
2
Elements of Formal Languages

2.1 Overview

In this chapter, we discuss:

l the building blocks of formal languages: alphabets and strings

l grammars and languages

l a way of classifying grammars and languages: the Chomsky hierarchy

l how formal languages relate to the definition of programming languages

and introduce:

l writing definitions of sets of strings

l producing sentences from grammars

l using the notation of formal languages.

2.2 Alphabets

An alphabet is a finite collection (or set) of symbols. The symbols in the alphabet

are entities which cannot be taken apart in any meaningful way, a property which

leads to them being sometimes referred to as atomic. The symbols of an alphabet

are simply the ‘‘characters’’, from which we build our ‘‘words’’. As already said, an

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 2, � Springer-Verlag London Limited 2008

alphabet is finite. That means we could define a program that would print out its

elements (or members) one by one, and (this last part is very important) the

program would terminate sometime, having printed out each and every element.

For example, the small letters you use to form words of your own language

(e.g. English) could be regarded as an alphabet, in the formal sense, if written

down as follows:

fa; b; c; d; e; :::; x; y; zg:

The digits of the (base 10) number system we use can also be presented as an

alphabet:

f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g:

2.3 Strings

A string is a finite sequence of zero or more symbols taken from a formal

alphabet. We write down strings just as we write the words of this sentence,

so the word ‘‘strings’’ itself could be regarded as a string taken from the

alphabet of letters, above. Mathematicians sometimes say that a string taken

from a given alphabet is a string over that alphabet, but we will say that the

string is taken from the alphabet. Let us consider some more examples. The

string abc is one of the many strings which can be taken from the alphabet fa, b,

c, dg. So is aabacab. Note that duplicate symbols are allowed in strings (unlike

in sets). If there are no symbols in a string it is called the empty string, and we

write it as e (the Greek letter epsilon), though some write it as l (the Greek

letter lambda).

2.3.1 Functions that Apply to Strings

We now know enough about strings to describe some important functions that we

can use to manipulate strings or obtain information about them. Table 2.1 shows

the basic string operations (note that x and y stand for any strings).

You may have noticed that strings have certain features in common with

arrays in programming languages such as Pascal, in that we can index them. To

index a string, we use the notation xi, as opposed to something like x[i]. However,

strings actually have more in common with the list data structures of program-

ming languages such as LISP or PROLOG, in that we can concatenate two strings

12 2. Elements of Formal Languages

together, creating a new string. This is like the append function in LISP, with

strings corresponding to lists, and the empty string corresponding to the empty

list. It is only possible to perform such operations on arrays if the programming

language allows arrays to be of dynamic size. (which Pascal, for example, does

not). However, many versions of Pascal now provide a special dynamic ‘‘string’’

data type, on which operations such as concatenation can be carried out.

2.3.2 Useful Notation for Describing Strings

As described above, a string is a sequence of symbols taken from some alphabet.

Later, we will need to say such things as:

‘‘suppose x stands for some string taken from the alphabet A’’.

This is a rather clumsy phrase to have to use. A more accurate, though even

clumsier, way of saying it is to say

‘‘x is an element of the set of all strings which can be formed using zero or more

symbols of the alphabet A’’.

Table 2.1 The basic operations on strings.

Operation Written as Meaning Examples and comments

length jx j the number of symbols in
the string x

jabcabcaj = 7

jaj = 1
jej = 0

concatenation xy the string formed by
writing down the string x
followed immediately
by the string y

concatenating the empty
string to any string
makes no difference

let x = abca

let y = ca
then:

xy = abcaca

let x = <any string>
then:

xe = x
ex = x

power xn,

where n is a whole
number � 0

the string formed by
writing down n copies of
the string x

let x = abca

then:
x3 = abcaabcaabca
x1 = x

Note:
x0 = e

index xi,
where i is a whole
number

the i th symbol in the
string x (i.e. treats the
string as if it were an
array of symbols)

let x = abca
then:

x1 = a
x2 = b
x3 = c
x4 = a

2.3 Strings 13

There is a convenient and simple notational device to say this. We represent the

latter statement as follows:

x 2 A�;

which relates to the English version as shown in Figure 2.1.

On other occasions, we may wish to say something like:

‘‘x is an element of the set of all strings which can be formed using one or

more symbols of the alphabet A’’,

for which we write:

x 2 Aþ

which relates to the associated verbal description as shown in Figure 2.2.

Suppose we have the alphabet fa, b, cg. Then fa, b, cg* is the set

fe; a; b; c; aa; ab; ac; ba; bb; bc; ca; cb; cc; aaa; aab; aac; aba; abb; abc; . . .g:

Clearly, for any non-empty alphabet (i.e. an alphabet consisting of one or more

symbols), the set so defined will be infinite.

Earlier in the chapter, we discussed the notion of a program printing out

the elements of a finite set, one by one, terminating when all of the elements

x ∈ A*

x is an element of the set of strings that can be formed using zero or more symbols from the alphabet A

Figure 2.1 How we specify an unknown, possibly empty, string.

x ∈ A+

x is an element of the set of strings that can be formed using one or more symbols from the alphabet A

Figure 2.2 How we specify an unknown, non-empty, string.

14 2. Elements of Formal Languages

of the set had been printed. If A is some alphabet, we could write a program

to print out all the strings in A*, one by one, such that each string only gets

printed out once. Obviously, such a program would never terminate (because

A* is an infinite set), but we could design the program so that any string in

A* would appear within a finite period of time. Table 2.2 shows a possible

method for doing this (as an exercise, you might like to develop the method

into a program in your favourite programming language). The method is

suggested by the way the first few elements of the set A*, for A= fa, b, cg
were written down, above.

An infinite set for which we can print out any given element within a finite

time of starting the program is known as a countably infinite set. I suggest you

think carefully about the program in Table 2.2, as it may help you to appreciate

just what is meant by the terms ‘‘infinite’’ and ‘‘finite’’. Clearly, the program

specified in Table 2.2 would never terminate. However, on each iteration of the

loop, i would have a finite value, and so any string printed out would be finite in

length (a necessary condition for a string). Moreover, any string in A* would

appear after a finite period of time.

2.4 Formal Languages

Now we know how to express the notion of all of the strings that can be formed by

using symbols from an alphabet, we are in a position to describe what is meant by

the term formal language. Essentially, a formal language is simply any set of

strings formed using the symbols from any alphabet. In set parlance, given some

alphabet A,

a formal language is ‘‘any (proper or non-proper) subset of the set of all strings

which can be formed using zero or more symbols of the alphabet A’’.

The formal expression of the above statement can be seen in Figure 2.3.

Table 2.2 Systematically printing out all strings in A*.

begin

<print some symbol to represent the empty string>

i := 1

while i >= 0 do

<print each of the strings of length i>

i := i þ 1

endwhile

end

2.4 Formal Languages 15

A proper subset of a set is not allowed to be the whole of a given set. For

example, the set fa, b, cg is a proper subset of the set fa, b, c, dg, but the set fa, b,

c, dg is not.

A non-proper subset is a subset that is allowed to be the whole of a set. So, the

above definition says that, for a given alphabet, A, A* is a formal language, and so

is any subset of A*. Note that this also means that the empty set, written ‘‘fg’’
(sometimes written as �) is also a formal language, since it’s a subset of A* (the

empty set is a subset of any set).

A formal language, then, is any set of strings. To indicate that the strings are

part of a language, we usually call them sentences. In some books, sentences are

called words. However, while the strings we have seen so far are similar to English

words, in that they are unbroken sequences of alphabetic symbols (e.g. abca),

later we will see strings that are statements in a programming language, such as

if i > 1 then x := x + 1.

It seems peculiar to call a statement such as this a ‘‘word’’.

2.5 Methods for Defining Formal Languages

Our definition of a formal language as being a set of strings that are called

sentences is extremely simple. However, it does not allow us to say anything

about the form of sentences in a particular language. For example, in terms of

our definition, the Pascal programming language, by which we mean ‘‘the set of

all syntactically correct Pascal programs’’, is a subset of the set of all strings

which can be formed using symbols found in the character set of a typical

computer. This definition, though true, is not particularly helpful if we want

to write Pascal programs. It tells us nothing about what makes one string a

Pascal program, and another string not a Pascal program, except in the trivial

sense that we can immediately rule out any strings containing symbols that are

not in the character set of the computer. You would be most displeased if, in

attempting to learn to program in Pascal, you opened the Pascal manual to find

x ⊆ A*

any proper or non-proper subset of the set of strings that can be formed using zero or more symbols from the alphabet A

Figure 2.3 The definition of a formal language.

16 2. Elements of Formal Languages

that it consisted entirely of one statement which said: ‘‘Let C be the set of all

characters available on the computer. Then the set of compilable Pascal pro-

grams, P, is a subset of C*.’’

One way of informing you what constitutes ‘‘proper’’ Pascal programs would

be to write all the proper ones out for you. However, this would also be unhelpful,

albeit in a different way, since such a manual would be infinite, and thus could

never be completed. Moreover, it would be a rather tedious process to find the

particular program you required.

In this section we discover three approaches to defining a formal language.

Following this, every formal language we meet in this book will be defined

according to one or more of these approaches.

2.5.1 Set Definitions of Languages

Since a language is a set of strings, the obvious way to describe some language is

by providing a set definition. Set definitions of the formal languages in which we

are interested are of three different types, as now discussed.

The first type of set definition we consider is only used for the smallest finite

languages, and consists of writing the language out in its entirety. For example,

fe; abc; abbba; abcag

is a language consisting of exactly four strings.

The second method is used for infinite languages, but those in which there is

some obvious pattern in all of the strings that we can assume the reader will

induce when presented with sufficient instances of that pattern. In this case, we

write out sufficient sentences for the pattern to be made clear, then indicate that

the pattern should be allowed to continue indefinitely, by using three dots ‘‘...’’.

For example,

fab; aabb; aaabbb; aaaabbbb; . . .g

suggests the infinite language consisting of all strings which consist of one or more

as followed by one or more bs and in which the number of as equals the number of

bs.

The final method, used for many finite and infinite languages, is to use a set

definition to specify how to construct the sentences in the language, i.e., provide a

function to deliver the sentences as its output. In addition to the function itself, we

must provide a specification of how many strings should be constructed. Such set

definitions have the format shown in Figure 2.4.

2.5 Methods for Defining Formal Languages 17

For the ‘‘function to produce strings’’, of Figure 2.4, we use combinations of

the string functions we considered earlier (index, power and concatenation). A

language that was defined immediately above,

‘‘all strings which consist of one or more as followed by one or more bs and in

which the number of as equals the number of bs’’

can be defined using our latest method as:

faibi : i � 1g:

The above definition is explained in Table 2.3.

From Table 2.3 we can see that faibi: i� 1g means:

‘‘the set of all strings consisting of i copies of a followed by i copies of b such

that i is allowed to take on the value of each and every whole number value

greater than or equal to 1’’.

{ : }

function to produce strings range of arguments to function

this means “such that”
(sometimes written “|”)

Figure 2.4 Understanding a set definition of a formal language.

Table 2.3 What the set definition faibi: i � 1g means.

Notation String function Meaning

a N/A ‘‘the string a’’

b N/A ‘‘the string b’’

ai power ‘‘the string formed by writing down i copies of the string a’’

bi power ‘‘the string formed by writing down i copies of the string b’’

aibi concatenation ‘‘the string formed by writing down i copies of a followed by
i copies of b’’

: i � 1 N/A ‘‘such that i is allowed to take on the value of each and
every whole number value greater than or equal to 1
(we could have written i > 0)’’

18 2. Elements of Formal Languages

Changing the right-hand side of the set definition can change the language defined.

For example faibi: i� 0g defines:

‘‘the set of all strings consisting of i copies of a followed by i copies of b such

that i is allowed to take on the value of each and every whole number value

greater than or equal to 0’’.

This latter set is our original set, along with the empty string (since a0= e,
b0= e, and therefore a0b0= ee = e). In set parlance, faibi: i� 0g is the union of the

set faibi: i� 1g with the set feg, which can be written:

faibi : i � 0g ¼ faibi : i � 1g [f"g:

The immediately preceding example illustrates a further useful feature of sets. We

can often simplify the definition of a language by creating several sets and using

the union, intersection and set difference operators to combine them into one.

This sometimes removes the need for a complicated expression in the right-hand

side of our set definition. For example, the definition

faibjck : i � 1; j � 0; k � 0; if i � 3 then j ¼ 0 else k ¼ 0g;
is probably better represented as

faicj : i � 3; j � 0g [faibj : 1 � i53; j � 0g;

which means

‘‘the set of strings consisting of 3 or more as followed by zero or more cs, or

consisting of 1 or 2 as followed by zero or more bs’’.

2.5.2 Decision Programs for Languages

We have seen how to define a language by using a formal set definition. Another

way of describing a language is to provide a program that tells us whether or not

any given string of symbols is one of its sentences. Such a program is called a

decision program. If the program always tells us, for any string, whether or not the

string is a sentence, then the program in an implicit sense defines the language, in

that the language is the set containing each and every string that the program tells

us is a sentence. That is why we use a special term, ‘‘sentence’’, to describe a string

that belongs to a language. A string input to the program may or may not be a

sentence of the language; the program should tell us. For an alphabet A, a language

is any subset of A*. For any interesting language, then, there will be many strings

in A* that are not sentences.

2.5 Methods for Defining Formal Languages 19

Later in this book we will be more precise about the form these decision pro-

grams take, and what can actually be achieved with them. For now, however, we

will consider an example to show the basic idea.

If you have done any programming at all, you will have used a decision

program on numerous occasions. The decision program you have used is a

component of the compiler. If you write programs in a language such as Pascal,

you submit your program text to a compiler, and the compiler tells you if the text

is a syntactically correct Pascal program. Of course, the compiler does a lot more

than this, but a very important part of its job is to tell us if the source text

(string) is a syntactically correct Pascal program, i.e. a sentence of the language

called ‘‘Pascal’’.

Consider again the language

faicj : i � 3; j � 0g [faibj : 1 � i53; j � 0g;

i.e.,

‘‘the set of strings consisting of 3 or more as followed by zero or more cs, or

consisting of 1 or 2 as followed by zero or more bs’’.

Table 2.4 shows a decision program for the language.

The program of Table 2.4 is purely for illustration. In the next chapter we

consider formal languages for which the above type of decision program can be

created automatically. For now, examine the program to convince yourself that it

correctly meets its specification, which can be stated as follows:

‘‘given any string in fa, b, cg*, tell us whether or not that string is a sentence of

the language

faicj : i � 3; j � 0g [faibj : 1 � i53; j � 0g}:

2.5.3 Rules for Generating Languages

We have seen how to describe formal languages by providing set definitions and we

have encountered the notion of a decision program for a language. The third meth-

od, which is the basis for the remainder of this chapter, defines a language by

providing a set of rules to generate sentences of a language. We require that such

rules are able to generate every one of the sentences of a language, and no others.

Analogously, a set definition describes every one of the sentences, and no others, and

a decision program says ‘‘yes’’ to every one of the sentences, and to no others.

20 2. Elements of Formal Languages

Table 2.4 A decision program for a formal language.

1: read(sym)
case sym of

fassume read just gives us the next symbol in the string being examinedg

eos: goto N fassume read returns special symbol ‘‘eos’’ if at end
of stringg

‘‘a’’: goto 2

‘‘b’’: goto N

‘‘c’’: goto N

endcase fcase statement selects between alternatives as in Pascalg
2: read(sym)

case sym of

eos: goto Y fif we get here we have a string of one a which is OKg
‘‘a’’: goto 3

‘‘b’’: goto 6 fwe can have a b after one ag
‘‘c’’: goto N fany cs must follow three or more as { here we’ve only

had oneg
endcase

3: read(sym)

case sym of

eos: goto Y fif we get here we’ve read a string of two as which is OKg
‘‘a’’: goto 4

‘‘b’’: goto 6 fwe can have a b after two asg
‘‘c’’: goto N fany cs must follow three or more as { here we’ve only

had twog
endcase

4: read(sym)

case sym of

eos: goto Y fif we get here we’ve read a string of three or more as
which is OKg

‘‘a’’: goto 4 fwe loop here because we allow any number of as � 3g
‘‘b’’: goto N fb can only follow one or two asg
‘‘c’’: goto 5 fcs are OK after three or more asg

endcase

5: read(sym)

case sym of

eos: goto Y fif we get here we’ve read� 3 as followed by� 1 cs which
is OKg

‘‘a’’: goto N fas after cs are not allowedg
‘‘b’’: goto N fbs are only allowed after one or two asg
‘‘c’’: goto 5 fwe loop here because we allow any number of cs after �

3 asg
endcase

6: read(sym)

case sym of

eos: goto Y fwe get here if we’ve read 1 or 2 as followed by � 1 bs {
OKg

‘‘a’’: goto N fno as allowed after bsg

2.5 Methods for Defining Formal Languages 21

There are several ways of specifying rules to generate sentences of a language.

One popular form is the syntax diagram. Such diagrams are often used to show the

structure of programming languages, and thus inform you how to write syntacti-

cally correct programs (syntax is considered in more detail in Chapter 3).

Figure 2.5 shows a syntax diagram for the top level syntax of the Pascal

‘‘program’’ construct.

The diagram in Figure 2.5 tells us that the syntactic element called a ‘‘pro-

gram’’ consists of

the string ‘‘PROGRAM’’ (entities in rounded boxes and circles represent

actual strings that are required at a given point),

followed by something called

an ‘‘identifier’’ (entities in rectangles are those which need elaborating in some

way that is specified in a further definition),

followed by

an open bracket ‘‘(’’,

followed by

a list of one or more ‘‘identifiers’’, in which every one except the last is followed

by a comma, ‘‘,’’, followed by a semi-colon, ‘‘;’’,

followed by

a close bracket, ‘‘)’’,

Table 2.4 (continued)

‘‘b’’: goto 6 fwe loop here because we allow any number of bs after 1
or 2 asg

‘‘c’’: goto N fno cs are allowed after bsg
endcase

Y: write(‘‘yes’’)

goto E

N: write(‘‘no’’)

goto E

E: fend of
programg

PROGRAM IDENTIFIER (IDENTIFIER) ; BLOCK .

,

program

Figure 2.5 Syntax diagram for the Pascal construct ‘‘program’’.

22 2. Elements of Formal Languages

followed by

something called a ‘‘block’’,

followed by

a full stop, ‘‘.’’.

In Figure 2.6 we see the syntax diagram for the entity ‘‘identifier’’.

Figure 2.6 shows us that an ‘‘identifier’’ consists of a letter followed by zero or

more letters and/or digits.

The following fragment of Pascal:

program calc(input, output, infile26, outfile23);

associates with the syntax diagram for ‘‘program’’ as shown in Figure 2.7.

Of course, the diagrams in Figures 2.5 and 2.6, together with all of the

other diagrams defining the syntax of Pascal, cannot tell us how to write a

program to solve a given problem. That is a semantic consideration, relating

to the meaning of the program text, not only its form. The diagrams mer-

ely describe the syntactic structure of constructs belonging to the Pascal

language.

LETTER

identifier

LETTER

DIGIT

Figure 2.6 Syntax diagram for a Pascal ‘‘identifier’’.

PROGRAM IDENTIFIER (IDENTIFIER) ;

,

program

program calc (input , output , infile26 , outfile23) ;

Figure 2.7 How a syntax diagram describes a Pascal statement.

2.5 Methods for Defining Formal Languages 23

An alternative method of specifying the syntax of a programming language is

to use a notation called Backus-Naur form (BNF).1 Table 2.5 presents a BNF

version of our syntax diagrams from above.

The meaning of the notation in Table 2.5 should be reasonably clear when you

see its correspondence with syntax diagrams, as shown in Figure 2.8.

Formalisms such as syntax diagrams and BNF are excellent ways of defining the

syntax of a language. If you were taught to use a programming language, you may

never have looked at a formal definition of its syntax. Analogously, you probably did

not learn your own ‘‘natural’’ language by studying a book describing its grammar.

However, many programming languages are similar to each other in many respects,

and learning a subsequent programming language is made easier if the syntax is

clearly defined. Syntax descriptions can also be useful for refreshing your memory

about the syntax of a programming language with which you are familiar, particu-

larly for types of statements you rarely use.

PROGRAM

IDENTIFIER

,

IDENTIFIER

LETTER

DIGIT

<identifier>

program

<identifier> {, <identifier>}

<letter> | <digit>

Figure 2.8 How syntax diagrams and BNF correspond.

Table 2.5 BNF version of Figures 2.5 and 2.6.

<program> ::= <program heading> <block>.

<program heading> :=program<identifier> (<identifier> f , <identifier> g) ;

<identifier> ::= <letter> f<letter or digit>g
<letter or digit> ::= <letter> j <digit>

1 The formalism we describe here is actually Extended BNF (EBNF). The original BNF did not
include the repetition construct found in Table2.5.

24 2. Elements of Formal Languages

If you want to see how concisely a whole programming language can be

described in BNF, see the original definition of the Pascal language,2 from where

the above Pascal syntax diagrams and BNF descriptions were obtained. The BNF

definitions for the whole Pascal language are presented in only five pages.

2.6 Formal Grammars

A grammar is a set of rules for generating strings. The grammars we will use in the

remainder of this book are known as phrase structure grammars (PSGs). Here,

our formal definitions will be illustrated by reference to the following grammar:

S ! aS j bB

B! bB j bC j cC

C ! cC j c:

In order to use our grammar, we need to know something about the status of the

symbols that we have used. Table 2.6 provides an informal description of the

symbols that appear in grammars such as the one above.

Table 2.6 The symbols that make up the Phrase Structure Grammar:
S! aS j bB
B! bB j bC j cC
C! cC j c.

Symbols Name and meaning

S, B, C non-terminal symbols

[BNF: things in angled brackets e.g. <identifier>]
S special non-terminal, called a start, or sentence, symbol

[BNF: in our example above, <program>]
a, b, c terminal symbols: only these symbols can appear in sentences

[BNF: the underlined terms (e.g. program) and punctuation symbols (e.g. ‘‘;’’)]
! production arrow

[BNF: the symbol ‘‘::=’’]
S! aS production rule, usually called simply a production (or sometimes we’ll just use the

word rule). Means ‘‘S produces aS’’, or ‘‘S can be replaced by aS’’. The string to the
left of! is called the left-hand side of the production, the string to the right of! is
called the right-hand side.

[BNF: this rule would be written as <S> ::= a<S>]
j ‘‘or’’, so B! bB j bC j cC means ‘‘B produces bB or bC or cC ’’. Note that this means

that B! bB j bC j cC is really three production rules i.e. B! bB, B! bC, and B!
cC. So there are seven production rules altogether in the example grammar above.
[BNF: exactly the same]

2 Jensen and Wirth (1975) { see Further Reading section.

2.6 Formal Grammars 25

2.6.1 Grammars, Derivations and Languages

Table 2.7 presents an informal description, supported by examples using our

grammar above, of how we use a grammar to generate a sentence.

As you can see from Table 2.7, there is often a choice as to which rule to apply

at a given stage. For example, when the resulting string was aaS, we could have

applied the rule S! aS as many times as we wished (adding another a each time).

A similar observation can be made for the applicability of the C! cC rule when

the resulting string was aabcC, for example.

Here are some other strings we could create, by applying the rules in various

ways:

abcc;

bbbbc; and

a3b2c5:

You may like to see if you can apply the rules yourself to create the above strings.

You must always begin with a rule that has S on its left-hand side (that is why S is

called the start symbol).

We write down the S symbol to start the process, and we merely repeat the

process described in Table 2.7 as

if a substring of the resulting string matches the left-hand side of one or more

productions, replace that substring by the right-hand side of any one of those

productions,

until the following becomes true

if the resulting string consists entirely of terminals,

Table 2.7 Using a Phrase Structure Grammar.

Action taken
Resulting
string

Production
applied

Start with S, the start symbol S

If a substring of the resulting string matches the left-hand side
of one or more productions, replace that substring by the
right-hand side of any one of those productions

aS S! aS

’’ aaS S! aS

’’ aabB S! bB

’’ aabcC B! cC

’’ aabccC C! cC

’’ aabccc C! c

If the resulting string consists entirely of terminals, then stop.

26 2. Elements of Formal Languages

at which point we:

stop.

You may wonder why the process of matching the substring was not presented as:

if a non-terminal symbol in the resulting string matches the left-hand side of

one or more productions, replace that non-terminal symbol by the right-hand

side of any one of those productions.

This would clearly work for the example grammar given. However, as discussed in

the next section, grammars are not necessarily restricted to having single non-

terminals on the left-hand sides of their productions.

The process of creating strings using a grammar is called deriving them, so

when we show how we’ve used the grammar to derive a string (as was done in

Table 2.7), we’re showing a derivation for (or of) that string.

Let us now consider all of the ‘‘terminal strings’’ { strings consisting entirely of

terminal symbols, also known as sentences{ that we can use the example grammar to

derive. As this is a simple grammar, it’s not too difficult to work out what they are.

Figure 2.9 shows the choice of rules possible for deriving terminal strings from

the example grammar.

Any ‘‘legal’’ application of our production rules, starting with S, the start

symbol, alone, and resulting in a terminal string, would involve us in following a

path through the diagram in Figure 2.9, starting in Box 1, passing through Box 2,

and ending up in Box 3. The boxes in Figure 2.9 are annotated with the strings

produced by taking given options in applying the rules. Table 2.8 summarises the

strings described in Figure 2.9.

We now define a set that contains all of the terminal strings (and only those

strings) that can be derived from the example grammar. The set will contain all

strings defined as follows:

A string taken from the set faib: i� 0g concatenated with a string taken from

the set fbj : j � 1g [fbjc : j � 0gconcatenated with a string taken from

the set fck: k� 1g.

The above can be written as:

faibbjck : i � 0; j � 1; k � 1g [faibbjcck : i � 0; j � 0; k � 1g:

Observe that bb j, j� 1 is the same as bj, j� 2, and bbj, j� 0 is the same as bj, j� 1,

and cck, k � 1 is the same as ck, k � 2 so we could write:

faibjck : i � 0; j � 2; k � 1g [faibjck : i � 0; j � 1; k � 2g:

2.6 Formal Grammars 27

This looks rather complicated, but essentially there is only one awkward case,

which is that if there is only one b then there must be 2 or more cs (any more than 1

b and we can have 1 or more cs). So we could have written:

faibjck : i � 0; j � 1; k � 1; if j ¼ 1 then k � 2 else k � 1g:

C

C → cC C → c

3

S

S → aS S → bB

B

B → bC

B → bB

B → cC

1

2

Box 1 allows us to start
the string with as many as
as we like (including
none). However, we can
only get out of Box 1 by
generating a b, at which
point the B forces us to
go to Box 2 …

… in Box 2
we can either
generate 1 b
alone (left
path), or 2 or
more bs
(central path
then fork
left), or 1 or
more bs
followed by
1 c (central
path then
fork right), or
no bs and
just 1 c (right
path). At the
end of any
of the above
paths we are
forced into
Box 3 …

… in Box 3
we generate
either a
single c
(right path),
or 2 or more
cs (left path).
At the end of
either path, a
terminal
string is
obtained, so
the
derivation is
complete.

Figure 2.9 Working out all of the terminal strings that a grammar can generate.

28 2. Elements of Formal Languages

Whichever way we write the set, one point should be made clear: the set is a set of

strings formed from symbols in the alphabet fa, b, cg*, that is to say, the set is a

formal language.

2.6.2 The Relationship between Grammars and Languages

We are now ready to give an intuitive definition of the relationship between

grammars and languages:

The language generated by a grammar is the set of all terminal strings that can

be derived using the productions of that grammar, each derivation beginning

with the start symbol of that grammar.

Our example grammar, when written like this:

S ! aS j bB

B! bB j bC j cC

C ! cC j c

is not fully defined. A grammar is fully defined when we know which symbols are

terminals, which are non-terminals, and which of the non-terminals is the start

symbol. In this book, we will usually see only the productions of a grammar, and

we will assume the following:

Table 2.8 The language generated by a grammar.

Box in Figure 2.9. Informal description of derived strings
Formal description
of derived strings

¤1
i.e. productions
S! aS j S!bB

‘‘any non-zero number of as followed by
bB’’ or ‘‘just bB ’’ which is the same as
saying ‘‘zero or more as followed by bB ’’

aibB, i � 0

...the B at the end...

. . .is expanded in Box 2. . .

¤2
i.e. productions
B!bB jbC jcC

‘‘any non-zero number of bs followed
by either bC or cC ’’ or ‘‘just bC ’’ or
‘‘just cC ’’

bjC, j � 1 or bjcC,
j � 0

...the C at the end...

...is expanded in Box 3...

¤3
i.e. productions
C! cC j c

‘‘any non-zero number of cs followed by
one c’’ or ‘‘just one c’’ which is the same as
saying
‘‘one or more cs’’

ck, k � 1

2.6 Formal Grammars 29

l capitalised letters are non-terminal symbols

l non-capitalised letters are terminal symbols

l the capital letter S is the start symbol.

The above will always be the case unless explicitly stated otherwise.

2.7 Phrase Structure Grammars and the Chomsky
Hierarchy

The production rules of the example grammar from the preceding section are

simple in format. For example, the left-hand sides of all the productions consist of

lone non-terminals. As we see later in the book, restricting the form of produc-

tions allowed in a grammar in certain ways simplifies certain language processing

tasks, but it also reduces the sophistication of the languages that such grammars

can generate. For now, we will define a scheme for classifying grammars accord-

ing to the ‘‘shape’’ of their productions which will form the basis of our subse-

quent discussion of grammars and languages. The classification scheme is called

the Chomsky hierarchy, named after Noam Chomsky, an influential American

linguist.

2.7.1 Formal Definition of Phrase Structure Grammars

To prepare for specifying the Chomsky hierarchy, we first need to precisely define

the term phrase structure grammar (PSG). Table 2.9 does this.

Formally, then, a PSG, G, is specified as (N, T, P, S). This is what mathema-

ticians call a ‘‘tuple’’ (of four elements).

The definition in Table 2.9 makes it clear that the empty string, e, cannot

appear alone on the left-hand side of any of the productions of a PSG. Moreover,

the definition tells us that e is allowed on the right-hand side. Otherwise, any

strings of terminals and/or non-terminals can appear on either side of produc-

tions. However, in most grammars we usually find that there are one or more non-

terminals on the left-hand side of each production.

As we always start a derivation with a lone S (the start symbol), for a grammar

to derive anything it must have at least one production with S alone on its left-

hand side. This last piece of information is not specified in the definition above, as

there is nothing in the formal definition of PSGs that says they must generate

30 2. Elements of Formal Languages

anything. To refer back to our earlier example grammar, its full formal description

would be as shown in Table 2.10.

2.7.2 Derivations, Sentential Forms, Sentences and ‘‘L(G)’’

We have formalised the definition of a phrase structure grammar (PSG). We now

formalise our notion of derivation, and introduce some useful terminology to

support subsequent discussion. To do this, we consider a new grammar:

S ! aB j bA j e

A! aS j bAA

B! bS j aBB:

Table 2.9 The formal definition of a phrase structure grammar.

Any PSG, G, consists of the following:

N a set of non-terminal symbols an alphabet, containing no symbols that can
appear in sentences

T a set of terminal symbols also an alphabet, containing only symbols that can
appear in sentences

P a set of production rules of the
form

x! y, where
x 2 ðN [T Þþ, and
y 2 ðN [T Þ�

this specification uses the notation for specifying
strings from an alphabet we looked at earlier.

x is the left-hand side of a production, y the right-
hand side.
The definition of y means: the right-hand side of
each production is a possibly empty string of
terminals and/or non-terminals.
The only difference between the specification
above and the one for x (the left-hand side) is that
the one for x uses ‘‘þ’’ rather than ‘‘*’’.
So the specification for x means: the left-hand side
of each production is a non-empty string of
terminals and/or non-terminals.

S a member of N, designated as
the start, or sentence symbol

the non-terminal symbol with which we always
begin a derivation

Table 2.10 The (N, T, P, S) form of a grammar.

Productions (N, T, P, S)

(fS, B, C g, - - - N

S!aS j bB fa, b, c g, - - - T

B! bB j bC j cC fS! aS, S! bB, B! bB, B! bC, - - - P

C! cC jc B! cC, C! cC, C! cg,
S - - - S

)

2.7 Phrase Structure Grammars and the Chomsky Hierarchy 31

Using the conventions outlined earlier, we know that S is the start symbol, fS, A,

Bg is the set of non-terminals (N), and fa, bg is the set of terminals (T). So we need

not provide the full (N, T, P, S) definition of the grammar.

As in our earlier example, the left-hand sides of the above productions all

consist of single non-terminals. We see an example grammar that differs from this

later in the chapter.

Here is a string in ðN [T Þþ that the above productions can be used to derive,

as you might like to verify for yourself:

abbbaSA:

This is not a terminal string, since it contains non-terminals (S and A). Therefore

it is not a sentence. The next step could be, say, to apply the production A! bAA,

which would give us

abbbaSbAA;

which is also not a sentence.

We now have two strings, abbbaSA and abbbaSbAA that are such that the

former can be used as a basis for the derivation of the latter by the application of

one production rule of the grammar. This is rather a mouthful, even if we replace

‘‘by the application of one production rule of the grammar’’ by the phrase ‘‘in one

step’’, so we introduce a symbol to represent this relationship. We write:

abbbaSA) abbbaSbAA:

To be absolutely correct, we should give our grammar a name, say G, and

write

abbbaSA)G abbbaSbAA

to denote which particular grammar is being used. Since it is usually clear in our
examples which grammar is being used, we will simply use ¼). We now use this

symbol to show how our example grammar derives the string abbbaSbAA:

S) aB

aB) abS

abS) abbA

abbA) abbbAA

abbbAA) abbbaSA

abbbaSA) abbbaSbAA

32 2. Elements of Formal Languages

As it is tedious to write out each intermediate stage twice, apart from the first

(S) and the last (abbbaSbAA), we allow an abbreviated form of such a derivation

as follows:

S) aB) abS) abbA) abbbAA) abbbaSA) abbbaSbAA:

We now use our new symbol as the basis of some additional useful notation, as

shown in Table 2.11.

A new term is now introduced to simplify references to the intermediate stages

in a derivation. We call these intermediate stages sentential forms. Formally,

given any grammar, G, a sentential form is any string that can be derived in zero

or more steps from the start symbol, S. By ‘‘any string’’, we mean exactly that; not

only terminal strings, but any string of terminals and/or non-terminals. Thus, a

sentence is a sentential form, but a sentential form is not necessarily a sentence.

Given the simple grammar

S ! aSja;

some sentential forms are: S, aaaaaaS and a10. Only one of these sentential forms

(a10) is a sentence, as it’s the only one that consists entirely of terminal symbols.

Formally, using our new notation,

Table 2.11 Useful notation for discussing derivations, and some example true statements for
the grammar:

S! aB j bA j e
A! aS j bAA
B! bS j aBB.

Notation Meaning Example true statements

x¼)y the application of one production rule results in the
string x becoming the string y

also expressed as
‘‘x generates y in one step’’, or
‘‘x produces y in one step’’, or
‘‘y is derived from x in one step’’

aB¼)abS
S¼)e
abbbaSA¼)abbba SbAA

x¼)�y x generates y in zero or more steps, or just

‘‘x generates y’’, or
‘‘x produces y’’, or
‘‘y is derived fromx’’

S¼)�S
S¼)�abbbaSA
aB¼)�abbbaa

x¼)þy x generates y in one or more steps, or just
‘‘x generates y’’, or
‘‘x produces y’’, or
‘‘y is derived from x’’

S¼)þabbbaSA
abbba SbAA¼)þabbbabaa

2.7 Phrase Structure Grammars and the Chomsky Hierarchy 33

if S¼)�x, then x is a sentential form.

if S¼)�x, and x is a terminal string, then x is a sentence.

We now formalise a definition given earlier, this being the statement that

the language generated by a grammar is the set of all terminal strings that can

be derived using the productions of that grammar, each derivation beginning

with the start symbol of that grammar.

Using various aspects of the notation introduced in this chapter, this becomes:

Given a PSG; G; LðGÞ ¼ fx : x 2 T � and S)� xg:

(Note that the definition assumes that we have specified the set of terminals and

the start symbol of the grammar, which as we said earlier is done implicitly in our

examples.)

So, if G is some PSG, L(G) means the language generated by G. As the set

definition of L(G) clearly states, the set L(G) contains all of the terminal strings

generated by G, but only the strings that G generates. It is very important to realise

that this is what it means when we say the language generated by the grammar.

We now consider three examples, to reinforce these notions. The first is an

example grammar encountered above, now labelled G1:

S ! aS j bB

B! bB j bC j cC

C ! cC j c:

We have already provided a set definition of L(G1); it was:

LðG1Þ ¼ faibjck : i � 0; j � 1; k � 1; if j ¼ 1 then k � 2 else k � 1g:

Another grammar we have already encountered, which we now call G2, is:

S ! aBj j bA j "

A! aS j bAA

B! bS j aBB:

This is more complex than G1, in the sense that some of G2’s productions have

more than one non-terminal on their right-hand sides.

LðG2Þ ¼ fx : x 2 fa; bg� and the number of as in x equals the numberof bsg:

34 2. Elements of Formal Languages

I leave it to you to establish that the above statement is true.

Note that L(G2) is not the same as a set that we came across earlier, i.e.

faibi : i � 1g;

which we will call set A. In fact, set A is a proper subset of L(G2). G2 can generate

all of the strings in A, but it generates many more besides (such as e, bbabb-

baaaaab, and so on). A grammar, G3, such that L(G3) = Ais:

S ! ab j aSb:

2.7.3 The Chomsky Hierarchy

This section describes a classification scheme for PSGs, and the corresponding

phrase structure languages (PSLs) that they generate, which is of the utmost

importance in determining certain of their computational features. PSGs can be

classified in a hierarchy, the location of a PSG in that hierarchy being an indicator

of certain characteristics required by a decision program for the corresponding

language. We saw above how one example language could be processed by an

extremely simple decision program. Much of this book is devoted to investigat-

ing the computational nature of formal languages. We use as the basis of our

investigation the classification scheme for PSGs and PSLs called the Chomsky

hierarchy.

Classifying a grammar according to the Chomsky hierarchy is based sol-

ely on the presence of certain patterns in the productions. Table 2.12 shows

how to make the classification. The types of grammar in the Chomsky hier-

archy are named types 0 to 3, with 0 as the most general type. Each type from

1 to 3 is defined according to one or more restrictions on the definition of

the type numerically preceding it, which is why the scheme qualifies as a

hierarchy.

If you are observant, you may have noticed an anomaly in Table 2.12. Context

sensitive grammars are not allowed to have the empty string on the right-hand

side of productions, whereas all of the other types are. This means that, for

example, our grammar G2, which can be classified as unrestricted and as context

free (but not as regular), cannot be classified as context sensitive. However,

every grammar that can be classified as regular can be classified as context free,

and every grammar that can be classified as context free can be classified as

unrestricted.

2.7 Phrase Structure Grammars and the Chomsky Hierarchy 35

When classifying a grammar according to the Chomsky hierarchy, you should

remember the following:

For a grammar to be classified as being of a certain type, each and every

production of that grammar must match the pattern specified for productions

of that type.

Table 2.12 The Chomsky hierarchy.

Type No Type name
Patterns to which ALL
productions must conform Informal description and examples

0 unrestricted x! y; x 2 ðN [T Þþ,

y 2 ðN [T Þ�
The definition of PSGs we have
already seen. Anything allowed on the
left-hand side (except for e), anything
allowed on the right. All of our
example grammars considered so far
conform to this.

Example type 0 production:
aXYpq! aZpq

(all productions of G1, G2 and G3

conform { but see below).
1 context

sensitive
x! y; x 2 ðN [T Þþ,

y 2 ðN [T Þþ,
jx j � jy j

As for type 0, but we are not allowed
to have e on the left- or the right-hand
sides.

Note that the example production
given for type 0 is not a context
sensitive production, as the length of
the right-hand side is less than the
length of the left.
Example type 1 production:

aXYpq! aZwpq
(all productions of G1 and G3 conform,
but not all of those of G2 do).

2 context free x! y; x 2 N ,

y 2 ðN [T Þ�
Single non-terminal on left, any
mixture of terminals and/or non-
terminals on the right. Also, e is
allowed on the right.

Example type 2 production:
X! XapZQ

(all productions of G1, G2, and G3

conform).
3 regular w! x, or w! yz

w 2 N ,
x 2 T [f"g,
y 2 T ,
z 2 N

Single non-terminal on left, and either
& e or a single terminal,

or
& a single terminal followed by

a single non-terminal,
on the right.
Example type 3 productions:

P! pQ,
F! a

all of the productions of G1 conform to
this, but G2 and G3 do not.

36 2. Elements of Formal Languages

Which means that the following grammar:

S ! aS j aA jAA

A! aA j a;

is classified as context free, since the production S! AA does not conform to the

pattern for regular productions, even though all of the other productions do.

So, given the above rule that all productions must conform to the pattern, you

classify a grammar, G, according to the procedure in Table 2.13.

Table 2.13 tells us to begin by attempting to classify G according to the most

restricted type in the hierarchy. This means that, as indicated by Table 2.12, G1 is

a regular grammar, and G2 and G3 are context free grammars. Of course, we know

that as all regular grammars are context free grammars, G1 is also context free.

Similarly, we know that they can all be classified as unrestricted. But we make the

classification as specific as possible.

From the above, it can be seen that classifying a PSG is done simply by seeing

if its productions match a given pattern. As we already know, grammars generate

languages. In terms of the Chomsky hierarchy, a language is of a given type if it is

generated by a grammar of that type. So, for example,

faibi : i � 1g ðset A mentioned aboveÞ

is a context free language, since it is generated by G3, which is classified as a context

free grammar. However, how can we be sure that there is not a regular grammar

that could generate A? We see later on that the more restricted the language

(in the Chomsky hierarchy), the simpler the decision program for the language. It

is therefore useful to be able to define the simplest possible type of grammar

Table 2.13 The order in which to attempt the classification of a grammar, G, in the Chomsky
hierarchy.

if G is regular then

return(‘‘regular’’)

else

if G is context free then

return(‘‘context free’’)

else

if G is context sensitive then

return(‘‘context sensitive’’)

else

return(‘‘unrestricted’’)

endif

endif

endif

2.7 Phrase Structure Grammars and the Chomsky Hierarchy 37

for a given language. In the meantime, you might like to see if you can create a

regular grammar to generate set A (clue: do not devote too much time to this!).

From a theoretical perspective, the immediately preceding discussion is very

important. If we can establish that there are languages that can be generated by

grammars at some level of the hierarchy and cannot be generated by more restricted

grammars, then we are sure that we do indeed have a genuine hierarchy. However,

there are also practical issues at stake, for as mentioned above, and discussed in more

detail in Chapters 4, 5 and 7, each type of grammar has associated with it a type of

decision program, in the form of an abstract machine. The more restricted a language

is, the simpler the type of decision program we need to write for that language.

In terms of the Chomsky hierarchy, our main interest is in context free

languages, as it turns out that the syntactic structure of most programming

languages is represented by context free grammars. The grammars and languages

we have looked at so far in this book have all been context free (remember that

any regular grammar or language is, by definition, also context free).

2.8 A Type 0 Grammar: Computation as Symbol
Manipulation

We close this chapter by considering a grammar that is more complex than our

previous examples. The grammar, which we label G4, has productions as follows

(each row of productions has been numbered, to help us to refer to them later).

S ! AS jAB (1)

B! BB jC (2)

AB! HXNB (3)

NB! BN (4)

BM !MB (5)

NC !Mc (6)

Nc!Mcc (7)

XMBB! BXNB (8)

XBMc! Bc (9)

AH ! HA (10)

H ! a (11)

B! b (12)

38 2. Elements of Formal Languages

G4 is a type 0, or unrestricted grammar. It would be context sensitive, but for

the production XBMc! Bc, which is the only production with a right-hand side

shorter than its left-hand side.

Table 2.14 represents the derivation of a particular sentence using this

grammar. It is presented step by step. Each sentential form, apart from the

sentence itself, is followed by the number of the row in G4 from which the

production used to achieve the next step was taken. Table 2.14 should be read

row by row, left to right.

The sentence derived is a2b3c6. Notice how, in Table 2.14, the grammar

replaces each A in the sentential form AABBBC by H, and each time it does

this it places one c at the rightmost end for each B. Note also how the grammar

uses non-terminals as ‘‘markers’’ of various types:

l H is used to replace the As that have been accounted for

l X is used to indicate how far along the Bs we have reached

l N is used to move right along the Bs, each time ending in a cbeing added to the

end of the sentential form

l M is used to move left back along the Bs.

You may also notice that at many points in the derivation several

productions are applicable. However, many of these productions lead even-

tually to ‘‘dead ends’’, i.e., sentential forms that cannot lead eventually to

sentences.

Table 2.14 A type 0 grammar is used to derive a sentence.

STAGE row STAGE row STAGE row

S (1) AS (1) AAB (2)

AABB (2) AABBB (2) AABBBC (3)

AHXNBBBC (4) AHXBNBBC (4) AHXBBNBC (4)

AHXBBBNC (6) AHXBBBMc (5) AHXBBMBc (5)

AHXBMBBc (5) AHXMBBBc (8) AHBXNBBc (4)

AHBXBNBc (4) AHBXBBNc (7) AHBXBBMcc (5)

AHBXBMBcc (5) AHBXMBBcc (8) AHBBXNBcc (4)

AHBBXBNcc (7) AHBBXBMccc (9) AHBBBccc (10)

HABBBccc (3) HHXNBBBccc (4) HHXBNBBccc (4)

HHXBBNBccc (4) HHXBBBNccc (7) HHXBBBMcccc (5)

HHXBBMBcccc (5) HHXBMBBcccc (5) HHXMBBBcccc (8)

HHBXNBBcccc (4) HHBXBNBcccc (4) HHBXBBNcccc (7)

HHBXBBMccccc (5) HHBXBMBccccc (5) HHBXMBBccccc (8)

HHBBXNBccccc (4) HHBBXBNccccc (7) HHBBXBMcccccc (9)

HHBBBcccccc (11) aHBBBcccccc (11) aaBBBcccccc (12)

aabBBcccccc (12) aabbBcccccc (12) aabbbcccccc

2.8 A Type 0 Grammar: Computation as Symbol Manipulation 39

The language generated by G4, i.e. L(G4), is faibjci � j: i, j� 1g. This is the set:

‘‘all strings of the form one or more as followed by one or more bs followed by

cs in which the number of cs is the number of as multiplied by the number of

bs’’.

You may wish to convince yourself that this is the case.

G4 is rather a complicated grammar compared to our earlier examples.

You may be wondering if there is a simpler type of grammar, perhaps a

context free grammar, that can do the same job. In fact there is not.

However, while the grammar is comparatively complex, the method it embo-

dies in the generation of the sentences is quite simple. Essentially, like all

grammars, it simply replaces one string by another at each stage in the

derivation.

An interesting way of thinking about G4 is in terms of it performing a kind of

computation. Once a sentential form like AiBjC is reached, the productions then

ensure that i � j cs are appended to the end by essentially modelling the simple

algorithm in Table 2.15.

The question that arises is: what range of computational tasks can we carry

out using such purely syntactic transformations? We see from our example that

the type 0 grammar simply specifies string substitutions. If we take our strings of

as and bs as representing numbers, so that, say, a6 represents the number 6, we see

that G4 is essentially a model of a process for multiplying together two arbitrary

length numbers.

Later in this book, we encounter an abstract machine, called a Turing

machine, that specifies string operations, each operation involving the replacing

of only one symbol by another, and we see that the machine is actually as

powerful as the type 0 grammars. Indeed, the machine is capable of perform-

ing a wider range of computational tasks than even the most powerful real

computer.

However, we will not concern ourselves with these issues until later. In the

next chapter, we encounter more of the fundamental concepts of formal lan-

guages: syntax, semantics and ambiguity.

Table 2.15 The ‘‘multiplication’’ algorithm embodied in grammar G4.

for each A do

for each B do

put a c at the end of the sentential form

endfor

endfor

40 2. Elements of Formal Languages

EXERCISES

For exercises marked ‘‘y’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’ at the end of the book.

2.1. Classify the following grammars according to the Chomsky hierarchy.

In all cases, briefly justify your answer.

(a) y S ! aA

A! aS j aB

B! bC

C ! bD

D! b j bB

(b) y S ! aS j aAbb

A! " j aAbb

(c) S ! XYZ j aB

B! PQ jS

Z ! aS

(d) S ! e

2.2.y Construct set definitions of each of the languages generated by the four

grammars in exercise 1.

Hint: the language generated by 1(c) is not the same as that generated by

1(d), as one of them contains no strings at all, whereas the other contains

exactly one string.

2.3.y It was pointed out above that we usually insist that one or more non-

terminals must be included in the left-hand side of type 0 productions.

Write down a formal expression representing this constraint. Assume that

N is the set of non-terminals, and T the set of terminals.

2.4. Construct regular grammars, Gv, Gw and Gx, such that

(a) L(Gv) = fcj: j> 0, and j does not divide exactly by 3g

(b)L(Gw) = faibj[cd]k: i, k� 0, 0 � j� 1g

2.8 A Type 0 Grammar: Computation as Symbol Manipulation 41

Note: as we are dealing only with whole numbers, the expression 0

� j � 1, which is short for 0 � j and j � 1, is the same as writing:

j =0 or j = 1.

(c) L(Gx) = fa, b, cg*

2.5.y Use your answer to exercise 4(c) as the basis for sketching out an

intuitive justification that A* is a regular language, for any alphabet, A.

2.6. Use the symbol¼)in showing the step-by-step derivation of the string

c5 using

(a) Gv

and

(b)Gx from exercise 4.

2.7. Construct context free grammars, Gy and Gz, such that

(a) L(Gy) = fa2iþ1cjb2iþ1: i � 0, 0 � j � 1g
Note: if i � 0, a2iþ1means‘‘all odd numbers of as’’.

(b)y L(Gz) = all Boolean expressions in your favourite programming

language. (Boolean expressions are those that use logical opera-

tors such as ‘‘and’’, ‘‘or’’ and ‘‘not’’, and evaluate to true or false.)

2.8. Use the symbol¼)in showing the step-by-step derivation of a3b3 using

(a) Gy from exercise 7, and the grammar

(b)G3 from Chapter 2, i.e. S! ab j aSb

2.9. Provide a regular grammar to generate the language fab, abc, cdg.
Hint: make sure your grammar generates only the three given strings, and

no others.

210.y Use your answer to exercise 9 as the basis for sketching out an

intuitive justification that any finite language is regular.

Note that the converse of the above statement, i.e. that every regular

language is finite, is certainly not true. To appreciate this, consider the

languages specified in exercise 4. All three languages are both regular

and infinite.

42 2. Elements of Formal Languages

	Elements of Formal Languages
	2.1 Overview
	2.2 Alphabets
	2.3 Strings
	2.3.1 Functions that Apply to Strings
	2.3.2 Useful Notation for Describing Strings

	2.4 Formal Languages
	2.5 Methods for Defining Formal Languages
	2.5.1 Set Definitions of Languages
	2.5.2 Decision Programs for Languages
	2.5.3 Rules for Generating Languages

	2.6 Formal Grammars
	2.6.1 Grammars, Derivations and Languages
	2.6.2 The Relationship between Grammars and Languages

	2.7 Phrase Structure Grammars and the Chomsky Hierarchy
	2.7.1 Formal Definition of Phrase Structure Grammars
	2.7.2 Derivations, Sentential Forms, Sentences and ‘‘L(G)’’
	2.7.3 The Chomsky Hierarchy

	2.8 A Type 0 Grammar: Computation as Symbol Manipulation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

