-
dom processes. As discussed in Section 2.2.4 of Chapter 2, the service envelope
process Ŝ(t) describes the behavior of the system in general, which is inde-
pendent of whether the period (s, s + t] is within a backlogged period of the
system. This implies the following result.

Theorem 4.17. If a system has a strict service envelope process ŜSSE(t), it
is a stochastic strict server satisfying that during any backlogged period (s, t],
the service provided by the system satisfies S(s, t) ≥ Ŝ(t − s).

A system’s strict service envelope process is not unique. Its maximum strict
service envelope process (MSS) is defined as

ŜMSS(t) = inf
s≥0

S(s, s + t). (4.17)

It is clear that 0 ≤ ŜMSS(t) ≤ ŜMSS(t + τ) for any τ ≥ 0 since we always
have S(s, s + t) ≤ S(s, s + t + τ) for all s ≥ 0, and hence the MSS process is
wide-sense increasing and belongs to F .

Let Ŝ(t) be a service envelope process of the system. From its moment
generating function, we get

MŜ(t)(−θ) = E
[
e−θŜ(t)

]
. (4.18)

A bound on MŜ(t)(−θ) is sups≥0 MŜ(t)(−θ) if it exists, or

MŜ(t)(−θ) ≤ sup
s≥0

MŜ(t)(−θ) = sup
s≥0

E
[
e−θŜ(t)

]
. (4.19)

With simple manipulation, (4.19) becomes

−1
θ

log E
[
e−θŜ(t)

]
≥ −1

θ
sup
s≥0

log E
[
e−θŜ(t)

]
. (4.20)
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Note that, from the definition, a service envelope process is generally de-
pendent on the arrival process. In the following, we focus on strict service
processes to decouple the service process from the arrival process. When Ŝ(t)
in (4.18), (4.19) and (4.20) is a strict service envelope process, we get for any
s, t ≥ 0,

MS(s,s+t)(−θ) ≤ MŜSSE(t)(−θ) ≤ sup
s≥0

MŜSSE(t)(−θ) (4.21)

−1
θ

log E
[
e−θS(s,s+t)

]
≥ −1

θ
sup
s≥0

log E
[
e−θŜSSE(t)

]
. (4.22)

From (4.22), the effective service rate (ESR) of ŜSSE with respect to θ,
denoted by r̊(θ), is defined to be

r̊(θ) = −lim supt→∞
1
θt

sup
s≥0

log E
[
e−θ(ŜSSE(t))

]
. (4.23)

Suppose the service process has stationary increments, i.e., S(s, s + t) =st

S(t) for all s, t ≥ 0. Then, replacing ŜSSE(t) with S(t) in (4.23), we get

r̊(c)(θ) = −lim supt→∞
1
θt

sup
s≥0

log E
[
e−θ(S(t))

]
, (4.24)

which is often called the effective capacity of S in the literature [133]. Since
S(t) ≥ ŜSSE(t) for all t, an effective service rate is never greater than the
effective capacity of the system.

4.4.1 Latency Rate Characterization

Similar to the (σ(θ), ρ(θ) traffic model, one may be interested in studying
cases where the right-hand side of (4.20) is upper-bounded by a latency-rate
function r(θ) · (t − b(θ)) with respect to a chosen θ. For this, we define the
(b(θ), r(θ))-constrained server characterization as follows.

Definition 4.18. A system is said to be (b(θ), r(θ)) lower constrained for
some θ > 0, if for all s, t ≥ 0,

−1
θ

log E
[
e−θS(s,s+t)

]
≥ r(θ) · (t − b(θ)). (4.25)

Similar to using (σ(θ), ρ(θ)) to characterize traffic, Definition 4.18 uses
a latency term and a rate term, with respect to θ(> 0), to characterize the
service. Definition 4.18 may also be considered as an extension of the deter-
ministic latency-rate service curve discussed in Chapter 2 to the stochastic
case.

The following result relates the (b(θ), r(θ)) service characterization to the
stochastic strict service curve characterization.
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Theorem 4.19. Consider a system S. If the service provided by the system
is (b(θ), r(θ)) lower constrained, then the system provides a stochastic strict
service curve βθ with bounding function gθ, where

βθ(t) = r(θ) · (t − b(θ)), (4.26)
gθ(x) = e−θx. (4.27)

Proof. Since the service is (b(θ), r(θ)) lower constrained, then from the defin-
ition it is known that

E
[
e−θS(s,s+t)

]
≤ e−θ[r(θ)·(t−b(θ))].

Applying the Chernoff bound yields

P{β(t) − S(s, s + t) > x} ≤ e−θxE
[
eθ(β(t)−S(s,s+t))

]
= e−θxeθβ(t)E

[
e−θS(s,s+t)

]
≤ e−θxe−θ[r(θ)·(t−b(θ))−β(t)]

≤ e−θx, (4.28)

where the last step holds for any function β(t) satisfying β(t) ≤ r(θ)·(t−b(θ)).
Since inequality (4.28) holds for all s, t ≥ 0, it implies that the system

provides a stochastic strict service curve β ≤ r(θ) · (t − b(θ)) with bounding
function e−θx. ��

4.4.2 Relationship with (σ(θ), ρ(θ)) Traffic Characterization

In Section 4.3.1, we introduced an important type of stochastic strict server.
In such a stochastic server, the stochastic nature of service is due to some
random impairment process. In addition, in Theorems 4.12 and 4.13, the ser-
vice characterization of the server is related to the traffic characterization of
the impairment process. In the following, a similar relationship is established
between the (b(θ), r(θ)) service characterization and the (σ(θ), ρ(θ)) traffic
characterization.

Theorem 4.20. Consider a stochastic strict server S providing strict ser-
vice curve β̂ = C · t with impairment process I. If the impairment process
is (σ(θ), ρ(θ))–upper constrained, then the server is (b(θ), r(θ)) lower con-
strained, where r(θ) = C − ρ(θ) and b(θ) = σ(θ)/r(θ).

Proof. Since the impairment process is (σ(θ), ρ(θ)) upper constrained, we have
for all s, t ≥ 0,

1
θ

log E
[
eθI(s,s+t)

]
≤ ρ(θ) · t + σ(θ).

Since the server is a stochastic strict server with impairment process I,
there holds by definition
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S(s, s + t) ≥ C · t − I(s, s + t),

and hence

−1
θ

log E
[
e−θS(s,s+t)

]
≥ −1

θ
log E

[
e−θ(C·t−I(s,s+t))

]
≥ C · t − ρ(θ) · t − σ(θ)
= r(θ) · (t − b(θ)). (4.29)

��

4.5 Summary and Bibliographic Comments

This chapter introduces several extensions of the deterministic service curve
characterization to the stochastic case. Particularly, we have defined the weak
stochastic service curve model, the stochastic service curve model, and the
stochastic strict server model. In addition, one important type of stochastic
strict service is defined in which the stochastic nature of the service is char-
acterized with an impairment process. Moreover, we have extended the study
of the service envelope process to a larger extent in the sense that the envelop
process is treated as a random process. Based on this study, a latency-rate
characterization of the stochastic service is defined that is analogous to the
(σ(θ), ρ(θ)) model that has been used to characterize traffic.

Comparing this with the development of stochastic traffic models intro-
duced in Chapter 2, alert readers may find that the stochastic server models
are developed in an analogous way. As can be seen in Chapter 2, EBB is a
direct extension of the deterministic arrival curve model by allowing some
traffic arrival violation and characterizing such a violation by an exponential
bounding function. EBB is then generalized to SBB. SBB is further general-
ized to a t.a.c. stochastic arrival curve, which is the basis for other stochastic
arrival models. In this chapter, the weak stochastic service curve model is also
a direct extension of the deterministic service curve model by allowing ser-
vice violation and characterizing such a violation by a generalized bounding
function. The stochastic service curve model may be viewed as a further de-
velopment of the weak stochastic service curve model since without additional
constraint the latter does not support the concatenation property, as will be
shown in the next chapter. While a θ-stochastic service curve is a special case
of the stochastic service curve model, it has a critical property different from
the general model in that the bounding function under the θ-stochastic service
curve model can be independent of time.

The definition of a stochastic strict server allows us to decouple the service
from the input, in the sense that the service characterization is not linked to
the input process as it is under the weak stochastic service curve model and
the stochastic service curve model. The introduction of impairment process
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to the stochastic strict server further enables us to identify the source caus-
ing the random nature of the service. The concepts of stochastic strict server
and impairment process can be used to characterize the interdependency be-
tween service processes and traffic processes, which will lead to significant
improvements on performance bounds, as will be shown later, in Chapter 6.

The weak stochastic service curve model can be considered as a gener-
alization of the (minimum) effective service curve model introduced in [96]
and the statistical service curve model in [24][25]. It was defined and studied
under the name of stochastic service curve in Liu, Tham and Jiang [99] and
Liu, Tham and Jiang [100].

The stochastic service curve model was initially introduced by Jiang and
Emstad in [74] and further investigated by Jiang in [69]. The stochastic strict
server model may be traced back to Lee [93]. A related model, called effective
capacity , was defined by Wu and Negt in [133] to model wireless links. The
impairment process concept was initially considered by Jiang and Emstad in
[74]. In [69], Jiang further showed that this concept can be used to decouple
service processes and traffic processes and hence be applied to independent
case analysis, to be introduced in Chapter 6.

The θ-stochastic service curve model and the (b(θ), r(θ)) service charac-
terization, while newly defined in this chapter, also have a close relation to
the existing literature. Particularly, the θ-stochastic service curve model is
related to an intermediate model used in [24][25] when the authors studied
the concatenation property of their defined statistical service curve model.
The (b(θ), r(θ)) service characterization is analogous to the (σ(θ), ρ(θ)) traffic
characterization initially proposed and studied by Chang in [15] [18].

A recent attempt defines a service model based on the mean characteriza-
tion of the service process [58]. While this attempt is interesting, it is worth
highlighting that all the server models introduced in this chapter can be easily
extended to study such mean characterizations.

The conversions and relationships among the various stochastic server
models are shown in Figures 4.1 and 4.2, respectively. The required conver-
sions are indicated by the label of each arc. For those arcs without any labels,
those bounding functions can be used directly without any conversion.

Figures 3.1 and 4.1 show some analogies between the traffic models and
the server models introduced here and in the previous chapter. Indeed, more
analogies will be found in the following chapters.

Problems

4.1. Assume that a server offers a weak stochastic service curve S ∼ws 〈g, β〉
to a flow with deterministic arrival curve α (t). Let B (t) be the backlog and
d (t) the virtual delay at time t.

(i) Prove that
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SSC

weak SSC

stochastic strict SSC

− SSCq

Fig. 4.1. Conversions between stochastic service curves

Stochastic Service Curve
(SSC) Weak SSCq -SSC

Fig. 4.2. Relationships between stochastic service curves
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Pr {B (t) > Bx
max} ≤ g (x) ,

where Bx
max = sup

s≥0
{αx (s) − β (s)} and αx (s) = α (s) + x.

(ii) Prove that
Pr {d (t) > dx

max} ≤ g (x) ,

where dx
max = h (αx, β) = sups≥0 {inf {τ ≥ 0 : αx (s) ≤ β (s + τ)}} and

αx (s) = α (s) + x.
(iii) Prove the departure process of the flow from the server has a v.b.c sto-

chastic arrival curve
A∗ ∼vb 〈g, α∗〉,

where α∗(t) = α 
 β(t).

4.2. Assume that a server offers a stochastic service curve S ∼sc 〈g, β〉 to a
flow with deterministic arrival curve α (t). Let B (t) be the backlog and d (t)
the virtual delay at time t.

(i) Prove that
Pr {B (t) > Bx

max} ≤ g (x) ,

where Bx
max = sup

s≥0
{αx (s) − β (s)} and αx (s) = α (s) + x.

ii Prove that
Pr {d (t) > dx

max} ≤ g (x) ,

where dx
max = h (αx, β) = sups≥0 {inf {τ ≥ 0 : αx (s) ≤ β (s + τ)}} and

αx (s) = α (s) + x.
iii Prove that the departure process of the flow from the server has an m.b.c.

stochastic arrival curve
A∗ ∼mb 〈g, α∗〉,

where α∗(t) = α 
 β(t).

4.3. Consider a stochastic strict server providing stochastic strict service curve
β̂(t) = r̂ · t with impairment process I to its input, which has a deterministic
arrival curve α (t). Derive backlog bound, delay bound, and the arrival curve
characterization of the departure process.

4.4. Find the weak stochastic service curve, the stochastic service curve, and
the θ-stochastic service curve characterizations of the server as shown in
Example 4.10.

4.5. Consider a wireless system consisting of a constant rate server and a
wireless link. The constant rate server provides a strict service curve β = Ct.
The wireless link is prone to error, which is modeled by an impairment process
I that is a Gaussian process with

P{A(s, s + t) − ρt > x} ≤ Ψ

(
(ρ − λ)t + x√

t2v

)
,
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where Ψ(x) ≡ 1√
2π

∫∞
x

e−
u2
2 du. Find the stochastic model of this wireless

system.

4.6. Considering the wireless system as shown in Problem 4.5, there is an
input flow with deterministic arrival curve α (t). Let B (t) be the backlog and
d (t) the virtual delay at time t. Find the stochastic bounds for B (t) and d (t).

4.7. Prove Theorem 4.9 (ii).

4.8. Prove Theorem 4.9 (iii).

4.9. Prove Theorem 4.13 (i).

4.10. Prove Theorem 4.13 (ii).

4.11. Suppose (4.5) holds. Find the relationship between the weak stochastic
service curve and stochastic service curve.

4.12. Suppose (4.6) holds. Find the relationship between the weak stochastic
service curve and stochastic service curve.

4.13. Suppose we are interested in charactering service based on its mean and
specifically using the form [58]

E[A ⊗ βξ(t) − A∗(t)] ≤ ξ(t).

Find the relationship between this service characterizing and the various sto-
chastic arrival curve characterizations.

4.14. Suppose a server provides stochastic strict service that is (b(θ), r(θ))-
lower constrained. Find its characterization using the server model defined in
the preceeding problem.
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Basic Properties of Stochastic
Network Calculus

This chapter introduces the basic results of stochastic network calculus under
the various traffic models and server models discussed earlier in Chapters 3
and 4. We focus particularly on the five basic properties introduced in
Chapter 1 that are essential for network service guarantee analysis.

5.1 Service Guarantees

We start by deriving probabilistic bounds on the backlog and delay under
different combinations of traffic and server models.

5.1.1 Backlog Bound

Consider a system with arrival process A(t), service process S(t), and depar-
ture process A∗(t). By definition, the backlog in the system at time t ≥ 0
is

B(t) = A(t) − A∗(t), (5.1)

which implies that if both A(t) and A∗(t) were known, B(t) would be derived.
However, in most cases, A∗(t) needs to be derived from B(t); i.e., A∗(t) =
A(t) − B(t), which causes the chicken–egg problem.

The Lindley equation can be used to derive B(t):

B(t) = max{0, B(t − 1) + A(t − 1, t) − S(t − 1, t)}. (5.2)

By applying (5.2) iteratively to its right-hand side, the Lindley equation
results in

B(t) = sup
0≤s≤t

{A(s, t) − S(s, t)}, (5.3)

and consequently

A∗(t) = A(t) − B(t) = inf
0≤s≤t

{A(s) + S(s, t)}. (5.4)
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In the simple case where the system provides a constant service rate c to
the input, (5.2) becomes

B(t) = sup
0≤s≤t

{A(s, t) − c · (t − s)}.

Comparing the right-hand side of the equation above with the definitions of
the various stochastic traffic models defined in Chapter 3, we find that the
probabilistic bound of B(t) is easily derived if the input has a v.b.c. stochastic
arrival curve (SAC) or a m.b.c. SAC, or an θ-m.b.c. SAC. However, if the input
is known only with its (σ(θ), ρ(θ)) or t.a.c. SAC characterization, additional
effort is needed to derive B(t) from such input traffic characterizations.

For the more general case where the system provides stochastic service to
the input, the following method can be used to derive B(t). Specifically, (5.1)
can be rewritten for any functions α(t) and β(t) in F , as

B(t) = A(t) − A∗(t) = [A(t)−A ⊗ β(t)]+[A ⊗ β(t)−A∗(t)]
= sup

0≤s≤t
{A(s, t) − α(t − s) + α(t − s) − β(t − s)} + [A ⊗ β(t) − A∗(t)]

≤ sup
0≤s≤t

{A(s, t) − α(t − s)} + sup
0≤s≤t

{α(s) − β(s)} + [A ⊗ β(t) − A∗(t)]

≤ sup
0≤s≤t

{A(s, t) − α(t − s)} + sup
t≥0

{α(t) − β(t)}+[A ⊗ β(t)−A∗(t)]. (5.5)

The right-hand side of (5.5) implies a sufficient condition to obtain
P{B(t) > x}; that is, P{sup0≤s≤t{A(s, t)−α(t− s)} > x} and P{A⊗ β(t)−
A∗(t) > x} are known and

lim
t→∞

1
t

[α(t) − β(t)] ≤ 0. (5.6)

In the rest of the book, unless explicitly stated, we shall assume inequality
(5.6) holds.

Based on the analysis above, we present results for a probabilistic backlog
bound under different combinations of the traffic models and server models
introduced in Chapters 3 and 4.

For backlog, if the input has a v.b.c. SAC and the system provides a weak
stochastic service curve (SSC), we can conclude immediately from (5.5) that
P{B(t) > x} ≤ f ⊗ g(x − α 
 β(0)). Since both the m.b.c. SAC and θ-m.b.c
SAC imply a v.b.c. SAC, and both SSC and θ–SSC imply weak SSC, the
conclusion is readily extended to cases where the input has either an m.b.c.
SAC or a θ–m.b.c SAC and/or the system provides either an SSC or a θ-SSC.
Formally, we have Theorem 5.1 under these combinations.

Theorem 5.1. Consider a system S with input A. If the input has a v.b.c. (or
m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈
F̂ , (i.e., A ∼sac 〈f, α〉), where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mband
the system provides to the input a weak stochastic service curve (or stochastic
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service curve, or θ–stochastic service curve) β ∈ F with bounding function
g ∈ F̂ , i.e. S ∼ssc 〈g, β〉 where ∼ssc is either one of ∼ws, ∼sc,∼θ−sc, then
for all t ≥ 0 and x ≥ 0, the backlog B(t) is bounded by

P{B(t) > x} ≤ f ⊗ g(x − α 
 β(0)). (5.7)

Based on the relationship between t.a.c SAC and v.b.c SAC in Theorem 3.13
which is also shown in Figure 3.1, the following result is obtained.

Corollary 5.2. Consider a system S with input A. Suppose the input has
a t.a.c stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e.,
A ∼ta 〈f, α〉) and the system provides to the input a weak stochastic service
curve (or stochastic service curve or θ-stochastic service curve) β ∈ F with
bounding function g ∈ F̄ (i.e., S ∼ssc 〈g, β〉, where ∼sscis one of either ∼ws,
∼sc, or ∼θ−sc). Then, for all t ≥ 0 and x ≥ 0, the backlog B(t) is bounded by

P{B(t) > x} ≤ fθ ⊗ g(x − α 
 β(0)), (5.8)

where fθ(x) = f (x) + 1
θ

∫∞
x

f(y)dy for any θ > 0.

Actually, Theorems 5.1 and 5.2 show the backlog bounds under all com-
binations of the various SAC and SSC models defined in Chapters 3 and 4.

Similarly, the following theorem can be derived according to the map-
ping between the (σ(θ), ρ(θ)) upper constrained traffic characterization and
the t.a.c. SAC model shown in Theorem 3.4 and the mapping between the
(b(θ), r(θ)) lower constrained service characterization and the weak SSC model
as shown in Theorem 4.19.

Corollary 5.3. Consider a system S with input A. Suppose the input is
(σ(θ), ρ(θ)) upper constrained, and the service provided by the system is
(b(θ), r(θ)) lower constrained. Then, the backlog B(t) is bounded by

P{B(t) > x} ≤ fθ ⊗ gθ(x − α 
 β(0)), (5.9)

where fθ(x) = e−θx, α(t) = ρ(θ) · t + σ(θ), β(t) = r(θ) · (t − b(θ)), and
gθ(x) = e−θx for any θ > 0.

5.1.2 Delay Bound

Now we discuss the probabilistic delay bounds under different combinations
of traffic models and server models. For a delay in the system at time t ≥ 0,
by definition, it is

D(t) = inf{τ : A(t) ≤ A∗(t + τ)}, (5.10)

which implies that, for any x ≥ 0, if D(t) > x, there must be A(t) > A∗(t+x)
since otherwise if A(t) ≤ A∗(t + x) and D(t) ≤ x, that would contradict
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the condition D(t) > x. In other words, event {D(t) > x} implies event
{A(t) > A∗(t + x)}, or

{D(t) > x} ⊂ {A(t) > A∗(t + x)},
and hence

P{D(t) > x} ≤ P{A(t) > A∗(t + x)}. (5.11)

Following similar steps in (5.5), we can get

A(t) − A∗(t + x)
= sup

0≤s≤t+x
[A(t) − A(s) − α(t − s) + α(t − s) − β(t + x − s)]

+A ⊗ β(t + x) − A∗(t + x)
≤ sup

0≤s≤t+x
[A(t) − A(s) − α(t − s)]

+A ⊗ β(t + x) − A∗(t + x)
+ sup

0≤s≤t+x
[α(t − s) − β(t + x − s)] (5.12)

≤ sup
0≤s≤t

[A(t) − A(s) − α(t − s)]

+A ⊗ β(t + x) − A∗(t + x)
+ sup

0≤s≤t+x
[α(t − s) − β(t + x − s)], (5.13)

where the step from (5.12) to (5.13) holds because by default A(t) ≤ A(t + y)
for any y > 0, α(y) = 0 for any y < 0.

Under the same sufficient condition as for analyzing the backlog, the com-
plementary cumulative distribution function of the right-hand side of (5.13)
is bounded and so are the left-hand side of (5.13) and the delay.

With simple manipulation, we have from (5.13)

A(t) − A∗ (t + h(α + y, β))
≤ sup

0≤s≤t
[A(t) − A(s) − α(t − s)]

+A ⊗ β (t + h(α + y, β)) − A∗ (t + h(α + y, β)) − y, (5.14)

where h (α + y, β) is the maximum horizontal distance between functions
α(t) + y and β(t) for y ≥ 0. This is obtained by simply replacing x =
h (α + y, β) in (5.13), and with the definition of maximum horizontal distance
function h(·, ·), that implies α(u) + y ≤ β(u + h (α + y, β)) for any u.

Similar to the backlog, if the input has a v.b.c SAC and the system provides
a weak SSC, we immediately conclude from (5.14) and (5.11) that for any t ≥ 0
and y ≥ 0, the delay D(t) is bounded by P{D(t) > h (α + y, β)} ≤ f ⊗ g(y).

Since both the m.b.c. SAC and θ-m.b.c. SAC imply a v.b.c. SAC, and both
the SSC and θ-SSC imply a weak SSC, the conclusion is also readily extended
to cases where the input has either an m.b.c. SAC or a θ-m.b.c. SAC, and/or
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the system provides either an SSC or a θ-SSC. Similar to the backlog analysis,
we have the following result for delay.

Theorem 5.4. Consider a system S with input A. Suppose that the input has
a v.b.c. (or m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding
function f ∈ F̄ ( i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or
∼θ−mb) and the system provides to the input a weak stochastic service curve
(or stochastic service curve or θ-stochastic service curve) β ∈ F with bounding
function g ∈ F̄ ( i.e., S ∼ssc 〈g, β〉, where ∼ssc is one of either ∼ws, ∼sc, or
∼θ−sc). Then, for all t ≥ 0 and x ≥ 0, the delay D(t) is bounded by

P{D(t) > h (α + x, β)} ≤ f ⊗ g(x). (5.15)

Based on the relationship between the t.a.c. SAC and v.b.c. SAC in
Theorem 3.13, the following result is obtained.

Corollary 5.5. Consider a system S with input A. Suppose the input has
a t.a.c. stochastic arrival curve α ∈ F with bounding function f ∈ Ĝ (i.e.,
A ∼ta 〈f, α〉) and the system provides to the input a weak stochastic service
curve (or stochastic service curve, or θ–stochastic service curve) β ∈ F with
bounding function g ∈ F̄ (i.e., S ∼ssc 〈g, β〉 where ∼ssc is one of either ∼ws,
∼sc, or ∼θ−sc). Then, for all t ≥ 0 and x ≥ 0, the delay D(t) is bounded by

P{D(t) > h (α + x, β)} ≤ fθ ⊗ g(x), (5.16)

where fθ(x) = f (x) + 1
θ

∫∞
x

f(y)dy for any θ > 0.

Actually, Theorems 5.4 and 5.5 show the stochastic delay bounds under
all combinations of the various SAC and SSC models defined in Chapters 3
and 4.

Similarly, the following theorem can be derived according to the mapping
between the (σ(θ), ρ(θ)) upper constrained traffic characterization and t.a.c.
SAC shown in Theorem 3.4 and the mapping between the (b(θ), r(θ)) lower
constrained service characterization and weak SSC as shown in Theorem 4.19.

Corollary 5.6. Consider a system S with input A. Suppose the input is
(σ(θ), ρ(θ)) upper constrained and the service provided by the system is
(b(θ), r(θ)) lower constrained. The delay D(t) is bounded by

P{D(t) > h (α + x, β)} ≤ fθ ⊗ gθ(x), (5.17)

where fθ(x) = e−θx, α(t) = ρ(θ) · t + σ(θ), β(t) = r(θ) · (t − σ(θ)), and
gθ(x) = e−θx for any θ > 0.

Example 5.7. Consider a server with constant service rate C. If the input is
an EBB (exponentially bounded burstiness) process, i.e.

P {A (s, t) − α (t − s) > x} ≤ f (x) ,
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where α = ρ · t, and f(x) = ae−bx. As shown in Chapter 2, EBB is a special
case of t.a.c. stochastic arrival curve. In addition, the constant-rate server
provides a deterministic service curve β (t) = Ct, which is a special case of
weak stochastic service curve. Then, according to Theorem 5.2, for all t ≥ 0
and x ≥ 0, the backlog B(t) of this system is bounded by

P{B(t) > x} ≤ fθ ⊗ g(x − α 
 β(0))
= fθ(x − α 
 β(0)) = fθ (x)

= ae−bx +
ae−bx

θb

for any θ > 0.

5.2 Output Characterization

This section presents results for characterizing the output traffic. The focus
is on using the same traffic model as the input for the characterization.

Equation (5.4) implies the following: for any t ≥ s ≥ 0,

A∗(t) − A∗(s) = A(t) − A(s) − (B(t) − B(s)).

If the backlog has an upper bound b (i.e., B(t) ≤ b for all t ≥ 0), we immedi-
ately get

A∗(t) − A∗(s) ≤ A(t) − A(s) − b,

and in this case it is easy to show that the output has the same characterization
as the input. Specifically, we have the following result.

Theorem 5.8. Consider a system S with input A. Suppose the backlog of A
in the system is upper-bounded by b for all times. If the input has a stochastic
arrival curve α(t) with bounding function f(x), denoted by A ∼sac 〈f(x), α(t)〉,
where ∼sac can be one of either ∼tac, ∼vbc, ∼mbc or ∼θ−mbc, then the output
also has a stochastic arrival curve α(t) with bounding function f(x + b); i.e.,
A∗ ∼sac 〈f(x + b), α(t)〉 .

In general, the backlog may not be deterministically upper-bounded. In
such cases, to characterize the output traffic requires some effort.

5.2.1 Output t.a.c Stochastic Arrival Curve

First, we focus on characterizing the output traffic with the t.a.c. stochastic
arrival curve model. For any t ≥ s ≥ 0 and any functions α, β ∈ F , there
holds



5.2 Output Characterization 89

A∗(t) − A∗(s) ≤ A(t) − A ⊗ β(s) + [A ⊗ β(s) − A∗(s)]
= sup

0≤u≤s
{A(u, t) − α(t − u) + α(t − u) − β(s − u)} + [A ⊗ β(s) − A∗(s)]

≤ sup
0≤u≤t

{A(u, t) − α(t − u)} + sup
0≤v≤s

{α(t − s + v) − β(v)}

+[A ⊗ β(t) − A∗(t)] (5.18)
≤ sup

0≤u≤t
{A(u, t) − α(t − u)} + α 
 β(t − s) + [A ⊗ β(s) − A∗(s)], (5.19)

where α 
 β(t) = supu≥0{α(t + u) − β(u)}.
Rewriting (5.19), we get

A∗(s, t) − α 
 β(t − s)
≤ sup

0≤u≤t
{A(u, t) − α(t − u)} + [A ⊗ β(s) − A∗(s)], (5.20)

which implies that if the input m.b.c SAC and the system’s weak SSC are
known, the output t.a.c SAC characterization is easily derived.

Since the m.b.c. SAC and θ-m.b.c. SAC imply the v.b.c. SAC and the SSC
and θ-SSC imply the weak SSC, we have the following theorem.

Theorem 5.9. Consider a system S with input A. If the input has a v.b.c. (or
m.b.c or θ–m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈
F̄ (i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb) and
the system provides to the input a weak stochastic service curve (or stochastic
service curve or θ-stochastic service curve) β ∈ F with bounding function
g ∈ F̄ (i.e., S ∼ssc 〈g, β〉 where ∼ssc is one of either ∼ws, ∼sc, or ∼θ−sc) then
the output has a t.a.c. stochastic arrival curve α 
 β with bounding function
f ⊗ g; i.e., A∗ ∼ta 〈f ⊗ g, α 
 β〉.

Based on the relationship between the t.a.c. SAC and v.b.c. SAC as shown
in Theorem 3.13, the following result is obtained.

Corollary 5.10. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a weak stochastic service curve (or
stochastic service curve or θ–stochastic service curve) β ∈ F with bounding
function g ∈ F̄ (i.e., S ∼ssc 〈g, β〉 where ∼ssc is one of either ∼ws, ∼sc,
or ∼θ−sc), then the output has a t.a.c. stochastic arrival curve αθ 
 β with
bounding function f⊗gθ, i.e., A∗ ∼ta 〈fθ⊗g, αθ
β〉, where αθ(t) = α(t)+θ ·t
and fθ(x) = f (x) + 1

θ

∫∞
x

f(x) for any θ > 0.

In addition, the following theorem follows from Theorem 5.9, the mapping
between the (σ(θ), ρ(θ)) upper constrained traffic characterization and v.b.c.
SAC shown in Example 3.18, and the mapping between (b(θ), r(θ))–lower
constrained service characterization and weak SSC shown in Theorem 4.19.
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Corollary 5.11. Consider a system S with input A. Suppose the input is
(σ(θ), ρ(θ)) upper constrained, a(t) ≡ A(t − 1, t), t = 1, 2, . . . , are i.i.d., and
the service provided by the system is (b(θ), r(θ)) lower constrained. Then, the
output has a t.a.c stochastic arrival curve α
β with bounding function f ⊗g;
i.e., A∗ ∼ta 〈f ⊗ g, α 
 β〉, where f(x) = eθσ(θ)

1−eθ(ρ(θ)−r) e
−θx, α(t) = r · t, β(t) =

r(θ) · (t − b(θ)), and g(x) = e−θx for any θ > 0, r < ρ(θ).

5.2.2 Output v.b.c. Stochastic Arrival Curve

We now characterize the output traffic with the v.b.c. stochastic arrival curve
model.

Based on (5.20), we can get

sup
0≤s≤t

{A∗(s, t) − α 
 β(t − s)}

≤ sup
0≤u≤t

{A(u, t) − α(t − u)} + sup
0≤s≤t

{A ⊗ β(s) − A∗(s)}, (5.21)

from this and the fact that the m.b.c. SAC and θ-m.b.c. SAC imply a v.b.c.
SAC, the following theorem can be easily verified.

Theorem 5.12. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉, where ∼sac is either one of ∼vb, ∼mb, or ∼θ−mb)
and the system provides to the input a stochastic service curve β ∈ F with
bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉), then the output has a v.b.c.
stochastic arrival curve α 
 β with bounding function f ⊗ g, i.e. A∗ ∼vb 〈f ⊗
g, α 
 β〉.

Based on the relationship between the stochastic service curve and θ-
stochastic service curve shown in Theorem 4.6, the following result is obtained.

Corollary 5.13. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉 , where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb)
and the system provides to the input a θ–stochastic service curve β ∈ F with
bounding function gθ ∈ F̄ (i.e. S ∼θ−sc 〈gθ, β〉), then the output has a v.b.c.
stochastic arrival curve α 
 β with bounding function f ⊗ gt; i.e., A∗ ∼vb

〈f ⊗ gt, α 
 β〉, where gt (x) = gθ (x − θ · t) .

In addition, based on the relationship between the stochastic service curve
and weak stochastic service curve shown in Theorem 4.4, the following result
can be easily verified.

Corollary 5.14. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb)
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and the system provides to the input a weak stochastic service curve β ∈ F
with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then the output has a v.b.c.
stochastic arrival curve α 
 β−θ with bounding function f ⊗ gθ

t ; i.e., A∗ ∼vb

〈f ⊗ gθ
t , α
 β−θ〉, where β−θ(t) = β(t)− θ · t and gθ

t (x) =
[

1
θ

∫∞
x−θt

g (y) dy
]
1
.

Corollaries 5.13 and 5.14 are obtained directly from the relationship of
a θ-stochastic service curve or weak stochastic service curve with a stochas-
tic service curve. The resulting bounding functions for the output are time-
dependent. In the following, we present results for the output characterization
where the bounding function does not rely on time.

Let αθ(t) = α(t) + θ · t. Similar to (5.19), we get, for any θ > 0,

A∗(t) − A∗(s) − αθ 
 β(t − s)
≤ A(t) − A ⊗ β(s) + A ⊗ β(s) − A∗(s) − αθ 
 β(t − s)
≤ A(t) − A ⊗ β(s) − α 
 β(t − s) + A ⊗ β(s) − A∗(s) − θ · (t − s)

since supw≥0[α(t − s + w] + (t − s + w)θ − β(w)] ≥ supw≥0[α(t − s + w] −
β(w)] + (t − s)θ. Then, there holds:

sup
0≤s≤t

{A∗(t) − A∗(s) − αθ 
 β(t − s)}

≤ sup
0≤s≤t

[A(t) − A ⊗ β(s) − α 
 β(t − s)]

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)] (5.22)

≤ sup
0≤s≤t

[
sup

0≤u≤s
{A(t) − A(u) − β(s − u) − sup

w≥0
{α(t − s + w) − β(w)}}

]
+ sup

0≤s≤t
[A ⊗ β(s) − A∗(s) − θ · (t − s)]

≤ sup
0≤s≤t

sup
0≤u≤s

{A(t) − A(u) − α(t − u)}

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)] (5.23)

= sup
0≤u≤t

{A(t) − A(u) − α(t − u)} (5.24)

+ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ · (t − s)] . (5.25)

From (5.24), we can conclude the following theorem.

Theorem 5.15. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ–m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb)
and the system provides to the input a θ–stochastic service curve β ∈ F with
bounding function gθ ∈ F̄ (i.e., S ∼θ−sc 〈gθ, β〉), then the output has a v.b.c.
stochastic arrival curve αθ 
 β with bounding function f ⊗ gθ; i.e., A∗ ∼vb

〈f ⊗ gθ, αθ 
 β〉, where αθ(t) = α(t) + θ · t.
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Then, based on the relationship between the θ–stochastic service curve
and weak stochastic service curve, the following result is easily verified.

Corollary 5.16. Consider a system S with input A. If the input has a v.b.c.
(or m.b.c. or θ–m.b.c.) stochastic arrival curve α ∈ F with bounding function
f ∈ F̄ (i.e., A ∼sac 〈f, α〉 where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb)
and the system provides to the input a weak stochastic service curve β ∈ F
with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then the output has a
v.b.c. stochastic arrival curve αθ 
 β−θ with bounding function f ⊗ gθ; i.e.,
A∗ ∼vb 〈f ⊗ gθ, αθ 
 β−θ〉, where αθ(t) = α(t) + θ · t, β−θ(t) = β(t) − θ · t,
and gθ (x) = g(x) + 1

θ

∫∞
x

g (y) dy for any θ > 0.

If the input has a t.a.c. SAC, we can use the relationship between the t.a.c.
SAC and v.b.c. SAC to represent the input with a v.b.c. SAC and consequently
get the following results under the stochastic service curve, θ-stochastic service
curve, and weak stochastic service curve.

Corollary 5.17. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a stochastic service curve β ∈ F
with bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉), then the output has a v.b.c.
stochastic arrival curve αθ 
 β with bounding function fθ ⊗ g; i.e., A∗ ∼vb

〈fθ ⊗ g, αθ 
 β〉, where αθ(t) = α(t) + θ · t and fθ(x) = f (x) + 1
θ

∫∞
x

f(y)dy
for any θ > 0.

Corollary 5.18. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a θ-stochastic service curve β ∈ F
with bounding function gθ2 ∈ F̄ (i.e. S ∼θ−sc 〈gθ2 , β〉), then

• the output has a v.b.c. stochastic arrival curve α
β with bounding function
fθ1 ⊗ gt, (i.e., A∗ ∼vb 〈fθ1 ⊗ gt, αθ1 
 β〉), where αθ1(t) = α(t) + θ1 · t,
fθ1(x) = f (x)+ 1

θ1

∫∞
x

f(y)dy, and gt (x) = gθ2 (x − θ2 · t) for any θ1, θ2 >
0) or

• the output has a v.b.c. stochastic arrival curve αθ 
β with bounding func-
tion fθ1⊗gθ2 ; i.e., A∗ ∼vb 〈fθ1⊗gθ2 , αθ
β〉, where αθ(t) = α(t)+(θ1+θ2)·t
and fθ1(x) = f (x) + 1

θ1

∫∞
x

f(y)dy for any θ1, θ2 > 0.

Corollary 5.19. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a weak stochastic service curve
β ∈ F with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then

• the output has a v.b.c. stochastic arrival curve αθ1 
 β−θ2 with bounding
function fθ1 ⊗ gθ2

t (i.e., A∗ ∼vb 〈fθ1 ⊗ gθ
t , αθ1 
 β−θ2〉, where αθ1(t) =

α(t) + θ1 · t, β−θ2(t) = β(t) − θ2 · t, fθ1(x) = f (x) + 1
θ1

∫∞
x

f(y)dy and
gθ

t (x) = 1
θ2

∫∞
x−θ2t

g (y) dy, for any θ1, θ2 > 0) or
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• the output has a v.b.c stochastic arrival curve αθ
β with bounding function
fθ1 ⊗gθ2 , i.e., A∗ ∼vb 〈fθ1 ⊗gθ2 , αθ 
β〉, where αθ(t) = α(t)+(θ1 +θ2) · t,
fθ1(x) = f (x)+ 1

θ1

∫∞
x

f(y)dy, and gθ2 (x) = g(x)+ 1
θ2

∫∞
x

g (y) dy for any
θ1, θ2 > 0.

As a special case, the following result follows from Corollary 5.16, the
mapping between the (σ(θ), ρ(θ)) upper constrained traffic characterization
and v.b.c. SAC shown in Example 3.18, and the mapping between the
(b(θ), r(θ)) lower constrained service characterization and weak SSC shown
in Theorem 4.19.

Corollary 5.20. Consider a system S with input A. Suppose the input is
(σ(θ), ρ(θ)) upper constrained, a(t) ≡ A(t − 1, t), t = 1, 2, . . . , are i.i.d., and
the service provided by the system is (b(θ), r(θ)) lower constrained. Then, the
output has a v.b.c. stochastic arrival curve αθ 
 β with bounding function
fθ ⊗ gθ; i.e., A∗ ∼vb 〈fθ ⊗ gθ, αθ 
β〉, where f(x) = eθσ(θ)

1−eθ(ρ(θ)−r) e
−θx, αθ(t) =

(r + θ) · t, and gθ(x) = e−θx + 1
θ

∫∞
x

e−θydy for any θ > 0, r < ρ(θ).

5.2.3 Output m.b.c Stochastic Arrival Curve

We now characterize the output traffic with the m.b.c. stochastic arrival curve
model.

Based on (5.21), the following is obtained:

sup
0≤s≤t

sup
0≤u≤s

[A∗(u, s) − α 
 β(s − u)]

≤ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] + sup
0≤s≤t

[A ⊗ β(s) − A∗(s)]. (5.26)

Inequality (5.26) implies that the output m.b.c. stochastic arrival curve
characterization is easily derived if the input’s m.b.c. stochastic arrival curve
characterization and the system’s stochastic service curve characterization are
known. Specifically, we have the following result.

Theorem 5.21. Consider a system S with input A. If the input has an m.b.c.
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A ∼mb

〈f, α〉) and the system provides to the input a stochastic service curve β ∈
F with bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉), then the output has
an m.b.c. stochastic arrival curve α 
 β with bounding function f ⊗ g; i.e.,
A∗ ∼mb 〈f ⊗ g, α 
 β〉.

Based on the relationship between the weak stochastic service curve and
stochastic service curve shown in Theorem 4.4, we have the following.

Corollary 5.22. Consider a system S with input A. If the input has an m.b.c
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A ∼mb

〈f, α〉) and the system provides to the input a weak stochastic service curve
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β ∈ F with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then the output
has an m.b.c. stochastic arrival curve α
 β−θ with bounding function f ⊗ gθ

t ;
i.e., A∗ ∼mb 〈f ⊗ gθ

t , α 
 β−θ〉, where gθ
t (x) = 1

θ

∫∞
x−θt

g (y) dy and β−θ(t) =
β(t) − θ · t for any θ > 0.

Based on the relationship between the stochastic service curve and θ-
stochastic service curve, we have the following.

Corollary 5.23. Consider a system S with input A. If the input has an m.b.c.
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A ∼mb

〈f, α〉) and the system provides to the input a θ-stochastic service curve β ∈ F
with bounding function gθ ∈ F̄ (i.e., S ∼sc 〈gθ, β〉), then the output has an
m.b.c. stochastic arrival curve α 
 β with bounding function f ⊗ gt(x); i.e.,
A∗ ∼mb 〈f ⊗ gt, α 
 β〉, where gt (x) = gθ (x − θt) .

Corresponding to Theorem 5.21, Corollary 5.22 and Corollary 5.23, where
the input is modeled with m.b.c stochastic arrival curve, Corollaries 5.24 to
Corollary 5.26 have the input modeled with a θ-m.b.c. stochastic arrival curve.

Corollary 5.24. Consider a system S with input A. If the input has a θ-
m.b.c. stochastic arrival curve α ∈ F with respect to θ(> 0) with bounding
function fθ ∈ F̄ (i.e., A ∼θ−mb 〈fθ, α〉) and the system provides to the input
a stochastic service curve β ∈ F with bounding function g ∈ F̄ (i.e., S ∼sc

〈g, β〉), then the output has an m.b.c. stochastic arrival curve α 
 β with
bounding function ft ⊗ g(x); i.e., A∗ ∼mb 〈ft ⊗ g, α 
 β〉, where ft (x) =
fθ (x − θt) for any θ > 0.

Corollary 5.25. Consider a system S with input A. If the input has a θ-
m.b.c. stochastic arrival curve α ∈ F with bounding function fθ1 ∈ F̄ (i.e.,
A ∼θ−mb 〈fθ1 , α〉) and the system provides to the input a weak stochastic
service curve β ∈ F with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then
the output has an m.b.c. stochastic arrival curve α
β with bounding function
ft ⊗ gθ2 ; i.e., A∗ ∼mb 〈ft ⊗ gθ2 , α 
 β〉, where ft (x) = fθ1 (x − θ1t) and
gθ2 (x) = 1

θ2

∫∞
x−θt

g (y) dy for any θ1, θ2 > 0.

Corollary 5.26. Consider a system S with input A. If the input has a θ-
m.b.c. stochastic arrival curve α ∈ F with bounding function fθ1 ∈ F̄ (i.e.,
A ∼θ−mb 〈fθ1 , α〉) and the system provides to the input a θ-stochastic service
curve β ∈ F with bounding function gθ2 ∈ F̄ (i.e., S ∼sc 〈gθ2 , β〉), then the
output has an m.b.c. stochastic arrival curve α 
 β with bounding function
ft ⊗ gt; i.e., A∗ ∼mb 〈ft ⊗ gt, α
β〉, where ft (x) = fθ1 (x − θ1t) and gt (x) =
gθ2 (x − θ2t) for any θ1, θ2 > 0.

We now consider that the input is modeled with a v.b.c. stochastic arrival
curve. Corresponding to Theorem 5.21, Corollary 5.22 and Corollary 5.23,
Corollaries 5.27 to 5.29 are easily obtained based on the relationship between
the v.b.c. stochastic arrival curve and m.b.c. stochastic arrival curve shown
in Theorem 3.24.
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Corollary 5.27. Consider a system S with input A. If the input has a v.b.c.
stochastic arrival curve α ∈ G with bounding function f ∈ Ḡ (i.e., A ∼vb

〈f, α〉) and the system provides to the input a stochastic service curve β ∈
F with bounding function g ∈ F̄ (i.e. S ∼sc 〈g, β〉), then the output has
an m.b.c. stochastic arrival curve α 
 β with bounding function ft ⊗ g; i.e.,
A∗ ∼mb 〈ft ⊗ g, α 
 β〉, where ft (x) = 1

θ

∫∞
x−θt

f (y) dy for any θ > 0.

Corollary 5.28. Consider a system S with input A. If the input has a v.b.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼vb

〈f, α〉) and the system provides to the input a weak stochastic service curve
β ∈ F with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉), then the output has
an m.b.c. stochastic arrival curve α 
 β−θ2 with bounding function ft ⊗ gθ2 ;
i.e., A∗ ∼mb 〈ft ⊗ gθ2 , α 
 β−θ2〉, where ft = 1

θ1

∫∞
x−θ1t

f(y)dy, gθ2 (x) =
1
θ2

∫∞
x−θ2t

g (y) dy and β−θ2(t) = β(t) − θ2 · t for any θ1, θ2 > 0.

Corollary 5.29. Consider a system S with input A. If the input has a v.b.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼vb

〈f, α〉) and the system provides to the input a θ-stochastic service curve β ∈ F
with bounding function gθ2 ∈ F̄ (i.e., S ∼θ−sc 〈gθ2 , β〉), then the output has
a m.b.c stochastic arrival curve α 
 β with bounding function ft ⊗ gθ2

t (x);
i.e., A∗ ∼mb 〈ft ⊗ gθ2

t , α 
 β〉, where ft = 1
θ1

∫∞
x−θ1t

f(y)dy, and gθ2
t (x) =

gθ2 (x − θ2t) for any θ1, θ2 > 0.

We then consider that the input is initially modeled with a v.b.c. stochastic
arrival curve. In this case, we can first convert it into a v.b.c. stochastic arrival
curve and then into an m.b.c. stochastic arrival curve. Afterwards, we can
apply Theorem 5.21, Corollary 5.22, and Corollary 5.23 and obtain Corollaries
5.30, 5.31, and 5.32, respectively.

Corollary 5.30. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a stochastic service curve β ∈ F
with the bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉), then the output has
an m.b.c. stochastic arrival curve αθ1 
 β with bounding function ft ⊗ g; i.e.,
A∗ ∼mb 〈ft ⊗ g, αθ1 
 β〉 where ft (x) = 1

θ2

∫∞
x−θ2t

f̂ (y) dy, f̂ (y) = f (y) +
1
θ1

∫∞
y

f (z) dz, and αθ1(t) = α(t) + θ1 · t for any θ1, θ2 > 0.

Corollary 5.31. Consider a system S with input A. If the input has a t.a.c.
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a weak stochastic service curve
β ∈ F with bounding function g ∈ F̄ (i.e., S ∼ws 〈g, β〉), then the output
has a m.b.c stochastic arrival curve αθ1 
 β with bounding function ft ⊗ gθ2 ;
i.e., A∗ ∼mb 〈ft ⊗ gθ2 , αθ1 
 β〉, where ft (x) = 1

θ3

∫∞
x−θ3t

f̂ (y) dy and f̂ (y) =
f (y) + 1

θ1

∫∞
y

f (z) dz, gθ2 (x) = 1
θ2

∫∞
x−θ2t

g (y) dy, and αθ1(t) = α(t) + θ1 · t
for any θ1, θ2, θ3 > 0.
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Corollary 5.32. Consider a system S with input A. If the input has a t.a.c
stochastic arrival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A ∼ta

〈f, α〉) and the system provides to the input a θ-stochastic service curve β ∈ F
with bounding function gθ2 ∈ F̄ (i.e., S ∼θ−sc 〈gθ2 , β〉), then the output has
an m.b.c stochastic arrival curve αθ1 
 β with bounding function ft ⊗ gθ2 ;
i.e, A∗ ∼mb 〈ft ⊗ gθ2

t , αθ1 
 β〉, where ft (x) = 1
θ3

∫∞
x−θ3t

f̂ (y) dy and f̂ (y) =
f (y) + 1

θ1

∫∞
y

f (z) dz, gθ2
t (x) = gθ2 (x − θ2t), and αθ1(t) = α(t) + θ1 · t for

any θ1, θ2, θ3 > 0.

5.2.4 Output θ-m.b.c. Stochastic Arrival Curve

Based on the relationships of the θ-m.b.c. stochastic arrival curve with the
m.b.c., v.b.c. and t.a.c. stochastic arrival curves, the output θ-m.b.c. stochas-
tic arrival curve characterization can be readily obtained from results in the
previous subsections, when the input is characterized using an m.b.c., v.b.c.
or t.a.c. stochastic arrival curve. We leave this to the reader to investigate
further.

In addition, when the input is characterized using the θ-m.b.c. stochastic
arrival curve model, we easily obtain from (5.21)

sup
0≤s≤t

[
sup

0≤u≤s
[A∗(u, s) − α 
 β(s − u)] − θ(t − s)

]

≤ sup
0≤s≤t

[
sup

0≤u≤s
[A(u, s) − α(s − u)] − θ(t − s)

]
+ sup

0≤s≤t
[A ⊗ β(s) − A∗(s)], (5.27)

from which we have the following result.

Theorem 5.33. Consider a system S with input A. If the input has an m.b.c.
or θ-m.b.c. stochastic arrival curve α ∈ F , with bounding function f ∈ F̄
(i.e., A ∼sac 〈f, α〉, where ∼sac can be either ∼mb or ∼θ−mb), and the system
provides to the input a stochastic service curve β ∈ F with bounding function
g ∈ F̄ , (i.e. S ∼sc 〈g, β〉), then the output has a θ-m.b.c. stochastic arrival
curve α 
 β with bounding function f ⊗ g, i.e., A∗ ∼θ−mb 〈f ⊗ g, α 
 β〉.

Then, based on the relationship between the stochastic service curve and
θ-stochastic service curve, the following result is obtained.

Corollary 5.34. Consider a system S with input A. If the input has a θ-
m.b.c. or m.b.c. stochastic arrival curve α ∈ F with bounding function f ∈ F̄
(i.e., A ∼sac 〈f, α〉, where ∼saccan be either ∼θ−mb or ∼mb), and the system
provides to the input a θ-stochastic service curve β ∈ F with bounding function
gθ ∈ F̄ (i.e. S ∼θ−sc 〈g, β〉), then the output has a θ-m.b.c. stochastic arrival
curve α
 β with bounding function f ⊗ gθ

t (x); i.e., A∗ ∼θ−mb 〈f ⊗ gθ
t , α
β〉,

where gθ
t (x) = gθ(x − θ · t).
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The following corollary is based on Theorem 5.33 and the relationship
between the stochastic service curve and weak stochastic service curve.

Corollary 5.35. Consider a system S with input A. If the input has a θ-
m.b.c. or m.b.c. stochastic arrival curve α ∈ F with bounding function f ∈ F̄
(i.e., A ∼sac 〈f, α〉, where ∼sac can be either ∼θ−mb or ∼mb) and the system
provides to the input a weak stochastic service curve β ∈ F with bounding
function g ∈ Ĝ (i.e., S ∼ws 〈g, β〉), then the output has a θ-m.b.c. stochastic
arrival curve α 
 β−θ with bounding function f ⊗ gθ

t (x); i.e., A∗ ∼θ−mb 〈f ⊗
gθ

t , α 
 β−θ〉, where β−θ(t) = β(t) − θ · t and gθ
t (x) = 1

θ

∫
x−θ·t g(y)dy for any

θ > 0.

5.3 Concatenation Property

This section presents the concatenation property of the stochastic service
curve, θ-stochastic service curve, and weak stochastic service curve for sto-
chastic network calculus.

Fig. 5.1. Concatenation property of stochastic service curve
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As illustrated in Figure 5.1, it can be proved that multiple systems in
tandem, each of which provides a stochastic service curve to the input, can
be concatenated and viewed as one system characterized by a stochastic ser-
vice curve. Particularly, we have the following concatenation property of a
stochastic service curve.

Theorem 5.36. Consider a flow passing through a network of N systems in
tandem. If each system n(= 1, 2, . . . , N) provides a stochastic service curve
Sn ∼sc 〈gn, βn〉 to its input, then the network guarantees to the flow a sto-
chastic service curve S ∼sc 〈g, β〉 with

β(t) = β1 ⊗ β2 ⊗ · · · ⊗ βN (t) (5.28)
g(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN (x). (5.29)

Proof. We shall only prove the two-node case, from which the proof can be
easily extended to the N -node case. For the two-node case, the departure of
the first node is the arrival at the second node, so A1∗(t) = A2(t). In addition,
the arrival at the network is the arrival to the first node, or A(t) = A1(t),
and the departure from the network is the departure from the second node,
or A∗(t) = A2∗(t), where A(t) and A∗(t) denote the arrival process at and
departure process from the network, respectively. We then have

sup
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)]

= sup
0≤s≤t

[(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)]. (5.30)

Now let us consider any s, (0 ≤ s ≤ t), for which we get

(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)
= (A1 ⊗ β1) ⊗ β2(s) − A2∗(s)
= inf

0≤u≤s
[A1 ⊗ β1(u) + β2(s − u) − A1∗ (u) + A2 (u)] − A2∗(s)

≤ sup
0≤u≤t

[
A1 ⊗ β1(u) − A1∗ (u)

]
+ inf

0≤u≤s
[A2 (u) + β2(s − u)] − A2∗(s)

= sup
0≤u≤t

[
A1 ⊗ β1(u) − A1∗ (u)

]
+ A2 ⊗ β (s) − A2∗(s). (5.31)

Applying (5.31) to (5.30), we obtain

sup
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)]

≤ sup
0≤u≤t

[A1 ⊗ β1(u) − A1∗(u)] + sup
0≤u≤t

[A2 ⊗ β2(u) − A2∗(u)], (5.32)

and with this, since both nodes provide a stochastic service curve to their
input, the theorem follows from Lemma 1.5 and the definition of a stochastic
service curve. ��
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In deriving (5.31), we have proved [(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)] ≤
sup0≤u≤s[A1 ⊗ β1(u) − A1∗(u)] + sup0≤u≤s[A2 ⊗ β2(u) − A2∗(u)] for all
s ≥ 0. However, if we want to prove the concatenation property for a weak
stochastic service curve, we need to prove [(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)] ≤
[A1 ⊗ β1(s) − A1∗(s)] + [A2 ⊗ β2(s) − A2∗(s)] for all s ≥ 0, which is difficult
to obtain and does not hold in general. This explains why a weak stochastic
service curve does not have property (P.2) when servers only provide weak
stochastic service curves.

Since a stochastic service curve implies a weak stochastic service curve, the
following result follows immediately from Theorem 5.36, particularly (5.31).

Corollary 5.37. Consider a flow passing through a network of N systems
in tandem. If each system n(= 1, 2, . . . , N − 1) provides a stochastic service
curve Sn ∼sc 〈gn, βn〉, and system N provides a weak stochastic service curve
SN ∼ws 〈gN , βN 〉 to their input, then the network guarantees to the flow a
weak stochastic service curve S ∼ws 〈g, β〉 with

β(t) = β1 ⊗ β2 ⊗ · · · ⊗ βN (t), (5.33)
g(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN (x). (5.34)

In the network of tandem systems, if each system provides a θ-stochastic
service curve, the following theorem holds.

Theorem 5.38. Consider a flow passing through a network of N systems in
tandem. If each system n(= 1, 2, . . . , N) provides a θ-stochastic service curve
Sn ∼θn−sc 〈gn, βn〉 to its input, then, if β ∈ F , the network guarantees to the
flow a weak stochastic service curve S ∼ws 〈g, β〉 with

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t),

g(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN (x),

where βn
−(n−1)θ(t) = βn(t) − (n − 1)θ, n = 1, . . . , N , for any θ > 0.

Theorem 5.38 is proved by iteratively applying the following result.

Lemma 5.39. Consider any functions A(t), A∗(t), b(t), c(t), d(t), e(t). The fol-
lowing relationships hold:

A ⊗ b ⊗ c(t) ≤ sup
0≤s≤t

[A ⊗ b(s) − A∗(s) − θ · (t − s)] + A∗ ⊗ cθ(t), (5.35)

[d ⊗ e]θ (t) = dθ ⊗ eθ(t), (5.36)
[d ⊗ e]−θ (t) = d−θ ⊗ e−θ(t), (5.37)

for any θ ≥ 0, where αθ(t) = α(t) + θ · t, α−θ(t) = α(t) − θ · t.
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Proof. For (5.35), we have

A ⊗ b ⊗ c(t)
= inf

0≤s≤t
{A ⊗ b(s) − A∗(s) − θ · (t − s) + A∗(s) + c(t − s) + θ · (t − s)}

≤ sup
0≤s≤t

[A ⊗ b(s) − A∗(s) − θ · (t − s)] + A∗ ⊗ cθ(t).

For (5.36), we have

[d ⊗ e]θ (t) = d ⊗ e(t) + θ · (t)
= inf

0≤s≤t
{d(s) + θ · s + e(t − s) + θ · (t − s)}

= inf
0≤s≤t

{dθ(s) + eθ(t − s)} = dθ ⊗ eθ(t)

and (5.37) can be verified similarly. ��
Lemma 5.39 may be used iteratively. For example, letting c(t) = d ⊗ e(t)

in (5.35), we immediately obtain from (5.36)

A⊗b⊗(d⊗e)(t) ≤ sup
0≤s≤t

[A⊗b(s)−A∗(s)−θ ·(t−s)]+A∗⊗dθ⊗eθ(t). (5.38)

By iteratively applying Lemma 5.39, we can get

A ⊗ β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t) − A∗(t)

≤ sup
0≤s≤t

[
A1 ⊗ β1(s) − A1∗(s) − θ · (t − s)

]
+ sup

0≤s≤t

[
A2 ⊗ β2(s) − A2∗(s) − θ · (t − s)

]
+ · · · +

+ sup
0≤s≤t

[
AN−1 ⊗ βN−1(s) − A(N−1)∗(s) − θ · (t − s)

]
+AN ⊗ β (t) − A∗(t), (5.39)

and with this, Theorem 5.38 can be easily verified since AN ⊗ β (t)−A∗(t) ≤
sup0≤s≤t

[
AN−1 ⊗ β2(s) − A(N−1)∗(s) − θ · (t − s)

]
.

Based on the relationship between the weak stochastic service curve and θ-
stochastic service curve shown in Theorem 4.7, the following corollary, which
presents the concatenation property for the θ-stochastic service curve model,
immediately follows from Theorem 5.38.

Corollary 5.40. Consider a flow passing through a network of N systems in
tandem. If each system n(= 1, 2, . . . , N) provides a θ-stochastic service curve
Sn ∼θn−ss 〈gn, βn〉 to its input and g ∈ Ḡ, then the network guarantees to
the flow a θ-stochastic service curve S ∼θ−sc 〈gθ, β〉, where gθ(x) = g(x) +
1
θ g(1)(x) and

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t),

g(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN (x),

with βn
−(n−1)θ(t) = βn(t) − (n − 1)θ, n = 1, . . . , N .
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Also based on the relationship between the weak stochastic service curve
and θ-stochastic service curve shown in Theorem 4.7, the following corol-
lary presents the concatenation property for the weak stochastic service curve
model, obtained particularly from (5.39).

Corollary 5.41. Consider a flow passing through a network of N systems in
tandem. If each system n(= 1, 2, . . . , N) provides weak stochastic service curve
Sn ∼ws 〈gn, βn〉 to its input and g ∈ Ḡ, then the network guarantees to the
flow a weak stochastic service curve S ∼ws 〈g, β〉, where

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t),

g(x) = g1,θ1 ⊗ g2,θ2 ⊗ · · · ⊗ gN,θN (x),

with βn
−(n−1)θ(t) = βn(t) − (n − 1)θ for n = 1, . . . , N , gn,θn(x) = g(x) +

1
θn

∫∞
x

g(y)dy for n=1, . . . , N − 1, and gN,θ(x)=gN (x) for any θ, θ1, · · · ,
θN>0.

5.4 Leftover Service Characterization

This section presents results for characterizing the leftover service under ag-
gregate scheduling. To ease the expression, we consider the case where there
are two flows competing for resources in a system under aggregate scheduling.
Consider a system fed with a flow A that is the aggregation of two constituent
flows A1 and A2. Suppose both the service characterization from the server
and traffic characterization from A2 are given, and we are interested in char-
acterizing the service received by A1, with which per-flow bounds for A1 can
then be easily obtained using earlier results.

For the output, there holds A∗(t) = A∗
1(t) + A∗

2(t). In addition, we have
A∗(t) ≤ A(t), A∗

1(t) ≤ A1(t), and A∗
2(t) ≤ A2(t). We now have for any s ≥ 0

A1 ⊗ (β − α2)(s) − A∗
1(s)

= inf
0≤u≤s

[A(u) + β(s − u) − α2(s − u) − A2(u)] − A∗(s) + A∗
2(s)

≤ [A ⊗ β(s) − A∗(s)] + A2(s) − inf
0≤u≤s

[A2(u) + α2(s − u)]

= [A ⊗ β(s) − A∗(s)] + sup
0≤u≤s

[A2(u, s) − α2(s − u)]. (5.40)

5.4.1 Leftover Weak Stochastic Service Curve

From (5.40), together with the fact that both the m.b.c SAC and θ-m.b.c
SAC imply v.b.c. SAC and both the SSC and θ-SSC imply a weak SSC, the
following theorem can be easily verified.
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Theorem 5.42. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a v.b.c. (or m.b.c. or
θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e.,
A2 ∼sac 〈f2, α2〉), where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb) and the
system provides to the input a weak stochastic service curve (or a stochastic
service curve or a θ-stochastic service curve) β ∈ F with bounding function
g ∈ F̄ ; i.e., S ∼ssc 〈g, β〉 where ∼ssc is one of either ∼ws or ∼sc and ∼θ−sc.
Then, if β − α2 ∈ F , A1 receives a weak stochastic service curve β − α2 with
bounding function f2 ⊗ g(x); i.e., S1 ∼ws 〈f2 ⊗ g(x), β − α2〉.

Based on the relationship between the t.a.c. SAC and v.b.c. SAC, we can
obtain the following result from Theorem 5.42.

Corollary 5.43. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a t.a.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼ta 〈f2, α2〉) and the
system provides to the input a weak stochastic service curve (or a stochastic
service curve or a θ-stochastic service curve) β ∈ F with bounding function
g ∈ F̂ ; i.e., S ∼ssc 〈g, β〉, where ∼ssc is one of either ∼ws or ∼sc and ∼θ−sc.
Then, if β − α2,θ ∈ F , A1 receives a weak stochastic service curve β − α2,θ

with bounding function fθ
2 ⊗ g(x); i.e., S1 ∼ws 〈fθ

2 ⊗ g(x), β − α2,θ〉, where
fθ
2 = f2 (x) + 1

θ

∫∞
x

f2(y)dy and α2,θ(t) = α(t) + θ · t for any θ > 0.

Since a deterministic service curve is a special case of a stochastic service
curve, we have the following result.

Corollary 5.44. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a v.b.c. (or m.b.c., or
θ-m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e.,
A2 ∼sac 〈f2, α2〉, where ∼sac is one of either ∼vb, ∼mb, or ∼θ−mb. In addition,
the system provides to the input a deterministic service curve β ∈ F . Then, if
β −α2 ∈ F , A1 receives a weak stochastic service curve β −α2 with bounding
function f2; i.e., S1 ∼ws 〈f2, β − α2〉.

Corollary 5.44 can be easily verified since 0⊗f2(x)= min0≤u≤x [0+f2 (u)] ≤
f2 (x). An important implication of this corollary is that a deterministic server
with a deterministic service curve can be considered as a stochastic server with
weak stochastic service curve for each input flow. This property is very useful
for deriving stochastic QoS bounds per-flow under aggregate scheduling since
there are many types of servers that provide a deterministic service curve
as, introduced in Chapter 2.

5.4.2 Leftover Stochastic Service Curve

From (5.40), we easily get
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sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s)]

= A1 ⊗ (β − α2)(s0) − A∗
1 (s0)

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] + sup
0≤s≤t

sup
0≤u≤s

[A2(u, s) − α2(s − u)], (5.41)

and with this, the following theorem can be verified.

Theorem 5.45. Consider a system S with input A that is the aggregation
of two constituent flows, A1 and A2. Suppose A2 has an m.b.c stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼mb 〈f2, α2〉)
and the system provides to the input a stochastic service curve β ∈ F with
bounding function g ∈ F̄ ; (i.e., S ∼sc 〈g, β〉). Then, if β − α2 ∈ F , A1

receives a stochastic service curve β − α2 with bounding function f2 ⊗ g; i.e.,
S1 ∼sc 〈f2 ⊗ g, β − α2〉.

With Theorem 5.45 and based on the relationship between the weak sto-
chastic service curve and stochastic service curve, Corollary 5.46 is obtained.

Corollary 5.46. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has an m.b.c. stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼mb 〈f2, α2〉)
and the system provides to the input a weak stochastic service curve β ∈ F
with bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉). Then, if β − α2 ∈ F , A1

receives a stochastic service curve β−α2 with bounding function f2⊗gθ
t ; (i.e.,

S1 ∼sc 〈f2 ⊗ gθ
t , β − α2〉), where gθ

t = 1
θ

∫∞
x−θt

g (y) dy for any θ > 0.

In addition, based on the relationship between the θ-stochastic service
curve and stochastic service curve, the following result is obtained.

Corollary 5.47. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has an m.b.c. stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼mb 〈f2, α2〉)
and the system provides to the input a θ–stochastic service curve β ∈ F with
bounding function gθ ∈ F̄ (i.e., S ∼θ−sc 〈gθ, β〉). Then, if β − α2 ∈ F , A1

receives a stochastic service curve β−α2 with bounding function f2 ⊗ gθ
t (i.e.,

S1 ∼sc 〈f2 ⊗ gt(x), β − α2〉), where gθ
t = gθ (x − θ · t) for any θ > 0.

Corresponding to Theorem 5.45, Corollary 5.46, and Corollary 5.47, the
following results are obtained based on the relationship between the v.b.c
stochastic arrival curve and m.b.c stochastic arrival curve.

Corollary 5.48. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼vb 〈f2, α2〉) and the
system provides to the input a stochastic service curve β ∈ F with bounding
function g ∈ F̄ (i.e., S ∼sc 〈g, β〉). Then, if β − α2 ∈ F , A1 receives a
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stochastic service curve β−α2,θ with bounding function fθ
2,t⊗g(x) (i.e., S1 ∼sc

〈fθ
2,t ⊗ g(x), β−α2,θ〉), where fθ

2,t (x) = 1
θ

∫∞
x−θt

f2 (y) dy, and α2,θ(t) = α(t)+
θ · t for any θ > 0.

Corollary 5.49. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼vb 〈f2, α2〉) and the
system provides to the input a θ-stochastic service curve β ∈ F with bounding
function gθ ∈ F̄ ; i.e., S ∼θ−sc 〈gθ, β〉. Then, if β − α2 ∈ F , A1 receives a
stochastic service curve β−α2,θ with bounding function fθ

2,t⊗gt(x); i.e., S1 ∼sc

〈fθ
2,t ⊗ gθ

t , β − α2〉, where fθ
2,t (x) = 1

θ2

∫∞
x−θ2t

f2 (y) dy, α2,θ(t) = α(t) + θ2 · t,
and gθ

t = gθ (x − θ1 · t) for any θ1, θ2 > 0.

Corollary 5.50. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼vb 〈f2, α2〉) and the sys-
tem provides to the input a weak stochastic service curve β ∈ F with bounding
function g ∈ Ḡ; i.e., S ∼ws 〈g, β〉. Then, if β − α2 ∈ F , A1 receives a sto-
chastic service curve β −α2,θ with bounding function fθ

2,t ⊗ gθ
t (x), i.e. S1 ∼sc

〈fθ
2,t ⊗ gt, β − α2〉, where fθ

2,t (x) = 1
θ2

∫∞
x−θ2t

f2 (y) dy, α2,θ(t) = α(t) + θ2 · t,
and gθ

t = 1
θ1

∫∞
x−θ1t

g (y) dy for any θ1, θ2 > 0.

Similarly, the following results correspond to Theorem 5.45, Corollaries
5.46 and 5.47 and are obtained based on the relationship between the θ-m.b.c.
stochastic arrival curve and m.b.c. stochastic arrival curve.

Corollary 5.51. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a θ-m.b.c stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼θ−mb 〈fθ

2 , α2〉)
and the system provides to the input a stochastic service curve β ∈ F with
bounding function g ∈ F̄ ; i.e., S ∼sc 〈g, β〉. Then, if β − α2 ∈ F , A1 receives
a stochastic service curve β − α2 with bounding function fθ

2,t ⊗ g; i.e., S1 ∼sc

〈fθ
2,t ⊗ g, β − α2〉, where fθ

2,t (x) = fθ
2 (x − θt) for any θ > 0.

Corollary 5.52. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a θ-m.b.c. stochastic
arrival curve α ∈ F with bounding function f ∈ F̄ ; (i.e., A2 ∼θ−mb 〈fθ

2 , α2〉)
and the system provides to the input a θ–stochastic service curve β ∈ F with
bounding function gθ ∈ F̄ ; i.e., S ∼sc 〈gθ, β〉. Then, if β − α2 ∈ F , A1

receives a stochastic service curve β−α2 with bounding function fθ
2,t⊗gθ

t ; i.e.,
S1 ∼sc 〈fθ

2,t ⊗ gθ
t , β −α2〉, where fθ

2,t (x) = fθ2
2 (x − θ2t) and gθ

t = gθ (x − θ1t)
for any θ1, θ2 > 0.

Corollary 5.53. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a θ-m.b.c stochastic arrival
curve α ∈ F with bounding function f ∈ F̄ , i.e. A2 ∼θ−mb 〈fθ

2 , α2〉, and
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the system provides to the input a weak stochastic service curve β ∈ F with
bounding function g ∈ F̄ , i.e. S ∼ws 〈g, β〉. Then, if β − α2 ∈ F , A1 receives
a stochastic service curve β −α2 with bounding function fθ

2,t ⊗ gθ
t , i.e. S1 ∼sc

〈fθ
2,t⊗gθ

t , β−α2〉, where fθ
2,t (x) = fθ

2 (x − θ2t) and gθ
t = 1

θ1

∫∞
x−θ1t

gθ(y)dy for
any θ1, θ2 > 0.

Finally, we suppose the input A2 is characterized using a t.a.c. stochastic
arrival curve. The following results correspond to Theorem 5.45, Corollary
5.46, and Corollary 5.47 and are similarly obtained based on the relationship
between the t.a.c. stochastic arrival curve and m.b.c. stochastic arrival curve.

Corollary 5.54. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼ta 〈f2, α2〉) and the
system provides to the input a stochastic service curve β ∈ F with bounding
function g ∈ F̄ ; i.e., S ∼sc 〈g, β〉. Then, if β−α2 ∈ F , A1 receives a stochastic
service curve β−α2,θ with bounding function fθ

2,t⊗g; i.e., S1 ∼sc 〈fθ
2,t⊗g, β−

α2,θ〉, where fθ
2,t (x) = 1

θ2

∫∞
x−θ2t

f̂2 (y) dy, f̂2 (y) = f (y) + 1
θ1

∫∞
y

f (z) dz, and
α2,θ(t) = α2(t) + θ1 · t for any θ1, θ2 > 0.

Corollary 5.55. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼ta 〈f2, α2〉) and the
system provides to the input a θ-stochastic service curve β ∈ F with bounding
function gθ ∈ F̄ ; (i.e., S ∼θ−sc 〈gθ, β〉). Then, if β − α2 ∈ F , A1 receives
a stochastic service curve β − α2,θ with bounding function fθ

2,t ⊗ gθ
t ; (i.e.,

S1 ∼sc 〈fθ
2,t ⊗ gθ

t , β − α2,θ〉), where fθ
2,t (x) = 1

θ2

∫∞
x−θ2t

f̂2 (y) dy, f̂2 (y) =
f (y) + 1

θ1

∫∞
y

f (z) dz, gθ
t = gθ (x − θ3t), and α2,θ(t) = α2(t) + θ1 · t for any

θ1, θ2, θ3 > 0.

Corollary 5.56. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c. stochastic ar-
rival curve α ∈ F with bounding function f ∈ Ḡ (i.e., A2 ∼ta 〈f2, α2〉) and
the system provides to the input a weak stochastic service curve β ∈ F with
bounding function g ∈ Ḡ (i.e., S ∼ws 〈g, β〉). Then, if β − α2 ∈ F , A1 re-
ceives a stochastic service curve β − α2,θ with bounding function fθ

2,t ⊗ gθ
t ;

(i.e., S1 ∼sc 〈fθ
2,t ⊗gθ

t , β−α2,θ〉), where fθ
2,t (x) = 1

θ2

∫∞
x−θ2t

f̂2 (y) dy, f̂2 (y) =
f (y) + 1

θ1

∫∞
y

f (z) dz, gθ
t = 1

θ3

∫∞
x−θ3t

g (y) dy, and α2,θ(t) = α2(t) + θ1 · t for
any θ1, θ2, θ3 > 0.

5.4.3 Leftover θ-Stochastic Service Curve

From (5.40), we also obtain, for any θ1, θ2 > 0 and θ = θ1 + θ2,



106 5 Basic Properties of Stochastic Network Calculus

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s) − θ (t − s)]

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ1 (t − s)]

+ sup
0≤s≤t

[
sup

0≤u≤s
[A2(u, s) − α2(s − u)] − θ2 (t − s)

]
(5.42)

and with this and the relationship between the m.b.c. SAC and θ-m.b.c. SAC
and the relationship between the stochastic service curve and θ-stochastic
service curve, the following theorem can be easily verified.

Theorem 5.57. Consider a system S with input A that is the aggrega-
tion of two constituent flows A1 and A2. Suppose A2 has an m.b.c. (or θ-
m.b.c.) stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e.,
A2 ∼mb 〈f2, α2〉 (or A2 ∼θ−mb 〈f2, α2〉)) and the system provides to the input
a stochastic service curve (or θ-stochastic service curve) β ∈ F with bounding
function g ∈ F̄ (i.e., S ∼sc 〈g, β〉 (or S ∼θ−sc 〈g, β〉)). Then, if β−α2 ∈ F , A1

receives a θ-stochastic service curve β − α2 with bounding function f2 ⊗ g(x);
i.e., S1 ∼θ−sc 〈f2 ⊗ g(x), β − α2〉.

Based on the relationship between the weak stochastic service curve and
θ-stochastic service curve, the following corollary is obtained.

Corollary 5.58. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has an m.b.c. (or θ-m.b.c.)
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ (i.e., A2 ∼mb

〈f2, α2〉 (or A2 ∼θ−mb 〈f2, α2〉)) and the system provides to the input a weak
stochastic service curve β ∈ F with bounding function g ∈ Ḡ, (i.e., S ∼ws

〈g, β〉). Then, if β − α2 ∈ F , A1 receives a θ-stochastic service curve β − α2

with bounding function f2 ⊗ gθ(x); i.e., S1 ∼θ−sc 〈f2 ⊗ gθ(x), β − α2〉, where
gθ = g (x) + 1

θ

∫∞
x

g(y)dy for any θ > 0.

Corresponding to Theorem 5.57 and Corollary 5.58, Corollaries 5.59 and
5.60 are obtained based on the relationship between the v.b.c. stochastic ar-
rival curve and θ–m.b.c. stochastic arrival curve.

Corollary 5.59. Consider a system S with input A that is the aggregation of
two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ, i.e. A2 ∼vb 〈f2, α2〉 and the system
provides to the input a stochastic service curve (or θ-stochastic service curve)
β ∈ F with bounding function g ∈ F̄ (i.e., S ∼sc 〈g, β〉 (or S ∼θ−sc 〈g, β〉)).
Then, if β − α2,θ ∈ F , A1 receives a θ-stochastic service curve β − α2,θ with
bounding function fθ

2 ⊗ g; i.e., S1 ∼θ−sc 〈fθ
2 ⊗ g(x), β − α2,θ〉, where fθ

2 =
f2 (x) + 1

θ

∫∞
x

f2(y)dy and α2,θ (t) = α2 (t) + θt for any θ > 0.

Corollary 5.60. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a v.b.c. stochastic ar-
rival curve α ∈ F with bounding function f ∈ Ḡ; (i.e., A2 ∼vb 〈f2, α2〉)
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and the system provides to the input a weak stochastic service curve β ∈ F
with bounding function g ∈ Ḡ; (i.e., S ∼ws 〈g, β〉). Then, if β − α2,θ ∈ F ,
A1 receives a θ-stochastic service curve β − α2,θ with bounding function
fθ
2 ⊗ gθ; i.e., S1 ∼θ−sc 〈fθ

2 ⊗ gθ, β −α2,θ〉, where fθ
2 = f2 (x)+ 1

θ2

∫∞
x

f2(y)dy,
gθ1 = g (x) + 1

θ1

∫∞
x

g(y)dy, and α2,θ (t) = α2 (t) + θ2t for any θ1, θ2 > 0.

Finally, based on the relationship between the t.a.c. stochastic arrival curve
and θ-m.b.c. stochastic arrival curve, we can have Corollaries 5.61 and 5.62,
which correspond to Theorem 5.57 and Corollary 5.58.

Corollary 5.61. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c stochastic arrival
curve α ∈ F with bounding function f ∈ Ḡ; (i.e., A2 ∼ta 〈f2, α2〉) and the
system provides to the input a stochastic service curve (or θ-stochastic service
curve) β ∈ F with bounding function g ∈ F̄ ; i.e., S ∼sc 〈g, β〉 (or S ∼θ−sc

〈g, β〉). Then, if β − α2,θ ∈ F , A1 receives a θ-stochastic service curve β −
α2,θ with bounding function fθ

2 ⊗ g, i.e., S1 ∼θ−sc 〈fθ
2 ⊗ g, β − α2,θ〉, where

fθ
2 = f̂2 (x) + 1

θ2

∫∞
x

f̂2(y)dy, f̂2 (y) = f (y) + 1
θ1

∫∞
y

f (z) dz, and α2,θ2 (t) =
α2 (t) + θ2t, for any θ1, θ2 > 0.

Corollary 5.62. Consider a system S with input A that is the aggregation
of two constituent flows A1 and A2. Suppose A2 has a t.a.c stochastic ar-
rival curve α ∈ F with bounding function f ∈ Ḡ; (i.e., A2 ∼ta 〈f2, α2〉) and
the system provides to the input a weak stochastic service curve β ∈ F with
bounding function g ∈ Ḡ; i.e., S ∼ws 〈g, β〉. Then, if β − α2,θ ∈ F , A1 re-
ceives a θ-stochastic service curve β − α2,θ with bounding function fθ

2 ⊗ gθ;
i.e., S1 ∼θ−sc 〈fθ

2 ⊗gθ, β−α2,θ〉, where fθ2
2 = f̂2 (x)+ 1

θ2

∫∞
x

f̂2(y)dy, f̂2 (y) =
f (y)+ 1

θ3

∫∞
y

f (z) dz, and gθ1 = g (x)+ 1
θ1

∫∞
x

g(y)dy and α2,θ (t) = α2 (t)+θ2t
for any θ1, θ2, θ3 > 0.

5.5 Superposition Property

The superposition property means that the superposition of flows can be
represented using the same traffic model. With this property, the aggregate of
(possibly many) individual flows may be considered as a single aggregate flow,
so that the QoS performance for the aggregate can be derived in the same
way as for a single flow. This section discusses the superposition property for
the various stochastic traffic models introduced in Chapter 2.

Consider N flows with arrival processes Ai(t), i = 1, . . . , N . Let A(t) be
the superposition of the N flows. In other words, we have for any s, t ≥ 0,

A(s, s + t) = A1(s, s + t) + · · · + AN (s, s + t).

Then, for any functions αi(t), i = 1, . . . , N , we have
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A(s, s + t) − [α1(t) + · · · + αN (t)]
= [A1(s, s + t) − α1(t)] + · · · + [AN (s, s + t) − αN (t)]. (5.43)

With (5.43), the superposition property of the t.a.c. stochastic arrival curve
can be easily verified.

Theorem 5.63. Consider N flows with arrival processes Ai(t), i = 1, . . . , N ,
respectively. Let A(t) denote the aggregate arrival process. If ∀i, Ai ∼ta

〈fi, αi〉, then A ∼ta 〈f, α〉 with α(t) =
∑N

i=1 αi(t) and f(x) = f1⊗· · ·⊗fN (x).

From (5.43), we can also obtain

sup
0≤s≤t

[A(s, t) − [α1(t − s) + · · · + αN (t − s)]]

≤ sup
0≤s≤t

[A1(s, t) − α1(t − s)] + · · · + sup
0≤s≤t

[AN (s, t) − αN (t − s)], (5.44)

and with this, the superposition property of the v.b.c. stochastic arrival curve
can be derived.

Theorem 5.64. Consider N flows with arrival processes Ai(t), i = 1, . . . , N ,
respectively. Let A(t) denote the aggregate arrival process. If ∀i, Ai ∼vb

〈fi, αi〉, then A ∼vb 〈f, α〉 with α(t) =
∑N

i=1 αi(t) and f(x) = f1⊗· · ·⊗fN (x).

Further, from (5.44), we get

sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − [α1(s − u) + · · · + αN (s − u)]]

≤ sup
0≤s≤t

sup
0≤u≤s

[A1(u, s) − α1(s − u)] + · · ·

+ sup
0≤s≤t

sup
0≤u≤s

[AN (u, s) − αN (s − u)] (5.45)

with which, the superposition property of the m.b.c. stochastic arrival curve
is obtained.

Theorem 5.65. Consider N flows with arrival processes Ai(t), i = 1, . . . , N ,
respectively. Let A(t) denote the aggregate arrival process. If ∀i, Ai ∼mb〈fi, αi〉,
then A ∼mb 〈f, α〉 with α(t) =

∑N
i=1 αi(t) and f(x) = f1 ⊗ · · · ⊗ fN (x).

Also from (5.44), we get for any θ1, . . . , θN > 0 and θ = θ1 + · · · + θN

sup
0≤s≤t

[
sup

0≤u≤s
{A(u, s) − [α1(s − u) + · · · + αN (s − u)]} − θ · (t − s)

]

≤ sup
0≤s≤t

[
sup

0≤u≤s
[A1(u, s) − α1(s − u)] − θ1 · (t − s)

]
+ · · ·

+ sup
0≤s≤t

[
sup

0≤u≤s
[AN (u, s) − αN (s − u)] − θN · (t − s)

]
, (5.46)

and with this, the superposition property of the m.b.c. stochastic arrival curve
is obtained.
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Theorem 5.66. Consider N flows with arrival processes Ai(t), i = 1, . . . , N ,
respectively. Let A(t) denote the aggregate arrival process. If ∀i, Ai ∼θ−mb

〈fi, αi〉, then A ∼θ−mb 〈fθ, α〉 with α(t) =
∑N

i=1 αi(t), and fθ(x) = fθ1
1 ⊗

· · · ⊗ fθN

N (x) for any θ1, . . . , θN > 0 and θ = θ1 + · · · + θN .

5.6 Scaling of End-to-End Delay Bound

As discussed earlier in Chapter 2, when we consider the deterministic network
with n nodes in tandem, we see that the end-to-end delay bound obtained is
a scaling in O (n2

)
from the node-by-node analysis approach. However, with

the concatenation property of the service curve, the end-to-end delay bound
is a scaling in O (n), which gives a much tighter bound. The scaling property
provides us an important metric for evaluating the tightness and scalability
of performance bounds under different approaches.

In this section, we investigate the scaling property of end-to-end delay
bounds under a stochastic setting to demonstrate the use of stochastic network
calculus results introduced in this chapter.

Consider the scenario shown in Figure 5.2.A. Flow F passes n servers in
tandem. Each server is a constant-rate server with capacity C. At each server,
a cross-flow joins and leaves. Assume flow F and all cross-flows have the same
m.b.c. stochastic arrival curve (SAC) A ∼mb 〈r, f〉 with f (x) = ae−bx. To
ensure the stability of the system, we also assume 2r < C. We are interested
in deriving the stochastic end-to-end delay bound for flow F and investigate
how the delay bound increases as the number of servers increases.

To facilitate the explanation, we introduce a useful lemma as follows, which
can also be found from [24].

Lemma 5.67. For any positive numbers ak, bk, k = 1, · · ·,K and any x ≥ 0,
we have

inf
x1+···+xK=x

K∑
k=1

ake−bkxk = e
−x
w

K∏
k=1

(akbkw)
1

bkw ,

where w =
∑K

k=1
1
bk

.

Proof. Let
akbke−bkxk = λ, k = 1, · · ·,K.

Then,
K∑

k=1

ake−bkxk =
K∑

k=1

λ

bk
. (5.47)

Let w =
∑K

k=1
1
bk

and pk = 1
bkw . Since

∑K
i=1 pi = 1, we have

λ =
K∏

k=1

λpk = e−x/w
K∏

k=1

(
ak

wpk

)pk

. (5.48)
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Fig. 5.2. Stochastic servers in tandem

Combining (5.47) and (5.48), this lemma follows. ��
We now derive end-to-end stochastic delay bounds for the flow F . We first

base the derivation on the concatenation property and then derive if using the
node-by-node analysis approach.

5.6.1 Delay Bound From the Concatenation Property

As shown in Figure 5.2.B, according to Theorem 5.45, each node provides a
leftover stochastic service curve

Si ∼sc

〈
βi, Γ i

〉
,

where
βi (t) = (C − r) t

and
Γ i (x) = f (x) .
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Then, as shown in Figure 5.2 C, according to the concatenation property
of the stochastic service curve, we have

Snet ∼sc (βnet, Γnet) ,

where
βnet = β1 ⊗ · · · ⊗ βn = (C − r) t

and
fnet = Γ 1 ⊗ · · · ⊗ Γn.

In addition, according to Theorem 5.4, we can have the stochastic end-to-
end delay bound for flow F

P {D > h (α + x, βnet)} ≤ f ⊗ Γ 1 ⊗ · · · ⊗ Γn(x),

and with this and Lemma 5.67, we have

P

{
D >

x

C − r

}
≤ e−

xb
n+1 (a(n + 1)) . (5.49)

Then, we determine the delay bound d such that P {D > d} ≤ ε, where ε
is a small delay bound violation probability.

Let d = x
C−r and set the right side of (5.49) equal to ε. We have for the

delay bound d

d =
n + 1

(C − r) b
log

(a(n + 1))
ε

. (5.50)

It is found from (5.50) that the delay bound derived from the concatenation
property scales in O (n log n), where n is the number of nodes the flow passes
through.

5.6.2 Delay Bound from Node-by-Node Analysis

Now we derive the stochastic end-to-end delay bound by using the node-by-
node analysis approach. As shown in Figure 5.2.B, for the first node, according
to Theorem 5.4, we can have the following delay bound at the first node

P

{
D1 >

x

C − r

}
≤ f ⊗ Γ 1 (x) .

For the second node, we need to have the input burstiness of flow F at the
second node, which is the output burstiness of flow F at the first node. Accord-
ing to Theorem 5.21, the input of flow F has an m.b.c. SAC

〈
f ⊗ Γ 1 (x) , r

〉
.

Then we have the following delay bound at the second node:

P

{
D2 >

x

C − r

}
≤ f ⊗ Γ 1 ⊗ Γ 2 (x) .
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Similarly, we have the following delay bound at each node i on the path

P

{
Di >

x

C − r

}
≤ f ⊗ Γ 1 ⊗ · · · ⊗ Γ i,

and with this, following the same approach as in getting (5.49), we obtain

P

{
Di >

x

C − r

}
≤ e−

xb
i+1 (a(i + 1)) . (5.51)

Now we consider the distribution of D1 + D2 + · · · + Dn. According to
Lemma 5.67, we have

P

{
D >

x

C − r

}
≤ e−

2xb
(n+1)(n+3)

(
a
(n + 1)(n + 3)

2

)
(5.52)

Then, we determine the delay bound d such that P {D > d} ≤ ε, where ε
is a small delay bound violation probability.

Letting d = x
C−r and setting the right side of (5.49) equal to ε, we have

d =
(n + 1)(n + 3)

2 (C − r) b
log

(
a (n+1)(n+3)

2

)
ε

. (5.53)

It is found from (5.53) that the delay bound derived through node-by-
node analysis scales in O (n2 log n

)
. Comparing this with the stochastic delay

bound obtained in (5.50) by using the concatenation property, it is clear that
the one in (5.50) is much better than the one obtained in (5.53) through
node-by-node analysis.

5.7 Calculus on Traffic and Service Envelope Processes

In Chapters 2 and 3, the traffic envelope process and service envelope process
respectively were introduced. This section presents results based on these
processes. Theorems 5.68 to 5.73 correspond to the five basic properties.
Their proofs follow similarly from their deterministic counterpart theorems
and the definitions of stochastic envelope process in Definition 3.28, service
envelope process in Definition 4.15, and strict service envelope process in
Definition 4.16.

Theorem 5.68 (Delay Bound). Consider a system that provides a ser-
vice envelope process Ŝ(t) to the input flow A(t). Suppose A has a stochastic
envelope process Â. Then, the delay D (t) of the flow at time t satisfies

D (t) ≤ h
(
Â(t), Ŝ(t)

)
.
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Theorem 5.69 (Backlog Bound). Consider a system that provides a ser-
vice envelope process Ŝ(t) to the input flow A(t). Suppose A has a stochastic
envelope process Â. Then, the backlog B (t) of the flow at time t satisfies

B (t) ≤ Â 
 Ŝ (0) .

Theorem 5.70 (Output Characterization). Consider a system that pro-
vides a service envelope process Ŝ(t) to the input flow A(t). Suppose A has a
stochastic envelope process Â. Then, the output A∗ has a stochastic envelope
process Â∗, i.e., for all s, t ≥ 0, A∗(s, s + t) ≤ Â∗(t), where

Â∗(t) = Â 
 Ŝ(t).

Theorem 5.71 (Concatenation Property). Consider a flow passing
through systems Sh, h = 1, . . . , H, in sequence. Suppose each system Sh

provides a service envelope process Ŝh(t) to the input. Then the concatenation
of these systems offers a service envelope process Ŝ to the flow, where

Ŝ(t) = Ŝ1 ⊗ Ŝ2 · · · ⊗ŜH(t). (5.54)

Theorem 5.72 (Leftover Service). Consider a system serving an aggre-
gate of two (possibly aggregate) flows A1 and A2. Assume the system provides
a service envelope process Ŝ to the aggregate, and A2 has a stochastic envelope
process Â2. Then, the system offers to the flow A1 a service envelope process
Ŝ1(t), where

Ŝ1(t) = (Ŝ − Â2)(t). (5.55)

Theorem 5.73 (Superposition). Consider the superposition of n flows Ai,
i = 1, . . . , n. If each flow Ai has a stochastic envelope process Âi(t), then
the aggregate flow A =

∑n
i=1 Ai has a stochastic envelope process Â(t) =∑n

i=1 Âi(t).

While looking similar to the corresponding deterministic results,
Theorems 5.68 to 5.73 indeed have critical differences from their determin-
istic counterparts. One is that all envelope processes in Theorems 5.68 to 5.73
are random processes. Due to this, another difference is that in order to use
Theorems 5.68 to 5.73 in real network analysis, the statistical properties of
the various envelope processes have to be known and explored. The third dif-
ference is that to apply Theorems 5.68 to 5.73, strict service envelope process
is often needed instead of service envelope process. This is because, as shown
by its definition, the service envelope process model is dependent on the input
process, which complicates finding the service envelope process. In Chapter 6,
moment generating functions of the various envelope processes will be used
to derive the five basic properties, where strict service envelope processes are
implicitly required and the analysis generally assumes independence between
the envelope processes considered.
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Table 5.1. Properties provided by a combination of traffic model and server model

weak SSC SSC θ-SSC

t.a.c. SAC (P.1), (P.5) (P.1), (P.3), (P.5) (P.1), (P.3), (P.5)

v.b.c. SAC (P.1), (P.4), (P.5) (P.1)–(P.3), (P.5) (P.1), (P.3), (P.5)

m.b.c. SAC (P.1), (P.4), (P.5) (P.1)–(P.5) (P.1)–(P.5)

θ-m.b.c. SAC (P.1), (P.4), (P.5) (P.1), (P.5) (P.1)–(P.5)

5.8 Summary and Bibliographic Comments

In this chapter, we presented the five basic properties of stochastic network
calculus under the various traffic models and server models introduced in
Chapters 3 and 4.

Table 5.1 summarizes the properties that are provided by the combination
of a traffic model, chosen from t.a.c., v.b.c., m.b.c., and θ-m.b.c. stochastic
arrival curve (SAC), and a server model, chosen from weak stochastic service
curve, stochastic service curve (SSC), and θ–stochastic service curve, without
any additional constraints on the traffic model or the server model, where, as
introduced in Chapter 1, (P.1)–(P.5) denote the following properties:

• (P.1) – Service Guarantees
• (P.2) – Output Characterization
• (P.3) – Concatenation Property
• (P.4) – Leftover Service
• (P.5) – Superposition Property

In Chapter 3, we discussed that under the context of network calculus,
many (if not most) traffic models used in the literature [138] [31] [128] [140]
[14] [95] [98] [5] [74] [73] [24] belong to the t.a.c. and/or v.b.c. stochastic arrival
curve. In Chapter 4, many (if not most) server models [93][31][14][95][98][5][24]
were shown to belong to the weak stochastic service curve. Table 5.1 shows
that, without additional constraints, these works can only support part of the
five required properties for stochastic network calculus. In contrast, under the
combination of the m.b.c. stochastic arrival curve and stochastic service curve,
all five basic properties have been proved in this chapter without additional
constraints added to these two models. While appealing, this combination
has a potential problem in the bounding function under the m.b.c. stochastic
arrival curve or stochastic service curve may be dependent on time.

Note that with some additional constraints on the bounding functions in
the models discussed in Table 5.1, one combination may have more properties
among (P.1)–(P.5) than those listed in the table. The most frequently used
constraint in this book is the bounding function belonging to Ḡ. This con-
straint, initially suggested by Starobinski and Sidi [128], is that the bounding
function belongs to a specific subset of F̄ , denoted by Ḡ, which consists of
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all functions in F̄ whose nth-fold integration still belongs to the subset for
any n ≥ 1. Under this constraint, as presented in this chapter, the unlisted
properties among (P.1)–(P.5) can be proved for the combination of the t.a.c.
or v.b.c. stochastic arrival curve and weak stochastic service curve, and par-
ticularly for the combination of a θ-stochastic arrival curve and θ-stochastic
service curve. It is worth highlighting that if the bounding functions consid-
ered are in Ḡ, the set of results for the combination of a θ-stochastic arrival
curve and θ-stochastic service curve can be used as the basis for deriving the
basic properties for all other combinations. Except for combinations where
an m.b.c. stochastic arrival curve and/or stochastic service curve is used,
the results can have bounding functions independent on time. This makes the
θ-stochastic arrival curve and θ-stochastic service curve models attractive.

Another constraint, which was recently proposed by Li, et al. [96], assumes
that there is a timescale T that bounds the convolution in the definition of
a weak stochastic service curve. In [96], Li et al. also discussed network cases
where such timescales exist. As an analogy, we may assume the existence of a
timescale T that bounds the convolution in the m.b.c. stochastic arrival curve
model and stochastic service curve model. Consequently, we conjecture that all
results presented in this chapter under combinations where the m.b.c. stochas-
tic arrival curve and/or stochastic service curve are used will be bounded by
such timescales, and this solves the possibly time-dependent bounding func-
tion problem with the m.b.c. stochastic arrival curve and stochastic service
curve.

Also note that Table 5.1 only provides a comparison of the basic properties
supported by a combination of the four types of stochastic arrival curves and
the three types of stochastic service curves. While we believe they cover a
wide range of traffic models and server models proposed and studied in the
literature as discussed in Chapters 3 and 4, there are other types of traffic
and server models that are not covered by them.

One type uses a sequence of random variables to stochastically bound
the arrival process [87] or the service process [115]. Properties similar to
(P.1), (P.3), (P.4), and (P.5) have been studied [87][115]. These studies gen-
erally need the independence assumption. Under these types of traffic and
service models, several problems remain open. One is the concatenation prop-
erty (P.2), another is the general case analysis, and the third is research-
ing/designing approaches to map known traffic and service characterizations
to the required sequences of random variables.

Another type is built upon moments or moment generating functions. This
type was initially used for traffic (see e.g. Chang [15] and Knightly [85]) and
has also been extended to service (see, e.g., Chang [18], Wu and Negt [133],
and Fidler [44]). The independence assumption is generally required between
arrival and service processes. Extensive studies have been conducted for deriv-
ing the characteristics of a process under this type of model from some known
characterization of the process [15][16][18]. The main challenges for this type
are the concatenation property and the general case analysis. For these, we
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have presented results in Section 3.5 in Chapter 3 that allow us to further
relate known traffic/service characterizations to the traffic and service models
discussed in this book.

Scaling of end-to-end performance bounds has recently attracted research
interest in the context of stochastic network calculus. The purpose is to study
similar scaling properties found in deterministic network calculus. Essentially
the study is related to investigating the concatenation property under stochas-
tic settings. In Section 5.6, it is shown that with the concatenation property,
the end-to-end stochastic delay bound obtained scales in O (n log n). However,
if the node-by-node analysis is used, the bound scales in O (n2 log n

)
. Simi-

lar observations were made by Fidler [44] and Ciucu et al. [25]. It should be
noted that the scalings from the analysis in Section 5.6 and [25] do not assume
the independence between arrival processes and service processes. With the
independence assumption, a scaling of O (n) can indeed be obtained for the
end-to-end stochastic delay bound as discussed by Fidler [44] and as will also
be shown in the next chapter.

All the results in this chapter are proved for the general case where flows
and servers could be dependent. In the next chapter, the independent case will
be investigated, and the investigation can help improve performance bounds
significantly.

Problems

5.1. Consider a server fed with a flow A that is the aggregation of two con-
stituent flows A1 and A2. Suppose the server provides a deterministic service
curve β to the aggregate flow A. Also suppose flows A1 and A2 have v.b.c
stochastic arrival curve Ai ∼vb 〈fi, αi〉, i = 1, 2. Derive the leftover service
curve received by A1 and stochastic delay bound for A1.

5.2. Consider a server fed with a flow A that is the aggregation of two con-
stituent flows A1 and A2. Suppose that the server provides a deterministic
service curve β to the aggregate flow A, and flows A1 and A2 have m.b.c.
stochastic arrival curve Ai ∼mb 〈fi, αi〉, i = 1, 2. Derive the leftover service
curve received by A1.

5.3. Consider a system with three servers S1, S2, and S3 in tandem, where S1

provides a deterministic service curve β1, S2 ∼wc 〈g2, β2〉, and S3 ∼sc 〈g3, β3〉.
Derive an end-to-end service curve for this system.

5.4. Consider a constant-rate server with capacity C fed with a Poisson input
flow with average arrival rate λ. The packet size is exponentially distributed
with mean value μ but limited by a maximum packet size M.

(i) Derive a probabilistic delay bound for the flow using the methods discussed
in this chapter.
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(ii) Derive a delay distribution for the flow using queuing theory, and explain
the difference with the results obtained in (i).

5.5. A server is called a fluctuation constrained server if [93]∫ b

a

C (t) dt ≥ (μ (b − a) − δ)+ ,

where C (t) is the instantaneous output capacity of a server. The server is fed
by constant input traffic with rate ρ.

(i) Derive the backlog bound for the system.
(ii) Derive the delay bound for the system.

5.6. A stochastic process A is called an exponentially bounded bursty (EBB)
process if for any x ≥ 0, [138]

P {A (t) ≥ x} ≤ ae−bx.

Consider a system with an EBB input and a constant-rate server with capacity
C.

(i) Derive the backlog bound for the system.
(ii) Derive the delay bound for the system.

5.7. Prove Theorem 5.68.

5.8. Prove Theorem 5.69.

5.9. Prove Theorem 5.70.

5.10. Prove Theorem 5.71.

5.11. Prove Theorem 5.72.

5.12. Prove Theorem 5.73.

5.13. Suppose traffic is characterized by

E[A(s, s + t) − αε(t)] ≤ ε(t)

and service by [58]
E[A ⊗ βξ(t) − A∗(t)] ≤ ξ(t).

Derive the five basic properties under this combination of traffic model and
server model directly from the definitions of these two models, and discuss
what additional constraints are needed to allow the derivation.

5.14. Based on the basic properties of the various stochastic arrival curve and
stochastic service curve models presented in this chapter, find the five basic
properties for the combination of traffic model and server model introduced
in the previous problem. Compare them with the results obtained from the
previous problem.
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Independent Case Analysis

In this chapter, we exploit the independence between traffic processes and
service processes to improve performance bounds. Two approaches will be
introduced. One is based on the concept of a stochastic strict service process
due to impairment, introduced in Section 4.3. Another is based on the concepts
of traffic and service envelope processes introduced in Section 5.7 and applies
moment generating functions (MGF) for the analysis.

In Chapter 5, various results for stochastic network calculus were pre-
sented. These results were obtained without considering the dependence con-
dition between flows and servers. In this chapter, we focus on independent
case analysis and introduce the five basic properties (P.1)–(P.5) when flows
and servers are independent.

6.1 Introduction

We start with a lemma, which is followed by a simple example to demonstrate
the importance of independent case analysis.

Lemma 6.1. Consider non-negative random variables X and Y . Suppose
they are independent and F̄X(x) ≤ f(x) and F̄Y (x) ≤ g(x), where F̄X(x)
and F̄Y (x), respectively, denote their complementary cummulative distribu-
tion functions (CCDF), and f, g ∈ F̄ . Then, for all x ≥ 0, there holds

P{X + Y > x} ≤ 1 − (f̄ ∗ ḡ)(x), (6.1)

where f̄(x) = 1 − [f(x)]1 and ḡ(x) = 1 − [g(x)]1.

Proof. For independent random variables X and Y , it is well known that
FX+Y = FX ∗FY ≡ ∫ +∞

−∞ FX(x− y)dFY (y). Since X and Y are non-negative,
FX(x) = 0 and FY (x) = 0 for all x < 0. Hence, FX+Y =

∫ x

0
FX(x−y)dFY (y).

Notice that FX , FY , f̄ , and ḡ are wide-sense increasing, f̄ ≤ FX and ḡ ≤ FY ,
and the Stieltjes convolution operation is commutative. Then

Y. Jiang, Y. Liu, Stochastic Network Calculus, 119
DOI: 10.1007/978-1-84800-127-5 6,
c© Springer-Verlag London Limited 2008
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FX ∗ FY (x) =
∫ x

0

FX(x − y)dFY (y)

≥
∫ x

0

f̄(x − y)dFY (y) =
∫ x

0

FY (x − y)df̄(y)

≥
∫ x

0

ḡ(x − y)df̄(y) = (f̄ ∗ ḡ)(x),

and with this and P{X + Y > x} = F̄X+Y = 1 − FX ∗ FY , the lemma is
proved. ��
Example 6.2. In Lemma 1.5, it was proved that P{X + Y > x} ≤ (f ⊗ g)(x).
If X and Y are independent, we then have two bounds for P{X + Y > x},
which are (1.12) and (6.1). Suppose f(x) = g(x) = e−x. With Lemma 1.5, we
obtain

P{X + Y > x} ≤ 2e−x/2,

and with Lemma 6.1, we get

P{X + Y > x} ≤ (1 + x)e−x.

These two bounds are plotted in Figure 6.1. The figure clearly shows that
the bound obtained from Lemma 6.1 is much better than the bound from
Lemma 1.5.
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Fig. 6.1. Comparison of Lemmas 6.1 and 1.5

This example implies that by considering the independence condition, sig-
nificant improvement may be obtained for the result.
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From the example above, we expect that when flows and servers are inde-
pendent in a network, much better results or tighter bounds can be obtained
for properties (P.1)–(P.5). However, except for the superposition property
(P.5), it is not straightforward to obtain properties (P.1)–(P.4) for the inde-
pendent case.

The difficulty relates to the dependences implied in the definitions of the
various stochastic service curve server models introduced in Chapter 4. For
example, the weak stochastic service curve model is defined on the following
inequality that duplicates (4.1):

P{A ⊗ β(t) − A∗(t) > x} ≤ g(x). (6.2)

The definition of the weak stochastic service curve model implies that a weak
stochastic service curve β(t) is generally dependent on the arrival process
A(t) and the output process A∗(t). Similar dependence can be found in the
stochastic service curve model and the θ-the stochastic service curve model,
as well as in the stochastic service envelope process definition.

The difficulty also relates to the inherent dependences found in interme-
diate results obtained by using the analysis approach in the previous chapter.
For example, in (5.26), we obtain

sup
0≤s≤t

sup
0≤u≤s

[A∗(u, s) − α∗(s − u)]

≤ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] + sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] (6.3)

where both sup0≤s≤t sup0≤u≤s[A(u, s) − α(s − u)] and sup0≤s≤t[A ⊗ β(s) −
A∗(s)] are defined to depend on the arrival process A, which further makes
them dependent on each other.

In deterministic network calculus, the dependences mentioned above do
not cause any difficulties in the analysis since only deterministic worst case
scenarios are considered and the dependences need not be taken into account.

In stochastic network calculus, however, the dependences make it diffi-
cult to obtain independent case results directly. For example, even when the
bounds on the complementary probability distribution functions (CPDF) of
the two terms on the right-hand side of (6.3) are given, we cannot apply
Lemma 6.1 to (6.3) since these two terms are inherently dependent, as dis-
cussed above.

In the following section, the concept of a stochastic strict server, which
was introduced earlier in Chapter 4, is used to help decouple the dependences
discussed above. As a result, a further independent case analysis on properties
(P.1)–(P.4) can be conducted.

6.2 Analysis Based on Stochastic Strict Server

In Section 4.3, we introduced the concept of a stochastic strict server . In addi-
tion, we defined a special type of stochastic strict server. In such a stochastic
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server, the stochastic nature of service is due to some random impairment
processes. Particularly, a system is said to be a stochastic strict server pro-
viding strict service curve β̂ ∈ F with impairment process I if, during any
period (s, t], the actual service S(s, t) provided by the system satisfies

S(s, t) ≥ β̂(t − s) − I(s, t). (6.4)

Note that in defining stochastic strict server due to impairment only one
impairment process I is used, which can actually be the superposition of mul-
tiple constituent processes that cause the system to be unable to deliver the
corresponding service to the input considered. Two important types of such
processes are worth highlighting. One is the process describing the actually
impaired service. For example, due to random errors, a wireless channel fails
to deliver the corresponding service to its users. In this case, the error process
can be considered an impairment process. Another important type of processes
that can be viewed as an impairment processes to the flow considered is due
to cross traffic or flows competing service with the flow considered.

Also in Section 4.3, it has been shown that when the stochastic arrival
curve characterization of the impairment process is known, the stochastic
service curve characterization of the stochastic strict server can be found as
shown by Theorems 4.12 and 4.13.

In the rest of this section, we further exploit the concept of a stochastic
strict server due to impairment and present results under independent case
analysis. The focus is on the five basic properties introduced in Chapter 1.

6.2.1 Backlog and Delay Bounds

We start with the backlog bound and delay bound. We proved in (5.5) that

B(t)
≤ sup

0≤s≤t
{A(s, t) − α(t − s)} + sup

t≥0
{α(t) − β(t)} + A ⊗ β(t) − A∗(t). (6.5)

In addition, assuming the server is a stochastic strict server providing strict
service curve β̂ with impairment process I ∼ta 〈g, γ〉, we have from (4.12)
that

A ⊗ β(t) − A∗(t) ≤
(

sup
0≤s≤t

[I(s, t) − γ(t − s)]
)+

, (6.6)

where β(t) = β̂(t) − γ(t). Applying (6.6) to (6.5), we get

B(t) ≤ sup
0≤s≤t

{A(s, t) − α(t − s)} +
(

sup
0≤s≤t

[I(s, t) − γ(t − s)]
)+

+α 
 β(0). (6.7)

If A and I are independent random processes, since α, β, and γ are non-
random functions, the first two terms on the right-hand side of (6.7) are also
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independent. Then, together with the fact the m.b.c. stochastic arrival curve
and θ-m.b.c stochastic arrival curve imply a v.b.c. stochastic arrival curve, we
have the following theorem.

Theorem 6.3. Consider a system S with input A. Let ∼sac be either ∼vb,
∼mb, or ∼θ−mb. Suppose the input has a stochastic arrival curve α ∈ F with
bounding function f ∈ F̄ ; i.e., A ∼sac 〈f, α〉. Also suppose the server is a sto-
chastic strict server providing strict service curve β̂ with impairment process
I ∼sac 〈g, γ〉. If A and I are independent, the backlog B(t) is guaranteed such
that, for all x ≥ 0,

P{B(t) > x} ≤ 1 − f̄ ∗ ḡ

(
x + inf

s≥0
[β(s) − α(s)]

)

where β(t) = β̂(t) − γ(t), f̄(x) = 1 − [f(x)]1, and ḡ(x) = 1 − [g(x)]1.

If the input process and/or the impairment process is characterized by a
t.a.c. stochastic arrival curve, the corresponding results of Theorem 6.3 easily
follow from the relationship between the t.a.c. stochastic arrival curve and
v.b.c. stochastic arrival curve introduced in Theorem 3.13.

For the delay D(t), under the same assumption as for (6.6), we proved in
(5.13) that

P{D(t) > x} ≤ P{X1 + X2 > inf
s≥0

[β(s) − α(s − x)]}
≤ P{X1 + X3 > inf

s≥0
[β(s) − α(s − x)]} (6.8)

with

X1 = sup
0≤s≤t

[A(s, t) − α(t − s)],

X2 = A ⊗ β(t + x) − A∗(t + x),

X3 =
(

sup
0≤s≤t+x

[I(s, t + x) − γ(t + x − s)]
)+

,

where we have used X2 ≤ X3 based on (4.12).
If A and I are independent, X1 and X3 are also independent. Then, to-

gether with the fact that the m.b.c. stochastic arrival curve and θ-m.b.c.
stochastic arrival curve imply the v.b.c. stochastic arrival curve, we have the
following theorem.

Theorem 6.4. Consider a system S with input A. Let ∼sac be either ∼vb,
∼mb, or ∼θ−mb. Suppose the input has a stochastic arrival curve α ∈ F with
bounding function f ∈ F̄ ; i.e., A ∼sac 〈f, α〉. Also suppose the server is
a stochastic strict server providing strict service curve β̂ with impairment
process I ∼sac 〈g, γ〉. If A and I are independent, the delay D(t) is guaranteed
such that, for all x ≥ 0,
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P{D(t) > h (α + x, β)} ≤ 1 − f̄ ∗ ḡ(x),

where β(t) = β̂(t) − γ(t), f̄(x) = 1 − [f(x)]1 and ḡ(x) = 1 − [g(x)]1.

If the input process and/or the impairment process are characterized by
a t.a.c. stochastic arrival curve, the corresponding results of Theorem 6.4 can
be obtained from Theorem 6.3 and based on the relationship between the
t.a.c. stochastic arrival curve and v.b.c. stochastic arrival curve introduced in
Theorem 3.13.

6.2.2 Output Characterization

First, we consider the output t.a.c. stochastic arrival curve characterization.
Assuming the server is a stochastic strict server providing strict service curve
β̂ with impairment process I ∼ta 〈g, γ〉, we get from (5.20) and (4.12)

A∗(s, t) − α 
 β(t − s)
≤ sup

0≤u≤t
{A(u, t) − α(t − u)} + [A ⊗ β(s) − A∗(s)]

≤ sup
0≤u≤t

{A(u, t) − α(t − u)} +
(

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

. (6.9)

If A and I are independent, the two terms on the right-hand side of (6.9)
are also independent. Then, together with the relationship between the t.a.c.
stochastic arrival curve and v.b.c. stochastic arrival curve introduced in
Theorem 3.13, we have the following result on output traffic characterization
from (6.9).

Theorem 6.5. Consider a system S with input A. Let ∼sac be either ∼vb,
∼mb, or ∼θ−mb. Suppose the input has a stochastic arrival curve α ∈ F with
bounding function f ∈ F̄ ; i.e., A ∼sac 〈f, α〉. Also suppose the server is
a stochastic strict server providing strict service curve β̂ with impairment
process I ∼sac 〈g, γ〉. If A and I are independent, the output has a t.a.c.
stochastic arrival curve A∗ ∼ta 〈f∗, α∗〉 with

α∗(t) = α 
 β(t),
f∗(x) = 1 − f̄ ∗ ḡ(x),

where β(t) = β̂(t) − γ(t), f̄(x) = 1 − [f(x)]1, and ḡ(x) = 1 − [g(x)]1.

If the input process and/or the impairment process are characterized by a
t.a.c. stochastic arrival curve, the output t.a.c. stochastic arrival curve charac-
terization can be derived from Theorem 6.5 based on the relationship between
the t.a.c. stochastic arrival curve and v.b.c. stochastic arrival curve introduced
in Theorem 3.13.
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Let us now consider the output t.a.c. stochastic arrival curve characteriza-
tion. Under the same conditions as in Theorem 6.5, if f∗ ∈ Ḡ, the output v.b.c.
stochastic arrival curve characterization can also be obtained from Theorem
6.5 based on the relationship between the t.a.c. stochastic arrival curve and
v.b.c. stochastic arrival curve. Specifically, we have the following corollary.

Corollary 6.6. Under the same conditions as Theorem 6.5, if f∗ ∈ Ḡ, the
output has a v.b.c stochastic arrival curve A∗ ∼vb 〈f∗,θ, α∗

θ〉 with

α∗
θ(t) = α 
 β(t) + θ · t,

f∗,θ(x) = f∗(x) +
1
θ

∫ ∞

x

f∗(y)dy,

where β(t) = β̂(t) − γ(t), f∗(x) = 1 − f̄ ∗ ḡ(x), f̄(x) = 1 − [f(x)]1 and
ḡ(x) = 1 − [g(x)]1, for any θ > 0.

Alternatively, for the output v.b.c. stochastic arrival curve characteriza-
tion, we get from (6.9) that

sup
0≤s≤t

{A∗(s, t) − α 
 β(t − s)}

≤ sup
0≤s≤t

{A(s, t) − α(t − s)}

+
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

(6.10)

and

sup
0≤s≤t

{A∗(s, t) − α 
 β(t − s) − θ · (t − s)}

≤ sup
0≤s≤t

{A(s, t) − α(t − s)}

+ sup
0≤s≤t

[(
sup

0≤u≤s
[I(u, s) − γ(s − u)]

)+

− θ · (t − s)

]
, (6.11)

and with this we can conclude the following theorem.

Theorem 6.7. Consider a system S with input A. Suppose the input has a
stochastic arrival curve α ∈ F with bounding function f ∈ F̄ ; i.e., A ∼sac

〈f, α〉, where ∼sac is either ∼vb, ∼mb, or ∼θ−mb. Also suppose the server
is a stochastic strict server providing strict service curve β̂ with impairment
process I. Assume A and I are independent.

• If I ∼mb 〈g, γ〉, the output has a v.b.c stochastic arrival curve A∗ ∼vb

〈f∗, α∗〉 with α∗(t) = α 
 β(t) and f∗(x) = 1 − f̄ ∗ ḡ(x);
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• If I ∼θ−mb 〈gθ, γ〉, the output has a v.b.c stochastic arrival curve A∗ ∼vb

〈f∗,θ, α∗
θ〉 with α∗

θ(t) = α 
 β(t) + θ · t and f∗,θ(x) = 1 − f̄ ∗ ḡθ(x), where
β(t) = β̂(t) − γ(t), f̄(x) = 1 − [f(x)]1, ḡ(x) = 1 − [g(x)]1 and ḡθ(x) =
1 − [gθ(x)]1, for any θ > 0.

Under the same conditions as in Theorem 6.5, if the input is characterized
by a t.a.c. stochastic arrival curve and/or the impairment process is by other
types of stochastic arrival curves, the output v.b.c. stochastic arrival curve
characterization can also be obtained from Theorem 6.5 based on its relation-
ship with the v.b.c. stochastic arrival curve for the input, m.b.c. stochastic
arrival curve, or θ-m.b.c. stochastic arrival curve for the impairment process.

We now consider the output m.b.c. stochastic arrival curve characteriza-
tion. Under the same conditions as in Theorem 6.5, if f∗ ∈ Ḡ, the output m.b.c.
stochastic arrival curve characterization can also be obtained from Theorem
6.5 based on the relationship between the m.b.c. stochastic arrival curve and
v.b.c. stochastic arrival curve. Specifically, we have the following corollary.

Corollary 6.8. Under the same conditions as Theorem 6.5, if f∗ ∈ Ḡ, the
output has an m.b.c. stochastic arrival curve A∗ ∼mb 〈f∗,θ

t , α∗
θ〉 with α∗

θ(t) =
α 
 β(t) + θ · t and f∗,θ

t (x) = 1
θ

∫∞
x−θt

f∗(y)dy, where β(t) = β̂(t) − γ(t),
f∗(x) = 1− f̄ ∗ ḡ(x), f̄(x) = 1− [f(x)]1, and ḡ(x) = 1− [g(x)]1 for any θ > 0.

Alternatively, from (5.26), it is known that

sup
0≤s≤t

sup
0≤u≤s

[A∗(u, s) − α∗(s − u)]

≤ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] + sup
0≤s≤t

[A ⊗ β(s) − A∗(s)]. (6.12)

In addition, with the strict stochastic server assumption, it has been shown
in (4.13) that

sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] ≤
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

. (6.13)

Applying (6.13) to (6.12), we get

sup
0≤s≤t

sup
0≤u≤s

[A∗(u, s) − α∗(s − u)]

≤ sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − α(s − u)] + (6.14)

(
sup

0≤u≤t
sup

u≤s≤t
[I(u, s) − γ(s − u)]

)+

. (6.15)

Since A and I are independent and so are the first two terms on the right-hand
side of (6.14), the following theorem follows easily.
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Theorem 6.9. Consider a system S with input A. Suppose the input has an
m.b.c. stochastic arrival curve α ∈ F with bounding function f ∈ F̄ ; i.e.,
A ∼mb 〈f, α〉. Also suppose the server is a stochastic strict server providing
strict service curve β̂ with impairment process I and the impairment process
has an m.b.c. stochastic arrival curve I ∼mb 〈g, γ〉. If A and I are inde-
pendent, the output has an m.b.c. stochastic arrival curve A∗ ∼mb 〈f∗, α∗〉
with α∗(t) = α 
 β(t) and f∗(x) = 1 − f̄ ∗ ḡ(x), where β(t) = β̂(t) − γ(t),
f̄(x) = 1 − [f(x)]1, and ḡ(x) = 1 − [g(x)]1.

Under other types of traffic arrival curves for the input and the impair-
ment process, the corresponding output m.b.c. stochastic arrival curve can
be derived from Corollary 6.8 and Theorem 6.9 based on the relationships
among the various types of traffic arrival curve characterizations presented in
Chapter 3.

Finally, we consider the output θ–m.b.c. stochastic arrival curve charac-
terization. Under the same conditions as in Theorem 6.5, if f∗ ∈ Ḡ, the out-
put m.b.c. stochastic arrival curve characterization can also be obtained from
Theorem 6.5 based on the relationship between the t.a.c. stochastic arrival
curve and m.b.c. stochastic arrival curve. Specifically, we have the following
corollary.

Corollary 6.10. Under the same conditions as in Theorem 6.5, if f∗ ∈ Ḡ,
the output has a v.b.c. stochastic arrival curve A∗ ∼vb 〈f∗,θ, α∗

θ〉 with

α∗
θ(t) = α 
 β(t) + (θ1 + θ2) · t,

f∗,θ(x) = f̂∗(x) +
1
θ2

∫ ∞

x

f̂∗(y)dy,

where β(t) = β̂(t)−γ(t), f̂∗(x) = f∗(x)+ 1
θ1

∫∞
x

f∗(y)dy, f∗(x) = 1− f̄ ∗ ḡ(x),
f̄(x) = 1 − [f(x)]1, and ḡ(x) = 1 − [g(x)]1 for any θ1, θ2 > 0.

Alternatively, from (5.27), it is known that

sup
0≤s≤t

[
sup

0≤u≤s
[A∗(u, s) − α 
 β(s − u)] − θ(t − s)

]

≤ sup
0≤s≤t

[
sup

0≤u≤s
[A(u, s) − α(s − u)] − θ(t − s)

]
+ sup

0≤s≤t
[A ⊗ β(s) − A∗(s)], (6.16)

which, with (6.13) applied, results in

sup
0≤s≤t

[
sup

0≤u≤s
[A∗(u, s) − α 
 β(s − u)] − θ(t − s)

]

≤ sup
0≤s≤t

[
sup

0≤u≤s
[A(u, s) − α(s − u)] − θ(t − s)

]

+
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

. (6.17)
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Then, we similarly have the following result.

Theorem 6.11. Consider a system S with input A. Suppose the input has
a θ-m.b.c. stochastic arrival curve α ∈ F with bounding function f ∈ F̄ ;
i.e., A ∼θ−mb 〈f, α〉. Also suppose the server is a stochastic strict server
providing strict service curve β̂ with impairment process I, and the impairment
process has an m.b.c. stochastic arrival curve I ∼mb 〈g, γ〉. If A and I are
independent, the output has a θ-m.b.c stochastic arrival curve A∗ ∼mb 〈f∗, α∗〉
with α∗(t) = α 
 β(t) and f∗(x) = 1 − f̄ ∗ ḡ(x), where β(t) = β̂(t) − γ(t),
f̄(x) = 1 − [f(x)]1 and ḡ(x) = 1 − [g(x)]1.

Under other types of traffic arrival curves for the input and the impair-
ment process, the corresponding output θ-m.b.c stochastic arrival curve can
be derived from Corollary 6.10 and Theorem 6.11 based on the relationships
among the various types of traffic arrival curve characterizations presented in
Chapter 3.

6.2.3 Concatenation Property

Consider two servers in tandem. If each server provides a stochastic service
curve βn, n = 1, 2, we have shown in (5.32) that

sup
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)]

≤ sup
0≤s≤t

[A1 ⊗ β1(s) − A1∗(s)] + sup
0≤s≤t

[A2 ⊗ β2(s) − A2∗(s)]. (6.18)

Assume each server is a stochastic strict server providing strict service
curve β̂n, n = 1, 2, with impairment process In ∼mb 〈gn, γn〉. Let βn(t) =
β̂n(t) − γn(t). We then have (6.13), and applying it to (6.18), we obtain

sup
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)]

≤
(

sup
0≤s≤t

sup
0≤u≤s

[I1(u, s) − γ1(s − u)]
)+

+
(

sup
0≤s≤t

sup
0≤u≤s

[I2(u, s) − γ2(s − u)]
)+

. (6.19)

If I1 and I2 are independent, so are the two terms of the right-hand side of
(6.19). The discussion above can be easily extended to more than two nodes,
and the following theorem is obtained that corresponds to the concatenation
property of the stochastic service curve.

Theorem 6.12. Consider a flow passing through a network of N nodes in
tandem, and assume each node is a stochastic strict server providing stochastic
strict service curve β̂n with impairment process In ∼mb 〈gn, γn〉. If In are



6.2 Analysis Based on Stochastic Strict Server 129

independent and βn ∈ F , (n = 1, 2, . . . , N), then the network guarantees to
the flow a stochastic service curve S ∼sc 〈g, β〉 with

β(t) = β1 ⊗ β2 ⊗ · · · ⊗ βN (t),
g(x) = 1 − ḡ1 ∗ ḡ2 ∗ · · · ∗ ḡN (x),

where βn(t) = β̂n(t) − γn(t), ḡn(x) = 1 − [gn(x)]1, n = 1, 2, . . . , N .

By iteratively applying Lemma 5.39, we have in (5.39) that

A ⊗ β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t) − A∗(t)

≤ sup
0≤s≤t

[
A1 ⊗ β1(s) − A1∗(s) − θ · (t − s)

]
+ sup

0≤s≤t

[
A2 ⊗ β2(s) − A2∗(s) − θ · (t − s)

]
+ · · · +

+ sup
0≤s≤t

[
AN−1 ⊗ βN−1(s) − A(N−1)∗(s) − θ · (t − s)

]
+AN ⊗ β (t) − A∗(t). (6.20)

Assume each server is a stochastic strict server providing strict service
curve β̂n, n = 1, 2, . . . , N , with impairment process In ∼θ−mb 〈gn, γn〉. Let
βn(t) = β̂n(t) − γn(t). We then have (4.14), and applying it to (6.20), we
obtain

A ⊗ β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t) − A∗(t)

≤
(

sup
0≤s≤t

[
sup

0≤u≤s
[I1(u, s) − γ1(s − u)] − θ · (t − s)

])+

+
(

sup
0≤s≤t

[
sup

0≤u≤s
[I2(u, s) − γ2(s − u)] − θ · (t − s)

])+

+ · · · +

+
(

sup
0≤s≤t

[
sup

0≤u≤s
[IN−1(u, s) − γN−1(s − u)] − θ · (t − s)

])+

+
(

sup
0≤s≤t

[IN (s, t) − γN (t − s)]
)+

. (6.21)

If In, n = 1, 2, . . . , N , are independent, so are the terms on the right-hand
side of (6.21), and hence the following result is obtained.

Theorem 6.13. Consider a flow passing through a network of N nodes in
tandem, and assume each node is a stochastic strict server providing stochastic
strict service curve β̂n with impairment process In ∼θ−mb 〈gn, γn〉. If In are
independent, βn

−(n−1)θ ∈ F , and gn ∈ F̄ , (n = 1, 2, . . . , N), then the network
guarantees to the flow a weak stochastic service curve S ∼ws 〈g, β〉 with

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t), (6.22)

g(x) = 1 − ḡ1 ∗ ḡ2 ∗ · · · ∗ ḡN (x), (6.23)
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where

βn
−(n−1)θ(t) = β̂n(t) − γn(t) − (n − 1)θ · t, n = 1, 2, . . . , N,

ḡn(x) = 1 − [gn(x)]1 , n = 1, 2, . . . , N,

for any θ > 0.

Based on the relationship between the weak stochastic service curve and θ-
stochastic service curve, the following result corresponds to the concatenation
property of the θ-stochastic service curve.

Corollary 6.14. Under the same conditions as in Theorem 6.13, if g ∈ Ḡ,
the network guarantees to the flow a θ-stochastic service curve S ∼θ−sc 〈gθ, β〉
with gθ(x) = g(x) + 1

θ

∫ y

x
g(y)dy, where β(t) and g(x) are as shown in (6.22)

and (6.23), respectively.

Based on the relationship between the v.b.c. stochastic arrival curve and
θ-m.b.c. stochastic arrival curve, the following result corresponds to the con-
catenation property of the weak stochastic service curve.

Corollary 6.15. Consider a flow passing through a network of N nodes in
tandem, and assume each node is a stochastic strict server providing stochastic
strict service curve β̂n with impairment process In ∼vb 〈gn, γn〉. If In are
independent, βn

−(n−1)θ ∈ G, and gn ∈ Ḡ, (n = 1, 2, . . . , N), then the network
guarantees to the flow a weak stochastic service curve S ∼ws 〈g, β〉 with

β(t) = β1 ⊗ β2
−θ ⊗ · · · ⊗ βN

−(N−1)θ(t), (6.24)

g(x) = 1 − ḡ1,θ1 ∗ ḡ2,θ2 ∗ · · · ∗ ḡN,θN (x), (6.25)

where

βn
−(n−1)θ(t) = β̂n(t) − γn(t) − (n − 1)θ · t, n = 1, 2, . . . , N,

ḡn,θn(x) = 1 −
[
gn(x) +

1
θn

∫ ∞

x

gn(y)dy

]
1

, n = 1, 2, . . . , N − 1,

ḡN,θN (x) = 1 − [gN (x)
]
1
,

for any θ, θ1, . . . , θN−1 > 0.

6.2.4 Leftover Service Characterization

Consider a system fed with a flow A that is the aggregation of two constituent
flows, A1 and A2. For the output, there holds A∗(t) = A∗

1(t) + A∗
2(t). In

addition, we have A∗(t) ≤ A(t), A∗
1(t) ≤ A1(t), and A∗

2(t) ≤ A2(t). As in
(5.40), we have for functions β, α2 and any t ≥ 0
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A1 ⊗ (β − α2)(t) − A∗
1(t)

≤ [A ⊗ β(t) − A∗(t)] + sup
0≤s≤t

[A2(s, t) − α2(t − s)], (6.26)

from which we also have as in (5.41) and (5.42),

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s)]

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s)] + sup
0≤s≤t

sup
0≤u≤s

[A2(u, s) − α2(s − u)] (6.27)

and

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s) − θ (t − s)]

≤ sup
0≤s≤t

[A ⊗ β(s) − A∗(s) − θ1 (t − s)]

+ sup
0≤s≤t

[
sup

0≤u≤s
[A2(u, s) − α2(s − u)] − θ2 (t − s)

]
(6.28)

for any θ1, θ2 > 0 and θ = θ1 + θ2.
Assume the system is a stochastic strict server providing strict service

curve β̂ with impairment process I ∼sac 〈g, γ〉, where ∼sac may be ∼vb, ∼mb,
or ∼θ−mb. Let β(t) = β̂(t) − γ(t). We then have (4.12), (4.13) and (4.14),
and applying them respectively to (6.26), (6.27), and (6.28), we obtain the
following theorems.

Theorem 6.16 (Leftover Weak Stochastic Service Curve). Consider a
server fed with a flow A that is the aggregation of two constituent flows A1 and
A2. Assume the server is a stochastic strict server to the aggregate, providing
stochastic strict service curve β̂ with impairment process I ∼vb 〈g, γ〉.
(i) The server guarantees that

A1 ⊗ (β − α2)(t) − A∗
1(t)

≤
(

sup
0≤s≤t

[I(s, t) − γ(t − s)]
)+

+ sup
0≤s≤t

[A2(s, t) − α2(t − s)]. (6.29)

(ii)If A2 and I are independent, A2 ∼mb 〈f2, α2〉, and β′
1 ∈ F , then the server

guarantees to flow A1 a weak stochastic service curve S1 ∼ws 〈g′1, β′
1〉,

where
g′1(x) = 1 − ḡ ∗ f̄2(x), β′

1(t) = β(t) − α2(t),

with β(t) = β̂(t) − γ(t), ḡ(x) = 1 − [g(x)]1, and f̄2(x) = 1 − [f2(x)]1.

Theorem 6.17 (Leftover Stochastic Service Curve). Consider a server
fed with a flow A that is the aggregation of two constituent flows A1 and
A2. Assume the server is a stochastic strict server to the aggregate, providing
stochastic strict service curve β̂ with impairment process I ∼mb 〈g, γ〉.
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(i) The server guarantees that

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s)]

≤
(

sup
0≤s≤t

sup
0≤u≤s

[I(u, s) − γ(s − u)]
)+

+ sup
0≤s≤t

sup
0≤u≤s

[A2(u, s) − α2(s − u)]. (6.30)

(ii) If A2 and I are independent, A2 ∼mb 〈f2, α2〉, and β′
1 ∈ F , then the server

guarantees to flow A1 a stochastic service curve S1 ∼sc 〈g′1, β′
1〉, where

g′1(x) = 1 − ḡ ∗ f̄2(x), β′
1(t) = β(t) − α2(t),

with β(t) = β̂(t) − γ(t), ḡ(x) = 1 − [g(x)]1, and f̄2(x) = 1 − [f2(x)]1.

Theorem 6.18 (Leftover θ-Stochastic Service Curve). Consideraserver
fedwithaflowA that is theaggregationof twoconstituentflowsA1 andA2.Assume
the server is a stochastic strict server to the aggregate, providing stochastic strict
service curve β̂ with impairment process I ∼θ−mb 〈g, γ〉.
(i) The server guarantees that

sup
0≤s≤t

[A1 ⊗ (β − α2)(s) − A∗
1 (s) − θ (t − s)]

≤
(

sup
0≤s≤t

[
sup

0≤u≤s
[I(u, s) − γ(s − u)] − θ1 · (t − s)

])+

+ sup
0≤s≤t

[
sup

0≤u≤s
[A2(u, s) − α2(s − u)] − θ2 (t − s)

]
(6.31)

for any θ1, θ2 > 0 and θ = θ1 + θ2.
(ii)If A2 and I are independent, A2 ∼θ−mb 〈f2, α2〉, and β′

1 ∈ F , then the
server guarantees to flow A1 a θ-stochastic service curve S1 ∼θ−sc 〈g′1, β′

1〉,
where

g′1(x) = 1 − ḡ ∗ f̄2(x), β′
1(t) = β(t) − α2(t)

with β(t) = β̂(t) − γ(t), ḡ(x) = 1 − [g(x)]1, and f̄2(x) = 1 − [f2(x)]1.

Note that in Theorems 6.16 to 6.18, the first part is an intermediate step
for getting the second part. The intention of including the first part is as
follows: When the leftover service property is used to derive other results,
such as the concatenation property, the first part can be applied to their
derivations. Then, if flows and the impairment processes of servers are inde-
pendent, Lemma 6.1 can be used to derive the corresponding independent case
bounds. However, if we were only given the second part, such an independent
case analysis could not be applied and the general case (min, +) analysis in
Chapter 5 would have to be used. As a result, looser bounds may be obtained.
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Also note that from the viewpoint of the service provided to flow A1, A2(t)
can be considered as an impairment process. In other words, for flow A1, the
server has two independent impairment processes I(t) and A2(t). From this
viewpoint, Theorems 6.16 to 6.18 can also be proved based on the independent
case superposition property in the next subsection and the results for the
stochastic strict server due to impairment in Section 4.3.1.

Based on the relationships between the stochastic arrival curve models
and between the stochastic service curve models, the corresponding results of
Section 5.4 can be derived from Theorems 6.16 to 6.18 for the independent
case.

6.2.5 Superposition Property

The superposition property means that the superposition of flows can be
represented using the same traffic model. With this property, the aggregate of
(possibly many) individual flows may be considered as a single aggregate flow,
so that the QoS performance for the aggregate can be derived in the same
way as for a single flow. This section discusses the superposition property for
the various stochastic traffic models introduced in Chapter 2.

Consider N flows with arrival processes Ai(t), i = 1, . . . , N . Let A(t) be
the superposition of the N flows. In other words, we have for any s, t ≥ 0,

A(s, s + t) = A1(s, s + t) + · · · + AN (s, s + t).

It has been shown in (5.43), (5.44), (5.45), and (5.46) that, for any functions
αi(t), i = 1, . . . , N , we have

A(s, s + t) − [α1(t) + · · · + αN (t)]
= [A1(s, s + t) − α1(t)] + · · · + [AN (s, s + t) − αN (t)], (6.32)

sup
0≤s≤t

[A(s, t) − [α1(t − s) + · · · + αN (t − s)]]

≤ sup
0≤s≤t

[A1(s, t) − α1(t − s)] + · · · + sup
0≤s≤t

[AN (s, t) − αN (t − s)],(6.33)

sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − [α1(s − u) + · · · + αN (s − u)]]

≤ sup
0≤s≤t

sup
0≤u≤s

[A1(u, s) − α1(s − u)] + · · ·

+ sup
0≤s≤t

sup
0≤u≤s

[AN (u, s) − αN (s − u)]

(6.34)
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sup
0≤s≤t

[
sup

0≤u≤s
{A(u, s) − [α1(s − u) + · · · + αN (s − u)]} − θ · (t − s)

]

≤ sup
0≤s≤t

[
sup

0≤u≤s
[A1(u, s) − α1(s − u)] − θ1 · (t − s)

]
+ · · ·

+ sup
0≤s≤t

[
sup

0≤u≤s
[AN (u, s) − αN (s − u)] − θN · (t − s)

]
. (6.35)

Assume Ai(t), i = 1, . . . , N , are independent. Then, the independent case
superposition properties in Theorems 6.19 to 6.22 follow from (6.32) to (6.35),
respectively.

Theorem 6.19. Consider N flows with arrival processes Ai(t), i = 1, . . . , N .
Let A(t) denote the aggregate arrival process. If Ai(t) are independent processes
and ∀i, Ai ∼ta 〈fi, αi〉, then A ∼ta 〈f, α〉 with α(t) =

∑N
i=1 αi(t) and

f(x) = 1 − f̄1 ∗ · · · ∗ f̄N (x), where f̄i = 1 − fi and ∗ denotes the Stieltjes
convolution.

Theorem 6.20. Consider N flows with arrival processes Ai(t), i = 1, . . . , N .
Let A(t) denote the aggregate arrival process. If Ai(t) are independent processes
and ∀i, Ai ∼vb 〈fi, αi〉, then A ∼vb 〈f, α〉 with α(t) =

∑N
i=1 αi(t) and

f(x) = 1 − f̄1 ∗ · · · ∗ f̄N (x), where f̄i = 1 − fi and ∗ denotes the Stieltjes
convolution.

Theorem 6.21. Consider N flows with arrival processes Ai(t), i = 1, . . . , N .
Let A(t) denote the aggregate arrival process. If Ai(t) are independent processes
and ∀i, Ai ∼mb 〈fi, αi〉, then A ∼mb 〈f, α〉 with α(t) =

∑N
i=1 αi(t) and

f(x) = 1 − f̄1 ∗ · · · ∗ f̄N (x), where f̄i = 1 − fi and ∗ denotes the Stieltjes
convolution.

Theorem 6.22. Consider N flows with arrival processes Ai(t), i = 1, . . . , N .
Let A(t) denote the aggregate arrival process. If Ai(t) are independent processes
and ∀i, Ai ∼θ−mb 〈fi, αi〉, then A ∼θ−mb 〈fθ, α〉 with α(t) =

∑N
i=1 αi(t) and

fθ(x) = 1 − f̄θ1
1 ∗ · · · ∗ f̄θN

N (x), where f̄θ
i = 1 − fθ

i and ∗ denotes the Stieltjes
convolution for any θ1, . . . , θN > 0 and θ = θ1 + · · · + θN .

6.2.6 Scaling of End-to-End Delay Bound

In Section 5.6, it was introduced that the end-to-end delay bound is a scaling
in O (n2 log n

)
from the node-by-node analysis approach and a scaling in

O (n log n) from the concatenation property of the stochastic service curve. In
Section 5.6, the possible independence between flows and servers is not taken
into account. To demonstrate the use of independent case analysis results, we
consider the same network as studied in Section 5.6 and show that the end-
to-end delay bound is a scaling in O(n) when some independence conditions
are satisfied.
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Specifically, we consider a network of n servers in tandem through which
flow A passes. Each server is a constant-rate server with capacity C. At each
server, there is a cross-flow that joins and leaves. Assume the considered flow A
and all the cross flows are independent. For ease of expression, we also assume
that flow considered and all cross-flows have the same m.b.c. stochastic arrival
curve (SAC) r · t with bounding function f (x) = e−x and 2r < C.

As discussed in Section 4.3.1, each server along the end-to-end path of the
flow F considered can be viewed as a stochastic strict server with impairment
process. Particularly, it is a stochastic strict server S providing strict service
curve β̂(t) = Ct with impairment process Ii ∼mb 〈f, r〉, i = 1, . . . , n. Then, it
is known from Theorem 6.12 that the network provides to the flow an end-to-
end stochastic service curve β(t). More specifically, iteratively applying (6.18)
and (6.13), we can obtain

sup
0≤s≤t

[A ⊗ β(t) − A∗(s)]

≤
(

sup
0≤s≤t

[
sup

0≤u≤s
[I1(u, s) − r(s − u)]

])+

+ · · ·

+
(

sup
0≤s≤t

[
sup

0≤u≤s
[In(u, s) − r(s − u)]

])+

. (6.36)

For the end-to-end delay D(t), (6.36) can be applied to Theorem 6.4 and
particularly (6.8). Then, one easily obtains

P{D(t) > x} ≤ P{X + Y1 + · · · + Yn > rx}
with

X = sup
0≤s≤t

sup
0≤u≤s

[A(u, s) − r(s − u)],

Yi =
(

sup
0≤s≤t

[
sup

0≤u≤s
[Ii(u, s) − r(s − u)]

])+

, i = 1, . . . , n.

Since A and Ii, i = 1, . . . , n are independent, so are X and Yi, i = 1, . . . , n.
In addition, we have simply assumed the same bounding function e−x for X
and Yi. So, X+Y1+· · ·+Yn is Gamma-distributed with parameters Γ (n+1, 1).
Then, we get for the end-to-end delay bound

P{D(t) > x} ≤ 1 − γ(n + 1, rx)
(n + 1)!

, (6.37)

where the function γ(n, x) is defined as

γ(n, x) =
∫ x

0

yn−1e−ydy.

While (6.37) provides a good delay bound, it is difficult to see how it
scales with respect to the number of servers in the network. In the following,
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we consider a possibly looser bound, but it is easy to see its scaling. From the
Chernoff bound, we get

P{D(t) > x} ≤ e−θrxMX+Y1+···+Yn
(θ)

= e−θrx [MX(θ)]n+1 (6.38)

=
1

(1 − θ)n+1
e−θrx. (6.39)

Suppose ε is the allowed delay violation probability. Letting the right-hand
side of (6.38) equal ε, we then have the corresponding delay bound

d =
1
θr

[
log

1
ε

+ (n + 1) log
1

(1 − θ)

]
,

which clearly scales in O(n).
Note that the right-hand side of (6.37) is obtained directly from the dis-

tribution function of X + Y1 + · · · + Yn, while the right-hand side of (6.38) is
an upper bound on the distribution function. It can hence be concluded that
the end-to-end delay bound under the independent case is a scaling of O(n).

6.3 Calculus with Moment Generating Functions

This section presents stochastic network calculus results based on moment
generating functions (MGFs). In Chapters 3 and 4, respectively we introduced
the concepts of the traffic envelope process and service envelope process. In
Chapter 5, we showed that the five basic properties can be represented us-
ing traffic and service envelope processes. In this section, we further present
the corresponding results using the moment generating functions of these
processes.

6.3.1 Moment Generating Function Basics

As introduced in Chapter 1, the moment generating function of a random
variable X is defined, for any θ ≥ 0

MX (θ) = EeθX , (6.40)

where E is the expectation of its argument.
Let MX (−θ) = Ee−θX . It can be easily verified that

Mmin[X,Y ] (θ) ≤ min [MX (θ) ,MY (θ)] , (6.41)
Mmax[X,Y ] (−θ) ≤ min [MX (−θ) ,MY (−θ)] . (6.42)

For two independent variables, it is known that
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MX+Y (θ) = MX (θ) MY (θ) , (6.43)
MX−Y (θ) = MX (θ) MY (−θ) , (6.44)

and

MX+Y (−θ) = MX (−θ) MY (−θ) , (6.45)
MX−Y (−θ) = MX (−θ) MY (θ) . (6.46)

Once the MGF is obtained for a random variable X, the complementary
cumulative distribution function (CCDF) of X is bounded by the well-known
Chernoff bound as follows:

P {X ≥ x} ≤ e−θxEeθX = e−θxMX (θ) . (6.47)

Throughout this book, we often deal with min-plus convolutions or decon-
volutions of functions or random processes. To deal with them using moment
generating functions, we define the operators � and ◦ as

X � Y (t) =
t∑

s=0

X(s)Y (t − s), (6.48)

X ◦ Y (τ, t) =
τ∑

s=0

X(s + t)Y (s), (6.49)

where X(t) and Y (t) are two processes. The operator � indeed defines the
discrete convolution operation. When τ → ∞ in (6.49), we denote

X ◦ Y (t) ≡
∞∑

s=0

X(s + t)Y (s).

We then have the following result for min-plus convolution X ⊗ Y (t).

Lemma 6.23. Let X(t) and Y (t) be independent random processes. The mo-
ment generating function of their min-plus convolution is upper-bounded:

MX⊗Y (t)(−θ) ≤ [MX(−θ) � MY (−θ)] (t).

Proof. We have from the definition

MX⊗Y (t)(−θ) = Ee−θ inf0≤s≤t[X(s)+Y (t−s)].

An upper bound on MX⊗Y (−θ, t) for any θ ≥ 0 is

MX⊗Y (t)(−θ) ≤ E sup
0≤s≤t

[e−θ[X(s)+Y (t−s)]]

≤ E

t∑
s=0

e−θ[X(s)+Y (s−t)]

=
t∑

s=0

E
[
e−θX(s)

]
· E
[
e−θY (t−s)

]
.

��
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An important property of Lemma 6.23 is that it can be easily extended to
the min-plus convolution of multiple random processes,

MX1⊗X2⊗···⊗Xn(t)(−θ) ≤ [MX1(−θ) � MX2(−θ) � · · · � MXn
(−θ)] (t).

For ease of expression, we define a generalized version of the min-plus
de-convolution as

(x
y) (τ, t) = sup
0≤s≤τ

[x (s + t) − y (s)] ,

which reduces to the normal min-plus deconvolution definition when τ → ∞.
We now have the following result for the generalized min-plus deconvolution.

Lemma 6.24. Let X(t) and Y (t) be independent random processes. The mo-
ment generating function of their min-plus deconvolution is upper-bounded:

MX�Y (τ,t)(θ) ≤ [MX(θ) ◦ MY (−θ)] (τ, t).

Proof. We have from the definition

MX�Y (τ,t)(θ) = Eeθ sup0≤s≤τ [X(s+t)−Y (s)]

≤ E

[
τ∑
s0

eθ[X(s+t)−Y (s)]

]

≤
τ∑

s=0

E
[
eθX(s+t)

]
E
[
e−θY (s)

]
.

��

6.3.2 Basic Properties and Performance Bounds

In Section 5.7, the basis network calculus properties have been introduced
based on the concepts of the traffic envelope process and service envelope
process. In the rest of this section, these results are reproduced by applying
the corresponding moment generating functions, Lemma 6.23 and the Cher-
noff bound. We shall only present in detail the delay analysis using moment
generating functions. For other properties, they follow similarly based on the
results in Section 5.7.

By definition, the delay in a system at time t is

D(t) = inf{τ : A(t) ≤ A∗(t + τ)}.

Suppose A has a traffic envelope process Â and the system provides a service
envelope process Ŝ(t). Then, we have
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A(t) − A∗(t + τ)
= sup

0≤s≤t+τ
[A(t) − A(s) − Â(t − s) + Â(t − s) − Ŝ(t + τ − s)]

+A ⊗ Ŝ(t + τ) − A∗(t + τ)
≤ sup

0≤s≤t+τ
[A(t) − A(s) − Â(t − s)] + A ⊗ Ŝ(t + τ) − A∗(t + τ)

+ sup
0≤s≤t+τ

[Â(t − s) − Ŝ(t + τ − s)]. (6.50)

For the first term on the right-hand side of (6.50), when 0 ≤ s ≤ t, A(t) −
A(s)−Â(t−s) ≤ 0 by the definition of a traffic envelope process, and when t <
s ≤ t+τ , we also have A(t)−A(s)−Â(t−s) ≤ 0 because Â ≥ 0 and A is a non-
decreasing function. For the second term, we have A⊗ Ŝ(t+τ)−A∗(t+τ) ≤ 0
from the definition of a service envelope process. Applying both to (6.50), we
obtain

A(t) − A∗(t + τ) ≤ sup
0≤s≤t+τ

[Â(t − s) − Ŝ(t + τ − s)],

where we always have Â(t − s) − Ŝ(t + τ − s) ≤ 0 when t < s ≤ t + τ . It is
hence sufficient to consider only 0 ≤ s ≤ t:

D(t) ≤ inf
{

τ : sup
0≤s≤t

[Â(s) − Ŝ(s + τ)] ≤ 0
}

.

In addition, as shown by (5.11) in Section 5.1, we have, for all x ≥ 0,

P{D(t) > x} ≤ P{A(t) > A∗(t + x)}.

Following the discussion above, we easily get from the Chernoff bound

P{D(t) > x} ≤ P

{
sup

0≤s≤t
[Â(s) − Ŝ(s + x)] > 0

}

≤ Eeθ sup0≤s≤t[Â(s)−Ŝ(s+x)],

and if A(t) and Ŝ(t) are independent,

P{D(t) > x} ≤
t∑

s=0

MÂ(s)(θ)MŜ(s+x)(−θ)

=
[
MŜ(−θ) ◦ MÂ(θ)

]
(t, x)

for any θ ≥ 0.
Formally, we have derived the following result.

Corollary 6.25 (Delay Bound). Consider a system that provides a strict
service envelope process Ŝ(t) to the input flow A(t). Suppose A has a stochastic
envelope process Â. Then, the delay D (t) of the flow at time t satisfies
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D(t) ≤ inf
{

τ : sup
0≤s≤t

[Â(s) − Ŝ(s + τ)] ≤ 0
}

,

and if Â and Ŝ(t) are independent, there holds

P{D(t) > x} ≤ [MŜ(−θ) ◦ MÂ(θ)
]
(t, x)

for any θ ≥ 0.

Corollary 6.26 (Backlog Bound). Consider a system that provides a
strict service envelope process Ŝ(t) to the input flow A(t). Suppose A has
a stochastic envelope process Â. Then the backlog B (t) of the flow at time t
satisfies

B (t) ≤ Â 
 Ŝ (0) ,

and particularly if Â and Ŝ are independent, there holds

MB(t)(θ) ≤
[
MÂ(θ) ◦ MŜ(−θ)

]
(t, 0)

and
P{B(t) > x} ≤ e−θx

[
MÂ(θ) ◦ MŜ(−θ)

]
(t, 0)

for any θ ≥ 0.

Corollary 6.27 (Output Characterization). Consider a system that pro-
vides a strict service envelope process Ŝ(t) to the input flow A(t). Suppose
A has a stochastic envelope process Â. Then, the output A∗ has a stochastic
envelope process

Â = Â 
 Ŝ(t),

and particularly, if Â and Ŝ are independent, there holds

MÂ∗(t)(θ) ≤
[
MÂ(θ) ◦ MŜ(−θ)

]
(t)

and, for any s, t ≥ 0,

P{Â∗(s, s + t) > x} ≤ e−θx
[
MÂ(θ) ◦ MŜ(−θ)

]
(t)

for any θ ≥ 0.

Corollary 6.28 (Concatenation Property). Consider a flow passing
through systems Sh, h = 1, . . . , H, in sequence. Suppose each system Sh

provides a strict service envelope process Ŝh(t) to the input, and Ŝh(t),
h = 1, . . . , H are independent. Then, the concatenation of these systems offers
to the flow a service envelope process

Ŝ(t) = Ŝ1 ⊗ Ŝ2 · · · ⊗ŜH(t),

and particularly, if Sh, h = 1, . . . , H, are independent, there holds

MŜ(t)(−θ) ≤ MŜ1(t)(−θ) � · · · � MŜH(t)(−θ). (6.51)
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Corollary 6.29 (Leftover Service). Consider a system serving an aggre-
gate of two (possibly aggregate) flows A1 and A2. Assume the system provides
a strict service envelope process Ŝ to the aggregate, and A2 has a stochastic
envelope process Â2. Then, the system offers to the flow A1 a service envelope
process

Ŝ1(t) = (Ŝ − Â2)(t),

and particularly, if Ŝ and Â2 are independent, there holds

MŜ1(t)
(θ) = MŜ(t)(θ) · MÂ2(t)

(−θ). (6.52)

Corollary 6.30 (Superposition). Consider the superposition of n flows Ai,
i = 1, . . . , n. If each flow Ai has a stochastic envelope process Âi(t), then the
aggregate flow A =

∑n
i=1 Ai has a stochastic envelope process

Â(t) =
n∑

i=1

Âi(t),

and particularly, if Ai, i = 1, . . . , n, are independent, there holds

MÂ(t)(θ) = MÂ1(t)
· · ·MÂn(t)(θ).

It is worth highlighting that in the results above, strict service envelope
processes are required instead of service envelope processes. This is because
by definition the service envelope process of a server is coupled with both its
arrival process and departure process; i.e., the stochastic envelope process,
the arrival process, and the departure process are dependent. If we had only
assumed service envelope processes, the independence analysis would not have
been applicable.

Note that, based on Corollary 6.25 for delay and Corollary 6.28 for con-
catenation, it is easily seen that the end-to-end delay in a tandem network
satisfies

P{De2e(t) > x} ≤
[(

MŜ1(t)(−θ) � · · · � MŜH(t)(−θ)
)
◦ MÂ(θ)

]
(t, x)

for any θ ≥ 0.
For the tandem network considered in Sections 5.6 and 6.2.6, if the cross

traffic is (σ(θ), ρ(θ)) constrained, it is shown in [44] that the end-to-end delay
scales in O(n), which is consistent with the finding in Section 6.2.6, where a
different approach is used for independent case analysis.

6.4 Summary and Bibliographic Comments

We began this chapter with a simple example demonstrating the performance
improvement when the independence condition is taken into account. We then
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introduced two approaches to independent case analysis. One is based on the
concept of a stochastic strict server. This approach is the focus of this chapter.
We showed that the five basic properties can be proved for the independent
case. As an example, we considered the scaling issue of the end-to-end delay
bound of a tandem network that was also studied in Chapter 5. It was shown
in Section 5.6 that while the end-to-end delay bound obtained from node-by-
node analysis scales in O (n2 log n

)
, it has a scaling in O (n log n) by utilizing

the concatenation property. In this chapter, we further showed in Section 6.2.6
that, by exploiting the independence condition, the end-to-end delay bound
has a scaling in O(n).

In Section 6.3, we introduced another approach that can be used for the
independent case analysis. In this approach, moment generating functions
are applied to the traffic and service envelope processes and the five basic
properties based on these processes introduced in Section 5.7. Comparing
this with the approach introduced in Section 6.2, the approach based on the
moment generating function is perhaps conceptually easier to adopt since
the moment generating function is a well-known concept used in analyzing
stochastic processes. However, when it comes to deriving closed-form bounds,
the approach based on the moment generating function may need some hard
work. In addition, the bounds obtained may be looser than those from the
approach based on the stochastic strict server.

In the stochastic network calculus literature, independence has long been
considered in the analysis. Particularly, independence is often assumed be-
tween flows in the vast effective bandwidth literature (e.g., [36] [81] [80]) and
early stochastic network calculus works (e.g., [138] [15]). However, these works
mainly focused on the superposition property and the single-node determinis-
tic server case. The independent case analysis approach introduced in Section
6.2 was initially proposed by Jiang [69]. The paper [69] provides the first full
analysis of the five basic properties for the independent case. The concept of a
stochastic strict server due to impairment, an important concept for indepen-
dent case analysis, was initially proposed by Jiang and Emstad [73]. Applying
moment generating functions to the independent case analysis of the full five
basic properties was first made by Fidler [44]. Also in [44], it was reported
that the end-to-end delay bound for the tandem network as studied in Section
6.2.6 has a scaling in O(n). While this conclusion comes after some complex
analysis in [44], it can be easily obtained from the approach based on the
stochastic strict server as shown in Section 6.2.6.

Problems

6.1. Consider a server fed with a flow A that is the aggregation of two con-
stituent independent flows Af and Ah. Suppose the server provides a deter-
ministic strict service curve β to the aggregate flow A. Flow Ah has m.b.c.
stochastic arrival curve Ah ∼mb 〈fh, rh〉 and βf ∈ F .
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(i) Prove that flow Af receives a stochastic strict service curve β with impair-
ment process I = Ah (t) − Ah (t − s) .

(ii) Derive the per-flow service curve received by Af .

6.2. Consider a constant-rate server with link capacity C fed with N input
flows with maximum packet size M. All flows are independent of each other
and all are (σ(θ), ρ(θ)) upper constrained with the same parameters. The
buffer size is B.

(i) How many such flows can be admitted into the system such that the buffer
overflow probability is less than Ploss?

(ii) How many such flows can be admitted into the system such that the prob-
ability that the delay experienced by a packet in this system is greater
than D is less than Pdelay?

6.3. What is the MGF of the service process for a constant-rate server with
link capacity C?

6.4. What is the MGF of a Poisson process with mean arrival rate λ and
mean packet size μ?

6.5. Consider a constant-rate server with link capacity C fed with a Poisson
input flow with arrival rate λ. The packet size is exponentially distributed
with mean μ but limited by a maximum packet size M. Analyze the delay
distribution using the MGF-based approach and compare it with the results
obtained by queuing theory and the approach based on stochastic network
calculus.

6.6. Prove Theorem 6.18.

6.7. Prove Corollary 6.26.

6.8. Prove Corollary 6.27.

6.9. Prove Corollary 6.28.

6.10. Prove Corollary 6.29.



7

Analysis on Scheduling Disciplines

In the previous chapters, we have introduced several traffic models and server
models and the basic properties for stochastic network calculus. These models
are general and so are the results. In this chapter, we consider a special traffic
model where the stochastic arrival curve has the (σ, ρ) form. This model is
known as the generalized stochastically bounded bursty (gSBB) traffic model
[140]. Some interesting properties of the gSBB model are presented in addi-
tion to those of the general stochastic arrival curve models. In addition, the
focus of this chapter is on studying the delay and backlog performance under
different scheduling disciplines where the inputs belong to gSBB. Further-
more, to demonstrate the use of results obtained, an example is given that
is an application of stochastic network calculus to measurement-based admis-
sion control (MBAC). In this example, MBAC for a flow-aware network is
considered, and stochastic network calculus is applied to obtain the required
performance bounds for making admission control decisions.

7.1 Introduction to gSBB

The concept of generalized stochastically bounded bursty (gSBB) traffic is a
simplified version of the v.b.c. stochastic arrival curve traffic model. It was
initially proposed in [140] to extend the stochastically bounded burstiness
(SBB) traffic model introduced in [128]. While SBB is a simplified version of
the t.a.c. stochastic arrival curve traffic model, gSBB is a simplified version
of the v.b.c. stochastic arrival curve traffic model.

Definitions 7.1 and 7.2 defines SBB and gSBB, respectively.

Definition 7.1. A process A(t) is said to be stochastically bounded bursty
(SBB) with upper rate ρ and bounding function f , denoted by A ∼ta 〈f, ρt〉,
if there exists f ∈ Ḡ and for all 0 ≤ s ≤ t and all σ > 0 there holds

P {A(s, t) ≥ ρ · (t − s) + σ} ≤ f(σ). (7.1)

Y. Jiang, Y. Liu, Stochastic Network Calculus, 145
DOI: 10.1007/978-1-84800-127-5 7,
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Definition 7.2. A process A(t) is said to be generalized stochastically bounded
bursty (gSBB) with upper rate ρ and bounding function f ∈ F̄ , denoted by
A ∼vb 〈f, ρt〉, if, for all t ≥ 0, letting Q (t; ρ) = sup0≤s≤t{A(s, t)− ρ · (t− s)},
one has

P {Q(t; ρ) > σ} ≤ f(σ). (7.2)

As introduced in Chapter 3, the SBB model can apply to Gaussian
self-similar input processes, such as fractional Brownian motion, and gSBB
traffic contains non-Gaussian self-similar input processes, such as α-stable
self-similar processes that are not SBB in general.

As introduced in Chapter 3, many types of traffic belong to SBB. For
example, SBB traffic includes the Gaussian self-similar type traffic, such as
fractional Brownian motion (fBm) with Hurst parameter 1/2 < H < 1.

Also in Chapter 3, it was shown that if a certain type of traffic is SBB, it
also is gSBB. For the same an fBm example, Duffield and O’Connell proved
in [34] that for fBm input process with 1/2 < H < 1, the queue size satisfies
P{Q(t) > x} ≤ βe−αxγ

, where α, β > 0 and 0 < γ < 1 are constants, which
implies that such fBm processes also belong to gSBB.

Notice that the power function x−α is not an element of the function class
Ḡ. Hence, an input process with a power function, say x−α, as its bounding
function is not SBB in the sense of Definition 7.1. Actually, paper [128], where
SBB was initially defined, left traffic of this type as an open problem for fur-
ther research. On the other hand, the power function has often been used for
network analysis. For example, a number of research works ([49] [50] [60] [79])
proposed to use an α-stable self-similar process to model Internet traffic. The
α-stable model captures not only the self-similarity and long-range correla-
tion but also the heavy tail property. The tail approximation of an α-stable
distribution is given by P{X > x} ∼ K2x

a, where 0 < α < 2 and K2 > 0
is a constant depending on α (see [121]). In addition, Laskin et al. in [89]
tried to use the so-called fractional Lévy motion (fLm) mentioned by Man-
delbrot in [103] to model Internet traffic, the queue distribution of which is
dominated by a power law. Moreover, many researchers have noticed that real
time traffic has long-tailed characteristics that may be characterized using a
power function. For example, Heyman and Lekshman [61] and Jelenkovi et al.
[66] explored the long-tailed characteristic of the scene length distribution of
MPEG video streams, which has the form of a power function. In these cases,
the traffic is not SBB but can be shown to be gSBB.

Recall the (σ, ρ) traffic model introduced in Chapter 2. We say an input
process A (t) is deterministically bounded bursty (DBB) with upper rate ρ
and burstiness σ, denoted by A ∼ 〈σ, ρ〉, if, for all 0 ≤ s ≤ t,

A (s, t) ≤ ρ · (t − s) + σ.

From Definition 7.2, we see that DBB is a special case of gSBB whose
bounding function is given by
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f(x) =

{
1 if x < σ,

0 if x ≥ σ.

Roughly, the differences between bounding functions for DBB, SBB, and
gSBB can be illustrated by Figure 7.1.

1 

DBB 
SBB 

gSBB 

0 σ x 

f(x) 

Fig. 7.1. Comparison of bounding functions for DBB, SBB, and gSBB

Based on Definition 7.2, it can be shown that many types of traffic belong
to gSBB in addition to those introduced in Chapter 3. For example, Glynn
and Whitt in [51] proved that when the input process A(t) is stationary and
satisfies a large deviation condition, if the serving rate C is greater than
E[A(t)], then the queue length distribution decays exponentially. Thus, this
kind of traffic is gSBB with an upper rate ρ > E[A(t)] and an exponential
bounding function. As discussed above, Duffield and O’Connell in [34] proved
that the queue length of an fBm input process is bounded by a Weibull type
distribution. Hence, the fBm traffic is gSBB with a Weibull type bounding
function. Furthermore, Jelenkovi in [65] proved that for a server with capacity
ρ, if its traffic input A(t) is long-tailed and has distribution function F (x) =
1 − x−αl(x), where l(x) is a slow variation function such as log x, and ρ is
larger than E[A(t)], then its queue length is bounded by

P{Q(t, ρ) > x} ≤ K1x
−α, (7.3)

where K1 > 0 is a constant. Based on Definition 7.2, it is clear that A(t) is
gSBB with upper rate ρ and bounding function K1x

−α. While the first two
types of traffic can also be modeled by SBB, the last one is gSBB but not
SBB.

Comparing Definition 7.2 for gSBB with Definition 7.1 for SBB, we can
see that, for the same bounding function, (7.2) is tighter than (7.1). Clearly,
if A(t) is gSBB with upper rate ρ and bounding function f ∈ Ḡ, then A(t)
is SBB with the same upper rate and the same bounding function. On the
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other hand, following the same discussion on the relationship between the
t.a.c. stochastic arrival curve and v.b.c. stochastic arrival curve in Chapter 3,
it can be shown that if A(t) is SBB with upper rate ρ and bounding function
f ∈ Ḡ, it also is gSBB with upper rate ρ + ε and bounding function

gε(x) = f(x) +
1
ε

∫ ∞

x

f(u)du (7.4)

for any ε > 0.
The discussion above tells us that if a traffic source can be modeled by

SBB, it can also be modeled by gSBB (but maybe with a larger bounding
function). In addition, gSBB may be used to model traffic that does not have
a bounding function f(x) ∈ Ḡ.

7.2 Properties of gSBB

The definition of gSBB implies that it is a special case of the v.b.c. stochastic
arrival curve traffic model with a linear stochastic arrival curve, i.e. α(t) =
ρ · t + σ. Therefore, all results from earlier chapters on the v.b.c. stochastic
arrival curve also apply to gSBB.

When the server has a constant service rate, we present in the following
some interesting results. We can show that if the input process is gSBB with
upper rate ρ and bounding function f ∈ F̄ , after passing through a work-
conserving system with constant service rate C > ρ, the output process is
also gSBB with the same upper rate ρ and the same bounding function f . In
fact, we have the following stronger result.

Theorem 7.3. Consider a work-conserving system with constant service rate
C. Let A(t) and A∗(t) be the input and output processes of the system, respec-
tively. Assume that A(t) ∼vb 〈f, ρt〉 for some ρ > 0 and f ∈ F̄ . Then, for any
t ≥ 0, we have

Q∗(t; ρ) ≤ Q(t; ρ), (7.5)

where Q (t, ρ) = sup0≤s≤t{A(s, t)−ρ(t−s)} and Q∗ (t, ρ) = sup0≤s≤t{A∗(s, t)−
ρ(t − s)}.
Proof. Obviously, if ρ ≥ C we always have Q∗(t; ρ) = 0 ≤ Q(t; ρ). We assume
that ρ < C. Since A(t) ∼vb 〈f, ρt〉, by definition, we have Q(t; ρ) < ∞. It
is straightforward that we have Q∗(t; ρ) < ∞. Without loss of generality, we
assume in the following Q∗(t; ρ) < ∞. By definition,

Q∗(t; ρ) = sup
0≤s≤t

{A∗(s, t) − (t − s)ρ} .

Then, for any given ε > 0, there exists so ≤ t such that

A∗(so, t) − (t − so)ρ > Q∗(t; ρ) − ε.
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Without loss of generality, we may assume ε < (C − ρ)/2. Since Q∗(t; ρ) can
actually be interpreted as the queue length at time t of a virtual system with
constant service rate ρ and input A∗, we naturally have for this queue length
of the virtual system

Q∗(t; ρ) ≥ A∗(so − 1, t) − ρ(t − so + 1)
= A∗(so, t) − ρ(t − so) + A∗(so − 1, so) − ρ

> Q∗(t; ρ) − ε + A∗(so − 1, so) − ρ.

From this, we get
A∗(so − 1, so) < ρ + ε < C.

Note that the server is work-conserving with service rate C. Then the input
queue length is 0 after so. This indicates that, after so, all the workload
arriving up to time so has been transmitted already. Therefore, A∗(so, t) is
just a part of A(so, t). Hence we have A∗(so, t) ≤ A(so, t). Then

Q (t; ρ) ≥ A (so, t) − ρ (t − so)
≥ A∗ (so, t) − ρ (t − so) > Q∗ (t; ρ) − ε

By the arbitrariness of ε we get that Q(t; ρ) ≥ Q∗(t; ρ). This ends the
proof. ��

With Theorem 7.3, we immediately get the following result.

Corollary 7.4. With the same assumption as in Theorem 7.3, if the input is
gSBB (i.e., A(t) ∼vb 〈f, ρt〉) for some ρ > 0 and f ∈ F̄ , then the output is
also gSBB with A∗(t) ∼vb 〈f, ρt〉.

It can be easily verified that the corollary above follows also from Theorem
5.12 in Chapter 5, where the server with constant service rate C provides a
deterministic service curve β (t) = Ct.

Theorem 7.3 tells us that the outgoing stream is less bursty than the in-
coming stream in the sense that the up-to-date maximal cumulative burstiness
is smaller. Similar results can be found in [101] and [63]. In addition, The-
orem 7.3 is consistent with the results for a work-conserving constant-rate
server with leak-bucket constrained input (e.g., see Lemma 1.4.2 (iii) of [18]).
However, we must notice that Theorem 7.3 holds only when there is no cross
traffic. We will see in the next section that if cross traffic exists, the bounding
function of the outgoing traffic may become much larger.

Example 7.5. Suppose there is a stream A0(t) passing through a series of work-
conserving servers with service rate C = ρ+1. Use Ai(t) to denote the outgoing
stream from the ith server. If the stream is gSBB at the beginning with
A0(t) ∼vb 〈e−x, ρt〉, we then have from Corollary 7.4 that Ai(t) ∼vb 〈e−x, ρt〉
for all i ≥ 0. If we would limit ourselves to the SBB model and always use SBB
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representing traffic, we could only get that the bounding function of A1(t) is
given by

f1 (x) = e−x +
∫ ∞

x

e−udu = 2e−x.

In general, the bounding function of Ai(t) under the SBB model is

fi(x) = 2ie−x.

If we consider i = 10, for σ ≤ 10 ln 2 ≈ 6.931, we could not obtain any useful
information from the result above, since after ten nodes we would have

P {A10 (s, t) ≥ (t − s) ρ + 10 ln 2} ≤ 210e−10 ln 2 = 1.

However, by Corollary 7.4, we have

P {A10 (s, t) ≥ (t − s) ρ + 10 ln 2}
≤ P {Q10 (t; ρ) ≥ 10 ln 2}
≤ 2e−10 ln 2 < 0.002.

From the example above, we see that besides the fact that the extent of
gSBB traffic is larger than that of SBB traffic, the conservation feature of
gSBB for its bounding functions is a significant advantage compared with the
divergent feature for bounding functions with the SBB model.

One implication of the gSBB input-output relation is that, for a traffic
stream passing through a network, if its initial SBB characteristic is known,
we may first convert it to gSBB and then apply the gSBB input-output rela-
tion to analyze its network performance. As illustrated in the example above,
although the converted gSBB bounding function for the stream at the first
server may be larger (than its initial SBB bounding function), the resulting
bounding function after the last hop from gSBB input-output relation analysis
could be much smaller than what would be obtained from SBB input-output
relation analysis.

7.3 Analysis on Different Scheduling Disciplines

In this section, we consider a work-conserving system shared by multiple input
processes under different service disciplines. Within each source, first-in-first-
out (FIFO) is assumed. Note that the discrete time model is considered. We
do not distinguish the order of arrivals arriving at the same time within each
source and assume that, upon service, ties are broken arbitrarily among such
arrivals.
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7.3.1 General Results

In this section, we do not assume any particular service discipline. For the
outgoing stream of each source, we have the following result.

Theorem 7.6. Suppose that we have N sources sharing a work-conserving
system with service rate C. Assume that Aj(t) ∼vb 〈fj , ρjt〉, where Aj(t) is
the input process from source j, and

∑N
j=1 ρj < C. Let A∗

j (t) be the output

process of source j. Then A∗
j (t) ∼vb 〈g(1)

j , ρjt〉, where

g
(1)
j (x) = gj (x) +

1
ε

∫ ∞

x

gj (u) du

and
gj(x) = f1 ⊗ f2 ⊗ · · · ⊗ fN (x) . (7.6)

Proof. To derive the output burstiness of flow j, we can first derive the leftover
service curve provided by the server. According to an early result on the
leftover service curve, which is Corollary 5.44 in Chapter 5, we can have the
following leftover weak stochastic service curve for flow j:

Sj ∼ws

〈
f1 ⊗ · · · ⊗ fj−1 ⊗ fj+1 · · · ⊗fN , Ct −

N∑
k=1,k 
=j

ρkt

〉
.

Then, according to Theorem 5.9 in Chapter 5, we can have

A∗
j ∼ta

〈
f1 ⊗ f2 ⊗ · · · ⊗ fN (x) , (ρjt) 


⎛
⎝Ct −

N∑
k=1,k 
=j

ρkt

⎞
⎠〉 ,

where

(ρjt) 

⎛
⎝Ct −

N∑
k=1,k 
=j

ρkt

⎞
⎠ (t) = sup

s≥0

⎧⎨
⎩ρj (s + t) −

⎛
⎝C −

N∑
k=1,k 
=j

ρk

⎞
⎠ s

⎫⎬
⎭

= ρjt.

We hence have
A∗

j ∼ta 〈f1 ⊗ f2 ⊗ · · · ⊗ fN (x) , ρjt〉 .

Then, according to the relationship between the t.a.c. SAC and v.b.c. SAC,
we have

A∗
j (t) ∼vb (g(1)

j , ρjt),

where
g
(1)
j (x) = gj (x) +

1
ε

∫ ∞

x

gj (u) du

and
gj(x) = f1 ⊗ f2 ⊗ · · · ⊗ fN (x) .

��
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For the delay, we have the following result.

Theorem 7.7. Assume that A(t) ∼vb 〈f, ρt〉 is the input process of a work-
conserving system with constant service rate C > ρ. Also assume, without loss
of generality, f(0) = 1. Then the delay satisfies

P{D(t) ≥ k} ≤ f((C − ρ)k). (7.7)

Proof. Since f(0) = 1, Theorem 7.7 holds trivially for k = 0.
Consider k ≥ 1. Let Q(t) denote the queue length at time t. If for some

j < k we have Q(t + j) = 0, then we must have D(t) ≤ j < k. Hence,

P{D(t) ≥ k} ≤ P{Q(t + j) > 0; j = 0, 1, · · · , k − 1}. (7.8)

Let Q(t; ρ) = sup0≤s≤t{A(s, t) − ρ(t − s)} and Q(t) = Q(t;C). When Q(t) =
Q(t;C) > 0, we must also have Q(t; ρ) > 0 since Q(t; ρ) ≥ Q(t;C). Then, we
have

Q(t; ρ) = sup
0≤s<t

{A(s, t) − ρ(t − s)}

≥ sup
0≤s<t

{A(s, t) − C(t − s)} + inf
0≤s<t

{(C − ρ)(t − s)}

= Q(t;C) + (C − ρ).

In addition, if Q(t) > 0 and Q(t + 1) > 0, we have

Q(t + 1; ρ) = Q(t; ρ) + A(t + 1) − ρ

≥ Q(t;C) + C − ρ + A(t + 1) − ρ

= Q(t;C) + A(t + 1) − C + 2(C − ρ)
= Q(t + 1;C) + 2(C − ρ).

Inductively, if Q(t) > 0, Q(t + 1) > 0, · · · , Q(t + k − 1) > 0, then we have

Q(t + k − 1; ρ) ≥ Q(t + k − 1;C) + k(C − ρ). (7.9)

Therefore, by (7.8) and (7.9),

P{D(t) ≥ k} ≤ P{Q(t + k − 1; ρ) > k(C − ρ)}
≤ f(k(C − ρ)).

��

7.3.2 First In First Out (FIFO)

In this section, we assume that the system adopts the FIFO service discipline.
If, at time t, Q(t − 1) < C, we assume that, upon service, ties are broken
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arbitrarily among arrivals that arrive at t simultaneously. In this case we
cannot obtain a much better result than Theorem 7.6 for output processes.

For the delay, obviously, we have

D(t) =
⌈

Q(t)
C

⌉
,

where �·� is the ceiling function denoting the smallest integer that is greater
than or equal to a given number. Then D(t) > k is equivalent to Q(t) > kC
and we have the following theorem.

Theorem 7.8. Assume that A(t) ∼vb 〈f, ρ〉, which is passing through a work-
conserving system with capacity C > ρ and FIFO discipline. Then, for k ≥ 1,

P{D(t) ≥ k} ≤ f (kC − ρ) . (7.10)

Proof. Since C > ρ, when Q(t) > 0 we have, as discussed in the proof of
Theorem 7.7,

Q(t) = Q(t;C) ≤ Q(t; ρ) + ρ − C.

Hence, for k ≥ 1,

P{D(t) ≥ k} = P{Q(t) > (k − 1)C}
≤ P{Q(t, ρ) > kC − ρ} ≤ f(kC − ρ).

��
It can be easily verified from Theorems 7.7 and 7.8 that FIFO can have

better performance in terms of delay for each individual source than a general
scheduler whose service discipline is unknown.

7.3.3 Strict Priority (SP)

We now consider strict priority discipline. Assume that, if i < j, then the
source i has a higher priority than the source j, which means that source j
will not be served if there exists a workload from source i waiting for serving.
Within the same source, FIFO is adopted.

For the output traffic, the following result holds.

Theorem 7.9. Suppose that we have N sources sharing a work-conserving
system with service rate C, which serves according to strict priority order. Let
Aj(t) be the input process from source j. Assume that Aj(t) ∼vb 〈fj , ρjt〉,
where

∑N
j=1 ρj < C. Let A∗

j (t) be the output process of source j. Then

A∗
1(t) ∼vb 〈f1, ρ1t〉 and, for j ≥ 2, we have A∗

j (t) ∼vb 〈g(1)
j , ρjt〉, where

g
(1)
j (x) = gj (x) +

1
ε

∫ ∞

x

gj (u) du
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and ⎧⎪⎨
⎪⎩

g2(x) = f1 ⊗ f2 (x)
· · ·
gN (x) = f1 ⊗ f2 ⊗ · · · ⊗ fN (x)

(7.11)

with any 0 < pki < 1 and
∑k

i=1 pki + pkk = 1, k = 2, · · · , N .

Proof. For A1(t), it is exactly the same as it passes through a work-conserving
server with capacity C > ρ1. By Theorem 7.3, we see that A∗

1(t) ∼vb 〈f1, ρ1t〉.
Now consider A2(t). Compared with other traffic streams, A1(t) + A2(t)

has the highest priority. Hence it is equivalent to the case where A1(t) +
A2(t) passes through a work-conserving server with capacity C > ρ1 + ρ2. By
Theorem 7.6, we get that A∗

2(t) ∼vb 〈g(1)
2 , ρ2t〉. By similar discussions, we can

get g
(1)
3 , · · · , g

(1)
N . ��

For the delay of each source, we have the following bound.

Theorem 7.10. Denote by Dj(t) the delay of source j. With the same as-
sumption as in Theorem 7.9, we have, for k ≥ 1,

P{D1(t) ≥ k} ≤ f1(kC − ρ1) (7.12)

and
P{Dj(t) ≥ k} ≤ gj(k(C − rj)), (7.13)

for j ≥ 2, where rj = ρ1 + · · · + ρj and

gj(x) = f1 ⊗ f2 ⊗ · · · ⊗ fj (x) . (7.14)

Proof. We can get (7.12) by Theorem 7.9. In fact, for A1(t), it is exactly
the same as the case of only one input process in a work-conserving system
with capacity C and FIFO. For j ≥ 2, we apply Theorems 7.3 and 7.7 to
the aggregate traffic A1(t)+ · · ·+Aj(t). By the superposition property of the
v.b.c. stochastic arrival curve, we know that this traffic is gSBB with upper
rate ρ1 + · · ·+ρj and bounding function gj(x) defined by (7.14). Then, (7.13)
follows from Theorem 7.7. ��

7.3.4 Generalized Processor Sharing (GPS)

We finally consider a work-conserving server with capacity C shared by N
flows using the generalized processor sharing (GPS) service discipline [112].
Assign the ith flow a parameter φi > 0. Similar to above, let Q(t) denote the
total queue length at time t and Qi(t) denote the portion of the queue that
belongs to flow i. In addition, A∗

i denotes the output of flow i.
For GPS, if in the time interval (s, t] Qi(τ) > 0, then, for any s < τ ≤ t

[112],
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A∗
i (s, t)

A∗
j (s, t)

≥ φi

φj
, j = 1, 2, · · · , N. (7.15)

Without loss of generality, we assume that
∑N

i=1 φi = 1 and call φi the ith
serving weight. By (7.15), we see that if traffic from source i is backlogged all
the time in the interval (s, t], then the available serving rate for source i is
at least φiC for the whole time period. This implies that the server provides
strict service curve φiCt to flow i. Then, if φjC > ρj , Theorem 7.11 can be
proved in the same way as Theorem 7.3. If we do not have φjC > ρj , Theorem
7.6 can be applied.

Theorem 7.11. Assume that we have N sources sharing a work-conserving
system with service rate C that adopts GPS service discipline. Assign each
source i a sharing weight φi > 0 for 1 ≤ i ≤ N . Assume that Aj(t) ∼vb

〈fj , ρjt〉, where Aj(t) is the input process from source j, and
∑N

j=1 ρj < C.
Let A∗

j (t) be the output process of source j. Then, A∗
j (t) ∼vb 〈gj , ρjt〉, where

if φjC > ρj, gj(x) = fj(x); otherwise, gj(x) is determined from Theorem 7.6.

For the delay, since, under GPS, if Qj(t) > 0, the amount of work waiting
in queue Qj(t) will be served at a rate not less than φjC, we can follow the
same method used in proving Theorem 7.8 to obtain the following result.

Theorem 7.12. Let Dj(t) be the delay for source j. With the same assump-
tion as in Theorem 7.11, if φjC > ρj, we have, for k ≥ 1,

P{Dj(t) ≥ k} ≤ fj(kφjC − ρj); (7.16)

otherwise, the delay has a probabilistic bound determined from Theorem 7.7.

Note that when some other conditions on the sources and the weight as-
signment are satisfied in the GPS system, we will see in Chapter 9 that im-
proved results may be obtained for each source.

7.4 Application to Measurement-Based
Admission Control

Having studied the several representative scheduling disciplines, to demon-
strate the use of the results obtained, the rest of this chapter focuses on an
example that applies stochastic network calculus to measurement-based ad-
mission control (MBAC). The focus is on MBAC for a flow-aware network.
We will first give an introduction to MBAC. Then, a per-flow MBAC scheme
will be described, which is followed by the analysis using the earlier results in
this and previous chapters.
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7.4.1 Introduction to MBAC

Measurement-based admission control is an important technique for providing
stochastic service guarantees. MBAC does not require a priori source charac-
terization, which in many cases may be difficult or impossible to obtain. In-
stead, MBAC uses measurements to capture the behavior of existing flows and
uses this information together with some (possibly coarse) knowledge of the
requesting flow to make an admission decision. In addition, based on online
measurements, MBAC can better make use of network resources and hence
achieve high network utilization.

Figure 7.2 depicts the structure of MBAC. It shows that an MBAC scheme
includes three elements: (1) admission decision algorithm; (2) traffic estimator;
and (3) resource estimator. The MBAC scheme keeps measuring traffic in the
system and remaining system resources such as available bandwidth and buffer
size. Based on the measurements, the traffic estimator estimates how much
traffic is in the system and what its characteristics are; the resource estimator
estimates how much resource remains.

For a specific MBAC implementation, the system in Figure 7.2 can be a
single node, a domain, or an end-to-end network. If the system is a network
domain, the measurement points for the traffic estimator and the resource
estimator, as well as the admission decision algorithm, can be implemented at
each node (which results in the node-by-node MBAC or hop-by-hop MBAC),
at the ingress (which results in ingress MBAC), or at the egress (which results
in egress MBAC), or at a central controller such as bandwidth broker in
DiffServ (which results in centralized MBAC). If the system is the whole
end-to-end network, the three elements for MBAC may be implemented at
end-systems/applications, which results in endpoint MBAC. In this chapter,
we focus on single-node MBAC algorithms in which the system in Figure 7.2 is
the single link. Nevertheless, most discussions in this chapter can be extended
to the network domain case and the end-to-end network case by viewing the
network domain or the end-to-end network as a black box or single node.

When a new flow requests admission to the system, the MBAC scheme
uses the admission control algorithm to decide if this flow can be admitted.
This decision is based on the inputs from the traffic estimator and the resource
estimator. In addition, the decision may also be based on some inputs from
the requesting flow, which typically include its QoS requirement and its traffic
description.

In MBAC, the MBAC scheme typically uses the a priori source charac-
terizations only for incoming flows. For existing flows that have been in the
system, it uses measurements to characterize them.

In the literature, many MBAC algorithms have been proposed and inves-
tigated [75][13][125]. While these algorithms use different analytical bases for
the admission test, they commonly assume or require that [75] (1) FIFO be
used for aggregating flows; (2) statistical service guarantees be provided to the
aggregate of admitted flows; and (3) each flow in the aggregate requires and
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Fig. 7.2. MBAC structure

experiences the same statistical service guarantees as the aggregate. We call
these algorithms aggregate MBAC algorithms. For analyzing such algorithms,
the superposition property may be used together with the service guarantees
property of stochastic network calculus to derive the target delay and backlog
bounds, from which the admission decision can further be made.

While the assumptions and requirements for aggregate MBAC have made
such MBAC algorithms simple, network applications are so diverse that their
QoS requirements can be far from each other. In such cases, per-flow MBAC
algorithms may be preferred [117]. In the rest of this chapter, we shall focus
on a flow-aware network where flows can be identified and particularly on
MBAC for the network.

7.4.2 Introduction to Flow-Aware Networking

In a flow-aware network, a flow is defined to be and identified as a set of
packets related to an instance of some network application observed at a
given network point with an inter-packet interval less than a certain time-out
period. Specifically, a flow consists of packets having the same values in certain
header fields. A flow is said to have ended or left when no packet with the
same header field values is observed for the time-out period. There are several
possible ways to identify a flow. One is to use the 5-tuple of IP addresses,
protocol, and port numbers. Another is to use the flow label field in the IP
header as specified by IPv6 associated with the source and/or destination
addresses. Here, we simply assume each flow can be identified, but how this
is done is out of the scope of this book.

Flow-aware networking is proposed as an alternative QoS architecture
for the Internet [11][117]. While an IntServ network also requires flow-level
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identification, its per-flow service guarantees are mainly provided in the de-
terministic guaranteed service manner, which can cause significant under-
utilization of network resources (e.g., see [117]). Although IntServ has defined
Controlled Load service for utilizing statistical multiplexing gain to achieve
higher network utilization, the requirement of a signaling protocol and that
TSpec (token bucket traffic specification) be used for specifying the traffic has
imposed significant constraints on customers and limited its use [117].

A flow-aware network is designed to achieve high network utilization and
provide a stochastic service guarantee without the need of using signaling or
TSpec. Particularly, it achieves this by assuming that the peak rate of a flow
is always smaller than a certain ratio of the service capacity [117]. Let C be
the total capacity and φi the ratio. Then, this assumption implies that the
cumulative amount of traffic Ai(s, s + t) generated in (s, s + t] by the flow
satisfies

Ai(s, s + t) ≤ φiCt, (7.17)

where φi may be different for one flow from one flow to the other, and it can
be carried by packets of the flow; e.g., in some IP header field such as the
traffic specification code point field in DiffServ networks [76].

Using (7.17) as the implicit traffic descriptor of an incoming flow, no sig-
naling is needed to convey explicit traffic information from the sender to the
network. In addition, the service requirement of the flow may be implicitly set
in the network or can be carried by some header field of the flow’s first packet
[76]. Under the DiffServ architecture, similar approach has been used. Partic-
ularly, the DSCP (DiffServ code point) field carried by each packet tells each
node along its path the service it requires [10]. The detailed way of mapping
the header field to the service requirement is out of the scope of this book.

To provide service guarantees in a flow-aware network, per-flow MBAC is
important [11] [117].

7.4.3 Dynamic Priority Scheduling-Based MBAC

Admission control is highly dependent on the scheduling discipline adopted
and its setting since different scheduling or service disciplines can result in dif-
ferent service guarantees provided to a flow. For example, Table 2.1 in Chapter
2 shows the difference in terms of rate guarantee between several widely stud-
ied scheduling disciplines. In addition, it was studied in Chapter 9 that by
changing the weight assignment in a GPS scheduler, the service guarantee in
terms of LRD isolation may be met.

GPS is an ideal scheduling discipline and a good candidate for providing
per-flow service guarantees, its key drawback being that its implementation
complexity increases quickly with the number of flows it handles. While FIFO
is simple to implement, it does not distinguish between flows, and hence the
service guarantees are provided to the flow aggregate.

In the rest of this section, we consider a dynamic priority scheduling (DPS)
discipline based on which measurement-based admission control is performed.
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In the dynamic priority scheduling discipline considered, each admitted
flow has its dedicated queue. Priority scheduling is performed among admitted
flows in the system. An earlier admitted flow has higher priority over all later
admitted flows. This is achieved by always giving the newly admitted flow a
lower priority than all existing flows. When a flow is detected as non-active
for a certain time period, known as the time-out period, it is considered to
have left the system and its corresponding buffer is released together with its
priority. A common buffer pool is maintained in the MBAC algorithm. When
an incoming flow is admitted, a certain size of buffer is allocated to the flow.
The buffer size allocated is determined based on the analysis presented later.

As can be seen from the description above, although the relative priority
of a flow with respect to other flows is nearly fixed, its exact priority level is
dynamic over time. In particular, the level of an existing flow increases by one
priority level over all existing flows admitted after it.

With this DPS discipline, by the nature of priority discipline, the experi-
enced statistical service guarantees of an admitted flow will not be adversely
affected by flows admitted after it. In fact, the experienced service guaran-
tees of an admitted flow can become better and better due to some earlier
admitted flows leaving the system. An implication of the DPS discipline is
that when admission control is performed, there is no need to recheck the
service guarantees provided to existing flows or to reallocate resources to the
existing flows to maintain their service guarantees. This makes both the DPS
discipline and the DPS-based MBAC easy to implement.

When the first packet of a new flow An is detected, implying an incoming
flow requesting admission, the admission control algorithm admits the flow
only when the criteria

rn + r̂ ≤ φC, (7.18)
fd(dn) ≤ εd

n, (7.19)

bn + b̂ ≤ M, (7.20)

are met, where C denotes the link capacity, φ(< 1) the maximum allowed
utilization level of C, M the total buffer size, rn(= φnC) the (implicit upper)
rate of the incoming flow, εd

n the delay requirement, and bn the buffer size
that will be allocated to the flow if it is admitted. In addition, r̂ denotes the
mean traffic rate of all existing flows in the system, which is measured, and b̂
the total buffer size allocated to flows in the system.

In (7.18) to (7.20), (7.18) represents the admission criterion for rate or
throughput, and (7.19) represents the criterion for delay. The probability that
the delay Dn to be experienced by the incoming flow is greater than the
required delay dn is less than εd

n. In (7.19), the delay function fd(y), which
satisfies P{Dn > y} ≤ fd(y), will be given in the next subsection. For (7.20),
bn is the minimum buffer size with which the required loss probability is met.
Specifically,

bn = min{x : fl(x) ≤ εl
n}, (7.21)
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where εl
n denotes the loss requirement of the incoming flow. The loss function

fl(x) in (7.21) will also be given later.
If no bn satisfying (7.21) exists, the flow is rejected. In addition, if any

one of (7.18) to (7.20) cannot be satisfied, the flow is rejected. The admission
control algorithm rejects a flow by simply dropping packets from the flow, or
if there is a best-effort traffic class, the flow is added to this class. It is left
as the responsibility of the sender and/or receiver of the flow to react to the
possible dropping, but how such a reaction is done is out of the scope of this
book.

7.4.4 Analysis

Note that, in the DPS-based MBAC scheme, if an incoming flow is admitted,
it will be placed at the lowest priority level as compared with all existing
flows. As a result, the incoming flow will see an integrated effect from these
existing flows. Particularly, we can view the existing flows as an aggregate and
equivalently consider a priority server with two inputs: the aggregate and the
incoming flow.

As in the previous chapters, let Ai(t) be the arrival process of each flow i
in the system and Ai(s, s + t) the amount of traffic generated by the process
in (s, s+ t]. Suppose all flows have stationary increments; i.e., Ai(s, s+ t) =st

Ai(t) for all s, t > 0. Let A(t) be the aggregate arrival process of all flows in
the system and A(s, s + t) the amount of traffic generated by the aggregate
process in (s, s + t].

We then have A(t) =
∑I

i=1 Ai(t), where I denotes the number of flows in
the system. When I becomes large, A(t) tends toward Gaussian under some
general assumptions. In addition, denote the amount of traffic generated by
each flow in (t−1, t] by ai(t) = Ai(t)−Ai(t−1) ≡ Ai(t−1, t) and the amount
of traffic generated in (t − 1, t] by all flows in the system a(t) =

∑I
i=1 ai(t).

We then have A(t, t + τ) =
∑t+τ

s=t ai(s), which also tends toward Gaussian
when the time interval becomes large. For these reasons, a Gaussian process
has often been used to characterize the existing traffic in MBAC (e.g., [21]
[83] [1][104]). The mean and variance of a Gaussian process can be estimated
from measurements [41].

For a Gaussian process, letting r̂t and v̂(t) respectively be its mean and
variance, there holds for any s, t ≥ 0

P{A(s, s + t) > ρt + σ} = Ψ

(
(ρ − r̂)t + σ√

v̂(t)

)
, (7.22)

where Ψ(x) ≡ 1
2π

∫∞
x

e−
y2

2 dy.
Equation (7.22) implies that the Gaussian process can be considered to

have a t.a.c. stochastic arrival curve. Then, all properties of the t.a.c. stochas-
tic arrival curve can be applied to analyze Gaussian processes. In the following,
an approximation is instead introduced for the analysis in this chapter.
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Available results in the literature [21][83][1][104] suggest the following ap-
proximation for Q̂(t; c), the queue length at time t of a virtual single-server
queue system with server rate c > r̂ fed with the same traffic A(t) of the
Gaussian process:

P{Q̂(t; c) > x} ≈ exp
(
−infs≥0

(x + (c − r̂)s)2

2v̂(s)

)
. (7.23)

Simulation results under various cases indicate that the approximation
(7.23) may in fact be a general upper bound for P{Q̂(t; c) > x} [1], and under
some general conditions, it has been proved in [21] that (7.23) is an asymptotic
upper bound on P{Q̂(t; c) > x}. For these reasons, we rewrite (7.23) as

P{Q̂(t; c) > x}
� f̂(x) ≡ exp

(
− (x + (c − r̂)s)2

2v̂∗

)
, (7.24)

where v̂∗ ≡ v̂(s∗) and s∗ is chosen such that (x+(c−r̂)s)2

2v̂(s) reaches its minimum
at s∗.

For the aggregate traffic Â(t) of existing flows in the MBAC system, ac-
cording to the definition of a v.b.c. stochastic arrival curve in Chapter 3, we
now have from (7.24) that Â(t) ∼vb 〈f̂ , c · t〉, which holds for any c > r̂. For
ease of explanation and later analysis, we let c = r̂+(1−u)C and consequently

Â(t) ∼vb

〈
f̂ , (r̂ + (1 − u)C)t

〉
. (7.25)

Here, u can be interpreted as a utilization parameter that can be chosen
between the actual utilization r̂+rn

C , which will result from admitting the
requesting flow, and the maximum allowed utilization level α. In other words,

r̂ + rn

C
≤ u ≤ α. (7.26)

The remainder of this section presents analytical support for determining
fd(y) in (7.19) and fl(x) in (7.21) using stochastic network calculus results.
Particularly, as discussed above, we view the system as a priority server with
two priority levels: while existing aggregate traffic is at the high priority level,
the requesting flow is at the low priority level. Then, from Theorem 5.42 and
the v.b.c. stochastic arrival curve characterization of existing traffic in (7.25),
we have the following result.

Corollary 7.13. Consider a constant-rate priority server with two inputs.
Suppose the total service rate is C and the input at the high priority level
has Â(t) ∼vb

〈
f̂ , (r̂ + (1 − u)C)t

〉
. Then the server provides to the flow at

the low priority level a weak stochastic service curve S ∼ws 〈g(x), β(t)〉 with
β(t) = (uC − r̂)t; g(x) = f̂(x).
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Applying Corollary 7.13 to Theorems 5.1 and 5.4, we obtain the following
corollary.

Corollary 7.14. Under the same condition as in Corollary 7.13, if the input
flow at the low priority level has An(t) ∼vb 〈fn, rn · t〉, then its backlog Bn(t)
and delay Dn(t) in the system satisfy

P (Bn(t) > x) ≤ fl(x),
P (Dn(t) > y) ≤ fd(y),

where

fl(x) = fn ⊗ f̂(x), (7.27)

fd(y) = fn ⊗ f̂ ((uC − r̂)y) . (7.28)

Here, we have assumed that the aggregate traffic of existing flows in the
system is approximated using Gaussian and (7.24). In addition, we have
adopted the implicit traffic descriptor (7.17) for the incoming flow as used
in [117], which implies An ∼ 〈0, φnC〉. Applying these to (7.27) and (7.28),
we can further get

fl(x) = exp

(
− x2

2ṽ∗
x

)
, (7.29)

fd(y) = exp

(
− (uC − r̂)2y2

2ṽ∗
y

)
, (7.30)

where ṽ∗
x ≡ ṽ(s∗x) and s∗x is chosen such that (x+(c−r̂)s)2

2ṽ(s) reaches its minimum

at s = s∗x; ṽ∗
y ≡ ṽ(s∗y) and s∗y is chosen such that ((uC−r̂)y+(c−r̂)s)2

2ṽ(s) reaches its
minimum at s∗y.

Here while in Corollaries 7.13 and 7.14, we have considered only two pri-
ority levels, here the result can be easily extended to more levels, as shown in
Section 7.3. In such cases, it is easy to verify from the proof that we can view
Ã(t) and Ã∗(t) respectively as the aggregate input and output of all flows
that are not at the lowest priority level and consequently get the proposition
proved. In addition, for any flow at a certain priority level, we can view Ã(t)
and Ã∗(t) respectively as the aggregate input and output of all flows having
higher priority than this flow and consequently prove that the server provides
to the flow a weak stochastic service curve as in Corollary 7.13.

Note that Corollaries 7.13 and 7.14 are general in the sense that they hold as
long as the two input flows have v.b.c. stochastic arrival curves. In Chapter 3,
we saw that many types of traffic can be modeled by a v.b.c. stochastic arrival
curve. Hence, although Gaussian approximation has been used in this chapter
for its popularity and reasonably good performance as investigated by other
researchers (e.g., see [21] [86]), the v.b.c. stochastic arrival curve allows us
to use other approximations for existing aggregate traffic instead. In other
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words, other approximations for existing traffic and other descriptors for the
incoming flow can also be used with Corollaries 7.13 and 7.14. Under these
cases, by applying the corresponding f̂ and fn to Corollaries 7.13 and 7.14,
the required fd(y) and fl(x) can be derived and applied to (7.19) and (7.21)
for making an admission decision.

Also note that, u can be selected between r̂+rn

C and φ. Roughly, given f̂(x)
by (7.24), a smaller u results in a tighter fl(x) and a tighter fd(y). Because
of this, by selecting u properly, higher utilization may be achieved.

7.5 Summary and Bibliographic Comments

In this chapter we have introduced the concept of generalized stochastically
bounded bursty (gSBB) traffic, which was initially defined by Yin, Jiang et
al. in [140]. The v.b.c. stochastic arrival curve traffic model is indeed based on
and a generalization of gSBB. Because of this, all properties and results for
the v.b.c. stochastic arrival curve traffic model also apply to the gSBB model.
In addition, this chapter has discussed some interesting properties of gSBB,
particularly the input-output relation of a constant- rate system with gSBB
input.

The focus of this chapter was on studying a system shared by a number
of gSBB sources using different scheduling disciplines. The output character-
ization and the bounding probability for delay under these disciplines were
analyzed. These results can also be easily extended to the v.b.c. stochastic
arrival curve traffic model.

To demonstrate the use of stochastic network calculus results, we studied
measurement-based admission control for a flow-aware network. A simple per-
flow MBAC scheme was introduced to provide stochastic service guarantees in
the network. This scheme uses dynamic priority to schedule flows in the sys-
tem, where a newly admitted flow is always given lower priority than existing
flows. The admission decision is based on traffic measurements of existing flows
together with service requirements of the incoming flow. With this DPS-based
MBAC, per-flow stochastic service guarantees can be provided. The admis-
sion control is based on delay and loss analysis using results from the previous
chapters. An attractive feature of the MBAC scheme studied is that the guar-
anteed stochastic service to an admitted flow is not adversely affected by flows
admitted after it. In fact, as expected, the experienced service guarantees of
an admitted flow become better and better due to some earlier admitted flows
leaving the system. An implication of the DPS-based MBAC algorithm is that
when admission control is performed, there is no need to recheck the service
guarantees provided to existing flows or to reallocate resources to the existing
flows to maintain their service guarantees.

The concept of gSBB was initially defined by Yin, Jiang et al. in [140]. Ana-
lyzing scheduling disciplines with gSBB inputs can be found from [77] by Jiang
et al. Many MBAC schemes have been proposed, and several reviews of them
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can be found in the literature (e.g., [125] [107] [75] and references therein). The
flow-aware networking architecture was initially introduced in [11] [117]. Dis-
cussion and proposals for avoiding signaling in per-flow measurement-based
admission control can be found in [117] [75] and [76]. The MBAC scheme
based on dynamic priority was introduced in [72] by Jiang et al. where the
analysis was based on stochastic network calculus.

Problems

7.1. Consider the system described in Example 7.5, and find the nodes from
which the bounds derived under the SBB model is greater than that derived
under the gSBB model.

7.2. Consider a constant-rate server with capacity C providing service to a
flow that can be characterized by a Gaussian process with mean r̂t and vari-
ance v̂ (t) . Derive the delay distribution using Theorem 7.7.

7.3. Consider a constant-rate server with capacity C providing service in a
FIFO manner to a flow that can be characterized by a Gaussian process with
mean r̂t and variance v̂ (t). Derive the delay distribution using Theorem 7.7
and 7.8.

7.4. Consider a constant-rate server with capacity C providing service in a
FIFO manner to a flow that can be characterized by a Gaussian process with
mean r̂t and variance v̂ (t). Derive the delay distribution using results from
Chapter 5 and compare the results with those from Problems 7.2 and 7.3.

7.5. Prove Theorem 7.11.

7.6. Prove Theorem 7.12.

7.7. Prove Corollary 7.13.

7.8. Prove Corollary 7.14.

7.9. Based on the relationship between SBB and gSBB, or the t.a.c. stochastic
arrival curve and v.b.c. stochastic arrival curve, the gSBB characterization of
the Gaussian process can be obtained. Apply it to obtain the required bound-
ing functions fl and fd for the DPS-based MBAC scheme. Then, compare
them with the corresponding results in Section 7.4.3.
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Traffic Conformance Study

In this chapter, we will apply stochastic network calculus to a traffic confor-
mance study.

To achieve a certain level of quality of service (QoS) assurance, a network
will have service level agreements (SLAs) with its users and neighboring do-
mains, which, in general, describe the QoS level that the service provider is
committed to provide and the specification of traffic that users or neighboring
domains are allowed to send for the subscribed QoS level. For example, in
a Differentiated Services network [10], all incoming flows must conform to a
certain pre-determined SLA and the conformance is measured by a policer at
the ingress router of the network. Based on the SLA, the network will pro-
vide a certain level of QoS to the conformant part of these flows. Since flows
may interact with each other and compete for resources at each node of a
network, an interesting and important question arises as to whether a flow is
still conformant to its original traffic specification after crossing the network.

This chapter considers conformance deterioration for both individual flows
and aggregates of flows. In some situations, an individual flow needs to nego-
tiate SLAs with networks along its end-to-end path. In this case, the per-flow
conformance deterioration along its end-to-end path is considered. Another
case is also considered where the individual user only needs to establish an
SLA with the first access network, and the access network will negotiate a
bulk SLA with its next intermediate network for the corresponding aggregate
of flows. For example, several users may subscribe to the same level of service,
each has its individual SLA with the first access network, and traffic from
these users is aggregated in the same class. When such an aggregate exits the
first network and enters the next network, the aggregate will be checked for
its conformance based on the bulk SLA between these two domains.

In this chapter, we study analytically the extent to which a flow and an
aggregate of flows become non-conformant in two typical network scenarios. In
particular, we investigate conformance deterioration in a per-flow scheduling
network where network servers guarantee a certain level of service to each
flow and in an aggregate scheduling network where network servers provide a
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certain level of service to each aggregation of flows to support scalable QoS
provisioning. Based on a relationship between the conformance deterioration
and stochastic burstiness increase that will be established in this chapter
and results from the previous chapters, analytical bounds on conformance
deterioration probability are presented for both the per-flow and the per-
aggregate cases.

8.1 Network Model

Consider a network as shown in Figure 8.1. In this network, every incoming
flow under consideration is shaped by a token bucket shaper at an ingress
router, whose token generation rate and bucket size are set based on some
pre-determined SLA. At the corresponding egress router a token bucket me-
ter with the same parameters as the ingress shaper checks the conformance
of its outgoing traffic. If the burstiness of the input flow increases and conse-
quently some packets of the flow do not conform to the token bucket meter at
the egress, they will be marked as OUT of profile. This chapter is concerned
with the conformance deterioration probability, which is defined as the ratio of
the number of OUT packets to that of received packets recorded in the token
bucket meter at the egress router. The two network scenarios under investi-
gation are per-flow scheduling networks, where network servers guarantee a
certain level of service to each flow, and aggregate scheduling networks, where
network servers provide a certain level of service to each aggregation of flows.

Fig. 8.1. Network model

The burstiness increase for a flow after crossing a certain network element
was first studied by Cruz [28][29] in a deterministic framework. Reference [28]
obtained the burstiness of an output flow given the burstiness of the input
flow. Some recent works [92][22] studied the worst-case burstiness increase un-
der aggregate scheduling. However, these deterministic bounds on worst-case
burstiness increase cannot be used to obtain the conformance deterioration
probability since the conformance deterioration probability is a stochastic
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metric. Hence, the stochastic burstiness increase needs to be investigated in
order to determine the conformance deterioration probability. To study the
stochastic burstiness increase of an input flow after crossing a network, the
initial stochastic characterization of the flow before being shaped by the to-
ken bucket is needed. The m.b.c stochastic arrival curve concept described in
previous chapters is used to model an input traffic process before it enters the
network. Here, it is assumed that the bounding functions for all input flows
of interest are known or can be easily obtained. The deterministic service
curve, stochastic service curve, and stochastic strict service curve concepts as
explained in previous chapters are used to model servers in this chapter.

8.1.1 Conformance Deterioration and Stochastic
Burstiness Increase

To analytically calculate the bound of the conformance deterioration proba-
bility for a flow checked by a token bucket meter, the same flow is fed to a
virtual server with a constant service rate that is the same as the token gener-
ation rate of the token bucket meter. This section will establish the relation-
ship between conformance deterioration probability and stochastic burstiness
increase measured in the virtual server fed with the same input flow. The fol-
lowing theorem shows that the probability that a packet is marked as OUT by
the token bucket meter is bounded by the probability that the queue length
in the virtual server exceeds the bucket depth of the token bucket meter.

Theorem 8.1 (Relationship between Non-conformance and Stochas-
tic Burstiness). Consider a flow fed into a token bucket meter and a virtual
initially empty constant-rate server, respectively. The token bucket has para-
meters (ρ, σth), where ρ is the token generation rate and σth is the bucket
depth. The constant-rate server has service rate ρ. Then, Pnonconf (t) ≤
PW (t;r)>σth

≤ PM(t;r)>σth
where Pnonconf (t) denotes the probability that one

packet is found to be OUT, W (t; r) ≡ sup0≤s≤t{A(s, t) − r(t − s)}, which
is the queue length at the constant-rate server, PW (t;r)>σth

is the probabil-
ity that the queue length W (t; r) in the constant rate server exceeds σth,
M(t; r) ≡ sup0≤s≤t sup0≤u≤s[A(u, s) − r(s − u)], which is the maximum up-
to-date backlog at time t for the constant-rate server, and PM(t;r)>σth

is the
probability that the maximum up-to-date backlog M(t) exceeds σth.

Proof. Consider the case where one packet arriving at time t has been found
non-conformant by the token bucket. Then, there exists some s < t for which
the amount of traffic arrival during [s, t) satisfies:

A(s, t) > ρ(t − s) + σth.

Therefore,
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Pnonconf (t) ≤ P {A(s, t) > ρ(t − s) + σth}
= P {A (s, t) − ρ (t − s) > σth}

≤ P

{
sup

0≤s∗≤t
{A (s∗, t) − ρ (t − s∗)} > σth

}
= PW (t;r)>σth

≤ P

{
sup

0≤s≤t
sup

0≤s∗≤s
{A (s∗, s) − ρ (s − s∗)} > σth

}
= PM(t;r)>σth

.

This completes the proof. ��
With Theorem 8.1, it is clear that to obtain the bound for the conformance

deterioration probability, one approach is to derive the queue length distrib-
ution of the output flow in the corresponding virtual server. Since the queue
length distribution in the virtual server is characterized by a bounding func-
tion in the m.b.c. stochastic arrival curve definition, the bounding function is
used here to characterize the stochastic burstiness for the flow of interested.
Therefore, the bounding function of the output flow at the egress of a network
is needed given the initial bounding function of the input flow at the ingress.

8.1.2 Property of Token Bucket Shaper

Since the token bucket shaper is the first network element passed by an in-
coming flow to the network, the following theorems provide insights into the
output burstiness of the token bucket shaper, which will be used for subse-
quent analysis of conformance deterioration analysis.

Theorem 8.2 (Property of Token Bucket Shaper). Consider a shaping
system with token bucket shaper (ρ, σ). Let A(t) and A∗(t) be the input process
and output process of the system, respectively. Assume that A(t) ∼mb 〈f, ρ〉.
Then, for any t ≥ 0,

A∗(t) ∼mb 〈g, ρ〉 , (8.1)

where

g(x) =
{

f(x) if x ≤ σ,
0 if x > σ.

(8.2)

Proof. Using a method similar to the proof of Theorem 5 in [140],

M∗(t; ρ) ≤ M(t; ρ),

where M (t; ρ) and M∗(t; ρ) denote the maximum up-to-date queue length
in the virtual constant server for the input process and output process, re-
spectively. In addition, the output traffic is constrained by the token bucket
regulator; i.e., A∗(s, t) ≤ ρ(t − s) + σ. Hence,
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M∗(t; ρ) = sup
0≤s≤t

sup
0≤u≤s

{A∗(s, u) − ρ(u − s)} ≤ σ,

which implies that, for any x > σ, P{M∗(t; ρ) ≥ x} = 0. This, together with
the above, ends the proof. ��

8.2 Conformance Study of Per-Flow Scheduling Network

This section studies conformance deterioration of a flow after crossing a per-
flow scheduling network. To study the end-to-end conformance deterioration,
the single-node case is considered first and then the results are extended to
the multi-node case.

8.2.1 Single-Node Case

Theorem 5.21 in Chapter 5 derived the stochastic burstiness of the output
flow after crossing a node that offers a stochastic service curve to the input
flow with an m.b.c. stochastic arrival curve. Then, based on the relationship
between stochastic burstiness and non-conformance derived in Theorem 8.1,
one can immediately obtain the following theorem on the non-conformance
probability of a flow after crossing a node that offers a service curve to the
input flow.

Theorem 8.3 (Single-Node Non-conformance Probability Bound).
Assume that a node offers a deterministic service curve β to its input. Let
A(t) be the input process of the node. Assume that A(t) ∼mb 〈f, r〉. The out-
put flow is checked for its conformance by a token bucket meter with token
generation rate r and token bucket depth σth. Let Pnonconf (t) denote the prob-
ability that one packet is found to be OUT. Thus,

Pnonconf (t) ≤ f (σth − α 
 β (0)) , (8.3)

where α(t) = rt and α 
 β(0) = sup
s≥0

{α(s) − β(s)}.

Reference [53] presents another general server model, which is the guar-
anteed rate (GR) server model. It has been proven that many well-known
schedulers belong to GR (e.g., see [68] and references therein), as mentioned
earlier in Chapter 2. The behavior of a GR server is determined by two pa-
rameters: a rate R and an error term E. In [92], it was proven that a GR
node has a rate-latency service curve β(t): β(t) = R(t − E − Lmax,i

R )+, where
Lmax,i is the maximum packet size of the input flow. Therefore, the following
corollary can be derived directly by using the service curve of a GR scheduler
to analyze the stochastic burstiness increase of a flow after it passes through
the GR scheduler.
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Corollary 8.4 (Non-conformance Probability Bound under a GR
Node). Consider a GR node with rate R and error term E. Let A(t) be
the input process of the node. Assume that A(t) ∼mb 〈f, ρ〉. The output flow
is checked for its conformance by a token bucket meter with token generation
rate ρ and token bucket depth σth. Let Pnonconf (t) denote the probability that
one packet is found to be OUT. Given ρ ≤ R, for any t > 0,

Pnonconf (t) ≤ f

(
σth − ρ

(
E +

Lmax,i

R

))
, (8.4)

where Lmax,i is the maximum packet size of the flow under consideration.

Remark. For a WFQ scheduler, the error term is E = L max
C , where C

is its total capacity and the Lmax is the maximum packet size among all
flows in the same server. Hence, it has a rate-latency service curve β (t) =

R
(
t − E − L max,i

R

)+

. According to the corollary above under WFQ, the out-
put traffic burstiness bounding function for an input flow with bounding
function f (x) will be g (x) = f (x − α 
 β (0)) = f

(
x − ρ

(
Lmax

C + Lmax,i

R

))
.

From this bounding function, it can be seen that, even for a WFQ sched-
uler that can provide service isolation among different service classes, if the
packet size Lmax of inter-class traffic is large enough compared with the packet
size Lmax,i of the flow under consideration, the effect of inter-class traffic on
conformance deterioration of the flow considered cannot be ignored.

8.2.2 Multi-node Case

This section studies the conformance deterioration of a flow crossing a network
of nodes in tandem. Suppose that there are a total of N nodes and each node
i provides a service curve βi to the flow. Then, according to the concatenation
property of a deterministic service curve as shown in Chapter 2, the network
provides to the flow a concatenated deterministic service curve to the flow
that is given by

βnet = β1 ⊗ β2 · · · ⊗βN . (8.5)

With this concatenated deterministic service curve and Theorem 8.1, the fol-
lowing result is immediately obtained.

Theorem 8.5 (Multi-node Non-conformance Probability Bound).
Consider a flow crossing a path with N nodes in tandem, and each node
i provides deterministic service curve βi to the flow. Let A (t) be the input
process of the flow and A(t) ∼mb 〈f, r〉 . The output flow is checked for its
conformance by a token bucket meter with token generation rate r and token
bucket depth σth. Then, the non-conformance probability Pnonconf (t) at the
egress is bounded by

Pnonconf (t) ≤ f (σth − α 
 βnet (0)) , (8.6)

where α(t) = rt and βnet = β1 ⊗ β2 · · · ⊗βN .
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By using Theorem 8.2, the m.b.c. bounding function can be obtained for
the input traffic after passing through the token bucket shaper at the ingress
of the network. Then, the end-to-end non-conformance probability of the out-
put flow at the egress of the network can be further obtained by applying
Theorem 8.5.

8.3 Conformance Study of Aggregate
Scheduling Network

To provide scalable support of QoS in a network, one method is to let each
node in the network provide service to aggregates of flows. By doing this,
the core node does not need to maintain per-flow state information. In such a
network, each node performs aggregate scheduling instead of per-flow schedul-
ing. This section first conducts conformance analysis for each flow within the
aggregate under aggregate scheduling and then analyzes conformance deteri-
oration for each aggregate.

8.3.1 Per-Flow in Single-Node Case

Following the same approach as in Section 8.2, this section studies the confor-
mance deterioration by analyzing the stochastic burstiness increase of input
flows, for which the per-flow service received by a flow within the aggregate
is required. From Theorem 2.27 in Chapter 2, we have the following results.
For a node serving two flows f and h, if the node guarantees a deterministic
service curve β to the aggregate of the two flows and flow h has an arrival
curve αh, then the node offers to the flow f a deterministic service curve
βf =

(
β − αh

)+.
Based on this per-flow service curve, one can obtain a result on the per-

flow stochastic burstiness increase under aggregate scheduling by applying
this leftover deterministic service curve to results in Chapter 5. Note that the
per-flow service curve used in this approach is a deterministic service curve
that is derived under the assumption that all the input flows are deterministi-
cally bounded. In addition, the resulting bound on conformance deterioration
is the worst-case bound. Since the traffic model used in this chapter is a sto-
chastically bounded traffic model, it would be possible to get a more accurate
characterization of the per-flow service in a stochastic form, which enables
tighter bounds to be obtained in conformance analysis.

Theorem 8.6 (Per-Flow Stochastic Burstiness Bound under Deter-
ministic Per-Flow Service Curve). Consider a node providing a deter-
ministic service curve β to two flows f and h, that are FIFO-aggregated. Let
Ai(t) and A∗

i (t) be the flow i (i = f, h) input process and output process of the
node, respectively. Suppose that Af (t) ∼mb

〈
ff , rf

〉
and Ah(t) is token bucket

bounded by (rh, σh). Then,
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A∗
f (t) ∼mb

〈[
gf
]
1
, rf
〉

(8.7)

with
gf (x) = ff

(
x − αf 
 βf (0)

)
, (8.8)

where αf (t) = rf t, βf =
(
β − αh

)+
.

Remark. Based on Theorem 8.6 on the per-flow stochastic burstiness and
Theorem 8.1, the following result on the non-conformance probability bound
is immediately obtained.

Theorem 8.7 (Per-Flow Non-conformance Bound under Determin-
istic Per-Flow Service Curve). Consider a node providing a deterministic
service curve β to two flows f and h that are FIFO-aggregated. Let Ai(t) be the
flow i (i = f, h) input process of the node. Suppose that Af (t) ∼mb

〈
ff , rf

〉
and Ah(t) is token bucket bounded by (rh, σh). The output flow is checked for
its conformance by a token bucket meter with token generation rate rf and
token bucket depth σth. Let Pnonconf (t) denote the probability that one packet
is found to be OUT. Then,

Pnonconf (t) = ff
(
σth − αf 
 βf (0)

)
, (8.9)

where αf (t) = rf t, βf =
(
β − αh

)+
.

Remark. The service curve used in this theorem is the worst-case leftover
deterministic service curve within an aggregate under aggregate scheduling.
However, if the cross traffic aggregated in the same aggregate is stochastically
bounded, one can have a tighter and more accurate characterization of the
per-flow service received by a flow under aggregate scheduling, which is de-
rived in Chapters 5 and 6. For this, we need to derive the stochastic leftover
service curve, then derive the burstiness increase for the input processes, and
then derive the non-conformance probabilities for these input processes after
passing a server under aggregate scheduling.

Lemma 8.8 (Stochastic Per-Flow Service Curve under Aggregate
Scheduling for General Case). Consider a server fed with a flow A that
is the aggregation of two constituent flows Af and Ah. Suppose the server
provides a deterministic service curve β to the aggregate flow A. If flow Ah

has an m.b.c. stochastic arrival curve Ah ∼mb 〈fh, rh〉 and βf ∈ F , then the
server guarantees to flow Af a stochastic service curve Sf ∼sc 〈fh, βf 〉, where

βf (t) = β(t) − rh(t), (8.10)
gf (x) = fh(x). (8.11)

Proof. Theorem 5.42 in Chapter 5 obtained the following result on the per-
flow stochastic service for a system with a stochastic service curve and m.b.c.
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stochastic arrival curve. Then, flow f receives a per-flow stochastic service
curve

(
ff , βf

)
from the node with

βf (t) = β(t) − rh (t) ,

ff (x) = fh ⊗ 0(x) = fh (x) .

��
Lemma 8.8 shows that a deterministic server under aggregate scheduling

can be considered a stochastic service providing a per-flow stochastic service
curve to its input flows. Based on this per-flow stochastic service curve, we
can derive the burstiness increase for these input processes.

Theorem 8.9 (Per-Flow Stochastic Burstiness Bound under Sto-
chastic Per-Flow Service Curve for General Case). Consider a node
providing a deterministic service curve β to two flows f and h that are FIFO-
aggregated. Let Ai(t) and A∗

i (t) be the flow i (i = f, h) input process and
output process of the node, respectively. Suppose that Ah (t) ∼mb

〈
fh, rh

〉
and

Af (t) ∼mb

〈
ff , rf

〉
. Then, we have A∗

f (t) ∼mb

〈
ff∗, rf∗〉 with

ff∗ (x) = ff ⊗ fh (x) , (8.12)
rf∗ (t) = rf (t) 
 (β (t) − rh (t)

)
. (8.13)

Proof. Based on the per-flow stochastic service derived in Lemma 8.8, the
stochastic burstiness increase of a flow under aggregate scheduling can be
derived according to Theorem 5.21 in Chapter 5. In this case, for any t ≥ 0,

A∗
f (t) ∼mb

〈
ff∗, rf∗〉

with

rf∗ (t) = rf (t) 
 (β (t) − rh (t)
)
,

ff∗ (x) = ff ⊗ fh (x) .

��
Note that the result above is derived under the case where it is not known

whether the two input processes are independent or not. If the server can
be modeled by a stochastic strict service curve and the service process is
independent of the two independent input processes, we can have the following
tighter results for the per-flow stochastic burstiness bound.

Lemma 8.10 (Stochastic Leftover Service Curve under Aggregate
Scheduling for Independent Case). Consider a server fed with a flow A
that is the aggregation of two constituent independent flows Af and Ah. Sup-
pose the server provides a deterministic strict service curve β to the aggregate
flow A. If flow Ah has the m.b.c. stochastic arrival curve Ah ∼mb 〈fh, rh〉 and
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βf ∈ F , then flow f receives a stochastic strict service curve β with impair-
ment process I = Ah (t)−Ah (t − s) . Then, the server guarantees to flow Af

stochastic service curve Sf ∼sc 〈fh, βf 〉, where

βf (t) = β(t) − rh(t), (8.14)
gf (x) = fh(x). (8.15)

Proof. According to the definition of a deterministic strict service curve,
during any backlogged period [s, t), we can have, for all t ≥ 0, A∗ (t) ≥
A (t − s) + β (s) . Then

A∗
f (t) + A∗

h (t) ≥ β (s) + Af (t − s) + Ah (t − s) .

Since A∗
h (t) ≤ Ah (t) ,

A∗
f (t) − Af (t − s) ≥ β (s) − (Ah (t) − Ah (t − s)) .

Since A∗
f (t − s) ≤ Af (t − s) , we have

A∗
f (t) − A∗

f (t − s) ≥ β (s) − (Ah (t) − Ah (t − s)) .

Then, according to the definition of a stochastic strict service curve in
Definition 4.11 in Chapter 4, flow f receives a stochastic strict service curve
β with impairment process I = Ah (t) − Ah (t − s) .

In addition, we have Ah (t) ∼mb

〈
fh, rh

〉
. According to Lemma 8.8, the

server provides a stochastic service curve Sf ∼sc 〈fh, βf 〉 for flow f with

βf (t) = β(t) − rh (t) .

��
Theorem 8.11 (Per-Flow Stochastic Burstiness Bound under Sto-
chastic Per-Flow Service Curve for Independent Case). Consider
a node providing a deterministic strict service curve β to two independent
flows f and h that are FIFO-aggregated. Let Ai(t) and A∗

i (t) be the flow i
(i = f, h) input process and output process of the node, respectively. Sup-
pose that Ah (t) ∼mb

〈
fh, rh

〉
and Af (t) ∼mb

〈
ff , rf

〉
. Then, we have

A∗
f (t) ∼mb

〈
ff∗, rf∗〉 with

rf∗ (t) = rf (t) 
 (β (t) − rh (t)
)
, (8.16)

ff∗ (x) = 1 − f̄f ∗ f̄h (x) , (8.17)

where f̄f (x) = 1 − [ff (x)]1 and f̄h(x) = 1 − [fh(x)]1.

Proof. Based on the leftover stochastic service curve obtained in Lemma 8.10,
the stochastic burstiness increase of a flow under aggregate scheduling can be
derived according to Theorem 6.5 in Chapter 6. In this case, for any t ≥ 0,

A∗
f (t) ∼mb

〈
ff∗, rf∗〉
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with

rf∗ (t) = rf (t) 
 (β (t) − rh (t)
)
,

ff∗ (x) = 1 − f̄f ∗ f̄h (x) ,

where f̄f (x) = 1 − [ff (x)]1 and f̄h(x) = 1 − [fh(x)]1. ��
With Theorem 8.1, the following results on non-conformance probability

bound follow from Theorems 8.9 and 8.11.

Theorem 8.12 (Per-Flow Non-conformance Probability Bound un-
der Aggregation for General Case). Consider a node providing a service
curve β to two flows f and h that are FIFO-aggregated. Let A(t) be the input
process of the node. Suppose that Ah (t) ∼mb

〈
fh, rh

〉
and Af (t) ∼mb

〈
ff , rf

〉
.

The output of flow f is checked for its conformance by a token bucket meter
with token generation rate rf and token bucket depth σth. Let Pnonconf (t)
denote the probability that one packet is found to be OUT. Then

Pnonconf (t) ≤ ff ⊗ fh
(
σth − αf 
 βf (0)

)
, (8.18)

where αf (s) = rfs, αf
βf (0) = sup
s≥0

{αf (s)−βf (s)}, and βf (s) = β (s)−rhs.

Theorem 8.13 (Per-Flow Non-conformance Probability Bound un-
der Aggregation for Independent Case). Consider a node providing a
service curve β to two flows f and h that are FIFO-aggregated. Let A(t)
be the input process of the node. Suppose that Ah (t) ∼mb

〈
fh, rh

〉
and

Af (t) ∼mb

〈
ff , rf

〉
. The output of flow f is checked for its conformance by a

token bucket meter with token generation rate rf and token bucket depth σth.
Let Pnonconf (t) denote the probability that one packet is found to be OUT. If
the flows f and h are independent of each other, then

Pnonconf (t) ≤ 1 − f̄f ∗ f̄h
(
σth − αf 
 βf (0)

)
, (8.19)

where αf (t) = rf t, αf 
 βf (0) = sup
s≥0

{αf (s) − βf (s)}, βf (s) = β (s) − rhs,

f̄f (σ) = 1 − [ff (σ)
]
1
, and f̄h (σ) = 1 − [fh (σ)

]
1
.

Remark. When the per-flow non-conformance probability in the first
server is analyzed, Theorem 8.13 can be used since the two flows are inde-
pendent of each other. However, when they exit the first server, the result
derived for the general case in Theorem 8.12 needs to be used to analyze the
non-conformance probability in subsequent servers since they will no longer
be independent of one another when they exit the server.
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8.3.2 Per-Flow in Multi-node Case

As shown earlier, a series of stochastic service curves and stochastic strict
service curves in tandem can be concatenated as a network stochastic service
curve. Combining these results with the results derived above on the non-
conformance probability bounds for the single-node case, we can have the
following results on multi-node non-conformance probability bounds for the
general case and independent case, respectively.

Theorem 8.14 (Multi-node Non-conformance Probability Bound for
General Case). Consider a flow f crossing a path with N nodes in tandem,
and each node i provides a service curve βi to the flows f and hi, which
are FIFO-aggregated. Suppose that Ahi

(t) ∼mb

〈
fhi , rhi

〉
and Af (t) ∼mb〈

ff , rf
〉
. The output flow from the system is checked for its conformance by

a token bucket meter with token generation rate r and token bucket depth σth.
Then, the non-conformance probability Pnonconf (t) is bounded by

Pnonconf (t)

≤ ff ⊗ fh1 ⊗ · · · ⊗ fhN
(
σ − αf 
 (βf1 ⊗ · · · ⊗ βfN

)
(0)
)
, (8.20)

where αf (t) ≡ rf t, and βfi (t) = βi (t) − rhi (t), i = 1, · · ·, N.

For a special case where all cross flows along the end-to-end path is inde-
pendent with the flow of interested, a tighter bound can be obtained in the
same way as Theorem 8.13.

Theorem 8.15 (Multi-Node Non-Conformance Probability Bound
for Independent Case). Consider a flow f crossing a path with N nodes
in tandem and the i-th node providing a service curve βi to two flows f
and hi that are FIFO-aggregated. Suppose that Ahi

(t) ∼mb

〈
fhi , rhi

〉
and

Af (t) ∼mb

〈
ff , rf

〉
. The output flow f from the system is checked for its

conformance by a token bucket meter with token generation rate r and token
bucket depth σth. Then the non-conformance probability Pnonconf (t) of flow
f is bounded by

Pnonconf (t) ≤ 1−f̄f ∗f̄h1 ∗···∗f̄hN
(
σ − αf 
 (βf1 ⊗ · · · ⊗ βfN

)
(0)
)
, (8.21)

where f̄f (t) = 1− [ff (t)
]
1
, f̄hi = 1− [fhi

]
1
, αf (t) ≡ rf t, and βfi (t) =

βi (t) − rhi (t), i = 1, · · ·, N.

The results presented in this section provide an approach for analyzing
conformance deterioration of a flow after crossing an aggregate scheduling
network. In particular, as illustrated in Figure 8.2, the procedures are as
follows.
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1 2 n

S1~sc f h1 , f1 S2~sc f h2 , f2 Sn~sc f hn , f n

Snet~sc gnet , net

Fig. 8.2. Aggregate scheduling in multi-node case

Procedures to obtain the end-to-end non-conformance probabil-
ity bound:

1. Determine the initial bounding functions ff for the stochastic burstiness
of flow f under consideration with rate rf and each cross-flow in the same
aggregate at each hop along the end-to-end path with rate rhi .

2. Determine the bounding functions for the stochastic burstiness of flow
f after passing through a token bucket shaper according to Theorem 8.2.

3. Convert each aggregate scheduling server (providing a service curve to
the aggregate) to a per-flow scheduling server (providing a stochastic service
curve to the flow) according to Theorems 8.8 or 8.10 for general case or inde-
pendent case, respectively.

4. Obtain the end-to-end non-conformance probability bound according to
Theorems 8.14 or 8.15 for the general case or independent case, respectively.
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8.3.3 Per-Aggregate Case

All the results above can be used to analyze the conformance deterioration
of an individual flow when it negotiates SLAs with networks along its end-
to-end path. However, there is another service configuration mentioned in the
beginning of this chapter, where the individual user only establishes SLA with
its first access network and the access network will negotiate a bulk SLA for its
corresponding aggregate of flows with its next intermediate network. When
such an aggregate exits the first network and enters the next network, the
aggregate will be checked for its conformance based on the bulk SLA between
these two domains. To study conformance deterioration in this scenario, the
stochastic burstiness for the whole aggregate needs to be analyzed. According
the superposition property of m.b.c stochastic arrival curve, an aggregate
of flows with the m.b.c. stochastic arrival curves can be considered as one
flow with an m.b.c. stochastic service curve. Then, the following result for an
aggregate with N flows can be obtained.

Theorem 8.16 (Stochastic Burstiness for an Aggregate). Consider an
aggregate that consists of N flows with input process Ai (t), (i = 1, . . . , N).
Assume that, for each flow i, Ai(t) ∼mb 〈fi, ri〉. Let A (t) =

∑N
i=1 Ai(t) be the

input process of the aggregate. Then, for any t ≥ 0,

A (t) ∼
〈

g,
∑i=N

i=1
ri

〉
, (8.22)

where
g (σ) = f1 ⊗ f2 ⊗ · · · ⊗ fN (σ) , (8.23)

If all the flows in the aggregate are independent of each other,

g (σ) = 1 − f̄1 ∗ f̄2 ∗ · · · ∗ f̄N (σ) (8.24)

where f̄i (σ) = 1 − [fi (σ)]1 for i = 1, 2 · · · N .

Similarly, with the result above and Theorem 8.1, one can obtain a non-
conformance probability bound for the aggregate of flows.

Corollary 8.17 (Non-conformance Probability Bound for an Aggre-
gate). Consider an aggregate that consists of N flows with input process
Ai (t), (i = 1, . . . , N). Assume, for each flow i, Ai(t) ∼mb 〈fi, ri〉. The aggre-
gate is checked for its conformance by a token bucket meter with token gen-
eration rate

∑i=N
i=1 ri and token bucket depth σth. Then, the non-conformance

probability Pnonconf (t) is bounded by

Pnonconf (t) ≤ f1 ⊗ f2 · · · ⊗fN (σth) . (8.25)

If all the flows in the aggregate are independent of each other,

Pnonconf (t) ≤ 1 − f̄1 ∗ f̄2 · · · ∗f̄N (σth) , (8.26)

where fi (σ) = 1 − f̄i (σ), for i = 1, 2 · · · N .
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8.4 Simulation Results

In this section, the analytical results are verified with simulations using ns-
2 [106]. Figure 8.3 shows the network topology used in simulation, which
was also used in [57], where traffic is sent from source Si to destination Di.
There are two classes of traffic competing for resources at each node, which
is a GR server implementing the WFQ scheduler. Traffic from sources S2i+1,
i = 0, 1, 2, belongs to class 1 and traffic from sources S2i, i = 1, 2, belongs
to class 2 at each node. Before entering the network, traffic from each source
S2i+1 is shaped by a token bucket shaper to conform to a certain specification.
The conformance deterioration of flow F1 from S1 to D1 is investigated. The
conformance of flow F1 is checked at the output port R3 to D1 of node R3

using a token bucket meter. For simplicity, Poisson sources are used for flows in
traffic class 1 from S2i+1 to D2i+1, and exponential ON/OFF sources are used
for flows in traffic class 2 from S2i to D2i in the experiments. The theoretical
results on the conformance deterioration probability for the Poisson input flow
are verified. In [35], it has been shown that the queue length distribution of a
Poisson traffic input with mean arrival rate λ in a constant-rate server with
server rate ρ satisfies

Pr(B(∞) > x) = 1 −
(

1 − λ

ρ

) x∑
n=0

[λ
ρ (n − x)]n

n!
e−

λ
ρ (n−x). (8.27)

Clearly, by definition, Poisson traffic has a v.b.c. stochastic arrival curve whose
bounding function is given by (8.27). Since the Poisson process is i.i.d., accord-
ing to (3.38), Poisson traffic also has an m.b.c. stochastic arrival curve with
the same bounding function given by (8.27). Therefore, the non-conformance
probability bound of a Poisson traffic flow after crossing the network can be
obtained by applying this bounding function to the results derived in Sections
8.2 and 8.3.

8.4.1 Per-Flow Scheduling Network in Single-Node Case

The first experiment considers the single-node case. In this case, there are only
S1, S2,R1, R2,D1, D2 in the simulated network shown in Figure 8.3. Server
R1 guarantees per-flow service to flow F1 from S1 to D1 since there is no
other cross traffic in traffic class 1 for flow F1. This scenario investigates the
stochastic burstiness increase of flow F1 after it passes one WFQ node R1.
Poisson source S1 generates flow F1 at an average rate of 45 pkts/sec. The
size of each packet from flow F1 is fixed at 128 bytes. Therefore, the average
sending rate of flow F1 is 45 kbps. For the flow F2 from S2 to D2 in traffic
class 2, an ON/OFF source is used that has an average sending rate of 50
kbps and packet size 5 times that of flow F1. Only the flow F1 is shaped by
a token bucket shaper, whose token generation rate is 50 kbps and bucket
depth is 15 tokens. The token size in all experiments is 128 bytes. The access
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Fig. 8.3. Network topology used in simulation
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Fig. 8.4. Queue length tail distribution after crossing a single node in a per-flow
scheduling network

link capacity of link S1 to R1 is 10 Mbps. The network core link capacity
of R1 to R2 is 200 kbps and the weight ratio between class 1 and class 2
is 1 : 1 for the WFQ node in the core network. Flow F1 belongs to class 1
and F2 belongs to class 2. The link capacity of the last hop is 50 kbps. The
last hop R2 to D1 for F1 is a constant-rate server, since there is no other
traffic sharing this link, that has the same rate as the token generation rate
of the token bucket shaper. The queuing length distribution at this hop is the
virtual queuing length distribution for flow F1, which is used to measure the
stochastic burstiness of the output traffic.

Figure 8.4 shows the simulated queue length tail distribution of flow F1 at
the last hop, where the theoretical bound is obtained by substituting x with
x−ρ

(
T + Lmax,1

R

)
in (8.27) according to Corollary 8.4. For a WFQ scheduler
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Fig. 8.5. Non-conformance probability after crossing a single node in a per-flow
scheduling network

here, T = L max
C , where C is its total capacity and Lmax is the maximum

packet size among all flows in the same server. Lmax,1 is the maximum packet
size for F1 and R is the reserved rate for F1. The unit for the queue length is
a packet that has the same size as the packets from flow F1. As can be seen
from the figure, although flow F1 becomes more bursty after passing through
node R1 since its virtual queue length exceeds the token bucket depth 15, its
burstiness increase remains bounded by the theoretical result.

Next, the result for the non-conformance probability bound is verified.
Figure 8.5 shows the simulated non-conformance probability and its theoret-
ical bound. For this, a token bucket meter with the same token generation
rate (50 kbps) as the token bucket shaper is placed at the last hop of flow
F1 to check its conformance. The same experiment settings described above
were adopted, except that the bucket depth of the token bucket shaper at
the ingress and the token bucket meter at the last hop were changed in order
to investigate the effect on the non-conformance probability of flow F1. Note
that the token bucket shaper at the ingress node and the token bucket me-
ter at the last hop have the same parameters in all experiments in order to
check conformance for the considered flow F1. To obtain the non-conformance
probability bound, the following procedures are used:

1. Determine the initial bounding function for the input flow F1 with rate
r = 50 kbps by using Equation (8.27).

2. Determine the bounding functions for the stochastic burstiness of the
flow under consideration after passing through a token bucket shaper accord-
ing to Theorem 8.2.
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Fig. 8.6. Queue length tail distribution after crossing a single node in an aggregate
scheduling network

3. Obtain the non-conformance probability bound for different token
bucket depths σth by using the inequality (8.4) in Corollary 8.4.

Figure 8.5 shows the simulated non-conformance probability and its theo-
retical bound.

8.4.2 Aggregate Scheduling Network in Single-Node Case

The second experiment considers the single node case in an aggregate schedul-
ing network. In this experiment, all other settings are exactly the same as in
the first experiment except that a cross flow F3 from S3 to D3 with the same
source setting (including token bucket shaping) as flow F1 enters the network
and competes for resources with flows F1 and F2 at the WFQ node R1. F1 and
F3 are aggregated in the same class (class 1) to verify the analytical results
on the aggregate scheduling network. Flow F2 belongs to class 2.

Figure 8.6 shows the simulated queue length distribution of flow F1 at its
last hop. The theoretical bound 2 is obtained by Theorem 8.11, in which the
stochastic service curve is derived from Lemma 8.10. The theoretical bound
1 in Figure 8.6 is derived from Theorem 8.6. Figure 8.6 shows that the theo-
retical bound 2 is tighter than the theoretical bound 1. This results from the
fact that Theorem 8.11 makes use of the stochastic service curve offered to
flow F1 by the WFQ node under aggregate scheduling, which can be derived
from Lemma 8.10. In contrast, Theorem 8.6 uses the worst-case service curve
offered to the flow by the node under aggregate scheduling, which was derived
based on results from Theorem 2.27.

Next, the result for the non-conformance probability bound is verified with
the same experiment settings described above except that the bucket depth of
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Fig. 8.7. Non-conformance probability after crossing a single node in an aggregate
scheduling network

the token bucket shaper at the ingress node and the token bucket meter at the
last hop are changed in order to investigate the effect on the non-conformance
probability of flow F1. For the same reason as mentioned above, Figure 8.7
shows that the theoretical non-conformance probability bound 2 is also tighter
than the theoretical non-conformance probability bound 1.

8.4.3 Aggregate Scheduling Network in Multi-node Case

In the third experiment, the simulated network topology is exactly the same
as that shown in Figure 8.3. Traffic from sources S2i+1, i = 0, 1, 2, belongs to
class 1 and traffic from sources S2i, i = 1, 2, belongs to class 2 in each node. All
other settings are the same as in the experiments discussed above except that
Poisson sources S2i+1 generate flow F2i+1 at an average rate of 45 pkts/sec
and exponential ON/OFF flows F2i from S2i to D2i have an average sending
rate of 50 kbps and packet size five times that of flow F2i+1. The stochastic
burstiness increase of flow F1 is explored to verify the analytical results on
aggregate scheduling in the multi-node case.

Figure 8.8 shows that after passing through two WFQ nodes, flow 1 be-
comes more bursty since the simulated result shows that, at its last hop, the
queue length, which implies burstiness, can be larger than 15, the depth of
the token bucket shaper. Nevertheless, the simulation results are bounded by
the theoretical bound 1 derived from Theorem 8.6 and theoretical bound 2
derived from Theorem 8.11 by applying (8.27) to these two theorems. For the
same reason as explained in the second experiment above, theoretical bound
2 is shown to be tighter than theoretical bound 1, as expected.
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Fig. 8.8. Queue length tail distribution after crossing multi-nodes in an aggregate
scheduling network
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Fig. 8.9. Non-conformance probability after crossing multi-nodes in an aggregate
scheduling network
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The result on the non-conformance probability bound is also verified with
the same experiment settings, except that the bucket depth of the token bucket
shaper at the ingress node and the token bucket meter at the last hop are
changed in order to investigate the effect on the non-conformance probability
of flow F1. To obtain the non-conformance probability bound, the following
procedures are used:

1. Determine the initial bounding functions for the stochastic burstiness
of F1 with rate 50 kbps and each cross-flow with rate rhi = 50 kbps according
to (8.27).

2. Determine the bounding functions for the stochastic burstiness of F1

after passing through a token bucket shaper according to Theorem 8.2.
3. Convert each aggregate scheduling server (providing a service curve to

the aggregate) to a per-flow scheduling server (providing a stochastic service
curve to the flow) according to Lemma 8.10.

4. Obtain the end-to-end non-conformance probability bound for different
token bucket depths σth by using the inequality (8.21) in Theorem 8.15.

Figure 8.9 shows the non-conformance probability of flow F1 after pass-
ing through two WFQ nodes and the corresponding theoretical bounds. It is
shown that the theoretical bound 1 derived from Theorem 8.6 is close to 1,
which is overly conservative. The reason is that Theorem 8.6 uses the worst-
case deterministic per-flow service curve and each server will make the original
burstiness bounding function of flow F1 shift to the right by some constant
amount according to Theorem 8.6 and then the bound will be 1 in the range
between 0 and the accumulation of the constant amount. Therefore, if the
accumulation of the constant amount due to shifting is greater than the token
bucket depth, the non-conformance deterioration probability bound derived
from Theorem 8.6 will be close to 1, which is overly conservative and indeed
useless as a bound. On the other hand, since the theoretical bound 2 derived
from Theorem 8.11 makes use of the stochastic service curve instead of the
worse case deterministic service curve, the bound is tighter than the theoret-
ical bound 1.

8.5 Summary and Bibliographic Comments

In this chapter, we have analytically studied the conformance deterioration
problem in networks with service level agreements. We first established the
relationship between conformance deterioration and the stochastic burstiness
increase of a flow. Then, based on the analysis in previous chapters, the sto-
chastic characterization of the flow was utilized to analyze the stochastic
burstiness increase in a per-flow scheduling network and an aggregate schedul-
ing network.

To investigate the stochastic per-flow burstiness increase for individual
flows in the aggregate scheduling network, we also investigated the stochastic
behavior of a server providing deterministic service to the aggregate of flows.
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As discussed in Chapters 5 and 6, an aggregate scheduling server providing a
service curve to an aggregate can be regarded as a per-flow scheduling server
providing a stochastic service curve to each individual flow in the aggregate.
This has helped improve the bound on conformance deterioration. Further-
more, we have applied the concatenation property for analysis of stochastic
burstiness increase. These results are not only useful for the analysis of the
situation presented in this chapter but also shed some light on conformance
analysis in aggregate scheduling networks with other general topologies.

As shown by the simulation results in Section 8.4, there is still some
room for improvement on the non-conformance probability bound. The non-
conformance probability bound may be improved by further research. Note
that Figures 8.4, 8.6, and 8.8 show that the theoretical bounds on the queue
length tail distribution of output flows in the virtual queuing system are close
to the simulation results. However, the non-conformance probability checked
by the token bucket meter is bounded by the probability that the queue length
of the output flow in the virtual queuing system exceeds the token bucket
depth, as shown in Theorem 8.1. Therefore, the major cause for the looseness
of the non-conformance bounds is the difference between the non-conformance
probability and the probability that the queue length in the virtual queuing
system exceeds a certain threshold. Further study on the differences between
the token bucket meter and the virtual queuing system may lead to a much
tighter non-conformance probability bound.

The content of this chapter is mainly based on [99] by Liu, Tham and
Jiang. The problem of conformance deterioration was initially investigated
by Guerin and Pla [57] through extensive simulations. They studied the con-
formance deterioration caused by interactions among flows aggregated in the
same traffic class. Both per-flow and per-aggregate conformance deterioration
were investigated in [57]. The authors observed through simulations the im-
pact of link load, number of cross flows and number of hops traversed by the
flow on conformance deterioration. However, [57] does not provide any ana-
lytical study on what is the extent to which a flow becomes non-conformant
after crossing a network.

Besides [57], there are several other works addressing related issues that use
different methods. The work in [56] investigated the distortion of a constant
bit rate (CBR) flow when it is aggregated with other flows after crossing
several network elements. The work in [120] extended the results in [56] to
consider the same issue with variable packet sizes. Another related work is
[97], which studied conformance deterioration in a single-node case, a radio
access network under the UMTS framework.
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Problems

8.1. Prove Theorem 8.6.

8.2. Consider a system with the same setting as the example shown in
Section 8.4.1 except that each flow has the same m.b.c. stochastic arrival
curve,

〈
e−0.25t, 50kbps

〉
. Find the non-conformance probability for F1.

8.3. Consider a system with the same setting as the example shown in
Section 8.4.2 except that each flow has the same m.b.c. stochastic arrival
curve,

〈
e−0.25t, 50kbps

〉
. Find the non-conformance probability for F1.

8.4. Consider a system with the same setting as the example shown in
Section 8.4.3 except that each flow has the same m.b.c. stochastic arrival
curve,

〈
e−0.25t, 50kbps

〉
. Find the non-conformance probability for F1.

8.5. For the system shown in Problem 8.2, if there is an impairment process
I for the server, assume I ∼mb

〈
e−0.25t, 50kbps

〉
. Find the non-conformance

probability for F1.

8.6. For the system shown in Problem 8.3, if there is an impairment process
I for the server, assume I ∼mb

〈
e−0.25t, 50kbps

〉
. Find the non-conformance

probability for F1.

8.7. For the system shown in Problem 8.4, if there is an impairment process
I for each server, assume I ∼mb

〈
e−0.25t, 50kbps

〉
. Find the non-conformance

probability for F1.

8.8. Under the same condition as in Theorem 8.12 except that β is a strict
service curve and there is an impairment process I ∼mb 〈fi, αi〉 for the server,
find the non-conformance probability for flow f .

8.9. Under the same condition as in Theorem 8.13 except that β is a strict
service curve and there is an independent impairment process I ∼mb 〈fi, αi〉
for the server, find the non-conformance probability for flow f .
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LRD Isolation in Generalized
Processor Sharing

This chapter introduces the application of stochastic network calculus to
analysis of queuing processes in generalized processor sharing (GPS) and
packet-based GPS (PGPS) systems with long-range dependent (LRD) traffic
inputs.

The GPS discipline is a widely studied non-FIFO scheduling discipline
[84], due to its attractive characteristics. One is that each backlogged session
is guaranteed a minimum service rate in GPS. This ensures that the misbe-
havior of other flows has a limited effect on an individual session, and provides
the foundation of isolation between sessions. Achieving isolation further en-
ables GPS to guarantee differentiated QoS for individual sessions. Another
attractive characteristic of GPS is that it is work-conserving and any excess
service rate can be redistributed among backlogged flows. The second charac-
teristic enables GPS to obtain a statistical multiplexing gain between input
flows. Because of these two characteristics, GPS is deemed an ideal schedul-
ing discipline that meets the following two requirements. One is to provide
isolation between flows, where isolation means that the queuing process be-
haves no worse than its single server queue (SSQ) process with a comparable
service rate. This guarantees that the scheduling discipline is able to pro-
tect an individual flow against misbehavior from other flows. The other is
to realize a statistical multiplexing gain. This suggests that a flow can uti-
lize excess service rate allocated to other flows. When GPS is extended to
packet-switched networks, it is usually referred to as weighted fair queuing
(WFQ)[33] or packet-based GPS (PGPS) [113].

Long-range dependent (LRD) traffic is an important class of traffic in
modern-day networks because long-range dependency is exhibited in many
types of networks and network traffic, such as Ethernet [94], WWW [27],
compressed video traffic [9, 62], and TCP traffic [48]. Since LRD traffic has
burstiness extending over various timescales, a Weibull bound rather than
a conventional exponential bound is usually associated with LRD traffic’s
single-server queue process [55].

By applying the results from previous chapters, this chapter studies the
queuing behavior of a single-server system, where the GPS discipline is
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adopted and the inputs are LRD flows. In particular, we derive two bounds for
individual queuing processes in the GPS system. Complimenting the analy-
sis on GPS in Section 7.3.4, these bounds provide valuable insights into the
isolation between multiple GPS sessions. More specifically, it is shown that
the index parameter in the upper bound of one LRD flow, in addition to the
decay rate and the asymptotic constant, may be affected by other LRD flows.
In addition, a necessary and sufficient condition for a flow being guaranteed
to be LRD-isolated from other flows is derived. Based on this condition, a
technique that can be used to quickly check if a flow can be guaranteed to be
LRD-isolated from other flows with a given GPS service weight assignment
is introduced. When some flows have already been assigned contract weights
according to some service level agreement (SLA) that cannot be changed,
the introduced technique can also be used to determine the minimum con-
tract weight to be assigned to the flow in order for it to be guaranteed to be
LRD-isolated from other flows.

9.1 Introduction

In this section, we briefly review the fundamental knowledge on the GPS
scheduling discipline and the queue length distribution of LRD traffic. Their
relations with that arrival curve and service curve are also shown to facilitate
the analysis based on results from the earlier chapters.

9.1.1 GPS Fundamentals

Generalized processor sharing (GPS) is a scheduling discipline defined under
the assumption that sources are described by fluid models [143]. Consider a
GPS server with rate γ serving N sessions. Let each session i be assigned
a weight parameter that is a fixed real-valued positive number φi. The set
{φ1, φ2, ..., φN} thus represents the GPS assignment. Each session is assumed
to have its dedicated queue. The N sessions share the server in the following
way [113], as also introduced in Section 7.3.4:

- It is work-conserving; i.e., as long as there are packets backlogged in any
of the GPS queues, the server is never idle.

- The excess service rate, if any, is redistributed among the backlogged ses-
sions in proportion to their weight parameters.

- Let Sk(s, t) denote the amount of traffic served in the time interval [s, t]
for session k. If session i is backlogged in the system during the entire
interval [s, t] (i.e., there is always traffic queued for session i), then

Si(s, t)
Sj(s, t)

≥ φi

φj
, j = 1, 2, ..., N. (9.1)
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From (9.1), it is clear that when session i is backlogged, it is guaranteed a
backlog clearing rate (or equivalently a guaranteed service rate) of at least

γi =
φi∑N

j=1 φj

γ. (9.2)

As shown in Table 2.1 in Chapter 2, it is easy to verify that the GPS server
provides to flow i a deterministic strict service curve βi (t) = φi∑N

j=1 φj
γt.

Let the arrival process for a stationary GPS session i be Ai(t) with long-
term average rate λi. Assume

∑N
i=1 λi < γ.

In order to characterize the effect of backlogs from a set of sessions, the
concept of the so-called feasible ordering [143] of the sessions will be frequently
referred to hereafter and is defined based on their arrival rates and GPS service
weight parameters as follows [113].

Definition 9.1. For a given set of input traffic flows in a GPS system whose
long-term average rate is λi, an ordering is called a feasible ordering among
the sessions with respect to {λ1, λ2, ..., λN} and GPS service weight parameters
{φ1, φ2, ..., φN} if

λi < ϕi

⎛
⎝γ −

i−1∑
j=1

λj

⎞
⎠ , 1 ≤ i ≤ N, (9.3)

where ϕi = φi∑N
j=i φj

is a constant associated with weight parameters and by

convention,
∑i−1

j=1 λj = 0 when i = 1.

Note that one of the results of feasible ordering is that for a given set of
input traffic flows in a GPS server with

∑N
i=1 λi < γ there always exists at

least one feasible ordering that satisfies (9.3) after being relabeled (e.g., see
[143]).

Also note that the right-hand side of (9.3) can be considered as the service
rate available to flow i. It is clear, by definition, that those flows ordered
earlier than flow i will affect the service rate available to flow i. However, they
will not affect the index parameter of the queuing process of a heavier-tailed
LRD flow i, as will be explained later in more detail.

9.1.2 LRD Traffic Characterization

LRD traffic is often characterized by heavy traffic bursts that extend over a
wide range of timescales [114] [132]. The LRD traffic backlog, buffered within
a singe-server queue (SSQ), often possesses a tail distribution that decays
slower than that of traditional (e.g., Poisson) traffic. More specifically, the
queue length distribution of traditional traffic obeys a certain exponential
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form. For the case of LRD traffic, the Weibull distribution has been used to
characterize the slower decaying SSQ distribution [9] [37] [116].

The queue length distribution, which is Weibull bounded (WB), is defined
as follows [109].

Definition 9.2. A stochastic SSQ process, denoted by WSSQ,γ(t), where γ is
the service rate of the queue, is WB(C, η, υ) with parameters C(> 0) denoting
the asymptotic constant, η(> 0) denoting the decay rate, and (0 <)υ(≤ 1)
denoting the index parameter, if it satisfies

P{WSSQ,γ(t) > w} < Ce−ηwυ

(9.4)

for all w ≥ 0 and all t ≥ 0.

In Definition 9.2, the quantity P{WSSQ,γ(t) > w} essentially represents
the probability that the backlog of the SSQ with service rate γ will exceed a
certain queue size w. In other words, P{WSSQ,γ(t) > w} represents the queue
length distribution of the SSQ. In addition, the decay rate η increases with γ
because when the service rate increases, the likelihood that the queue length
exceeds w will decrease. Also, the index parameter υ can be further expressed
in terms of the Hurst parameter H, which is commonly used to characterize
the degree of long-range dependence [9] [37] [116] and, more specifically, υ =
2(1 − H), where 0.5 ≤ H < 1. A traffic process with H = 0.5 corresponds to
conventional traffic with a queue length distribution that decays exponentially.
A larger H, or a smaller υ, corresponds to heavier-tailed LRD traffic.

The definition of WB shows that it is indeed a special case of a gSBB
or v.b.c. stochastic arrival curve with bounding function Ce−ηwυ

. Therefore,
WB has all properties of a gSBB and v.b.c. stochastic arrival curve.

9.1.3 LRD Isolation of Flows

In Definition 9.2, the index parameter is what differentiates an LRD flow from
a short-range dependent (SRD) flow. Although the decay rate and constant
parameters also define the queuing process, these parameters form the ex-
ponential bound parameters commonly associated with an SRD flow. Hence
their presence, by definition, is for the purpose of describing the SRD property
of the flow.

The index parameter, found in the Weibull bound formula, was introduced
to bound flows exhibiting LRD behavior that cannot be suitably bounded by
just the constant parameter and the decay rate. Hence, the LRD property of
a flow, by definition, is primarily due to its index parameter. Accordingly, we
introduce the following notion of LRD isolation.

Definition 9.3. A flow, when multiplexed with other flows in a queue system,
is said to be LRD-isolated (from other flows) in that queue system if its re-
sulting queue process has the same or larger index parameter (i.e., less heavy
tailed) as the index parameter associated with its SSQ process with service rate
equivalent to that guaranteed in the queue system.
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This notion of “LRD isolation” is different from the conventional under-
standing of flow isolation. In flow isolation, the major concern is the flow’s
service rate, and a flow is said to be isolated from other flows if this flow is
not adversely affected by these flows [88]. Based on this, an LRD flow is flow
isolated if and only if its queue process is not adversely affected after it is
multiplexed and served with other flows in the GPS server.

It can be shown that flow isolation is guaranteed for a flow in a GPS
server if the flow can be ordered first in a feasible ordering. The reason is that
under this case, the flow is always guaranteed a service rate greater than its
long term average rate based on (9.3), which is not affected by other flows.
In addition, Lemma 9.11 will show that the flow’s queue process in the GPS
system is not adversely affected (with respect to its SSQ process) by other
flows. However, if the flow cannot be ordered first in any feasible ordering, the
guaranteed service rate to the flow may depend on the arrival rates of some
other flows. In other words, it may vary over time and hence the queue process
of the flow in the GPS system could be affected adversely.1 As a result, if a
flow cannot be ordered first in any feasible ordering, the flow may or may
not be guaranteed to be flow isolated from other flows. However, a flow can
still be guaranteed to be LRD-isolated (from heavier-tailed flows) even if some
lighter-tailed flows have to be ordered before this flow in all feasible orderings,
as will be discussed later in this section. Clearly, flow isolation implies LRD
isolation but not vice versa. Since the index parameter is the most important
measure of the LRD property (heaviness or lightness of the tail) of a flow, the
notion of LRD isolation as defined above is useful when studying LRD flows.

9.2 Analysis of LRD Traffic

9.2.1 Single Arrival Process

In this subsection, we establish the relationship between a WB SSQ and a
Weibull bounded burstiness (WBB) arrival process. We begin by defining the
burstiness constraint qualifier that describes the arrival process of LRD traffic
as follows.

Similar to the notation in Definition 9.2, let C denote the asymptotic
constant, υ the index parameter, μ the decay rate2, and ρ the long-term “upper
rate” of the arrival process, which will be further elaborated in Lemma 9.5.

Definition 9.4. A traffic arrival process A(t) is WBB(ρ, C, μ, υ) with para-
meters ρ, C, μ, and υ if it satisfies

P{A(s, t) > ρ(t − s) + w} < Ce−μwυ

(9.5)
1 Note that, when λi = φiγ, flow i cannot be ordered first according to (9.3),

although it is flow-isolated.
2 Not to be confused with the symbol η, which denotes the decay rate of a WB

SSQ process.
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for all w ≥ 0 and all 0 ≤ s ≤ t.

Here again, A(s, t) is the amount of arrival traffic accumulated in time
interval [s, t]. In addition, the decay rate μ will increase with ρ, just as η will
increase with γ in a WB SSQ process (see Definition 9.2).

It can be seen that WBB is a special case of a t.a.c. stochastic arrival
curve with bounding function Ce−μwυ

. Therefore, WBB has all properties of
a t.a.c. stochastic arrival curve. Additionally, WBB has interesting properties
useful to the objectives of this chapter, which are presented below.

Lemma 9.5. An arrival process A(t) that is WBB(ρ, C, μ, υ) possesses the
property that its parameter ρ is always larger than or equal to its long-term
average rate

ρ ≥ lim
t−s→∞

E[
∫ t

s
A(u)du]

t − s
. (9.6)

Proof. First, we have

E

[∫ t

s

A (u) du

]

=
∫ ∞

0

Pr
{∫ t

s

A (u) du > x

}
dx

=
∫ ρ(t−s)

0

Pr
{∫ t

s

A (u) du > x

}
dx

+
∫ ∞

0

Pr
{∫ t

s

A (u) du > ρ (t − s) + x

}
dx

< ρ (t − s) +
∫ ∞

0

Ce−μxvdx.

Second, as long as v > 0, we have

lim
t−s→∞

∫∞
0

Ce−μxv

dx

t − s
= lim

t→∞

∫ t

0
Ce−μxv

dx

t
= lim

t→∞Ce−μtv

= 0.

Therefore,

ρ ≥ lim
t−s→∞

E[
∫ t

s
A(u)du]

t − s
.

��
The long-term upper rate ρ is useful for the purpose of bounding the entire

ensemble of sample time observations that constitute the stochastic arrival
process A(t). In particular, let An(t) be the nth sample observation of A(t) in

[s, t], and let λn = limt−s→∞
∫ t

s
A(n,u)du

t−s be the corresponding average arrival
rate for this sample. If we were to repeat the observation of A(t) infinitely
many times using different start times, so that n approaches infinity, then we
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would have a corresponding list of average arrival rates λ1, λ2, ..., λn→∞. This
long term upper rate ρ ranges between the lower limit E[λn] and the higher
limit ρmax = max[λ1, λ2, ..., λn→∞]. For a conservative (loose) WBB bound
on A(t), one may set ρ to the higher limit ρmax. However, notice that the long-
term upper rate, defined in (9.5), is applied continuously even if the arrival
process is inactive. Therefore, a lower value of ρ, where ρmax ≥ ρ ≥ E[λn],
may suffice to produce a tighter WBB bound on A(t). To summarize, the
use of the long-term upper rate ρ in (9.5) is essential for a general stochastic
process that may not be stationary (i.e., λ1 �= λ2 �= ... �= λn→∞). However,
in practical arrival processes, stationarity is an implicit property for a flow
that has some fixed arrival rate λ. This means that if this flow is presented to
the queue at different start times, the same average rate λ applies. Hence, for
the case of practical flows, λ1 = λ2 = ... = λn→∞ = λ and therefore ρ = λ.
Although many of the later derivations following this definition are still based
on ρ, readers should be aware that for practical considerations ρ ought to
be replaced by λ since practical arrival processes are by default implicitly
stationary in property. In fact, in the consideration of the GPS and PGPS
discipline in Sections 9.3, 9.4, and 9.5, we consider λ instead of ρ. Finally,
it is also noted that, besides ρ, the WBB expression in (9.5) also contains
other parameters, such as the decay rate μ, the index υ, and the asymptotic
constant C. These parameters can similarly be modified to obtain either loose
or tight WBB bounds.

Following the relationship between the t.a.c. stochastic arrival curve and
v.b.c. stochastic arrival curve, the following theorem establishes the relation-
ship between a WBB arrival process and a WB SSQ process.

Theorem 9.6. Consider a work-conserving SSQ that transmits at rate γ.
Suppose the queue is fed with a single arrival process A(t), and let WSSQ,γ(t)
be the workload stored in the queue at time t. Then:

(i) If WSSQ,γ(t) is WB, then A(t) is WBB with long-term upper rate ρ = γ.
(ii) If A(t) is WBB with long-term upper rate ρ = γ − ε for some ε > 0,

then WSSQ,γ(t) is WB.

Although LRD traffic is usually described in terms of some WB SSQ
process, it is still insufficient to proceed on to GPS analysis since in GPS
we are concerned with multiple arrival processes rather than a single arrival
process. If there is no burstiness constraint on a single arrival process, there is
not much that can be deduced about the stability of a GPS server that is serv-
ing a number of these arrival processes. With the introduction of Theorem 9.6,
we can now proceed further since it is now known that any LRD arrival process
resulting in a WB SSQ process must satisfy the WBB constraint with some
long-term upper rate ρ. This means that for a GPS server serving a number
of LRD sources, as long as the sum of the long-term upper rates of these LRD
sources does not exceed the service capacity of the GPS server, the GPS queue
will be stable and further analysis can proceed.
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9.2.2 Aggregate Process

In this subsection, several bounds on the aggregate WB SSQ process are
presented, based on the superposition property of the v.b.c. stochastic arrival
curve. These bounds will later be used frequently for the analysis of GPS and
PGPS.

Lemma 9.7. Let W1(t) be WB(C1, η1, υ1) and W2(t) be WB(C2, η2, υ2). The
two processes can either be dependent or independent. Then, W1(t) + W2(t)
is WB ((C1 + C2 + C∗), η, υ) , satisfying

P{W1(t) + W2(t) > w} < (C1 + C2 + C∗)e−ηwυ

, (9.7)

where η = 1
1

η1
+ 1

η2

, υ = min(υ1, υ2), and C∗ = (C1 + C2)
[
e−η(wvmax

0 −wv
0) − 1

]
.

Proof. According to the superposition property of the v.b.c. stochastic arrival
curve, we have

P {W1 (t) + W2 (t) > w} < C1e
−η1wv1 ⊗ C2e

−η2wv2

< C1e
−η1pwv1 + C2e

−η2(1−p)wv2
, for any 0 ≤ p ≤ 1.

We choose p such that η1p = η2 (1 − p) , i.e., p = η2
η1+η2

. Defining η = η1η2
η1+η2

and v = min (v1, v2) , we obtain

P {W1 (t) + W2 (t) > w} < C1e
−ηwv1 + C2e

−ηwv2
.

If 0 < w < 1, then we have

P {W1 (t) + W2 (t) > w} < (C1 + C2) e−ηwvmax
, (9.8)

where vmax = max [v1, v2] .
If w ≥ 1, then we have

P {W1 (t) + W2 (t) > w} < (C1 + C2) e−ηwv

, (9.9)

where v = min [v1, v2] .

It is noted that both (9.8) and (9.9) have the Weibull bound form except
with different index parameters. Next, we try to combine (9.8) and (9.9) so
the same index parameter, namely v rather than vmax, can also be used for
the case where 0 < w < 1. First, we notice that the bound using the index
vmax in (9.8) is always larger than the bound using the index in (9.9) for the
range 0 < w < 1. Once w > 1, the bound in 0 < w < 1 is always larger than
the bound in (9.8). At w = 0 and w = 1, the bounds in (9.8) and (9.9) have
exactly the same values. Hence, in order to extend (9.9), which uses the index
v, to provide a bound for the same case where 0 < w < 1, we can always add
an additional asymptotic constant factor C∗ to raise the bound of (9.9). This
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additional asymptotic constant C can be easily obtained, as it is related to
the maximum displacement between (9.8) and (9.9) when 0 < w < 1. More
specifically, let

f (w) = (C1 + C2) e−ηwvmax − (C1 + C2) e−ηwv

.

Notice that f (w) is zero at w = 0 and w = 1, and f (w) > 0 only for
0 < w < 1, where both e−ηwvmax and e−ηwv

monotonically decrease with w.
Therefore, there exists a unique maximum point of f (w) for w ∈ (0, 1). Let w0

maximize f (w) for 0 < w < 1. Specifically, w0 is the solution to the following
non-algebraic equation:

e−ηwvmax

wvmax
vmax =

e−ηwv

wv
v.

Hence the additional asymptotic constant C∗ is given by

C∗ = f (w0) e−ηwv
0

= (C1 + C2)
[
e−ηwvmax

0 − e−ηwv
0

]
e−ηwv

0

= (C1 + C2)
[
e−η(wvmax

0 −wv
0) − 1

]
.

Therefore, we have

P{W1(t) + W2(t) > w} < (C1 + C2 + C∗)e−ηwυ

,

where w ≥ 0. ��
Lemma 9.7 can be applied step-by-step to obtain the following theorem

for the case involving multiple WB processes.

Theorem 9.8. Let Wi(t), 1 ≤ i ≤ N be N WB processes with parameters (Ci,
ηi, υi), respectively. These processes can either be dependent or independent.
Then, W1(t) + W2(t) + · · · + WN (t) is WB((

∑N
i=1 Ci + C∗), η, υ), satisfying

Pr

{
N∑

i=1

Wi(t) > w

}
<

(
N∑

i=1

Ci + C∗
)

e−ηwυ

, (9.10)

where η = 1∑N
i=1

1
ηi

, υ = min(υ1, υ2, ..., υN ), and C∗ is a constant as given in

Lemma 9.7.

Given Lemma 9.7, the proof of Theorem 9.8 is straightforward and hence
omitted. For N WB queuing processes with the same LRD degree (i.e., the
same υ), υ = min(υ1, υ2, ..., υN ) is the tightest lower bound on the index
parameter. But, for N WB queuing processes with different LRD degrees, it
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is a loose bound because the index parameter of multiplexed LRD flows is in
general heavier tailed than the individual flows due to multiplexing gain.

Similar to the study on the independent case of two gSBB processes, in the
case where W1(t) and W2(t) are two independent processes, Lemma 9.9 and
Theorem 9.10 present alternate bounds to those obtained in Lemma 9.7 and
Theorem 9.8, respectively. The alternate bounds are useful since in certain
cases they are tighter.

Lemma 9.9. Let W1(t) and W2(t) be two independent processes WB(C1, η1,
υ1) and WB(C2, η2, υ2), respectively. If η2 ≤ η1 and υ2 ≤ υ1, then for ∀w > 2,
W1(t) + W2(t) has an upper bound of the form

P{W1(t) + W2(t) > w} < CWB
2 (w)e−ηwυ

, (9.11)

where η = min{η1, η2} = η2, υ = min{υ1, υ2} = υ2, and

CWB
2 (w) = C2h(C1) + C1,

where h(C1) = 1 + C1υη(eη − 1) + C1w
υη.

Note that the η in Lemma 9.7 is η1η2
η1+η2

, which is always less than or equal
to min(η1, η2), which is the η in (9.11). Hence Lemma 9.9 yields a larger (thus
better) decay rate. In fact, if η2 ≈ η1, then η in Lemma 9.9 is almost twice
the value of η in Lemma 9.7. However, the asymptotic constant in Lemma 9.9
increases with w, which is a trade-off. For a heavy-tailed arrival process where
υ → 0 so that, for practical and finite values of w, wυ → 1 and thus CWB

2 (w)
approaches a constant, the penalty for using Lemma 9.9 is insignificant. Con-
versely, if η2 differs significantly from η1 (i.e., η2 � η1), then η → min(η1, η2),
making Lemma 9.7 more attractive.

Table 9.1 summarizes the preferences (in terms of which lemma to use to
obtain the bound) assuming that in all the scenarios the queue size of interest
is larger than or equal to 2.

Table 9.1. Preference for Lemma 9.7 or Lemma 9.9 in different scenarios

Scenario Preference

η2 ≈ η1 and υ2 is small Lemma 9.9

η2 � η1 and υ2 is large Lemma 9.7

All other cases Either is ok

Similar to the way in which Lemma 9.7 is extended to Theorem 9.8, we
now extend Lemma 9.9 to Theorem 9.10, whose proof can be obtained by
recursively applying Lemma 9.9.

Theorem 9.10. Let Wi(t), 1 ≤ i ≤ N , be N independent WB processes with
parameters (Ci, ηi, υi). If the queuing processes can be rearranged such that
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the N th queuing process has the property that ηN ≤ ηj and υN ≤ υj for
1 ≤ j ≤ N − 1, then, for ∀w > 2, W1(t) + W2(t) + · · · + WN (t) has an upper
bound of the form

P

{
N∑

i=1

Wi(t) > w

}
< CWB

N (w)e−ηwυ

, (9.12)

where η = min{η1, η2, ..., ηN} = ηN , υ = min{υ1, υ2, ..., υN} = υN and

CWB
N (w) =

N∑
j=1

[
Cj

j−1∏
l=1

h(Cl)

]
, (9.13)

where h(Cl) = 1 + Clυη(eη − 1) + Clw
υη, and by convention

∏j−1
l=1 h(Cl) = 1

when j = 1.

9.3 Sample Path Behavior of LRD Traffic
in a GPS System

Recall from Theorem 9.6 that any LRD traffic input whose queue length
distribution is characterized by a WB distribution has an arrival process that
satisfies the WBB constraint with some long-term upper rate ρ. Hereafter, we
consider N stationary flows that maintain the same long-term average rate λi,
i = 1, 2, ..., N, irrespective of the start time of the flow. As mentioned earlier
(in the discussion after Lemma 9.5), the long-term upper rate ρ reduces to
the more familiar λ.

9.3.1 GPS Decomposition

Let Ai denote a sample path (or a single realization) of the random ar-
rival process Ai(t) and QGPS,γ

i denote the corresponding sample path of the
GPS queue backlog due to the sample arrival process Ai. To obtain relevant
bounds on QGPS,γ

i , we use a method similar to that in [143] to decompose
the GPS system into N fictitious WB single server queues (SSQs), denoted by
δSSQ,γi

i (t), with individual rates γ1, γ2, ..., γN , where γi > λi,
∑N

i=1 γi ≤ γ,
and γi ≤ ϕi(γ −∑i−1

j=1 γj). Now, the reason for considering the N fictitious
WB SSQs is that their bounds are easier to obtain and would surely bound
QGPS,γ

i as well. This is because the N fictitious WB SSQs do not consider
multiplexing gain, while the QGPS,γ

i queue process does.
Without loss of generality, let 1, 2,..., N be a feasible ordering of the

fictitious processes with respect to γi’s. From Lemma 3 of [143], Lemma 9.11
can be derived.
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Fig. 9.1. Decomposing a GPS system into N fictitious SSQs

Lemma 9.11. For any t,

QGPS,γ
i (t) ≤ ϕi

i−1∑
j=1

δ
SSQ,γj

j (t) + δSSQ,γi

i (t), (9.14)

where each δSSQ,γi

i SSQ process is independent.

Lemma 9.11 provides an upper bound on the queue length QGPS,γ
i (t) of an

individual session in the GPS system in terms of the queue length δSSQ,γi

i (t)
in the fictitious system. It is clear from Lemma 9.11 that to bound the distri-
bution of QGPS,γ

i (t), it suffices to bound the following aggregate of fictitious
queue length processes:

ϕiδ
SSQ,γ1
1 (t) + ϕiδ

SSQ,γ2
2 (t) + ... + ϕiδ

SSQ,γi−1
i−1 (t) + δSSQ,γi

i (t) (9.15)

In what follows, we will provide two bounds on (9.15), i.e., the right-hand
side of (9.14).

9.3.2 A General Bound

For N individual LRD flows sharing a GPS server on the condition of queue
stability (i.e.,

∑N
i=1 λi < γ) and under the assumption that 1, 2,... N is a

feasible ordering with respect to φi and λi, λi < γi for i = 1, 2, ..., N , we
present a GPS bound in Theorem 9.12 that is based on Theorem 9.8.

Theorem 9.12. Each individual queue length distribution in the GPS system
has an upper bound as follows:

P{QGPS,γ
i (t) > q} < CGPS

i e−ηGP S
i qυGP S

i , (9.16)

where
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υGPS
i = min

1≤j≤i
{υj}, (9.17)

ηGPS
i =

1∑i
j=1

1
η̄j

, (9.18)

CGPS
i =

⎛
⎝ i∑

j=1

Cj + C∗

⎞
⎠ e−ηGP S

i , (9.19)

and, in the above,

η̄j =

{
ηj

ϕ
υj
i

1 ≤ j < i

ηi j = i

and C∗ can be obtained similarly as in Theorem 9.8.

Proof. First, because all the input flows are LRD flows, we have

P{δSSQ,γj

j (t) > q} < Cje
−ηjqυj

, j = 1, 2, ..., N. (9.20)

Secondly letting
δ

SSQ,γj

j,eqv (t) = ϕiδ
SSQ,γj

j (t), j < i, (9.21)

we have

P{δSSQ,γj

j,eqv (t) > q} = Pr{δSSQ,γj

j (t) >
q

ϕi
} < Cje

−η̄jqυj
, (9.22)

for 1 ≤ j < i, where η̄j = ηj

ϕ
υj
i

. Finally, since (9.15) can now be written as

δSSQ,γ1
1,eqv (t) + δSSQ,γ2

2,eqv (t) + ... + δ
SSQ,γi−1
i−1,eqv (t) + δSSQ,γi

i (t), (9.23)

by combining (9.20), (9.22) and Lemma 9.11, one can easily verify the result
in (9.16) based on Theorem 9.8. ��

Theorem 9.12 gives a general upper bound on queue length distribution
in a GPS system. It is important to note that the GPS upper bound on flow
i is not affected by the flows that are ordered after flow i (because they do
not factor in the upper bound expression for flow i). It is affected only by
flows 1 to i − 1, but the impact on the bound is negligible as long as flow i is
heavier-tailed (i.e., has a smaller index parameter υi) than any of the flows 1
through i − 1. In fact, the index parameter in the bound for flow i is not
affected at all as long as flows 1 to i − 1 are lighter tailed than flow i.

9.3.3 An Alternate Bound

In Theorem 9.13, an alternate upper bound on individual session queue length
in GPS with LRD traffic is provided based on Theorem 9.10. Such a bound
may be better than the bound previously given in Theorem 9.12 but can only
be applied under the condition that for any given i there exists a 1 ≤ k ≤ i
such that both η̄k and υk are minimal in addition to the conditions stated for
Theorem 9.12.
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Theorem 9.13. If there exists a 1 ≤ k ≤ i such that η̄k = min1≤j≤i{η̄j} and
υk = min1≤j≤i{υj}, then for ∀q > 2, the upper bound for individual session
queue length is

P{QGPS,γ
i (t) > q} < CGPS

i (q)eηGP S
i qυGP S

i , (9.24)

where
υGPS

i = min
1≤j≤i

(υj) = υk, (9.25)

ηGPS
i = min

1≤j≤i
(η̄j) = η̄k, (9.26)

CGPS
i (q) = Ck

i∏
l=1,l 
=k

hGPS
i (Cl) +

i∑
j=1,j 
=k

⎡
⎣Cj

j−1∏
l=1,l 
=k

hGPS
i (Cl)

⎤
⎦ , (9.27)

with hGPS
i (Cl) = 1 + Clυ

GPS
i ηGPS

i (eηGP S
i − 1) + Clw

υGP S
i ηGPS

i , and by con-
vention

∏j−1
l=1,l 
=k hGPS

i (Cl) = 1 when j = 1.

Proof. Without loss of generality, assume that k < i. The aggregate process
in (9.23) can be rewritten such that the kth process with the minimum decay
rate as well as with the minimum index parameter appears last in the sequence
as follows:

δSSQ,γ1
1,eqv (t) + δSSQ,γ2

2,eqv (t) + ... + δ
SSQ,γk−1
k−1,eqv (t)

+δ
SSQ,γk+1
k+1,eqv (t) + ... + δSSQ,γi

i (t) + δSSQ,γk

k,eqv (t). (9.28)

Hence, by applying Theorem 9.10, Theorem 9.13 can be easily verified. ��
Theorem 9.13 provides an upper bound on an actual session i’s backlog

QGPS,γ
i (t) in the GPS system when there exists a very heavy-tailed LRD flow

with the smallest index parameter (as well as the smallest decay rate). One
implication of Theorem 9.13, similar to Theorem 9.12, is that it is desirable
to order the flows that are heavier-tailed as close to the end of a feasible
ordering as possible, again since the index parameter in the upper bound for
the individual queue length of flow i will not be affected if and only if the
flows 1 through i − 1 are all lighter-tailed than flow i.

9.4 Technique to Check and Ensure LRD Isolation

Recall from the discussion immediately following Definition 9.1 that in a stable
GPS system where

∑N
j=1 λj < γ, there exists at least one feasible ordering

for a given weight assignment. Before we discuss LRD isolation, it is useful to
revisit the concept of flow isolation with Lemma 9.14.
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Lemma 9.14. In a stable GPS system, if flow i satisfies the condition:

λi < γ
φi∑N

j=1 φj

, (9.29)

then the flow is flow-isolated.

Proof. The proof is straightforward since the right-hand side of (9.29) is the
minimum guaranteed rate. Yet, we still provide the required proof for this
lemma since several intermediate results of this proof will be used later to
prove newer results pertaining to LRD isolation. Relabel flow i as flow 1 and
all other N − 1 flows to be flows 2 to N . Note that flow 1 now satisfies (9.3),
and hence all we need to show is that the remaining N−1 flows can be feasibly
ordered after flow 1. To this end, consider a new GPS system with service rate
γ′ = γ−λ1. Since γ′ >

∑N
j=2 λj , the new GPS system is also stable, and hence

there always exists a feasible ordering such that (after relabeling the flows 2
to N) we have for any flow 2 ≤ i ≤ N

λi <
φi∑N

j=i φj

⎛
⎝γ′ −

i−1∑
j=2

λj

⎞
⎠

=
φi∑N

j=i φj

⎛
⎝γ −

i−1∑
j=1

λj

⎞
⎠ . (9.30)

Note that the equations above becomes the same as (9.3), which means that
if flow 1 is ordered first, the remaining N − 1 flows can also be ordered to
yield a feasible ordering. Therefore, flow 1 is flow-isolated. ��

It should be noted that (9.29) is only a sufficient condition for flow isola-
tion, not a necessary condition. In fact, it is a sufficient condition to guarantee
a flow to be flow-isolated. However, as mentioned earlier, a flow can still be
isolated even if it cannot be “guaranteed” to be flow-isolated, or even if it
does not satisfy (9.29).

Based on Lemma 9.14, an obvious method to guarantee the flow isolation
of every flow is to assign the weight of every flow according to (9.29) such
that every flow i can be ordered in the first place in a feasible ordering. As
mentioned earlier, being able to order a flow first in any feasible ordering is
the most applicable condition to guarantee a flow to be flow-isolated for, say,
admission control purposes. That, however, is not necessary to guarantee just
LRD isolation of a flow, which is less strict than flow isolation, as will be
discussed later.

9.4.1 Limitations of Existing Methods

In this subsection, we discuss the shortcomings of the existing methods for
assigning weights to achieve flow isolation and testing whether a flow can be
flow-isolated for a given weight assignment.
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A GPS system may support the following three types (or service classes)
of flows. A Type 1 flow requires a higher QoS than that provided by flow
isolation, so it requires a contract weight that is much larger than λi

γ

∑N
j=1 φj ;

A Type 2 flow requires flow isolation and thus needs a contract weight that is a
little larger than λi

γ

∑N
j=1 φj . A Type 3 flow only requires LRD isolation (but

not flow isolation) and thus can have a contract weight less than λi

γ

∑N
j=1 φj .

Note that the contract weight cannot be changed as long as the service level
agreement (SLA) is in effect. On the other hand, a (lightly loaded) GPS
system may assign a flow an extra weight (if available) to provide the flow
with better service, and such extra weights can be adjusted (e.g., transferred
to other flows) by the GPS system.

The method of assigning weights based on (9.29) has a limited applicabil-
ity in supporting Types 1 and 2 but is not applicable to Type 3 flows. From
users or applications’ viewpoint, having Type 3 flows is useful because cer-
tain applications may require a less strict performance guarantee than that
given by flow isolation, and such flows can be admitted into a GPS system
and with less costs to the users or applications. In addition, from the GPS
system’s viewpoint, supporting Type 3 flows allows it to admit more flows
than otherwise possible, thus increasing its utilization and potential revenues.

For example (hereafter referred to as Example 1), consider a GPS system
with γ = 16 and five flows numbered 1 through 5 in descending order of their
index parameters whose λi = i where, 1 ≤ i ≤ 5. Assume that the total weight
is
∑5

j=1 φj = 16, and in addition flows 1 and 2 have been assigned contract
weights of φ1 = 1.1 and φ2 = 4, respectively. Since the remaining weight for
flows 3, 4 and 5 is 10.9 but the sum of their arrival rates is 12, it is clear that
(9.29) cannot be used to assign the weights to all three remaining flows to
guarantee their flow isolation.

In general, due to the existence of Type 1 flows (e.g., flow 2 in Example 1),
flow isolation may not always be achievable by every flow, and accordingly the
existing approach based on (9.29) may not be useful. Note that, even if flow
i does not satisfy (9.29), it may still be LRD isolated. In Example 1, one can
assign 2.6 to flow 3 to ensure its LRD isolation (which can be verified using
the technique to be proposed later), even though such a weight violates (9.29).

As another example (hereafter called Example 2) showing the deficiency
of the existing approaches, assume that the weight assignment for the same
five flows as in Example 1 is now {1.1, 2.1, 1, 4, 7.8}. It is clear that (9.29)
cannot be used to test if flows 3 and 4 (both of which violate (9.29)) are
LRD-isolated or not. In addition, (9.3) in Definition 9.1 is not effective either.
More specifically, in order to use it to test whether flow 4 can be guaranteed
to be LRD isolated or not, a naive approach will test if the ordering of 1, 2,
3, 4, 5 is feasible, and because it is not, it will have to examine the ordering
of 1, 3, 2, 4, 5 and then the ordering of 2, 3, 1, 4, 5 and so on. In the worst
case, to test if flow i can be guaranteed to be LRD-isolated or not, all possible
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orderings involving j lighter-tailed flows, where 0 ≤ j ≤ (i − 1), have to be
tested. Thus, the (worst-case) time complexity of the testing process is O(i!).
When the number of flows is large, such an approach is clearly infeasible.

9.4.2 Necessary and Sufficient Condition

We now determine, for a given flow i, not only the set of lighter-tailed flows,
denoted by fi, that can be ordered before flow i in a feasible ordering, but
also the minimum contract weight to ensure the LRD isolation of flow i. To
this end, we first initialize fi to be empty. Then, if there exists a flow k where
1 ≤ k < i that satisfies

λk

φk
<

γ −∑j∈fi
λj∑N

j=1 φj −
∑

j∈fi
φj

, (9.31)

we add flow k to fi and update the right-hand side of (9.31), which will be
denoted by R(fi). We repeat the process above until no such flow k exists
and denote the resulting set by Fi and accordingly the final value of R(fi)
by R(Fi). Note that this process of obtaining Fi has the worst-case time
complexity of O(i2).

One can easily verify that when a flow k that satisfies (9.31) is added to
fi, the resulting R(fi) increases; i.e., R(fi) < R(fi ∪ k) ≤ R(Fi) if fi ⊆ Fi.
Conversely, if we were to add a flow k′ that does not satisfy (9.31) to fi, then
R(fi ∪ k′) ≤ R(fi). In other words, R(Fi) is the maximum value that flow i
can obtain from all flows that are lighter-tailed than flow i. This observation is
important for proving the following theorem, which provides a both necessary
and sufficient condition for the LRD isolation guarantee of flow i.

Theorem 9.15. Suppose there are N flows in a GPS system that are num-
bered in the descending order of their index parameters as 1, 2, ..., N , and their
contract weights are φ1, φ2, ..., φN , respectively. Then flow i is guaranteed to
be LRD-isolated from other flows if and only if

λi

φi
<

γ −∑j∈Fi
λj∑N

j=1 φj −
∑

j∈Fi
φj

= R(Fi). (9.32)

Proof. (i) To show that (9.32) is a sufficient condition, we note that flow i
also satisfies (9.31), just as any flow k < i in Fi does. Accordingly, if we let
F ′

i = Fi ∪ {i} and note that when fi is empty R(fi) = γ∑N
j=1 φj

, we have the

following (based on the observation drawn preceding the theorem):

γ −∑j∈F ′
i
λj∑N

j=1 φj −
∑

j∈F ′
i
φj

>
γ −∑j∈Fi

λj∑N
j=1 φj −

∑
j∈Fi

φj

>
γ∑N

j=1 φj

.

Accordingly, we can easily conclude that
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j∈F ′

i
λj∑

j∈F ′
i
φj

<
γ∑N

j=1 φj

.

The above means that if we treat the flows in F ′
i as one big flow with arrival

rate
∑

j∈F ′
i
λj and weight

∑
j∈F ′

i
φ, it satisfies (9.29). Hence, according to

Lemma 5.1, there exists a feasible ordering with this big flow ordered first.
In other words, flow i can be feasibly ordered before any heavier-tailed flow.
Note that the exact ordering of the flows within Fi will not affect the LRD
isolation of flow i. In fact, the flows in Fi can be feasibly ordered according to
the order in which they are added to Fi in (9.31), with flow i being ordered
right after them.

(ii) We now prove that (9.32) is necessary by contradiction. Suppose (9.32)
does not hold for flow i but there still exists a feasible ordering with flow i
ordered before any heavier-tailed flows. Denote the set of all the (lighter-
tailed) flows that are feasibly ordered before flow i by F ∗

i (which may be
empty). According to (9.3), we should have:

λi

φi
<

γ −∑j∈F∗
i

λj∑N
j=1 φj −

∑
j∈F∗

i
φj

= R(F ∗
i ).

However, since F ∗
i contains zero or more flows in Fi and zero or more flows not

in Fi, we have R(F ∗
i ) ≤ R(Fi) based on the discussion preceding the theorem;

or in other words,
λi

φi
< R(F ∗

i ) ≤ R(Fi),

which contradicts the assumption that (9.32) does not hold for flow i. ��
Note that if a flow satisfies (9.29), it will satisfy (9.31) but not vice versa.

With (9.32), whether a flow is guaranteed to be LRD isolated or not depends
only on the weights assigned to the flows in Fi, and flow i itself. In Example
1, one can easily verify that F3 = {1, 2} and R(F3) = (16 − 3)/(16 − 5.1) =
1.19. Hence, if φ3 = 2.6, flow 3 satisfies (9.32) and thus is guaranteed to be
LRD-isolated. On the other hand, in previous Example 2 (where the weight
assignment for five flows is {1.1, 2.1, 1, 4, 7.8}), one can easily verify that since
F3 = F4 = {1, 2} and R(F3) = R(F4) = 13/12.8, (9.32) cannot be satisfied by
flow 3, and thus flow 3 is not guaranteed to be LRD-isolated. On the other
hand, flow 4 satisfies (9.32) and thus is guaranteed to be LRD-isolated.

9.4.3 Weight Adjustment and Assignment

Theorem 9.15 is also useful for weight assignment and adjustment in order
to guarantee a flow’s LRD isolation. More specifically, the observation drawn
preceding the theorem (i.e., R(Fi) is maximum with respect to flow i) serves
as the base for determining a minimal φi to guarantee the LRD isolation of
flow i.
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For instance, consider again Example 2, but now assume that only the
weights assigned to flows 1, 2, and 4 are contract weights (i.e., non-adjustable).
If we want to ensure LRD isolation of flow 3, we must increase φ3 to above
13/12.8. Such an increase can be accomplished if φ5 has an extra weight of
2 that can be transferred to flow 3 (and, as a result, φ5 is reduced to 5.8
from 7.8).

The technique above to adjust the weight of a single flow to ensure its
LRD isolation can certainly be extended to ensure LRD isolation of more
than one flow provided that there are extra weights in the GPS system that
can be adjusted or transferred. As a slightly different example from those
above (which we call Example 3), consider five flows numbered in descending
order of their index parameters whose arrival rates are more or less randomly
distributed as {2, 4, 5, 1, 3}. Suppose that γ = 17 (which is sufficient to make
the system stable) and the total weight is a constant 17. In addition, suppose
that flow 2 (which is a Type 1 flow) has been assigned a contract weight of 7
(and thus the method based on (9.29) cannot be used for weight assignment
to guarantee flow isolation of all the other flows, as discussed earlier). If all
four other flows are Type 3 flows that only require LRD isolation, we can
use Theorem 9.15 to assign contract weights to them to guarantee their LRD
isolation as follows (note that one can easily verify that flow 2 can be ordered
first in any feasible ordering, so it is already flow-isolated).

For the first flow, from Theorem 9.15, we need to have φ1 > λ1 = 2, so
we set φ1 = 2.1 (theoretically speaking, we can set φ1 = 2 + ε, where ε > 0
can have a very small value). For flow 3, we first obtain F3 = {1, 2}, and then
from (9.32) we have

φ3 > λ3

∑5
1 φ − φ1 − φ2

γ − λ1 − λ2

= 5 · 17 − 2.1 − 7
17 − 2 − 4

= 3.59.

Accordingly, we set φ3 = 3.6 to flow 3. Similarly, we set φ4 = 0.72 and φ5 = 03.
The extra weight available in the system is 17 − 2.1 − 7 − 3.6 − 0.72 = 1.58,
which may be distributed among the five flows in an arbitrary manner.

To further illustrate the usefulness of the proposed technique, let us con-
sider the following corollary of Theorem 9.15 that may be used in the case of
online admission control.

Corollary 9.16. If a flow i is provided a contract weight φi that guarantees
it to be either flow-isolated or just LRD-isolated, it will be guaranteed to be
flow-isolated or just LRD-isolated after a new flow j is admitted as long as
the system remains stable.

Proof. Note that, in the corollary, flow j cannot take away any existing
contract weights already assigned to the other flows, so its contract weight
3 Note that, with φ5 = 0, flow 5 gets best-effort service.
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can only come from the extra weight available in the system before it was
admitted.

If flow i is guaranteed to be flow-isolated before flow j is admitted, flow i
must satisfy (9.29). Hence, flow i is guaranteed to be flow-isolated after flow
j is admitted.

Now assume flow i was only guaranteed to be LRD-isolated but not guar-
anteed to be flow-isolated before flow j was admitted. Under this assumption,
there existed a feasible ordering in which the set of flows ordered in front of
flow i, Fi, are all lighter-tailed than flow i. Now treat Fi ∪ {i} as one big flow
F ′

i . Just as shown in Part (i) of the proof for Theorem 9.15, this big flow F ′
i

satisfies (9.29) and thus can be ordered in the first place in a feasible ordering.
Thus, flow i is still guaranteed to be LRD-isolated. ��

Let us continue Example 3 by assuming that the online admission control
receives a request for a new flow (flow 6). Suppose that its arrival rate is
λ6 = 1, and its index parameter is in between those of flows 2 and 3. To
ensure its LRD isolation, we first obtain F6 = {1, 2} and then conclude that
we need a contract φ6 > 0.718. Since we have an extra weight of 1.58, we can
assign φ6 = 0.72 and redistribute the remaining extra weight 1.58−0.72 = 0.86
among all six flows.

Note that, from Corollary 9.16, admitting flow 6 as done in the case above
will not affect either the flow isolation or LRD isolation of any flows, or in
other words, their guaranteed (contracted) performance. There are, however,
cases where a heavy-tailed flow has been assigned a weight more than its
arrival rate, and hence the remaining weight is not enough to ensure the LRD
isolation of the newly arrived flow. An example is that for the same set of five
flows described in Example 3, but this time flow 4 instead of flow 2 is a Type 1
flow that requires a contract weight of 5. To ensure each of the four other flows
are LRD-isolated, we need the assignment {2.1, 4.1, 5.1, 5, 0}, which leaves an
extra weight of only 0.7. Hence, when flow 6 arrives, it needs φ6 > 1 to ensure
its LRD isolation. In such a case, the system may decide not to admit flow 6
or admit it without ensuring its LRD isolation.

9.5 Sample Path Behavior of LRD Traffic
in a PGPS System

The results obtained for the GPS system are now extended to the PGPS
system. While the GPS discipline assumes that the input traffic behaves like
a fluid such that multiple sessions can be served bit by bit, the packet-based
GPS (PGPS) is a more practical discipline in that only one packet at a time
may be served. In other words, a PGPS server considers the arrival of a packet
only after its last bit has been received. To manage this difference, the PGPS
server is often taken to consist of two parts, a regulator and a PGPS core
that is a GPS scheduler (see Chapter 4 in [112]), as illustrated in Figure 9.2.
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Regulator GPS

PGPS

Fig. 9.2. PGPS server

Partially complete (or partially arrived) packets are queued in the regulator,
which passes only complete (or arrived) packets to the PGPS core. The output
of this regulator, which is the input to the PGPS core, is a series of impulses
whose heights represent the sizes of the packets.

Let Ai be the session i input traffic to the PGPS server, which is also the
input to the regulator, Ai,reg be the output traffic from the regulator, which
is the input traffic to the PGPS core, and finally A(s, t) be the total amount
of traffic that arrived in time interval [s, t].

It is not difficult to verify that the queuing process of Ai,reg(s, t) is also
bounded by the queuing process of Ai(s, t) with an extra length L; i.e.,
QPGPS

i (s, t) ≤ QGPS
i (s, t) + L, where L is the maximum length of all ar-

rived packets (e.g. see Corollary 1 in [113]). From the queuing process Qi of
Ai, which is WB(C, η, υ), we obtain the queuing process QPGPS

i of Ai,reg,

P{QPGPS
i (s, t) > q} ≤ P{QGPS

i (s, t) + L > q}
= P{QGPS

i (s, t) > q − L}
< Cie

−ηi(q−L)υi

≤ Cie
ηiL

υi
e−ηiq

υi
, (9.33)

which is WB(CeηLυi
, η, υ). In other words, the two GPS upper bounds derived

in Theorems 9.12 and 9.13 in the previous section can be extended to the
PGPS domain via a simple transformation of the asymptotic constant Ci →
Cie

ηiL
υi provided that the queue length or backlog is large enough to exceed

the maximum packet length L; i.e., q > L. Note that this assumption (q > L)
is reasonable because in practice the buffer size B is much larger than L (i.e.,
B � L) and, in addition, since the main concern is whether the backlog is
about to exceed B, the values of q that are of interest should be close to B
and thus larger than L.

For completeness, we now present Theorems 9.17 and 9.18 which are de-
rived from Theorems 9.12 and 9.13 respectively via the use of the simple
transformation Ci → Cie

ηiL
υi as follows.

Theorem 9.17. Let QPGPS,γ
i , 1 ≤ i ≤ N represent the ith queuing process

of the PGPS system with N LRD arrival processes. Then, at any time t, for
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any queue length q > L, where L is the maximum packet length of all the N
sessions, we have

P
{

QPGPS,γ
i > q

}
< CPGPS

i e−ηGP S
i qυGP S

i , (9.34)

where υGPS
i , and ηGPS

i have already been defined in (9.17) and (9.18), and

CPGPS
i =

⎛
⎝ i∑

j=1

Cje
η̄jLυj + C∗

⎞
⎠ ,

where C∗ can be obtained similarly as in Theorem 9.8.

Theorem 9.18. Under the same assumptions used for Theorem 9.13 except
that the server is now a PGPS server, at any time t, for any q > L > 2, where
L is the maximum packet length of all the N sessions

Pr{QPGPS,γ
i > q} < CPGPS

i (q)e−ηGP S
i qυGP S

i , (9.35)

where υGPS
i , and ηGPS

i have already been defined in (9.25) and (9.18), and

CPGPS
i (q) = Ckeη̄kLυk

i∏
l=1,l 
=k

hGPS
i (Cle

ηlL
υl )

+
i∑

j=1,j 
=k

⎡
⎣Cje

η̄jLυj

j−1∏
l=1,l 
=k

hGPS
i (Cle

ηlL
υl )

⎤
⎦

with

hGPS
i (Cle

ηlL
υl ) = (1 + Cle

η̄lL
υl

υGPS
i ηGPS

i (eηGP S
i − 1)

+Cle
η̄lL

υl
qυGP S

i ηGPS
i )

and, by convention,
∏j−1

l=1,l 
=k hGPS
i (Cle

ηlL
υl ) = 1 when j = 1.

Note that the bounds above shed light on the LRD isolation among LRD
sources sharing a PGPS server. To illustrate this, consider a simple case of two
independent LRD sources with a feasible ordering of 1, 2. From Theorem 9.12,
the source that appears first in the feasible ordering is always guaranteed to
be LRD-isolated. Therefore, the queuing process that is of interest is the last
queuing process in the feasible ordering, i.e., QPGPS,γ

2 . By applying Theorems
9.17 and 9.18, three possible sets of bounds can be obtained as follows:
(i) If η1 ≤ η2 and υ1 ≤ υ2 then from Theorem 9.18 we have

P{QPGPS,γ
2 > q} < CPGPS

2′ (q)e−η1qυ1
, (9.36)
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where
CPGPS

2′ (q) = C1e
η1Lυ1

h(C2e
η2Lυ2 ) + C2e

η2Lυ2
.

(ii) Otherwise, η2 ≤ η1 and υ2 ≤ υ1, then from Theorem 9.18

P{QPGPS,γ
2 > q} < CPGPS

2 (q)e−η2qυ2
, (9.37)

where
CPGPS

2 (q) = C2e
η2Lυ2

h(C1e
η1Lυ1 ) + C1e

η1Lυ1
.

(iii) In general, regardless of the relationship between η1 and η2 and that
between υ1 and υ2, from Theorem 9.17, we have

P{QPGPS,γ
2 > q} < (C1e

η1Lυ1 + C2e
η2Lυ2 ) ×

e−η(qυmax
0 −qυ

0 )e−ηqυ

, (9.38)

where
η =

η1η2

η1 + η2
and υ = min {υ1, υ2}.

The index parameter (as well as the decay rate parameter) of the three
bounds shown in (9.36)–(9.38) indicates the influence of source 1 on source 2.
In the first case, the bound on QPGPS,γ

2 decays slower, and in fact it adopts
the same index parameter as that in the bound on the heavier-tailed queuing
process δSSQ,γ1

1 . This means that source 2 is not guaranteed to be LRD-
isolated from source 1. In the second case, source 2 is not much affected by
source 1 since the bound on QPGPS,γ

2 adopts the same index parameter as
the bound on δSSQ,γ2

2 . Finally, in the third case, which is useful when neither
of the first two cases is applicable, the bound on QPGPS,γ

2 decays slower than
both the bound on δSSQ,γ1

1 and the bound on δSSQ,γ2
2 .

9.6 Summary and Bibliographic Comments

In this chapter, by applying the relationship between the t.a.c. stochastic
arrival curve and v.b.c. stochastic arrival curve, we have established the re-
lationship between a Weibull bounded burstiness (WBB) arrival process and
a Weibull bounded (WB) queuing process, which brings more validity to the
analysis of the upper bounds on the queuing process with long-range depen-
dent (LRD) traffic inputs.

In addition, this chapter develops several upper bounds on the queue
length distribution of the generalized processor sharing (GPS) scheduling dis-
cipline with LRD traffic inputs. The GPS bounds have also been extended to
a packet-based GPS (PGPS) system. These explicit bounds contribute addi-
tional results to stochastic network calculus. In addition, they show that the
long range dependency and queue length distribution of an LRD source in
a GPS system will in general not be adversely affected despite the presence
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of other admitted sources as long as it can be feasibly ordered before other
heavier tailed flows.

The content of this chapter is mainly based on [141] by Yu, Thng, Jiang,
and Qiao. Also in [141], some numerical results on a PGPS system with LRD
input flows are given to demonstrate the usefulness of the bounds. There is a
vast body of literature on GPS and PGPS. Some closely related works include
[131] [139] [143]. While in [131] the focus is on deterministic constraint inputs,
an upper bound is developed for the individual session queue length when
the input traffic is short-range dependent and particularly has exponentially
bounded burstiness (EBB) [138]. The notion of flow isolation can be found in
[88] and the notion of LRD isolation was initially introduced by Yu, Thng,
Jiang and Qiao in [141].

Problems

9.1. It is said that (9.29) is only a sufficient condition for flow isolation but
not a necessary condition. Give an example scenario where flow is isolated but
the condition (9.29) is not satisfied.

9.2. Prove Lemma 9.9.

9.3. Prove Lemma 9.11.

9.4. Prove Theorem 9.17.

9.5. Prove Theorem 9.18.

9.6. For Example 2 where the weight assignment for five flows is {1.1, 2.1, 1,
4, 7.8}, assume that only weights assigned to flows 1, 2, and 3 are contract
weights. Find how to adjust the weight to ensure LRD isolation for flow 4.

9.7. In Example 2, let the weight assignment for five flows be {1.3, 0.9, 1.2,
3.8, 7.6}. Find which flows are guaranteed to be flow-isolated and which flows
are guaranteed to be LRD-isolated.



A

Open Research Challenges

In this book, stochastic network calculus has been introduced, which is a
fundamental theory and framework for performance evaluation of computer
networks with focus on stochastic service guarantee analysis. The results pre-
sented in the book provide important tools and approaches for understanding
the behavior of complex computer networks.

Central to stochastic network calculus are the traffic models and server
models that are the focus of Chapters 3 and 4. In Chapters 5 and 6, the
following five basic properties were proved under the general case and the
independent case, making tractable service guarantee analysis of feedforward
stochastic networks possible:

• Service Guarantees – Stochastic backlog and delay guarantees can be de-
rived.

• Output Characterization – The output of a flow from a server can be
represented using the same traffic model.

• Concatenation Property – The concatenation of servers can be represented
using the same server model.

• Leftover Service – The service received by a flow in an aggregate can be
represented using the same server model.

• Superposition Property – The superposition of flows can be represented
using the same traffic model.

In addition, in Chapter 7, the analysis was extended to consider different
scheduling disciplines and admission control, both of which are critical ele-
ments in providing QoS guarantees. In Chapters 8 and 9, traffic conformance
and LRD isolation, new QoS measures in addition to delay and backlog, were
introduced and studied.

However, there are many changes in the context of or closely related to
stochastic network calculus that are critical but still open and require further
research. In the following sections, we discuss some of them.
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A.1 Applicability Condition Study of Stochastic
Network Calculus

As discussed in this book, a key issue of stochastic network calculus is to
find proper traffic and server models. Like traditional queuing theory, which
has been a successful analytical tool for telephone networks, where the traffic
model is represented by a stochastic arrival process and the server model by
a stochastic service process, stochastic network calculus is also based on some
properly defined traffic models and server models. Different from traditional
queuing theory, the traffic models and server models defined for network calcu-
lus often rely on the cumulative arrival process and cumulative service process.
Under deterministic network calculus, the idea of using an envelope to upper-
bound the cumulative arrival process is largely credited to Cruz [28][29], and
the idea of using an envelope to lower-bound the cumulative service process
is from many researchers (e.g., [18][92][54][129][112]). The traffic envelope is
now commonly called the arrival curve and the service envelope is called the
service curve in the context of deterministic network calculus. Equipped with
these two definitions, many results have been proved for deterministic net-
work calculus (e.g., [28][29][18][92][71]) that have played important roles in
the provision of deterministic service guarantees for the Internet [124][40].

Inspired by the definitions of (deterministic) arrival curve and (determin-
istic) service curve, researchers have extended and generalized these two de-
finitions to the stochastic setting, as discussed earlier in this book. To date,
several definitions of stochastic arrival curve that generalize the (determin-
istic) arrival curve, and several definitions of stochastic service curve that
generalize the (deterministic) service curve are available. Surprisingly, the
most direct generalizations (e.g., in [24][127][93]), which are special cases of
the t.a.c. stochastic arrival curve or weak stochastic service curve discussed in
this book, have limited use without additional constraints on the traffic and
server models [69][24] [127][93]. In Chapters 3–6, it was discussed that, in order
to get the desired results easily, stronger definitions for the stochastic arrival
curve and stochastic service curve are needed. Particularly, by revealing the
implicit principles of (deterministic) arrival curve and service curve, this book
introduces some new definitions for the stochastic arrival curve and stochastic
service curve, respectively. With these new definitions, the five basic proper-
ties for stochastic network calculus can be proved under both the general case
and independent case and are essential to the success of stochastic network
calculus and already found in its deterministic counterpart [18][92].

It is shown in Chapter 5 that, without additional conditions, only some
combination of a stochastic arrival curve and stochastic service curve can
directly provide the five basic properties essential to network analysis. Nev-
ertheless, with additional conditions enforced on the traffic models and/or
the server models, other combinations of traffic models and server models
may also support the five basic properties. Here several questions immedi-
ately arise: What are the additional constraints that make one combination
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applicable to service guarantee analysis, and what are the implications of these
constraints for the analysis and results?

Therefore, the following issues need to be investigated:

- A deep investigation on the applicability conditions of the current traffic
and server models for stochastic network calculus.

- A thorough comparison of the conditions on the issue above and their
corresponding results, which will provide guidance in choosing the right
traffic and server models to obtain optimal results under the stochastic
network calculus framework.

- Mapping of existing traffic models and server models in the literature to
stochastic arrival curves and stochastic service curves, respectively, so that
people who are using these models can grasp and apply stochastic network
calculus more easily.

- New traffic models and/or server models that better suit the needs of
network analysis.

A.2 Advanced Properties

While the five basic properties make tractable service guarantee analysis of
feedforward stochastic networks possible, they are not sufficient in analyze
more complex network scenarios for which advanced properties of stochastic
network calculus are needed.

- Feedback Analysis Feedback is often found in complex computer net-
works. There are two types of feedback. One is that some output traffic is
fed back to the input and becomes part of the input traffic to the network.
Another is that some network information such as the output traffic infor-
mation is used to control the input traffic. For example, the conventional
queuing networks with loops may be considered to have the first type of
feedback. The Internet Transmission Control Protocol (TCP), which uses
window congestion control, relies on the second type of feedback.
While there are many results for networks with loops, the analysis of con-
gestion control loops has proven to be challenging. To date, simple models
exist mainly for the TCP throughput; e.g., [105] [111]. These throughput
equations play a crucial role for the design of new network mechanisms
and constitute the basis, for example, for the TCP-friendly rate control
protocol [46] or the alternative best-effort service [64] for time-critical ap-
plications.
In the context of network calculus, the five basic properties for network
analysis introduced and studied in this book are not sufficient for feedback
analysis. It is hence critical to formulate feedback analysis in the context
of network calculus. Particularly, while the concept of feedback is closely
related to control theory, this relation needs to be extended under a differ-
ent algebra, the min-plus algebra [6] that constitutes the basis of network
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calculus. In the context of deterministic network calculus, results for the
first type of feedback and a fundamental control-theoretic model of win-
dow congestion control have been developed (see e.g,. [17] [2] [18] [92] [7],
and [82]). However, in the context of stochastic network calculus, there
has been little progress on feedback analysis. Since many networks are
only capable of providing stochastic services and stochastic service guar-
antees can better exploit the statistical multiplexing gain and improve the
network utilization, studying feedback under and for stochastic network
calculus becomes even more important.

- Multi-access Analysis In some networks, users share the same commu-
nication link using multiple access mechanisms for media access control
(MAC). While some of these networks look very simple in structure, their
analysis is indeed hard. Existing analysis mainly considers cases where the
network is saturated. In addition, it assumes simple and possibly unrealis-
tic traffic or service models. The analysis is based on conventional queuing
theory. We believe network calculus provides a new tool that can ease
multi-access analysis. However, little progress or effort on this has been
found in the network calculus literature. Since wireless networks, where
MAC is the fundamental issue, are becoming more and more popular.
Multi-access analysis, we believe, is a critical research issue for network
calculus that deserves more attention.

- Data Scaling In some networks, a flow may be split and/or scale into
new flows to be routed to possibly different destinations. One example
network scenario is scalable video streaming, where several video streams
are generated from the same original stream. These streams may have dif-
ferent quality levels and data rates to suit different users’ needs and/or
to adapt to network conditions. In such cases, it is essential to study the
data scaling property and routing property. While some results are avail-
able for deterministic networks [18][45], their stochastic counterparts are
still missing for stochastic network calculus.

- Loss Analysis Existing studies on stochastic service guarantees have
mainly focused on the delay, throughput, and backlog. Very often, results
obtained from the backlog analysis are used directly to approximately de-
scribe the loss. However, this approximation in general gives loose bounds.
It is hence of great interest to study the loss behavior directly and im-
prove the results under the theory of stochastic network calculus. Under
deterministic network calculus, there has been some effort to design a com-
posable service model with loss [4], which could be a useful reference for
analyzing loss under stochastic network calculus.

- Dynamic Case Analysis In this book, most traffic and server models
have been defined such that stationary increments are often implicitly as-
sumed. However, traffic processes and service processes may be dynamic
and/or non-stationary. Under deterministic network calculus, some effort
has been made to address networks with dynamic servers [19]. For sto-
chastic network calculus, interestingly, by extending the various stochastic
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arrival curve and stochastic service curve models to dynamic case in the
same way as used in [19] to extend the arrival curve and service curve to
dynamic, almost all results in this book can be easily extended and obtain
their corresponding counterparts in the dynamic setting. However, in this
case, all the resulting bounding functions will generally be dynamic and
time-dependent. Since many results of stochastic network calculus rely on
bounding functions, it would hence be interesting to investigate proper-
ties of dynamic and possibly non-stationary processes and explore them
to provide the desired service guarantees.
In fact, a network often behaves differently over time. For example, due
to the bursty nature of traffic sources in the network, the traffic load
at one time can be much different from the load at another time with
different statistical properties. Such differences over time in network loads
and other network conditions have great impact on the analytical results.
It hence becomes even more important to perform dynamic and possibly
non-stationary case analysis under stochastic network calculus.

- Time-Domain Modeling and Analysis In deterministic network cal-
culus, two widely used server models, latency rate (LR) [129] and guaran-
teed rate (GR) [53], have been proved to be equivalent (see, e.g., [68]). The
service curve model for deterministic network calculus can be considered
to be generalized from the LR model. Essentially, LR models the service
process using the amount of service delivered by the server in some special
time period. However, under GR, the service is captured by comparing it
with a virtual time function in the time domain. An appealing property
of time-domain modeling is that the time-domain model can be easily ex-
tended to analyze networks with flow aggregation for deterministic service
guarantees [26][71]. However, it is unclear if a stochastic version of the vir-
tual time function can be found and how the corresponding analysis can
be performed.

For the research challenges identified above, there are very few results
in the network calculus literature. To the best of our knowledge, available
results are mainly under the deterministic network calculus framework, as
cited above. For stochastic network calculus, all these challenges remain open.
One possible reason for this is that the five basic properties were proved only
very recently, and the five basic properties are a basis and prerequisite for
resolving these open problems.

A.3 Network Information Theory for the Internet

Even though information theory has been very successful in other fields of
communications, it is not so for computer communication networks. Two
principal reasons have been identified for this failure [38]. One is that in-
formation theory has historically focused on the stand-alone point-to-point
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source-channel-destination model of communication, ignoring the bursty na-
ture of real sources in the network case. Another is that information theory
has concentrated on the asymptotic limits of the trade-off between accuracy
and rate of communication, ignoring the role of delay, which is a fundamental
network quantity.

Recently, there has been attempts to try to bring together information the-
ory and computer communication networks [38][39][136][137][59][102]. How-
ever, the studies so far are still being conducted in the restricted framework,
with most interest in the capacity or throughput limits in noisy single-channel
systems or noisy networks, particularly wireless networks, and with little con-
sideration of the bursty nature and the delay sensitivity of sources in com-
puter communication networks. As a consequence, the literature on network
information theory having the goal of transmitting as much data as possi-
ble with required service guarantees in computer communication networks
remains painfully blank [38][39].

That there is no network information theory that considers source bursti-
ness and delay requirements is indeed not surprising, because of the slow
progress in developing a theory for network service guarantee analysis. With-
out such a theory, it is unknown what kind of service guarantees a network can
provide, let alone researching how to achieve the capacity and/or throughput
limits in the network requiring service guarantees.

Therefore, it is important to develop results toward a network informa-
tion theory for the Internet that takes into account the bursty nature and the
delay and loss requirements of sources. In this direction, we can analyze the
capacity limits of networks with service guarantee requirements and design
network approaches to explore and/or achieve network capacity limits, which
include scheduling disciplines, buffer management approaches, admission con-
trol algorithms, and routing protocols.
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