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Preface

Aims and Objectives

This book focuses on key theoretical topics of computing, in particular formal

languages and abstract machines. It is intended primarily to support the theore-

tical modules on a computer science or computing-related undergraduate degree

scheme.

Though the book is primarily theoretical in nature, it attempts to avoid the

overly mathematical approach of many books on the subject and for the most part

focuses on encouraging the reader to gain an intuitive understanding. Proofs are

often only sketched and, in many cases, supported by diagrams. Wherever possi-

ble, the book links the theory to practical considerations, in particular the

implications for programming, computation and problem solving.

Organisation and Features of the Book

There is a short introductory chapter that provides an overview of the book and

its main features. The remainder of the book is in two parts, Languages and

Machines and Machines and Computation.

Part 1, Languages and Machines, is concerned with formal language theory as

it applies to Computer Science. It begins with an introduction to the notation and

concepts that support the theory, such as strings, the various ways in which a

formal language can be defined, and the Chomsky hierarchy of formal language. It

then focuses on the languages of the Chomsky hierarchy, in each case also

introducing the abstract machines associated with each type of language.



The topics are regular languages and finite state recognisers, context free

languages and pushdown recognisers, and context sensitive and unrestricted

languages and the Turing machine. Many important theoretical properties of

regular and context free languages are established. The more intellectually

demanding of these results are mostly confined to a single chapter, so that the

reader can focus on the general thrust of the argument of Part 1, which is to

demonstrate that the Chomsky hierarchy is indeed a proper hierarchy for both

languages and machines, and to consider some of the implications of this.

In the first part of the book the finite state machine, the pushdown machine

and the Turing machine are considered as language recognisers, though many

hints are given about the potential computational properties of these abstract

machines.

Part 2, Machines and Computation, considers the computational properties of

the machines from Part 1 in more detail. The relationship between finite state

machines and the digital computer is explored. This leads us on to the need for a

more powerful machine to deal with arbitrary computation. This machine is

shown to be the Turing machine, introduced in Part 1 as a language processor.

The Turing machine is used to explore key aspects of computation, such as

non-determinism, parallel processing and the efficiency of computational pro-

cesses. The latter is considered in the context of a brief introduction to algorithm

analysis, using big O notation.

The book also considers the limitations of computation, both in terms of

language processing (simply defined formal languages that cannot be processed

by any machine) and computation (the halting problem and related issues).

The book contains numerous illustrative figures, and proofs are often partly

accomplished through diagrammatic means.

From Chapter 2 onwards, each chapter concludes with exercises, some of

which are programming exercises. Solutions and hints for many of the exercises

appear at the end of the book.

The book also contains a list of recommended reading material.

For Students

I wrote this book partly because when I studied this material as part of my own

Computing degree, I had to work really hard to understand the material, a

situation which arose not because the material is too difficult, but because it

was not well presented and the books seemed to assume I was a pure mathema-

tician, which I am not.
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This book is primarily for undergraduate students of computing, though it can

also be used by students of computational linguistics and researchers, particularly

those entering computer science from other disciplines, who find that they require

a foundation or a refresher course in the theoretical aspects of computing.

Some aspects of the book are certainly clearer if the student has some experi-

ence of programming, though such experience is not essential for understanding

most of the book.

The reader is advised where especially demanding material can be omitted,

though he or she is encouraged to appreciate the implications of that material, as

such an appreciation may be assumed later in the book.

For Instructors

I wrote this book partly because when I taught this material to undergraduates, as

a Computer Science lecturer in a UK university, I had to work really hard to

present the material in an appropriate way, and at the appropriate level, a

situation which arose mainly because the available books seemed to assume the

students were pure mathematicians, which mostly they are not.

This is intended to be not only a book to promote understanding of the topics

for students, but also a recommendation of the core material that should be

covered in a theoretical computer science module for undergraduates. I suggest

that to cover all of the material would require at least a module in each semester of

one year of the degree course. If possible, the linguistic aspects should precede a

compiler course and the computational aspects should precede an algorithm

analysis course. If the student has programming experience the material is

much more accessible. This should influence the way it is presented if it appears

early on in the degree scheme.

There is, of course, much more theory relating to programming language

design, compiler writing, parallel processing and advanced algorithm analysis

than presented in this book. However, such additional theory is best covered in

the modules that concern these subjects, some of which are often optional in a

computing degree scheme.
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1
Introduction

1.1 Overview

This chapter briefly describes:

l what this book is about

l what this book tries to do

l what this book tries not to do

l a useful feature of the book: the exercises.

1.2 What this Book is About

This book is about two key topics of computer science, namely computable lan-

guages and abstract machines.

Computable languages are related to what are usually known as ‘‘formal

languages’’. I avoid using the latter phrase here because later on in the book I

distinguish between formal languages and computable languages. In fact, compu-

table languages are a special type of formal languages that can be processed, in ways

considered in this book, by computers, or rather abstract machines that represent

computers.

Abstract machines are formal computing devices that we use to investigate

properties of real computing devices. The term that is sometimes used to describe
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abstract machines is automata, but that sounds too much like real machines, in

particular the type of machines we call robots.

This book assumes that you are a layperson, in terms of computer science. If

you are a computer science undergraduate, as you might be if you are reading this

book, you may by now have written many programs. So, in this introduction we

will draw on your experience of programming to illustrate some of the issues

related to formal languages that are introduced in this book.

The programs that you write are written in a formal language. They are

expressed in text which is presented as input to another program, a compiler or

perhaps an interpreter. To the compiler, your program text represents a code,

which the compiler knows exactly how to handle, as the rules by which that code is

constructed are completely specified inside the compiler. The type of language in

which we write our programs (the programming language), has such a well-

defined syntax (rules for forming acceptable programs) that a machine can decide

whether or not the program you enter has the right even to be considered as a

proper program. This is only part of the task of a compiler, but it’s the part in

which we are most interested.

For whoever wrote the compiler, and whoever uses it, it is very important that

the compiler does its job properly in terms of deciding that your program is

syntactically valid. The compiler writer would also like to be sure that the compiler

will always reject syntactically invalid programs as well as accepting those that are

syntactically valid. Finally, the compiler writer would like to know that his or her

compiler is not wasteful in terms of precious resources: if the compiler is more

complex than it needs to be, if it carries out many tasks that are actually unne-

cessary, and so on. In this book we see that the solutions to such problems depend

on the type of language being considered.

Now, because your program is written in a formal language that is such that

another program can decide if your program is a program, the programming

language is a computable language. A computable language then, is a formal

language that is such that a computer can understand its syntax. Note that we

have not discussed what your program will actually do, when it’s run: the

compiler doesn’t really understand that at all. The compiler is just as happy to

compile a program that doesn’t do what you intended as it is to compile one that

does (as you’ll know, if you’ve ever done any programming).

The book is in two parts. Part 1: Languages and Machines is concerned

with the relationship between different types of formal languages and differ-

ent types of theoretical machines (abstract machines) that can serve to pro-

cess those languages, in ways we consider later. So, the book isn’t really

directly concerned with programming languages. However, much of the mate-

rial in the first part of the book is highly relevant to programming languages,

especially in terms of providing a useful theoretical background for compiler
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writing, and even programming language design. For that reason, some of the

examples used in the book are from programming languages (particularly

Pascal in fact, but you need not be familiar with the language to appreciate

the examples).

In Part 1, we study four different types of formal languages and see that each

of these types of formal language is associated with a particular type of abstr-

act machine. The four types of language we consider were actually defined by the

American linguist Noam Chomsky; the classification of formal languages he defi-

ned has come to be called the Chomsky hierarchy. It is a hierarchy, since it defines

a general type of language (type 0), then a restricted version of that general type

(type 1), then a restricted version of that type (type 2), and then finally the most

restricted type of all (type 3).

The types of language considered are very simple to define, and even the most

complex of abstract machines is also quite simple. What’s more, all of the types of

abstract machine we consider in this book can be represented in diagrammatic

form. The most complex abstract machine we look at is called the Turing machine

(TM), after Alan Turing, the mathematician who designed it. The TM is, in some

senses, the most powerful computational device possible, as you will see in Part 2

of the book.

The chapters of Part 1 are shown in Figure 1.1.

By the end of Part 1 of the book you should have an intuitive appreciation of

computable languages. Part 2: Machines and Computation investigates compu-

tation in a wider sense. We see that we can discuss the types of computation

carried out by real computers in terms of our abstract machines. We see that a

machine, called a finite state transducer, which appears to share some properties

with real computers, is not really a suitable general model of real computers. Part

of the reason for this is that this machine cannot do multiplication or division.

We see that the Turing machine is capable of multiplication and division, and

any other tasks that real computers can do. We even see that the TM can run

programs. What is more, since the TM effectively has unlimited storage capacity,

it turns out to be more powerful than any real computer could ever be.

One interesting property of TMs is that we cannot make them any more

powerful than they are by adding extra computational facilities. Nevertheless,

TMs use only one data structure, a potentially infinite one-dimensional array of

symbols, called a tape, and only one type of instruction. A TM can simply read a

symbol from its tape, replace that symbol by another, and then move to the next

symbol on the right or left in the tape. We find that if a TM is designed so that it

carries out many processes simultaneously, or uses many additional tapes, it

cannot perform any more computational tasks than the basic serial one-tape

version. In fact, it has been established that no other formalisms we might create
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for representing computation give us any more functional power than does a TM.

This assertion is known as Turing’s thesis.

We see that we can actually take any TM, code it and its data structure (tape)

as a sequence of zeros and ones, and then let another TM run the original TM as if

it were a program. This TM can carry out the computation described by any TM.

We thus call it the universal Turing machine (UTM). However, it is simply a

standard TM, which, because of the coding scheme used, only needs to expect

either a zero or a one every time it examines a symbol on its tape. The UTM is an

abstract counterpart of the real computer.

The UTM has unlimited storage, so no real computer can exceed its power.

We use this fact as the basis of some extremely important results of computer

science, one of which is to see that the following problem cannot be solved, in

the general case:

Chapter 6 
Important Features of 
Regular and Context 

Free Languages 

Chapter 5 
Context Free 

Languages and 
Pushdown Recognisers 

Chapter 4 
Regular Languages 

and Finite State 
Recognisers 

Chapter 3 
Syntax, Semantics and 

Ambiguity 

Chapter 2 
Elements of Formal 

Languages 

Figure 1.1 The chapters of Part 1: Languages and Machines.
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Given any program, and appropriate input values to that program, will that

program terminate when run on that input?

In terms of TMs, rather than programs, this problem is known as the halting

problem. We see that the halting problem is unsolvable,1 which has implications

both for the real world of computing and for the nature of formal languages. We

also see that the halting problem can be used to convince us that there are formal

languages that cannot be processed by any TM, and thus by any program. This

enables us to finally define the relationship between computable languages and

abstract machines.

At the end of Part 2, our discussion about abstract machines leads us on

to a topic of computer science, algorithm complexity, that is very relevant to

Chapter 12 
Dimensions of 
Computation 

Chapter 11 
Computability, 

Solvability and the 
Halting Problem 

Chapter 10 
Turing’s Thesis and 

the Universality of the 
Turing Machine 

Chapter 9 
Turing Machines as 

Computers 

Chapter 8 
Finite State 
Transducers 

Figure 1.2 The chapters of Part 2: Machines and Computation.

1 You have probably realised that the halting problem is solvable in certain cases.
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programming. In particular, we discuss techniques that enable us to predict the

running time of algorithms, and we see that dramatic savings in running time can

be made by certain cleverly defined algorithms.

Figure 1.2 shows the chapters of Part 2 of the book.

1.3 What this Book Tries to Do

This book attempts to present formal computer science in a way that you, the

student, can understand. This book does not assume that you are a mathemati-

cian. It assumes that you are not particularly familiar with formal notation, set

theory, and so on. As far as is possible, excessive formal notation is avoided. When

formal notation or jargon is unavoidable, the formal definitions are usually

accompanied by short explanations, at least for the first few times they appear.

Overall, this book represents an understanding of formal languages and abs-

tract machines which lies somewhere beyond that of a layperson, but is consider-

ably less than that of a mathematician. There is a certain core of material in the

subject that any student of computer science, or related disciplines, should be aware

of. Nevertheless, many students do not become aware of this important and often

useful material. Sometimes they are discouraged by the way it is presented. Some-

times, books and lecturers try to cover too much material, and the fundamentals get

lost along the way.

Above all, this book tries to highlight the connections between what might

initially appear to be distinct topics within computer science.

1.4 What this Book Tries Not to Do

This book tries not to be too formal. References to a small number of formal books

are included in the section ‘‘Further Reading’’, at the end of the book. In these

books you will find many theorems, usually proved conclusively by logical proof

techniques. The ‘‘proofs’’ appearing in this book are included usually to establish

something absolutely central, or that we need to assume for subsequent discus-

sion. Where possible, such ‘‘proofs’’ are presented in an intuitive way.

This is not to say that proofs are unimportant. I assume that, like me, you are

the type of person who has to convince themselves that something is right before

you really accept it. However, the proofs in this book are presented in a different

way from the way that proofs are usually presented. Many results are established

‘‘beyond reasonable doubt’’ by presenting particular examples and encouraging
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the reader to appreciate ways in which the examples can be generalised. Of course,

this is not really sound logic, as it does not argue throughout in terms of the

general case. Some of the end-of-chapter exercises present an opportunity to

practise or complete proofs. Such exercises often include hints and/or sample

answers.

1.5 The Exercises

At the end of each of Chapters 2 to 12, you will find a small number of exercises to

test and develop your knowledge of the material covered in that chapter. Most

of the exercises are of the ‘‘pencil and paper’’ type, though some of them are

medium-scale programming problems. Any exercise marked with a dagger (y)
has a sample solution in the ‘‘Solutions to Selected Exercises’’ section near the

end of the book. You do not need to attempt any of the exercises to fully under-

stand the book. However, although the book attempts to make the subject

matter as informal as possible, in one very important respect it is very much

like maths: you need to practise applying the knowledge and skills you learn or you

do not retain them.

Finally, some of the exercises give you an opportunity to investigate addi-

tional material that is not covered in the chapters themselves.

1.6 Further Reading

A small section called ‘‘Further Reading’’ appears towards the end of the book.

This is not meant to be an exhaustive list of reading material. There are many

other books on formal computer science than are cited here. The further reading

list also refers to books concerned with other fields of computer science (e.g.

computer networks) where certain of the formal techniques in this book have

been applied. Brief notes accompany each title cited.

1.7 Some Advice

Most of the material in this book is very straightforward, though some requires a

little thought the first time it is encountered. Students of limited formal mathe-

matical ability should find most of the subject matter of the book reasonably

accessible. You should use the opportunity to practise provided by the exercises, if
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possible. If you find a section really difficult, ignore it and go on to the next. You

will probably find that an appreciation of the overall result of a section will enable

you to follow the subsequent material. Sections you omit on first reading may

become more comprehensible when studied again later.

You should not allow yourself to be put off if you cannot see immediate applica-

tions of the subject matter. There have been many applications of formal languages

and abstract machines in computing and related disciplines, some of which are

referred to by books in the ‘‘Further Reading’’ section.

This book should be interesting and relevant to any intelligent reader who has

an interest in computer science and approaches the subject matter with an open

mind. Such a reader may then see the subject of languages and machines as an

explanation of the simple yet powerful and profound abstract computational

processes beneath the surface of the digital computer.
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2
Elements of Formal Languages

2.1 Overview

In this chapter, we discuss:

l the building blocks of formal languages: alphabets and strings

l grammars and languages

l a way of classifying grammars and languages: the Chomsky hierarchy

l how formal languages relate to the definition of programming languages

and introduce:

l writing definitions of sets of strings

l producing sentences from grammars

l using the notation of formal languages.

2.2 Alphabets

An alphabet is a finite collection (or set) of symbols. The symbols in the alphabet

are entities which cannot be taken apart in any meaningful way, a property which

leads to them being sometimes referred to as atomic. The symbols of an alphabet

are simply the ‘‘characters’’, from which we build our ‘‘words’’. As already said, an
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alphabet is finite. That means we could define a program that would print out its

elements (or members) one by one, and (this last part is very important) the

program would terminate sometime, having printed out each and every element.

For example, the small letters you use to form words of your own language

(e.g. English) could be regarded as an alphabet, in the formal sense, if written

down as follows:

fa; b; c; d; e; :::; x; y; zg:

The digits of the (base 10) number system we use can also be presented as an

alphabet:

f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g:

2.3 Strings

A string is a finite sequence of zero or more symbols taken from a formal

alphabet. We write down strings just as we write the words of this sentence,

so the word ‘‘strings’’ itself could be regarded as a string taken from the

alphabet of letters, above. Mathematicians sometimes say that a string taken

from a given alphabet is a string over that alphabet, but we will say that the

string is taken from the alphabet. Let us consider some more examples. The

string abc is one of the many strings which can be taken from the alphabet fa, b,

c, dg. So is aabacab. Note that duplicate symbols are allowed in strings (unlike

in sets). If there are no symbols in a string it is called the empty string, and we

write it as e (the Greek letter epsilon), though some write it as l (the Greek

letter lambda).

2.3.1 Functions that Apply to Strings

We now know enough about strings to describe some important functions that we

can use to manipulate strings or obtain information about them. Table 2.1 shows

the basic string operations (note that x and y stand for any strings).

You may have noticed that strings have certain features in common with

arrays in programming languages such as Pascal, in that we can index them. To

index a string, we use the notation xi, as opposed to something like x[i]. However,

strings actually have more in common with the list data structures of program-

ming languages such as LISP or PROLOG, in that we can concatenate two strings
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together, creating a new string. This is like the append function in LISP, with

strings corresponding to lists, and the empty string corresponding to the empty

list. It is only possible to perform such operations on arrays if the programming

language allows arrays to be of dynamic size. (which Pascal, for example, does

not). However, many versions of Pascal now provide a special dynamic ‘‘string’’

data type, on which operations such as concatenation can be carried out.

2.3.2 Useful Notation for Describing Strings

As described above, a string is a sequence of symbols taken from some alphabet.

Later, we will need to say such things as:

‘‘suppose x stands for some string taken from the alphabet A’’.

This is a rather clumsy phrase to have to use. A more accurate, though even

clumsier, way of saying it is to say

‘‘x is an element of the set of all strings which can be formed using zero or more

symbols of the alphabet A’’.

Table 2.1 The basic operations on strings.

Operation Written as Meaning Examples and comments

length jx j the number of symbols in
the string x

jabcabcaj = 7

jaj = 1
jej = 0

concatenation xy the string formed by
writing down the string x
followed immediately
by the string y

concatenating the empty
string to any string
makes no difference

let x = abca

let y = ca
then:

xy = abcaca

let x = <any string>
then:

xe = x
ex = x

power xn,

where n is a whole
number � 0

the string formed by
writing down n copies of
the string x

let x = abca

then:
x3 = abcaabcaabca
x1 = x

Note:
x0 = e

index xi,
where i is a whole
number

the i th symbol in the
string x (i.e. treats the
string as if it were an
array of symbols)

let x = abca
then:

x1 = a
x2 = b
x3 = c
x4 = a
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There is a convenient and simple notational device to say this. We represent the

latter statement as follows:

x 2 A�;

which relates to the English version as shown in Figure 2.1.

On other occasions, we may wish to say something like:

‘‘x is an element of the set of all strings which can be formed using one or

more symbols of the alphabet A’’,

for which we write:

x 2 Aþ

which relates to the associated verbal description as shown in Figure 2.2.

Suppose we have the alphabet fa, b, cg. Then fa, b, cg* is the set

fe; a; b; c; aa; ab; ac; ba; bb; bc; ca; cb; cc; aaa; aab; aac; aba; abb; abc; . . .g:

Clearly, for any non-empty alphabet (i.e. an alphabet consisting of one or more

symbols), the set so defined will be infinite.

Earlier in the chapter, we discussed the notion of a program printing out

the elements of a finite set, one by one, terminating when all of the elements

x ∈ A*   

x is an element of  the set of strings that can be formed using zero or more symbols from the alphabet A

Figure 2.1 How we specify an unknown, possibly empty, string.

x ∈ A+

x is an element of  the set of strings that can be formed using one or more symbols from the alphabet A

Figure 2.2 How we specify an unknown, non-empty, string.
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of the set had been printed. If A is some alphabet, we could write a program

to print out all the strings in A*, one by one, such that each string only gets

printed out once. Obviously, such a program would never terminate (because

A* is an infinite set), but we could design the program so that any string in

A* would appear within a finite period of time. Table 2.2 shows a possible

method for doing this (as an exercise, you might like to develop the method

into a program in your favourite programming language). The method is

suggested by the way the first few elements of the set A*, for A= fa, b, cg
were written down, above.

An infinite set for which we can print out any given element within a finite

time of starting the program is known as a countably infinite set. I suggest you

think carefully about the program in Table 2.2, as it may help you to appreciate

just what is meant by the terms ‘‘infinite’’ and ‘‘finite’’. Clearly, the program

specified in Table 2.2 would never terminate. However, on each iteration of the

loop, i would have a finite value, and so any string printed out would be finite in

length (a necessary condition for a string). Moreover, any string in A* would

appear after a finite period of time.

2.4 Formal Languages

Now we know how to express the notion of all of the strings that can be formed by

using symbols from an alphabet, we are in a position to describe what is meant by

the term formal language. Essentially, a formal language is simply any set of

strings formed using the symbols from any alphabet. In set parlance, given some

alphabet A,

a formal language is ‘‘any (proper or non-proper) subset of the set of all strings

which can be formed using zero or more symbols of the alphabet A’’.

The formal expression of the above statement can be seen in Figure 2.3.

Table 2.2 Systematically printing out all strings in A*.

begin

<print some symbol to represent the empty string>

i := 1

while i >= 0 do

<print each of the strings of length i>

i := i þ 1

endwhile

end
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A proper subset of a set is not allowed to be the whole of a given set. For

example, the set fa, b, cg is a proper subset of the set fa, b, c, dg, but the set fa, b,

c, dg is not.

A non-proper subset is a subset that is allowed to be the whole of a set. So, the

above definition says that, for a given alphabet, A, A* is a formal language, and so

is any subset of A*. Note that this also means that the empty set, written ‘‘fg’’
(sometimes written as �) is also a formal language, since it’s a subset of A* (the

empty set is a subset of any set).

A formal language, then, is any set of strings. To indicate that the strings are

part of a language, we usually call them sentences. In some books, sentences are

called words. However, while the strings we have seen so far are similar to English

words, in that they are unbroken sequences of alphabetic symbols (e.g. abca),

later we will see strings that are statements in a programming language, such as

if i > 1 then x := x + 1.

It seems peculiar to call a statement such as this a ‘‘word’’.

2.5 Methods for Defining Formal Languages

Our definition of a formal language as being a set of strings that are called

sentences is extremely simple. However, it does not allow us to say anything

about the form of sentences in a particular language. For example, in terms of

our definition, the Pascal programming language, by which we mean ‘‘the set of

all syntactically correct Pascal programs’’, is a subset of the set of all strings

which can be formed using symbols found in the character set of a typical

computer. This definition, though true, is not particularly helpful if we want

to write Pascal programs. It tells us nothing about what makes one string a

Pascal program, and another string not a Pascal program, except in the trivial

sense that we can immediately rule out any strings containing symbols that are

not in the character set of the computer. You would be most displeased if, in

attempting to learn to program in Pascal, you opened the Pascal manual to find

x ⊆ A* 

any proper or non-proper subset of the set of strings that can be formed using zero or more symbols from the alphabet A

Figure 2.3 The definition of a formal language.
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that it consisted entirely of one statement which said: ‘‘Let C be the set of all

characters available on the computer. Then the set of compilable Pascal pro-

grams, P, is a subset of C*.’’

One way of informing you what constitutes ‘‘proper’’ Pascal programs would

be to write all the proper ones out for you. However, this would also be unhelpful,

albeit in a different way, since such a manual would be infinite, and thus could

never be completed. Moreover, it would be a rather tedious process to find the

particular program you required.

In this section we discover three approaches to defining a formal language.

Following this, every formal language we meet in this book will be defined

according to one or more of these approaches.

2.5.1 Set Definitions of Languages

Since a language is a set of strings, the obvious way to describe some language is

by providing a set definition. Set definitions of the formal languages in which we

are interested are of three different types, as now discussed.

The first type of set definition we consider is only used for the smallest finite

languages, and consists of writing the language out in its entirety. For example,

fe; abc; abbba; abcag

is a language consisting of exactly four strings.

The second method is used for infinite languages, but those in which there is

some obvious pattern in all of the strings that we can assume the reader will

induce when presented with sufficient instances of that pattern. In this case, we

write out sufficient sentences for the pattern to be made clear, then indicate that

the pattern should be allowed to continue indefinitely, by using three dots ‘‘...’’.

For example,

fab; aabb; aaabbb; aaaabbbb; . . .g

suggests the infinite language consisting of all strings which consist of one or more

as followed by one or more bs and in which the number of as equals the number of

bs.

The final method, used for many finite and infinite languages, is to use a set

definition to specify how to construct the sentences in the language, i.e., provide a

function to deliver the sentences as its output. In addition to the function itself, we

must provide a specification of how many strings should be constructed. Such set

definitions have the format shown in Figure 2.4.
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For the ‘‘function to produce strings’’, of Figure 2.4, we use combinations of

the string functions we considered earlier (index, power and concatenation). A

language that was defined immediately above,

‘‘all strings which consist of one or more as followed by one or more bs and in

which the number of as equals the number of bs’’

can be defined using our latest method as:

faibi : i � 1g:

The above definition is explained in Table 2.3.

From Table 2.3 we can see that faibi: i� 1g means:

‘‘the set of all strings consisting of i copies of a followed by i copies of b such

that i is allowed to take on the value of each and every whole number value

greater than or equal to 1’’.

{       :                    }

function to produce strings  range of arguments to function  

this means “such that”
(sometimes written “|”) 

Figure 2.4 Understanding a set definition of a formal language.

Table 2.3 What the set definition faibi: i � 1g means.

Notation String function Meaning

a N/A ‘‘the string a’’

b N/A ‘‘the string b’’

ai power ‘‘the string formed by writing down i copies of the string a’’

bi power ‘‘the string formed by writing down i copies of the string b’’

aibi concatenation ‘‘the string formed by writing down i copies of a followed by
i copies of b’’

: i � 1 N/A ‘‘such that i is allowed to take on the value of each and
every whole number value greater than or equal to 1
(we could have written i > 0)’’
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Changing the right-hand side of the set definition can change the language defined.

For example faibi: i� 0g defines:

‘‘the set of all strings consisting of i copies of a followed by i copies of b such

that i is allowed to take on the value of each and every whole number value

greater than or equal to 0’’.

This latter set is our original set, along with the empty string (since a0= e,
b0= e, and therefore a0b0= ee = e). In set parlance, faibi: i� 0g is the union of the

set faibi: i� 1g with the set feg, which can be written:

faibi : i � 0g ¼ faibi : i � 1g [ f"g:

The immediately preceding example illustrates a further useful feature of sets. We

can often simplify the definition of a language by creating several sets and using

the union, intersection and set difference operators to combine them into one.

This sometimes removes the need for a complicated expression in the right-hand

side of our set definition. For example, the definition

faibjck : i � 1; j � 0; k � 0; if i � 3 then j ¼ 0 else k ¼ 0g;
is probably better represented as

faicj : i � 3; j � 0g [ faibj : 1 � i53; j � 0g;

which means

‘‘the set of strings consisting of 3 or more as followed by zero or more cs, or

consisting of 1 or 2 as followed by zero or more bs’’.

2.5.2 Decision Programs for Languages

We have seen how to define a language by using a formal set definition. Another

way of describing a language is to provide a program that tells us whether or not

any given string of symbols is one of its sentences. Such a program is called a

decision program. If the program always tells us, for any string, whether or not the

string is a sentence, then the program in an implicit sense defines the language, in

that the language is the set containing each and every string that the program tells

us is a sentence. That is why we use a special term, ‘‘sentence’’, to describe a string

that belongs to a language. A string input to the program may or may not be a

sentence of the language; the program should tell us. For an alphabet A, a language

is any subset of A*. For any interesting language, then, there will be many strings

in A* that are not sentences.
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Later in this book we will be more precise about the form these decision pro-

grams take, and what can actually be achieved with them. For now, however, we

will consider an example to show the basic idea.

If you have done any programming at all, you will have used a decision

program on numerous occasions. The decision program you have used is a

component of the compiler. If you write programs in a language such as Pascal,

you submit your program text to a compiler, and the compiler tells you if the text

is a syntactically correct Pascal program. Of course, the compiler does a lot more

than this, but a very important part of its job is to tell us if the source text

(string) is a syntactically correct Pascal program, i.e. a sentence of the language

called ‘‘Pascal’’.

Consider again the language

faicj : i � 3; j � 0g [ faibj : 1 � i53; j � 0g;

i.e.,

‘‘the set of strings consisting of 3 or more as followed by zero or more cs, or

consisting of 1 or 2 as followed by zero or more bs’’.

Table 2.4 shows a decision program for the language.

The program of Table 2.4 is purely for illustration. In the next chapter we

consider formal languages for which the above type of decision program can be

created automatically. For now, examine the program to convince yourself that it

correctly meets its specification, which can be stated as follows:

‘‘given any string in fa, b, cg*, tell us whether or not that string is a sentence of

the language

faicj : i � 3; j � 0g [ faibj : 1 � i53; j � 0g}:

2.5.3 Rules for Generating Languages

We have seen how to describe formal languages by providing set definitions and we

have encountered the notion of a decision program for a language. The third meth-

od, which is the basis for the remainder of this chapter, defines a language by

providing a set of rules to generate sentences of a language. We require that such

rules are able to generate every one of the sentences of a language, and no others.

Analogously, a set definition describes every one of the sentences, and no others, and

a decision program says ‘‘yes’’ to every one of the sentences, and to no others.
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Table 2.4 A decision program for a formal language.

1: read(sym)
case sym of

fassume read just gives us the next symbol in the string being examinedg

eos: goto N fassume read returns special symbol ‘‘eos’’ if at end
of stringg

‘‘a’’: goto 2

‘‘b’’: goto N

‘‘c’’: goto N

endcase fcase statement selects between alternatives as in Pascalg
2: read(sym)

case sym of

eos: goto Y fif we get here we have a string of one a which is OKg
‘‘a’’: goto 3

‘‘b’’: goto 6 fwe can have a b after one ag
‘‘c’’: goto N fany cs must follow three or more as { here we’ve only

had oneg
endcase

3: read(sym)

case sym of

eos: goto Y fif we get here we’ve read a string of two as which is OKg
‘‘a’’: goto 4

‘‘b’’: goto 6 fwe can have a b after two asg
‘‘c’’: goto N fany cs must follow three or more as { here we’ve only

had twog
endcase

4: read(sym)

case sym of

eos: goto Y fif we get here we’ve read a string of three or more as
which is OKg

‘‘a’’: goto 4 fwe loop here because we allow any number of as � 3g
‘‘b’’: goto N fb can only follow one or two asg
‘‘c’’: goto 5 fcs are OK after three or more asg

endcase

5: read(sym)

case sym of

eos: goto Y fif we get here we’ve read� 3 as followed by� 1 cs which
is OKg

‘‘a’’: goto N fas after cs are not allowedg
‘‘b’’: goto N fbs are only allowed after one or two asg
‘‘c’’: goto 5 fwe loop here because we allow any number of cs after �

3 asg
endcase

6: read(sym)

case sym of

eos: goto Y fwe get here if we’ve read 1 or 2 as followed by � 1 bs {
OKg

‘‘a’’: goto N fno as allowed after bsg
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There are several ways of specifying rules to generate sentences of a language.

One popular form is the syntax diagram. Such diagrams are often used to show the

structure of programming languages, and thus inform you how to write syntacti-

cally correct programs (syntax is considered in more detail in Chapter 3).

Figure 2.5 shows a syntax diagram for the top level syntax of the Pascal

‘‘program’’ construct.

The diagram in Figure 2.5 tells us that the syntactic element called a ‘‘pro-

gram’’ consists of

the string ‘‘PROGRAM’’ (entities in rounded boxes and circles represent

actual strings that are required at a given point),

followed by something called

an ‘‘identifier’’ (entities in rectangles are those which need elaborating in some

way that is specified in a further definition),

followed by

an open bracket ‘‘(’’,

followed by

a list of one or more ‘‘identifiers’’, in which every one except the last is followed

by a comma, ‘‘,’’, followed by a semi-colon, ‘‘;’’,

followed by

a close bracket, ‘‘)’’,

Table 2.4 (continued)

‘‘b’’: goto 6 fwe loop here because we allow any number of bs after 1
or 2 asg

‘‘c’’: goto N fno cs are allowed after bsg
endcase

Y: write(‘‘yes’’)

goto E

N: write(‘‘no’’)

goto E

E: fend of
programg

PROGRAM IDENTIFIER ( IDENTIFIER ) ; BLOCK .

,

program

Figure 2.5 Syntax diagram for the Pascal construct ‘‘program’’.
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followed by

something called a ‘‘block’’,

followed by

a full stop, ‘‘.’’.

In Figure 2.6 we see the syntax diagram for the entity ‘‘identifier’’.

Figure 2.6 shows us that an ‘‘identifier’’ consists of a letter followed by zero or

more letters and/or digits.

The following fragment of Pascal:

program calc(input, output, infile26, outfile23);

associates with the syntax diagram for ‘‘program’’ as shown in Figure 2.7.

Of course, the diagrams in Figures 2.5 and 2.6, together with all of the

other diagrams defining the syntax of Pascal, cannot tell us how to write a

program to solve a given problem. That is a semantic consideration, relating

to the meaning of the program text, not only its form. The diagrams mer-

ely describe the syntactic structure of constructs belonging to the Pascal

language.

LETTER

identifier

LETTER 

DIGIT

Figure 2.6 Syntax diagram for a Pascal ‘‘identifier’’.

PROGRAM IDENTIFIER ( IDENTIFIER ) ;

,

program

program calc ( input , output , infile26 , outfile23 ) ;

Figure 2.7 How a syntax diagram describes a Pascal statement.
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An alternative method of specifying the syntax of a programming language is

to use a notation called Backus-Naur form (BNF).1 Table 2.5 presents a BNF

version of our syntax diagrams from above.

The meaning of the notation in Table 2.5 should be reasonably clear when you

see its correspondence with syntax diagrams, as shown in Figure 2.8.

Formalisms such as syntax diagrams and BNF are excellent ways of defining the

syntax of a language. If you were taught to use a programming language, you may

never have looked at a formal definition of its syntax. Analogously, you probably did

not learn your own ‘‘natural’’ language by studying a book describing its grammar.

However, many programming languages are similar to each other in many respects,

and learning a subsequent programming language is made easier if the syntax is

clearly defined. Syntax descriptions can also be useful for refreshing your memory

about the syntax of a programming language with which you are familiar, particu-

larly for types of statements you rarely use.

PROGRAM

IDENTIFIER 

,

IDENTIFIER

LETTER

DIGIT

<identifier>

program

<identifier> {, <identifier>} 

<letter> | <digit> 

Figure 2.8 How syntax diagrams and BNF correspond.

Table 2.5 BNF version of Figures 2.5 and 2.6.

<program> ::= <program heading> <block>.

<program heading> :=program<identifier> ( <identifier> f , <identifier> g) ;

<identifier> ::= <letter> f<letter or digit>g
<letter or digit> ::= <letter> j <digit>

1 The formalism we describe here is actually Extended BNF (EBNF). The original BNF did not
include the repetition construct found in Table2.5.
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If you want to see how concisely a whole programming language can be

described in BNF, see the original definition of the Pascal language,2 from where

the above Pascal syntax diagrams and BNF descriptions were obtained. The BNF

definitions for the whole Pascal language are presented in only five pages.

2.6 Formal Grammars

A grammar is a set of rules for generating strings. The grammars we will use in the

remainder of this book are known as phrase structure grammars (PSGs). Here,

our formal definitions will be illustrated by reference to the following grammar:

S ! aS j bB

B! bB j bC j cC

C ! cC j c:

In order to use our grammar, we need to know something about the status of the

symbols that we have used. Table 2.6 provides an informal description of the

symbols that appear in grammars such as the one above.

Table 2.6 The symbols that make up the Phrase Structure Grammar:
S! aS j bB
B! bB j bC j cC
C! cC j c.

Symbols Name and meaning

S, B, C non-terminal symbols

[BNF: things in angled brackets e.g. <identifier>]
S special non-terminal, called a start, or sentence, symbol

[BNF: in our example above, <program>]
a, b, c terminal symbols: only these symbols can appear in sentences

[BNF: the underlined terms (e.g. program) and punctuation symbols (e.g. ‘‘;’’)]
! production arrow

[BNF: the symbol ‘‘::=’’]
S! aS production rule, usually called simply a production (or sometimes we’ll just use the

word rule). Means ‘‘S produces aS’’, or ‘‘S can be replaced by aS’’. The string to the
left of! is called the left-hand side of the production, the string to the right of! is
called the right-hand side.

[BNF: this rule would be written as <S> ::= a<S>]
j ‘‘or’’, so B! bB j bC j cC means ‘‘B produces bB or bC or cC ’’. Note that this means

that B! bB j bC j cC is really three production rules i.e. B! bB, B! bC, and B!
cC. So there are seven production rules altogether in the example grammar above.
[BNF: exactly the same]

2 Jensen and Wirth (1975) { see Further Reading section.
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2.6.1 Grammars, Derivations and Languages

Table 2.7 presents an informal description, supported by examples using our

grammar above, of how we use a grammar to generate a sentence.

As you can see from Table 2.7, there is often a choice as to which rule to apply

at a given stage. For example, when the resulting string was aaS, we could have

applied the rule S! aS as many times as we wished (adding another a each time).

A similar observation can be made for the applicability of the C! cC rule when

the resulting string was aabcC, for example.

Here are some other strings we could create, by applying the rules in various

ways:

abcc;

bbbbc; and

a3b2c5:

You may like to see if you can apply the rules yourself to create the above strings.

You must always begin with a rule that has S on its left-hand side (that is why S is

called the start symbol).

We write down the S symbol to start the process, and we merely repeat the

process described in Table 2.7 as

if a substring of the resulting string matches the left-hand side of one or more

productions, replace that substring by the right-hand side of any one of those

productions,

until the following becomes true

if the resulting string consists entirely of terminals,

Table 2.7 Using a Phrase Structure Grammar.

Action taken
Resulting
string

Production
applied

Start with S, the start symbol S

If a substring of the resulting string matches the left-hand side
of one or more productions, replace that substring by the
right-hand side of any one of those productions

aS S! aS

’’ aaS S! aS

’’ aabB S! bB

’’ aabcC B! cC

’’ aabccC C! cC

’’ aabccc C! c

If the resulting string consists entirely of terminals, then stop.
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at which point we:

stop.

You may wonder why the process of matching the substring was not presented as:

if a non-terminal symbol in the resulting string matches the left-hand side of

one or more productions, replace that non-terminal symbol by the right-hand

side of any one of those productions.

This would clearly work for the example grammar given. However, as discussed in

the next section, grammars are not necessarily restricted to having single non-

terminals on the left-hand sides of their productions.

The process of creating strings using a grammar is called deriving them, so

when we show how we’ve used the grammar to derive a string (as was done in

Table 2.7), we’re showing a derivation for (or of) that string.

Let us now consider all of the ‘‘terminal strings’’ { strings consisting entirely of

terminal symbols, also known as sentences{ that we can use the example grammar to

derive. As this is a simple grammar, it’s not too difficult to work out what they are.

Figure 2.9 shows the choice of rules possible for deriving terminal strings from

the example grammar.

Any ‘‘legal’’ application of our production rules, starting with S, the start

symbol, alone, and resulting in a terminal string, would involve us in following a

path through the diagram in Figure 2.9, starting in Box 1, passing through Box 2,

and ending up in Box 3. The boxes in Figure 2.9 are annotated with the strings

produced by taking given options in applying the rules. Table 2.8 summarises the

strings described in Figure 2.9.

We now define a set that contains all of the terminal strings (and only those

strings) that can be derived from the example grammar. The set will contain all

strings defined as follows:

A string taken from the set faib: i� 0g concatenated with a string taken from

the set fbj : j � 1g [ fbjc : j � 0gconcatenated with a string taken from

the set fck: k� 1g.

The above can be written as:

faibbjck : i � 0; j � 1; k � 1g [ faibbjcck : i � 0; j � 0; k � 1g:

Observe that bb j, j� 1 is the same as bj, j� 2, and bbj, j� 0 is the same as bj, j� 1,

and cck, k � 1 is the same as ck, k � 2 so we could write:

faibjck : i � 0; j � 2; k � 1g [ faibjck : i � 0; j � 1; k � 2g:
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This looks rather complicated, but essentially there is only one awkward case,

which is that if there is only one b then there must be 2 or more cs (any more than 1

b and we can have 1 or more cs). So we could have written:

faibjck : i � 0; j � 1; k � 1; if j ¼ 1 then k � 2 else k � 1g:

C

C → cC C → c

3

S

S → aS S → bB

B

B → bC

B → bB

B → cC

1

2

Box 1 allows us to start 
the string with as many as 
as we like (including 
none). However, we can 
only get out of Box 1 by 
generating a b, at which 
point the B forces us to 
go to Box 2 …

… in Box 2 
we can either 
generate 1 b  
alone (left 
path), or 2 or 
more bs 
(central path 
then fork 
left), or 1 or 
more bs 
followed by 
1 c (central 
path then 
fork right), or  
no bs and 
just 1 c (right 
path). At the 
end of  any 
of the above 
paths we are 
forced into 
Box 3 …

… in Box 3 
we generate 
either a 
single c
(right path), 
or 2 or more 
cs (left path). 
At the end of  
either path, a 
terminal 
string is 
obtained, so 
the 
derivation is 
complete.

Figure 2.9 Working out all of the terminal strings that a grammar can generate.
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Whichever way we write the set, one point should be made clear: the set is a set of

strings formed from symbols in the alphabet fa, b, cg*, that is to say, the set is a

formal language.

2.6.2 The Relationship between Grammars and Languages

We are now ready to give an intuitive definition of the relationship between

grammars and languages:

The language generated by a grammar is the set of all terminal strings that can

be derived using the productions of that grammar, each derivation beginning

with the start symbol of that grammar.

Our example grammar, when written like this:

S ! aS j bB

B! bB j bC j cC

C ! cC j c

is not fully defined. A grammar is fully defined when we know which symbols are

terminals, which are non-terminals, and which of the non-terminals is the start

symbol. In this book, we will usually see only the productions of a grammar, and

we will assume the following:

Table 2.8 The language generated by a grammar.

Box in Figure 2.9. Informal description of derived strings
Formal description
of derived strings

¤1
i.e. productions
S! aS j S!bB

‘‘any non-zero number of as followed by
bB’’ or ‘‘just bB ’’ which is the same as
saying ‘‘zero or more as followed by bB ’’

aibB, i � 0

...the B at the end...

. . .is expanded in Box 2. . .

¤2
i.e. productions
B!bB jbC jcC

‘‘any non-zero number of bs followed
by either bC or cC ’’ or ‘‘just bC ’’ or
‘‘just cC ’’

bjC, j � 1 or bjcC,
j � 0

...the C at the end...

...is expanded in Box 3...

¤3
i.e. productions
C! cC j c

‘‘any non-zero number of cs followed by
one c’’ or ‘‘just one c’’ which is the same as
saying
‘‘one or more cs’’

ck, k � 1

2.6 Formal Grammars 29



l capitalised letters are non-terminal symbols

l non-capitalised letters are terminal symbols

l the capital letter S is the start symbol.

The above will always be the case unless explicitly stated otherwise.

2.7 Phrase Structure Grammars and the Chomsky
Hierarchy

The production rules of the example grammar from the preceding section are

simple in format. For example, the left-hand sides of all the productions consist of

lone non-terminals. As we see later in the book, restricting the form of produc-

tions allowed in a grammar in certain ways simplifies certain language processing

tasks, but it also reduces the sophistication of the languages that such grammars

can generate. For now, we will define a scheme for classifying grammars accord-

ing to the ‘‘shape’’ of their productions which will form the basis of our subse-

quent discussion of grammars and languages. The classification scheme is called

the Chomsky hierarchy, named after Noam Chomsky, an influential American

linguist.

2.7.1 Formal Definition of Phrase Structure Grammars

To prepare for specifying the Chomsky hierarchy, we first need to precisely define

the term phrase structure grammar (PSG). Table 2.9 does this.

Formally, then, a PSG, G, is specified as (N, T, P, S). This is what mathema-

ticians call a ‘‘tuple’’ (of four elements).

The definition in Table 2.9 makes it clear that the empty string, e, cannot

appear alone on the left-hand side of any of the productions of a PSG. Moreover,

the definition tells us that e is allowed on the right-hand side. Otherwise, any

strings of terminals and/or non-terminals can appear on either side of produc-

tions. However, in most grammars we usually find that there are one or more non-

terminals on the left-hand side of each production.

As we always start a derivation with a lone S (the start symbol), for a grammar

to derive anything it must have at least one production with S alone on its left-

hand side. This last piece of information is not specified in the definition above, as

there is nothing in the formal definition of PSGs that says they must generate
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anything. To refer back to our earlier example grammar, its full formal description

would be as shown in Table 2.10.

2.7.2 Derivations, Sentential Forms, Sentences and ‘‘L(G)’’

We have formalised the definition of a phrase structure grammar (PSG). We now

formalise our notion of derivation, and introduce some useful terminology to

support subsequent discussion. To do this, we consider a new grammar:

S ! aB j bA j e

A! aS j bAA

B! bS j aBB:

Table 2.9 The formal definition of a phrase structure grammar.

Any PSG, G, consists of the following:

N a set of non-terminal symbols an alphabet, containing no symbols that can
appear in sentences

T a set of terminal symbols also an alphabet, containing only symbols that can
appear in sentences

P a set of production rules of the
form

x! y, where
x 2 ðN [ T Þþ, and
y 2 ðN [ T Þ�

this specification uses the notation for specifying
strings from an alphabet we looked at earlier.

x is the left-hand side of a production, y the right-
hand side.
The definition of y means: the right-hand side of
each production is a possibly empty string of
terminals and/or non-terminals.
The only difference between the specification
above and the one for x (the left-hand side) is that
the one for x uses ‘‘þ’’ rather than ‘‘*’’.
So the specification for x means: the left-hand side
of each production is a non-empty string of
terminals and/or non-terminals.

S a member of N, designated as
the start, or sentence symbol

the non-terminal symbol with which we always
begin a derivation

Table 2.10 The (N, T, P, S) form of a grammar.

Productions (N, T, P, S)

( fS, B, C g, - - - N

S!aS j bB fa, b, c g, - - - T

B! bB j bC j cC fS! aS, S! bB, B! bB, B! bC, - - - P

C! cC jc B! cC, C! cC, C! cg,
S - - - S

)

2.7 Phrase Structure Grammars and the Chomsky Hierarchy 31



Using the conventions outlined earlier, we know that S is the start symbol, fS, A,

Bg is the set of non-terminals (N), and fa, bg is the set of terminals (T). So we need

not provide the full (N, T, P, S) definition of the grammar.

As in our earlier example, the left-hand sides of the above productions all

consist of single non-terminals. We see an example grammar that differs from this

later in the chapter.

Here is a string in ðN [ T Þþ that the above productions can be used to derive,

as you might like to verify for yourself:

abbbaSA:

This is not a terminal string, since it contains non-terminals (S and A). Therefore

it is not a sentence. The next step could be, say, to apply the production A! bAA,

which would give us

abbbaSbAA;

which is also not a sentence.

We now have two strings, abbbaSA and abbbaSbAA that are such that the

former can be used as a basis for the derivation of the latter by the application of

one production rule of the grammar. This is rather a mouthful, even if we replace

‘‘by the application of one production rule of the grammar’’ by the phrase ‘‘in one

step’’, so we introduce a symbol to represent this relationship. We write:

abbbaSA) abbbaSbAA:

To be absolutely correct, we should give our grammar a name, say G, and

write

abbbaSA)G abbbaSbAA

to denote which particular grammar is being used. Since it is usually clear in our
examples which grammar is being used, we will simply use ¼). We now use this

symbol to show how our example grammar derives the string abbbaSbAA:

S ) aB

aB) abS

abS ) abbA

abbA) abbbAA

abbbAA) abbbaSA

abbbaSA) abbbaSbAA
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As it is tedious to write out each intermediate stage twice, apart from the first

(S) and the last (abbbaSbAA), we allow an abbreviated form of such a derivation

as follows:

S ) aB) abS ) abbA) abbbAA) abbbaSA) abbbaSbAA:

We now use our new symbol as the basis of some additional useful notation, as

shown in Table 2.11.

A new term is now introduced to simplify references to the intermediate stages

in a derivation. We call these intermediate stages sentential forms. Formally,

given any grammar, G, a sentential form is any string that can be derived in zero

or more steps from the start symbol, S. By ‘‘any string’’, we mean exactly that; not

only terminal strings, but any string of terminals and/or non-terminals. Thus, a

sentence is a sentential form, but a sentential form is not necessarily a sentence.

Given the simple grammar

S ! aSja;

some sentential forms are: S, aaaaaaS and a10. Only one of these sentential forms

(a10) is a sentence, as it’s the only one that consists entirely of terminal symbols.

Formally, using our new notation,

Table 2.11 Useful notation for discussing derivations, and some example true statements for
the grammar:

S! aB j bA j e
A! aS j bAA
B! bS j aBB.

Notation Meaning Example true statements

x¼)y the application of one production rule results in the
string x becoming the string y

also expressed as
‘‘x generates y in one step’’, or
‘‘x produces y in one step’’, or
‘‘y is derived from x in one step’’

aB¼)abS
S¼)e
abbbaSA¼)abbba SbAA

x¼)�y x generates y in zero or more steps, or just

‘‘x generates y’’, or
‘‘x produces y’’, or
‘‘y is derived fromx’’

S¼)�S
S¼)�abbbaSA
aB¼)�abbbaa

x¼)þy x generates y in one or more steps, or just
‘‘x generates y’’, or
‘‘x produces y’’, or
‘‘y is derived from x’’

S¼)þabbbaSA
abbba SbAA¼)þabbbabaa
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if S¼)�x, then x is a sentential form.

if S¼)�x, and x is a terminal string, then x is a sentence.

We now formalise a definition given earlier, this being the statement that

the language generated by a grammar is the set of all terminal strings that can

be derived using the productions of that grammar, each derivation beginning

with the start symbol of that grammar.

Using various aspects of the notation introduced in this chapter, this becomes:

Given a PSG; G; LðGÞ ¼ fx : x 2 T � and S )� xg:

(Note that the definition assumes that we have specified the set of terminals and

the start symbol of the grammar, which as we said earlier is done implicitly in our

examples.)

So, if G is some PSG, L(G) means the language generated by G. As the set

definition of L(G) clearly states, the set L(G) contains all of the terminal strings

generated by G, but only the strings that G generates. It is very important to realise

that this is what it means when we say the language generated by the grammar.

We now consider three examples, to reinforce these notions. The first is an

example grammar encountered above, now labelled G1:

S ! aS j bB

B! bB j bC j cC

C ! cC j c:

We have already provided a set definition of L(G1); it was:

LðG1Þ ¼ faibjck : i � 0; j � 1; k � 1; if j ¼ 1 then k � 2 else k � 1g:

Another grammar we have already encountered, which we now call G2, is:

S ! aBj j bA j "

A! aS j bAA

B! bS j aBB:

This is more complex than G1, in the sense that some of G2’s productions have

more than one non-terminal on their right-hand sides.

LðG2Þ ¼ fx : x 2 fa; bg� and the number of as in x equals the numberof bsg:
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I leave it to you to establish that the above statement is true.

Note that L(G2) is not the same as a set that we came across earlier, i.e.

faibi : i � 1g;

which we will call set A. In fact, set A is a proper subset of L(G2). G2 can generate

all of the strings in A, but it generates many more besides (such as e, bbabb-

baaaaab, and so on). A grammar, G3, such that L(G3) = Ais:

S ! ab j aSb:

2.7.3 The Chomsky Hierarchy

This section describes a classification scheme for PSGs, and the corresponding

phrase structure languages (PSLs) that they generate, which is of the utmost

importance in determining certain of their computational features. PSGs can be

classified in a hierarchy, the location of a PSG in that hierarchy being an indicator

of certain characteristics required by a decision program for the corresponding

language. We saw above how one example language could be processed by an

extremely simple decision program. Much of this book is devoted to investigat-

ing the computational nature of formal languages. We use as the basis of our

investigation the classification scheme for PSGs and PSLs called the Chomsky

hierarchy.

Classifying a grammar according to the Chomsky hierarchy is based sol-

ely on the presence of certain patterns in the productions. Table 2.12 shows

how to make the classification. The types of grammar in the Chomsky hier-

archy are named types 0 to 3, with 0 as the most general type. Each type from

1 to 3 is defined according to one or more restrictions on the definition of

the type numerically preceding it, which is why the scheme qualifies as a

hierarchy.

If you are observant, you may have noticed an anomaly in Table 2.12. Context

sensitive grammars are not allowed to have the empty string on the right-hand

side of productions, whereas all of the other types are. This means that, for

example, our grammar G2, which can be classified as unrestricted and as context

free (but not as regular), cannot be classified as context sensitive. However,

every grammar that can be classified as regular can be classified as context free,

and every grammar that can be classified as context free can be classified as

unrestricted.
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When classifying a grammar according to the Chomsky hierarchy, you should

remember the following:

For a grammar to be classified as being of a certain type, each and every

production of that grammar must match the pattern specified for productions

of that type.

Table 2.12 The Chomsky hierarchy.

Type No Type name
Patterns to which ALL
productions must conform Informal description and examples

0 unrestricted x! y; x 2 ðN [ T Þþ,

y 2 ðN [ T Þ�
The definition of PSGs we have
already seen. Anything allowed on the
left-hand side (except for e), anything
allowed on the right. All of our
example grammars considered so far
conform to this.

Example type 0 production:
aXYpq! aZpq

(all productions of G1, G2 and G3

conform { but see below).
1 context

sensitive
x! y; x 2 ðN [ T Þþ,

y 2 ðN [ T Þþ,
jx j � jy j

As for type 0, but we are not allowed
to have e on the left- or the right-hand
sides.

Note that the example production
given for type 0 is not a context
sensitive production, as the length of
the right-hand side is less than the
length of the left.
Example type 1 production:

aXYpq! aZwpq
(all productions of G1 and G3 conform,
but not all of those of G2 do).

2 context free x! y; x 2 N ,

y 2 ðN [ T Þ�
Single non-terminal on left, any
mixture of terminals and/or non-
terminals on the right. Also, e is
allowed on the right.

Example type 2 production:
X! XapZQ

(all productions of G1, G2, and G3

conform).
3 regular w! x, or w! yz

w 2 N ,
x 2 T [ f"g,
y 2 T ,
z 2 N

Single non-terminal on left, and either
& e or a single terminal,

or
& a single terminal followed by

a single non-terminal,
on the right.
Example type 3 productions:

P! pQ,
F! a

all of the productions of G1 conform to
this, but G2 and G3 do not.
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Which means that the following grammar:

S ! aS j aA jAA

A! aA j a;

is classified as context free, since the production S! AA does not conform to the

pattern for regular productions, even though all of the other productions do.

So, given the above rule that all productions must conform to the pattern, you

classify a grammar, G, according to the procedure in Table 2.13.

Table 2.13 tells us to begin by attempting to classify G according to the most

restricted type in the hierarchy. This means that, as indicated by Table 2.12, G1 is

a regular grammar, and G2 and G3 are context free grammars. Of course, we know

that as all regular grammars are context free grammars, G1 is also context free.

Similarly, we know that they can all be classified as unrestricted. But we make the

classification as specific as possible.

From the above, it can be seen that classifying a PSG is done simply by seeing

if its productions match a given pattern. As we already know, grammars generate

languages. In terms of the Chomsky hierarchy, a language is of a given type if it is

generated by a grammar of that type. So, for example,

faibi : i � 1g ðset A mentioned aboveÞ

is a context free language, since it is generated by G3, which is classified as a context

free grammar. However, how can we be sure that there is not a regular grammar

that could generate A? We see later on that the more restricted the language

(in the Chomsky hierarchy), the simpler the decision program for the language. It

is therefore useful to be able to define the simplest possible type of grammar

Table 2.13 The order in which to attempt the classification of a grammar, G, in the Chomsky
hierarchy.

if G is regular then

return(‘‘regular’’)

else

if G is context free then

return(‘‘context free’’)

else

if G is context sensitive then

return(‘‘context sensitive’’)

else

return(‘‘unrestricted’’)

endif

endif

endif
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for a given language. In the meantime, you might like to see if you can create a

regular grammar to generate set A (clue: do not devote too much time to this!).

From a theoretical perspective, the immediately preceding discussion is very

important. If we can establish that there are languages that can be generated by

grammars at some level of the hierarchy and cannot be generated by more restricted

grammars, then we are sure that we do indeed have a genuine hierarchy. However,

there are also practical issues at stake, for as mentioned above, and discussed in more

detail in Chapters 4, 5 and 7, each type of grammar has associated with it a type of

decision program, in the form of an abstract machine. The more restricted a language

is, the simpler the type of decision program we need to write for that language.

In terms of the Chomsky hierarchy, our main interest is in context free

languages, as it turns out that the syntactic structure of most programming

languages is represented by context free grammars. The grammars and languages

we have looked at so far in this book have all been context free (remember that

any regular grammar or language is, by definition, also context free).

2.8 A Type 0 Grammar: Computation as Symbol
Manipulation

We close this chapter by considering a grammar that is more complex than our

previous examples. The grammar, which we label G4, has productions as follows

(each row of productions has been numbered, to help us to refer to them later).

S ! AS jAB (1)

B! BB jC (2)

AB! HXNB (3)

NB! BN (4)

BM !MB (5)

NC !Mc (6)

Nc!Mcc (7)

XMBB! BXNB (8)

XBMc! Bc (9)

AH ! HA (10)

H ! a (11)

B! b (12)
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G4 is a type 0, or unrestricted grammar. It would be context sensitive, but for

the production XBMc! Bc, which is the only production with a right-hand side

shorter than its left-hand side.

Table 2.14 represents the derivation of a particular sentence using this

grammar. It is presented step by step. Each sentential form, apart from the

sentence itself, is followed by the number of the row in G4 from which the

production used to achieve the next step was taken. Table 2.14 should be read

row by row, left to right.

The sentence derived is a2b3c6. Notice how, in Table 2.14, the grammar

replaces each A in the sentential form AABBBC by H, and each time it does

this it places one c at the rightmost end for each B. Note also how the grammar

uses non-terminals as ‘‘markers’’ of various types:

l H is used to replace the As that have been accounted for

l X is used to indicate how far along the Bs we have reached

l N is used to move right along the Bs, each time ending in a cbeing added to the

end of the sentential form

l M is used to move left back along the Bs.

You may also notice that at many points in the derivation several

productions are applicable. However, many of these productions lead even-

tually to ‘‘dead ends’’, i.e., sentential forms that cannot lead eventually to

sentences.

Table 2.14 A type 0 grammar is used to derive a sentence.

STAGE row STAGE row STAGE row

S (1) AS (1) AAB (2)

AABB (2) AABBB (2) AABBBC (3)

AHXNBBBC (4) AHXBNBBC (4) AHXBBNBC (4)

AHXBBBNC (6) AHXBBBMc (5) AHXBBMBc (5)

AHXBMBBc (5) AHXMBBBc (8) AHBXNBBc (4)

AHBXBNBc (4) AHBXBBNc (7) AHBXBBMcc (5)

AHBXBMBcc (5) AHBXMBBcc (8) AHBBXNBcc (4)

AHBBXBNcc (7) AHBBXBMccc (9) AHBBBccc (10)

HABBBccc (3) HHXNBBBccc (4) HHXBNBBccc (4)

HHXBBNBccc (4) HHXBBBNccc (7) HHXBBBMcccc (5)

HHXBBMBcccc (5) HHXBMBBcccc (5) HHXMBBBcccc (8)

HHBXNBBcccc (4) HHBXBNBcccc (4) HHBXBBNcccc (7)

HHBXBBMccccc (5) HHBXBMBccccc (5) HHBXMBBccccc (8)

HHBBXNBccccc (4) HHBBXBNccccc (7) HHBBXBMcccccc (9)

HHBBBcccccc (11) aHBBBcccccc (11) aaBBBcccccc (12)

aabBBcccccc (12) aabbBcccccc (12) aabbbcccccc
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The language generated by G4, i.e. L(G4), is faibjci � j: i, j� 1g. This is the set:

‘‘all strings of the form one or more as followed by one or more bs followed by

cs in which the number of cs is the number of as multiplied by the number of

bs’’.

You may wish to convince yourself that this is the case.

G4 is rather a complicated grammar compared to our earlier examples.

You may be wondering if there is a simpler type of grammar, perhaps a

context free grammar, that can do the same job. In fact there is not.

However, while the grammar is comparatively complex, the method it embo-

dies in the generation of the sentences is quite simple. Essentially, like all

grammars, it simply replaces one string by another at each stage in the

derivation.

An interesting way of thinking about G4 is in terms of it performing a kind of

computation. Once a sentential form like AiBjC is reached, the productions then

ensure that i � j cs are appended to the end by essentially modelling the simple

algorithm in Table 2.15.

The question that arises is: what range of computational tasks can we carry

out using such purely syntactic transformations? We see from our example that

the type 0 grammar simply specifies string substitutions. If we take our strings of

as and bs as representing numbers, so that, say, a6 represents the number 6, we see

that G4 is essentially a model of a process for multiplying together two arbitrary

length numbers.

Later in this book, we encounter an abstract machine, called a Turing

machine, that specifies string operations, each operation involving the replacing

of only one symbol by another, and we see that the machine is actually as

powerful as the type 0 grammars. Indeed, the machine is capable of perform-

ing a wider range of computational tasks than even the most powerful real

computer.

However, we will not concern ourselves with these issues until later. In the

next chapter, we encounter more of the fundamental concepts of formal lan-

guages: syntax, semantics and ambiguity.

Table 2.15 The ‘‘multiplication’’ algorithm embodied in grammar G4.

for each A do

for each B do

put a c at the end of the sentential form

endfor

endfor
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EXERCISES

For exercises marked ‘‘y’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’ at the end of the book.

2.1. Classify the following grammars according to the Chomsky hierarchy.

In all cases, briefly justify your answer.

(a) y S ! aA

A! aS j aB

B! bC

C ! bD

D! b j bB

(b) y S ! aS j aAbb

A! " j aAbb

(c) S ! XYZ j aB

B! PQ jS

Z ! aS

(d) S ! e

2.2.y Construct set definitions of each of the languages generated by the four

grammars in exercise 1.

Hint: the language generated by 1(c) is not the same as that generated by

1(d), as one of them contains no strings at all, whereas the other contains

exactly one string.

2.3.y It was pointed out above that we usually insist that one or more non-

terminals must be included in the left-hand side of type 0 productions.

Write down a formal expression representing this constraint. Assume that

N is the set of non-terminals, and T the set of terminals.

2.4. Construct regular grammars, Gv, Gw and Gx, such that

(a) L(Gv) = fcj: j> 0, and j does not divide exactly by 3g

(b)L(Gw) = faibj[cd]k: i, k� 0, 0 � j� 1g
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Note: as we are dealing only with whole numbers, the expression 0

� j � 1, which is short for 0 � j and j � 1, is the same as writing:

j =0 or j = 1.

(c) L(Gx) = fa, b, cg*

2.5.y Use your answer to exercise 4(c) as the basis for sketching out an

intuitive justification that A* is a regular language, for any alphabet, A.

2.6. Use the symbol¼)in showing the step-by-step derivation of the string

c5 using

(a) Gv

and

(b)Gx from exercise 4.

2.7. Construct context free grammars, Gy and Gz, such that

(a) L(Gy) = fa2iþ1cjb2iþ1: i � 0, 0 � j � 1g
Note: if i � 0, a2iþ1means‘‘all odd numbers of as’’.

(b)y L(Gz) = all Boolean expressions in your favourite programming

language. (Boolean expressions are those that use logical opera-

tors such as ‘‘and’’, ‘‘or’’ and ‘‘not’’, and evaluate to true or false.)

2.8. Use the symbol¼)in showing the step-by-step derivation of a3b3 using

(a) Gy from exercise 7, and the grammar

(b)G3 from Chapter 2, i.e. S! ab j aSb

2.9. Provide a regular grammar to generate the language fab, abc, cdg.
Hint: make sure your grammar generates only the three given strings, and

no others.

210.y Use your answer to exercise 9 as the basis for sketching out an

intuitive justification that any finite language is regular.

Note that the converse of the above statement, i.e. that every regular

language is finite, is certainly not true. To appreciate this, consider the

languages specified in exercise 4. All three languages are both regular

and infinite.
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3
Syntax, Semantics and Ambiguity

3.1 Overview

In this chapter, we consider the following aspects of formal languages, and their

particular relevance to programming languages:

l the syntax, or grammatical structure, of a sentence

l the semantics, or meaning, of a sentence

l the graphical representation of derivations by structures called derivation trees

l parsing, or trying to discover the grammatical structure of a given sentence

l ambiguity, when a sentence in a formal language has more than one possible

meaning.

3.2 Syntax vs. Semantics

The Phrase structure grammars (PSGs), as introduced in the preceding chapter,

describe the syntax of languages. The syntax of a language is the set of rules by

which ‘‘well formed’’ phrases, which we call sentences, come about. The BNF

definitions or syntax charts for Pascal to which we referred in the previous chapter

tell us about the correct form of Pascal statements, but do not tell us what the

statements cause the machine to do, after they have been compiled. They do not
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tell us how to write a program to compute a particular function, or solve a given

problem. To write programs to do these things requires us to know about the

meaning of the program constructs, i.e., their semantics.

Some of the languages we looked at in Chapter 2 had no semantics whatsoever

(or at least none that we referred to). For semantics is not form alone, but also

‘‘interpretation’’, and, like syntax, requires that we have access to a set of rules

which tell us how to make this interpretation. For natural languages such as

English these rules of interpretation are extremely complex and not completely

understood. Moreover, the rules of natural languages are not necessarily univer-

sal, and are subject to constant revision, especially in artistic usage.

The semantics of a sentence is its meaning. For a program, the term ‘‘seman-

tics’’ refers to the computation carried out after the program source code has been

compiled, when the program actually runs. In formal languages, meaning is

inextricably linked to form. The grammatical structure of a sentence, by which

we mean an account of how the productions were applied to obtain the sentence, is

assumed to determine the meaning that we attribute to that sentence. We shall

see certain implications of this below, but first we provide a foundation for our

discussion by investigating a very useful way of representing the structure of

context free derivations.

3.3 Derivation Trees

As we know, context free grammars have productions where every left-hand side

consists of a single non-terminal, a property also shared by the regular grammars.

In each step (application of one production) of the derivation, therefore, a single

non-terminal in the sentential form will have been replaced by a string of zero or

more terminals and/or non-terminals to yield the next sentential form. Any deriva-

tion of a sentential form begins with S, the start symbol, alone. These features mean

that we can represent the derivation of any sentential form as a tree, and a very

useful feature of trees is that they can be represented graphically, and therefore be

used to express the derivation in a visually useful way. Trees used to represent

derivations are called derivation trees (or sometimes parse trees, as we see later).

Let us describe how derivation trees are constructed by using examples. First,

a simple tree, featuring grammar G3 from Chapter 2:

S ! ab j aSb:

Consider the derivation:

S ) aSb) aaSbb) aaabbb:
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This can be represented as the tree in Figure 3.1.

Figure 3.2 shows how the derivation tree relates to the derivation itself.

In a tree, the circles are called nodes. The nodes that have no nodes attached

beneath them are called leaf nodes, or sometimes terminal nodes. In such a tree,

the resulting string is taken by reading the leaf nodes in left to right order.

a b

a b

Sa b

S

S

Figure 3.1 A derivation tree.

a b

a b

Sa b

S

SSa

aSba

a aSbab

aa ababb

Figure 3.2 A derivation and its correspondence with the derivation tree.
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A slightly more complex example is based on grammar G2, also from Chapter 2:

S ! aB j bA j e

A! aS j bAA

B! bS j aBB:

The derivation

S ) aB) aaBB) aabSB) aabB) aabaBB) aababSB) aababB)

aababbS ) aababb

is represented by the tree in Figure 3.3.

a bba a

b Sb S

BBa

B

b S

a

Ba

B

S

= aababb

b

Figure 3.3 A more complex derivation tree.
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Dashed lines have been included in Figure 3.3 to clarify the order in which we

read the terminal symbols from the tree.

Note how, for the purposes of drawing the derivation tree, the empty string, e, is

treated exactly as any other symbol. However, remember that the final string, aababb,

does not show the es, as they disappear when concatenated into the resulting string.

3.4 Parsing

The derivation of a string, as described in Chapter 2, is the process of applying

various productions to produce that string. In the immediately preceding exam-

ple, we derived the string aababb using the productions of grammar G2. Parsing,

on the other hand, is the creation of a structural account of the string according to

a grammar. The term parsing relates to the Latin for the phrase parts of speech.

As for derivation trees, we also have parse trees, and the derivation trees shown

above are also parse trees for the corresponding strings (i.e. they provide an

account of the grammatical structure of the strings).

Parsing is an important part of (formal and natural) language understanding.

For the compilation of source programs it is absolutely crucial, since unless the

compiler can arrive at an appropriate parse of a statement, it cannot be expected

to produce the appropriate object code.

For now we look at the two overall approaches to parsing, these being top-

down and bottom-up. The treatment given here to this subject is purely abstract

and takes a somewhat extreme position. There are actually many different

approaches to parsing and it is common to find methods that embody elements

of both top-down and bottom-up approaches.

The essence of parsing is that we start with a grammar, G, and a terminal

string, x, and we say:

l construct a derivation (parse) tree for x that can be produced by the grammar G.

Now, while x is a terminal string, it may not be a sentence, so we may need to

precede the above instruction with ‘‘find out if x is a sentence and if so ...’’. As

previously stated, there are two overall approaches to parsing, these being top-

down and bottom-up. We now briefly describe the two approaches.

In top-down parsing, we build the parse tree for the terminal string x, starting

from the top, i.e. from S, the start symbol. The most purely top-down approach

would be to use the grammar to repeatedly generate different sentences until x

was produced. Bottom-up parsing begins from the terminal string x itself, trying

to build the parse tree from the sentence upwards, finishing when the tree is fully

formed, with S, the start symbol, at the top.
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To clarify bottom-up parsing, we will consider one bottom-up approach, known

as the reduction method of parsing. We begin with our grammar, G, and make a

grammar Gred, by swapping over the left and right-hand sides of all of the produc-

tions in G. We call the resulting ‘‘productions’’ reductions. The goal then becomes

to use the reductions to eventually arrive at S after starting with the string x.

We again consider grammar G3, i.e.

S ! aSb j ab

and the problem of producing the parse tree for aaabbb. The ‘‘reductions’’ version

of G3, called G3red, is as follows:

aSb! S

ab! S:

We start with our sentencex, and seek a left-hand side of one of the reductions that

matches some substring of x. We replace that substring by the right-hand side of

the chosen reduction, and so on. We terminate when we reach a string consisting

only of S. Parsing is simple in our example, which is shown in Figure 3.4, since only

one reduction will be applicable at each stage.

In the example in Figure 3.4, there was never a point at which we had to make

a choice between several applicable reductions. In general, however, a grammar

may be such that at many points in the process there may be several applicable

reductions, and several substrings within the current string that match the left-

hand sides of various reductions.

As a more complex example, consider using the reduction method to produce a

parse tree for the string aababb. This is a sentence we derived using grammar G2

above. For G2, the reductions G2red are:

 a a a b b b

reductions:
ab → S
aSb → S

START

 a a a b b b  a a a b b b  a a a b b b

1 2 3

S

using ab → S

S

S

using aSb → S

S

S

S

using aSb → S

aaabbb  aaSbb aaSbb  aSb aSb S⇒ ⇒ ⇒

Figure 3.4 Reduction parsing.
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e! S

aB! S

bA! S

aS ! A

bAA! A

bS ! B

aBB! B:

We have to begin with the e!S reduction, to place an S somewhere in our string

so that one of the other reductions will apply. However, if we place the S after the

first a, for example, we will be unable to complete the tree (you should convince

yourself of this). The same applies if we place the S after the second a in the string.

In fact, you will appreciate that a reduction rule with an e on its left-hand side

can be applied at any stage in the parse. Moreover, suppose that later on in the

parse we reach, say, aabSaBB. How do we choose between aBB!B and aB!S?

We shall see in Chapters 4 and 5 how some of the problems of parsing can be

simplified for certain classes of grammars, i.e. the regular grammars and (some of)

the context free grammars. We do this by establishing that, associated with these

grammars, are abstract machines. We then see that such machines can be used as a

basis for designing parsing programs for the languages in question. For now, how-

ever, we look at an extremely important concept that relates to languages in general.

3.5 Ambiguity

Now that we have familiarised ourselves with the notion, and some of the problems,

of parsing, we are going to consider one of the most important related concepts

of formal languages, i.e. that of ambiguity. Natural language permits, and indeed

in some respects actually thrives on, ambiguity. In talking of natural language,

we usually say a statement is ambiguous if it has more than one possible meaning.

The somewhat contrived example often used to demonstrate this is the phrase:

‘‘Fruit flies like a banana.’’

Does this mean ‘‘the insects called fruit flies are positively disposed towards bana-

nas’’? Or does it mean ‘‘something called fruit is capable of the same type of

trajectory as a banana’’? These two potential meanings are partly based on the (at

least) two ways in which the phrase can be parsed. The former meaning assumes

that ‘‘fruit flies’’ is a single noun, while the latter assumes that the same phrase is a

noun followed by a verb.
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The point of the above example is to show that while our intuitive descrip-

tion of what constitutes ambiguity makes reference to meaning, the different

meanings can in fact be regarded as the implication of the ambiguity. Formally,

ambiguity in a language is reflected in the existence of more than one parse

tree for one or more sentences of that language. To illustrate this, let us consider

an example that relates to a programming language called Algol60, a language

that influenced the designers of Pascal. The example also applies to Pascal itself

and is based on the following fragment of a programming language definition,

for which we revert, for convenience, to the BNF notation introduced in

Chapter 2.

5statement4 ::¼5if statement4 j5arithmeticexpression4 j . . .

5if statement4 ::¼ if5Boolean expression4then5statement4 j

if5Boolean expression4then5statement4else

5statement4

Remember that the terms in angled brackets (‘‘<statement>’’, etc.) are non-

terminals, and that other items (if, then and else) are regarded as terminals.

Now consider the following statement:

if x > y then if y < z then x := x þ 1 else x := x { 1.

Suppose that x > y and y < z are <Boolean expression>s, and that x := x þ 1

and x := x � 1 are <arithmetic expression>s. Then two different parse trees can

be constructed for our statement. The first is shown in Figure 3.5 and is labelled

‘‘PARSE TREE 1’’.

‘‘PARSE TREE 2’’, an alternative parse tree for the same statement is shown

in Figure 3.6.

We have two distinct structural accounts of a single sentence. This tells us

that the grammar is ambiguous.

Now, suppose that the compiler for our language used the structure of the parse

tree to indicate the order in which the parts of the statement were executed. Let us

write out the statement again, but this time indicate (by inserting ‘‘[’’ and ‘‘]’’ into the

statement) the interpretation suggested by the structure of each of the two trees.

PARSE TREE 1 (Figure 3.5) suggests

if x > y then [if y < z then x := x þ 1 else x := x � 1].

However, PARSE TREE 2 (Figure 3.6) suggests

if x > y then [if y < z then x := x þ 1] else x := x � 1.

The ‘‘else part’’ belongs to different ‘‘if parts’’ in the two interpretations. This

would clearly yield different results according to which interpretation our
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compiler made. For example, if x = 1, y = 1 and z = 2, then in case 1 the execution

of our statement would result in x still having the value 1, while after execution in

case 2, x would have the value 0.

More seriously, a compiler for our language on one manufacturer’s machine

may create PARSE TREE 1 (Figure 3.5), while a compiler for another type of

machine creates PARSE TREE 2 (Figure 3.6). What is more, a note would

probably have to be added to the syntax descriptions of our programming

language, e.g. in the manual, to explain which interpretation was assumed by

< if statement>

if

< statement>

< Boolean expression> then < statement> 

x > y < if statement> 

if < Boolean expression> then < statement>

y < z

else < statement>

x := x + 1 x := x - 1 

Figure 3.5 PARSE TREE 1: A derivation tree for a Pascal ‘‘if statement’’.

< if statement>

if < Boolean expression> then

x > y 

else < statement>

x := x + 1 

x := x - 1 

< statement>

< if statement>

if

< statement>

< Boolean expression> then < statement>

y < z

Figure 3.6 PARSE TREE 2: A different derivation tree for the same ‘‘if state-
ment’’ as that in Figure 3.5.

3.5 Ambiguity 51



the particular compiler. This is not a good policy to adopt in programming

language definition, as the syntax for the programming language ought to be

specified in a way that is subject to a single interpretation, and that interpretation

should be obvious from looking at the formal definition of the syntax. That is to

say, the language should be unambiguous.

Now, our example statement above is actually syntactically correct Pascal, as an

‘‘if’’ statement is not a compound statement in Pascal, and therefore the subordinate

if statement (‘‘if y < z then ...’’) does not need to be bracketed with begin and

end. Thus, there is ambiguity in the standard definition of Pascal. The solution to

this in the original Pascal manual was to inform the reader (in an additional note)

which interpretation would be taken. The solution adopted for Algol was to change

a later version of the language (Algol68) by introducing ‘‘bracketing tokens’’; some-

times called ‘‘guards’’ (similar to the endifs used in the algorithms in this book). If we

have bracketing tokens and we would like the interpretation specified by PARSE

TREE 1 (Figure 3.5), we write:

if x > y then if y < z then x := x þ 1 else x := x � 1 endif endif.

If, on the other hand, we desire the PARSE TREE 2 (Figure 3.6) interpretation

we write:

if x > y then if y > z then x := x þ 1 endif else x := x � 1 endif.

The difference in meaning between the two statements is now very clear.

While ambiguity is, as mentioned above, an accepted part of natural lan-

guages, it cannot be accepted in programming languages, where the consequences

of ambiguity can be serious. However, ambiguity in natural language also leads to

problems on occasions. Krushchev, a president of the former Soviet Union, spoke

a phrase to western politicians that was translated into English literally as

‘‘Communism will bury you.’’ This was interpreted to be a threat that the Soviet

Union would destroy the west, but in Russia the original phrase also has the

meaning ‘‘Communism will outlast you!’’

To complete this introduction to ambiguity, we will precisely state the defini-

tion of ambiguity in formal grammars.

A Phrase Structure Grammar (PSG), G, is ambiguous if L(G) contains any

sentence which has two or more distinct derivation trees.

Correspondingly:

A PSG, G, is unambiguous if L(G) contains no sentences which have two or

more distinct derivation trees.

If we find any sentence in L(G) which has two or more derivation trees, we have

established that our grammar is ambiguous. Sometimes, an ambiguous grammar
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can be replaced by an unambiguous grammar which does the same job (i.e.

generates exactly the same language). This was not done to solve the Algol60

problem described above, since in that case new terminal symbols were introduced

(the bracketing terms), and so the new grammar generated many different

sentences from the original grammar, and therefore the language was changed.

Ambiguity is problematic, as there is no general solution to the problem of

determining whether or not an arbitrary PSG is ambiguous. There are some

individual cases where we can show that a grammar is unambiguous, and there

are some cases where we can show that a given grammar is ambiguous (exactly

what happened in the case of Algol60). However, there is no general solution to

the ambiguity problem, since establishing that a grammar is unambiguous could

require that we make sure that there is absolutely no sentence that the grammar

generates for which we can construct more than one derivation tree.

In programming languages, ambiguity is a great cause for concern, as stated

above. The main reason for this is that the compiler is usually designed to use the

parse tree of a program to derive the structure of the object code that is generated.

It is obvious therefore, that the programmer must be able to write his or her

program in the knowledge that there is only one possible interpretation of that

program. Being unable to predict the behaviour of a statement in a program

directly from the text of that statement could result in dire consequences both for

the programmer and the user.

EXERCISES

For exercises marked ‘‘y’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’ at the end of the book.

3.1. Given the following grammar, G:

S ! XC jAY

X ! aXb j ab

Y ! bY c j bc

A! a j aA

C ! c j cC:

(a) Classify G according to the Chomsky hierarchy.

(b) y Write a set definition of L(G).
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(c)y Using the sentence a3b3c3 in L(G), show that G is an ambiguous

grammar.

Note: L(G) is known as an ‘‘inherently ambiguous language’’, as

any context free grammar that generates it is necessarily ambi-

guous.You might like to justify this for yourself (hint: think about

the derivation of sentences of the form aibici).

3.2. Given the following productions of a grammar, G:

S ! E

E ! T jE þ T jT � E

T ! 1 j 2 j 3

ðnote that 1; 2; 3;þand - are terminal symbolsÞ;

and the following sentence in L(G):

3{2þ1

(a) use the sentence to show that G is an ambiguous grammar

(b)y assuming the standard arithmetic interpretation of the terminal

symbols, and with particular reference to the example sentence,

discuss the semantic implications of the ambiguity.

3.3. Discuss the semantic implications of the ambiguity in the grammar:

P ! P or P jP and P jx j y j z

ðwhere ‘‘or} and ‘‘and} are terminalsÞ;

assuming the usual Boolean logic interpretation of ‘‘or’’ and ‘‘and’’.

Introduce new terminals ‘‘(‘‘ and ‘‘)’’ in such a way to produce a gram-

mar that generates similar, but unambiguous logical expressions.

3.4. Given the following ambiguous grammar:

S ! T jA jT or S jA or S

A! T and T jT and A jnot A

T ! a j b j c jnot T

ðwhere or; and; not; a; b and c are symbolsÞ:

Discuss possible problems that the ambiguity might cause when inter-

preting the sentence a or not b and c (assuming the usual Boolean logic

interpretation of the symbols and, or and not).
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4
Regular Languages and Finite

State Recognisers

4.1 Overview

This chapter is concerned with the most restricted class of languages in the

Chomsky hierarchy (as introduced in Chapter 2): the regular languages. In parti-

cular, we encounter our first, and most simple, type of abstract machine, the

Finite State Recogniser (FSR).

We discover:

l how to convert a regular grammar into an FSR

l how any FSR can be made deterministic so it never has to make a choice when

parsing a regular language

l how a deterministic FSR converts directly into a simple decision program

l how to make an FSR as small as possible

l the limitations of the regular languages.

4.2 Regular Grammars

As we saw in Chapter 2, a regular grammar is one in which every production

conforms to one of the following patterns:

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 4, � Springer-Verlag London Limited 2008



X ! xY where X and Y are each single non-terminals; x is a

X ! y terminal, and y is either the empty string ðeÞ; or a single terminal:

Here are some productions that all conform to this specification (A and B are non-

terminals, a and b are terminals):

A! e

A! aB

B! bB

A! bA

A! b

B! a:

When we discussed reduction parsing in Chapter 3, we saw that productions such

as A! e, with e, the empty string on the right-hand side can cause problems in

parsing. However, for reasons to be discussed later, we can ignore them for the

present and assume for now that regular grammars contain no productions with

e on the right-hand side.

Here is an example of (the productions of) a regular grammar, G5:

S ! aS j aA j bB j bC

A! aC

B! aC

C ! a j aC
and here is an example derivation of a sentence:

S ) aS ) aaS ) aaaA) aaaaC ) aaaaa:

An equivalent derivation tree as introduced in Chapter 3, can be seen in

Figure 4.1.

You may have observed that the above grammar is also ambiguous (ambi-

guity was discussed in Chapter 3), since there is at least one alternative deriva-

tion tree for the given sentence. Try to construct one, to practise creating

derivation trees.

In this chapter, we use G5 to illustrate some important features of regular

languages. For now, you might like to try to write a set definition of the language

generated by the grammar. You can assess your attempt later in the chapter,

when L(G5) is defined.
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4.3 Some Problems with Grammars

It is not always straightforward to define a language by examining the corres-

ponding grammar. Take our example grammar G5 above. One problem is that

various symbols representing the same entity are scattered throughout the pro-

ductions (the non-terminal C, for example). Another problem is that, as computer

scientists, we are not usually satisfied by merely designing and writing down a

grammar, we usually want to write a parser for the language it generates. This

leads to questions that grammars do not conveniently allow us to address. Will

our grammar yield an efficient parser (in terms of space and time)? If we design

another grammar with fewer productions, say, to generate the same language,

is there a way of being sure that it does indeed do this? What about the design of

grammars themselves: is there a more convenient design notation which we can

use in place of the textual form? Then there are productions, such as S!aS and

S! aA, that may cause problems in the parsing of the language, as was discussed

in Chapter 3. Can we eliminate situations where there is a choice, such as these?

For the regular grammars, the answer to all of the above questions is ‘‘yes’’.

a

Ca

Aa

Sa

Sa

S

Figure 4.1 A derivation tree produced by a regular grammar.
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4.4 Finite State Recognisers and Finite
State Generators

For the regular grammars there is a corresponding abstract machine that can

achieve the same tasks (parsing and generating) as those supported by the

grammar. Moreover, as the structure of the regular grammar is so simple, the

corresponding machine is also simple. We call the machine the finite state recog-

niser (FSR). It is called a recogniser because it ‘‘recognises’’ if a string presented

to it as input belongs to a given language. If we were using the machine to produce,

rather than analyse, strings, we would call it a finite state generator.

4.4.1 Creating an FSR

We can devise an equivalent FSR from any regular grammar, by following the

simple rules in Table 4.1.

Figure 4.2 demonstrates the application of part (a) of the instructions in

Table 4.1 to our example grammar G5.

Table 4.1 Constructing an FSR from the productions of a regular grammar.

The construction rules (X and Y denote any non-terminals, y denotes any terminal):

(a) Convert all productions using whichever of the following three rules applies, in each case:

1. a production of the form

X! yY(Y 6¼X) X Y
y

becomes a drawing of the form

2. a production of the form

X!yX
y

Xbecomes a drawing of the form

3. a production of the form

X!y X
y

    is not a non-terminal in the
grammar. We use the label     each
time the rule applies.

becomes a drawing of the form:

(b) Take all the drawings produced in (a), and join all of the circles and squares with the same
labels together.

(Once the basic concept is appreciated, one usually finds the whole machine can be drawn
directly.)

(c) The circle S (where S is the start symbol of the grammar) becomes S
(i.e. an arrow is added that comes from nowhere and points to S).

The result is a pictorial representation of a directed graph (‘‘digraph’’) that we call a finite
state recogniser (FSR).

58 4. Regular Languages and Finite State Recognisers



Figure 4.3 shows the machine that is produced after parts (b) and (c) of the

procedure in Table 4.1 have been carried out.

To show its correspondence with the grammar from which it was constructed

(G5), we will call our new machine M5.

To support a discussion of how our machines operate, we need some new

terminology, which is provided by Table 4.2.

S

a

b

B
a a

A
a

C

b

a

a

Figure 4.3 The FSR M5 that represents regular grammar G5.

S

a

S → aS 

S B
b

S → bB

A C
a

A → aC 

B C B → aC
a

C

a

C → aC 

S A
a

S → aA

S C
b

S → bC 

C
a

C → a H

Figure 4.2 The first part of expressing a regular grammar as an FSR. This
represents the application to grammar G5 of part (a) of Table 4.1.
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4.4.2 The Behaviour of the FSR

A machine is of little use if it does not do something. Our machines are abstract,

so we need to specify their rules of operation. Table 4.3 provides us with these rules.

It can be seen from Table 4.3 that there are two possible conditions that cause

the halting of the machine:

(1) the input is exhausted, so no transitions can be made

(2) the input is not exhausted, but no transitions are possible.

It can also be seen that one of two possible additional conditions must prevail

when the machine halts:

(A) it is in an acceptance state

(B) it is in a non-acceptance state.

Our machine is very simple and does not produce output as a program might, and

so, if we imagine that we are blessed with the power to observe the internal

workings of the machine, the situation that we observe at the time of halting is of

Table 4.2 Terminology for referring to FSRs.

Term Pictorial representation (from M5 { Figure 4.3)

states (also called nodes)
S A B C

arcs

Note: this is a labelled arc. The label is the
terminal a. The arc that enters state S
from nowhere is an unlabelled arc.

X1 X2
a

ingoing arcs C

outgoing arcs
C

Special states

start state
S(has an ingoing arc

coming from nowhere)

halt or acceptance state
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critical importance. What we will observe when the machine stops is the situation

‘‘inside’’ the machine with respect to the combination of (1) or (2) with (A) or (B)

from above, as represented in Table 4.4.

Table 4.5 defines the acceptance and rejection conditions of the FSR.

Table 4.3 The rules governing the behaviour of the FSR.

Rule No Description

1 The FSR begins its operation from any of its start states. It is said to be in that
start state.

It has available to it any string of terminal symbols, called the input string. If the
input string is non-empty, its leftmost symbol is called the current input symbol.

2 When in any state, q (the symbol q is often used to denote states in abstract
machines) it can make a move, called a transition (or state transition) to any other
(possibly the same) single state, q1, if and only if there is an arc as follows
(x represents the current input symbol):

orq q1
x

q

x

(in this case, q = q1)

Note that either or both of q or q1 can be halt states.

After making a transition, the following conditions hold:

l the machine is in state q1
l the symbol in the input string immediately to the right of the current input symbol

now becomes the current input symbol. If there is no such symbol we say that the
input is exhausted.

If, at any point, any transition is possible, the machine must make one of them.
However, at any point where more than one transition is possible, the choice between
the applicable transitions is completely arbitrary.
Note: when the machine makes a transition and moves to the next symbol in the
input string, we say that the machine is reading the input.

3 When the machine is in a given state, and can make no transition whatsoever, the
machine is said to have halted in that state.

Table 4.4 Possible state � input string configurations when the FSR
halts.

Condition of input

State in which FSR halts input exhausted input not exhausted

acceptance (halt) state accepted rejected

non-acceptance state rejected rejected

Table 4.5 String acceptance and rejection conditions for the FSR.

When the FSR halts . . .

. . . if the FSR is in an acceptance (halt) state and the input is exhausted, we say that the input
string is accepted by the FSR

. . . if the FSR is not in an acceptance (halt) state, or is in a halt state and the input is not
exhausted, we say that the input string is rejected by the FSR.
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We now consider examples of the machine M5 in operation. These examples

are shown in Figures 4.4 to 4.6. In each case, we show the initial configuration

of the machine and input, followed by the sequence of transitions. In each of

Figures 4.4 to 4.6, the emboldened state in a transition represents the state

that the machine reaches on making that transition. The arrow beneath the

input string shows the new current input symbol, also after a transition is

made.

Example 1. Input string: aaba.

Figure 4.4 shows how the string aaba can be accepted by M5. You can observe

that several choices were made, as if by magic, as to which transition to take in

a given situation. In fact, you could show a sequence of transitions that lead

machine in acceptance 
(halt) state 
input is exhausted 
string accepted

S

a

b

B
a a

A
a

C

b

a H

a

Initial configuration

a a b a

Transitions

S

a1

a a b a
S

a2

a a b a

3

a a b aS

C

b

4

a a b a

C
a H

Figure 4.4 M5 accepts the string aaba.
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to aaba being rejected. This appears to be a problem with rule 2 in Table 4.3, to

which we return later. First, another example.

Example 2. Input string: aabb.

In Figure 4.5, we see the string aabb being rejected by M5. Although choices

were made at several points, you can easily establish that there is no sequence

of transitions that will lead to the string aabb being accepted by M5.

The next example shows another string being rejected under different halting

conditions.

Example 3. Input string: aaabb.

As in example 2 (Figure 4.5), you can see that no sequence of transitions can be

found that would result in the input string in Figure 4.6 being accepted by M5.

The final combination of halting conditions (input exhausted,not in acceptance

state) can be achieved for the string aaba, which we saw being accepted above

(example 1). We see a sequence of transitions that will achieve these rejection

conditions for the same string later. For the moment, you may wish to discover

such a sequence for yourself.

machine not in 
acceptance (halt) state 
input not exhausted 
no transition available 
string rejected

Initial configuration

a a b b

Transitions

S

a1

a a b b

S

a2

a a b b 

3

a a b bS

C

b

S

Figure 4.5 M5 rejects the string aabb.
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4.4.3 The FSR as Equivalent to the Regular Grammar

Let us remind ourselves why we created the machine in the first place. Recall the

earlier statement about the machine being equivalent to the original grammar.

What this ought to mean is that all strings accepted by the machine are in the

language generated by the grammar (and vice versa). The problem is that, accord-

ing to the particular transition chosen in the application of rule 2 (Table 4.3),

the machine can sometimes reject a string that (like aaba in example 1, above) is

generated by the grammar. We want to say something such as: ‘‘all strings that can

be accepted by the machine are in the language generated by the grammar, and

all strings that are generated by the grammar can be accepted by the machine’’.

That is exactly what we do next.

First we say this:

l a string is acceptable if there is some sequence of transitions which lead to that

string being accepted.

machine in acceptance 
(halt) state 
input not exhausted 
no transition available 
string rejected

Initial configuration 

a a a b b

Transitions

1

a a a b b 

2

a a a b b 

3

a a a b b 

S

S A
a

A

C

a

C
a H

Figure 4.6 M5 rejects the string aaabb.
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Thus, aaba, from example 1, is acceptable, even though we could provide an

alternative sequence of transitions that would lead to the string being rejected.

On the other hand, the strings from examples 2 and 3 are not acceptable and also

cannot be generated by the grammar. You may wish to convince yourself that the

preceding statement is true.

Suppose that Gz is any regular grammar, and we call the finite state recogniser

derived from Gz’s productions Mz; we can say that the set of acceptable strings of

Mz is exactly the same as L(Gz), the language generated by the grammar Gz. The

rules we followed to produce Mz from Gz ensure that this is the case, but to

convince ourselves, let us argue the case thoroughly.

To prove that two sets (in this case, the set of acceptable strings of Mz and

L(Gz)) are equal, we have to show that all members of one set are members of

the other, and vice versa. If we carry out the first part only, we are merely

showing that the first set is a subset of the second. We need to show that each

set is a subset of the other. Only then can we be sure that the two sets are

equal.

In the following, Lz is an abbreviation for L(Gz).

Part 1. All strings in Lz are acceptable to Mz.

Let x be any sentence of Lz, such that jxj= n, where n� 1, i.e. x is a non-empty

string of length n. We can index the symbols of x, as discussed in Chapter 2,

and we write it x1,x2, ..., xn. We show that a derivation tree for x directly

represents parts of the machine Mz. A derivation tree for x is of the form shown

in Figure 4.7.

The derivation tree in Figure 4.7 can be transformed, in an obvious way, into the

diagram shown in Figure 4.8.

We can do this because each part of the derivation tree like this:

Yx

X

used a production of the form X! xY. The expansion of the lowest non-terminal

node in the tree will look like this:

x

X
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which used a production of the form X ! x (single non-terminal to single

terminal). The sequence of productions used in Figure 4.7 become, if the conver-

sion algorithm is applied, the FSR of Figure 4.8, since X1= S (the start symbol of

the grammar), and a production of the form X! x becomes an arc:

X
x

Some of the non-terminals may, of course, appear more than once in the deriva-

tion tree, and may have to be joined together (as specified in part (b) of Table 4.1).

For any sentence, x, of the language there will thus be a path in the FSR that will

accept that sentence { x is an acceptable string to Mz.

X1

X1 = S, the start
symbol of the
grammar 

x1 X2

X3x2

xn-1 Xn

xn

Figure 4.7 A derivation tree for an arbitrary regular grammar derivation.
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Part 2. All acceptable strings of Mz are in Lz.

Let x be any acceptable string of Mz. Choose any path through Mz that accepts

x. We can write out this path so that it is has no loops in it (as in Figure 4.8).

We then convert this version into a tree using the converse of the rules applied

to the derivation tree in Figure 4.7. You can easily justify that the resulting tree

will be a derivation tree for x that uses only productions of Gz. Thus, any

acceptable string of Mz can be generated by Gz and is thus in Lz.

We have shown (part 1) that every string generated by Gz is acceptable to Mz, and

(part 2) that every string acceptable to Mz is generated by Gz. We have thus

established the equivalence of Mz and Gz.

4.5 Non-determinism in Finite State Recognisers

As was pointed out above, rule 2 of the rules governing the behaviour of an FSR

(see Table 4.3) implies that there may be a choice of transitions to make when the

machine is in a given state, with a given current input symbol. As we saw in the

case of example 1, a wrong choice of transition in a given state may result in an

X1

Xn

xn–1

H

X2

x2

x1

X3

x3

xn

Figure 4.8 Conversion of the tree from Figure 4.7 into an FSR.
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acceptable string being rejected. It is not rule 2 itself that is at fault, it is the type

of machine that we may produce from a given set of productions. We will now

state this more formally.

l If a finite state recogniser/generator contains any state with two or more identi-

cally labelled outgoing arcs, we call it a non-deterministic finite state recogniser.

l If a finite state recogniser/generator contains no states with two or more iden-

tically labelled outgoing arcs, we call it a deterministic finite state recogniser.

It should be clear from this that M5, our example machine (Figure 4.3), is non-

deterministic. If a machine is deterministic, then in the process of accepting or

rejecting a string, it never has to make a choice as to which transition to take, for

a given current input symbol,when in a given state; there is only one possible

transition which can be made at that point. This considerably simplifies the

processes of parsing, as we shall see in the next section. Incidentally, we can still

use the same rules for FSR behaviour as those above, for deterministic FSRs; the

‘‘choice’’ of transition will at each point consist of only one option.

In following our rules to produce an FSR from the productions of a regular

grammar, we may create a non-deterministic machine. Remember our machine

M5 (Figure 4.3), and in particular our discussion about input string aaba. If the

wrong sequence of transitions is chosen, for example:

S to S reading an a;

S to S reading an a;

S to B reading a b;

B to C reading an a;

the machine’s halting conditions would be input exhausted, not in halt state;

indicating a rejection of what we know to be an acceptable string. This implies

that a parser that behaves in a similar way to a non-deterministic FSR might have

to try many sequences of applicable transitions to establish whether or not a

string was acceptable. Worse than this, for a non-acceptable string, the parser

might have to try all possible sequences of applicable transitions of length equal to

the length of the string before being sure that the string could indeed be rejected.

The main problem associated with non-determinism, therefore, is that it may

result in parsers that have to backtrack. Backtracking means returning to a state

of affairs (for FSRs this means to a given state and input symbol) at which a choice

between applicable transitions was made, in order to try an alternative. Back-

tracking is undesirable (and as we shall see, for regular languages it is also unne-

cessary), since
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l a backtracking parser would have to save arbitrarily long input strings in

case it made the wrong choice at any of the choice points (as it may have

made several transitions since the choice point),

and

l backtracking uses up a lot of time.

If an FSR is deterministic there is, in any given state, only one choice of transition

for any particular input symbol, which means that a corresponding parser never

has to backtrack.

4.5.1 Constructing Deterministic FSRs

It may surprise you to learn that for every set of regular productions we can

produce an equivalent deterministic FSR. As we will see, we can then use that

FSR to produce a simple, but efficient, deterministic decision program for the

language. First, we consider a procedure to convert any non-deterministic FSR

into an equivalent deterministic FSR. We will call the old machine M and the new

deterministic machine Md.

Table 4.6 presents the procedure, which is called the subset construction algo-

rithm. Our machine M5 will be used to illustrate the steps of the procedure. Table 4.6,

followed by Figures 4.9 to 4.14 show how the new machine M5
d is built up.

Continuing the execution of step 2, we will choose the state of M5
d with A and

S in it (see the note that follows step 2 of Table 4.6). This results in the partial

machine shown in Figure 4.9.

We still have states of M5
d with no outgoing arcs in Figure 4.9, so we choose

one (in this case, the one with B and C inside it). The result is shown in Figure 4.10.

Now, from Figure 4.10 we choose the state containing A, S and C, resulting in

Figure 4.11.

From Figure 4.11, we choose the state that contains A, S, C and H. The result

can be seen in Figure 4.12.

Then we choose the state in Figure 4.12 that contains only C and H. Figure 4.13

shows the outcome.

Finally, from Figure 4.13 we choose the empty state of M5
d. This state

represents unrecognised input in certain states of M5. Thus, if M5
d finds itself in

this state it is reading a string that is not in the language. To make M5
d totally

deterministic, we need to cater for the remainder (if any) of the string that caused

M5
d to reach this ‘‘null’’ state. Thus we draw an arc, for each terminal in M5’s

alphabet, leaving and immediately re-entering the null state. The final machine

is as shown in Figure 4.14.
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If the machine ever finds itself in the null state, it will never leave it, but will

continue to process the input string until the input is exhausted. It will not accept

such a string, however, since the null state is not a halt state.

The subset algorithm now terminates (see step 3 of Table 4.6), leaving us

with a totally deterministic machine, M5
d (shown in Figure 4.14) which is equiva-

lent to M5 (Figure 4.3).

Table 4.6 The subset algorithm.

Step Description

1 (a) Copy out all of the start states of M.

Note: if M was constructed from a regular grammar it will have only one start
state. However, in general, an FSR can have several start states (see later in this
chapter).

(b) If all of the states you just drew are non-acceptance states, draw a circle (or ellipse)
around them all, otherwise draw a square (or rectangle) around them all. We call
the resulting object a state of Md.

(c) Draw an unlabelled ingoing arc (see Table 4.2) to the shape you drew in (b).

Note: the result of step 1 for M5 is:
S

2 Choose any state of Md that has no outgoing arcs.

for each terminal, t, in the alphabet of M do
for each state, q, of M inside the chosen state of Md do

copy out each state of M which has an ingoing arc labelled t leaving q (but only copy
out any given state once)

endfor
if you just copied out NO states, draw an empty circle else do step 1(b) then return
here
if the state of Md you’ve just drawn contains exactly the same states of M as an existing
state of Md, rub out the state of Md you’ve just drawn
Draw an arc labelled t from the chosen state of Md to either

(i) the shape you just drew at (b)
or
(ii) the state of Md which was the same as the one you rubbed out

endfor

Note: the result of the first complete

application of step 2 to M is:

S

b

A

S

B

C

a

3 Repeat step 2 until every single state of Md has exactly one outgoing arc for each
terminal in M’s alphabet.
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We can now tidy up M5
d by renaming its states so that the names consist of

single symbols, resulting in the machine we see in Figure 4.15.

This renaming of states illustrates that the names of states in an FSR are

insignificant (as long as each label is distinct). What is important in this case is

that there is a one-to-one association between the states and arcs of the old M5
d

and the states and arcs of the renamed machine.

The null state and its ingoing and outgoing arcs are sometimes removed from

the deterministic machine, their presence being assumed. Later, we will see that

the null state in the deterministic FSR has its uses.

S

b

Aa

C
b

S

a

A

S

B

C

Figure 4.9 The subset algorithm in action (1).

S

b

Aa

C
b

S

a

A

S

B

C

H
a

b

C

Figure 4.10 The subset algorithm in action (2).
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4.5.2 The Deterministic FSR as Equivalent to the
Non-deterministic FSR

We will now convince ourselves that M5 and M5
d are equivalent. From M5

d, we

observe the following properties of acceptable strings:

S

b

Aa

C
b

S

a

A

S

B

C

H
a

b

C

C

A

S

H

a

b

a

b

Figure 4.12 The subset algorithm in action (4).

S

b

Aa

C
b

S

a

A

S

B

C

H
a

b

C

C

A

S

H

a

b

Figure 4.11 The subset algorithm in action (3).
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l if they consist of as alone, then they consist of three or more as

l they can consist of any number (� 0) of as, followed by exactly one b, followed

by one or more as.

S

b

Aa

C
b

S

a

A

S

B

C

H
a

b

C

C

A

S

H

a

b

a

b

b

a

Figure 4.13 The subset algorithm in action (5).

S

b

Aa

C
b

S

a

A

S

B

C

H
a

b

C

C

A

S

H

a

b

a

b

b

a

a, b 

Figure 4.14 The result of the subset algorithm.
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This can be described in set form:

fai : i � 3g [ faibaj : i � 0; j � 1g

You can verify for yourself that all strings accepted by the original machine (M5),

of Figure 4.3, are also described by one of the above statements.

If we establish that for any non-deterministic FSR, M, we can produce an

equivalent deterministic machine, Md, we will, for the remainder of our discussion

about regular languages, be able to assume that any FSR we discuss is determi-

nistic. This is extremely useful, as we will see.

Suppose that M is any FSR, and that Md is the machine produced when we

applied our subset method to M. We will establish two things: (1) every string

which is acceptable to M is accepted by Md; (2) every string which is accepted by

Md is acceptable to M.1

Part 1. Every acceptable string of M is accepted by Md.

Let x be an acceptable string of M. Suppose x has length n, where n � 1. We

can index the symbols in x, as discussed in Chapter 2: x1,x2, ..., xn. x is

acceptable to M, so there is a path through M, from a start state, S, to a halt

state, H, as represented in Figure 4.16.

H2

V

b

X
a

b

a
Y

W

a
b

H1
a

b

a

b

b

a

a, b 

Figure 4.15 The FSR of Figure 4.14 with renamed states { M5
d.

1 Note that this is not the only way of doing this: we could show (1) and then for (2) show
that every string that is non-acceptable to M is rejected by Md. You might like to try this
approach.
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The states on the path in Figure 4.16 are not necessarily all distinct. Also, if n = 1,

the path looks like this:

S
x

With respect to the above path through M, Md will be as represented in

Figure 4.17.

The string x, which was acceptable to M, is thus accepted by Md. The above

representation of the path taken by the string x through Md may also incorporate

any paths for the same string which result in the situations:

l input exhausted, not in halt state (the non-halt state of M reached will be

incorporated into the halt state of Md),

l input not exhausted, in halt state (other states of Md on the path in Figure 4.17

may be halt states),

and

l input not exhausted,not in halt state (M would have stopped in one of the states

contained in the non-halt states of Figure 4.17, but Md will be able to proceed

to its halt state with the remainder of the string).

S

x1

q2

xn–1

H

x2

q3

x3

xn

qn–1

Figure 4.16 How a string is accepted by an FSR.
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Part 2. Every string accepted by Md is acceptable to M.

If a string, x, is accepted by Md, the way the machine was constructed ensures

that there is only one path through Md for that string, as represented in

Figure 4.17, if, again, we index the symbols of x as x1,x2, ..., xn. Obviously

there exist one or more paths in M that will accept the string x. I leave it to you

to convince yourself of this.

Q1

x1

Q2

x2

Q3

x3

Qn–1

xn-1

xn

QH

All of the start states of M
are in here – so S is in here.

All of the 
states that 
can be
reached from 
the states in
Q1 when the 
input symbol
is x1 are in 
here – so q2
is in here. 

 

 

All of the
states that 
can be
reached from 
the states in
Q2 when the
input symbol
is x2 are in
here – so q3
is in here. 

 

 

All of the
states that can
be reached
from the states
in Qn–2 when
the input
symbol is xn–1
are in here –
so qn–1 is in
here.

All of the states
that can be
reached from the
states in Qn–1
when the input
symbol is xn are in
here – so H is in
here, and since H
is a halt state of
M, QH is a halt
state.

 

Figure 4.17 How a deterministic version of an FSR (M) accepts the string of
Figure 4.16. The states Qi represent the composite states produced by the subset

algorithm. The states qi represent the states of the original non-deterministic
machine from Figure 4.16.
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We have seen (part 1) that every string accepted by M, the non-deterministic

FSR, is accepted by Md, the deterministic version of M. Moreover, we have seen

(part 2) that every string accepted by Md is acceptable to M. M and its determi-

nistic counterpart, Md, are equivalent FSRs.

4.6 A Simple Deterministic Decision Program

The FSR is not only a more convenient representation of the productions of a

regular grammar in some respects, but, if deterministic, also represents a simple

decision program for the corresponding language. It is straightforward to convert

a deterministic FSR into an equivalent decision program. Here, we will produce a

‘‘pseudo-Pascal’’ version. A similar program was presented in Chapter 2; you may

like to examine it again.

Figure 4.18 illustrates the conversion of a deterministic FSR into a decision

program by associating parts of our deterministic machine M5
d with modules of

the program. The example should be sufficient to enable you to infer the rules

being used in the conversion.

Note that the use of quoted characters ‘a’ and ‘b’ in the program in Figure 4.18

is not meant to suggest that data types such as Pascal’s ‘‘char’’ are generally

suitable to represent terminal symbols. (A related discussion can be found in the

‘‘Solutions to Selected Exercises’’ section, in the comments concerning exercise 3

of this chapter.)

You should appreciate the importance of the null state to the construction of our

parser: without it, our program may have had no defined action in one or more of

the ‘‘case’’ statements. Whether or not the program continues to process the input

string when it reaches the null state (the code segment labelled NLL), as does our

program in Figure 4.18, is a matter of preference. In certain circumstances one may

require the program to abort immediately (with a suitable message), as soon as this

segment is entered, not bothering with any remaining symbols in the input stream

(as do some compilers). On the other hand, it may be desirable to clear the input

stream of the remainder of the symbols of the rejected string.

4.7 Minimal FSRs

Each boxed segment of the program in Figure 4.18 represents one state in the

corresponding FSR, M5
d. In general, if we were to build such a parser for a regular

language, we would like to know that our parser did not feature an unnecessarily

large number of such segments.
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Now, our program (Figure 4.18) is structured, notwithstanding misgivings

often expressed about the use of unconditional jumps. If an equally structured

program, consisting of fewer such segments, but doing the same job, could be

derived, then we would prefer, for obvious and sound reasons, to use that one. In

terms of a given FSR, the question is this: can we find an equivalent machine that

V:  read(x) 
case x of 

eos:  goto NO 
‘a’  goto X 
‘b’  goto W 

endcase 
X:  read(x) 

case x of 
eos:  goto NO 
‘a’  goto Y 
‘b’  goto W 

Y:  read(x) 
case x of 

eos:  goto NO 
‘a’  goto H1
‘b’  goto W 

W:  read(x) 
case x of 

eos:  goto NO 
‘a’  goto H2
‘b’  goto NLL 

H1:  read(x) 
case x of 

eos:  goto YES 
‘a’  goto H1
‘b’  goto W 

H2:  read(x) 
case x of 

eos:  goto YES 
‘a’  goto H2
‘b’  goto NLL 

NLL: read(x) 
case x of 

eos:  goto NO 
‘a’  goto NLL 
‘b’  goto NLL 

YES: write(“string accepted”)
exit.
NO:   write (“string rejected”)
exit.

This part of the code is added to indicate
success or failure. 

V X
a

b

W

X

W

a Y
b

Y

W

b 1
a

W
b

2a

1
W

a

b

a
b

2

a, b 

endcase 

endcase 

endcase 

endcase 

endcase 

endcase 

Figure 4.18 The correspondence between a deterministic FSR (M5
d of

Figure 4.15) and a decision program for the equivalent regular language.
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features fewer states? We will go beyond this however: we will discover a method

for producing a machine, from a given FSR, which is deterministic and uses the

smallest number of states necessary for a deterministic FSR to recognise the same

language as that recognised by the original machine. We call such a machine the

minimal FSR.

If we produce such a minimal FSR, we can be confident that the corresponding

decision program uses the smallest number of segments possible to perform the

parsing task. Of course, there may be other methods for reducing the amount of

code, but these are not of interest here.

4.7.1 Constructing a Minimal FSR

To demonstrate our method for producing minimal FSRs, we will use an FSR

derived from a new example grammar, G6, with productions:

S ! aA j bB

A! aA j bB j bD

B! bC j bB j bD

C ! cC j c

D! bC j bD:

From G6, we derive the non-deterministic FSR, M6, which is shown in Figure 4.19.

We practise our subset algorithm on the machine in Figure 4.19, to obtain

the machine in Figure 4.20(a). For convenience, we rename the states of this

deterministic machine to give us the machine in Figure 4.20(b) and which we

call M6
d.

B
b

S

A D

C

a

a b

b

b
b

b

b

b

c

c

Figure 4.19 The non-deterministic FSR, M6.
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For convenience, we omit the null state from the machines in this section.

Suppose we wished to produce a decision program for M6
d, as we did for

M5
d in the previous section. Our program would have seven segments of the

type discussed earlier, as our machine M6
d has seven states including the null

state. We will shortly see that we can produce an equivalent machine that

has only five states, but first, we present, in Table 4.7, a simple procedure

for creating the ‘‘reverse’’ machine, which will be used in our ‘‘minimisation’’

method.

Table 4.8 specifies an algorithm that uses our reverse (Table 4.7) and subset

(Table 4.6) procedures to produce a minimal machine, Mmin, from a deterministic

FSR, M.

We can demonstrate the operation of the above method on our example

machine M6
d from above (we use the one with the renamed states):

a

S

(a)

b

a

B

A

b

b

B

D

D

B

C

b

C

c

c

b

c

3 6
b

1

2 4

5

a

a b

b

b

b

c

(b)

Figure 4.20 (a) M6
d, the output of the subset algorithm for input M6; and

(b) the machine in (a) with renamed states.
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Step 1. Reverse M6
d (Figure 4.20(b)), giving the machine shown in Figure 4.21.

Step 2. Make the result of step 1 (Figure 4.21) deterministic. The result of

step 2, after renaming the states, can be seen in Figure 4.22(b).

Table 4.7 Deriving Mrev, the ‘‘reversed’’ form of an FSR, M.

Step Description

1 Let Mrev be an exact copy of M.

2 Objects of this form in M . . . . . . become objects of this form in Mrev

X Y
x

X Y
x

Note that all other parts of Mrev remain unchanged.

If L is the language recognised by M, then the language Lrev, recognised by Mrev, is L with each
and every sentence reversed.

Table 4.8 ‘‘Minimising’’ an FSR, M.

Step Description

1 Reverse M, using the method specified in Table 4.7.

2 Take the machine resulting from step 1, and apply the subset algorithm (Table 4.6) to
create an equivalent deterministic machine.

3 Reverse the result of step 2.

4 Create an equivalent deterministic machine to the result of step 3.

The result of step 4, Mmin, is the minimal finite state recogniser for the language recognised
by M. There is no deterministic FSR with fewer states than Mmin that could do the same job.
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Figure 4.21 M6
d, of Figure 4.20(b), reversed.
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Step 3. Reverse the result of step 2. The reversed version of Figure 4.22(b) can

be seen in Figure 4.23.

Note that the machine in Figure 4.23 has two start states; this is permitted in

our rules for FSR behaviour and in rule 1 of the subset algorithm. However,

this represents a non-deterministic situation, since such a machine effectively

has a choice as to which state it starts in.

Now for the final step of the minimisation process:

Step 4. Make the result of step 3 (Figure 4.23) deterministic. We obtain the

machine depicted in Figure 4.24(a).

c
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IM JKL cbba

1

2

Figure 4.22 (a) The deterministic version of Figure 4.21; and (b) the machine in
(a) with renamed states.

cba

JKL
cbba

M I

Figure 4.23 The reverse construction of Figure 4.22(b).
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The machine in Figure 4.24(b), resulting from renaming the states of the machine

in Figure 4.24(a), has been called M6
min. It is the minimal deterministic FSR for

the language recognised by M6
d.

We now see clearly that the language recognised by M6
min (and, of course, M6

and M6
d), is:

faibjck : i � 0; j � 2; k � 1g;

i.e. all sentences are of the form:

zero or more as, followed by two or more bs, followed by one or more cs.

With a little thought, we can easily justify that the machine is minimal. We must

have one state for the ‘‘zero or more as’’ part, a further two states for the ‘‘two or

more bs’’ part, and an extra state to ensure the ‘‘one or morecs’’ part.

4.7.2 Why Minimisation Works

The minimisation algorithm of Table 4.8 simply uses the subset algorithm twice,

first applying it to the reversed form of the original machine, and then to the

a

b

(a)

c

cL

M
L

J

K
K

L

b

b

I

J

cb

(b)

S BA

cbb

a

Figure 4.24 (a) The deterministic version of Figure 4.23; and (b) the machine in
(a) with renamed states, which is M6

min, the minimal version of M6.
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reversed form of the deterministic version of the original reversed form. Let us

consider why this approach produces the correct result. To do this, we focus on the

example FSR in Figure 4.25.

Making the machine in Figure 4.25 deterministic, by using our subset algo-

rithm, we merge the two paths labelled a into one. We then obtain the machine in

Figure 4.26.

Now, while the machine in Figure 4.26 is deterministic, it is not minimal.

It seems that we ought to be able to deal with the fact that, regardless of whether

the first symbol is an a or a b, the machine could get to its halt state given one c.

However, as this is not a non-deterministic situation, the subset algorithm has

ignored it.

Now, reversing the machine in Figure 4.26 yields the machine in Figure 4.27.

The ‘‘three cs situation’’ has become non-deterministic in Figure 4.27.

The subset algorithm will now deal with this, resulting in the machine of

Figure 4.28.

c

c

b

a

a
a

c

Figure 4.25 An FSR which will have a non-deterministic reverse
construction.
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Figure 4.26 A deterministic version of Figure 4.25.
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While the machine in Figure 4.28 now consists of only four states and is

deterministic, it unfortunately recognises our original language in reverse, so we

must reverse it again, giving Figure 4.29.

The Figure 4.29 machine now recognises our original language, but is non-

deterministic (it has two start states and a state with two outgoing arcs labelled a).

So, we make it deterministic again, giving the machine of Figure 4.30.

The machine in Figure 4.30 is the minimal (deterministic) machine.

The algorithm thus removes non-determinism ‘‘in both directions’’ through

the machine. Reversing a machine creates a machine that recognises the

c
b

a

a

Figure 4.28 A deterministic version of Figure 4.27.

c

c

b

a

a

a

c

Figure 4.27 The reverse construction of Figure 4.26.

cb

a

a

Figure 4.29 The reverse construction of Figure 4.28. (Note that this is also an
example of an FSR with two start states.)

4.7 Minimal FSRs 85



original language with each and every string reversed, and the subset algorithm

always results in a machine that accepts exactly the same strings as the

machine to which it is applied. Thus, making the reversed machine determinis-

tic and then reversing the result will not change the language recognised by the

machine.

There are other ways of creating a minimal FSR. One of the most popular is

based on equivalence sets. The beauty of the method we use here is that it is very

simple to specify and makes use of a method we defined earlier, i.e. the subset

algorithm. Thus, the minimisation method we have used here has a pleasing

modularity. It uses the subset and reverse methods as subroutines or components,

so to speak.

4.8 The General Equivalence of Regular
Languages and FSRs

We saw above that any regular grammar can be converted into an equivalent

FSR. In fact, the converse is also true, i.e.,

every FSR can be converted into a regular grammar.

We will consider an example showing the conversion of an FSR into regular

productions. The interesting thing about our example is that the particular

machine in question has transitions labelled e. These are called empty moves or

e moves, and enable an FSR to make a transition without reading an input

symbol. As we will see, they produce slightly different productions from the

ones we have seen up to now. We consider this observation in more detail after

working through the following example, which is based on the machine M shown

in Figure 4.31.

cb

a

c
a

Figure 4.30 Deterministic version of Figure 4.29, the minimal version of
Figure 4.25.
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The grammar that we obtain from M, in Figure 4.31, which we will call Gm, is

as follows:

S ! aA jA
A! bA j bX jY
X ! aX j e
Y ! aX j e:

Some issues are raised by the above construction:

l M can get to its halt state H1 without reading any input. Thus, e is in the

language accepted by M. As we would therefore expect, Gm generates e
(S!A!Y! e).

l The empty move from S to A becomes a production S!A. Productions of the

form x!y where x and y are both non-terminals are called unit productions,

and are actually prohibited by the definition of regular grammar productions

with which we began this chapter. However, we will see in Chapter 5 that there

is a method for removing these productions, leaving a grammar that does

conform to our specification of regular grammar productions, and generates

the same language as the original.

l M has arcs leaving halt states, and has more than one halt state. We saw above

that the subset algorithm produces machines with these characteristics. In any

case, there is nothing in the definition of the FSR that precludes multiple halt or

start states. Where there is an arc leaving a halt state, such as the arc labelled a

leaving H2, the machine could either halt or read an a. Halting in such a

situation is exactly the same as an empty move, so in the grammar the H2

situation becomes Y!aX j e, where Y represents H2 and X represents H1.

I leave it to you to convince yourself that L(Gm) is identical to the language

accepted by M, and that the way the productions of Gm were obtained from M

b

H1

AS

a

a

H2

b

a

Figure 4.31 An FSR, M, with ‘‘empty moves’’ (‘‘e moves’’).
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could be applied to any FSR, no matter how complex, and no matter how many

empty moves it has. In the above machine, the start state was conveniently

labelled S. We can always label the states of an FSR how we please; a point

made earlier in this chapter. Note that, for FSRs with more than one start state

we can simply introduce a new single start state, with outgoing arcs labelled e
leaving it and directly entering each state that was a start state of the original

machine (which we then no longer class as start states). Then the machine can be

converted into productions, as was M, above.

The above should convince you that the following statement is true:

for any FSR, M, there exists a regular grammar, G, which is such that L(G),

the language generated by G, is equal to the set of strings accepted by M.

Our earlier result that for every regular grammar there is an equivalent FSR

means that if we come across a language that cannot be accepted by an FSR, we

know that we are wasting our time trying to create a regular grammar to

generate that language. As we will see in Chapter 6, there are properties of the

FSR that we can exploit to establish that certain languages could not be

accepted by the FSR. We now know that if we do this, we have also established

that we could not define a regular grammar to generate that language. Con-

versely, if we can establish that there is no regular grammar to generate a given

language, we know it is pointless attempting to create an FSR, or a parser of

‘‘FSR-level-power’’, like the decision program earlier in the chapter, to accept

that language.

4.9 Observations on Regular Grammars and
Languages

The properties of regular languages described in this chapter make them very

useful in a computational sense. We have seen that simple parsers can be con-

structed for languages generated by a regular grammar. We have also seen how we

can make our parsers extremely efficient, by ensuring that they are deterministic,

reduced to the smallest possible form, and reflect a modular structure. We have

also seen that there is a general equivalence between the FSRs and the regular

languages.

Unfortunately, the simple structure of regular grammars means that they can

only be used to represent simple constructs in programming languages, for exam-

ple basic objects such as identifiers (variable names) in Pascal programs. In fact,

the definition of Pascal ‘‘identifiers’’ given in context free form in Chapter 2 could

be represented as a regular grammar. The regular languages can also be
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represented as symbolic statements known as regular expressions. These are not

only a purely formal device, but are also implemented in text editors such as ‘‘vi’’

(Unix) and ‘‘emacs’’.

We will defer more detailed discussion of the limitations of regular grammars

until Chapter 6. In that chapter we show that even a language as simple as faibi:

i � 1g, generated by the two-production context free grammar S !aSb j ab

(grammar G3 of Chapters 2 and 3) is not regular. If such a language cannot be

generated by a regular grammar, then a regular grammar is not likely to be

capable of specifying syntactically valid Pascal programs, where, for example, a

parser has to ensure that the number of begins is the same as the number of ends.

In fact, when it comes to programming languages, the context free grammars as a

whole are much more important.2 Context free grammars and context free

languages are the subject of the next chapter.

EXERCISES

For exercises marked ‘‘†’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’at the end of the book.

4.1. Construct FSRs equivalent to the following grammars. For each FSR

briefly justify whether or not the machine is deterministic. If the

machine is non-deterministic, convert it into an equivalent determi-

nistic machine.

(a) y

S ! aA

A! aS j aB

B! bC

C ! bD

D! b j bB

Note: This is the grammar from Chapter 2, exercise 1(a).

2 Bear in mind that the class of the context free grammars includes the class of the regular
grammars.
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(b)

S ! aA j aB j aC

A! aA j aC j bC

B! aB j cC j c

C ! cC j c

(c) Grammar G1 from Chapter 2, i.e.

S ! aS j bB

B! bB j bC j cC

C ! cC j c

4.2. Given the FSR in Figure 4.32,

(a) Produce a minimal version.

(b) Construct an equivalent regular grammar.

Hint: it is often more straightforward to use the original, non-

deterministic machine (in this case, the one in Figure 4.32) to

obtain the productions of the grammar, i.e., we write down the

productions that would have given us the above machine according

to our conversion rules.

4.3.y Design suitable data structures to represent FSRs. Design a program

to apply operations such as the subset method and the minimisation

algorithm to FSRs.

a

6

42
a a

b

1

3

a

5a

b
a

b

b b

Figure 4.32 A finite state recogniser.
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4.4 The subset algorithm is so called because each new state of Md, the

deterministic machine, produced contains a subset of the states of M.

An algorithm is a procedure that always terminates for valid inputs.

Consider why we can be sure that the subset procedure will terminate,

given any non-deterministic machine as its input, and thus deserves

to be called an algorithm.

Note: this has something to do with the necessary limit on the number of

new, composite states that can be created by the procedure.This point

is explored in more detail in Chapter 12.
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5
Context Free Languages and Pushdown

Recognisers

5.1 Overview

This chapter considers context free grammars (CFG s) and context free languages

(CFL s).

First, we consider two methods for changing the productions of CFGs without

changing the language they generate. These two methods are:

l removing the empty string (e) from a CFG

l converting a CFG into Chomsky Normal form.

We find that, as for regular languages, there is an abstract machine for the CFLs

called the pushdown recogniser (PDR), which is like a finite state recogniser

equipped with a storage ‘‘device’’ called a stack.

We consider:

l how to create a non-deterministic PDR from a CFG

l the difference between deterministic and non-deterministic PDRs

l deterministic and non-deterministic CFLs

l the implications of the fact that not all CFLs are deterministic.

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 5, � Springer-Verlag London Limited 2008



5.2 Context Free Grammars and Context Free
Languages

Recall from Chapter 2 that the context free grammars (type 2 in the Chomsky

hierarchy) are Phrase Structure Grammars (PSGs) in which each and every

production conforms to the following pattern:

x! y; x 2 N; y 2 ðN [ T Þ� i:e: x is a singlenon-terminal; and y is an

arbitrary (possibly empty) mixture of

terminals and=ornon-terminals:

So, the grammar G2 of Chapter 2, i.e.,

S ! aB j bA j e

A! aS j bAA

B! bS j aBB

is context free. If G is a CFG, then L(G), the language generated by the grammar

G, is a context free language (CFL).

We will consider a further example CFG, G7:

S ! ABC

A! aAb jB

B! bB j e

C ! ccC jB

LðG7Þ ¼ fahbic2jbk : h; j; k � 0; i � hg; i:e:; 0 or more as followed by at least as

many bs; followed by an even number of

ðor noÞ cs; followed by 0 or more bs;

as you may like to justify for yourself. You may arrive at a different, though equi-

valent, set definition; if so, check that it describes the same set as the one above.

5.3 Changing G without Changing L(G)

The purpose of this section is to show how one can modify the productions of a

CFG in various ways without changing the language the CFG generates. There

are more ways of modifying CFGs than are featured here, but the two methods
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below are relatively simple to apply. The results of this section serve also to

simplify various proofs in Chapter 6.

5.3.1 The Empty String (e)

Our example grammar G7, above, features the empty string (e) on the right-hand

side of one of its productions. The empty string often causes problems in parsing

and in terms of empty moves in finite state recognisers (FSRs), as was noted in

Chapter 3. For parsing purposes, we would prefer the empty string not to feature

in our grammars at all. Indeed, you may wonder whether the empty string

actually features in any ‘‘real world’’ situations, or if it is included for mathema-

tical reasons. Consider, for example string concatenation, where e can be consid-

ered to play a similar part as 0 in addition, or 1 in multiplication.

The empty string has its uses, one of these being in the definition of pro-

gramming languages. Pascal, for example, allows a <statement> to be empty

(i.e., a statement can be an empty string). Such ‘‘empty’’ statements have their

practical uses, such as when the programmer leaves empty ‘‘actions’’ in a case

statement, or an empty else action in an if statement, to provide a placeholder

for additional code to be entered later as needed. Note, however, that the empty

string is not a sentence of the Pascal language. The Pascal syntax does not allow

for an empty<program>, and thus, according to the definition of the language,

an empty source code file should result in an error message from the Pascal

compiler.

It turns out that for CFGs we can deal with the empty string in one of two

ways. Firstly, for any phrase structure grammar (see Chapter 2), G, we can, by

applying the rules we are about to see, remove e altogether from the productions,

except for one special case which we discuss later. We will need the terminology

defined in Table 5.1 to discuss the empty string in CFGs. The table also features

examples based on grammar G7 from above.

Table 5.1 Terminology for discussing the empty string in grammars.
Term Definition Examples from G7

e production Any production with e on the right-hand side B! e
e-generating
non-terminal

Any non-terminal, X, which is such that

X¼)�e
(i.e. any non-terminal from which we can
generate the empty string)

S, A, B, and C

since we can have:
S¼)ABC and
A¼)B¼)e and
C¼)B¼)e

e-free production Any production which does not have e on the
right-hand side

All productions
except B!e

5.3 Changing G without Changing L(G) 95



The method for removing e productions from a grammar is described in

Table 5.2. On the right of the table, we see the method applied to grammar G7.

You should verify for yourself that the new grammar, which in Table 5.2 is

called G8, generates exactly the same set of strings as the grammar with which we

started (i.e., G7).

Referring to Table 5.2, at step 3, the productions added to the set Y were

necessary to deal with cases where one or more non-terminals in the original

productions could have been used to generate e. For example, we have the

production S ! ABC. Now in G7, the B could have been used to generate e, so

we need to cater for this by introducing the production S!AC. Similarly, both the

A and the C could have been used to generate e, so we need a production S!B,

and so on. Of course, we still need to include S! ABC itself, because, in general,

the e-generating non-terminals may generate other things apart from e as they do

in our example).

Table 5.2 How to remove e from a CFG.
Op. No Operation description As applied to G7

1 Put all the e-generating
non-terminals into a set,
call the set X

S, A, B, C set X

2 Put all the e-free
productions into another
set, call the set Y

S → ABC 
A → aAb | B 
B → bB 
C → ccC | B

set Y

3 For each production, p, in
Y, add to Y any e-free
productions we can make
by omitting one or more of
the non-terminals in X
from p’s right-hand side

S → ABC | AB | AC | BC | A | B | C 
A → aAb | B | ab 
B → bB | b 
C → ccC | cc | B new set Y

4 ONLY DO THIS IF S IS A
MEMBER OF SET X:
4.1 Replace the non-

terminal S throughout
the set Y , by a new non-
terminal, A, which is
not in any of the
productions of Y

4.2 Put the productions
S!A j e

into Y

S → Z | ε
Z → ABC | AB | AC | BC | A | B | C 
A → aAb | B
B → bB | b 
C → ccC | cc | B

new set Y
(G8) 
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Note that step 4 of Table 5.2 is only applied if e is in the language generated

by the grammar (in formal parlance, if e 2 LðGÞÞ. This occurs only when S itself

is an e-generating non-terminal, as it is in the case of G7. If S is an e-generating

non-terminal for a grammar G, then obviously e is in L(G). Conversely, if S is not

such a non-terminal, then e cannot be in the language. If we applied step 4 to a

grammar for which e is not in the corresponding language, the result would be a

new grammar that did not generate the same language (it would generate the

original set of strings along with e, formally LðGÞ [ fegÞ.
Alternatively, if we did not apply step 4 to a grammar in which S is an

e-generating non-terminal, then we would produce a grammar which generated

all the strings in L(G) except for the string e (formally L(G){ feg). We must always

take care to preserve exactly the set of strings generated by the original grammar.

If we were to apply the above rules to a regular grammar, the resulting

grammar would also be regular. This concludes a discussion in Chapter 4 suggest-

ing that the empty string in regular grammars need not be problematical.

For parsing, the grammars produced by the above rules are useful, since at

most they contain one e{production, and if they do it is S!e. This means that

when we parse a string x:

l if x is non-empty, our parser need no longer consider the empty string; it will

not feature in any of the productions that could have been used in the deriva-

tion of x,

l if, on the other hand, x = e, either our grammar has the one e production S! e,
in which case we accept x, or the grammar has no e productions, and we simply

reject it.

For parsing purposes our amended grammars may be useful, but there may be

reasons for leaving the empty string in a grammar showing us the structure of,

say, a programming language. One of these reasons is readability. As we can see,

G8 consists of many more productions (16) than does the equivalent G7 (7), and

thus it could be argued that G7 is more readily comprehensible to the reader.

A format for grammars that is useful for a parser may not necessarily support one

of the other purposes of grammars, i.e., to show us the structure of languages.

To complete this section, we will consider a further example of the removal of

e productions from a CFG. In this case e is not in the language generated by the

grammar. Only a sketch of the process will be given; you should be able to follow

the procedure by referring to the rules in Table 5.2.

The example grammar, G9, is as follows:

S ! aCb

C ! aSb j cC j e:

5.3 Changing G without Changing L(G) 97



In this case, the only e-generating non-terminal is C. S cannot generate e, as any

string it generates must contain at least one a and one b. The new productions we

would add are S!ab and C!c, both resulting from the omission of C. Step 4 of

Table 5.2 should not be applied in this case, as S is not e generating. The final

amended productions would be:

S ! aCb j ab

C ! aSb j cC j c

A set definition of the language generated by this grammar, which, of course, is

exactly the same as L(G9), is:

fa2iþ1cjb2iþ1 : i; j � 0g i.e., a non-zero odd number of as; followed by 0

or more cs; followed by the same number of bs

as there were as:

5.3.2 Chomsky Normal Form

Once we have removed the empty string (e) from a context free grammar,

isolating it if necessary in one production, S! e, there are various methods for

transforming the e{free part of G while leaving L(G) unchanged. One of the

most important of these methods leaves the productions in a form we call

Chomsky Normal Form (CNF). This section briefly describes the method

for converting a CFG into CNF by presenting a worked example. The fact

that we can assume that any CFG can be converted into CNF is useful in

Chapter 6.

As an example grammar, we use part of G8 (the e-free version of G7), and

assume in this case that Z is the start symbol:

Z ! ABC jAB jAC jBC jA jB jC

A! aAb jB

B! bB j b

C ! ccC j cc jB:

The method to ‘‘Chomskyfy’’ a grammar is as follows. There are three steps,

as now explained.
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Step 1: Unit productions.

Unit productions were briefly introduced in Chapter 4. A unit production is a

production of the form: x!y, where x and y are single non-terminals. Thus, G8

has the following unit productions:

Z ! A jB jC
A! B

C ! B:

To help us deal with the unit productions of G8, we draw the structure shown

in Figure 5.1. This represents all derivations that begin with the application of

a unit production and end with a string that does not consist of a single non-

terminal (each path stops the first time such a string is encountered).

The structure in Figure 5.1 is not a tree, but a graph (in fact, like an FSR, it is a

directed graph, or digraph). We can call the structure a unit production graph. It

could be drawn as a tree if we repeated some nodes at lower levels (in the graph

in Figure 5.1 we would repeat B beneath A and beneath C). However, such a

representation would not be so useful in the procedure for creating new non-unit

productions described below.

Some unit production graphs we draw may lead to even more circular (‘‘cyclical ’’),

situations, as in the example in Table 5.3.

Z

A B C

aAb bB b ccC cc

Figure 5.1 The unit production graph for grammar G8.

Table 5.3 Example productions and a corresponding
unit production graph.
Example productions Resulting graph

S! aS jB
B! bS jA jC
A! a jC
C! bA jS jB

S

aS B

bS A C

bAa
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We now continue with our initial example. From the unit production graph for

G8 (Figure 5.1) we obtain:

l every possible non-unit production we can obtain by following a direc-

ted path from every non-terminal to every node that does not consist of

a single non-terminal, where each production we make has a left-hand

side that is the non-terminal we started at, and a right-hand side that is

the string where we stopped.

So, from our unit production graph for G8 in Figure 5.1, we obtain the following

productions (those crossed out are already in G8, so we need not add them):

Z ! bB j b j aAb j ccC j cc fby following all paths fromZg

A! aAb j bB j b fby following all paths from Ag

B! bB j b f. . . from Bg

C ! ccC j cc j bB j b f. . . and from Cg:

We remove all of the unit productions from the grammar and add the new

productions to it, giving G8(a) (new parts are underlined):

Z ! ABC jAB jAC jBC j bB j b j aAb j ccC j cc

A! aAb j bB j b

B! bB j b

C ! ccC j cc j bB j b:

You should perhaps take a moment to convince yourself that the terminal strings we can

generate from G8(a) are exactly the same as those we can generate starting from Z in G8

(remember that Z is the start symbol, in this case). Observe, for example, that from the

initial grammar, we could perform the derivation Z¼)A¼)B¼)C¼) ccC. Using

G8(a), this derivation is simply Z¼) ccC¼) cccc.

In Chapter 4, with reference to the conversion of an arbitrary finite state

recogniser into regular grammar productions, we noted that empty moves in an

FSR (transitions between states that require no input to be read, and are thus

labelled with e) correspond to unit productions. You can now see that if we

applied step 1 of ‘‘Chomskyfication’’ to the e-free part of a regular grammar

containing unit productions, we would obtain a grammar that was also regular.

Step 1 is now complete, as unit productions have been removed. We turn now to

step 2.
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Step 2: Productions with terminals and non-terminals on the right-hand side, or

with more than one terminal on the right-hand side.

Our grammar G8(a) now contains no unit productions. We now focus on the

productions in G8(a) described in the title to this step. These productions we call

secondary productions. In G8(a) they are:

Z ! bB j aAb j ccC j cc

A! aAb j bB

B! bB

C ! ccC j cc j bB:

To these productions we do the following:

l replace each terminal, t, by a new non-terminal, N, and introduce a new

production N! t, in each case.

So, for example, from A!aAb j bB, we get:

A! JAK jKB

J ! a

K ! b:

Now we can use J and K to represent a and b, respectively, throughout our step 2

productions, adding all our new productions to G8(a) in place of the original step 2

productions. Then we replace c by L in all the appropriate productions, and

introduce a new production L! c. The result of this we will label G8(b):

Z ! ABC jAB jAC jBC j b jKB j JAK jLLC jLL

A! JAK jKB j b

B! KB j b

C ! LLC jLL jKB j b

J ! a

K ! b

L! c:

The new productions are again underlined. You can verify that what we have

done has not changed the terminal strings that can be generated from Z.

We are now ready for the final step.
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Step 3: Productions with more than two non-terminals on the right-hand side.

After steps 1 and 2, all our productions will be of the form:

x! y orx! z where y consists of two or more non-terminals

and z is a single terminal:

As the step 3 heading suggests, we now focus on the following productions

of G8(b):

Z ! ABC j JAK jLLC

A! JAK

C ! LLC:

:
As an example consider Z!ABC. It will not affect things if we introduce a new

non-terminal, say P, and replace Z!ABC by:

Z ! AP

P ! BC;

the G8(b) derivation Z¼) ABC would then involve doing: Z¼) AP¼) ABC.

As P is not found anywhere else in the grammar, this will not change any of the

terminal strings that can be derived. We treat the rest of our step 3 productions

analogously, again replacing the old productions by our new ones, and using a

new non-terminal in each case. This gives us the grammar G8(c):

Z ! AP jAB jAC jBC j b jKB j JQ jLR jLL

P ! BC

Q! AK

R! LC

A! JT jKB j b

T ! AK

B! KB j b

C ! LU jLL jKB j b

U ! LC

J ! a

K ! b

L! c:
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(Changed and new productions have once again been indicated by underlining.)

The resulting grammar, G8(c), is in Chomsky normal form.

It is important to appreciate that, unlike in G8, step 3 productions may include

right-hand sides of more than three non-terminals. For example, we may have a

production such as

E ! DEFGH:

In such cases, we split the production up into productions as follows:

E ! DW where W;X and Y are new non-terminals, not found

W ! EX anywhere else in the grammar:

X ! FY

Y ! GH

A derivation originally expressed as E¼)DEFGH would now involve the

following:

E¼)DW¼)DEX¼)DEFY¼)DEFGH:

From this example, you should be able to induce the general rule for creating

several ‘‘two-non-terminals-on-the-right-hand-side’’ productions from one ‘‘more-

than-two-non-terminals-on-the-right-hand-side’’ production.

If we apply steps 1, 2 and 3 to any e-free CFG, we obtain a CFG where all

productions are of the form

x !y or x !uv, where y is a single terminal, and x, u and v are single non-

terminals.

A CFG like this is said to be in Chomsky normal form (CNF).

It should therefore be clear that any e-free CFG can be converted into CNF.

Once the e-free part of the grammar has been converted into CNF, we need to

include the two productions that resulted from step 4 of the method for removing

the empty string (Table 5.2), but only if step 4 was carried out for the grammar. In

the case of G8, step 4 was carried out. To arrive at a grammar equivalent to G8 we

need to add the productions S! e and S!Z to G8(c), and once again designate S

as the start symbol.

It is very useful to know that any CFG can be converted into CNF. For

example, we will use this ‘‘CNF assumption’’ to facilitate an important proof in

the next chapter. In a CFG in CNF, all reductions will be considerably simplified, as

the right-hand sides of productions consist of single terminals or two non-terminals.
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A parser using such a grammar need only examine two adjacent non-terminals or

a single terminal symbol in the sentential form at a time. This simplifies things

considerably, since a non-CNF CFG could have a large number of terminals and/or

non-terminals on the right-hand side of some of its productions.

A final point is that if the CFG is in CNF, any parse tree will be such that

every non-terminal node expands into either two non-terminal nodes or a single

terminal node. Derivations based on CNF grammars are therefore represented by

binary trees. A binary tree is a tree in which no node has more than two outgoing

arcs. A parser written in Pascal could use a three-field record to hold details of

each non-terminal node that expands into two non-terminals (one field for the

node’s label, and two pointers to the two non-terminals into which the non-

terminal expands). A single type of record structure would therefore be sufficient

to represent all of the non-terminal nodes of the parse tree.

5.4 Pushdown Recognisers

In Chapter 4, we saw that from any regular grammar we can build an abstract

machine called a finite state recogniser. The machine is such that it recognises

every string (and no others), that is generated by the corresponding grammar.

Moreover, for any finite state recogniser we invent we can produce an equivalent

regular grammar. It was also said (though it will not be proved until Chapter 6)

that there is at least one language, faibi :i� 1g, that cannot be recognised by any

finite state recogniser (and therefore cannot be generated by a regular grammar),

which nevertheless we have seen to be context free.

In terms of the processing of the context free languages, the problem with the

finite state recogniser is that it has no memory device: it has no way of ‘‘remem-

bering’’ details about the part of the string it has processed at a given moment in

time. This observation is crucial in several results considered in this book. The

FSR’s only memory is in terms of the state it is in, which provides limited

information. For example, if a finite state recogniser wishes to ‘‘count’’ n symbols,

it has to have n states with which to do it. This immediately makes it unsuitable

even for a simple context free language, such as faibi :i � 1g, that requires a

recogniser to be able to ‘‘count’’ a number of as that cannot be predicted in

advance, so that it can make sure that an equal number of bs follows.

It turns out that with the addition of a rudimentary memory device called a

stack, the finite state recogniser can do the job for context free languages that the

finite state recogniser can do for regular languages. We call such an augmented

finite state recogniser a pushdown recogniser (PDR). Before we examine these

machines in detail, we need to be clear about what is meant by a stack.

104 5. Context Free Languages and Pushdown Recognisers



5.4.1 The Stack

A stack is simply a linear data structure that stores a sequence of objects. In terms

of this chapter, these ‘‘objects’’ are symbols from a formal alphabet. The stack can

only be accessed by putting an object on, or removing an object from, one end of

the stack that is usually referred to as the top of the stack. The stack has a special

marker (?), called the stack bottom marker which is always at the bottom of the

stack. We use a diagrammatic representation of a stack as shown in Figure 5.2.

Formally, our stacks are really strings that have the symbol ? at the rightmost

end, and to which we can add or remove symbols from the leftmost end.

Figure 5.3 specifies the operations PUSH and POP that are needed by our

machines.

However, note that we cannot POP anything from an empty stack. We have

defined a destructive POP, in that its result is the top element of the stack, but its

side effect is to remove that element from the stack. Finally, observe from Figure 5.4

that pushing the empty string onto the stack leaves the stack unchanged.

The stacks in this chapter are used to store strings of terminals and non-

terminals, such that each symbol in the string constitutes one element of the stack.

For convenience, we allow PUSH(abc), for example, as an abbreviation of PUSH(c)

followed by PUSH(b) followed by PUSH(a). Given that, as stated above, our stacks

are really strings, we could have defined POP and PUSH as formal string functions.

Stacks are important data structures and have many applications throughout

computer science. A related data structure you may encounter (though we have

no cause to use it in this book) is called a queue. A queue is like a stack, except

that, as its name suggests, items are added to one end, but taken from the other.

5.4.2 Constructing a Non-deterministic PDR

The rules we introduce in this section (in Table 5.4) will produce a non-deterministic

PDR (NPDR) from the productions of any context free grammar. As for finite state

⊥

b

a

b

a

Stack bottom
marker

Top of stack

Figure 5.2 A stack. Symbols can only be added to, and removed from, the top.
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recognisers, the PDR has a pictorial representation. However, due to the additional

complexity of the PDR resulting from the addition of the stack, the pictorial form

does not provide such a succinct description of the language accepted by a PDR

as it does in the case of the FSR. The rules in Table 5.4 convert any CFG, G, into a

three-state NPDR.

The acceptance conditions for the NPDR, given some input string, x, are

specified in Table 5.5.

As for FSRs (Chapter 4), we assert that the set of all acceptable strings of an

NPDR derived from a grammar, G, is exactly the same as L(G). We are not going

to prove this, however, because as you will be able to see from the examples we

consider next, it is reasonably obvious that any PDR constructed by using rules in

Table 5.4 will be capable of reproducing any derivation that the grammar could

have produced. Moreover, the PDR will reach a halt state only if its input string is

a sentence that the grammar could derive. However, if you want to try to prove

this, it makes a useful exercise.

⊥

b

a

b

a

push(c)

⊥

b

a

b

a

c

⊥

b

a

b

a

pop()

⊥

b

a

b

a
Value returned is
symbol that was
on top of stack

Top symbol has
gone

New
top
symbol

Figure 5.3 ‘‘push’’ and ‘‘pop’’ applied to the stack of Figure 5.2.
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5.4.3 Example NPDRs, M3 and M10

Let us now produce an NPDR from the grammar G3 that we encountered earlier,

i.e.,

S ! aSb j ab:

Figure 5.5 shows the transitions produced by each rule (the rule number applied is

in the upper right-hand corner of each box).

Figure 5.6 shows the connected machine (we have simply joined the appro-

priate circles together).

As in the previous chapter, we show the correspondence between the grammar

and the machine by using the same subscript number in the name of both. We now

investigate the operation of such a machine, by presenting M3 with the input

string a3b3. G3 can generate this string, so M3 should accept it. The operation of

M3 on the example string is shown in Table 5.6. Table 5.6(a) shows M3’s initial

configuration, while Tables 5.6(b) and 5.6(c) show the machine’s behaviour,

eventually accepting the string in Table 5.6(c).

Notice in Tables 5.6(b) and 5.6(c) how either of the transitions derived from

the productions S!aSb and S! ab can be applied any time we have S on the top

⊥

b

a

b

a

push(ε)

⊥

b

a

b

a

⊥

b

a

b pop(ε)

⊥

b

a

b

Not allowed –
cannot pop ε

Stack is
unchanged

a a

Figure 5.4 ‘‘push’’ and ‘‘pop’’ and the empty string (e).
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Table 5.4 How to create an NPDR from a CFG.
Step Actions Comments

1 We always begin with

1 2
ε /⊥ /S⊥

where S is the start symbol of the
grammar.

Note that state 1 is the start state.

The meaning of the labels on the arcs can be
appreciated from the following:

A B
a/b/x

which means: if in state A, about to read a, and
there is a b on top of the stack, a transition can
be made to state B, with the symbol b being
popped off the stack, and then the string x being
pushed onto the stack.
When strings are PUSHed, for example,
PUSH(efg) is interpreted as PUSH(g) then
PUSH(f) then PUSH(e).
So, the transition introduced in step 1 means:
‘‘when in state 1, without reading any input, and
POPping the stack bottom marker off the
stack, PUSH the stack bottom marker back on
the stack, then push S onto the stack, then go to
state 2’’.

2 (a) For each production of G, x!y,
introduce a transition:

2

ε/x/y

So, in state 2, we will have a situation where the
left-hand side (i.e. non-terminal symbol) of any
production of G that is at the top of the stack
can be replaced by the right-hand side of that
production.

Again, all of these transitions are made without
affecting the input string.
As you may be able to see, the machine will
operate by modelling derivations that could be
carried out using the grammar.

(b) For each terminal symbol, t,
found in the grammar, G,
introduce a transition:

2

t/t/ε

Still in state 2, we now will have a situation
where if a given terminal symbol is next in the
input, and also on top of the stack, we can read
the symbol from the input, and remove the one
from the top of the stack (i.e. the effect of
POPping the symbol off and then PUSHing e).
These transitions allow us to read input
symbols only if they are in the order that would
have been produced by derivations made by the
grammar (ensured by the transitions
introduced by rule 2a).

3 Introduce a transition:

2 H
ε /⊥ /⊥

In state 2, we can move to the halt state (again
represented as a box), only if the stack is empty.
We make this move without reading any input,
and we ensure that the stack bottom marker is
replaced on the stack.
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of the stack. There are in fact (infinitely) many sequences of transitions that can

be followed, but most of them will lead to a non-acceptance state.

We complete this section by considering a further example, this time a

grammar that is equivalent to grammar G2, of Chapters 2 and 3. G2 is:

S ! aB j bA j e

A! aS j bAA

B! bS j aBB:

However, our example, G10, below has been constructed by applying our rules for

removing the empty string (Table 5.2) to G2. You should attempt this construc-

tion as an exercise.

Table 5.5 The acceptance conditions for the NPDR.
The machine begins in the start state, with the stack containing only the stack bottom marker,?.

If there is a sequence of transitions by which the machine can reach its halt state, H, and on doing
so, the input is exhausted and the stack contains only the stack bottom marker, ?, then the
string x is said to be acceptable.

1 2
ε /⊥ /S⊥

1
2

ε /S/ab
ε /S/aSb

2a

2b
2

a/a/ε
b/b/ε

3

2 H 
ε /⊥ /⊥

Figure 5.5 Creating a non-deterministic pushdown recogniser (PDR)
for grammar G3.

1 2
ε /⊥ /S⊥

ε /S/ab
ε /S/aSb
a/a/ε
b/b/ε

H
ε /⊥ /⊥

Figure 5.6 The NPDR, M3.
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Table 5.6(a) An initial configuration of the NPDR, M3.

Initial state Initial stack Input

1 a a a b b b

Table 5.6(b) Trace of M3’s behaviour (part 1), starting from the
intial configuration in Table 5.6(a).

Transition

2

ε /S/aSb

1 2
ε/⊥ /S⊥

2

a/a/ε

2

ε/S/aSb

2

a/a/ε

Input

a a a b b b

a a a b b b

a a a b b b

a a a b b b

a a a b b b

Resulting stack

⊥

S

⊥

b

S

a

b

S

⊥

b

b

S

a

⊥

b

b

S

⊥
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G10’s productions are as follows:

S ! e jX

X ! aB j bA

A! aX j a j bAA

B! bX j b j aBB:

We now apply the rules for creating the equivalent NPDR, resulting in the machine

M10, shown in Figure 5.7.

Table 5.6(c) Trace of M3’s behaviour (part 2), continuing from Table 5.6(b)

Transition Resulting stack Input

Input exhausted, in halt state, therefore input string accepted.

2
ε /S/ab a a a b b b 

2

a/a/ε
a a a b b b 

2

b/b/ε
a a a b b b 

2

b/b/ε
a a a b b b 

2 H
ε /⊥ /⊥

2

b/b/ε a a a b b b 

⊥

b

b

⊥

b

b

b

a

⊥

b

b

b

⊥

b

⊥

⊥ a a a b b b 

5.4 Pushdown Recognisers 111



Note that, unlike M3, M10 will accept the empty string (since it allows S at

the top of the stack to be replaced by e), as indeed it should, as e 2 LðG10Þ { it is

one of the sentences that can be derived by G10. However, e 62 L (G3), i.e. the

empty string is not one of the strings that can be derived from the start symbol

of G3.

I now leave it to you to follow M10’s behaviour on some example strings. You

are reminded that L(G10) is the set of all strings of as and bs in any order, but in

which the number of as is equal to the number of bs.

5.5 Deterministic Pushdown Recognisers

For the FSRs, non-determinism is not a critical problem. We discovered in

Chapter 4 that for any non-deterministic FSR we could construct an equivalent,

deterministic FSR. The situation is different for PDRs, as we will see. First, let us

clarify how non-determinism manifests itself in PDRs. In PDRs, two things

determine the next move that can be made from a given state:

1. the next symbol to be read from the input,

and

2. the symbol currently on top of the stack.

If, given a particular instance of 1 and 2, the machine has transitions that would

allow it to:

A. make a choice as to which state to move to,

or

B. make a choice as to which string to push onto the stack

(or both), then the PDR is non-deterministic.

1 2
ε /⊥ /S⊥

ε/S/ε
ε/S/X
ε/X/aB
ε/X/bA
ε/A/aX
ε/A/bAA
ε/A/a

H
ε /⊥ /⊥

ε/B/bX
ε/B/aBB
ε/B/b
a/a/ε
b/b/ε

Figure 5.7 The NPDR, M10.
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On the other hand, a deterministic pushdown recogniser (DPDR), is such that

l in any state, given a particular input symbol and particular stack top symbol,

the machine has only one applicable transition.

The question we consider here is: for any NPDR, can we always construct an

equivalent DPDR? We saw in Chapter 4 that the answer to the corresponding

question for FSRs was ‘‘yes’’. For PDRs however, the answer is more like ‘‘in

general no, but in many cases, yes’’. We shall see that the ‘‘many cases’’ includes

all of the regular languages and some of the proper CFLs (i.e. languages that are

context free but not regular). However, we shall also see that there are some

languages that are certainly context free, but cannot be recognised by a DPDR.

5.5.1 M3
d, a Deterministic Version of M3

First, we consider context free languages that can be recognised by a DPDR.

The language:

A ¼ faibi : i � 1g;

is not regular, as was stated earlier and will be proved in Chapter 6. However, A is

certainly context free, since it is generated by the CFG, G3. Above, we con-

structed an NPDR (M3) for A, from the productions of G3 (see Figure 5.6).

However, we can see that any sentence in the language A consists of a number

of as followed by the same number of bs. A deterministic method for accepting

strings of this form might be:

l PUSH each a encountered in the input string onto the stack until a b is

encountered, then POP an a off the stack for each b in the input string.

The DPDR M3
d, shown in Figure 5.8, uses the above method.

In Table 5.6 we traced the operation of the NPDR M3 for the input a3b3. We

now trace the operation of M3
d for the same input. Table 5.7(a) shows the initial

configuration of M3
d, Table 5.7(b) shows the behaviour of the machine until it

accepts the string.

1 2
a/⊥ /a⊥

a/a/aa

H 
b/a/ε

3

b/a/ε

ε /⊥ /⊥

Figure 5.8 The DPDR, M3
d.
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Table 5.7(b) Trace of M3
d’s behaviour, starting from the initial

configuration in Table 5.7(a).

Transition Resulting stack Input

Input exhausted, in halt state, stack empty, therefore string accepted.

a a a b b b
1 2

a/⊥ /a⊥

⊥

a

a a a b b b
2

a/a/aa

⊥

a

a

a a a b b b
2

a/a/aa

⊥

a

a

a

2 3
b/a/ε a a a b b b

⊥

a

a

3

b/a/ε ⊥

a a a a b b b

3

b/a/ε
⊥ a a a b b b

3 H
ε /⊥ /⊥

⊥ a a a b b b

Table 5.7(a) An initial configuration of the DPDR, M3
d.

Initial state Initial stack Input

1 a a a b b b
⊥
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5.5.2 More Deterministic PDRs

Two more example DPDRs follow (Figures 5.9 and 5.10). It is suggested that you

trace their behaviour for various valid and invalid input strings.

First, Figure 5.9 shows a DPDR for the language L(G10), the set of all strings

of as and bs in which the number of as is equal to the number of bs. This is the same

language as L(G2), as we obtained the productions for G10 by applying our

procedure for removing e productions to G2. Let us consider L(G10) without the

empty string (using the set difference operator, L(G10){ feg), which is obviously

the set of all non-empty strings of as and bs in which the number of as is equal to

the number of bs.

The DPDR shown in Figure 5.10 recognises the language L(G10), which is:

fa2iþ1cjb2iþ1 : i; j � 0g i:e:; a non-zero odd number of as; followed by 0

or more cs; followed by the same number of bs

as there were as:

1 2

a/⊥ /a⊥
b/⊥ /b⊥

a/b/ε
b/a/ε
b/b/bb
a/a/aa
a/⊥ /a⊥
b/⊥ /b⊥

H
ε /⊥ /⊥

Figure 5.9 A DPDR for the languageL(G10) { feg, i.e., the language recognised
by M10 but without the empty string.

1 2
a/⊥ /a⊥

H
ε /⊥ /⊥

3

a/a/aa

a/a/aa

4

5b/a/ε
c/a/a

c/a/a

b/a/ε

b/a/ε

Figure 5.10 A DPDR for the language L(G9).
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Clearly, then, there are CFLs that can be recognised by DPDRs. Here, we have

encountered but a few. However, there are, as you can probably imagine, an

infinite number of them. If a CFL can be recognised by a DPDR, we call it a

deterministic context free language.

5.6 Deterministic and Non-deterministic Context
Free Languages

In this section, we discover that there are context free languages that cannot be

recognised by a deterministic PDR. There is no general equivalence between non-

deterministic and deterministic PDRs, as there is for FSRs. We begin our inves-

tigation with regular languages, which we find to be wholly contained within the

deterministic CFLs.

5.6.1 Every Regular Language is a Deterministic CFL

Any regular language is generated by a regular grammar without e productions

(apart from the one eproduction S! e, if it is necessary). Such a grammar can be

represented as a non-deterministic FSR, which can, if necessary, be represented as

a deterministic FSR (DFSR).

Now, any DFSR can be represented as a DPDR that effectively does not use its

stack. We will use a single example that suggests a method by which any DFSR

could be converted into an equivalent DPDR. The example deterministic FSR is

M5
d, from Chapter 4, shown in Figure 5.11.

V

b

X
a

b

a
Y

W

a

b

H1
a

b

a

b

b

a

a, b 

H2 

Figure 5.11 The DFSR, M5
d, from Chapter 4.
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This produces the DPDR of Figure 5.12.

The DPDR in Figure 5.12 has two halt states (there is nothing wrong

with this). We have also ignored the null state of the DFSR. We could

clearly amend any DFSR to produce an equivalent DPDR as we have done

above.

However, for the DPDR, we do need to amend our definition of the acceptance

conditions as they applied to the NPDR (Table 5.5), which we derived by using

rules that ensure the machine has only one halt state (Table 5.4).

The acceptance conditions for the DPDR, for an input string x, are specified in

Table 5.8.

You may notice that the condition ‘‘the stack contains only the stack bottom

marker ?’’, that applied to NPDRs (Table 5.5) does not appear in Table 5.8. An

exercise asks you to justify that the language faibj :i� 1, j =i or j = 0g can only be

recognised by a deterministic PDR if that machine is not required to have an

empty stack every time it accepts a string.

So far, we have established the existence of the deterministic context free

languages. Moreover, we have also established that this class of languages includes

the regular languages. We have yet to establish that there are some CFLs that are

necessarily non-deterministic, in that they can be accepted by an NPDR but not a

DPDR.

Table 5.8 The acceptance conditions for the DPDR.
The machine begins in the start state, with the stack containing only the stack bottom marker,?.

If there is a sequence of transitions by which the machine can reach one of its halt states, and on
doing so, the input is exhausted, then the string x is said to be acceptable.

V X
a/⊥ /⊥

Y

W

H1

H2

a/⊥ /⊥ a/⊥ /⊥

b/⊥ /⊥
b/⊥ /⊥ b/⊥ /⊥

b/⊥ /⊥

a/⊥ /⊥

a/⊥ /⊥

a/⊥ /⊥

Figure 5.12 A DPDR equivalent to the DFSR, M5
d, of Figure 5.11.
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5.6.2 The Non-deterministic CFLs

Consider the following CFG, G11:

S ! a j b j c j aSa j bSb j cSc:

L(G11) is the set of all possible non-empty odd-length palindromic strings of as

and/or bs and/or cs. A palindromic string is the same as the reverse of itself. We

could use our procedure from Table 5.4 to produce an NPDR to accept L(G11).

However, could we design a DPDR to do the same? We cannot, as we now

establish by intuitive argument. General palindromic strings are of the form

specified in Figure 5.13.

The central box of Figure 5.13 could be empty if even-length palindromic

strings were allowed. Note that G11 does not generate even-length palindromes,

though it could be easily amended to do so, as you might like to establish for

yourself. Figure 5.14 shows how an example sentence from L(G11) is partitioned

according to Figure 5.13.

Let us hypothesise that a DPDR could accept L(G11). It would have to read

the input string from left to right, as that is how it works. An obvious determi-

nistic way to do the task on that basis is as follows:

1. Read, and push onto the stack, each input symbol encountered until the

‘‘centre’’ of the string is reached.

2. Read the rest of the string, comparing each symbol to the next symbol on the

stack. If the string is valid, the string on the stack following (1) will be the part

of the string after the centre in the correct order.

The problem with the above is in the statement ‘until the ‘‘centre’’of the string is

reached’, in step (1). How can the DPDR detect the centre of the string? Of

course, it cannot. If there is a symbol in the centre it will be one of the symbols� a,

b, or c � that can feature anywhere in the input string. The machine must push

every input symbol onto the stack, on the assumption that it has not yet reached

the centre of the input string. This means that the machine must be allowed to

backtrack, once it reaches the end of the input, to a situation where it can see if it is

<any string>

a single
symbol,
or empty

<any string> in reverse

Figure 5.13 A specification of arbitrary palindromic strings.
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possible to empty its stack by comparing the stack contents with the remainder of

the input. By similar argument, any such language of arbitrary palindromic

strings defined with respect to an alphabet of two or more symbols is necessarily

non-deterministic, while nevertheless being context free.

We have argued that the problem vis-�a-vis palindromic strings lies in the

PDR’s inability to detect the ‘‘centre’’ of the input. If a language of palindromic

strings is such that every string is of the form shown in Figure 5.15, then it can be

accepted by a DPDR, and so is deterministic.

As an example of a deterministic palindromic language, consider L(G12),

where G12 (a slightly amended G11) is as follows:

S ! d j aSa j bSb j cSc:

L(G12) is the set of all palindromic strings of the form described in Figure 5.16.

L(G12) is accepted by the DPDR M12 depicted in Figure 5.17.

a a b a c c c a b a c c c c c c c c c a b a c c c a b a a

left-hand
string is
reverse of
right-hand
string

Figure 5.14 A palindrome, partitioned according to Figure 5.13.

<any string>

a single symbol that
cannot feature in
<any string> 

<any string> in reverse

Figure 5.15 Palindromes with a distinct central ‘‘marker’’.

<any string in {a, b, c}*> d reverse of the first part

d cannot appear
anywhere else in the
string

Figure 5.16 Sentences of L(G12).
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5.6.3 A Refinement to the Chomsky Hierarchy in the Case
of CFLs

The existence of properly non-deterministic CFLs suggests a slight refinement to

the Chomsky hierarchy with respect to the context free and regular languages, as

represented in Figure 5.18.

1 2

a/⊥/a⊥
b/⊥/b⊥
c/⊥/c⊥

c/a/ca
c/b/cb
c/c/cc

H
ε/⊥/⊥

a/a/aa
a/b/ab
a/c/ac

b/a/ba
b/b/bb
b/c/bc

d/a/a
d/b/b
d/c/c

3

d/⊥/⊥

a/a/ε
b/b/ε
c/c/ε

Figure 5.17 The DPDR, M12, which deterministically accepts a language
of palindromic strings that feature a central ‘‘marker’’.

Non-deterministic CFLs 

Deterministic CFLs

Regular
languages

… for every
regular
language there
is a DPDR 

For many
CFLs there is a
DPDR …

For every CFL
there is an
NPDR … 

Figure 5.18 The context free languages: non-deterministic, deterministic
and regular.
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5.7 The Equivalence of CFGs and PDRs

The situation for FSRs and regular languages, i.e., that any regular grammar is

represented by an equivalent FSR, and every FSR is represented by an equivalent

regular grammar, is mirrored in the relationship between PDRs and CFGs. In this

chapter, we have seen that for any CFG we can construct an equivalent NPDR. It

turns out that for any NPDR we can construct an equivalent CFG. This will not

be proved here, as the proof is rather complex, and it was considered more

important to investigate the situation pertaining to the PDR as the recogniser

for the CFLs, rather than the converse result.

One way of showing that every NPDR has an equivalent CFG is to show

that from any NPDR we can create CFG productions that generate exactly the

set of strings that enable the NPDR to reach its halt state, leaving its stack

empty. The details are not important, but the result is powerful, as it shows us

that any language that cannot be generated by a CFG (we see two such

languages in the next chapter) needs a machine that is more powerful than a

PDR to recognise it.

Consider the ‘‘multiplication language’’,

faibjci�j : i; j � 1g;

introduced in Chapter 2. This is shown to be not a CFL at the end of Chapter 6,

a result that means that the language cannot be recognised by a PDR. This leads

us to speculate that we need a more powerful machine than the PDR to model

many computational tasks. We return to this theme in the second part of the

book, when we consider abstract machines as computers, rather than language

recognisers, and we see the close relationship between computation and lan-

guage recognition.

5.8 Observations on Context Free Grammars
and Languages

The lack of general equivalence between deterministic and non-deterministic con-

text free languages is problematic for the design of programming languages. Effi-

cient parsers can be designed from deterministic PDRs. As argued in Chapter 4,

non-determinism is undesirable, as it is computationally expensive. Moreover, un-

necessary non-determinism is simply wasteful in terms of resources. It turns out

that any deterministic context free language can be parsed by a pushdown machine
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that never has to look ahead more than one symbol in the input to determine the

choice of the next transition.

Consider, for example, sentences of the language faibi :i� 1g. If we look at the

next symbol in the input, it will either be an a or a b, and, like our deterministic

machine M3, above, we know exactly what to do in either case. Now consider

strings of arbitrary palindromes, with no distinct central ‘‘marker’’ symbol. In this

case, for any machine that could look ahead a fixed number of symbols, we could

simply present that machine with a palindromic string long enough to ensure that

the machine could not tell when it moved from the first to the second ‘‘half’’ of the

input. Languages that can be parsed by a PDR (and are therefore context free)

that never has to look ahead more than a fixed number, say k, of symbols in the

input are called LR(k) languages (LR stands for Look ahead Right). The LR(k)

languages are the deterministic context free languages. In fact, the deterministic

languages are all LR(1) languages. Languages of arbitrary length palindromic

strings with no distinguishable central marker are clearly not LR(k) languages, for

any fixed k.

The preceding chapter closed with the observation that the language faibi :i� 1g
is not regular. It was promised that this would be proved in Chapter 6. Now we

make a similar observation with respect to the context free languages. We argue

that there are languages that are not context free, and cannot therefore be

generated by a context free grammar, or recognised by an NPDR, and therefore

must be either type 1 (context sensitive) or type 0 (unrestricted) languages (or

perhaps neither).

In Chapter 6, we will see that both the ‘‘multiplication language’’ and the

language:

faibici : i � 1g; i.e. the set of all strings of the form as followed by bs

followed by cs;where the number of as ¼ the number

of bs ¼ the number of cs;

are not context free. Given that the language faibi :i� 1g is context free, it may at

first seem strange that faibici :i� 1g is not. However, this is indeed the case. Part

of the next chapter is concerned with demonstrating this.

EXERCISES

For exercises marked ‘‘†’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’at the end of the book.
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5.1. Given the following grammar:

S ! ABCA

A! aA jXY

B! bbB jC

X ! cX j e

Y ! dY j e

C ! cCd j e

produce an equivalent Chomsky normal form grammar.

Note:remember that you first need to apply the rules for removing the

empty string.

5.2.† faibj :i � 1, j =i or j = 0g is a deterministic CFL. However, as

mentioned earlier in this chapter, it can only be accepted by a deter-

ministic PDR that does not always clear its stack. Provide a DPDR to

accept the language and justify the preceding statement.

5.3. Argue that we can always ensure that an NPDR clears its stack and

that NPDRs need have only one halt state.

5.4. Amend M3
d, from earlier in the chapter (Figure 5.8), to produce

DPDRs for the languages faibicj :i, j � 1g and faibjcj :i, j � 1g.
Note: in Chapter 6 it is assumed that the above two languages are

deterministic.

5.5.† Justify by intuitive argument that faibjck :i, j � 1,i =j or j =kg (from

exercise 1 in Chapter 3) is a non-deterministic CFL.

5.6.† Design a program to simulate the behaviour of a DPDR. Investigate

what amendments would have to be made to your program so that it

could model the behaviour of an NPDR.

5.7. Design DPDRs to accept the languages faibjciþj :i, j � 1g and

faibjci-j :i, j � 1g.
Note: consider the implications of these machines in the light of

the remarks about the computational power of the PDR, above.
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6
Important Features of Regular and Context

Free Languages

6.1 Overview

In this chapter we investigate the notion of closure, which in terms of languages

essentially means seeing if operations (such as union, or intersection) applied

to languages of a given class (e.g. regular) always result in a language of the

same class. We look at some closure properties of the regular and context free

languages. We next discover that the Chomsky hierarchy is a ‘‘proper’’ hierarchy, by

introducing two theorems:

l the repeat state theorem for finite state recognisers

l the uvwxy theorem for context free languages.

We then use these theorems to show that:

l there are context free languages that are not regular

l there are context sensitive and unrestricted languages that are not context

free.

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 6, � Springer-Verlag London Limited 2008



6.2 Closure Properties of Languages

In terms of the Chomsky hierarchy, the notion of closure applies as follows:

1. Choose a given type from the Chomsky hierarchy.

2. Choose some operation that can be applied to any language (or pairs of

languages) of that type and which yields a language as a result.

3. If it can be demonstrated that when applied to each and every language, or pair

of languages, of the chosen type, the operation yields a resulting language

which is also of the chosen type, then the languages of the chosen type are said

to be closed under the operation.

For example, take the set union operator,[, and the regular languages. If for every

pair L1, L2, of regular languages the set L1 [ L2 is also a regular language, then the

regular languages would be closed under union (in fact they are, as we see shortly).

In the following two sections, we investigate various closure properties of the

regular and context free languages, with respect to the operations complement, union,

intersection and concatenation. As usual, we will be content with intuitive argument.

6.3 Closure Properties of the Regular Languages

6.3.1 Complement

As we discovered early on in the book, given some finite non-empty alphabet A,

A* denotes the infinite set of all possible strings that can be formed using symbols

of that alphabet. Given this basis, a formal language was defined to be any subset

of such a set. Take for example the language

R ¼ faibjck : i; j; k � 1g;
which is a subset of fa; b; cg�.

Now, fa; b; cg�{ R denotes the set of all strings that are in fa; b; cg�but not in R

(‘‘{’’ is called the set difference operator) i.e.

l all possible strings of as and/or bs and/or cs except for those of the form ‘‘one or

more as followed by one or more bs followed by one or more cs’’.

fa; b; cg�{ R is called the complement of R, and is, of course, a formal language, as

it is a subset of fa; b; cg�.
In general, then, if L is a language in A *, A *{ L is the complement of L.

We are now going to see that

l if L is a regular language, then so is A *� L.
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In other words, we will see that the regular languages are closed under

complement. This is best demonstrated in terms of deterministic finite state

recognisers (DFSRs). Our argument will be illustrated here by using the DFSR

for R, the language described above, as an example.

We start with a DFSR that accepts R, as shown in Figure 6.1.

To the machine in Figure 6.1 we add a null state to make the machine

completely deterministic. The resulting machine can be seen in Figure 6.2.

We take the machine in Figure 6.2 and make all its non-halt states into halt

states and all its halt states into non-halt states, achieving the machine shown in

Figure 6.3.

cb

S CBA
cba

a

Figure 6.1 A DFSR for the language R ¼ faibick : i; j; k � 1g.

cb

S CBA
cba

a

X

b, c
c a

a, b

a, b, c

Figure 6.2 The DFSR from Figure 6.1 with a ‘‘null’’ state added to make it fully
deterministic.

cb

cba

a

b, c
c a

a, b

a, b, c

S A B C

X

Figure 6.3 The ‘‘complement’’ machine of the DFSR in Figures 6.1 and 6.2.
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The FSR in Figure 6.3 will reach a halt state only for strings in fa, b, c g* for

which the original machine (Figure 6.1) would not. It thus accepts the comple-

ment of the language accepted by the original machine. Note that as the

machine’s start state is also a halt state, the final machine also accepts as a

valid input the empty string (e), as it should, since the original machine did not.

It should be clear that the same method could be applied to any DFSR. As we

saw in Chapter 4, there is a general equivalence between DFSRs and regular

languages. What applies to all DFSRs, then, applies to all regular languages.

6.3.2 Union

We now see that

l if L1 and L2 are regular languages, then so is L1 [ L2.

Consider again the DFSR for R, in Figure 6.1, and the DFSR for the language

faib2j : i � 0; j � 1g;

which is shown in Figure 6.4.

Figure 6.5 shows a machine that is an amalgam of the machines from

Figures 6.1 and 6.4. As can be seen in Figure 6.5, we have introduced an additional

b

RQP
bb

a

Figure 6.4 A DFSR for the language faib2j : i � 0; j � 1g.

a

a

a

a

ba

b

b b

b

b c

c
CBAS

I

P Q R

Figure 6.5 The non-deterministic FSR that is the union machine for the FSRs in
Figures 6.1 and 6.4. Note: the machine has three start states (S, I and P).
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start state, labelled I, and for each outgoing arc from a start state of either

original machine we draw an arc from state I to the destination state of that

arc.

The machine in Figure 6.5 has three start states, but if we use our subset

algorithm from Chapter 4 (Table 4.6) to make it deterministic, we obtain the FSR

in Figure 6.6.

The machine in Figure 6.6 accepts the language:

faibjck : i; j; k � 1g [ faib2j : i � 0; j � 1g; i.e. all strings accepted by either,

or both, of the original machines.

You should again satisfy yourself that the suggested method could be applied to

any pair of DFSRs.

6.3.3 Intersection

Now we establish that

l if L1 and L2 are regular languages, then so is L1\ L2

(the intersection of two sets is the set of elements that occur in both of the

sets).

A basic law of set theory is one of de Morgan’s laws, which is stated in

Figure 6.7. Figure 6.8 shows an illustrative example to help to convince you

that the rule is valid.

The law represented in Figure 6.7 tell us that the intersection of two sets is

the same as the complement of the union of the complements of the two sets.

a

b
c

c

c

b

b

a

bb

b

A, P B, Q

B, R

C

RQ

I, S,
P

Figure 6.6 A deterministic version of the machine in Figure 6.5.
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Now, we have to do little to establish that if L1 and L2 are regular languages,

then so is L1\L2, since:

l we saw above how to construct the complement and

l we also saw how to create the union.

L1 ∩ L2

The intersection of
two sets … 

… is the same as the complement of the
union of the complements of the two sets.

L1 ∪ L2

Figure 6.7 de Morgan’s law for the intersection of two languages (sets).

 All strings ai of odd length All strings ai of length
that is not a multiple of 3 

All even length strings ai of
length that is not a multiple of 3 

 

A ∩ B A ∪ B

 
 

All strings
ai of even
length

All strings ai

of length
that is a
multiple of 3

All odd length
strings ai where
i is odd or is not
a multiple of 3 

A B

A

{a}*{a}*

B

A ∪ B

A ∪ B

i.e. {a6i : i ≥ 1}

{a}*

Figure 6.8 An illustration of de Morgan’s law applied the intersection of the two
languages A ¼ fa2i : i � 0g and B ¼ fa3i : i � 1g:

130 6. Important Features of Regular and Context Free Languages



We can therefore take the two DFSRs for L1 and L2, say M1 and M2, and do

the following:

a) we create the ‘‘complement machines’’ for each of M1 and M2

b) we create the ‘‘union machine’’ from the results of (a)

c) we create the ‘‘complement machine’’ from the result of (b).

We know that the complement of a regular language is always regular and the

union of two regular languages is also always regular. The language recognised by

the FSR; that results from carrying out steps (a) to (c) will therefore also be regular.

6.3.4 Concatenation

As two strings can be concatenated together, so can two languages. To concate-

nate two languages A and B together, we simply make a set of all of the strings

which result from concatenating each string in A in turn, with each string in B.

So, for example, if

A ¼ fa; ab; eg
and

B ¼ fbc; cg;

then A concatenated to B, which we write AB, or in this case fa, ab, egfbc, c g
would be

fabc; ac; abbc; bc; cg:

Analogously to the way we use the superscript notation for strings, so we can use

the superscript notation for languages, so that A3 represents the language A

concatenated to itself, and the result of that concatenated to A again

(i.e. AAA), or in this case (given the language A as defined above):

A3 ¼ fa; ab; egfa; ab; egfa; ab; eg

¼ faa; aab; a; aba; abab; ab; egfa; ab; eg; etc:

Concatenation can be applied to infinite languages, too. For example, we could

write

faibj : i; j � 1gfci : i � 1g;
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to mean the set containing each and every string in the first set concatenated to

each and every string in the second. In this case, the language described is R from

earlier in this chapter, i.e.

faibjck : i; j; k � 1g:

The next thing we are going to show is that

l if L1 and L2 are regular languages, then so is L1L2.

This is easier to show by using grammars than FSRs. Table 6.1 describes the

combining of two regular grammars G13 and G14, to produce a grammar, G15, such

that L (G15) = L (G13)L (G14), i.e.

¼ faibjx : i � 0; j � 1; x ¼ b or x ¼ cgfaidj : i; j � 1g

¼ fahbixajdk : h � 0; i; j; k � 1; x ¼ b or x ¼ cg:

It should be clear that the method in Table 6.1would work for any pair of regular

grammars. Note that the method could also be used repeatedly, beginning with a

grammar G, to create a grammar that generated L (G)n, for any finite n.

Table 6.1 Combining two regular grammars to create a regular grammar that generates
the concatenated language.

Two example grammars

G13 G14

S! aS j bB

B! b j c j bB

S! aS j aA

A! dA j d

so that:

L(G13) = fa i b j x : i � 0, j � 1, x = b or x = c g L(G14) = fa i d j :
i, j � 1g

To produce a composite grammar that generates L(G13)L(G14):

Step Description Result

1 Rename the non-terminals in the second grammar so that
the two grammars have no non-terminals in common.

G14 is now:

X! aX j aA
A! dA j d

with X as the start
symbol

2 In the first grammar, replace each production of the form x! y,
where y is a single terminal, by a production x! yZ, where Z is the
start symbol of the second grammar.

G13 is now:

S! aS j bB
B! bX j cX j bB

3 Put all the productions together. They now constitute one
grammar, the start symbol of which is the start symbol of the first
grammar. The resulting grammar generates the language that is
the language generated by the first grammar concatenated to the
language generated by the second.

Composite
grammar, G15:

S! aS j bB
B! bX j cX j bB
X! aX j aA
A! dA j d
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6.4 Closure Properties of the Context Free
Languages

In this section, we investigate the closure properties of the context free languages

(CFLs) in general. We find that the situation is not so straight forward for the CFLs

as for the regular languages. We also find that there are differences between the

closure properties of the CFLs in general, and the deterministic CFLs, the latter

being described in Chapter 5 as those CFLs recognised by deterministic PDRs. For

the CFLs to be closed under an operation means that the language resulting from the

application of the operation to any CFL (or pair of CFLs, if the operation applies to

two CFLs) is also a CFL. Moreover, for the deterministic CFLs to be closed under an

operation means that the result must always be a deterministic CFL.

To support the arguments, we consider the following languages:

X ¼ faibicj : i; j � 1g

and

Y ¼ faibjcj : i; j � 1g:

First of all, let us observe that the two languages are context free. In fact, X and Y

are both deterministic CFLs, as we could design DPDRs to accept each of them,

as you were asked to do in the exercises at the end of Chapter 5.

In any case, they are certainly context free, as we can show by providing CFGs

for each of them. The two grammars, Gx and Gy, are shown in Table 6.2.

To simplify our constructions, the two grammars in Table 6.2 have no non-

terminals in common.

6.4.1 Union

The first result is that the CFLs are closed under union, i.e.,

l if La and Lb are context free languages, then so is La [ Lb.

Table 6.2 Two example grammars, Gxand Gy , to generate the languages X =
faibicj : i, j � 1g and Y = faibjc j : i, j � 1g respectively.

Gx (L(Gx) = X) Gy (L(Gy) = Y)

A! BC fstart symbol is Ag
B! aBb j ab
C! cC j c

D! EF fstart symbol is Dg
E! aE j a
F! bFc j bc
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Suppose that for La and Lb there are CFGs, Ga and Gb , respectively. Then to

produce a grammar that generates the union of La and Lb , we carry out the

process described in Table 6.3 (the example on the right of Table 6.3 uses the two

grammars Gx and Gy from Table 6.2).

Referring to Table 6.3, you should be able to see that the grammar resulting

from step 3 generates all of the strings that could be generated by one grammar or

the other. Step 1 is necessary so that any derivation uses only productions from

one of the original grammars. If Ga and Gb are the original grammars, the

resulting grammar generates LðGaÞ [ LðGbÞ. You can also see that if the two

starting grammars are context free, the resulting grammar will also be context

free.

The context free languages are therefore closed under union.

Now we focus on our particular example. The new grammar that we obtained

from Gx and Gy generates X [ Y , where X and Y are the languages above. This

set, which will be called Z, is

Z ¼ X [ Y ¼ faibjck : i; j; k � 1; i ¼ j or j ¼ kg:

Now, while this is a CFL, and represents the union of two deterministic CFLs, it is

not itself a deterministic CFL. To appreciate this, consider a PDR to accept it.

Table 6.3 Constructing a CFG to generate the union of two CFLs. The example column
features grammars Gx and Gy from Table 6.2.

Step Description Example

1 Arrange it so the two grammars have no
non-terminals in common.

Gx and Gy are already like this

2 Collect all the productions of both grammars
together.  

D → EF
E → aE | a
F → bFc | bc

A → BC
B → aBb | ab
C → cC | c

 
Gy

Gx

3 Add the two productions
S!P j Q,

where S is a new non-terminal and P and Q are the
start symbols of the two grammars.

D → EF
E → aE | a
F → bFc | bc

A → BC
B → aBb | ab
C → cC | c

S → A | D new

prod
n

sS is now the start symbol of the composite grammar.
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Such a machine could not be deterministic, as when it was reading the as in the

input it would have to assume that it was processing a string in which the number

of as was equal to the number of bs, which may not be the case (it may be

processing a string in which the number of bs was equal to the number of cs).

There would therefore be a need for non-determinism. For a class of languages to

be closed under an operation, the result of every application of the operation must

also be a language of that class. So our example (and there are many more) shows

us that

l the deterministic context free languages are not closed under union.

However, as we showed above, in general, the CFLs are closed under union.

6.4.2 Concatenation

In this section, we see that

l if La and Lb are context free languages, then so is LaLb .

Remember that, if X and Y are languages, then XY denotes the language resulting

from the concatenation of each and every string in X with each and every string in

Y. Table 6.4 shows a simple method for taking two CFGs, Ga and Gb, and

producing from them a new CFG, G, which generates L(Ga )L(Gb ). As before,

we use our grammars Gx and Gy , from Table 6.2, to illustrate.

Table 6.4 Constructing a CFG to generate the concatenation of two CFLs. The example
features grammars Gx and Gy from Table 6.2.

Step Description Example

1 Arrange it so the two grammars have no
non-terminals in common.

Gx and Gy are already like this

2 For each production in the first grammar
with S (the start symbol of the grammar)
on its left-hand side, put R (the start
symbol of the second grammar) at the end
of the right-hand side of that production.

New production created:

A! BCD
(the only one created, since Gx has only
one production with A, its start symbol,
on the left-hand side)

3 Add the rest of the first grammar’s
productions, and all of the second
grammar’s productions to the productions
created in step 2.

New grammar:

The start symbol of the first grammar is
the start symbol of the new grammar.

modified
prod n

rest of
Gx

all of
Gy

 

A → BCD

D → EF
E → aE | a
F → bFc | bc

B → aBb | ab
C → cC | c
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The new grammar created in Table 6.4 ensures that any terminal string that

could be derived by the first grammar is immediately followed by any terminal

string that the second grammar could produce. Therefore, the new grammar

generates the language generated by the first grammar concatenated to the

language generated by the second grammar. The resulting grammar in Table

6.4 generates the set XY, such that

XY ¼ faibicjasbtct : i; j; s; t � 1g:

The method of construction specified in Table 6.4 could be applied to any pair of

context free grammars, and so the context free languages are closed under

concatenation.

However, the deterministic CFLs are not closed under concatenation. This is

not demonstrated by our example, because XY happens to be deterministic in this

case. The two deterministic CFLs

faibj : i � 1; j ¼ 0 or j ¼ ig

and

fbicj : i ¼ 0 or i ¼ j; j � 1g

concatenated together result in a language which is a non-deterministic CFL.

You are asked in the exercises to argue that this is indeed the case.

Our concatenation result for the deterministic CFLs is thus:

l the deterministic context free languages are not closed under concatenation.

6.4.3 Intersection

Thus far, we have seen that the closure situation is the same for the CFLs as for

the regular languages, with respect to both union and concatenation. However, in

terms of intersection, the CFLs differ from the regular languages, in that the

CFLs are not closed under intersection. To appreciate this, consider the two sets

we have been using in this section, i.e.

X ¼ faibicj : i; j � 1g

and

Y ¼ faibjcj : i; j � 1g:
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What is the intersection (X \ Y) of our two sets? A little thought reveals it to be

the set of strings of as followed by bs followed by cs, in which the number of as

equals the number of bs and the number of bs equals the number of cs, i.e.,

X \ Y ¼ faibici : i � 1g:

This language was stated to be not context free at the end of the last chapter and

this will be demonstrated later in this chapter. Moreover, both X and Y are

deterministic CFLs, so this counter-example shows us that:

l both the deterministic and the non-deterministic context free languages are

not closed under intersection.

6.4.4 Complement

We can argue that it is also the case that the CFLs are not closed under comple-

ment (i.e. that the complement of a CFL is not necessarily itself a CFL). You may

recall that above we used de Morgan’s law (Figure 6.7) to show that the regular

languages were closed under intersection.

We can use the same law to show that the CFLs cannot be closed under

complement. If the CFLs were closed under complement, the above law would tell

us that they were closed under intersection (as we showed that they were closed

under union earlier on). However, we have already shown that the CFLs are not

closed under intersection, so to show that this is the case is absurd. We must

therefore reject any assumption that the CFLs are closed under complement.

The above argument is our first example of proof by a technique called reductio

ad absurdum. We simply assume the logical negation of the statement we are trying

to prove, and on the basis of this assumption follow a number of logically sound

arguments that eventually lead to a nonsensical conclusion. Since the steps in our

argument are logical, it must be our initial assumption that is false. Our initial

assumption is false, but it is actually the negation of the statement we are trying to

prove. Therefore, the statement we are trying to prove is indeed true.

In this case, what our reductio ad absurdum proof shows us is that

l the context free languages are not closed under complement.

This result is very important, at least with respect to the pushdown recogniser.

Imagine you are writing a parser for a programming language that you have

designed. Suppose you implement your parser to be equivalent in power to a non-

deterministic pushdown recogniser. It turns out, unknown to you, that your

language is one for which the complement is not a context free language. Now,

this is not likely to cause problems for your parser if its input consists entirely of
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syntactically correct programs. This is highly unlikely, I’m sure you will agree, if

you have ever done any programming! However, there will be one (or more)

syntactically incorrect ‘‘programs’’ for which your parser will not be able to make

any decision at all (it will probably enter an infinite loop). If, for every string we

input to the parser, the parser (which remember is no more powerful than a PDR)

could output an indication of whether or not the program is syntactically legal, the

same parser could be used to accept the complement of our original language (i.e.

we simply interpret the original parser’s ‘‘yes’’ as a ‘‘no’’, and vice versa). However,

the fact that the CFLs are not closed under complement tells us that for some

languages a parser equivalent in power to a PDR will be unable to make the ‘‘no’’

statement. I suggest you re-examine the acceptance conditions for non-determinis-

tic PDRs in the previous chapter (Table 5.5). Now you can probably see why there

is no condition that dictates that the machine must always halt, only that it must

always halt in the case of sentences of the language.

The issue of whether or not abstract machines eventually stop at some time

during a computational process is central to computer science. However, we defer

consideration of such issues until Part 2 of this book.

All is not lost, however, for two reasons. Firstly, if your programming language is

a deterministic CFL, its complement will also be a deterministic CFL. Remember, at

the end of Chapter 5 we saw that a deterministic CFL was a language for which a

pushdown machine did not have to look more than one symbol ahead in the input.

We saw that deterministic CFLs are called LR (1) languages for that reason. Well, in

such cases there are only a finite number of symbols the machine expects to

encounter when it looks ahead to the next one. They form two sets at each stage:

the symbols the machine expects to see next, and the symbols it does not expect to

see next. If at any stage, the machine looks ahead and finds a symbol which at that

stage is not expected, the machine simply rejects the input as invalid (i.e., moves to a

halt state that denotes rejection, as opposed to a halt state that denotes acceptance).

We can make sure, then, that our machine always halts with ‘‘yes’’ or ‘‘no’’. We can

then simply exchange the acceptance/rejection status of our machine’s halt states,

and we have a machine that accepts the complement of the original language. So,

l the deterministic context free languages are closed under complement.

6.5 Chomsky’s Hierarchy is Indeed a Proper
Hierarchy

In this section, we sketch out two fundamental theorems of formal languages. One

is for the regular languages, though it actually applies to the FSR, and is called the

repeat state theorem. The other, for the context free languages, is in some ways
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similar to this, and is called the uvwxy theorem. The usefulness of these theorems

is that they apply to every single language in their class, and can therefore be used

to show that a given language is not in the class. To appreciate this point, think

about it like this: if every element in a set must possess a particular property, and

we come across an object that does not have that property, then the object cannot

belong to our set. If it is true that every bird has feathers, and we come across a

creature that is featherless, then that creature is certainly not a bird.

If we use the repeat state theorem to show that a certain language cannot be

regular, but we can show that the same language is context free, then we know

that the regular languages are a proper subset of the context free languages. We

already know that every regular language is context free, but then we will have

also shown that there are context free languages that are not regular. Moreover,

if we use the uvwxy theorem (considered later in this chapter) to show that a

given language cannot be context free, and we then show that it is type 0, we

then also know that the context free languages are a proper subset of the type 0

languages.1 We have then established that Chomsky’s hierarchy is a real

hierarchy.

Now, some students experience problems in thinking in terms of proper

subsets. This is because when you say to them ‘‘all xs are ys’’, they automatically

assume that you also mean ‘‘all ys are xs’’. To demonstrate the silliness of this

inference, consider parrots and birds. If I said to you ‘‘all parrots are birds’’, you

would not then think ‘‘all birds are parrots’’. The set of all regular languages

corresponds to the set of all parrots, and the set of all context free languages

corresponds to the set of all birds. One set is properly contained in the other.

6.5.1 The ‘‘Repeat State Theorem’’

Any FSR that has a loop on some path linking its start and halt states recognises

an infinite language.

Consider the example FSR, M, in Figure 6.9.

M, in Figure 6.9, has 7 states. Consider any string acceptable to M that is

greater than 6 symbols in length. That string must have resulted in the machine

passing through one of its states more than once. After all, M has only 7 states, and

it would need 8 states to accept a string of length 7, if no state was to be visited more

than once. Consider, as a suitable example, the string abbacaab. This string is

8 symbols in length. The sequence of states visited during the acceptance of this

string is indicated in Figure 6.10.

1 We omit the context sensitive (type 1) languages from this discussion. Only the e-free CFGs are
context sensitive, as context sensitive grammars are not allowed to have any e productions.
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Let us choose any state that M visited more than once in accepting our string.

Choose state 3. State 3, as the diagram shows, was the third and fifth state visited.

Consider the substring of abbacaab that caused M to visit state 3 twice, i.e. ba.

Where ba occurs in abbacaab, we could copy it any number of times and we would

still obtain a string that M would accept. As an example, we will copy it 4 times:

abbabababacaab. Furthermore, we could omit ba, giving abcaab, a string that is

also accepted by our machine.

The other state that was visited twice in the acceptance of abbacaab was state 7

(the halt state). We now choose this as our example repeated state. The substring

of abbacaab that caused state 7 to be visited twice was acaab. As before, our

machine M would accept the original string with no copies of acaab in it: abb. It

would also accept the original string with any number of copies inserted after the

first occurrence, for example 3 copies: abbacaabacaabacaab

b
7

21
ba

b

3

4

5

6

c

a

a

b

a

1 2 3, 5 4, 9

6

7

8

Figure 6.10 The order in which the states of M are visited when the input string
is abbacaab.

1 2
a a

a
a

b

c
b

b

b

3

4

5

6

7

Figure 6.9 An FSR, M, that contains a loop of states.
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To appreciate the generality of the above, consider any FSR that accepts a

string of length greater than or equal to the number of states it has. As we said

before, in accepting such a string one or more of its states must have been visited

twice. We consider any of those ‘‘visited-twice’’ states. The string that was

accepted can be expressed as three concatenated strings:

l a possibly empty first part, representing the states visited before the machine

got to its ‘‘visited twice’’ state,

l a non-empty second part, representing the part of the string that caused the

machine to visit the ‘‘visited-twice’’ state again. This part of the string can be

copied 0 or more times in between the first and third parts, and the resulting

string will also be acceptable to the machine,

l a possibly empty third part, representing the states visited after the machine

has left the ‘‘visited-twice’’ state loop

In our examples for the string abbacaab, above, when state 3 was the chosen

‘‘visited -twice ’’ state :

l first part was ab,

l second part was ba,

l third part was caab.

Alternatively, when state 7 was the chosen ‘‘visited -twice ’’ state :

l first part was abb,

l second part was acaab,

l third part was empty.

In many cases, first part may be empty, if the loop began at the start state. In

other cases, both first and third parts may be empty, if the loop encompasses every

state in the machine.

The repeat state theorem is expressed formally in Table 6.5.

As was established in Chapter 4, any language accepted by a DFSR is a regular

language. Therefore, our theorem applies to any infinite regular language.

Table 6.5 The repeat state (‘‘vwx ’’) theorem for regular languages.

For any deterministic FSR, M :

If M accepts a string z, such that jz j � n, where n is the number of states in M, then z can be
represented as three concatenated substrings

z = vwx
in such a way that all strings vw ix, for all i � 0, are also accepted by M.
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6.5.2 A Language that is Context Free but not Regular

Now, as promised at the end of Chapter 4, we turn our attention to the

language

l faibi : i � 1g

We know that this language is context free, because it is generated by the context

free grammar G3, of Chapter 2:

S ! aSb j ab:

The question is, could it also be a regular language? We shall now use our new

theorem to show that it cannot be a regular language, using the technique of

reductio ad absurdum introduced earlier in this chapter.

Our assumption is that fai bi : i� 1g is a regular language. If it is regular it is

accepted by some FSR, M. M can be assumed to have k states. Now, k must be a

definite number, and clearly our language is infinite, so we can select a sentence

from our language of the form a jb j , where j � k. The repeat state theorem then

applies to this string. The repeat state theorem applied to our language tells us

that our sentence a j b j can be split into three parts, so that the middle part can be

repeated any number of times within the other two parts, and that this will still

yield a string of as followed by an equal number of bs. But how can this be true?

Consider the following:

l the ‘‘repeatable substring ’’ cannot consist of as followed by bs, as when we

repeated it we would get as followed by bs followed by as. . . Our machine would

accept strings that are not in the language fai bi : i � 1g.

This means that the repeatable substring must consist of as alone or bs alone,

However:

l the repeatable substring cannot consist of as alone, or when we repeated it

more than once, the as in our string would outnumber the bs, and our machine

would accept strings not in the language fai bi : i � 1g.

A similar argument obviously applies to a repeatable substring consisting

entirely of bs.

Something is clearly amiss. Every statement we have made follows logically from

our assumption that fai bi : i� 1g is a regular language. We are therefore forced to go

right back and reject the assumption itself. fai bi : i � 1g is not a regular language.

Our result tells us that an FSR could not accept certain strings in a language like

fai bi : i � 1g without accepting many more that were not supposed to be

acceptable. We simply could not constrain the FSR to accept only those strings
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in the language. That is why an FSR can accept a language such as fai bj : i, j� 1g, as

you will find out if you design an FSR to do so. However, the language fai bi : i� 1g,
which is a proper subset of fai b j : i, j� 1g is beyond the computational abilities of

the FSR.

One interesting outcome of discovering that fai bi : i� 1g is not regular is that

we can use that fact to argue that a language such as Pascal is not regular. In a

sense, the set of Pascal <compound statement>s is of the form:

fbegini x endi : x is a sequence of Pascal <statement >sg.

The repeat state theorem tells us that many strings in this part of the Pascal

language cannot be accepted by an FSR unless the FSR accepts many other strings

in which the number of begins does not equal the number of ends. By extension of

this argument, the syntax of Pascal cannot be represented as a regular grammar.

However, as mentioned in Chapter 3, the syntax of Pascal can be expressed as a

context free grammar. The same applies to most programming languages, inc-

luding, for example, Lisp, with its incorporation of strings of arbitrary length

‘‘balanced’’ parentheses.

You are asked in the exercises to provide similar justifications that certain

other context free languages cannot be regular. It is thus clear that the regular

languages are properly contained in the class of context free languages. In fact, we

have shown two things about Chomsky’s hierarchy:

1. the regular languages are a proper subset of the CFLs in general, and, more

specifically,

2. the regular languages are a proper subset of the deterministic CFLs.

Point 2 is demonstrated by considering that fai bi : i � 1g is not regular, but is a

CFL and is also deterministic (as we saw in Chapter 5). So there is at least one

language that is a deterministic CFL that is not regular. In fact, none of the

deterministic CFLs we considered when establishing the closure results for CFLs

in this chapter are regular. You might like to convince yourself of this, by using

the repeat state theorem.

6.5.3 The ‘‘uvwxy’’ Theorem for Context Free Languages

The theorem described in this section is a context free language counterpart of the

repeat state theorem described above. However, we establish our new theorem by

using properties of context free grammars and derivations rather than the corre-

sponding abstract machines (PDRs). You may find the argument difficult to

follow. It is more important that you appreciate the implications of the theorem,

rather than understand it in great detail.
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Let us assume that we have an e-free CFG that is in Chomsky normal form

(CNF). That we can assume that any CFG is so represented as justified in

Chapter 5.2 As an example, we will use a CNF version of G3(S ! aSb j ab),

which we will simply call G:

S ! AX jAB

X ! SB

A! a

B! b:

G has four non-terminal symbols. This means that if we construct a derivation

tree for a sentence in which there is a path from S with more than four non-

terminals on it, one of the non-terminals will appear more than once.

Now, consider the derivation tree for the sentence a4b4, shown in Figure 6.11

and labelled DT 1.

In particular, we focus on the path in DT 1 proceeding from the top of the tree

to the non-terminal marked ‘‘low X ’’, in DT 1. Sure enough, this path features a

repeated non-terminal. In fact, both S { three times { and X { also three times {

are repeated on this path. We can choose any pair of the repeated non-terminals,

so we will choose the two instances of the non-terminal X that have been labelled

‘‘low X ’’ and ‘‘high X ’’. Five substrings, that concatenated together make up the

sentence, have been identified and labelled in Figure 6.11 as follows:

u this is the string derived in the part of the tree from S to the left of high X,

and is the string aa

v this is the string derived from high X to the left of low X, and is the string a

w this is the string derived from low X, i.e. abb

x this is the string derived from high X to the right of low X, i.e. b

y this is the string derived from S to the right of high X, and is b.

Concatenating all the above strings in order, i.e. uvwxy, gives us our sentence a4b4.

Careful thought may now be required. The derivation from high X in DT1 is

simply the application of a sequence of productions, the first having X as its left-

hand side. G is a CFG, so the derivation we did from high X in DT1 could be

repeated from low X. We would still have a sentence, as the whole derivation

started with S, and a terminal string is derived from high X in DT1.

2 We leave out the single e production, if it exists, and concentrate only on the e-free part of the
grammar.
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Doing the above gives us DT 2, as shown in Figure 6.12. DT 2 is the derivation

tree for the sentence a5b5. As DT 2 shows, the way we have obtained the new

derivation ensures that we now have two copies of the substrings v and x, where

there was one copy of each, respectively, in the DT 1 sentence. Expressed in an

alternative way, we have:

uv2wx2yð¼ a5b5Þ:

What we have just done could be repeated, i.e. we could do the high X derivation

we did in DT 1 from the new low X near the bottom of DT 2, in Figure 6.12.

Then we would have uv3wx3y. Moreover, we could repeat this process indefinitely,

i.e. we can obtain uviwxiy, for all i � 1.

Finally, referring back to DT 1 (Figure 6.11), the derivation originally carried

out from low X could have been done from high X instead. If we do this, we obtain

DT 3, as shown in Figure 6.13. DT 3 is the derivation tree for the sentence a3b3.

b

ba

A B

Ba

A

S

X b

Ba

A

a

b

S

X

BS

XA

S
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y

x

v

w

High X

Low X

Figure 6.11 Derivation tree DT 1 for the string a4b4, showing the characteristic
context free uvwxy form.
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As can be seen from Figure 6.13, this time there are only three of our substrings,

namely u, w and y. We have uwy = a3b3.

As stated in Chapter 2, for any string, s, s0= e, the empty string, and for any

string z, z e = z and ez = z. uwy can therefore be represented as uv0wx0y.

The constructions used to obtain the three trees, DT1{3 (Figures 6.11

to 6.13), and our accompanying discussion tell us that, for the language L(G),

i.e. faibi : i � 1g, we have found a string, a4b4, which is such that:

a4b4 can be represented as concatenated substrings u, v, w, x and y, such that

uvwxy = a4b4, and for all i � 0, uviwx iy is in L(G).

b
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A B

BS

X

w

Low X
a

A b

BS

X

x

v

High X
a

A b

Ba

A

a

b

S

X

BS

XA

S

u

y

x

v

Old High
X

Figure 6.12 Derivation tree DT 2 for the string a5b 5, showing the uv2wx 2y form
of DT1 in Figure 6.11.
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We initially chose the two X s called high X and low X in DT 1. However, any other

equal pair of non-terminals on the path could have been chosen and a similar

argument could have been made. For example, we could have chosen two of the

repeated S nodes. A possible arrangement in this case is shown in DT 1a, for which

see Figure 6.14.

In Figure 6.14. there is no string u to the left of the top S down to high S (as

high S is the top S), and similarly there is no string y to its right, both u and y are

empty, i.e. u = y = e. So we now have:

u ¼ e;

v ¼ aa;
w ¼ aabb;
x ¼ bb; and
y ¼ e:

b

ba

A B

BSa

A

a

bX

BS

XA

S

u

y

w

Low X

Figure 6.13 Derivation tree DT 3 represents the uwy form of DT 1 (Figure 6.11).
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This time, if we duplicated the original high S derivation from low S in Figure 6.14,

we would have uv2wx2y, i.e., e concatenated to aa concatenated to aa concate-

nated to aabb concatenated to bb concatenated to bb concatenated to e, which is

a6b6. The next time we repeated it we would obtain uv 3wx 3y, i.e. a 8b 8, and so on.

If we duplicated the low S derivation from high S, we would obtain uv 0wx 0y. This,

since all of the substrings except for w is empty, simply leaves us with w, i.e. aabb.

So again, our statement above:

a4b4can be represented as concatenated substrings u, v, w, x and y, such that

uvwxy = a4b4, and for all i � 0, uviwxiy is in L(G),

is true for this case also, as long as we permit u and y to be empty.

How general is the uvwxy type construction? It can be argued to apply to any

context free grammar that generates a sentence long enough so that its derivation

tree contains a path from S that contains two (or more) occurrences of one non-

terminal symbol. Any CFG that generates an infinite language must be able to
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Figure 6.14 DerivationtreeDT1a,analternativeuvwxy formforDT1(Figure6.11).
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generate a derivation tree that contains a path like this. Such a CFG, as we

showed in Chapter 5, can have its e-free part converted into CNF. If there are n

non-terminals in a CNF grammar, by the time we generate a sentence that is

greater in length than 2n{1(numerically speaking), we know we have a path of the

type we need. To appreciate this, suppose that a CNF grammar has three non-

terminals, i.e. n = 3. The shallowest tree for a sentence of length equal to 2n {1(4) is

shown in Figure 6.15.

Notice that the longest paths in the tree in Figure 6.15 have length, or

number of arcs, 3, and, since the last node on the path would be a terminal,

such paths have only 3 non-terminals on them. Such paths are not long

enough to ensure that they feature repeated non-terminals. Our hypothetical

grammar has 3 non-terminals, so to be absolutely sure that our tree contains

a path of length greater than 3 we must generate a sentence of length

greater than 4. You may need to think about this, perhaps drawing some

possible extensions to the above tree will convince you. Remember, the

grammar is assumed to be in CNF. You should also convince yourself that the

2n{1 argument applies to any CNF grammar.

It is not always necessary to generate a long sentence to obtain our ‘‘repeated non-

terminal path’’. Our grammar G can be used to create derivation trees for sentences of

length less than 8 (23, since G has 4 non-terminals) that have paths of the type we

require. However, here we are interested in defining conditions that apply in general,

which requires us to be sure that we can obtain a path of the type required.

Let G stand for any e-free context free grammar. We now know that if we

generate a sentence of sufficient length the derivation tree for that sentence will

have a path, starting from the S at the root of the tree, upon which the same non-

terminal, say X, appears twice or more. We choose two occurrences of X on that

path, and call one high X and one low X. The sentence can be split into 5

non-
terminals

terminals

Figure 6.15 The shallowest derivation tree for a sentence that is four symbols
long produced by Chomsky normal form (CNF) productions.
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concatenated substrings as before (use the derivation trees DT 1{3 and DT 1a in

Figures 6.11 to 6.14 for illustration, if you wish):

u the string derived from S at the root and to the left of high X. This string

may be empty, either because S = high X (as in DT1a), or because our path

proceeds directly down the left of the tree.

v the string derived from high X to the left of low X. This string may be empty if

the path from high X to low X is on the left. However, if this string is empty,

x (see below) will not be. As we assume a CNF grammar, high X must expand

initially to two non-terminals. Either (a) one of these is low X, or (b) one of

these must eventually expand into two non-terminals of which one is low X.

The other one expands into part of v or x, depending on the particular tree.

w the string derived from low X. This string will not be empty, as the

grammar is e free.

x as for v but derived from high X to the right of low X. The same argument as

for v applies here. In particular, x cannot be empty if v is.

y as for u but to the right of high X. Also may be empty, for analogous reasons

to those given above, for u.

As was shown by our example derivation trees DT 1{3, above, we can always

repeat the ‘‘deriving what was derived from the high X in the original tree from low

X ’’ routine as many times as we wish, thus obtaining the characteristic uviwxiy

form, for all i � 1. Furthermore, we can derive what was derived from low X in the

original tree from high X, giving us the uv0wx0y case.

Enough has been said to demonstrate the truth of the theorem that is formally

stated in Table 6.6.

6.5.4 faibici : i� 1g is not Context Free

As for the repeat state theorem for regular languages, we can use our uvwxy

theorem to show that a given infinite language cannot be context free. As

promised at the end of Chapter 5, we now demonstrate that the language

faibici : i � 1g
is not context free.

Table 6.6 The ‘‘uvwxy ’’ theorem for context free languages.

For any infinite CFL, L :

Any sufficiently long sentence, z, of L can be represented as five concatenated substrings
u, v, w, x, and y,

such that z = uvwxy, and uviwxiy is also in L, for all i � 0.
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The proof is very simple. Again, we use reductio ad absurdum as our techni-

que. We assume that fai bi ci : i � 1g is a CFL. The language is clearly infinite, so

the uvwxy theorem applies to it. Our sufficiently long sentence is going to be one

greater in length than 2n{1, where n is the number of non-terminals in a Chomsky

normal form grammar that generates our language.

We can assume that our sufficiently long sentence is ak bk ck , for some k, where

k > 2n{1. The theorem tells us that this sentence can be represented as five concate-

nated substrings uvwxy, such that uvi wxi y are also in fai bi ci : i � 1g for all i � 1.

However, how are substrings of ak bk ck to be allocated to u, v, w, x and y in this way?

l Neither v nor x can be strings of a s and b s, or b s and c s, or a s, b s and c s, as

this would result in symbols being in the wrong relative order when v and x

were repeated.

So this means that the repeatable strings v and x must consist of strings which are

either all as, all bs or all cs. However,

l this would also be inappropriate, as even if, say, v was aaa and x was bbb, when

v and x were repeated, though the number of a s would still equal the number of

bs, the number of each would exceed the number of c s. A similar argument can

be used to show that no other allocation of substrings to v and x would work.

We must again reject our original assumption. fai bi ci : i� 1g is not a context free

language.

In fact, fai bi ci : i � 1g is a context sensitive language, since it is generated by

the following context sensitive grammar, G16:

S ! aSBC j aBC
CB! BC

aB! ab

bB! bb

bC ! bc

cC ! cc;

as you might like to justify for yourself.

The arguments in the following section may require some effort to appreciate.

The section can be omitted, if required, though the result, as stated in the title of

the section, should be appreciated.

6.5.5 The ‘‘Multiplication Language’’ is not Context Free

Now we consider one final refinement to our uvwxy theorem. We focus on a

derivation tree for a sentence of length greater than 2n{1, as described above.
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We choose the longest path (or one of them, if there are several). Now, as our

high X and low X, we pick the lowest two repeated nodes on this path, a

constraint that was not enforced in our earlier examples. The string derived

from high X (i.e. the one we call vwx) is derived by a tree with high X as its root in

which the path that passes through low X is the longest path. We selected the

two X s because they were the lowest repeated nodes on our longest path,

therefore high X and low X are the only repeated nodes on our ‘‘sub-path’’.

Therefore, the path must have maximum length n þ 1, with the last node on

the path being a terminal. Furthermore, the longest string that could be gener-

ated from high X (the one we call vwx) must be such that its length is less than or

equal to 2n (formally, jvwx j � 2n ).

We have established that for any sentence, z, such that jz j > 2n {1, where there

are n non-terminal symbols in a Chomsky normal form grammar that generated z, we

can define the uvwxy substrings so that jvwx j � 2n . To see why this can be useful, we

consider the ‘‘multiplication language’’ introduced at the end of Chapter 2, i.e.

faibjci�j : i; j � 1g;

which was generated by our type 0 grammar, G4(towards the end of Chapter 2). It

was stated, also at the close of Chapter 2, that the above language is not context

free. We now use the uvwxy theorem, along with our newly established result

obtained immediately above, to demonstrate this.

Again, we use reductio ad absurdum. We assume that fai bj ci � j : i, j� 1g is a

context free language. This means that the uvwxy theorem applies to a sufficiently

long string. Consider a string, z from our language. z = a2nb2nc(2n)2

, where n is the

number of non-terminals in a Chomsky normal form grammar for the language.

Obviously, the length of z is greater than 2n{1. We can then, as shown in the

preceding paragraph, establish a uvwxy form for this sentence, such that jvwx j �
2n (remember, n is the assumed number of non-terminals). Now, by a similar

argument to that applied in the case of the language fai bi ci : i� 1g above, we can

certainly justify that v and x cannot be mixtures of different terminals. This means

that v must consist either entirely of as or entirely of bs, and x must be cs only

(otherwise when we increase the number of as or bs for vi, the cs would not

increase accordingly). Now,

l suppose v is a string of as. Then, since x must consist of cs only, w must include

all of the bs. This cannot be so, as both v and x are non-empty, so jvwx j exceeds

2n (since there are 2n bs in w alone)

So v cannot be a string of as then, which means that:

l v must be a string of bs. Now, suppose v = bk, for some k � 1. Then x must be

c2� k. This is because each time uvi wxi y inserts a new copy of v (bk ) into the
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bs, it inserts a new copy of x into the cs. To ensure that the number of cs is still

the same as the number of as times the number of bs, we must insert 2n cs

(2n being the number of as) for each of the k bs. However, again this cannot be

so, because if jx j = 2n � k, then jvwx j is certainly > 2n.

If the language had been context free, we could, for our sufficiently long sentence,

have found a uvwxy form such that jvwx j � 2n. We assumed the existence of such a

form and it led us to a contradiction. We are therefore forced, once more, to reject

our original assumption and conclude that fai bj ci � j : i, j � 1g is not a context free

language.

The ‘‘length constraint’’, i.e., that the vwx in the uvwxy form is such that

jvwx j � 2n, where n is the number of non-terminals in a CNF grammar,

makes the uvwxy theorem especially powerful. It would have been difficult to

establish that faib jci� j:i , j � 1g is not a context free language by arguing

simply in terms of uvwxy patterns alone. You may wish to try this to

appreciate the point.

6.6 Preliminary Observations on the Scope
of the Chomsky Hierarchy

The fact that fai bj ci � j : i, j � 1g is not context free suggests that we need

more powerful machines than pushdown recognisers to perform computations

such as multiplication. This is indeed the case. However, the abstract machine

that is able to multiply arbitrary length numbers is not that far removed from

the pushdown machine. The study of the machine, the Turing machine, will

be a major feature of the second part of this book. It also turns out that the

Turing machine is the recogniser for the context sensitive (type 1) and unrest-

ricted (type 0) languages, which is how we introduce it in the next chapter.

In the preceding sections we have seen that there is indeed a hierarchy of

formal languages, with each class being properly contained within the class

immediately above it. The question arises: are the type 0 languages a proper

subset of the set of all formal languages? As we said earlier, a formal language is

simply any set of strings. Much later in this book (Chapter 11), we will see that

there are indeed formal languages that are outside the class of type 0 languages,

and thus cannot be generated by any grammar specified by the Chomsky

hierarchy.
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EXERCISES

For exercises marked ‘‘y ’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises ’’ at the end of the book.

6.1. Produce a DFSR to accept the language fa4i : i � 1g, then use the

complement construction described earlier in the chapter to produce

a machine that accepts the language fa4iþj : i � 0, 1 � j � 3g.

6.2. As mentioned in the text above, both L1= fai b j : i� 1, j = 0 or j = i g
and L2= fbi cj : i = 0 or i = j, j � 1g, are deterministic CFLs, but the

language L1L2 is not. Justify this.

6.3.y As expressed above, the first sentence of the section on the repeat

state theorem is not generally true. Rewrite the sentence so that it is.

6.4.y Use the repeat state theorem to show that fai bj ciþj : i, j � 1g and

fai bj ci -j : i, j � 1g, both shown to be deterministic by exercise 7

of Chapter 5, are not regular languages.

6.5.y Use the uvwxy theorem to show that fxx : x 2 fa; bg�gis not context

free. (In fxx : x 2 fa; bg�g each string consists of an arbitrary mix-

ture of as and/or bs of even length (or empty) and the second half of

the string is an exact copy of the first, e.g. aaabbbaaaabbba.)
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7
Phrase Structure Languages and Turing

Machines

7.1 Overview

This chapter introduces the Turing machine (TM), an abstract machine for

language recognition and computation.

We examine TMs as language recognisers. You will appreciate that:

l TMs can do anything that Finite State Recognisers (FSRs) and Pushdown

Recognisers (PDRs) can do

l TMs are more powerful than non-deterministic PDRs

l TMs are the recognisers for the phrase structure (type 0) languages in general.

7.2 The Architecture of the Turing Machine

The abstract machine we consider in this chapter, and for much of Part 2 of this

book, is called the Turing machine (TM). Alan Turing was the English mathe-

matician who first described such a machine in 1936. A TM is essentially a finite

state machine, like a finite state recogniser, but with some very simple additional

facilities for input and output, and a slightly different way of representing the

input sequences.

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 7, � Springer-Verlag London Limited 2008



7.2.1 ‘‘Tapes’’ and the ‘‘Read/Write Head’’

The input to a TM is regarded as being contained on a ‘‘tape’’. The tape is

divided into ‘‘tape squares’’, so that each symbol of the input sequence occupies

one square of the tape. We assume that the tape is not restricted in length, so

that we can place an input sequence of any length we like on the tape (we assume

that any unused part of the tape consists of blank tape squares). For example,

the input sequence aabbaa may occupy part of a tape such as that depicted in

Figure 7.1.

Hitherto, our abstract machines have been assumed to read their input

sequences from left to right, one symbol at a time. However, a TM can move

along its tape in either direction, examining, or ‘‘reading’’ one tape square at a

time.

Let us now consider the output of a TM. The TM simply uses its tape for

output as well as input. On reading an input symbol from a particular tape square

in a particular state, the TM can replace the input symbol on that particular

square with any designated symbol. As a simple example, consider a tape contain-

ing a sequence of as and/or bs, where we require as output a sequence representing

the input sequence, but with all bs replaced by as, and vice versa.

An example tape is shown in Figure 7.2, as the hypothetical TM described

immediately above has completed its processing of the first three symbols (assume

that the tape is being processed from left to right).

a a b b a a

“marked”
squares

blank
squares

blank
squares

tape continues
indefinitely tape continues

indefinitely

Figure 7.1 The tape of a Turing machine, containing the string aabbaa.

b b a b a a

R / W 
head

Figure 7.2 The read/write head located on a square of the tape.
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In order to clarify the notion of a TM ‘‘examining’’ one square of a tape, and

placing a symbol on a tape, we say the TM possesses a read/write head (we

sometimes simply say R/W head, or just head). The R/W head is at any time

located on one of the tape squares, and is assumed to be able to ‘‘sense’’ which

symbol of some finite alphabet occupies that square. The head also has the ability

to ‘‘write’’ a symbol from the same finite alphabet onto a tape square. When this

happens, the symbol written replaces the symbol that previously occupied the

given tape square. The read/write head can be moved along the tape, one square

at a time, in ways we discuss later.

7.2.2 Blank Squares

In Figure 7.2, we examined the state of the tape of an imaginary TM that replaced

bs by as (and vice versa), when the machine had dealt with only some of the input

symbols on its tape. Let us now consider the example tape for Figure 7.2 when the

machine has processed the last symbol (the a at the right-hand end) of the marked

portion of the tape. At this point, since the machine is replacing as by bs, and vice

versa, the tape will be as shown in Figure 7.3.

When our machine reaches the situation shown in Figure 7.3, it will attempt to

read the symbol on the next tape square to the right, which of course is blank. So

that our machine can terminate its processing appropriately, we allow it to make a

transition on reading a blank square. In other words, we assume that the read/

write head of a TM can sense that a tape square is blank. Moreover, the TM can

write a symbol onto a blank square and even ‘‘blank out’’ an occupied tape square.

We denote the blank symbol by an empty box (suggesting that it is repre-

sented as a blank tape square), thus:

Note that in some books, the blank is represented as a 0, or a � (Greek letter

beta).

b b a a b b

R / W
head

Figure 7.3 The read/write head moves past the right-hand end of the marked
portion of a tape, and reaches a blank square.

7.2 The Architecture of the Turing Machine 157



7.2.3 TM ‘‘Instructions’’

Like finite state recognisers (Chapter 4) and pushdown recognisers (Chapter 5),

TMs can be represented as drawings, featuring states and labelled arcs. An arc in

a TM is, like the arc between two states of a PDR, labelled with three symbols

(though what the three symbols mean is different, as we will now see).

By way of illustration, Figure 7.4 shows part of a TM. Assume that the

machine is in state A and that the tape and position of the read/write head are

as shown on the right of Figure 7.4.

The TM represented in Figure 7.4 would carry out the activities described in

Table 7.1, assuming that it starts in state A.

We now use the conceptual framework provided above as the basis of a more

rigorous definition of TMs.

Table 7.1 A trace of the behaviour of the Turing Machine fragment from
Figure 7.4.

Action State of tape immediately following action

Read an a, write an a, move right
(R), stay in state A

R / W
head

a a b c

Read an a, write an a, move right
(R), stay in state A a a b c

R / W
head

Read a b, write an a, move right
(R), stay in state A a a a c

R / W
head

Read a c, write a blank, move
right (R), move to state B a a a

R / W
head

R / W
head

a a b cA

B

a/a (R)
b/a (R)

c/ (R)

Figure 7.4 A fragment of a TM, along with an appropriate tape set up.
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7.2.4 Turing Machines Defined

A TM has essentially the same pictorial formulation as the FSR or PDR, except

that each arc of a TM is labelled with three instructions:

1. an input symbol which is either

or a symbol from a finite alphabet

2. an output symbol, either

or a symbol from the same alphabet as for (1),

3. adirection designator, specifying whether the read/write head is to move one

square left (L), right (R), or not at all (N).

The TM can make a transition between states if (1) is the current tape symbol, in

which case the TM replaces (1) by (2), and moves one tape square in the direction

specified by (3), before moving to the state pointed at by the relevant arc.

Next, we consider a simple example TM, which is discussed in some detail.

Much of the remainder of the chapter is devoted to demonstrating that TMs can

perform all the tasks that can be performed by the other abstract machines we

have hitherto considered, and many tasks that they could not.

7.3 The Behaviour of a TM

Figure 7.5 shows our first full TM, T1.

T1 processes input tapes of the form shown in Figure 7.6.

As shown in Figure 7.6, T1 (Figure 7.5) expects the marked portion of its input

tapes to consist of an a followed by zero or more blank squares, followed by either

b or c. T1’s head is initially positioned at the a, and the output is a tape of the form

depicted in Figure 7.7.

As Figure 7.7 shows, the b or c of the input tape (Figure 7.6) has been ‘‘erased’’

from its initial position { replaced by a blank { and placed in the tape square

immediately to the right of the a, with T1’s head finally positioned at that square.

We will call this moving of a symbol from one part of a tape to another ‘‘shuffling’’

the symbol. We can talk of right shuffling and left shuffling. T1 does a left shuffle of

the symbol denoted by x in Figure 7.6.
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5

2

b/b (N)
c/c (N)

7

4

3

6

1

8

a/a (R)
/b (N)

a/a (R)

/ (R)

/ (L)

b/ (L)

c/ (L)

a/a (R)

/c (N)

/ (L)

/ (R)

Figure 7.5 The Turing machine, T1.

a

R / W
head

x

0 or more
blank

squares

x = b or c

Figure 7.6 The input tape set up for T1 of Figure 7.5.

a

R / W
head

x

b or c
(depending on
value of x in
Figure 7.6) 

blanks

Figure 7.7 The tape when T1 of Figure 7.5 halts, having started on a tape as
specified in Figure 7.6.
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We will not trace the behaviour of T1 in detail here. Table 7.1 shows an

example of how we can trace a TM’s behaviour. You can do such a trace of T1’s

behaviour for yourself, if you wish. Now we will spend a short time examining the

function of the states in the machine:

State 1

The start state. Assumes that the head is positioned at a square containing an

a. If there is no a, or another symbol occupies the square, no transition is

possible.

States 2{5 and 2{7

When state 2 is entered from state 1, a right move of the head has just been

carried out. Since there are expected to be 0 or more blanks between the a and

the b or c, the head could at this point be pointing at a b or a c (in which case the

machine has nothing else to do, and moves to its halt state, leaving the head

where it is). Otherwise, there is a blank to the right of the a. The machine then

moves into state 3, where it ‘‘skips over’’ (to the right) any more blanks, until the

head reaches the b or c. State 3 also ‘‘erases’’ the b or c before moving to state 4

(for a b) or state 6 (for a c). State 4 skips left over any blanks until the head

reaches the a, at which point the head moves back to the blank square to the

right of a. State 5 then ensures that the blank to the right of a is overwritten by b,

as the transition back to state 2 is made (note that no movement of the head

is specified by this transition). States 6 and 7 perform an analogous function

to states 4 and 5, but where the symbol after the blanks is c rather than b.

State 8

This state, the halt state, is reached only from state 2, when the head points at a

b or a c (which could be either because a b or a c was initially next to the a, or

because a b or a c had been moved there by states 3{5 or states 3{7 (see above).

Note that the arcs leaving states 5 and 7 could have been drawn directly to

state 8 if wished.

T1 will reach its halt state, producing an output tape as described in

Figure 7.7, when it is given an input configuration as specified in Figure 7.6.

If the input configuration is not set up correctly, then T1 may do one of the

following:

a) halt in a non-halt state, as would result from the input tape configuration

shown in Figure 7.8

b) never halt, which would be the result of the input tape configuration shown in

Figure 7.9.
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You may like to satisfy yourself that (a) and (b) are true for the input configura-

tions of Figures 7.8 and 7.9, respectively. You should also observe that a third

general possibility for a Turing machine’s halting situation, i.e., reaches halt

state, but produces output not conforming to specification, is not possible in the

case of T1, if only blanks lie to the right of the b or c. The latter comment relates to

the fact that the output specification requires a totally blank tape to the right of

the head when T1 halts.

The immediately preceding discussion indicates the need for care in describing

a TM’s expected input configuration (i.e., the marked portion of its tape, and

initial location of the read/write head). If we carefully specify the input condi-

tions, then we need not consider what happens when an input situation that does

not meet our specification is presented to the machine. Of course, we should also

specify the ways in which the output configuration (the state in which the machine

halts, the contents of its tape, and the final location of its read/write head) is to

represent the ‘‘result’’.

a a

R / W
head

x

0 or more
blank

squares

x = b or c

Figure 7.8 A tape that would cause problems for T1 of Figure 7.5. There is
an unexpected a to the right of the head, which would cause T1 to get stuck

in state 2.

a

R / W
head

blanks

Figure 7.9 A tape that would cause even bigger problems for T1 of Figure 7.5.
There is no b or c present, so there is nothing to stop T1 going along the tape

forever (in state 3).
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The remainder of this chapter will be devoted to demonstrating that for

language recognition, TMs are indeed more powerful than the other abstract

machines we have studied thus far.

7.4 Turing Machines as Language Recognisers

7.4.1 Regular Languages

We do not have to expend much effort to demonstrate that TMs are at least as

powerful as finite state recognisers (FSRs). Recall from Chapter 4 that for each

regular language, there exists a deterministic FSR (DFSR) to recognise that

language. A DFSR is simply a TM that always moves its read/write head to the

right, replacing each symbol it reads by that same symbol, on each transition.

Thus, the DFSR, M5
d, from Chapter 4, reproduced here as Figure 7.10,

becomes the TM, T2, shown in Figure 7.11.

We have taken advantage of the TM’s ability to write, as well as read,

symbols, and its ability to detect the end of the input string when reaching a

blank square, to ensure that T2 has two useful features:

1. it prints T for any valid string, and F for any invalid string, and

2. it has only one halt state.

We henceforth assume that all of our TMs have only one halt state. An exercise

asks you to convince yourself that this is a reasonable assumption.

An important point should be noted. T2 prints F and goes directly to its halt

state if the head is initially located on a blank square. In a sense, this reflects an

V

b

X
a

b

a
Y

W

a
b

H1 
a

b

a

b

b

a

a, b

H2 

Figure 7.10 The deterministic finite state recogniser, M5
d, of Chapter 4.
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assumption that if the head is initially at a blank square then the tape is entirely

blank. We will call this assumption the blank tape assumption. We will further

assume that a blank tape represents the empty string (e).
As e is not in the language accepted by M5

d, T2 (of Figure 7.11) prints an F if

its head is initially on a blank square. Of course, T2 can never be sure that the tape

is empty. No TM can ever establish beyond doubt that its tape is unmarked. As

we know, the tape has no definite ends in either direction, i.e. the blank squares at

either end of the marked portion extend indefinitely. It should therefore be clear

why we have not designed T2 so that when its head points initially at a blank

square, it searches its tape to see if the input string is located somewhere else on

the tape.

From the way T2 was constructed, you will appreciate that we could do the

same type of DFSR-to-TM conversion for any DFSR.

7.4.2 Context Free Languages

Recall from Chapter 5 that the abstract machine associated with the context free

languages is the non-deterministic pushdown recogniser (NPDR). Recall also that

some of the context free languages are deterministic (can be recognised by a

DPDR) while some are not (can be recognised by an NPDR, but not a DPDR).

a/a

a/a a/a a/a

a/a

a/a

a/a

b/b

b/b

b/b

b/b
b/bb/b

b/b

/T (N)

/T (N)

Figure 7.11 Turing machine T2, which does the same job as DFSR M5
d (Figure

7.10). Since all instructions but three involve a rightward move, the move desig-
nator (R) has been omitted. Every state apart from those that write T is assumed

to write F and move to the halt state if a blank square is encountered.
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It can be shown that any DPDR can be converted into a TM. We will not

consider this here, but merely point out that the basic method is for the TM to use

part of its tape to represent the stack of the PDR, thus working with two parts of

the tape, one representing the input string, the other representing the stack.

However, one usually finds that a TM to do the job done by a DPDR is better

designed from scratch. Here, we consider T3, which is equivalent to M3
d of

Chapter 5 (Figure 5.8), the DPDR that accepts the language

aibi : i � 1
� �

;

which we know from Chapter 6 to be properly context free, i.e., context free but

not regular. T3 is shown in Figure 7.12.

T3 expects on its tape an arbitrary string of as and/or bs (using the notation of

Chapter 2, a string in fa, bg*), finally printing T if the string is in the language

faibi : i � 1g, and F if it is not. Note that, like T2 (Figure 7.11), T3’s read/write

head begins on the leftmost symbol of the input. Moreover, T3 embodies the same

blank tape assumption as did T2. T3 uses the symbols X and Y to ‘‘tick off’’ the as

and corresponding bs, respectively. You should trace T2’s behaviour on example

sentences and non-sentences. An example of how a trace can be done is shown in

Table 7.1. Now for the non-deterministic context free languages. Recall from

Chapter 5 that some context free languages can be accepted by a non-determi-

nistic PDR (NPDR), but not a deterministic PDR. Later, in Chapter 11, we

briefly consider the conversion of NPDRs into TMs. However, to demonstrate

that TMs are more powerful than NPDRs, we see in Figure 7.13 a TM, T4, that

recognises the language of possibly empty palindromic strings of as and bs. Recall

1

a/X (R) 2

6

3

4

5

a/a (R)
Y/Y (R)

Y/Y (R)

b/Y (L)

a/a (L)
Y/Y (L)

a/X (R)
X/X (R)

Y/Y (R)

/T (N)
a/F (N)
b/F (N)

b/F (N)

/F (N)

/F (N)

Figure 7.12 The Turing machine T3 recognises the deterministic context free
language faibi :i � 1g.
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that in Chapter 5 such languages were shown to be non-deterministic CFLs and

therefore beyond the processing power of the DPDR.

T4 accepts only those strings in fa,bg* that are palindromic, and, what is

more, does the job deterministically.

T4 uses only one marker, X, and works from the outside in, ‘‘ticking off’’

matching symbols at the extreme right and left ends of the string. This time,

the blank tape assumption results in a T being printed if the read/write head of T4

starts on a blank, as the empty string is in fa,bg* and is palindromic. Again, you

should make sure you understand how the machine works, since more complex

TMs follow.

7.4.3 Turing Machines are More Powerful than PDRs

The above discussion implies that Turing machines are as powerful, in terms of

language processing, as FSRs and (deterministic and non-deterministic) PDRs.

This claim is justified later in this chapter. However, by using a single example we

can show that TMs are actually more powerful than PDRs. Consider the Turing

machine,T5, shown in Figure 7.14, that processes the language

aibici : i � 1
� �

;

which was demonstrated in Chapter 6 to be properly context sensitive (i.e. context

sensitive but not context free).

a/X (R)
b/F (N)
X/T (T)

a/X (L)

/

b/X (L)
a/F (N)
X/T (T)

/ (L)

(L)

X/X (L)

X/X (L)

a/a (R)
b/b (R)

a/a (R)
b/b (R)

b/X (R)

X/X (R)
X/X (R)

/T (N)

a/a (L)
b/b (L)

Figure 7.13 The Turing machine T4 deterministically recognises a language of
palindromic strings that requires a non-deterministic pushdown recogniser.

166 7. Phrase Structure Languages and Turing Machines



T5 requires an input configuration of the form shown in Figure 7.15.

It reaches its halt state for valid or invalid strings. For valid strings (i.e. strings

of one or more as followed by the same number of bs followed by the same numbers

of cs), the output configuration is as specified in Figure 7.16.

The input sequence of Figure 7.15 is altered by T5 to produce a tape of the

form described in Figure 7.16 (the symbols X, Y and Z are used as auxiliary

1

a/X (R)
2

7

3

4

6

b/Y (R)

a/X (R)
c/Z (L)

X/X (R)

Y/Y (R)
Z/Z (R)

Z/F (N)

5

a/a (L)

a/a (R)
Y/Y (R)

b/b (R)
Z/Z (R)

b/b (L)
Y/Y (L)
Z/Z (L)

Y/Y (R)

/T (N)
a/F (N)
b/F (N)
c/F (N)

c/F (N)
b/F (N)

/F (N) /F (N)

a/F (N)
/F (N)

c/F (N)

Figure 7.14 The Turing machine T5 recognises the context sensitive language
faibici : i � 1g.

R/W
head

any string of
as and/or bs

and/or cs

Figure 7.15 The input tape set up for T5 of Figure 7.14.
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markers). Again, the output of a T indicates that the input sequence represents a

sentence of the language in question.

For invalid strings (i.e. any string in fa,b,cg* which is not in faibici : i � 1g),
however, when the halt state is reached, the configuration will be as shown in

Figure 7.17.

In the case of invalid strings then, the read head will be left pointing at an F, as

shown in Figure 7.17.

When students design language recognition machines such as T5, their

machines sometimes omit to check for the possible occurrence of extra symbols

at the end of an otherwise valid string. For the language faibici : i � 1g, such

machines will indicate that a valid string immediately followed by another string

in fa, b, cgþ is valid, when, of course, it is not.1

as replaced by Xs
bs replaced by Ys
cs replaced by Zs

T

R / W
head

Figure 7.16 The tape after a valid string has been processed by T5 (Figure 7.14).

some symbols may have
been replaced by Xs, Ys

and Zs

F

R / W
head

F

R / W
head

the F may be written
somewhere within the
string or immediately to
its right 

Figure 7.17 The tape after an invalid string has been processed by T5

(Figure 7.14).

1 Recall from Chapter 2 that fa, b, cgþ is the set of all non-empty strings of as and/or bs and/or cs.
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However, students are not the only guilty parties when it comes to failing to

check for invalid symbols at the end of an otherwise valid input. I have encoun-

tered a Pascal compiler that simply ignores all of the source file text that occurs

after an end followed by a full stop (in Pascal, the only end terminated by a full

stop is the last one in the program and corresponds to a begin that announces the

start of the program block). This caused severe difficulties to a novice who had

accidentally put a full stop after an end halfway down their program and hap-

pened to have an extra begin near the beginning. The program compiled perfectly,

but when run only carried out the first part of what was expected by the

programmer! The Pascal compiler in question was accepting an invalid input

string, in this case with potentially serious consequences.

7.5 Introduction to (Turing Machine) Computable
Languages

We have seen that TMs are more powerful language recognisers than finite state

and pushdown recognisers. Regular languages are associated with finite state

recognisers in the same way as context free languages are associated with push-

down recognisers. It seems reasonable to ask, then, if there is a class of languages

that are associated with TMs in a similar way. In other words, is there a class of

grammar in the Chomsky hierarchy, so that for any language generated by a

grammar in that class, there is some TM that can recognise that language?

Conversely, for any TM that recognises a language, can we be sure that the

language is in the same class? In fact, there is such a class of languages and it

turns out that it is exactly that defined by the most general Chomsky classifica-

tion, i.e. the general phrase structure languages themselves, these being those

generated by the type 0, or unrestricted, grammars. Type 0 grammars were

defined in Chapter 2 as being those with productions of the form

x! y; x 2 ðN [ T Þþ; i.e. a non-empty arbitrary string of terminals and

y 2 ðN [ T Þ�; non-terminals on the left-hand side of each

production, and a possibly empty arbitrary string of

terminals and non-terminals on the right-hand sides.

Let us call the languages that can be recognised by a TM the Turing machine

computable languages. For convenience, and with some justification, as we will see

later in the book, we will refer to them as computable languages. We eventually

discover that the computable languages include, but are not restricted to, all of the
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regular languages, all of the context free languages, and all of the context sensitive

languages.

In Chapter 4, the correspondence between regular languages and finite state

recognisers was specified. We saw how we can take any regular grammar and

construct an FSR to accept exactly the same set of strings as that generated by

the grammar. We also showed that we could take any FSR and represent it by a

regular grammar that generated the same set of strings as that accepted by the FSR

(we did a similar thing with respect to NPDRs and the context free languages in

Chapter 5). Analogously, to show the correspondence between TMs and unrest-

ricted languages we would have to show how to create a type 0 grammar from any

TM, and vice versa. However, this is rather more complicated than is the case for the

more restricted grammars and machines, so the result will merely be sketched here.

We first consider the context sensitive languages, as their defining grammars,

the context sensitive grammars, cannot have the empty string on the right-hand

side of productions. We then generalise our method to deal with the type 0

grammars in general. The definition of context sensitive productions is as for

type 0 productions given above, with the additional restriction that the right-

hand sides of context sensitive productions are not allowed to be shorter in length

than the left-hand sides.

7.6 The TM as the Recogniser for the Context
Sensitive Languages

The machine T5, shown in Figure 7.14, recognises the language

aibici : i � 1
� �

:

In Chapter 6 we established that this language is not context free. We also saw

that it is, in fact, a context sensitive language, as it is generated by the following

grammar, G16:

S ! aSBC j aBC

CB! BC

aB! ab

bB! bb

bC ! bc

cC ! cc
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We wish to establish that for any context sensitive language we can provide

an equivalent TM. T5 itself is not enough to convince us of this, as it was

designed for a specific language, and not constructed through using a method

for creating TMs from the productions of the corresponding grammar. We

therefore require a method for constructing TMs for context sensitive gram-

mars that we could apply to any such grammar. Here, we will consider the

application of such a method to the grammar G16. I then leave it to you to

convince yourself that the method could be applied to any context sensitive

grammar.

7.6.1 Constructing a Non-deterministic TM for Reduction
Parsing of a Context Sensitive Language

The TM, T6, that has been constructed from the productions of G16, is partly

depicted in Figure 7.18.

You will note that T6 is in three sections, namely sections A, B and C, all of

which have state 1 in common. Sections A and B are shown in full, while section C

is only partly specified. The machine is far more complex than T5 (Figure 7.14), a

TM that was designed to recognise the same language. T6 was constructed from

the productions of a grammar (G16), and its purpose is merely to demonstrate a

general method for constructing such TMs.

The first thing to note is that T6 is non-deterministic. Its overall process is to

model the reduction method of parsing introduced in Chapter 3. Beginning with a

terminal string, if the right-hand side of any of our productions is a substring of

that string, we can replace it by the left-hand side of such a production. The

process is complete if we manage to reduce the string to the start symbol S alone.

For a TM, this means we finish up in a halt state with the tape that initially

contained the input string now containing only S.

T6 carries out reduction parsing using the grammar G16, by effectively ‘‘scan-

ning’’ the input string repeatedly from left to right, then right to left, attempting

to find a sequence of reductions that will leave only the symbol S on the tape. The

process is non-deterministic since many reductions may apply at any one time,

and many reductions may lead to dead ends, and thus we may often have to

backtrack to find alternative reduction sequences. As for all of the other non-

deterministic machines we have studied in this book, we assume that the string is

accepted if some sequence of transitions will lead to the machine’s halt state (in

the case of T6, this is state 6). T6 reaches its halt state when only S, the start

symbol of the grammar, remains on its tape, i.e. if it finds a sequence of reduction

applications that enable the input string to be reduced to S. You may like to
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convince yourself that T6’s halting conditions will be met only if its input tape

initially contains a string from faibici : i � 1g.
To establish that we could produce a ‘‘T6-like’’ TM from any context sensitive

grammar, we briefly consider the functions of the three sections shown in the

diagram of T6, in Figure 7.18, and also the correspondence between parts of the

machine and the productions of the grammar.

Section A

This section of the machine repeatedly scans the input string (state 1 scans

from left to right, while state 2 scans from right to left). States 3{5 test if

Section C
(Part 1)

Section B

Section A

a/S (R)

6

1

1

12

17

16

15

14 13

11

3130

18

19

/ (L)

a/ (L)

?/? (R)

/a (R)

B/ (L)

C/ (L)

B/B (R)

a/a (R)

7

89

10 C/B (R)

B/C(R)

b/B (R)
c/C (R)

b/b (R)

b/B (R)

a/a (R)
c/c(R)

c/C (R)

1 235

4

?/? (R)?/? (N)

/ (L)

/ (R)

?/? (L)

S/S (R)

/ (L)S/S (L)

/ (N) ?/? (N)

NOTE:
?/? is an abbreviation for
skipping over every non-
blank symbol in the
direction specified, until a
blank tape square is
encountered.

To section
C (Part 2) –
discussed
later

/ (L)
/ (L)

/ (R)

/ (R)

/ (L)

S/S (R)

Figure 7.18 The non-deterministic Turing machine T6 recognises the context
sensitive language faibici : i � 1g.
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the symbol S alone remains on the tape (in which case the machine can halt in

state 6).

Section B

This section contains a state for each production in G16 that has a left-hand

side of the same length as its right-hand side (e.g., CB ! BC). For example,

state 1 and state 10 replace BC by CB, i.e., carrying out the reduction based

on the production CB!BC, while state 1 and state 7 perform an analogous

function for the productions bB! bb and bC! bc, respectively.

Section C

This section also carries out reduction substitutions, but for productions whose

right-hand sides are greater in length than their left-hand sides (in G16, these are

S!aSBC and S!aBC). In such cases, a substitution uses up less tape than the

sequence of symbols being replaced, so the extra squares of tape are replaced by

blanks. Any other symbols to the right of the new blanks are then shuffled up one

by one until the occupied part of the tape is packed (i.e., no blanks are found

between any non-blank tape squares). Figure 7.18 shows only Part 1 of section C.

We first discuss this part, before examining Part 2 (Figure 7.21) below.

Part 1

This section of T6 deals with the production S!aBC, i.e. ‘‘reduces’’ aBC to S.

To illustrate, Figure 7.19 shows what happens when we are in state 11 with the

tape configuration as shown.

Note that, for simplicity, Figure 7.18 shows only the loop of states (states 17,

18, 19, 15, 16) that shuffle an a leftwards so that it goes immediately to the

right of the next non-blank symbol to its left. We have omitted the ten states

that would be needed to shuffle any other symbols of the alphabet (i.e., b, c, S,

B,C) that may be required. To consider why two states are needed to deal with

each symbol, consider the part of T6 that does the shuffling job for a, depicted

in Figure 7.20.

So, states 15, 16 and 17 are common to the shuffling loop for each symbol in the

alphabet. We need, say, states 20 and 21 to shuffle any bs, states 22 and 23 to

shuffle any cs, states 24 and 25 to shuffle any Ss, states 26 and 27 to shuffle any

Bs, and states 28 and 29 to shuffle any Cs. That is why in Figure 7.18 the state

to the right of state 17 is named state 30.

Part 2

This second part of Section C of T6, depicted in Figure 7.21, deals with the

production S!aSBC, i.e. ‘‘reduces’’ aSBC to S. It is very similar to Part 1 (see

Figure 7.18), that deals with S!aBC, and was discussed immediately above.
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a B C
Tape on
entering
state 11 

some
symbols 

some
symbols 

some
symbols 

R / W
head

R / W
head

S
Tape on
entering
state 17 

a

Tape on
entering
state 1
from
state 31

X X X

X X X

X X X

R / W
head

Figure 7.19 Stages in the reduction of aBC to S by the Turing machine T6 (the
state numbers refer to those in Figure 7.18).

17

16

15

18

19

/ (R)
a/ (L)

?/? (R)

/a (R)

/ (L)

/ (R)

Figure 7.20 The fragment of T6 (Figure 7.18) that ‘‘shuffles’’ an a leftwards over
a blank portion of the tape so it is placed immediately to the right of the next non-

blank tape square.
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As for section C part 1, we have only included the pair of states (state 41 and

state 42) between states 40 and 38 that shuffle the a to the left (note that in this

case, shuffling involves three blanks, as the right-hand side of S !aSBC has

four symbols). As for Part 1, we assume that there is a similar pair of states

linking states 40 and 38 for each of the other alphabet symbols (b, c, S, B, C).

Thus we need ten more states (assumed to be numbered 46{57), which is why

the state leaving the loop has been labelled 53. We have taken advantage of the

fact that both productions dealt with by section C have a as the leftmost

symbol of the right-hand side. This was not necessary (as our machine is non-

deterministic), but was done for convenience.

7.6.2 The Generality of the Construction

To appreciate the generality of the construction that enabled us to produce

T6 from G16, consider the following. The definition of context sensitive pro-

ductions tells us that the left-hand side of each production does not exceed, in

length, the right-hand side (i.e. productions are of the form x !y, where

Section C
(Part 2)

a/S (R)

1

34

53

40

37

36 35

11

55

54

41

a/ (L)

?/? (R)

/a (R)

B/ (L)

C/ (L)

B/B (R)

S/S (R)

From
section C
(Part 1) –
Figure 7.18 

39

3338

32

42

a/a (R)

S/ (L)

/

/ (L)

(L)

/ (L)
/ (L)

/ (L)

/ (R)

/ (R)

/ (R)

Figure 7.21 The part of T6 that reduces aSBC to S (for Part 1 of section C, see
Figure 7.18).
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jxj�jyj). Therefore we can represent any context sensitive grammar by a

Turing machine with:

a section A part

To scan back and forth over the input between the start state and another

state, enabling the halt state to be reached only when the start symbol, S,

appears alone on the tape.

a section B part

That consists of a distinct path for each production in the grammar with equal

length left- and right-hand sides, each path leaving and re-entering the start

state. The path for each production performs the reduction associated with

that production, i.e., when the right-hand side of a production appears any-

where on the input tape, it can be replaced by the left-hand side of that

production.

a section C part

That consists of a distinct path for each production in the grammar with

left-hand side shorter in length than the right-hand side, each path leaving

and re-entering the start state. As in section B, the path for each production

performs the reduction associated with that production. However, in section C

cases the newly placed symbols occupy less tape space than the symbols

replaced, so each path has a ‘‘shuffling routine’’ to ensure that the tape

remains in packed form. In G16, only the productions S !aSBC and

S !aBC are of section C type, and both represent reductions where the

replacement string is a single symbol. In general, of course, a context sensitive

production could have several symbols on the left-hand side. This represents

no real problems however, as demonstrated by the sketch of part of a TM that

does the reduction for the context sensitive production XY!PQR, shown in

Figure 7.22.

As you can see from Figure 7.22, in this example we need only to skip over one tape

square to the right of the newly written XY. This is because the right-hand side of

the production XY!PQR is one symbol longer than the left. We thus replace the

PQ with XY, and the R with a blank. We then need to move over that blank to see

if there is a symbol there to be shuffled up, and so on.

In Chapter 5, the non-deterministic pushdown recognisers (NPDRs) that we

created from the productions of context free grammars recognised the language

generated by the grammar by being able to model any derivation that the

grammar could carry out. Our non-deterministic TMs operate by modelling

every possible sequence of reductions for the corresponding context sensitive
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grammar. Such TMs reach their halt state only if the string on the input tape can

be reduced to S. The construction sketched out above ensures that this would

happen only for inputs that were sentences of the language generated by the

original grammar.

Enough has been said to establish the following:

l The recogniser for the context sensitive languages is the Turing Machine.

Context sensitive languages are computable languages.

You may be wondering why the statement immediately above does not say ‘‘non-

deterministic Turing machine’’. In Chapter 10 we will see that any non-deterministic

TM can be simulated by a deterministic TM. Hence, the non-deterministic TMs

of this chapter could be replaced by equivalent deterministic TMs.

7.7 The TM as the Recogniser for the Type 0
Languages

Now, the sole difference between context sensitive productions and unrestricted,

or type 0, productions is that the latter are not restricted to having right-hand

sides that are greater than or equal in length to the left-hand sides. This means

that, say, a production such as WXYZ!Pa, which is not a valid context sensitive

production, is a perfectly reasonable type 0 production. Moreover, type 0 gram-

mars can contain e productions (see Table 5.1). Productions such as WXYZ!Pa

do not present a severe problem, as we simply add another section to our TMs to

deal with these types of production, as discussed next (we will return to e
productions shortly).

Q/Y (L)

/ (L)
/ (L)

/ (R)

R/ (L)

Q/Q (R)

P/P (R)

P/X (R)

one two-
state
“shuffling”
path for
each
symbol of
the
alphabet

Y/Y (R)

Figure 7.22 A Turing machine fragment to replace PQR by XY, representing a
reduction involving the type 0 production PQR! XY.
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7.7.1 Amending the Reduction Parsing TM to Deal with
Type 0 Productions

Assuming that we already have sections A, B and C as defined for our TMs

derived from context sensitive grammars (for example, Figure 7.18), we add to

such a construction a new section, as follows:

Section D

Consists of a distinct path for each production in the grammar with left-hand

side longer in length than the right-hand side, each path leaving and re-

entering the start state. As in sections B and C, the path for each production

performs the reduction associated with that production. However, in such

cases the newly placed symbols occupy more tape space than the symbols

replaced, so each path has a ‘‘shuffling routine’’ to ensure that all symbols in

the way are each moved to the right an appropriate number of spaces. This

makes room for the additional symbols required by the application of the

reduction.

Figure 7.23 shows part of the section D component of a TM, in this case the part

dealing with the type 0 example production WXYZ!Pa.

For our example production, there are two extra symbols to insert when per-

forming the associated reduction, as the right-hand side of our production { Pa { has

two fewer symbols than the left-hand side { WXYZ. A machine of the type

illustrated in Figure 7.23 therefore has to shuffle all symbols (if any) that were to

the right of the Pa in question two tape squares to the right, leaving two blanks

immediately to the right of Pa (which is eventually changed to WX). Then YZ can

be inserted. The symbolM is used as a marker, so that the machine can detect when

to stop shuffling. When the M has a blank next to it, either there are no symbols to

its right, or we have shuffled the symbol next to it to the right, and so no more

symbols need shuffling. You should convince yourself that a section D-type con-

struction of the type shown in the example could be carried out for any production

where the right-hand side is non-empty and of smaller length than the left-hand side.

7.7.2 Dealing with the Empty String

As promised above, we now consider e-productions. In fact, we can treat these as a

special case of the section D-type construction. We simply allow for the fact that

on either side of any non-blank symbol on the tape, we can imagine there to be as

many es as we like. This means we can insert the left-hand side (i.e. after shuffling

to make sufficient room, in a section D-type way) of a type 0 e-production
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anywhere we like on the marked portion of the tape. As you may recall, in earlier

chapters we noted that this was a cause of problems in parsing. Our machine

should only be able to reach its halt state if it inserts the left-hand sides of e-
productions in the appropriate places, i.e. in terms of a correct reduction parse of

the input string being processed. So, we complete our specification of the TM to

represent any type 0 grammar by introducing the following, where necessary, to

the machine sketched out in Figure 7.18.

Section E

Consists of a distinct path for each production in the grammar with e on the

right-hand side, each path leaving and re-entering the start state. As in sections

B, C and D, the path for each production performs the reduction associated

with that production. Figure 7.24 shows a sketch of a section E construction for

the type 0 production XYZ! e.

C/Y (L)

/ (L)

/Y (R)

a/M (L)P/P (R)

P/W (R)

M/M (R)

M/X (R)

/Z (R)

?/? (R)
?/? (R)

/ (L)M/X (R)

?/? (N)

/a (L) / (R)
a/ (R)

one two-
state
“shuffling”
path for
each symbol
of the
alphabet

M is a symbol that is not in the
alphabet of the grammar being
modelled

/ (L)

Figure 7.23 A Turing machine fragment to replace Pa by WXYZ, representing
a reduction involving the type 0 production WXYZ! Pa.
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The section E construction, as illustrated in Figure 7.24, inserts the left-hand side

of an e-production after any symbol on the tape. There are two problems remain-

ing. Firstly, we must deal with an insertion before the leftmost symbol. Secondly,

we need to cater for an insertion on a blank tape. Considering the second case first,

if e is in the language generated by the grammar, the corresponding machine

should be able to reach its halt state appropriately. Our blank tape assumption

dictates that we represent e as the input string by setting up our machine so that

its head points initially to a blank square. We can solve both problems with very

similar constructions to section E, though there are a few differences. I leave you

to sketch the construction yourself.

/ (L)

?/m(?) (R)

/ (R)

?/? (N)

/a (L)

a/ (R)

one three-state
“shuffling”
path for each
symbol of the
alphabet (not
including the
markers – see
note below)

/ (R)

?/? (R)

?/s(?) (R)/X (R)
/Y (R)

/Z (R)

/ (L)

see note below 

NOTE:
• We allocate a unique “marker” symbol to each of the symbols in the grammar. 
• Let m(x) denote the marker for symbol x.
• Let s(m) denoted the symbol associated with marker m.

Then
?/m(?) means “replace the symbol currently at the R/W head by its marker”. 
?/s(?) means “replace the marker currently at the R/W head by its associated
symbol”. 

• Example: suppose the alphabet is a, b, X, with markers T, U, V, respectively, then 
• ?/m(?) (R) means “a/T (R), b/U (R), X/V (R)”, and 
• ?/s(?) (R) means “T/a (R), U/b (R), V/X (R)”.

Figure 7.24 A Turing machine fragment to insert XYZ in the input tape, thus
modelling the reduction based on the type 0 production XYZ! e.

180 7. Phrase Structure Languages and Turing Machines



7.7.3 The TM as the Recogniser for all Types in the
Chomsky Hierarchy

Enough has now been said to support the following claim:

l The recogniser for the phrase structure languages in general is the Turing

machine. Phrase structure languages are computable languages.

(For similar reasons to those discussed above, we again refer to the ‘‘TM’’, not the

‘‘non-deterministic TM’’.)

We argued above that any DFSR could be converted into an equivalent TM.

It was then implied that TMs could recognise any of the context free languages.

However, by showing that any type 0 grammar can be represented by a TM that

accepts the same language, we have also shown that the same applies to the other

types of language in Chomsky’s hierarchy. This is because any production of any

grammar of type 0, type 1, type 2 and type 3 is catered for in one of the sections of

our construction.

However, if we were to implement the non-deterministic TMs that are pro-

duced by our construction, we would have very inefficient parsers indeed! That is

the whole point of defining restricted types of machine to deal with restricted

types of language.

7.8 Decidability: A Preliminary Discussion

We close this chapter by briefly discussing one of the most important concepts

related to language processing, i.e., decidability. In doing this, we anticipate a

more thorough treatment of the topic in Chapter 11.

7.8.1 Deciding a Language

Consider the TMs T2, T3, T4 and T5 in this chapter (Figures 7.11 to 7.14,

respectively). Each accepts an input tape containing a terminal string from the

appropriate alphabet. If each of these machines is started with a valid input

configuration, it will halt in a halt state, and as it reaches its halt state it will:

l print T if the input sequence was a sentence of the language, otherwise print F.

A language-recognising TM that conforms to the above behaviour is said to

decide the corresponding language (because given any string of the appropriate
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terminals it can say ‘‘yes’’ if the string is a sentence and ‘‘no’’ if the string is not a

sentence).

For example, consider some of the decisions made by T5 (of Figure 7.14), that

decides the language faibici : i � 1g, as shown in Table 7.2.

The formal definition of deciding a language is given in Table 7.3.

Table 7.2 Various input sequences that are accepted or rejected by T5 of Figure 7.14.

Input string T5 input and output

aabbcc

(valid string)

initial

configuration:

R / W
head

b b c ca  a

final

configuration: Y Y Z Z  TX  X

R / W
head

aaabbcc

(invalid string { too many as)

initial

configuration: b b c ca  a  a

R / W
head

final

configuration: Y Y F ZX  X  X

R / W
head

caaaa

(invalid string { starts with c)

initial

configuration: a a a ac  a

R / W
head

final
configuration: F a a a a a

R / W
head

Table 7.3 Deciding a language.

Given some language L, with alphabet A, a TM decides that language if for any string, x, such
that x 2 A*:

if x 2 L
the machine indicates its acceptance,

and
if x 62 L

the machine indicates its rejection
of x.
A language for which there is a TM that decides that language is called a decidable language.
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7.8.2 Accepting a Language

Suppose we amend T5 (of Figure 7.14) to produce the machine T7, depicted in

Figure 7.25.

We have simply removed from T5 all arcs entering the halt state which result

in writing the symbol F, and removed the instructions that write an F from the

arc between states 6 and 7. Like T5, T7 will now reach its halt state and write a T for

valid input strings. However, unlike T5, for invalid strings T7 will eventually stop

in one of its non-halt states, and make no F indication at all. For example, given

the input aaabbcc (the second example used for T5 in Table 7.2), T7 would

eventually come to a stop in state 2, being unable to make any move from that

state in the way that T5 could.

A machine that can output T for each and every valid string of a language

(and never outputs T for any invalid strings) is said to accept that language.

Compare this carefully with the definition of deciding, from Table 7.3. Clearly, a

machine that decides a language also accepts it, but the converse is not neces-

sarily true. T5, T6 and T7 all accept the language faibici : i � 1g, but only T5

decides it.

The formal definition of accepting a language is given in Table 7.4.

1

a/X (R)
2

6

3

4

6

a/a (R)
Y/Y (R)

b/Y (R)

b/b (R)
Z/Z (R)

a/X (R)
c/Z (L)

X/X (R)

Y/Y (R)
Z/Z(R)

5

a/a (L)
b/b (L)
Y/Y (L)
Z/Z (L)

Y/Y (R)

/T (N)

Figure 7.25 The Turing machine T7 (based on T5 of Figure 7.14) also recognises
the context sensitive language faibici : i � 1g. Unlike T5,T7 does not print F for

invalid strings.
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7.9 End of Part One ...

In this chapter, we have encountered computable languages, decidable languages,

and now acceptable languages. From the way in which the construction of TMs

from type 0 grammars was developed, it can be seen that such TMs would accept,

rather than decide, the language generated by the grammar from which the

machine was constructed. In other words, computable languages are acceptable

languages. However, we have also seen that some computable languages are

decidable (since TMs T2, T3, T4 and T5 all decide their respective languages).

A question addressed in Chapter 11 asks whether all computable languages are

also decidable. We find that in general they are not, though the more restricted

languages of the Chomsky hierarchy are.

In Chapters 2 and 6, we saw the type 0 grammar, G4, which generates what we

call the multiplication language:

aibjci�j : i; j � 1
� �

:

In discussing this language in Chapters 2 and 5, it was remarked that we

could regard phrase structure grammars as computational, as well as linguis-

tic, devices. Subsequently, in Chapter 6, we saw that the multiplication

language could not be generated by a context free grammar, which tells us

that a pushdown recogniser is insufficiently powerful to accept the language.

From the present chapter we know that we could define a TM, from the

productions of G4, that would accept this language. This seems to imply that

the TM has a certain computational ability that is worthy of clearer definition

and exploration. Such an enterprise has played a central part in computer

science, and it is a major aim of the second part of this book to discuss this.

However, this does not mean that we have finished with languages. Far from

it. It can in fact be shown that the computation performed by any TM can be

modelled by a type 0 grammar. The proof of this is complex and we will not

consider it in this book, but the result is very important, since again it

Table 7.4 Accepting a language.

Given some language L, with alphabet A, a TM accepts that language if for any string, x, such
that x 2 A*:

if x 2 L
the machine indicates its acceptance of x.

A language for which there is a TM that accepts that language is called an acceptable
language.
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establishes a general equivalence between a class of languages and a class

of abstract machines. More than this, since the TM is the acceptor for the

type 0 languages and thus for all the subordinate language types, such a result

establishes a general equivalence between TMs and theentire Chomsky

hierarchy.

The TM is the first machine we have seen in this book that is capable of

producing a string of symbols (on its tape) as a result, when given a string of

symbols as its input. This means that the TM can carry out forms of computa-

tion that can provide richer answers than ‘‘yes’’ or ‘‘no’’. The second part of this

book investigates the nature of the computational power of the TM. In the

process of this, we discover that the TM is more powerful than any digital

computer. In fact, the TM is the most powerful computational model we can

define. Eventually, our investigations bring us full circle and enable us to pre-

cisely specify the relationship between formal languages, computable languages

and abstract machines. In doing so, we are able to answer a question that was

asked at the end of Chapter 6: are there formal languages that are a proper

superset of the type 0 languages?

EXERCISES

For exercises marked ‘‘†’’,solutions,partial solutions,or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’at the end of the book.

7.1.y Sketch out a general argument to demonstrate that any Turing

machine needs only one halt state, and also that the single halt state

requires no outgoing arcs.

7.2. Design Turing machines to decide the following languages:

(a) fa2iþ1cjb2iþ1 : i,j � 1g

(b) fxx : x 2 fa; bg�g

(c) faibjciþj : i,j � 1g

(d) faibjci-j : i,j � 1g

(e) faibjci� j : i,j � 1g

(f) faibjci div j : i,j � 1g (div is integer division)

Hint: in all cases, first design the machine so that it deals only with

acceptable strings, then add additional arcs so that it deals appropri-

ately with non-acceptable strings.
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7.3. The following is a recursive definition of ‘‘well-formed parenthesis

expressions’’ (WPEs):

() is a WPE

if X is a WPE, then so is (X)

if X andY are WPEs, then so is XY

(a) Define a TM to decide the language of all WPEs.

(b) The language of all WPEs is context free. Show this by defining a

context free grammar to generate it.

Hint: the recursive definition above converts almost directly into a

CFG.
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Part 2

Machines and Computation



8
Finite State Transducers

8.1 Overview

In this chapter, we consider the types of computation that can be carried out by

Finite State Transducers (FSTs), which are the Finite State Recognisers of

Chapter 4, with output.

We see that FSTs can do:

l various limited tasks involving memory of input sequences

l addition and subtraction of arbitrary length numbers

l restricted (constant) multiplication and modular division.

We then find that FSTs:

l cannot do multiplication of arbitrary length numbers

l are not a very useful model of real computers (despite some superficial simila-

rities with them).

8.2 Finite State Transducers

A finite state transducer (FST) is a deterministic finite state recogniser (DFSR)

with the ability to output symbols. Alternatively, it can be viewed as a Turing

machine (TM) with two tapes (one for input, one for output) that

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 8, � Springer-Verlag London Limited 2008



l always moves its head to the right

l cannot recognise blank squares on its tape.

As the machine makes a transition between two states (according to the input

symbol it is reading, of course), it outputs one symbol. In addition to performing

recognition tasks, such a machine can also carry out computations. The purpose

of this chapter is to investigate the scope of the FST’s computational abilities. We

shall see that we need a more powerful type of machine to carry out all of the

computations we usually expect machines (i.e. computers) to be able to do. As we

will see, this more powerful machine is the one we encountered in Chapter 7. It is

the TM.

8.3 Finite State Transducers and Language
Recognition

First of all, you should appreciate that the FSRs used for regular language

recognition in Chapter 4 are simply a special case of FSTs. We could have

defined FSRs so that on each transition they produce an output symbol, and

we could have defined these output symbols to be significant in some way. In our

first example machine, we assume that, when the input is exhausted, the last

symbol the machine outputs is a 1, then the input string is accepted, and if the

last symbol output is a 0, then the string is rejected. Figure 8.1 shows such a

machine.

The FST in Figure 8.1 accepts the language faibj : i, j � 1g. It indicates

acceptance or rejection of an input string by the last symbol it outputs when

a/0

a/0
b/1

b/1

a/0
b/0

a/0
b/0

Figure 8.1 A finite state transducer that recognises the regular language
faibj : i � 1g. The last symbol it outputs indicates if it accepts (1) or rejects (0)

the input string.
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the last symbol of the input has been read (1 = accept, 0 = reject). Some examples

of the machine’s output are shown in Table 8.1. The significant symbol of the

output (the last) is underlined in each case.

As you can see, the machine in Figure 8.1 has no state designated as a halt state

or accept state. This is because the output is now used to tell us whether or not a

string is accepted.

8.4 Finite State Transducers and Memory

An interesting application of FSTs is as ‘‘memory’’ devices. For example, FST1,

in Figure 8.2, processes inputs that are strings of binary digits. As output, the

machine produces strings of binary digits, representing the input string ‘‘shifted’’

two digits to the right.

You may think that the names of FST1’s states look strange. Of course, the

state names do not affect the operation of the machine, but they have been chosen

for symbolic reasons, which should become apparent as the chapter continues.

The next machine, FST2, does a similar task, but with a right shift of three

digits. FST2 is shown in Figure 8.3.

00

11

01

10

1/1

1/0

0/0

1/0

0/01/1

0/1

0/1

EXAMPLE: 

input:

output:

1 3 54 62 7

1 0 11 11 0

1 3 542

0 1 01 10 1

start of shifted
input sequence

Figure 8.2 FST1, a binary two-digit ‘‘shift’’ machine.

Table 8.1 Example input strings, and corresponding output
strings, for the finite state transducer of Figure 8.1. The last symbol
output indicates the machine’s decision.

Input string Output string ACCEPT or REJECT

aaab 0001 ACCEPT

aa 00 REJECT

aabba 00110 REJECT

aabbb 00111 ACCEPT
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Now consider FST3, shown in Figure 8.4, that does a ‘‘shift two to the right’’

operation for inputs consisting of strings in f0, 1, 2gþ (remember from Chapter 2

that Aþ denotes the set of all non-empty strings that can be taken from the

alphabet A).

Machines such as FST1{3 are sometimes called ‘‘memory machines’’, as they

perform a simple memory task. Imagine that a ‘‘clock’’ governs the processing of

the input, a concept we will return to later in the book. At each ‘‘tick’’ of the clock,

the next symbol is read and the appropriate symbol is output. Then:

FST1

stores a symbol of a two-symbol alphabet for two ‘‘ticks’’ and then outputs it,

FST2

stores a symbol of a two-symbol alphabet for three ‘‘ticks’’ and then outputs it,

and,

FST3

stores a symbol of a three-symbol alphabet for two ‘‘ticks’’ and then outputs it.

000

0/0

1/0

0/0

1/1

0/1

EXAMPLE: 

input:

output:

1 3 5 4 6 2 7 
1 0 1 1 1 1 0 

0 0 

start of shifted
input sequence

 

1/0
001

010 101

111110100

011
1/0

1/1

0/1
0/1

1/0

0/1
1/1

1/1
0/0

0/0

8
0

9
1

10
1

11
0

0
1 3 5 4 6 2 7 
1 0 1 1 1 1 0 

8
0

Figure 8.3 FST2, a binary three-digit ‘‘shift’’ machine.
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You should be able to see that we could design memory machines for an alphabet

of any number, s, of symbols, and for any number, t, of clock ticks, providing that

we know in advance the values of s and t. You should also be able to see that we

need to increase the number of states as the values of s and t increase.

In fact, and this is where the names of the states in our three machines are

significant, there is a simple numeric relationship between the number of symbols,

s, in the alphabet, the number of ticks, t, that each input symbol has to be

‘‘remembered’’ for, and the minimum number of states required to do the job.

There are st (numerically speaking) distinct sequences of length t when the

11

0/0

1/0

EXAMPLE: 

input:

output:

1 3 54 62 7

1 2 11 02 0

0 0 

start of shifted
input sequence

1/0
01 00

2/0

8

2

9

1

02

10

2012

2221

1/1
0/00/11/1

2/1

0/1

2/0
1/2

0/2
2/2

0/0

2/0

1/0

0/2
2/1

2/2

1/2

1/1

0/2

1/2

2/1

0/1

2/2

1 3 54 62 7
1 2 1 1 0 2 0 

Figure 8.4 FST3, a ‘‘trinary’’ two-digit ‘‘shift’’ machine.
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alphabet has s symbols, and the only way the FST can remember which of the st

sequences it has just read is to have a state for each one, so the FST needs a

minimum of st states. As you can see, the state names in the machines in this

section represent, for each machine, the st sequences of length t we can have for the

s-symbol alphabet in question.

So,

FST1 where t = 2 and s = 2, has st = 22 = 4 states,

FST2 where t = 3 and s = 2, has st = 23 = 8 states,

and

FST3 where t = 2 and s = 3, has st = 32 = 9 states.

8.5 Finite State Transducers and Computation

In this section, we shall see that FSTs possess reasonably sophisticated computa-

tional abilities, so long as we are fairly creative in defining how the input and/or

output sequences are to be interpreted. As an example of such ‘‘creativity’’,

we will first look in a new way at the tasks carried out by our machines FST1{3

(Figures 8.2 to 8.4), in the preceding section.

It should be pointed out that there is no trickery in the way we are going to

interpret the input and output of our machines. We are simply defining the type of

input expected by a particular machine and the form that the output will take.

This, of course, is a crucial part of problem solving, whether we do it with formal

machines or real programs.

8.5.1 Simple Multiplication

Beginning with FST1, the machine that shifts a binary sequence two digits to the

right, let us consider that the sequence of 1s and 0s presented to the machine is

first subjected to the following (using 1011 as an example):

1. The string 00 is appended to the rightmost end (giving 101100, for the

example).

2. The resulting sequence is interpreted as a binary number in reverse (for the

example we would then have 001101, which is 13 in decimal (base 10).

The output sequence is then also interpreted as a binary number in reverse.
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For the example sequence 101100, FST1 would produce as output 001011,

which in reverse (110100) and interpreted as a binary number is decimal 52.

You can convince yourselves that under the conditions defined above, FST1

performs multiplication by 4.

For FST2, we apply similar conditions to the input, except that for condition

(1) { see above { we place three 0s at the rightmost end of the input sequence.

FST2 then performs multiplication by 8.

For FST3, the same conditions apply as those for FST1, except that the

input and output number are interpreted as being in base 3, in which case FST3

performs multiplication by 9. Thus, given the input 121100 (i.e. 001121, or 43

decimal), FST3 would produce as output 001211 (i.e. 112100), which, according

to our specification, represents 387 (i.e. 43 � 9).

We have seen that FSTs can carry out certain restricted multiplication tasks.

Later in this chapter we will see that there are limitations to the abilities of FSTs

with respect to multiplication in general.

8.5.2 Addition and Subtraction

FSTs are capable of adding or subtracting binary numbers of any size. However,

before we see how this is done, we need to define the form of our input and output

sequences.

The input

When we add or subtract two numbers (assuming that the numbers are too long

for us to mentally perform the calculation), we usually work from right to left

(least significant digits first). It seems reasonable, then, in view of the need to deal

with any ‘‘carry’’ situations that may arise, that our machines can do likewise.

In the previous section we came across the notion of the input being in reverse.

Clearly, this method can also be used here, and will then represent the machine

processing the pairs of corresponding digits in the way that we usually do.

Apart from certain minor problems that will be addressed shortly, the remain-

ing major problem is that we have two numbers to add or subtract, whereas our

machines accept only one sequence as input. Our solution to this problem is to

present the two binary numbers (to be added or subtracted) as one sequence, in

which the digits of one of the numbers are interleaved with the digits of the

other. This, of course, means that the numbers must be of the same length.

However, we can ensure that this is the case by placing sufficient 0s at the

leftmost end of the shorter of the two numbers before we reverse them and

present them to our machines.
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Table 8.2 summarises the preparation of input for the FSTs for addition and

subtraction which we will define shortly.

We now turn to the output.

The output

For our addition and subtraction FSTs to model our behaviour, they must

process the two numbers by examining pairs of corresponding digits, in least to

most significant digit order of the original numbers. However, as an FST can

only read one digit at a time, it will not be able to output a 0 or 1 representing

a digit of the answer until it has examined the second digit of each pair of

corresponding digits. Moreover, our FSTs must output a symbol for each input

symbol encountered. For the first digit in each corresponding pair, then, our

FSTs will output the symbol ‘‘*’’. Note that there is no special significance to

this symbol, it is simply being used as a ‘‘marker’’.

Thus, given input of the form indicated by the diagram that accompanies step 3 in

Table 8.2, our FSTs will produce output as represented in Figure 8.5.

Table 8.2 Data preparation for binary addition and subtraction FSTs.

To prepare two binary numbers for input to the addition or subtraction FSTs:

1 Ensure numbers are the

same length by padding
the shorter number with
leading 0s.

1 3 5 4 6 2 7 

1 3 5 4 6 2 7 

first 
number 

second 
number 

1a (For addition only) Place an extra leading 0 on each number, to accommodate possible
final carry.

2 Reverse both numbers.
7 5 3 4 2 6 1 

7 5 3 4 2 6 1 

reverse 
of 1st 

number 

reverse 
of 2nd 

number 

3 Make one sequence by
interleaving the
corresponding digits of
each reversed number.

(Note: for subtraction FST,
begin with second number.)

7 6 5 6 5 7 4 4 3 2 2 1 3 1 

interleaved digits of reversed numbers 
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The output shown in Figure 8.5 represents the digits of the answer in reverse,

with each digit preceded by *. The *s are not part of the answer, of course, and so

we read the answer as specified in Figure 8.6.

The machines

We are now ready to present the two machines, FST4, the binary adding FST

(Figure 8.7), and FST5, the binary subtractor (Figure 8.8). Each machine is

accompanied by an example showing a particular input and the resulting

output. I leave it to you to convince yourself that the machines operate as

claimed.

It is important to note that for both machines there is no limit to the length of the

input numbers. Pairs of binary numbers of any length could be processed. It

is clear, therefore, that the FST is capable of adding and subtracting arbitrary

length binary numbers.

* 

6 5 7 4 3 2 1 

* * * * * * 

asterisk is output on first digit 
of each pair of input digits 
(digit after asterisk is result of 
applying the arithmetic 
operation to the pair of digits 
just read)  

answer is read in 
reverse order  

 
  

output is produced in 
this order 

  
  digits of 

answer 

Figure 8.5 Specification of the output (in this case, for a seven-digit number) for
the arithmetic finite state transducers considered in this chapter.

1 2 3 4 5 6 7 

Figure 8.6 How we construct the answer from the output specified in Figure 8.5.
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A1

0/1

1/*

A3 A4 A5

A2

1/0

0/*

1/*

0/0
1/10/*

0/0
1/1 EXAMPLE: 

01101 + 00110 (i.e. 13 + 6)
is presented to FST4 as follows: 

output:

Answer is therefore 10011 (i.e., 19) 

0 1 1 0 1 1 0 1 0 0

x

number is in
reverse

 

= digit of second
number (i.e., 00110) 

* * * 1 0 1 * 0 * 1

answer is in
reverse

 

Figure 8.7 A binary adder finite state transducer, FST4.

S1

1/0

1/*
S3 S4 S5

S2

0/1

0/*

1/*

0/0
1/10/*

0/0
1/1 EXAMPLE: 

1101 – 0110 (i.e., 13 – 6)
is presented to FST5 as follows: 

output:

Answer is therefore 0111 (i.e., 7) 

0 1 1 0 1 1 0 1

x

number is in
reverse

= digit of second
number (i.e., 0110)

* * * 1 1 1 * 0

answer is in
reverse

 

Figure 8.8 A binary subtractor finite state transducer, FST5. If the result
of subtracting the numbers would be negative, the result is undefined.
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8.5.3 Simple Division and Modular Arithmetic

Certain restricted forms of division are also within the capabilities of the FST.

For example, FST6, in Figure 8.9, performs integer division of a binary number by 3,

returning the result as a binary number. In some programming languages, integer

division is represented by the infix operator div, so FST6 actually does x div 3,

where x is the input number.1 However, FST6 does not require the input

sequence to be in reverse. FST6 carries out integer division from the most

significant end of the number, as we usually do. The machine also outputs the

result in the correct order. Figure 8.9 includes an example input sequence and its

corresponding output sequence.

We can quite easily use FST6 as the basis of a machine that computes the

quotient and the remainder, by making the following observations about states

of FST6:

D0 represents a remainder of 0 (i.e. no carry),

D1 represents a remainder of 1 (i.e. a carry of 1),

D2 represents a remainder of 2 (i.e. a carry of 2).

Now, the remainder resulting from a division by 3 requires a maximum of two

binary digits, as it can be 0, 1, or 10 (i.e., 0, 1 or 2). We could make sufficient space

for the remainder, by placing ‘‘***’’ (three asterisks) after the input sequence.

D0

D1

0/0

EXAMPLE:

input (i.e., 1813):

output:

Answer is therefore 604 (i.e., 1813 div 3) 

0 0 0 1 1 0 0 1

number in
normal order

answer in
normal order

D2

1/1

0/1

0/0

1/1

1 1 1

0 0 1 1 1 1 0 00 0 1

1/0

Figure 8.9 A binary ‘‘div 3’’ finite state transducer, FST6.

1 An infix operator is written in between its operands. The arithmetic addition operator, ‘‘þ’’,
is thus an example of an infix operator.
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I leave it to you to decide how to amend the machine to ensure that the quotient

is followed by the binary representation of the remainder. The first of the three

asterisks should be left unchanged by the machine, to provide a separator between

quotient and remainder.

We could also amend our machine to provide only the remainder. For this we

would ensure that all the outputs of FST6 were changed to ‘‘*’’, and then carry out

the amendments discussed in the preceding paragraph. Then our machine would

carry out an operation similar to that called mod in programming languages,

except it would be restricted to mod 3.

8.6 The Limitations of the Finite State Transducer

We have seen that FSTs can be defined to do restricted forms of multiplication

and division and also that FSTs are capable of unrestricted addition and sub-

traction. You will note that the preceding sentence does not include the word

‘‘binary’’. This is because we could define adders and subtractors for any number

base (including base 10), since there are only a finite number of ‘‘carry’’ cases for

addition and subtraction in any given number system. Similarly, we can define

FSTs to do multiplication or division by any fixed multiplicand or divisor, in

any number base. However, the binary machine is much simpler than would

be the corresponding FST for, say, operations on base 10 numbers. Compare the

complexity of FST1 (Figure 8.2) and FST3 (Figure 8.4), for example. I will leave it

to you to consider the design of FSTs for number systems from base three

upwards.

In fact, our intuition tells us that the binary number system is sufficient;

after all, we deal every day with a machine that performs all of its operations

using representations that are essentially binary numbers. We never use that as a

basis for arguing that the machine is insufficiently powerful! We return to the

issue of the universality of binary representations several times in subsequent

chapters.

For now, our purpose is to establish that FSTs are insufficiently powerful

to model all of the computational tasks that we may wish to carry out. We

have seen that the FST can perform unrestricted addition and subtraction.

The question arises: can we design an FST to do unrestricted multiplication?

We shall eventually demonstrate that the answer to this question is ‘‘no’’. This

is obviously a critical limitation, since the ability to perform multiplication

is surely one of the basic requirements of useful computing systems. First,

however, we show that there are some multiplication operations we can perform

with FSTs.
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8.6.1 Restricted FST Multiplication

Earlier in this chapter, we saw that FSTs are capable of multiplying a base n

number by some constant c, where c is a power of n (for example, FST1 was used

to multiply a binary { base 2 { number by 4, i.e. 22). Suppose we wish to multiply a

number, say a binary number, by a number that cannot be expressed as an

integral power of 2, say 3. One way to achieve such tasks is to effectively ‘‘hard-

wire’’ the multiplicand 3 into the machine, in a similar way that the divisor 3 was

represented in the div 3 machine, FST6 (Figure 8.9).

FST7, shown in Figure 8.10, multiplies an arbitrary length binary number by 3.

To see how FST7 works, consider its operation in terms of writing down a

binary number three times and adding the three copies together. Figure 8.11

represents the manual version of the example shown in Figure 8.10.

C0

C1

1/0

C2

1/1

0/0

0/0

0/1
1/1

EXAMPLE: 

1101110 (i.e. 110 in base 10)
is presented to FST

7
 as follows: 

      output: 

Answer is therefore 101001010
(i.e., 330 = 110 × 3) 

1 1 1 0 0 1 1

number in reverse
with two leading
zeros

answer is in
reverse 

0 0

1 1 0 0 0 0 1 0 1

Figure 8.10 A binary ‘‘� 3’’ finite state transducer, FST7.

1 1 0 1 1 1 0
1 1 0 1 1 1 0

+ 1 1 0 1 1 1 0
1 0 1 0 0 1 0 1 0

2 2 1 2 2 1 0 

carry from previous
column (expressed
in base 10) 

final carry (2)
expressed in
binary form 

Figure 8.11 Multiplying a binary number by 3 by adding the number
three times. The calculation is the same as that represented by the example

in Figure 8.10. See also Table 8.3.
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In adding together three identical binary numbers, beginning from the right-

most column, we can either have three 1s (i.e. 1 þ 1 þ 1) = 11, i.e. 1 carry 1, or

three zeros (0 carry 0) i.e. a carry of 1 or 0. If there is a carry of 0, we continue as in

the previous sentence. Otherwise, we have a carry of 1 and the next column could

be three 1s (i.e. 1 þ 1 þ 1 þ 1 { adding in the carry) so we write down a 0 and

carry 2 (decimal). If the next column is three 0s, we have 0 þ 0þ 0þ 10 = 10, i.e.

0 carry 1 { back to carry 1, which has been discussed already. Otherwise, we have

three 1s and a carry of 10, i.e. 1 þ 1 þ 1 þ 10 = 101 = 1 carry 2 { back to carry 2,

which, again, we have already considered. The whole situation is summarised

in Table 8.3.

The states in Figure 8.10 were labelled C0{2 to represent the three carry

situations found in Table 8.3. From Table 8.3, you should be able to see why only

three states are required for FST7. Moreover, you should also convince yourself that

we could not define an FST of fewer than three states to carry out the same task.

A similar method can be used to create a machine, FST8 that multiplies a

binary number by 5. The machine is shown in Figure 8.12 and, as you can see,

requires five states.

Finally, we consider, in Figure 8.13, the rather unusual FST9, which multiplies

a base 7 number by 4 (!).

I leave it to you to convince yourself that the above machines, FST7{9, operate

as claimed.

The above multipliers, FST7{9, reflect a construction suggesting that a

machine to multiply a number in any base by a constant c, needs no more states

than c (i.e. one for each of the possible base 10 carry values). As we saw above:

FST7, where c = 3, had 3 states,

FST8, where c = 5, had 5 states,

FST9, where c = 4, had 4 states.

Similar observations can be made with respect to the number of states required by

a constant divisor machine (consider FST6 in Figure 8.9).

However, you may like to consider what happens to our construction when the

numbers to be multiplied are in bases greater than 10.

Table 8.3 Possible carry situations, expressed as base 10 numbers,
for multiplication by 3 by adding together three copies of a binary
number.

Column digit

1 0

Carry 0 1 1 0 0

1 0 2 1 0

2 1
result

2
new carry

0
result

1
new carry
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C0

C2

1/1

C3 0/0

0/0

1/1

EXAMPLE:

1101110 (i.e. 110 in base 10)
is presented to FST8 as follows:

      output: 

Answer is therefore 1000100110
(i.e., 550 = 110 × 5) 

1 1 1 0 0 1 1

number in reverse
with three leading
zeros

answer is in
reverse

0 0

1 0 1 0 0 1 0 0 0

C4 1/1

C1

1/0

0/0

0/1

1/0

0/1

0

1

Figure 8.12 FST8 multiplies any binary number by 5.

C0

C1C2

0/0
1/4

EXAMPLE:

146 625 (i.e. 28 782 in base 10)
is presented to FST9 as follows: 

output:

Answer is therefore 656 434
(i.e., 115 128 = 28 782 × 4) 

2 6 6 4 5 1 0

number in reverse
with one leading
zero

answer is in
reverse 

3 6 4 5 6 6 0

C3

2/1
3/5

6/3

5/2
6/6

0/3 5/1
6/5

4/2
5/6

0/2
1/6

3/1 4/5

3/0
4/4

2/3

2/2
3/64/3

0/1
1/5

1/0
2/4

5/0
6/4

Figure 8.13 FST9 multiplies any base 7 number by 4.
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8.6.2 FSTs and Unlimited Multiplication

In this section we see that FSTs are incapable of multiplication of arbitrary length

numbers. The argument used is essentially an informal application of the repeat

state theorem introduced in Chapter 6. Again, the method of ‘‘proof’’ used is

reductio ad absurdum.

We can assume, for reasons that will be discussed in later chapters, and

as hinted at earlier in this chapter, that it is sufficient to focus on the task of

multiplying arbitrary length binary numbers. Our assumption is that we have an

FST, M, that can multiply arbitrary length pairs of binary numbers and print out

the result. Now, we can assume that M has a fixed number of states. Say it has

k states. We ask M to multiply the number 2k by itself:

2k is a 1 followed by k 0s, in binary number notation.

2k � 2k (i.e., 22k) is a 1 followed by 2k 0s

(example: 23 = 1000, 23 � 23 = 26 = 1000000, i.e. 8 � 8 = 64).

Suppose M reads the corresponding digits of its input numbers simultaneously.

M has only k states and it must use at least one of them to process the input digits.

However, after it has processed the input digits it still has to print out the rest of the

0s in the answer. Let’s assume that M uses only one of its states to do the multi-

plication (an extremely conservative estimate!) and print out the 1 followed by the

first k 0s of the answer (one digit for each of the k pairs of input digits it encounters).

It then has only k { 1 states left with which to print out the remaining k 0s of the

answer. M must therefore loop when it prints out the rest of the 0s. It is printing out

the 0s without any further input of digits, so there is no way of controlling the

number of 0s that M prints. The only way to make an FST generate a fixed number,

k, of symbols without input is to have a sequence of kþ 1 states to do it. This notion

was discussed in the context of finite state recognisers in Chapter 4 and formed the

basis of the repeat state theorem of Chapter 6.

We are therefore forced to reject our initial assumption: the machine M cannot

exist. Multiplication of arbitrary length binary numbers is beyond the power of

the FST. By extension of this argument, multiplication of arbitrary length

numbers in any number base is also beyond its power.

8.7 FSTs as Unsuitable Models for Real Computers

It is unfortunate that FSTs are not powerful enough to perform all of the opera-

tions that we expect computers to do. As you can probably guess from consider-

ing the decision programs that represent FSRs (Chapter 4), FSTs also lend

204 8. Finite State Transducers



themselves to conversion into very simple programs. However, at the very least,

we expect any reasonable model of computation to be able to deal with arbitrary

multiplication and division. As we have seen, this basic requirement is beyond the

capabilities of FSTs.

You may think you detect a flaw in an argument that assumes that real

computers can perform operations on arbitrarily large data. Most of us who

have ever written any non-trivial programs have experienced having to deal

with the fact that the computer we use is limited, not limitless, in terms of its

storage and memory capacity. Since a computer is, in terms of available storage

at any given point in time, finite, it could be regarded as a (huge) FST. As such,

for any given computer, there is, even for basic operations such as multiplication,

a limit to the size of the numbers that can be dealt with. In this sense, then, a

computer is an FST.

It turns out, however, that treating a digital computer as if it were an FST is

not, in general, a useful position to adopt, either theoretically or practically.2 Let

us look at the practical issues first. When a deterministic FST enters the same

state (say q) twice during a computation, it is looping. Moreover, once the

machine reaches state q, repeating the input sequence that took it from q back

to q (perhaps via several other states) will result in the same behaviour being

exhibited again. Once again, this was the basis of the repeat state theorem for

FSRs in Chapter 6.

Suppose a program is performing some calculations, subsequently to print

some output at the terminal, and receives no output from external sources once

it has begun (i.e., it operates on data stored internally). The state of the

computer running the program is its entire internal configuration, including

the contents of its memory, its registers, its variables, its program counter, and

so on. Viewed in this way, if such a state of the computer is ever repeated during

the execution of the program, the program will repeat the whole cycle of events

that led from the first to the second occurrence of that configuration over and

over again, ad infinitum. If this happens we have obviously made a (fairly

common) mistake in our coding, resulting in what is often called an infinite

loop.

It would be useful if, before we marketed our programs, we could test them to

make sure that such infinite loops could never occur. Let us suppose that we have

some way of examining the internal state of the machine each time it changes, and

some way of deciding that we had reached a state that had occurred before.

2 This is not altogether true. The FST is used, for example, to model aspects of computer
networks (see Tanenbaum, 1998, in the ‘‘Further Reading’’ section). I am referring here to its
ability to model arbitrary computations.
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In theory, this is possible because, as stated above, a computer at a given point in

time is a finite state machine.

Suppose that our computer possesses 32 Kilobytes of total storage, including

data, registers, primary memory, and so on. Each individual bit of the 32 K can be

either 1 or 0. Thus we have a total of 262 144 bits, each of which can be either 1

or 0. This means that, at any point our machine is in one of 2262 144 states. 2262 144

is about 1079 000. This is an incredibly large number. In Chapter 10 we come across

a really fast (over three million million instructions per second) hypothetical

machine that would take 1080 years (a 1 followed by eighty 0s) to solve a problem

involving passing through 10100 states. Our computer may thus have to go

through a huge number of internal states before one of these states is repeated.

Waiting for even a tiny computer, like our 32 K model here, to repeat a state

because it happens to be an FST is thus a rather silly thing to do!

In the remainder of this book, we study the deceptively simple abstract

machine that was introduced in Chapter 7, i.e. the Turing machine (TM). The

TM is essentially an FST with the ability to move left and right along a single

input tape. This means that the TM can overwrite symbols on its tape with

other symbols, and can thus take action on the basis of symbols placed there

earlier in its activities. In subsequent chapters, we find that this simple

machine is actually more powerful than any digital computer. In fact, in

some senses the Turing machine is the most powerful computational device

of all. However, we also discover that there is something about the problem

of whether or not a certain computation will eventually stop, as discussed in

terms of the FST above, that puts its general solution beyond any computa-

tional device.

EXERCISES

For exercises marked ‘‘†’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’at the end of the book.

8.1. FSTs can be used to represent Boolean logic circuits. Design FSTs

to perform ‘‘bitwise’’ manipulation of their binary number inputs. For

machines needing two input values, assume an input set up similar to

that defined for FST4 and FST5, the addition and subtraction

machines of Figures 8.7 and 8.8, respectively. The operations you

may wish to consider are:
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and

ory

not

nand

nor

8.2y. Design an FST to convert a binary number into an octal (base 8)

number.

Hint: each sequence of three digits of the binary number represents one

digit (0{7)of the corresponding octal number.
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9
Turing Machines as Computers

9.1 Overview

In this chapter, we begin our investigation into the computational power of

Turing machines (TMs), that we first encountered in Chapter 7.

We find that TMs are capable of performing computational tasks that finite

state transducers cannot do, such as

l multiplication, and

l division

of arbitrary length binary numbers.

We also see a sketch of how TMs could perform any of the operations that

computers can do, such as:

l logical operations

l memory accessing operations, and

l control operations.

9.2 Turing Machines and Computation

In Chapter 7, Turing machines (TMs) for language recognition were introduced.

We saw that the TM is the recogniser for all of the languages in the Chomsky

hierarchy. Chapter 8 demonstrated that the finite state transducer (FST), which

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 9, � Springer-Verlag London Limited 2008



is essentially a TM that can move only to the right on its tape, is capable of some

fairly sophisticated computational tasks, including certain restricted types of

multiplication and division. We also observed that any given digital computer

is essentially finite in terms of storage capacity at any moment in time. All this

seems to suggest that viewing the computer as an FST might be a useful perspec-

tive to take, especially since an FST can be expressed as a very simple program.

However, we saw that the huge number of internal states possible in even a small

computer meant that notions typically applied to FSTs, such as the repeat state

theorem, were of limited practical use.

In this chapter, we see that, in terms of computation, the Turing machine is a

much better counterpart of the computer than is the FST. Simple as it is, and

resulting as it does from addition of a few limited facilities to the FST, the TM

actually exceeds the computational power of any single computer, of any size. In

this sense, the TM is an abstraction over all computers, and the theoretical

limitations to the power of the TM are often the practical limitations to the

digital computer, not only at the present time, but also at any time in the future.

However, we shall descend from these heady philosophical heights until the next

chapter. For now, we concentrate on demonstrating that the TM is capable of the

basic computational tasks we expect from any real computer.

9.3 Turing Machines and Arbitrary Binary
Multiplication

Chapter 8 established that FSTs are not capable of multiplication of arbitrary

length numbers, in any number base. In this section, we sketch out a TM to

perform multiplication of two binary numbers of any length. I will leave it to you

to realise that similar TMs could be defined for any number base (cf. the treat-

ment of different number bases in Chapter 8). However, here we choose the binary

number system, for obvious reasons.

9.3.1 Some Basic TM Operations

A side effect of defining a TM for multiplication is that we will appreciate a notion

actually formulated by Turing himself in conjunction with his machines, and one

which occurs in some form in various programming paradigms. Essentially, we shall

build up our binary multiplier by creating a ‘‘library’’ of TM ‘‘subroutines’’. These

subroutines, like subroutines in typical programming languages (‘‘procedures’’ and

‘‘functions’’, in Pascal), represent operations that we wish to carry out many times
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and thus do not want to create over and over again. However, as there are no

straightforward mechanisms for parameter passing in TMs, our subroutines are

more analogous to macros, i.e. we have to imagine that the ‘‘sub-machine’’ that

constitutes the macro is actually inserted into the appropriate place in the overall

machine. This means that we have to ‘‘call’’ our sub-machine by ensuring that the

‘‘calling’’ machine configures the tape and R/W head appropriately.

Some of the operations required by our multiplier Turing machine are now

specified. Our multiplication routine will work by repeated addition, based on the

common ‘‘shift and add’’ long multiplication method (we will examine this in more

detail in the next section). Clearly, then, we need an ADD routine. Our ADD

routine will make use of two sub-machines, WRITE-A-ZERO and WRITE-A-

ONE, as specified in Figure 9.1.

Referring to Figure 9.1, recall from Chapter 7 that we use ‘‘?/?’’ to mean

‘‘replace any non-blank symbol of the alphabet for the machine by the same

symbol’’.

Our ADD routine adds two arbitrary length binary numbers, adding pairs of

digits in least to most significant order (as we usually do). The machine assumes

that the two numbers are initially represented on a tape as specified in Figure 9.2.

So, ADD expects on its tape a ‘‘*’’ followed by the first number, followed by a

‘‘*’’ followed by the second number. Its head is initially located on the least

significant digit of the second number. ADD will not be concerned with what is

to the left of the relevant part of the input tape, but will assume a blank

immediately to the right of the second number. The left asterisk will be used by

ADD to indicate the current carry situation during the computation (‘‘*’’ = no

carry, C = carry). The machine will write the result of the addition to the left of

the currently occupied part of the input tape (and thus assumes that the first

/ 0 (N)

?/? (L)

R/W
head anywhere on tape (but if at a 

, will immediately write 0 

there) 

at 0 (or 1) just 
written

WRITE-A-ZERO

writes a 0 in the first 
blank square found to 
the left on the tape 

WRITE-A-ONE

1 instead
of 0

 

Figure 9.1 Turing machine fragments ‘‘WRITE-A-ZERO’’ and ‘‘WRITE-
A-ONE’’, as used by TMs later in the chapter.
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blank found to the left of the left ‘‘*’’ indicates the extreme right of the unoccupied

left-hand side of the tape).

The description of ADD will be supported by an example input tape, and we

will examine the effects of each major part of ADD on the contents of this tape.

The example input tape we will use is shown in Figure 9.3.

9.3.2 The ‘‘ADD’’ TM

Figure 9.4 shows part one of the ADD TM.

Part one of ADD, shown in Figure 9.4, deals with the adding of corresponding

digits of the two numbers until the digits of one or both of the numbers have been

used up. Note that X and Y are used as markers for 0 and 1, respectively, so that

ADD can detect how far along each number it has reached, at any stage, and thus

avoid processing the same digit more than once. When the final digit of one or

first number

* *

R/W
head

second number

Figure 9.2 The input tape set up for the ADD Turing machine.

first number 

* *

R/W 
head

1 1
1 1 0

second number 

Figure 9.3 An example input configuration for the ADD TM. This represents
the binary sum 11 þ 101 (i.e., 3 þ 5 in base 10).
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both of the numbers has been reached, part two of ADD (shown in Figure 9.6)

takes over. At the time we are ready to enter ADD part two, our example tape is

configured as shown in Figure 9.5.

As can be seen in Figure 9.6, there are two entry points A and B, to ADD part

two.

Entry point A

This is entered from ADD (part 1) when there are no digits remaining in the

left-hand number, but a digit was read from the right number. ADD has just

overwritten either a 0 (by X) or a 1 in the right-hand number (there must have

been at least one more digit in the right number than in the left number or

we would not have reached entry point A). Thus, this digit (represented by the

leftmost X or Y in the right number) is set back to its original value, so that it

can be processed as an extra digit by the sub-machine TIDY-UP, the definition

of which is left as an exercise.

Entry point B

This is entered from ADD (part 1) when there are no digits remaining in the

right-hand number. This case is simpler than that for entry point A, as no extra

digits have been marked off (ADD always looks at the digit in the right number

first, before it attempts to find the corresponding digit in the left number).

/  (L)

WRITE-
A-ONE

WRITE-
A-ZERO

WRITE-
A-ONE

WRITE-
A-ZERO

WRITE-
A-ONE

WRITE-
A-ZERO

WRITE-
A-ONE

WRITE-
A-ZERO

ADD PART 2 [B]
(Figure 9.6)

0/0 ( L)
1/1 ( L)

*/* (L)

*/* (R)
C/C (R)

X/X (L)
Y/Y (L)

0/X (L) 1/Y (L)0/0 (L)
1/1 (L)

0/0 (L)
1/1 (L)

*/* (N) C/* (N) C/C (N) */* (N) C/C (N) */C (N)

?/? (R)

R/W
head rightmost digit 

of right-hand 
number 

see Figure 9.6 

ADD (PART 1)

ADD PART 2 [A]
(Figure 9.6)

0/0 (L)
1/1 (L)

*/* (N) C/C (N)

*/* (R)
C/C (R)

1/Y (L)0/X (L)

X/X (L)
Y/Y (L)*/* (L)

X/X (L)
Y/Y (L)

0/0 (L)
1/1 (L)

0/0 (L)
1/1 (L)0/X (L) 1/Y (L)

*/* (L)

Figure 9.4 The ADD Turing machine (part 1). ADD adds together two binary
numbers, beginning with a tape as specified in Figure 9.2. The answer is written

to the left of the occupied portion of the initial tape.
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C *Y Y Y YX

second number with 0s changed
to Xs and 1s changed to Ys

0 0

first number with 0s changed to
Xs and 1s changed to Ys

 

R/W
head

C indicates a carry
situation  

part of the
answer

Figure 9.5 The output from ADD part 1 (Figure 9.4) for the example
input of Figure 9.3. This is as the tape would be on entry to ADD part 2

(Figure 9.6). As there are fewer digits in the left-hand number, entry
will be to ADD part 2 [A].

TIDY-UP
(exercise 1)

ADD PART  2 [A]

*/* (L)

0/0 (L)
1/1 (L)

X/X (R)
Y/Y (R)

0/0 (R)
1/1 (R)

*/* (N)
C/C (N)

X/X (L)
Y/Y (L)
0/0 (L)
1/1 (L)

R/W 
head [A] leftmost X or Y

of left number;
[B] * to left of 
right-hand number 

C or * to left of 
left-hand number

ADD (PART 2)

ADD PART 2 [B]

X/0 (L)
Y/1 (L)

X/X (L)
Y/Y (L)

*/* (R)

*/* (N)
C/C (N)

Figure 9.6 The ADD Turing machine (part 2; for part 1 see Figure 9.4). This
part of ADD deals with any difference in the length of the two input numbers.
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Entry points A and B both ensure that the head is located at the square of the tape

representing the carry situation. Remember that this is the square immediately to

the left of the left number, and is occupied with the symbol ‘‘*’’ for no carry and C

for carry.

Our example tape (Figure 9.3) would have resulted in entering add at entry

point A, as the end of the right-hand number was reached first. Immediately

before the machine enters the component labelled TIDY-UP, which you are

invited to complete as an exercise, our example tape from Figure 9.3 would

have the configuration shown in Figure 9.7.

ADD should now complete its computation, the result being the binary

number at the left of the occupied portion of the tape. For our example tape,

Figure 9.8 shows an appropriate outcome from TIDY-UP, and thus an appro-

priate representation of the result of ADD, given the input tape of Figure 9.3.

9.3.3 The ‘‘MULT’’ TM

We are now ready to sketch out the description of a TM, MULT, to multiply two

arbitrary length binary numbers. As mentioned earlier, our machine uses the

‘‘shift and add’’ method. For example, suppose we wish to compute 1110 � 101.

This would be carried out as shown in Figure 9.9.

An example of the same method being employed for the multiplication of two

base 10 numbers may provide a more familiar illustration. Figure 9.10 shows the

method being used for the base 10 computation 1345 � 263.

C *Y 1 YX0 0

R/W
head

ADD part 2 has changed 
this back from Y to 1, so 
that TIDY-UP can tell 
that it is has not been
included in the addition 

Y

Figure 9.7 The output from ADD part 2 (Figure 9.6) for the example input of
Figure 9.5. This is as the tape would be on entry to TIDY-UP, which you are

asked to construct in exercise 1 at the end of this chapter.
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The ‘‘shift and add’’ process is simpler for binary numbers, since the same rule

applies for placing zeros at the end of each stage, but we only ever have to multiply

at intermediate stages by either 1 or 0. Multiplying by 1 involves simply copying

the number out exactly, while multiplying by zero can, of course, be ignored. An

algorithm to do ‘‘shift and add’’ binary multiplication is given in Table 9.1.

0 0

R/W
head

the C has
been replaced
by the 
original “*” 

01 *

this part of the 
tape has been 
“blanked out” as 
far as the first 
blank to the right 
of the right-hand 
number 

this part of the answer 
was written by
TIDY-UP on the basis 
of the extra 1 in the 
second number and 
the C indicating a 
carry

Figure 9.8 The expected output from TIDY-UP after processing the tape of
Figure 9.7.

1 1 1 0
× 1 0 1

1 1 1 0 0 0
1 1 1 0

1 0 0 0 1 1 0
1110 × 101 = 1000110,
i.e., 14 × 5 = 70 

copies
of top
number 

Figure 9.9 Multiplying two binary numbers using the ‘‘shift and add’’ method.

× 2 6 3
31 4 5

000962

5304

537353

1345 × 2 

1345 × 6 

1345 × 3 
0 0708

Figure 9.10 Multiplying two decimal numbers using the ‘‘shift and add’’
method.
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Our MULT machine will be based on the ‘‘shift and add’’ algorithm shown in

Table 9.1. The detailed implementation will be left to the exercises. The MULT

machine will expect its input to be configured exactly as that for the ADD TM,

as specified in Figure 9.2.

An example input configuration for MULT is shown in Figure 9.11. Note that

we have decided that the read/write head should be positioned initially on the

rightmost digit of the right-hand number, this number being called n2 in the

algorithm of Table 9.1.

Table 9.1 The ‘‘shift and add’’ method for multiplying two binary numbers.

fn1 and n2 are the two numbers to be multiplied and di represents the ith digit from the right of
n2g
begin

if d1 = 1 then P
ans := n1 A

else R
ans := 0 T

endif
1

for each digit di, where i � 2, in n2 do P
if di 6¼ 0 then A

ans := ans þ (n1 with i { 1 0 s appended to its right) R
endif T

endfor
2

end

first number, n1

* *

R/W
head

1 1 1 01

second number, n2

1

Figure 9.11 An example input configuration for the MULT TM.
This represents the binary calculation 11 � 1101

(i.e., 3 � 13 in base 10).
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We will now sketch out the actions to be carried out by MULT, in terms of the

algorithm of Table 9.1. The first part of the algorithm is the ‘‘if’’ statement (shown

as ‘‘part 1’’ in Table 9.1).

The head is currently over the first (rightmost) digit of n2, which in the

algorithm is called d1. If d1 is a 0, MULT initialises the answer to 0, otherwise

the answer is initialised to n1. MULT will use the area to the left of n1 as the ‘‘work

area’’ of its tape, and leave the answer there when it terminates, separated by a

single blank from the ‘‘*’’ preceding n1. ‘‘ans :=n1’’ thus means ‘‘copy n1 into the

answer area’’. For this we need a copy routine, which we will call COPY-L.

COPY-L is defined in Figure 9.12.

COPY-L needs little explanation. The symbols X and Y are again used as

temporary markers for 0 and 1, respectively. The machine leaves the copied

sequence exactly as it finds it. Clearly, the machine is designed to expect an

alphabet of (at least) f*, X, Y, 0, 1g, which is due to the requirements of the

multiplier.1 The machine could easily be amended to deal with other alphabets.

0/X (L)

X/0 (L) Y/1 (L)

R/W
head

rightmost
digit of 
number to
be copied

* to right of 
blank on 
right of 
newly copied
number

COPY-L

?/? (L)

/ (L)

/0 (N)
/ (R)

*/* (R)
0/0 (R)
1/1 (R)

/1 (N)

/ (L)
?/? (L)

1/Y (L)

*/* (N)

0/0 (L)
1/1 (L)

0/0 (L)
1/1 (L)

Figure 9.12 The COPY-L Turing machine. Copies a binary number preceded
by ‘‘*’’ from the position of the read/write head to the left end of the marked
portion of tape. Leaves a blank square between copied sequence and existing

occupied tape.

1 Since MULT will use ADD, the sub-machines we define for MULT may need to take account of
symbols used by ADD, such as C (the carry indicator), and so on.
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It would also be a simple matter to create a corresponding COPY-R (‘‘copy

right’’) machine, if required.

If d1 = 0, then MULT simply writes a 0 in the answer area. In our example

here, d1 = 1, so MULT must move its head to the rightmost digit of n1, then enter

COPY-L. At this point, MULT could also place a ‘‘*’’ at the left-hand end of the

newly written answer sequence.

The example tape would then be as shown in Figure 9.13.

MULT will now deal with the next part of the algorithm, i.e., the ‘‘for loop’’

(part two of Table 9.1).

Having processed the rightmost digit, d1, of n2, as specified above, MULT now

turns its attention to the remaining digits of n2. We have seen examples of the

type of processing involved here earlier in this book. TMs use auxiliary symbols to

‘‘tick off’’ each symbol (i.e. temporarily replace it by another symbol) so that they

can return to that symbol, thus being able to locate the next in the sequence, and

so on. For the algorithm above, MULT must examine all of the digits, di, of n2

(for i � 2). If a di is 0, MULT simply proceeds to the next digit (if there is one).

Otherwise di is a 1, so MULT must write a 0 at the left-hand end of its tape for

each digit in n2 to the right of di (this corresponds to us placing zeros at the end

of a number in the ‘‘shift and add’’ method). Then it must do a COPY-L to copy

n1 immediately to the left of the leftmost 0 just written. If MULT then places

a ‘‘*’’ to the left of the copied n1, and moves the head right until it reaches

a blank, the tape is now set up so that our ADD TM can take over. Via ADD,

MULT is now carrying out the addition statement in the algorithm (Table 9.1,

part two).

first number, n1

* *

R/W
head

1
11

01 1
* 1 1

copy of n1

blank left by
COPY-L
(Figure 9.12) 

Figure 9.13 The state of the input tape from Figure 9.11, following MULT’s
execution of the statement ans := n1 (Table 9.1). The first number, n1, has been

copied to the left of n1.
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For our example tape, d2 = 0, but d3, the leftmost digit of n2, is 1.MULT must

therefore place two zeros to the left of the answer field, then copy n1 to the left

of those zeros, meaning that the tape presented to ADD would be as shown in

Figure 9.14.

ADD was designed so that it erases its tape from the right of the answer as far

as the first blank to the right. This means that ADD would not erase MULT ’s

input numbers, since a blank separates the input to MULT from the answer.

MULT would then need to prepare the tape for the next digit of n2 (d4 in our

example) to be processed. This could involve simply ‘‘shuffling’’ the answer

sequence up so that only one blank separates it from MULT’s input sequence.

Our example tape would now be as displayed in Figure 9.15 (subject to some

slight repositioning of the ‘‘*’’).

MULT would now deal with d4 of n2 in an analogous way to its treatment of d3,

described above. This time, three zeros would be needed, so the tape on input to

ADD would be as shown in Figure 9.16.

Figure 9.17 shows a suitably tidied up form of the final result .

Sufficient detail has been presented to demonstrate that such a MULT

machine could be implemented. The exercises ask you to do this. It is clear that

such a MULT machine could process binary numbers of any length. We estab-

lished in the preceding chapter that multiplication of arbitrary length numbers

is beyond the capabilities of the FST. We now know, therefore, that the TM

possesses greater computational power than does the FST.

second number, n2

* *

R/W
head

1 01 1* 1 1 11

digit d3

1 1 00*

“n1 with two zeros appended to its 
rightmost end”

As d3 = 1, and is 3rd digit from right, MULT
has shifted the copy of n1 two places to the 
left (and inserted two 0s). The statement
from Table 9.1 that MULT is modelling is: 

Figure 9.14 The state of the input tape from Figure 9.11 immediately
before ADD is used by MULT to add 1100 to 11. MULT is processing

digit d3 of n2.
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* *

R/W
head

1 01 1111 11 1*

the result of MULT’s modelling of the
statement 

“ans := ans + (n1 with i – 1 0s appended
to its rightmost end)” 

when the digit being considered is d3, and
hence i = 3  

digit d3

Figure 9.15 The state of the input tape from Figure 9.11 immediately
after ADD has performed 1100 þ 11, representing the partial application of the

‘‘shift and add’’ multiplication procedure (see Figure 9.14 for the tape set up
immediately prior to this).

second number, n2

* *

R/W
head

1 01 1
*

1 1 1 11 100 *

As d 4 = 1, and is 4th digit from right, MULT
has shifted the copy of n1 three places to the
left (and inserted three 0s). The statement
from Table 9.1 that MULT is modelling is: 

“n1 with three zeros appended to its
rightmost end”

1 1
011

digit d4

Figure 9.16 The state of the input tape from Figure 9.11 immediately
before ADD is used by MULT to add 11000 to 1111. MULT is

processing digit d4 of n2.
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9.4 Turing Machines and Arbitrary
Integer Division

As we can do multiplication by repeated addition, so we can do division by

repeated subtraction. We repeatedly subtract one number from the other until

we obtain zero or a negative result. We keep a count of how many subtractions

have been carried out, and this count is our answer. In this section, we sketch

a TM that does arbitrary integer division. The actual construction is left as an

exercise.

Our machine, DIV, will perform division by repeated subtraction. We there-

fore require a SUBTRACT sub-machine for our DIV machine (as we needed an

ADD machine for MULT).

9.4.1 The ‘‘SUBTRACT’’ TM

It turns out that we can do subtraction in terms of addition, and you may be

familiar with the approach considered here. For example, 8 { 5 is really the same

* *

R/W
head

1 1 1 01 11 11*

the result of MULT ’s modelling of the
statement 

“ans := ans + (n1 with i – 1 0s appended
to its rightmost end)”

when the digit being considered is d4 and
hence i = 4 

digit d4

01 0

Figure 9.17 The state of the input tape from Figure 9.11 immediately after
ADD has performed 11000 þ 1111, representing the partial application of the

‘‘shift and add’’ multiplication procedure (see Figure 9.16 for the tape set
up immediately prior to this). This is also the final output from MULT,

representing 1101 � 11 = 100111, i.e. 13 � 3 = 39.
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as saying 8 þ ({5). If we have a way of representing the negation of the second

number, we can then simply add that negation to the first number. The usefulness

of this method for binary numbers relates to the fact that the negation of a number

is simple to achieve, using a representation called the twos complement of a binary

number. The process of obtaining the twos complement of a binary number is

described in Figure 9.18.

So, to compute x { y, for binary numbers x and y, we compute the twos

complement of y and add it to the first number. Referring to the example of

8 { 5 mentioned above, we can represent this in binary as 1000 { 101. The twos

add 1 

1 0

“invert” the 
number by 

changing each 
1 into 0 and 
each 0 into 1

1

0 1

Figure 9.18 Obtaining the ‘‘twos complement’’ of a binary number.
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complement of 101 is 011 (the inverse is 010, and 010 þ 1 = 011). 1000 þ 011 =

1011. Now, this result appears to be 11 (eleven) in base 10. However, after the

addition we ignore the leftmost digit of the result, and thus our answer is 011 in

binary (i.e. 3 in base 10), which is the correct result.

If you have not come across the method before, you should convince yourself

that twos complement arithmetic works, and also discover for yourself why the

leftmost digit of the result is ignored.

In terms of the development of the SUBTRACT machine, the subtraction

method we have just described can be done in terms of the ADD TM described

earlier in the chapter. We can even use ADD in the sub-machine that computes

the twos complement, since once we have inverted a binary number, we then need

to add 1 to the result. A TM, TWOS-COMP, which embodies such an approach,

is described in Figure 9.19.

As you can see from Figure 9.19, TWOS-COMP makes use of the TM

INVERT, which is defined in Figure 9.20.

You can study the behaviour of TWOS-COMP for yourself, if you wish.

We could set up our SUBTRACT TM so that it uses the same input format as

that used for ADD, and shown in Figure 9.21.

We assume that the ‘‘second number’’ of Figure 9.21 is to be subtracted from

the ‘‘first number’’.

The exercises ask you to complete the SUBTRACT machine. This simply

involves using the ADD machine to add the twos complement of one number to

the other number. The main problem, as for the MULT machine, concerns the

ADD

R/W
head

rightmost
digit of 
number 

rightmost
digit of 
complement
number 

TWOS-COMP

/1 (N)

/ (R)

*/* (R)
0/0 (R)
1/1 (R)

INVERT

/* (R)

Figure 9.19 A Turing machine, TWOS-COMP, to compute the twos
complement of a binary number (the INVERT machine is in Figure 9.20,

the ADD machine in Figures 9.4 and 9.6).
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need to shuffle the various intermediate sequences around to ensure that essential

information is not corrupted; but it is not too difficult to achieve this.

9.4.2 The ‘‘DIV’’ TM

We now sketch a TM for performing integer division by repeated subtraction.

Again, its implementation is left as an exercise. An algorithm to carry out the task

is specified in Table 9.2.

As for the MULT and SUBTRACT TMs, the main difficulty in implementing

the DIV TM is in ensuring that the sub-machines are ‘‘called’’ properly and do not

accidentally access inappropriate parts of the marked tapes. This needs careful

consideration of where each sub-machine expects asterisks or blanks as delimiters,

and which parts of the tape a sub-machine erases after completing its computa-

tion. One way is to use different areas of the tape (separated by one or more

R/W
head

rightmost
digit of 
number 

on blank or 
“*” to left of 
number 

INVERT

/ (N)

*/* (N)

0/1 (L)
1/0 (L)

Figure 9.20 A Turing machine, INVERT, that is used by TWOS-COMP
(Figure 9.19). It inverts each digit of a binary number.

first number 

* *

R/W
head

second number 

Figure 9.21 The input tape set up for the SUBTRACT Turing machine.
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blanks) for different purposes. For example, you might represent the count vari-

able from the algorithm in one place, the original n1 and n2 in another place.

Sometimes, you may have to shuffle up one marked area to make room for the

result from another marked area. However, as the main operations that increase

the tape squares used are copying and adding, your machine can always be sure

to create enough room between marked areas to accommodate any results. For

example, if we add two binary numbers we know that the length of the result

cannot exceed the length of the longer of the two numbers by more than one digit.

All this shuffling can be quite tricky and it is more important to convince yourself

that it can be done, rather than to actually do it.

You will notice that the division algorithm in Table 9.2 includes the� test. As

yet we have not designed a TM to perform such logical comparisons. Therefore,

in the next section we develop a generalised COMPARE TM. COMPARE may

also be of use to the SUBTRACT machine (to detect if the number being sub-

tracted is larger than the number from which it is being subtracted).

9.5 Logical Operations

The generalised comparison TM, COMPARE, tells us whether two arbitrary

length binary numbers are equal, or whether one number is greater than, or less

than the first number. COMPARE’s input configuration will follow that for ADD,

MULT and SUBTRACT, and is shown in Figure 9.22.

COMPARE will write the symbol =, <, or > in place of the ‘‘*’’ between the

two numbers in Figure 9.22 according to whether the ‘‘second number’’ is equal

to, less than, or greater than the ‘‘first number’’, respectively. Thus, for example,

given the example input tape configuration shown in Figure 9.23, COMPARE

will produce an output configuration as shown in Figure 9.24.

Table 9.2. The ‘‘repeated subtraction’’ method for division, using the Turing machines
SUBTRACT and ADD.

fthe calculation performed is n1 � n2g

begin

count := 0

temp := n1
T(x, y) is a functional
representation of the
statement: ‘‘apply the TM,
T, to the tape appropriately
configured with the numbers
x and y’’

while n2 � temp do
temp := SUBTRACT(temp, n2)
count := ADD(count, 1)

endwhile
fcount is the resultg

end
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first number 

* *

R/W
head

second number 

Figure 9.22 The input tape set up for the COMPARE Turing machine (Figures
9.25 and 9.26), that tells us the relationship between the first and second number.

>

R/W
head

X X X XXX

some
symbols 

Figure 9.24 The output from the COMPARE TM (Figures 9.25 and 9.26) for
the input specified in Figure 9.23. Given the original input, the output represents

the statement ‘‘110 is greater than 11’’.

first number 

* *

R/W
head

1 1 1 01

second number 

Figure 9.23 An example input configuration for the COMPARE TM
(Figures 9.25 and 9.26). This represents the question ‘‘what is the relationship

between 110 and 11?’’
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The COMPARE TM is shown in Figures 9.25 (part 1) and 9.26 (part 2). Part

one deals with the comparison until all of the digits of one number have been

processed.

When all of the digits of one of the numbers have been processed, part 2 of

COMPARE (Figure 9.26) takes over.

I leave it to you to follow the behaviour of COMPARE on some examples and

to convince yourself that it operates as claimed. As part of the DIV machine (see

COMPARE PART  2 [ A]
(Figure 9.26)

0/X (L) 1/Y (L)

0/0 (L)
1/1 (L)

X/X (L)
Y/Y (L)

X/X (L)
Y/Y (L)

0/X (R) */* (R)
0/X (R)

X/X (R)
Y/Y (R)

COMPARE
PART 2 [B]
(Figure 9.26)

*/< (R)
=/< (R)
</< (R)
>/< (R)

*/= (R)
=/= (R)
</< (R)
>/> (R)

1/Y (R)

X/X (R)
Y/Y (R)

*/> (L)
=/> (L)
</> (L)
>/> (L)

*/* (L)
=/= (L)
</< (L)
>/> (L)

0/0 (L)
1/1 (L)

1/Y (R)
X/X (R)
Y/Y (R)

*/> (R)
=/> (R)
</> (R)
>/> (R)

*/= (R)
=/= (R)
</< (R)
>/> (R)

0/0 (R)
1/1 (R) X/X (L)

Y/Y (L)

X/X (R)
Y/Y (R)

COMPARE (PART 1)

R/W
head rightmost digit 

of right-hand 
number 

between the two numbers  
(other cases, see 
Figure 9.26)

 

*/* (L)
=/= (L)
</< (L)
>/> (L)

X/X (R)
Y/Y (R)

*/* (L)
=/= (L)
</< (L)
>/> (L)

*/* (R)

Figure 9.25 The COMPARE Turing machine (part 1). Does a ‘‘bitwise’’
comparison of two binary numbers, beginning with a tape as specified in

Figure 9.22. Answer is a symbol (‘‘<’’, ‘‘>’’, or ‘‘=’’) written between
the two numbers.
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the exercises), you could use COMPARE to carry out the test to determine when

the repeated subtractions should stop.

9.6 TMs and the Simulation of Computer
Operations

TMs are extremely primitive machines, with a one-dimensional data storage

device. It thus may seem strange to claim, as at the beginning of this chapter,

that TMs are actually as powerful as, and in some senses more powerful than, any

COMPARE PART 2 [A]

X/X (L)
Y/Y (L)
0/0 (L)

=/< (N)
</< (N)
>/< (N)
*/< (N)

[A] =, <, > or 
* between
the two 
numbers; [B] 
immediately
to the right
of  leftmost * 

=, < or > 
between the 
two numbers

COMPARE (PART 2)

COMPARE PART 2 [B]

X/X (R)
Y/Y (R)
0/0 (R)

*/* (R)
1/1 (R)

=/= (N)
</< (N)
>/> (N)
*/= (N)

X/X (R)
Y/Y (R)

0/0 (R)

=/= (R)
</< (R)
>/> (R)
*/= (R)

X/X (L)
Y/Y (L)

=/= (N)
>/> (N)
</< (N)

R/W
head

X/X (L)
Y/Y (L)

0/0(L)

0/0 (L)

1/1 (L)

=/> (N)
>/> (N)
</> (N)

1/1 (L)

X/X (R)
Y/Y (R)
0/0 (R)

0/0 (R)

Figure 9.26 The COMPARE Turing machine part 2 (for part 1 see Figure 9.25).
This part of COMPARE deals with any difference in the length of the

two input numbers.
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digital computer can be. To provide evidence for this claim, we have seen TMs

that do multiplication and division of arbitrary length binary numbers. Such

operations are beyond the capabilities of any machine with a fixed amount of

storage, such as any real computer at a given point in time. We have also seen how

logical operations such as comparison of (again, arbitrarily large) numbers can be

carried out by our TMs.

In this chapter, we considered only the binary number system. You should not

see this as a limitation, however, as your experience with computers tells you that

ultimately, everything that is dealt with by the computer, including the most

complex program and the most convoluted data structure, is represented as

binary codes. Even the syntactic rules (i.e. the grammars) of our most extensive

programming languages are also ultimately represented (in the compiler) as binary

codes, as is the compiler itself.

In the following chapter, we take our first look at Turing’s thesis, concern-

ing the computational power of TMs. Before this, we consider more evidence

supporting the claim that TMs are as powerful as any computers by briefly

mapping out how many internal functions performed by, and many representa-

tions contained within, the digital computer, can be modelled by a TM. This is

not an exhaustive map, but a sketch of the forms that the TM implementation

of computer operations could take. I leave it to you to convince yourself of the

general applicability of TMs to the modelling of any other operations found in

the modern computer.

Tables 9.3 to 9.6 show examples for each specified internal operation. For

each example, we suggest a TM that can model that operation (some of these

Table 9.3 Turing machine simulation of arithmetic operations.

Example
operations TM implementation

Computer
limitations

Division DIV Size of
operands/size
of result

Multiplication MULT ’’

Addition ADD ’’

Subtraction SUBTRACT ’’

Power (xy) result := 1 fwrite a 1 in the result area of tapeg
while y 6¼ 0 fCOMPARE(y, 0) in another area of

the tapeg
result := result � x fMULT(result, x) in another

area of tapeg
y := y { 1 fSUBTRACT(y, 1) in another area of tapeg

endwhile

’’
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are from earlier in the chapter). In each case, certain limitations are given that

would apply to any digital computer, at a given moment in time, but do not apply

to TMs.

Table 9.3 suggests how TMs can model arithmetic operations. In Table 9.4,

logical operations are considered. Memory and array representation and accessing

feature in Table 9.5, while Table 9.6 briefly considers the TM simulation of

program execution (a subject which is given much more attention in Chapters

10 and 11).

It is worth focusing briefly on memory and array operations (Table

9.5), as these did not feature earlier in this chapter. In the examples given

in Table 9.5 we have used memory structures where each element was a

single binary number. This is essentially the memory organisation of the

modern digital computer. I leave it to you to appreciate how complex

data items (such as records, etc.) could also be incorporated into the

scheme.

Careful consideration of the preceding discussion will reveal that we seem to

be approaching a claim that Turing machines are capable of performing any of the

tasks that real computers can do. Indeed, the remarks in the third columns of

Tables 9.3 to 9.6 suggest that computers are essentially limited compared with

Turing machines. These observations lead us on to Turing’s thesis, which forms a

major part of the next chapter.

Table 9.4 Turing machine simulation of logical operations.

Example operations TM implementation Computer limitations

<, >, = COMPARE Length of operands

�, �, 6¼ Example: ‘‘6¼’’ (Turing machine NOT-EQ)

COMPARE 

=/F (N)
</T (N)

>/T (N)

COMPARE’s halt
state is a non-halt
state in NOT-EQ 

NOT-EQ

’’

bitwise NOT INVERT Length of operand
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Table 9.5 Turing machine simulation of memory/array structure and access.

Example
operations TM implementation

Computer
limitations

One-dimensional
array

index
* *

item1 item2…

findex is the number of the item to be accessedg
1. To the left of index, write a 0 (to represent

a count variable initialised to 0)
2. ADD(count, 1)
3. COMPARE(count, index).

if they are equal,
proceed right to the first
‘‘*’’ to the right of index. If a blank is
encountered, HALT, otherwise copy the digits
between that ‘‘*’’ and the next ‘‘*’’ (or blank)
somewhere to the left of index, then go back
rightwards along the tape changing all Xs
back to *s, then HALT

else
proceed right to the first ‘‘*’’ to the right of
index, change it to X, and go to 2.

Item length/address
length/array size

Indirect addressing As above, but in step 3 overwrite index with
copied number and go to step 1.

’’

Multi-dimensional
arrays

EXAMPLE: 3 � 2 � 2 three-dimensional array

i
* *

j k
*

I I
1,1,1 – 1,2,2

I
2,1,1 – 2,2,2 3,1,1 – 3,2,2

K J K
2,1,1 2,1,2 2,2,1 2,2,2

i, j,k: indexes of item to be retrieved (i.e., item k
of item j of item i

K: marker for increment of k index
J: marker to set k item number to 1 and

increment j item number
I: marker to set both k and j item number to

1 and increment i item number

As above plus
permissible number
of dimensions

Table 9.6 Turing machine simulation of program execution.

Example
operations TM implementation

Computer
limitations

Running a
program

Use binary numbers to represent codes for operations such
as ADD, MULT, memory access and so on.
Set up data and memory appropriately on tape.
Use a portion of the tape as data, and a portion to represent
sequences of operations (i.e. the program).

Size of program

Amount of data
Number of
operations
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EXERCISES

For exercises marked ‘‘†’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’at the end of the book.

9.1. Define the TM TIDY-UP for the ADD machine, described above.

9.2. Complete the definitions of the TMs MULT (using the ADD TM),

SUBTRACT and DIV (perhaps making use of COMPARE).

9.3. Design a TM that accesses elements of a two-dimensional array,

following the specification given in Table 9.5.

1
1/X (R)

2 3 4

6

1/1 (R)

A/A (R)

/1 (N)

58

7

9

1/1 (R)

A/A (L)

1/1 (L)
X/X (R)

1/X (R)

X/X (N)

A/A (N)

1/X (R)

1/1 (L)1/1 (L)

1/1 (L)

Figure 9.27 What function does this Turing machine compute?

1

R/W
head

A

one or more 1s 

blanks
blanks

y

Figure 9.28 The input configuration for the Turing machine in Figure 9.27.
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9.4.y What function is computed by the TM in Figure 9.27, assuming that

its input tapes are configured as specified in Figure 9.28?

In Figure 9.28, y is an arbitrary string of the form 1n, n� 1, represent-

ing the integer n, followed by a marker, A. The output is assumed to be

the integer represented by m, where m is the number of 1 s to the right

of the A when the machine halts.

9.5. The Turing machine, T, is as depicted in Figure 9.29.

The initial tape is of the form shown in Figure 9.30.

1
d/1 (L)

2

9

3 4

6

1/f (R)

/d (R)

5

8

7

1/1 (R)

1/1 (L)
1/1 (L)

1/1 (R)e/e (R)

d/d (N)

/1 (L)

e/e (L)

f/f (R)

e/e (L)

f/1 (L)

Figure 9.29 A Turing machine that does language recognition and
computation.

d

R/W
head

e

zero or more 
1s

blanks
blanks

x

Figure 9.30 The input configuration for the Turing machine in Figure 9.29.
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Referring to Figure 9.30, note that:

d and e are alphabet symbols;

x is a (possibly empty) sequence of 1 s.

a)y Briefly describe the relationship between the tape on entering the loop

of states 3{7, and the tape when all iterations through the loop have

been completed.

b)y If the arc between state 3 and state 8 labelled ‘‘e/e (L)’’ was altered to

‘‘e/1 (L)’’, what function, expressed in terms of x, would the amended

machine compute, assuming that jxj (i.e., the number of 1 s on the initial

tape) represents an integer, and that the result is the number of 1 s to

the right of d when the machine halts?

c) Delete state 1 from T, and by amending arcs as necessary, draw a

machine, Ta, which accepts the language fd1ne1n : n � 0g. State 2 of

T should become the start state of Ta and state 9 of T its halt state.

Additional alphabet symbols may be required, but you should intro-

duce no additional arcs.
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10
Turing’s Thesis and the Universality

of the Turing Machine

10.1 Overview

In this chapter, we investigate Turing’s thesis, which essentially says that the

Turing machine (TM) is the most powerful computational device of all. We find

evidence to support the thesis by considering a special TM called the Universal

Turing machine (UTM).

UTM is a TM that models the behaviour of any other TM, M, when presented

with a binary code representing:

l M ’s input

l M itself.

As defined in this chapter, UTM is a TM with three tapes (and three associated

read/write heads).

This leads us on to consider multiple-tape (k-tape) TMs and the non-determi-

nistic TMs, introduced as the recogniser for the type 0 languages in Chapter 7.

We discover that:

l any non-deterministic TM can be represented by a deterministic, 4-tape TM,

and then that

l any k-tape TM can be modelled by a standard, deterministic, single-tape TM.

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 10, � Springer-Verlag London Limited 2008



We conclude with the observation that a significant outcome of the above,

with respect to Part 1 of the book, is that the standard TM is the recogniser for the

type 0 languages.

10.2 Turing’s Thesis

We begin by continuing a discussion of the power of the TM that began in the

preceding chapter. This leads to what is known as Turing’s thesis. What you have

to appreciate about a ‘‘thesis’’ is that it is not a ‘‘theorem’’. A theorem is a

statement that can be proved to be true by a step-by-step argument that follows

valid logical rules, just as the repeat state theorem for finite state recognisers was

‘‘proved’’ in Chapter 6. A thesis, on the other hand, is something that somebody

asserts, for some reason, as being true. In other words, anybody can state that any

assertion is a thesis, but it serves little use as a thesis if someone else immediately

disproves it.

However, Turing’s thesis, which was initially posited in the 1930s, has yet to

be disproved. Not only has it not been disproved, but related work carried out by

other mathematicians has led to essentially the same conclusions as those reached

by Turing himself.1 For example, an American mathematician, Alonzo Church,

working at around the same time as Turing, described the theory of recursive

functions. Similarly, Emile Post, also a contemporary of Turing and Church, and,

like Church, an American, described in 1936 a related class of abstract machines.

These consisted of an infinite tape on which an abstract problem-solving mechan-

ism could either place a mark or erase a mark. The result of a computation was the

marked portion of the tape on completion of the process. These formalisms, and

subsequent developments such as Wang’s machines (like TMs but with an alpha-

bet of only blank and ‘‘*’’), and the register machines of Shepherdson and Sturgis

(closely resembling a simple assembler code-based system but with registers that

can store arbitrarily large integers), have been shown to be:

a) equivalent in computational power to Turing machines, and therefore,

b) more powerful than any machine with limited storage resources.

Turing’s thesis concerns the computational power of the primitive machines

which he defined, which we call Turing machines. Essentially, in its broadest

sense, Turing’s thesis says this:

1 Reading related to the work referenced in this section can be found in the ‘‘Further Reading’’
section.
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Any well-defined information processing task can be carried out by some

Turing machine.

However, in a mathematical sense, the thesis says:

Any computation that can be realised as an effective procedure can also be

realised by some Turing machine.

This last version of the thesis is probably not particularly helpful, as we have

yet to specify what constitutes an effective procedure. Turing was working in an

area of pure mathematics which had, for many years studied the processes of

‘‘doing’’ mathematics itself, i.e. the procedures that were used by mathematicians

to actually carry out the calculations and reasoning that mathematicians do. At

the time Turing formulated the notion of TMs, the ‘‘computers’’ that his machines

were intended to emulate were thus humans engaged in mathematical activity. An

effective procedure, then, is a step-by-step series of unambiguous instructions

that carry out some task, but specified to such a level of detail that a machine could

execute them. In this context, as far as we are concerned, Turing’s thesis tells

us this:

There is no machine (either real or abstract)that is more powerful, in terms of

what it can compute,than the Turing machine.

Therefore:

The computational limitations of the Turing machine are the least limitations

of any real computer.

Turing machines are radically different from the computers with which you and

I interact in our everyday lives. These real computers have interfaces; they may

display detailed graphics, or even animations and video, or play us music, or enable

us to speak to, or play games with, them, or with other people using them. A small

computer may run an artificial intelligence program, such as an expert system that

solves problems that even twenty years ago would have been impossible on any-

thing but the largest mainframe. Yet, in a formal sense, everything that happens on

the surface, so to speak, of the computer system, is merely a representation, an

alternative encoding, of the results of symbol manipulation procedures. Moreover,

these procedures can be modelled by a simple machine that merely repeatedly reads

a single symbol, writes a single symbol, and then moves to examine the next symbol

to the right or left. What’s more, this simple abstract machine was formulated at a

time when ‘‘real computers’’ were things like mechanical adders and Hollerith card

readers.

The Turing machine represents a formalism that allows us to study the nature

of computation in a way that is independent of any single manufacturer’s
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architecture, machine languages, high level programming languages or storage

characteristics and capacity. TMs are thus a single formalism that can be applied

to the study of topics such as the complexity of automated processes and lan-

guages (which is how we view them in the remainder of this part of the book).

In terms of languages, we have already seen the close relationship between

TMs and the Chomsky hierarchy, and we refine this later in this chapter, and

continue to do so in the next chapter. In Chapter 12, we consider in detail the

notion of complexity as it applies both to TMs and to programs on real machines.

However, an even more exciting prospect is suggested by our statement that the

limitations of the TM are the least limitations of any real computer. For a start,

only a real computer to which we could indefinitely add additional storage

capacity as required could approach the power of the TM. It is these limitations,

and their ramifications in the real world of computing, that are the main concern

of this part of the book.

In order to support the arguments in this chapter, we define a single Turing

machine that can model the behaviour of any other TM. We call this machine the

universal TM (UTM). The existence of UTM not only provides further evidence in

support of Turing’s thesis, that the Turing machine is the most powerful compu-

tational machine, but also plays a part in finally establishing the relationship

between computable languages and abstract machines. In the course of this, UTM

also features in the next chapter, in a demonstration of an extremely significant

result in computer science: the general unsolvability of what is called the halting

problem.

Our UTM will accept as its input:

1. (a coded version of) a TM, M

2. (a coded version of) the marked portion of an input tape to M.

UTM then simulates the activities that M would have carried out on the given

input tape.

Since UTM requires a coded version of the machine, M, and the input to M,

our next task is to define a suitable scheme for deriving such codes.

10.3 Coding a Turing Machine and its Tape
as a Binary Number

We first consider a simple method of representing any TM as a binary code. We

then see how the code can be used to code any input tape for the coded machine.

The coded machine and the coded input can then be used as input to UTM.
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10.3.1 Coding Any TM

To describe the scheme for coding any TM as a string of 1 s and 0 s, we will use an

example TM. As we proceed, you should appreciate that the coding scheme could

be applied to any TM, consisting of any number of states and using any size of

alphabet.

Our example machine, M, is shown in Figure 10.1.

An alternative representation of M (Figure 10.1) is shown in Table 10.1. You

will note that each instruction (initial state, read symbol, write symbol, direction,

and end state) is represented as a five-element list. In mathematical parlance, a

five-element list is known as a quintuple. Table 10.1 thus provides the quintuples

of the TM, M. This representation of TMs is fairly common. We use it here as it

supports the subsequent discussion in this chapter and the following two

chapters.

We begin by associating the states of M (Figure 10.1) with strings of 0s as

shown in Table 10.2. It should be clear that we could code the states of any TM

using the scheme.

Next, as shown in Table 10.3, we code the tape symbols (alphabet) of the

machine, which, for our machine M, is fa, b, C, X, Y, Zg and the blank symbol.

Again, we can see that this scheme could apply to a TM alphabet of any number of

symbols.

1 2 H

b/Y (R)
a/X (R)

3

C/C (L)

/Z (N)

X/X (L)
Y/Y (L)

X/X (L)
Y/Y (L)

Figure 10.1 A simple Turing machine.

Table 10.1 The quintuple representation
of the Turing machine in Figure 10.1.

(1, a, X, R, 2)

(1, b, Y, R, 2)

(2, C, C, L, 2)

(2, X, X, L, 3)

(2, Y, Y, L, 3)

(3, X, X, L, 3)

(3, Y, Y, L, 3)

(3, &, Z, N, H)
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We also code the direction symbols L, R and N, as shown in Table 10.4.

You will note that some of the codes representing the states (Table 10.2)

are identical to those used for the alphabet (Table 10.3) and direction symbols

(Table 10.4). However, this does not matter; as we will see in a moment, our

coding scheme ensures that they do not become mixed up.

We have coded the states, the alphabet, and the direction symbols. We now

code the instructions (quintuples) themselves. Figure 10.2 shows how to code a

particular quintuple of M. Once again, it is clear that any quintuple could be

coded in this way.

Now, we simply code the whole machine as a sequence of quintuple codes, each

followed by 1, and we place a 1 at the start of the whole code. The scheme is

outlined in Figure 10.3.

The above should be sufficient to convince you that we could apply such a

coding scheme to any TM, since any TM must have a finite number of states, tape

symbols and quintuples.

Table 10.2 Coding the states of the machine of Figure 10.1 as strings of zeros.

State Code Comment

1 0 Start state of any machine always coded as 0

H 00 Halt state of any machine always coded as 00

2 000 For the remaining states, we simply assign to each a unique
string of 0 s greater than 2 in length

3 0000

Table 10.3 Coding the alphabet of the machine of Figure 10.1 as strings of zeros.

Symbol Code Comment

& 0 Blank always coded as 0

a 00 For the rest of the alphabet, we simply assign to each
any unique string of 0s greater than 1 in length

b 000

C 0000

X 00000

Y 000000

Z 0000000

Table 10.4 Coding a Turing machine’s
direction symbols as strings of zeros.

Symbol Code

L 0

R 00

N 000
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Such a binary code for a Turing machine could be presented as the input to

any TM that expects arbitrary binary numbers as its input. For example, we

could present the code for the above machine, M, to the MULT TM (described in

Chapter 9) as one of the two numbers to be multiplied. We could even present the

coded version of MULT to the MULT machine as one of its input numbers, which

would mean that MULT is being asked to multiply its own code by another

number! All this may seem rather strange, but it does emphasise the point that

codes can be viewed at many different levels. The code for M can be regarded as

another representation of M itself (which is how UTM will see it), as a string in

f0, 1gþ (a non-empty string of 0 s and 1 s) or as a binary number. This is essentially

no different from seeing Pascal source code as text (the text editor’s view) or as a

program (the compiler’s view).

Since our UTM will require not only the coded version of a machine, but also a

coded version of an input to that machine, we need to specify a scheme for coding

any marked tape of the machine we are coding.

1 2
b/Y (R)

(1, b, Y,     R,     2)

0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0

Figure 10.2 How one quintuple of the TM from Figure 10.1 is represented
as a binary code (for coding scheme see Tables 10.2 to 10.4).

1 11 .     .     .     .    . 1

code for one
quintuple

code for another
quintuple

codes for any other
quintuples (each followed
by a 1) 

(1, b, Y, R,     2)

0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0

Figure 10.3 How a whole Turing machine is coded as a binary number
(the example quintuple is that of Figure 10.2).
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10.3.2 Coding the Tape

The coding scheme for the input is described in Table 10.5. Note that for a given

machine, we use the same codes for the symbols on the input tape as those used to

code the machine’s alphabet (Table 10.3).

It should be clear that any input tape to any coded machine could be similarly

represented using the scheme in Table 10.5.

We have now seen how to take any TM, M, and code it, and any of its input

tapes, with a coding scheme that requires only the alphabet f0, 1g. In the next

section, we use our coding scheme as an integral component of the architecture of

our universal Turing machine,UTM.

10.4 The Universal Turing Machine

UTM is described here as a 3-tape deterministic TM. Though our TMs have

hitherto possessed only one tape, it is quite reasonable for a TM to have any

(fixed) number of tapes. We discuss such machines in more detail a little later in

this chapter, when we also show that a ‘‘multi-tape’’ TM can be modelled by an

equivalent single-tape machine. For the moment, it suffices to say that in a multi-

tape TM, each tape is numbered, and each instruction is accompanied by an

integer which specifies the number of the tape on which the read, write and head

movement operations in that instruction are to take place.

The 3-tape UTM receives as its input a coded version of a TM and essentially

simulates the behaviour of the coded machine on a coded version of input to that

machine. UTM therefore models the behaviour of the original machine on the

original input, producing as its output a coded version of the output that would be

produced by the original machine, which can then be decoded.

Table 10.5 Coding a Turing machine’s input tape as a binary number.

Code Application to an input tape for the TM of Figure 10.1

We use the same codes for the tape
symbols as we use for the machine’s
alphabet (Table 10.3).

1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1

a ab b C

As for the quintuples (Figure 10.2),
we place a 1 after the code for each
symbol.

We place a 1 at the beginning of the
coded input.
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You may at this point be concerned that there is some ‘‘trickery’’ going on

here. You might say that everything that UTM does is in terms of manipulating

codes, not the ‘‘real’’ thing. If you do think that it’s trickery, then it can be pointed

out that every single program you have ever written is part of the same type of

‘‘trickery’’, as

l the source file,

l the input,

and

l the output

are all similarly coded and subsequently decoded when your program is run. So if

you are not prepared to believe in the representational power of coding schemes,

you must believe that no program you have ever used does anything useful!

Next, we specify the initial set up of UTM ’s three tapes. Following this, we

briefly consider the operation of UTM. You will appreciate that the construction

of UTM described would be capable of simulating the operation of any TM, M,

given any suitable input tape to M.

10.4.1 UTM’s Tapes

Our version of UTM is configured so that tape 1 is as shown in Figure 10.4.

As can be seen from Figure 10.4, tape 1 contains the code for the machine M,

followed immediately by the code for M’s input.

UTM TAPE 1

code for M

X = 1 or 0

R/W
head (1)

X1

1

1

1
X X

X X

X X X

code of input
to M

Figure 10.4 The set up of tape 1 of UTM. The machine, M, is coded as specified
in Figure 10.3. The input to M is coded as specified in Table 10.5.
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UTM will use its second tape as a ‘‘work tape’’, on which to simulate M’s

operation on its input by carrying out the operations specified by the coded

quintuples on the coded data. Thus, the first thing UTM does is to copy the

coded input from tape 1 to tape 2, at which point, tape 2 will be as specified in

Figure 10.5.

Tape 3 of UTM will be used only to store a sequence of 0 s denoting, at any

stage, the current state of M. The organisation of tape 3 is depicted in Figure 10.6.

To summarise:

tape 1 stores the coded machine M, followed by the coded input to M

tape 2 is used by UTM to work on a copy of M’s coded input

tape 3 is used to hold a sequence of 0 s representing M’s current state.

10.4.2 The Operation of UTM

UTM operates as specified by the procedure in Table 10.6. I leave it to you to

appreciate how the procedure itself could be represented as a TM. For clarifica-

tion of the procedure in Table 10.6, you are advised to refer to the coding scheme

and the configurations of UTM’s three tapes described above.

A UTM based on the procedure in Table 10.6 is capable of carrying out the

computation specified by any TM, given an initial set up as described above. As

UTM TAPE 2

code of input
to M

X = 1 or 0

R/W
head (2)

X

1

1

X

X X

Figure 10.5 The set up of tape 2 of UTM. UTM initially copies the coded input
(see Figure 10.4) from tape 1 onto tape 2. Tape 2 is then used as a ‘‘work tape’’

by UTM.
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input to such a machine, we code the TM according to our scheme, and then we

can code an input tape to that TM using the same scheme. UTM will then

simulate the computation performed by the original machine.

In particular:

l If M, the original machine, would produce a solution given a particular input

tape, then UTM would produce a coded version of that solution (on its tape 2).

l If M would reach a state, s, in which it had no applicable quintuples for the

current state and tape symbols, then UTM would halt with the code for the

state s on tape 3, and tape 2 would contain a coded version of M’s tape

configuration at the time M stopped.2

l If M would reach a situation where it looped indefinitely, repeating the same

actions over and over again, then UTM would also do the same. This is very

significant and highly relevant to a discussion in the next chapter.

We can now appreciate that we have described a 3-tape deterministic TM, UTM,

that can, if we accept Turing’s thesis, carry out any effective procedure. We will

see later that from our 3-tape version we could construct a deterministic ‘‘stan-

dard’’ single-tape UTM.

R/W
head (3) 

code for current
state of M 

0

UTM TAPE 3 

0

0 00

Figure 10.6 The set up of tape 3 of UTM. Tape 3 is used to hold the code
(a sequence of zeros) for M ’s current state. It is initialised to a single 0, as any

machine’s start state is coded as 0.

2 This assumes that the ‘‘while’’ loop in Table 10.6 terminates if no suitable quintuple can be
found.
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10.4.3 Some Implications of UTM

The existence of UTM makes Turing’s thesis that TMs are the pinnacle of

functional power even more compelling. We have seen that a TM that can

‘‘run’’, as a kind of ‘‘program’’, any other TM needs to be no more sophis-

ticated than a standard TM. In a sense, UTM actually embodies the effective

procedure of carrying out the effective procedure specified by another Turing

machine.

Other designs of UTM may be suggested, based on different schemes for

coding the machine M and its input. All are equivalent. UTM is a Turing machine

and can itself be coded according to the scheme for one of the other UTMs. The

code can then be presented, along with a coded version of an input tape, as input

to that other UTM. In that sense also, UTM is truly universal.

In a more practical vein, UTM is a closer analogy to the stored program

computer than the individual TMs we have considered so far. Our other TMs

are essentially purpose-built machines that compute a given function. UTM, with

its ability to carry out computations described to it in some coded form, is a

counterpart of real computers that carry out computations described to them in

the form of codes called programs. However, once again it must be emphasised

that a given computer could only be as powerful as UTM if it had unlimited

storage capabilities. Even then, it could not be more powerful.

In the next section, we provide even more compelling evidence in support of

Turing’s thesis. In doing so, we close two issues that were left open earlier in this

book. Firstly, in Chapter 7 we saw how a non-deterministic TM is the recogniser

for the type 0 languages. Secondly, earlier in this chapter, we encountered a 3-tape

UTM. We now see that the additional power that seems to be provided by such

features is illusory: the basic, single-tape TM is the most powerful computational

device.

10.5 Non-deterministic TMs

In Chapter 7, we saw that the non-deterministic TM is the abstract machine

counterpart of the type 0, or unrestricted grammars, the most general classifica-

tion of grammars of the Chomsky hierarchy. We saw a method for constructing

non-deterministic TMs from the productions of type 0 grammars. Now we return

to the notion of non-deterministic TMs to demonstrate that non-determinism in

TMs provides us with no extra functional power (although we see in Chapter 12

that things change if we also consider the time that it might take to carry out

certain computations). This result has implications for parallel computation, to
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which we return later in this chapter. Here, only a sketch is given of the method for

converting any non-deterministic TM into an equivalent deterministic TM. How-

ever, some of the techniques introduced are fundamental to discussions in the

remainder of this part of the book.

Now, if a TM is non-deterministic and it correctly computes some func-

tion (such as accepting the strings of a language), that TM will be capable of

reaching its halt state, leaving some kind of result on the tape. For a non-

deterministic machine this is alternatively expressed as ‘‘there is some sequence

of transitions that would result in the machine reaching its halt state from one

of its start states’’. In terms of our discussion from earlier in this chapter, the

phrase

‘‘there is some sequence of transitions’’

can be alternatively expressed as

‘‘there is some sequence of quintuples’’.

Suppose, then, that we have a non-deterministic TM that sets off in attempting

to solve some problem, or produce some result. If there is a result, and it can try

all possible applicable sequences of quintuples systematically (we will return to

this in a moment), then it will find the result. What we are going to discover is

that there is a deterministic method for trying out every possible sequence of

quintuples (shorter sequences first) and stopping when (or rather if ) a sequ-

ence of quintuples is found that leads to a halt state of the original machine.

Moreover, it will be argued that a deterministic TM could apply the method

described. Analogously to UTM, the construction described represents a case

where one TM executes the instructions of another, as if the other TM was a

‘‘program’’.

In order to simplify the description of our deterministic version of a non-

deterministic TM, we shall assume that we have a special TM with four tapes.

We will then show how multi-tape machines can be modelled by single-tape

machines, as promised earlier.

10.6 Converting a Non-deterministic TM
into a 4-tape Deterministic TM

We now describe the conversion of a non-deterministic TM into a 4-tape deter-

ministic TM. Let us call the non-deterministic TM, N, and the corresponding

deterministic 4-tape machine, D.
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10.6.1 The Four Tapes of the Deterministic Machine, D

We begin by describing the organisation of each of D’s four tapes, beginning with

tape 1, which is shown in Figure 10.7.

As shown by Figure 10.7, tape 1 of D stores:

l a copy of the marked portion of the tape that N would have started with (we

can assume for the sake of simplicity that N ’s computation would have begun

with its read/write head on the leftmost symbol of its input)

l the label of N ’s current state, initially marked with N ’s start state label (let us

assume that the start state is always labelled S)

l the label of N ’s halt state (we can assume that N has only one halt state; cf.

exercise 1, Chapter 7), which in Figure 10.7 is H.

Note that we assume that labels such as state names and alphabet symbols each

occupy one square of a tape, i.e., are single symbols. In the formal world, there is no

concept of a ‘‘character set’’ in which we ‘‘run out’’ of single-symbol labels; there is

a potentially infinite number of available single-symbol labels. Thus, a TM of any

size can be assumed to require state and alphabet labels each consisting of one

symbol.

Now we can describe tape 2, schematically represented in Figure 10.8.

Figure 10.8 tells us that tape 2 of D, the deterministic 4-tape TM, contains

the quintuples of N, each occupying five consecutive tape squares, each preceded

R/W
head (1)

copy of N’s
input tape 

X

D TAPE 1

X X X

X

M Q H

marker
symbol, not in
N’s alphabet

N’s current
state label 

N’s halt state
label

Figure 10.7 The set up of tape 1 of the deterministic, 4-tape TM, D (a deter-
ministic version of a non-deterministic TM, N).

10.6 Converting a Non-deterministic TM into a 4-tape Deterministic TM 251



by a unique single symbol that is not a symbol of N’s alphabet. To illustrate,

Figure 10.9 shows how a quintuple would be coded on tape 2 of D.

Next, tape 3 of D. Tape 3 is where D will repeatedly perform the systematic

application of N’s quintuples, starting from a copy of N’s input tape (from tape 1,

specified in Figure 10.7). D’s first activity, then, is to set up tape 3 as shown in

Figure 10.10.

Note that D places special ‘‘markers’’ at either end of the copied input. These

are necessary, as after the application of a sequence of N’s quintuples that leads to

a dead end, D will have to erase the marked portion of tape 3, and copy the

original input from tape 1 again. The potential problem is that N’s computation

may result in blank squares in between marked symbols, resulting in a tape that is

no longer packed, so D needs a way of detecting the extreme ends of the marked

portion of the tape.

one quintuple of N

R/W
head (2)

N’s quintuples, each preceded
by a unique symbol not in N’s

alphabet

a

D TAPE 2

X X X XX b XX X X X

Figure 10.8 The set up of tape 2 of the deterministic, 4-tape TM, D (a deter-
ministic version of a non-deterministic TM, N). Tape 2 stores the quintuples of N.

(3, x, y, R, 4)

3X x y R 4

unique label

Figure 10.9 An example quintuple coded on tape 2 of N (see Figure 10.8).

252 10. Turing’s Thesis and the Universality of the Turing Machine



The existence of the markers causes a slight complication in the operation of

D. One of N’s quintuples may result in D’s tape 3 head moving onto the marker.

When this happens, D must simply move the marker one square to the right or

left, depending on whether the marker was encountered on a right or left move,

respectively. D must replace the marker by a blank, and then overwrite the blank

on the right or left, respectively, with the marker. D must also then move the head

back one square to where the marker originally was (this corresponds to the

position in the tape expected by the next applicable quintuple of N). Every time

D makes a left or right move on tape 3, then it must check if the next symbol is the

marker; if so, it must take the appropriate action before attempting to apply the

next quintuple of N.

10.6.2 The Systematic Generation of the Strings
of Quintuple Labels

The whole process hinges on the statement, made more than once above, that D

will apply the quintuples of N in a systematic way. As N can consist of only a finite

number of quintuples, the set of symbols used to label the quintuples of N (on

tape 2), is an alphabet, and a sequence of symbols representing labels for some

R/W
head (3)

copy of N’s
input tape 

D TAPE 3

X X X

X
M

XM

marker
symbol, not in
N’s alphabet

marker
symbol, not in
N’s alphabet

Figure 10.10 The set up of tape 3 of the deterministic, 4-tape TM, D. On tape 3,
D will systematically apply the quintuples of the non-deterministic machine, N.
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sequence of quintuples of N is a string taken from that alphabet. So, the set of all

possible sequences of quintuples that we may have to try, starting from the initial

tape given to N, is denoted by the set of all possible non-empty strings formed

from symbols of the alphabet of labels.

Let us call the alphabet of quintuple labels Q. Recall from Chapter 2 that the

set of every possible non-empty string formed using symbols of the alphabet Q is

denoted by Qþ. Now, Qþ, for any alphabet Q, is not only infinite but also

enumerable. Qþ is a countably infinite set. Now, by Turing’s thesis, if a program

can enumerate Qþ, then a TM can do it.3 That is exactly what we need as part

of D:

l A sub-machine that will generate sequences of quintuple labels, one by one,

shortest sequences first, so that the sequence of N’s quintuples that is denoted

by the sequence of symbols can be executed by D. Moreover, we must be sure

that every possible sequence is going to be tried, if it proves necessary to do so.

To be prepared to try every possible sequence of quintuples is a rather brute-force

approach, of course. Many (in fact probably most) of the strings of labels gener-

ated will not denote ‘‘legal’’ sequences of N’s quintuples for the given tape, or for

any tape at all. Moreover, the method will try any sequence that has a prefix that

has already led nowhere (there are likely to be an infinite number of these, also).

However, because D tries the shorter sequences before the longer ones, at least we

know that if there is a solution that N could have found, our machine D will

eventually come across the sequence of quintuples that represents such a solution.

We should also point out that if there is not a solution, then D will go on forever

trying different sequences of quintuples (but then, if a solution does not exist, N

would also be unable to find it!).

So, we finally come to tape 4 of D. Tape 4 is where D is going to repeatedly

generate the next sequence of quintuple labels (strings in the set Qþ) that are

going to be tried. Only an overview of one method will be given here. An exercise

at the end of the chapter invites you to construct a TM to achieve this task.

To demonstrate the method, we will assume an alphabet fa, b, cg. The

approach will be:

generate all strings of length 1:

a; b; c

generate all strings of length 2:

aa; ab; ac; ba; bb; bc; ca; cb; cc

3 A pseudo-code program was given in Chapter 2 to perform the same task.
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generate all strings of length 3:
aaa; aab; aac; aba; abb; abc; aca; acb; acc; baa; bab; bac; bba; bbb;

bbc; bca; bcb; bcc; caa; cab; cac; cba; cbb; cbc; cca; ccb; ccc

You may notice from the order in which the strings are written that we obtain all

of the strings of length n by copying each of the strings of length n� 1 three times

(as there are three alphabet symbols). We then append a different symbol of the

alphabet to each one. For example, from aa we generate aaa, aab and aac.

Let us assume that the machine initially has the three alphabet symbols

somewhere on its tape. To generate the three strings of length 1 it simply copies

each symbol to the right, each being followed by a blank, with the final blank

followed by some marker (say ‘‘*’’).

The blanks following each of the strings in Figure 10.11 can be used both to

separate the strings and to enable an auxiliary marker to be placed there, thus

allowing the machine to keep track of the current string in any of its operations.

the 3 strings of length
1, each followed by a

blank tape square 

a

D TAPE 4

b c *

end of
strings
marker 

alphabet of
labels (a, b, and c)
stored
somewhere to
left 

Figure 10.11 Tape 4 of D, when the set of quintuple labels is fa,b,cg, and all the
strings of length equal to 1 have been generated. This is part of D’s systematic

generation of all strings in fa, b, cgþ.
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The next stage, shown in Figure 10.12, involves copying the first string of

length 1 (a) three times to the right of the *. The number of times the string is

copied can be determined by ‘‘ticking off’’, one by one, the symbols of the

alphabet, which, as shown in Figure 10.11, is stored somewhere to the left of the

portion of tape being used to generate the strings.

From the situation in Figure 10.12, the next stage is to append each symbol of

the alphabet, in turn, to the three copied as, giving the situation in Figure 10.13.

The next string of length 1, (b) is then copied three times to the right, as

illustrated in Figure 10.14.

From Figure 10.14, each symbol of the alphabet is appended, in turn, to the

strings just copied, yielding the situation in Figure 10.15.

The next stage from Figure 10.15, is to copy the next string of length 1 (c)

three times to the right, leading to the set up shown in Figure 10.16.

From Figure 10.16, each symbol of the alphabet is appended to each string

that was copied in the previous stage, giving a situation shown in Figure 10.17.

Now, when the machine returns along the tape, then attempts to copy the

next string of length 1, it encounters the ‘‘*’’. The machine thus detects that it has

a

the 3 strings of length
1, each followed by a

blank tape square 

D TAPE 4

b c a a a*

the first string of length
1 (a), has been copied
three times, each copy
followed by two blank

tape squares

alphabet of
labels (a, b, and c)
stored
somewhere to
left 

Figure 10.12 On tape 4, D is generating all strings in fa, b, cgþ of length 2. The
first stage is to copy the first string of length 1 (Figure 10.11) three times (since the

alphabet fa, b, cg contains three symbols).
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finished generating all strings of length 2. The machine can place a ‘‘*’’ at the end

of the strings it created (Figure 10.17), as depicted in Figure 10.18.

From Figure 10.18, the machine is ready to begin the whole process again, i.e.

copying each string between the two rightmost *s three times to the right, each

time appending each symbol of the alphabet in turn to the newly copied strings,

and so on.

Of course, it will be necessary for D to try the quintuple sequences each time a

certain number of them have been generated (since the generation process can go

on forever). It could, for example, try each new sequence as it was created, i.e.,

each time a symbol of the alphabet is appended to a recently copied sequence.

Alternatively, it could generate all of the sequences of a given length, and then try

each of those sequences in turn.

10.6.3 The Operation of D

Here then, is a sketch of the method used by the 4-tape TM, D, to deterministi-

cally model the behaviour of the non-deterministic TM, N.

the 3 strings of length
1, each followed by a

blank tape square 

a

D TAPE 4 

b c *

alphabet of
labels (a, b, and c)
stored
somewhere to
left 

a  a a

the first three strings of
length 2, each followed
by a single blank square

a b c

each symbol of
the alphabet has
been appended
to a copy of a

Figure 10.13 Tape 4 of D, when D is generating all strings in fa, b, cgþ
of length 2. D has now appended a symbol of the alphabet to each copy of a from

Figure 10.12.
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the 3 strings of length
1, each followed by a

blank tape square

a

D TAPE 4 

b c *

alphabet of
labels (a, b, and c)
is stored
somewhere to
left 

a a a

the first three strings of
length 2, each followed

by a single blank
square

a b c b b b

the second string of
length 1 (b), has been

copied three times,
each copy followed by
two blank tape squares

Figure 10.14 Tape 4 of D, when it is generating all strings in fa, b, cgþ of
length 2. From the situation in Figure 10.13, D has now added 3 copies of the

second string of length 1 (b).

a b c * a a aa b c b b ba b c

each symbol of 
the alphabet has 
been appended 
to a copy of b

the 3 strings of length
1, each followed by a

blank tape square 

D TAPE 4 

alphabet of
labels (a, b, and c)
stored
somewhere to
left 

the first three strings of
length 2, each followed

by a single blank
square

the second three strings
of length 2, each

followed by a single
blank square

Figure 10.15 Tape 4 of D, when it is generating all strings in fa, b, cgþ of length 2.
D has now appended a symbol of the alphabet to each copy of b from Figure 10.14.
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the 3 strings of length
1, each followed by a

blank tape square 

a

D TAPE 4 

b c *

alphabet of
labels (a, b, and c)
stored
somewhere to
left 

a a b a

the first three strings of
length 2, each followed
by a single blank square

a  c b b ba b c

the second three strings
of length 2, each

followed by a single
blank square 

 

c c c

the third string of
length 1 (c), has been
copied three times,

each copy followed by
two blank tape squares 

Figure 10.16 Tape 4 of D, when it is generating all strings in fa, b, cgþ of
length 2. From the situation in Figure 10.15, D has now added 3 copies of the

second string of length 1 (c).

the 3 strings of length
1, each followed by a

blank tape square 

a

D TAPE 4

b c *

alphabet of
labels (a, b, and c)
stored
somewhere to
left 

a a a

the first three strings of
length 2, each followed

by a single blank
square

a b c b b ba b c

the second three strings
of length 2, each

followed by a single
blank square 

 

c c ca b c

the third three strings
of length 2, each

followed by a single
blank square 

each symbol of
the alphabet has
been appended
to a copy of c

Figure 10.17 Tape 4 of D, when it is generating all strings in fa, b, cgþ of
length 2. D has now appended a symbol of the alphabet to each copy of c from

Figure 10.16.
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D is assumed to be initially configured as described earlier, i.e.:

Tape 1 (Figure 10.7) contains a copy of N’s input, and its current halt state

label,

Tape 2 (Figure 10.8) contains the labelled quintuples of N,

Tape 3 (Figure 10.10) is initially blank, and

Tape 4 contains the quintuple label symbols.

D operates as shown in Figure 10.19.

The most complicated process in the method specified in Figure 10.19 is the box

that begins ‘‘Try sequence of quintuples . . .’’. This is expanded in Figure 10.20.

Sufficient detail has been presented for you to appreciate that the above

construction could be applied to any similar situation.

10.6.4 The Equivalence of Non-deterministic TMs
and 4-Tape Deterministic TMs

Thus far, you are hopefully convinced that any non-deterministic TM, N, can be

represented by a 4-tape deterministic TM, D. D and N are equivalent, in the sense

that, given any input tape to N, and assuming that D’s tapes are initially config-

ured as described above, if N could have found a solution then so will D, and if N

would never find a solution then neither will D.

the 3 strings of length
1, each followed by a

blank tape square 

a

D TAPE 4

b c *

alphabet of
labels (a, b, and c)
stored
somewhere to
left 

a a a

the 9 strings of length
2, each followed by a
single blank square 

a b c b b ba b c c c ca b c

placed here to
indicate end of
strings of length 2

*

Figure 10.18 D has now generated all strings in fa, b, cgþ of length 2, and has
now appended a ‘‘*’’ to the end of the portion of tape containing the strings.
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We now turn our attention to establishing that a multi-tape deterministic TM

can be modelled by an equivalent single-tape machine.

10.7 Converting a Multi-tape TM
into a Single-tape TM

A multi-tape TM, as described above, is a TM with two or more tapes, each of

which has its own read/write head. The instructions on the arcs of such TMs

contain an extra designator, this being the number of the tape on which the next

STOP

Try
sequence

of quintuples specified
by label string 

1, 2, 3, 4

Generate next string
of quintuple labels

Set up tape 3
by copying N’s

input tape sequence
from tape 1 

1, 3 

START

4

Reached halt
state of N?

1, 3

Erase all
symbols from

tape 3 

3

Initialise current
state to N’s
start state 

1

tapes of D
involved in
operation 

no

yes

expanded in
Figure
10.20 

Figure 10.19 The operation of the 4-tape TM, D, that deterministically models
the behaviour of a non-deterministic machine, N.
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quint state is the from
state in the current 
quintuple on tape 2. 
current state refers to 
the relevant symbol 
on tape 1 (see Figure 
10.7).

 Update current 
state symbol 

1, 2

Move head according  
to quint direction symbol 

2, 3

Replace current sym  
by  quint writesym 

2, 3

quint readsym = 
current readsym? 

2, 3

quint state = 
current state? 

1, 2

Find quintuple for label

End of label
sequence?

4

CONTINUE 

Get next label
in current

quintuple label sequence 

 
 

4

START

tape of D
involved
in operation

 

no

yes

2

yes

no

no

yes

quint readsym  is 
the read symbol in
the current 
quintuple on tape 2. 
current  
readsym refers to 
the symbol at the 
read head of tape 3.

The current quintuple 
applies, so now carry 
out the write operation 
by overwriting the 
symbol at the tape 3 
head with the current 
quintuple’s write
symbol.

Move head 
on tape 3 
according 
to
direction
symbol of 
the current 
quintuple
on tape 2.

Replace the symbol on tape 
1 that refers to the current 
state of N with the next
state symbol of the tape 2 
current quintuple.

Back to 
Figure
10.19.

The current 
quintuple does 
not apply, as the 
read symbol 
disagrees with 
tape 3 read 
symbol.

The current 
quintuple does 
not apply, as the 
from state 
disagrees with 
tape 3 current 
state.

Figure 10.20 Expansion of the box that begins ‘‘Try sequence of quintuples . . .’’
from Figure 10.19. How D models the behaviour of N specified by its quintuples.
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operation is to take place. Thus, in place of quintuples we have sextuples. Any

such machine can be modelled by a single-tape TM, as will now be demonstrated.

Let us call the multi-tape machine M and the resulting single-tape machine S.

The conversion method we consider here consists of representing the symbols

from M’s many input tapes on S’s single tape in such a way that a sextuple of M

can be represented as several quintuples of S. We will use an example involving the

conversion of a 3-tape machine into a single-tape machine to demonstrate the

method.

10.7.1 Example: Representing Three Tapes as One

Let us suppose we have a 3-tape machine, M, with its tapes initially set up as in

Figure 10.21.

We use a scheme that systematically places the symbols from the three tapes

of M on the single tape of S. From the three tapes above, we present the tape to S

that is shown in Figure 10.22.

Thus, from left to right, and taking each tape of M in turn, we place the

leftmost symbol from tape 1, followed by a blank (or a special marker if this

symbol was pointed at by the read/write head of tape 1). This is followed by the

leftmost symbol from tape 2, followed by a blank (or a special marker, if necessary,

a bb

R / W
head (1)

A ba1

1 1

TAPE 1

TAPE 3

TAPE 2

R / W
head (2)

R / W
head (3)

Figure 10.21 Example configurations of the three tapes of a hypothetical 3-tape
Turing machine.
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representing the read/write head of tape 2), and so on. It will be noted that tape 3

had the least marked squares, so pairs of blanks are left where tape 3 symbols

would be expected on S’s tape. Similarly, for tape 1, two blanks were left so that

the final symbol of tape 2, the tape of M with the most marked squares, could be

placed on the single tape.

The end of input tape markers, right and left, and the three read/write head

markers (X, Y and Z, for tapes 1{3, respectively) are required to be symbols that

are not in the alphabet of M.

The encoding of the three tapes of M as a single tape of S represented in

Figure 10.22 captures all of the information from the original three tapes. For

example, consider the seventh tape square to the right of the left-hand marker

symbol. This represents the second occupied tape square of tape 1. It contains a

b, which tells us the second tape square from the left of tape 1 of M should also

contain a b (as it does). Moreover, the square to the right of the b in question, on

S’s tape, contains X, the read/write head marker representing the head position

on tape 1 of M. This tells us that the read/write head of M’s tape 1 should be

pointing at the second symbol from the left, i.e., the first b from the left (as it is).

All other information from the initial three tapes can be similarly recovered from

our single-tape representation.

 a  A 1 

the first symbols on
tape 1 (a), 2 (A) and 3

(1)

represents
read/write head
of tape 3 (i.e.,
indicates that
head is on the 1
to the left) 

 b  a  b  b Z X 1 Y 1 

the third symbols on
tape 1 (b), 2 (a) and 3

(blank) 

the second symbols on
tape 1 (b), 2 (1) and 3

(1) 

the fourth symbols on
tape 1 (blank), 2 (b)

and 3 (blank) 

M M 

unique marker
symbol 

represent
read /write heads
of tape 1 (X ) and
2 (Y ) 

Figure 10.22 Representing the three tapes of Figure 10.21 on a single tape.
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10.7.2 The Operation of the Single-tape Machine, S

In the machine S, single instructions (sextuples) of the multi-tape machine, M,

become several instructions (quintuples) of the single-tape machine. These quin-

tuples operate on a single-tape set up representing the multiple tapes of M, as

specified in Figure 10.22.

Consider as an example the sextuple (1, a, A, R, 2, 2). The meaning of this

sextuple is:

‘‘when in state 1, if the symbol at the read/write head of the current tape is a,

replace it by A, move right one square on the current tape, switch processing

to tape 2 and move into state 2’’.

Let us assume that the alphabet of tape symbols of S is fa, b, A, 1g, and that (as in

Figure 10.22) the markers used on the single tape to represent the read/write

heads on the three tapes, tapes 1, 2 and 3, are X, Y and Z, respectively. For the

corresponding single-tape machine S, assuming that its read/write head is cur-

rently located at the tape square representing the appropriate marked square of

M’s tape 1, the sextuple (1, a, A, R, 2, 2) is interpreted by the single-tape machine

as explained in Table 10.7.

Every single instruction (i.e. sextuple) of the multi-tape machine has to be

represented in a similar way to that described above. For a left move instruction, a

very similar construction could be used, except that the single-tape machine

would have to move left six squares from the symbol to the left of the current

tape’s read/write head marker. For a no move instruction, movement of the read/

write head marker would be unnecessary. For a sextuple that specified that the

Table 10.7 An overview of how a single-tape TM, S, simulates the execution of the sextuple
(1, a, A, R, 2, 2) of a 3-tape TM, M. The three tapes of M are assumed to have been coded onto a
single tape, as described in Figures 10.21 and 10.22. The current state of M is assumed to be 1.

M instruction (1, a, A, R, 2, 2) Corresponding behaviour of S

‘‘If the symbol at the read/
write head of tape 1 is a,
replace it by A . . .

Since (see text), the read/write head of S is pointing at the
symbol on its tape that represents the current symbol on M ’s
tape 1, if that symbol is a, S replaces it with A.

. . . move right one square on
tape 1, . . .

We have three tapes of M coded onto one tape of S. Each tape
square of M is represented by two tape squares of S (one for the
symbol, one to accommodate the marker that indicates the
position of one of M ’s read/write heads). Thus, moving ‘‘one
square’’ on a tape of M involves moving six squares on S ’s tape.
S also has to move the marker (X) representing M ’s tape 1
read/write head so that it is in the appropriate place (i.e., next
to the symbol representing one move right on M ’s tape 1).

. . . switch processing to tape 2
and move into state 2.’’

S must search for the marker that represents the read/write
head of M ’s tape 2 (in our example, Y).
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next operation was to take place on the same tape, there would be no need to

search for the marker representing the read/write head of another tape.

Like our 4-tape deterministic machine D earlier in the chapter, S uses ‘‘marker’’

symbols to indicate the extremes of the marked portion of its tape. Thus, like D, S

has to check for this ‘‘end of tape’’ marker each time it moves its head to the right or

left in the portion of tape representing the tapes of the multi-tape machine (see

Figure 10.22). Such situations correspond to those wherein the multi-tape machine

would move its head onto a blank square outside of the marked portion of one of its

tapes. In such circumstances, S must shuffle the ‘‘end of tape’’ marker to the left or

right by 2k squares, where k is the number of tapes of the simulated machine, M.

For example, a ‘‘move right’’ on a single-tape TM representing a 10-tape TM would

involve moving 20 squares to the right (shuffling the ‘‘end of tape’’ marker right

appropriately if necessary), and we would of course need 10 distinct read/write

head markers, and so on.

You should be able to see how the above could be adapted for multi-tape

machines with any number of tapes. You are asked to add more detail to the

construction in an exercise at the end of this chapter.

10.7.3 The Equivalence of Deterministic Multi-tape TMs
and Deterministic Single-tape TMs

The preceding discussion justifies the following statement:

Any deterministic multi-tape TM,M, can be replaced by a deterministic single-

tape TM, S, that is equivalent to M.

In the preceding discussion, we have seen that it can be a convenience to define

multi-tape, rather than single-tape, machines. Recall also the previous chapter,

when we described TMs such as MULT and DIV. These machines featured as

‘‘sub-machines’’ other TMs we had defined, such as ADD and SUBTRACT. We

were forced to use different areas of the tape to deal with the computations of

different sub-machines, which led to some tricky copying and shuffling. A multi-

tape approach would have enabled us to use certain tapes in a similar way to the

‘‘registers’’ or ‘‘accumulators’’ of the CPU, to store temporarily the results of sub-

machines that would be subsequently needed.

A second, and related, feature of multi-tape machines is that they permit a

modularity of ‘‘memory organisation’’, a memory ‘‘architecture’’, so to speak, which

has more in common with the architecture of the real computer system that the

single-tape TM. This can be appreciated by considering TMs such as the determi-

nistic multi-tape machines we specified in the previous section, where the program

(i.e. the quintuples of another machine) was stored on one tape and the data were
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stored on another. Moreover, the machine used a further tape as a ‘‘working

memory’’ area, and another tape as a kind of program counter (the tape where

the sequences of quintuple labels were generated).

The modularity facilitated by a multi-tape TM architecture can be useful for

specifying complex processes, enabling what is sometimes called a ‘‘separation of

concerns’’. For example, there should be no need for MULT to be concerned with

the internal workings of ADD. It needs only to gain access to the result of each

addition. It would therefore be appropriate if MULT simply copied the two

numbers to be added onto a particular tape, then passed control to ADD. The

latter machine would then leave the result in an agreed format (perhaps on

another tape), where it would be collected by MULT ready to set up the next

call to ADD, and so on.

That a multi-tape TM can be replaced by an equivalent single-tape construc-

tion means that we can design a TM that possesses any number of tapes, in the

knowledge that our machine could be converted into a single-tape machine. We

took advantage of this, of course, in the specification of UTM, earlier in this

chapter.

10.8 The Linguistic Implications of the
Equivalence of Non-deterministic
and Deterministic TMs

We began by showing that from any non-deterministic TM we could construct an

equivalent 4-tape deterministic TM. We then showed that from any multi-tape

deterministic machine we could construct an equivalent deterministic TM. We

have thus shown the following:

For any non-deterministic TM there is an equivalent deterministic TM.

Moreover, in Chapter 7 we showed that the non-deterministic TM is the corre-

sponding abstract machine for the type 0 languages (in terms of the ability to

accept, but not necessarily to decide those languages, as we shall see in

Chapter 11).

We can now say:

The deterministic TM is the recogniser for the phrase structure languages,in

general.

This is so because:

Any phrase structure grammar can be converted into a non-deterministic

TM, which can then be converted into a deterministic TM
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(via the conversion of the non-deterministic TM into an equivalent 4-tape deter-

ministic TM, and its conversion into an equivalent deterministic single-tape TM).

EXERCISES

For exercises marked ‘‘y’’, solutions, partial solutions, or hints to get you started,

appear in ‘‘Solutions to Selected Exercises’’at the end of the book.

10.1. Write a program representing a general Turing machine simulator.

Your machine should accept as its input the quintuples of a Turing

machine, and then simulate the behaviour of the TM represented by

the quintuples on various input tapes. In particular, you should run

your simulator for various TMs found in this book, and the TMs

specified in exercise 2 of Chapter 7. Hint: the advice given for exercise

6 of Chapter 5, in ‘‘Solutions to Selected Exercises’’ is also very

relevant to this exercise.

10.2. Define a TM to generate fa, b, cgþ, as outlined earlier in the chapter.

Then convince yourself that for any alphabet, A, Aþ is similarly

enumerable, i.e., we can define a TM to print out its elements in a

systematic way.

10.3.y Sketch out the part of the single-tape machine, S, that deals with the

sextuple (1, a, A, R, 2, 2) of the three-tape machine, M, described

earlier in the chapter.
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11
Computability, Solvability and the Halting

Problem

11.1 Overview

This chapter investigates the limitations of the TM. The limitations of the TM

are, by Turing’s thesis (introduced in the last chapter), also the limitations of the

digital computer.

We begin by formalising the definition of various terminology used hitherto in

this book, in particular, we consider the following concepts of computability:

l functions

l problems

l the relationship between solvability and decidability.

A key part of the chapter investigates one of the key results of computer

science, the unsolvability of the halting problem, and its theoretical and practical

implications. These implications include:

l the inability of any program to determine in general if any program will

terminate given a particular assignment of input values

l the existence of decidable, semidecidable and undecidable languages.

The chapter concludes with a specification of the (Turing) computable prop-

erties of the languages of the Chomsky hierarchy (from Part 1 of the book).

A.P. Parkes, A Concise Introduction to Languages and Machines,
DOI: 10.1007/978-1-84800-121-3 11, � Springer-Verlag London Limited 2008



11.2 The Relationship Between Functions,
Problems, Solvability and Decidability

We have said much in the preceding chapters about the power of the TM. We

spend much of the remainder of this chapter investigating its limitations. In

Part 2 of this book there have seen many references to functions and solving

problems. However, no clear definition of these terms has been given. We are

now familiar enough with TMs and Turing’s thesis to be able to provide these

definitions.

11.2.1 Functions and Computability

A function associates input values with output values in such a way that for each

particular arrangement of input values there is but one particular arrangement of

output values. Consider the arithmetic add (þ) operator. This is a function

because for any pair of numbers, x and y, the result of x þy is always associated

with a number z, which represents the value obtained by adding x and y. In the

light of observations made in the preceding two chapters, it should be appreciated

that, since any TM can be represented in binary form, it suffices to define the

values (input and output) of functions in terms of numbers. This applies equally

to the language processing machines considered in this book as to those that carry

out numerically-oriented operations.

We know that we can represent any of our abstract machines for language

recognition (finite state recognisers, pushdown recognisers) as TMs (see Chapter 7),

then represent the resulting TM in such a way that its operation is represented

entirely as the manipulation of binary codes. Thus, the notion of function is

wide-ranging, covering associations between strings and truth values (‘‘true’’

if the string is a sentence of a given language, ‘‘false’’ if it is not), numbers and

other numbers (MULT, DIV, etc.), numbers and truth values (COMPARE),

and so on.

Calling a function an association between input and output values represents

a very high level view of a function. We are usually also interested in how the

association between the input and output values is made, i.e. the rules by which

we derive a particular arrangement of output values from a particular arrange-

ment of input values. More specifically, we are interested in characteristics of the

program that embodies the ‘‘rules’’ and produces the output values when presented

with the input values.

The last chapter discussed the relationship between TMs and effective proce-

dures. We can now say that the latter are those procedures that are:
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l deterministic

l finite in time and resources (space)

l mechanical, and

l represented in numeric terms.

It has been argued above that such effective procedures are precisely those

that can be carried out by TMs, and, in the light of the previous chapter, we can

say by one TM, which we call the universal TM (UTM).

Having a clearer idea of the notions ‘‘function’’ and ‘‘effective procedure’’

enables us to define what we call the computable functions, in Table 11.1.

So, Turing’s thesis asserts that the effectively computable functions and the

TM-computable functions are the same.

11.2.2 Problems and Solvability

Associated with any function is a problem. In abstract terms, the problem asso-

ciated with a function is a question, which asks ‘‘what is the result of the function

for these particular input values?’’ For the ‘‘þ’’ function, then, an associated

problem is ‘‘what is 3 þ 4?’’ It was suggested above that the sentence recognition

task for a given language could be regarded as a function associating strings with

truth values. The associated problem then asks, for a given string, ‘‘what is the

truth value associated with this string in terms of the given language?’’ This is

more usually expressed: ‘‘is this string a sentence of the language or not?’’

A problem is solvable if the associated function is computable. We know

now that ‘‘computable’’ is the same as saying ‘‘TM-computable’’. So, a problem is

solvable if it can be coded in such a way that a TM could compute a solution to it in

a finite number of transitions, or a program run on an unlimited storage machine

could do the same.

A problem is totally solvable if the associated function can be computed by

some TM that produces a correct result for every possible assignment of valid

input values. An example of this is the ‘‘þ’’ operator. We could define a TM, such

as the ADD machine, that produces the correct result for any pair of input values,

by adding the numbers and leaving the result on its tape. Another totally solvable

Table 11.1 ‘‘Computable functions’’ and ‘‘TM-computable functions’’.

The computable functions are those functions for which there is an effective procedure for
deriving the correct output values for each and every assignment of appropriate input values.
They can therefore be called the effectively computable functions.

A TM-computable function is a function that can be computed by some TM.
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problem is the membership problem for the context sensitive language faibici : i� 1g.
In Chapter 7, we defined a TM that printed T for any string in fa, b, cg* that was a

member of the language, and F for any such string which was not. The membership

problem for faibici : i � 1g is thus totally solvable.

A problem is partially solvable if the associated function can be computed by

some TM that produces a correct result for each possible assignment of input

values for which it halts. However, for some input values, the TM will not be able

to produce any result. The critical thing is that on any input values for which

the TM halts, the result it produces is correct. This concept is best considered in

the context of language recognition, and you may already have appreciated the

similarity between the concept of solvability and the concepts of deciding and

accepting languages discussed in Chapter 7. This similarity is not accidental and

we return to it later in the chapter. First, in the next section we consider one of the

most important partially solvable problems of computer science.

A problem is totally unsolvable if the associated function cannot be computed

by any TM. It is worth mentioning at this point that in discussing the concepts

of solvability we never exceed the characteristics of effective procedures as

defined above: we are still considering deterministic, finite, mechanical, numeric

processes. For an abstract, simply stated, yet totally unsolvable problem consider

this:

Define a TM that has as its input a non-packed tape (i.e. an arbitrary number

of blank squares can appear between any two marked squares) on which

there are as, bs and cs, in any order. The machine should halt and print T if the

leftmost marked symbol on its tape is a, and should halt and print F otherwise.

The read/write head is initially located on the rightmost marked tape square.

The above machine cannot be defined. Suppose we design a TM to address the

above problem that moves left on its tape until it reaches an a, then prints T and

halts. Does this mean the problem is partially solvable? The answer to this is ‘‘no’’,

since partial solvability means that the TM must produce a correct result when-

ever it halts, and our ‘‘cheating’’ TM would not (though it would accidentally be

correct some of the time). A TM to even partially solve the above problem cannot

be designed. I leave it to you to convince yourself of this.

11.2.3 Decision Problems and Decidability

Problems that ask a question expecting a yes/no answer are sometimes known as

decision problems. In seeking to solve a decision problem we look for the existence

of a program (TM) to resolve each of a set of questions, where the formulation of
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each question depends on the assignment of specific values to certain parameters.

Examples are:

l given two regular grammars,R1 and R2, are they equivalent?

l given a number, N, is N prime?

l given a TM, M, and a tape T, will M halt eventually when started on the tape T ?

A decision problem is totally solvable if we can construct a TM that will provide

us with the correct ‘‘yes/no’’ response for each and every possible instantiation of the

parameters. Thus, for example, the second decision problem above is totally solvable

only if we can construct a TM that decides, for any number, if that number is prime

or not. We could do this if we wished, so the second problem is totally solvable.

Of the other two problems, only one is totally solvable, and this is the first.

In Chapter 4, we saw what we now know can be called effective procedures for

converting any regular grammars into non-deterministic FSRs, for converting non-

deterministic FSRs into deterministic FSRs, and for converting deterministic FSRs

into their minimal form. If two regular grammars are equivalent, their associated

minimal machines will be exactly the same, if the states of one minimal machine are

renamed to coincide with those of the other. If the states of one of the minimal

machines cannot be renamed to make the two minimal machines exactly the same,

then the two grammars are not equivalent. We could design a (complicated!) TM to

do all of this, and so the equivalence problem for regular grammars is totally solvable.

11.3 The Halting Problem

Let us look again at the third of the three decision problems presented in the

immediately preceding section:

l given a TM, M, and a tape T, will M halt eventually when started on the tape T ?

This problem is known as the halting problem and was briefly alluded to in the

discussion of the power of the FST, at the end of Chapter 8. All of us who have

written programs have experienced the practical manifestation of this problem. We

run our program, and it seems to be taking an overly long time over its compu-

tation. We decide it is stuck in an ‘‘infinite loop’’, and interrupt the execution of the

program. We have usually made some error in the design or coding of a loop

termination condition. Even commercially supplied programs can sometimes suffer

from this phenomenon. Some unexpected combination of values leads to a non-

terminating repetition of a sequence of instructions. It would be useful if some-

one could design a program that examined other programs to see if they would

11.3 The Halting Problem 273



terminate for all of their permissible input values. Such a program would form a

useful part of the compiler, which could then give out an error message to the effect

that a given program would not terminate for certain inputs.

As we have established, a computer can never be more powerful than a TM, so

if the halting problem, as represented in TM terms, is unsolvable, then by exten-

sion it is unsolvable even by a computer with infinite memory. We see next that

the halting problem is indeed unsolvable in the general sense, though it is partially

solvable, which is where we begin the investigation.

11.3.1 UTMH Partially Solves the Halting Problem

Consider again our universal Turing machine (UTM), as described in Chapter 10.

UTM simulates the computation of any machine, M, on any tape T. From the

construction of UTM we can see (as also pointed out in Chapter 10), that this

simulation is so faithful to M as to enter an indefinite loop if that is what M would

do when processing the tape in question. However, one thing is certain: if M would

have reached its halt state on tape T, then UTM will also reach its halt state given

the coded version of M and the coded version of T as its input. We would therefore

simply have to modify the UTM procedure (Table 10.6) so that it outputs a ‘‘1’’

and halts as soon as it finds the code ‘‘00’’ on tape 3 (indicating that the simulated

machine M has reached its halt state).

Let us call the new version of UTM, described immediately above, UTMH. As we

have defined it, UTMH partially solves the halting problem. Given any machine M

and tape T, appropriately coded, UTMH will write a 1 (on tape 2) and halt if M

would have reached its halt state when presented with the tape T as its input. If

M would have stopped in an auxiliary state, because no transition was possible, then

UTMH will not reach its halt state. We could further amend UTMH to output a 0,

then move to its halt state, if no applicable quintuple of M ’s could be found, and

therefore M would have halted in a non-halt state. However, if M would loop

infinitely when given tape T, then UTMH, as defined, has no alternative but to do

the same.

It is clear that the critical situations for the halting problem are those in which

M loops infinitely. If, in addition to our amendments specified above, we could show

how to amend UTMH so that it halts and writes a 0 when M would have looped

infinitely on tape T, we would be showing that the halting problem is totally solvable.

This last amendment is difficult to imagine, since various conditions can result

in infinite loops, and a ‘‘loop’’ in a TM could actually comprise numerous states, as

a loop in a program may encompass numerous statements. At this point, then, it

seems pertinent to try a different approach.
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11.3.2 Reductio ad Absurdum Applied to the Halting
Problem

Let us assume that we have already amended UTMH so that it deals with both

the halting and non-halting situations. This new machine, which we will simply

call H, is specified schematically in Figure 11.1.

Figure 11.1 defines H as a machine that prints Y and N rather than 1 or 0.

Note that the two arcs entering H ’s halt state are shown as having the blank as the

current symbol. We assume that at that point H has erased everything from its

code for M
code of input

to M
 

1

1 1

1

X X X

X

X X X

X

H

/N (N) /Y (N)

if M would not
have halted

if M would
have halted

Figure 11.1 The Turing machine, H, is assumed to solve the halting problem. Its
input is a Turing machine M, and an input tape to M, coded as binary numbers, as

described in Chapter 10.
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tape, and would thus write Y or N on a blank square before terminating, leaving

the read/write head pointing at the result.

So, H is assumed to:

l print Y and halt if M would halt on the input tape T, or

l print N and halt if M would not halt on the tape T.

In other words, H is assumed to totally solve the halting problem.

Next, we make what appears to be a strange amendment to H, to create a new

machine called H1, depicted in Figure 11.2.

code for M
code of input

to M

1
1 1

1

X X X

X

X X X

X

H

/N (N)

N/Y (N)

if H would have
halted with N

/Y (N)

if H would have
halted with  Y

Y/Y (N)

H1

Figure 11.2 The Turing machine, H of Figure 11.1, is amended to produce the
Turing machine H1 that appears to solve the ‘‘not halting’’ problem.
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In order to produce H1, we would need to make straightforward amendments

to H ’s behaviour in its halting situations. H1 would:

l print Y and halt if M would not halt on the input tape T, or

l loop infinitely if M would halt on the tape T.

You should be able to see that, if H existed, it would be straightforward to

make the necessary amendments to it to produce H1.

The next thing we do probably seems even stranger: we modify H1 to produce

H2, depicted in Figure 11.3.

H2 copies the code for the machine M, then presents the two copies to H1. Our

scheme codes both machine and tape as sequences beginning and ending with a 1,

between these 1 s being simply sequences of 0 s separated by 1 s, so a coded

machine could clearly be interpreted as a coded tape.

Thus, instead of simulating the behaviour of M on its input tape, H2 now

simulates the behaviour of the machine M on a description of M itself (!). H2’s

result in this situation will then be to:

l print Y and halt if M would not halt on a description of itself, or

l loop infinitely if M would halt on a description of itself.

The next step is the strangest of all. We present H2 with the input specified in

Figure 11.4.

Figure 11.4 shows us that H2 has been presented with the binary code for itself

to represent the machine, M. H2 will first copy the code out again, then present the

two copies to H1. To H1, the left-hand copy of the code for H2 represents a coded TM,

the right-hand copy represents the coded input to that TM. Thus, H2’s overall effect

is to simulate its own behaviour on an input tape that is a coded version of itself. H2

uses only the alphabet f0, 1,Y, Ng, as it was derived from H1, which also uses the

same alphabet. Therefore, H2 could be applied to a description of itself in this way.

11.3.3 The halting problem shown to be unsolvable

Now we ask:

l Does H2, configured according to Figure 11.4, halt?

Well, suppose H2 does halt:

l H2 halts and prints Y if M would not halt on a description of itself.

However, in the situation here M is H2, so we have:

l H2 halts and prints Y if H2 would not halt on a description of itself.
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To paraphrase:

l H2 halts, given a description of itself as its input, if it does not halt, given a

description of itself as its input.

This is clearly nonsense, so we must conclude that H2 does not halt. However:

l H2 loops infinitely if M would halt on a description of itself.

code for M

1
1 1

1

X X X

X

X X X

X

/N (N)

N/Y (N)

if H would have
halted with N

/Y (N)

if H would have
halted with Y

Y/Y (N)

1
1

X X X

X

code for M

code for MH2

H1 H

Figure 11.3 H2 makes H1 (of Figure 11.2) apply the machine M to the code for M.
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Again, in our situation here, M is H2, so we have:

l H2 loops infinitely if H2 would halt on a description of itself.

To paraphrase once more:

l H2 does not halt, given a description of itself as its input, if it halts, given a

description of itself as its input.

code for H2

1
1 1

1

X X X

X

X X X

X

/N (N)

N/Y (N)

if H would have
halted with N

/Y (N)

if H would have
halted with Y

Y/Y (N)

1
1

X X X

X

code for H2

H2 code for H2

H1 H

Figure 11.4 H2, of Figure 11.3, is given its own code as input.
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We have devised a machine that halts if it does not halt, and does not halt if it

halts. Where was our error? Every change we have made to our machines, from H

onwards, requires the addition of a few obvious quintuples. We are forced to go

right back and reject our original assumption, as it is obviously this assumption

itself that is at fault. The machine, H, which solves the halting problem, cannot

exist. The halting problem is an unsolvable problem.

However, to reiterate, the halting problem is partially solvable. It is solvable

(e.g. by UTMH, as described above) in precisely those cases when M would halt.

Again, it needs to be stated that we are unable to reject the above argument on

the basis of the indirection involved in manipulating codes that represent the

machines and their tapes. We cannot, as computer users, refuse to believe in the

representational power of codes. To do so is to denounce as meaningless any

activity carried out by real computers.

11.3.4 Some Implications of the Unsolvability
of the Halting Problem

The halting problem is one of the most significant results of mathematics. The

general unsolvability of the halting problem indicates the ultimate futility of

defining effective criteria for determining effectiveness itself. An algorithm is an

effective procedure that terminates for all of its input values. There can therefore

be no algorithm to decide, in the general case, whether or not any procedure is an

algorithm. The unsolvability of the halting problem implies that, in general, we

cannot determine by algorithmic means whether or not some well-defined process

will terminate for all of its values.

The halting problem also has practical implications for the enterprise of

proving the correctness of programs. A program is said to be partially correct if

whenever it terminates it produces a correct result. A program is said to be totally

correct if it is partially correct and it terminates for each and every possible input

value. The goal of proving programs totally correct is thus one that cannot be

attained by algorithmic means, as to be able to do so would require a solution to

the halting problem.

Many unsolvable problems of computer science reduce to the halting problem.

That there is no computational device more powerful than the standard TM implies

that effective procedures for analysing the behaviour of other effective procedures

are doomed ultimately to simulating those procedures, at the expense of being

caught in the never-ending loops of the simulated process, if such loops arise.

As an example of a problem that reduces to the halting problem, consider

the equivalence problem for TMs, or for programs. Two TMs, M1 and M2, are

equivalent if for each and every input value, they both yield the same result. Now
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assume that E is a TM that solves the equivalence problem for any two TMs.

Suppose, for argument’s sake, that E simulates the behaviour of each machine. It

performs the task specified by the next applicable quintuple from M1, followed by

the next applicable quintuple from M2, on coded representations of an equivalent

input tape for each machine. Suppose that the M1 simulation reaches its halt state

first, having produced a result. E must now continue with the M2 computation

until that ends in a result. But what happens if M2 would not terminate on the

tape represented? In order to output F (i.e. the two machines are not equivalent),

E would need to determine that M2 was not going to halt. E would need to solve the

halting problem.

The halting problem also manifests itself in many decision problems asso-

ciated with programming. Some of these are:

l will a given program terminate or not? ( the halting problem)

l do two programs yield the same answers for all inputs?(this is essentially the

TM equivalence problem that is shown to be unsolvable immediately above)

l will a given program write a given value in a given memory location?

l will a given machine word be used as data or as an instruction?

l what is the shortest program equivalent to a given program?

l will a particular instruction ever be executed?

The exercises ask you to represent the above decision problems of program-

ming as TM decision problems that can be proved to lack a general solution. In

all cases, the method of proof is the same: we show that if the given problem

was solvable, i.e., there was a TM to solve it, then that TM would, as part of its

activity, have to solve the halting problem.

The proof of the halting problem includes what seems like a peculiar form of

self-reference. A formal system of sufficient representational power is capable of

being used to represent itself. If it is capable of representing itself then it can be

turned in on itself, so to speak, to lead to peculiar contradictions. Turing’s results

are analogous to similar results in the domain of logic established by the great

mathematician Kurt Go
::

del. Here we simplify things greatly, but essentially

Go
::

del showed that a system of logic that is capable of generating all true state-

ments (what is called completeness) can be used to generate a statement P, which,

in essence refers to itself, saying ‘‘P is false’’.1 Such a statement can be neither true

nor false and is therefore inconsistent (if it is true, then it is false, and vice versa).

In a way, such a statement says ‘‘I am false’’. In a similar way, our machine H2,

1 Rather like the person who says: ‘‘Everything I say is a lie’’.

11.3 The Halting Problem 281



when given its own code as input, says: ‘‘I halt if I do not halt, and I do not halt if I

halt’’!

The general unsolvability of the halting problem and Go
::

del’s findings with

respect to completeness leave computer science in a curious position. A machine

powerful enough to compute everything we may ask of it is powerful enough to

deal with representations of itself. This leads to inconsistencies. If we reduce the

power of the machine so that inconsistencies cannot occur, then our machines are

incomplete and will not be able to compute everything that we may reasonably

expect of them.

It is worth briefly discussing some wider implications of the halting problem.

The inability of algorithmic processes to solve the halting problem does not mean

that machines are necessarily less intelligent that humans. You may think that

we can look at the texts of our programs and predict that this or that particular

loop will not terminate, as we often do when writing programs. This does not

mean we can solve the halting problem in general, but only in certain restricted

situations. There must come a point at which the size and complexity of a

program becomes such that we are forced to ‘‘execute’’ (e.g. on paper) the

program. There is no reason to disbelieve that, for the restricted cases in which

we can determine that a program would not halt, we could also write a program

(and thus construct a TM) to do the same. The general halting problem embodies

a level of complexity that is beyond the capabilities of machines and people.

11.4 Computable Languages

In Chapter 7 we saw how from any phrase structure grammar we could construct

a non-deterministic TM to accept the language generated by that grammar. In

Chapter 10 we saw how any non-deterministic TM could be converted into an

equivalent deterministic TM. On this basis, we concluded that the TM is the

recogniser for the phrase structure languages in general. The phrase structure

languages include all of types 0, 1, 2 and 3 of the Chomsky hierarchy. However, as

the earlier chapters of this book have shown, the TM is a more powerful computa-

tional device than we actually need for the more restricted types (context free and

regular). Nevertheless, the phrase structure languages are computable languages,

using the term ‘‘computable’’, as we do now, to mean TM-computable. A compu-

table language, then, is a formal language that can be accepted by some TM.

A question that arises, then, is ‘‘are there formal languages that are not

computable?’’ In the next section, we shall encounter a language that is not

computable, in that there can be no TM to accept the language. This, in turn,

means that there can be no phrase structure grammar to generate that language (if

282 11. Computability, Solvability and the Halting Problem



there was we could simply follow the rules in Chapter 7 and construct from the

grammar a TM recogniser for the language). This result will enable us to refine our

hierarchy of languages and abstract machines, and fully define the relationship

between languages and machines.

With respect to formal languages, the analogous concept to solvability is called

decidability.

A language is decidable if some TM can take any string of the appropriate

symbols and determine whether or not that string is a sentence of the language.

An alternative way of putting this is to say that the membership problem for that

language is totally solvable.

A language is acceptable, which we might also call computable, if some TM can

determine if any string that is a sentence of the language is indeed a sentence, but

for strings that are not sentences we cannot necessarily make any statement about

that string at all. In this case, the membership problem for the language is

partially solvable.

At the end of this chapter, we summarise the decidability properties of the

various types of formal language we have encountered so far in this book. For now

we return to the question asked above: are there formal languages that are not

computable? If a language is non-computable, then it is not acceptable, and by

Turing’s thesis there is no algorithmic process that can determine, for any appro-

priate string, if that string is in the language.

11.4.1 An Unacceptable (non-Computable) Language

We now establish that there is indeed a non-computable formal language. As you

will see, the ‘‘proof’’ of this is inextricably bound up with the halting problem, and

also takes advantage of our TM coding scheme from the previous chapter.

Consider the following set X:

X ¼ f1x1 : x 2 f0; 1gþg:

X is the set of all strings starting and ending in 1, with an arbitrary non-empty

string of 0 s and 1 s in between. Now each string in this set either can, or cannot,

represent the code of a TM. By considering a slight adaptation of the TM

(sketched out in Chapter 10) that generates all strings in fa, b, cgþ as part of its

simulation of a non-deterministic machine, we know that the strings of this set

could be generated systematically.

Now consider a subset Y of X defined as follows:

Y ¼ fx : x 2 Xand x is the code of a TM with alphabet f0; 1gg:
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It would be straightforward to define a TM, or write a program that, given any

string from X, told us whether or not that string was a valid TM code, i.e., of the

format shown in Figure 11.5.

Note from Figure 11.5 that we are only interested in codes that represent

deterministic machines, i.e. machines that have no more than one quintuple with

the same ‘‘current state’’ and ‘‘current symbol’’. We are also interested only in

binary TMs, but we have already argued that all TMs can be reduced to binary

form (cf. UTM). This means that our ‘‘current symbol’’ and ‘‘write symbol’’

quintuple fields (i.e. the second and third fields of our quintuple representations)

will not be allowed to contain more than two 0 s.

The set X can be generated systematically, and we can check for each string

whether or not it represents a code for a TM. Therefore, we can see that there is an

effective procedure for generating the set Y. Note that we are only interested in

whether the codes are in the correct form to represent some TM, not in what the

TM does. Most of the TM codes in Y would represent machines that do nothing of

interest, or, indeed, nothing at all.

Given any code from the set Y we could recover the original machine. We can

assume, for argument’s sake, that for the alphabet, the code 0 represents 0, 00

represents 1, and all other codes are as we defined them in Chapter 10. If y is a

string in the set Y, we will call the machine whose code is y, My.

Note:
we assume
deterministic TMs, so
no two quintuple 
codes have equal first 
and second fields 

 

1 11 .  .  .  .  . 1

code for one
quintuple

code for another 
quintuple

codes for any other
quintuples (each followed 
by a 1) 

1 111

one or 
more
zeros

Figure 11.5 The form of a valid binary code to represent a Turing machine,
according to the coding scheme of Chapter 10.
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Now consider the following set, Z:

Z ¼ fx : x 2 Y and Mx does not accept xg:

Every string in Y represents a coded TM with alphabet f0, 1g, and thus every

string in Y can be presented as input to the machine whose code is that string.

Thus, Z is the set of all binary alphabet machines that do not accept the string

represented by their own code.

Now, we ask:

l is Z an acceptable language?

Suppose that it is. In this case, some TM, say Mz, is the acceptor for Z. We

can assume that Mz uses only a binary alphabet. Thus, Mz’s code will be in the

set Y. Let’s call Mz’s code z.

We now ask,

l is the string z accepted by Mz?

Suppose that it is. Then z is not in Z, since Z contains only strings that are not

accepted by the machine whose code they represent. It therefore seems that if z is

accepted by Mz, i.e. is in the language accepted by Mz, then it isn’t in the set Z.

However, this is nonsense, because Mz is the acceptor for Z, and so any string it

accepts must be in Z.

We therefore reject our assumption in favour of its negation. We suppose that

the string z is not accepted by Mz. Mz is the acceptor for Z, and so any string Mz

does not accept is not in Z. But this cannot be correct, either! If Mz does not accept

the string z, then z is one of the strings in Z, as it is the code for a machine (Mz)

that does not accept its own code.

It seems that the string z is not in the set Z if it is in the set Z, and is in

the set Z if it is not! The TM, Mz cannot exist, and we must conclude that

the language Z is not acceptable. We have found an easily defined formal

language taken from a two-symbol alphabet that is not computable. Such a

language is sometimes called a totally undecidable language. We could gen-

eralise the above proof to apply to alphabets of any number of symbols, in

effect showing that there are an infinite number of such totally undecidable

languages.

11.4.2 An Acceptable, But Undecidable, Language

One problem remains to be addressed, before the next section presents an overall

summary of the relationship between formal languages and automata. We
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would like to know if there are there are computable languages that are neces-

sarily acceptable, but not decidable. For reasons that will be presented in the

next section, any such languages must be properly type 0 in the Chomsky

hierarchy, since the more restricted types of language in the hierarchy are

decidable.

Here is a computable language that is acceptable, but not decidable. Given the

sets X and Y, as specified above, we define the set W, as follows:

W ¼ fx : x 2 Y and UTMH halts when it applies Mx to xg:2

The set W is the set of codes of TMs that halt when given their own code as input.

W is an acceptable language. W is not a decidable language because a TM that

could tell us which valid TM codes were not in W (i.e. represent the code for

machines that do not halt when given their own code as input) would have to solve

the halting problem.

Languages, like W, that are acceptable but not decidable are sometimes called

semidecidable languages.

11.5 Languages and Machines

As implied above, associated with any language is what is called the membership

problem for that language. Given a grammar G and a string s, the membership

problem says: ‘‘is s a sentence of the language L(G)?’’ From our discussion of

problems and solvability earlier in this chapter, it should be clear that the

membership problem for a language is solvable if the associated membership

function for that language is (TM-)computable.

For all the phrase structure languages, the associated membership function

is computable. All phrase structure languages are computable (acceptable)

languages. However, we have seen that some type 0 languages are acceptable,

but not decidable. We shall see that the other types (1, 2 and 3) are all

decidable.

Table 11.2 summarises the decidability properties of the regular, context free,

context sensitive and unrestricted languages. In fact, since we would like to show

only that types 1, 2 and 3 are decidable, we can specify the same (very inefficient!)

method for all three types, assuming some initial minor amendments to the type

2 and 3 grammars.

2 UTMH was introduced earlier in the chapter. It halts and prints 1 when the simulated machine
would have halted on the given tape, and thus partially solves the halting problem.
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In terms of formal languages, as presented in Part 1 of this book, we

described each class of language in the Chomsky hierarchy, working from the

regular languages up through the hierarchy. We simultaneously worked

upwards from the finite state recogniser (FSR) to the TM, by adding extra

functionality to one type of abstract machine to yield a more powerful type of

machine. For example, we showed how a machine that is essentially an FSR

with a stack (a pushdown recogniser) was more powerful than an FSR. We

finally developed the Turing machine and showed that we need go no further.

There is no more powerful device for computation or language recognition than

the TM.

We might, as an alternative, have approached the subject by first presenting

the TM, and then discussing how the TM actually gives us more power than we

need for the more restricted languages and computations (such as adding and

subtracting, which we saw being performed by FSTs in Chapter 8). Then, the

abstract machines for the more restricted languages could have been presented

as TMs that were restricted in some appropriate way. Figure 11.6 presents

this alternative but equivalent view of computable languages and abstract

machines.

Table 11.2 Decidability properties for the languages of the Chomsky hierarchy.

Grammar type
General
decidability Justification

regular (type 3) decidable As for context free grammars.

context free
(type 2)

decidable If necessary, remove e from grammar using the
method described in Chapter 5, then continue as for
context sensitive grammars.

context sensitive
(type 1)

decidable All productions are of the form x! y where jxj � jyj.
Thus, each step in a derivation either increases or
leaves unchanged the length of the sentential form.

Construct a non-deterministic TM to generate in
parallel all sentential forms that are not greater in
length than the target string s. If s is one of the
generated strings, print T and halt, if it is not, print
F and halt.
Convert the non-deterministic TM into an
equivalent deterministic TM (see Chapter 10).

unrestricted
(type 0)

semi-decidable Some productions may be of the form x ! y
where jxj > jyj. The sentential form may thus
lengthen and shorten during a derivation. There
may therefore be no obvious point at which to
give up if we do not manage to generate s, the
target string.
However, we know from Chapter 7 that all type 0
languages are acceptable.
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Formal languages

General phrase 
structure languages. 
Acceptor:

Turing machine. 
Decidability:

Some are semi-
decidable.

0

Context sensitive 
languages.
Acceptor:

Linear-bounded Turing 
machine, i.e., a TM that 
only needs to use a 
certain fixed portion of
its tape to accept or 
reject a string. 

Decidability:
Decidable. Productions
are of the form x→y,
where |x| ≤ |y|. For 
reduction parsing (see 
Chapter 3), the 
application of any 
reduction never 
lengthens the sentential 
form. Therefore a finite 
set of reductions are 
required to accept or 
reject a string. 

1Context free languages 
(non-deterministic). 
Acceptor:

Non-deterministic TM 
that uses one area of its 
tape for input, another to 
model a pushdown stack. 
Note (from Chapter 10) 
that such a TM can be 
modelled by a 
deterministic TM.

Decidability:
Totally decidable.

2

Context free languages  
(deterministic). 
Acceptor:

Deterministic TM that uses one 
area of its tape for input, another 
to model a pushdown stack. 

Decidability:
Totally decidable.

2

Regular languages.
Acceptor:

Deterministic TM that moves 
only right on its tape, and 
always writes the same 
symbol as it reads. 

Decidability:
Totally decidable.

3

The formal languages 
in this area are totally 
undecidable, i.e. have 
no TM acceptor, and 
therefore cannot be 
accepted by any 
algorithm. 

Figure 11.6 Languages and machines (the numbers denote the type of language
in the Chomsky hierarchy7see Chapter 2).
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EXERCISES

For exercises marked ‘‘† ’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’at the end of the book.

11.1.y The printing problem asks if a TM, M, will print out a given symbol,

s, in M’s alphabet, when started on a specified input tape. Prove that

the printing problem is, in general, unsolvable.

Hint: this is a problem that reduces to the halting problem,as discussed

earlier.

11.2. Show that the following (all taken from this chapter) are all unsol-

vable problems. In each case first transform the statement of the

problem so that it is couched in terms of Turing machines rather than

programs. Then show that in order to solve the given problem, a TM

would have to solve the halting problem.

(a) will a given program write a given value in a given memory

location?

(b)will a given machine word be used as data or as an instruction?

(c) what is the shortest program equivalent to a given program?

(d)will a particular instruction ever be executed?

11.3. Express the totally unsolvable problem in section 11.2.2 in terms of

programs, rather than TMs.

Hint: consider a non-terminating program such as an operating

system, for which the input can be regarded as a stream of characters.
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12
Dimensions of Computation

12.1 Overview

In previous chapters, we have referred to computational power in terms of the

task modelled by our computations. When we said that two processes are equiva-

lent, this meant that they both modelled the same task. In this chapter, we refine

our notions of computational power, by discussing its three dimensions:

l function: what is computed

l space: how much storage the computation requires

l time: how long the computation takes.

In particular, we introduce a simple model of time into our analysis, in

which each transition of a machine is assumed to take one moment. This

leads us to discuss key concepts relating to both abstract machines and

algorithms:

l the implications of parallel processes

l predicting the running time of algorithms in terms of some measure of the

‘‘size’’ of their input, using so-called ‘‘big O’’ notation.

We discover that algorithms can be classified has having

l linear,

l logarithmic,

A.P. Parkes, A Concise Introduction to Languages and Machines,
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l polynomial, or

l exponential

running times.

A theme that runs through most of the chapter is an as yet unsolved problem

of computer science. In essence, this problem asks whether, in general, parallel

processes can be modelled by similarly efficient serial processes.

12.2 Aspects of Computation: Space, Time
and Complexity

Earlier in this book, we have seen that the limitations, in terms of computational

power, of the Turing machine (TM) are also the limitations of the modern digital

computer. We argued that, simple as it is, the TM is actually more powerful than

any real computer unless we allow for an arbitrary amount of storage to be added

to the real computer, as required, during the course of its activity. Even then, the

computer would not be more powerful than the TM. However, claims about the

power of the TM must be appreciated in terms of the TM being an abstract

machine. In Chapter 8, when discussing the FST, we presented so-called memory

machines, that ‘‘remember’’ an input symbol for a fixed number of state transi-

tions before that symbol is output. In a sense, by doing this we were using an

implicit model of time, and the basic assumption of that model was that the

transition between two states of a machine took exactly one unit of this time,

which we called a moment.

Turing’s thesis, as discussed in Chapter 10, reflects a functional perspective

on computation: it focuses on what the TM can perform. However, as users and

programmers of computers, we are not only interested in the functions our

computer can carry out. At least two other fundamental questions concern us,

these being:

l how much memory and storage will our task require (space requirements)?

and

l how long will it take for our task to be completed (time requirements)?

In other words, the dimensions of computation that occupy us are function,

space and time. It is clear then that reference to computational power, a term used

freely in the preceding chapters, should be qualified in terms of those dimensions

of computational power to which reference is being made.
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Now, in terms of space requirements, our binary TMs of Chapter 9 seem to

require an amount of memory (i.e. occupied tape squares) that does not differ

significantly from that required by a computer carrying out a similar task on a

similar set of data. For example, consider the descriptions of the memory acces-

sing TMs towards the end of Chapter 9. Apart from the binary numbers being

processed, the only extra symbols that our machines required were special mar-

kers to separate one number from the next. However, these markers were needed

because we had implicitly allowed for variable memory ‘‘word’’ (or array element)

length. If we had introduced a restriction on word length, as is the case in

most memory schemes, we could have dispensed with the need for such markers.

However, if we had dispensed with the markers between memory items, we would

have had to ‘‘program in’’ the knowledge of where the boundaries between items

occurred, which in terms of TMs means we would have had to introduce more

states to deal with this.

The discussion above seems to imply that we can reduce the number of

states in a (well-designed) TM at the expense of introducing extra alphabet

symbols, and we can reduce the number of alphabet symbols at the expense of

introducing extra states. In fact, this relationship has been quantified, and it has

been shown that

l any TM that has more than two states can be replaced by an equivalent TM

that has only two states.

More importantly, from our point of view, it has been shown by the informa-

tion theorist Claude Shannon, that

l any TM that uses an alphabet of more than two symbols can be replaced by an

equivalent TM that uses only two symbols.

The fact that any TM can be replaced by an equivalent TM using only a two-

symbol (i.e., binary) alphabet is of fundamental importance to the practical use of

computers. It indicates that any shortfalls in functional power that real compu-

ters have are certainly not a consequence of the fact that they only use a two-

symbol alphabet. Due to the reciprocal relationship outlined above between the

number of states in a TM and the number of alphabet symbols it needs, the

product of the number of states and the number of alphabet symbols is often used

as a measure of the complexity of a TM. There are, however, other aspects of TMs

that could be said to relate to their complexity. One of these aspects is non-

determinism, which, as we discovered in the previous chapter, we can dispense

with (in functional terms). However, as we see next, there are implications for the

space and time dimensions of computation if we remove non-determinism from

our machines.
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12.3 Non-Deterministic TMs Viewed as Parallel
Processors

We saw earlier in this chapter that computation is concerned not only with function,

but also with space and time. When we make statements about the equivalence of

Turing machines, as we have in this chapter, we are usually talking about equiva-

lence of function. For example, we say that the result of the ‘‘non-deterministic to

deterministic TM conversion’’ of Chapter 10 is ‘‘equivalent’’ to the original machine.

However, there are different ways of viewing the operation of a non-deterministic

machine. One is to imagine that the machine attempts to follow a sequence of

transitions until it finds a solution or reaches a ‘‘dead end’’, as none of its available

instructions can be applied. In the latter case, we have assumed that it then tries

an alternative sequence. When combined with a notion of time that is essentially a

measure of the number of transitions made by the machine, this perspective reflects

a serial model of computation. Our earlier discussions regarding non-deterministic

finite state recognisers (Chapter 4) and pushdown recognisers (Chapter 5) also

reflect this view, when considering concepts such as backtracking, for example.

As an alternative to a serial model of execution, we might assume that all

possible sequences of transitions to be considered by the non-deterministic TM

are investigated in parallel. When the machine is ready to start, imagine that a

signal arises, analogously to the way in which the internal ‘‘clock’’ governs the

state changes of the CPU. On this signal, each and every applicable transition is

carried out simultaneously (each transition being allowed to take with it its own

copy of the input tape, since each sequence of transitions may result in different

configurations of the tape). Figure 12.1 shows an example starting situation with

three applicable transitions.

Figure 12.1 is intended to represent the situation that arises on the first ‘‘clock

tick’’, which we assume results in the execution of the three applicable transitions

in parallel (the result of each being shown by the dashed arrows). Note that the

new tape configuration for the three cases includes an indication of which state

the machine has reached after making the relevant transition. A description of the

marked portion of a tape, the location of the read/write head and the current state

of a machine at any stage in a TM’s computation is sometimes called an instan-

taneous description.

The next clock tick would result in the simultaneous execution of:

l each applicable transition from state 2 given the tape configuration on the left

of Figure 12.1,

l each applicable transition from state 3 given the tape configuration in the

centre of Figure 12.1, and
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l each applicable transition from state 1 given the tape configuration on the

right of Figure 12.1.

Then the next clock tick would result in the simultaneous execution of each

applicable transition from each of the situations created at the previous clock

tick.

Clearly, if a solution exists the above method will find it. In fact, the first

sequence of transitions we find that leads us to a solution will be the shortest such

sequence that can be found.1 Now consider a deterministic 4-tape version of the

non-deterministic machine (as described in Chapter 10). This machine executes

all possible sequences of quintuples of the non-deterministic machine, but it

always explores shorter sequences first. Thus, the deterministic 4-tape machine

is also bound to discover the shortest sequence of quintuples that will lead to a

solution.

1

2 3

a/B (R)

a/B (N)

a/A (L) R / W
head

R / W
head

aX X

three
transitions
are possible
given this
situation 

BX X AX X BX X

2 3 1R / W
head

R / W
head

R / W
head

Figure 12.1 The transitions of a non-deterministic Turing machine viewed as
parallel processes.

1 The shortest solution sequence may not be unique. In this case, our parallel machine will find
all of the shortest solutions simultaneously. It will simplify subsequent discussions if we talk as if
there is only one shortest solution.
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12.3.1 Parallel Computations and Time

Now our model of time enters the analysis. If there is a solution that requires the

execution of n instructions (i.e. n quintuples), the parallel machine will find it in n

moments. In our example above, if any applicable sequence of transitions leads

directly to the halt state from any of the resulting configurations shown, our

parallel machine would have taken 2 moments to find the solution. The first

transitions would be simultaneously executed in one moment, then all of the

applicable transitions from the three resulting configurations would similarly be

executed in the next moment.

However, consider how long it takes our deterministic version to find a solu-

tion that requires the execution of n instructions. The deterministic machine will

have tried:

l all single instructions

l all sequences of two instructions

l .

l .

l some or all of the sequences of n instructions.

Suppose the alphabet of quintuple labels (as in the example in Chapter 10), is

fa,b,cg, i.e. we are talking of a 3-quintuple machine. The deterministic machine

generates strings of these by generating all strings of length 1, all strings of length

2, and so on. There would be 3 strings of length 1, 9 strings of length 2, and

27 strings of length 3, which are:

aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb,

bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc.

At each stage, the strings for the next stage were derived by appending each of the

three symbols of the alphabet to each of the strings obtained at the previous stage.

Thus, for our example here, there would be 81 (i.e. 27 � 3) strings of length 4,

then 243 (81 � 3) strings of length 5, and so on.

In general, the number of strings of length n from an alphabet of k symbols is k n

(in the example above, where n = 4 and k = 3 we had 34, or 81, strings).

To return to our main discussion, consider a 3-quintuple non-deterministic

parallel TM, N. Suppose the shortest solution that this machine could find, given

a certain input configuration, involves 4 instructions. N will take 4 moments to

find it. Now consider the deterministic version, D, constructed using our method

described earlier. We will simplify things considerably by considering the execu-

tion time of D in terms of the number of quintuples of N it tries. We will assume
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that it takes one moment to try each quintuple. We will also ignore the fact that a

large number of quintuple sequences will be illegal and thus aborted by D before

the entire sequence has been applied. It is reasonable to ignore these things, as D

has to generate each sequence of quintuple labels, even if the corresponding

sequence of quintuples subsequently turns out to be inapplicable. This machine

first tries:

3 sequences of instructions of length 1 (3 moments)

9 sequences of instructions of length 2 (18 moments)

27 of length 3 (81 moments)

between 1 and 81 sequences of length 4 (between 4 and 324 moments).

Adding all these up, we get 3 þ 18 þ 81 þ 4 = 106 moments in the best case (i.e.

when the first 4-quintuple sequence tried results in a solution). In the worst case

(when all of the 4-quintuple sequences have to be tried, the last one resulting in

the solution) we get 3 þ 18 þ 81 þ 324 = 426 moments. In general, given k

quintuples in the non-deterministic machine, and a shortest solution requiring n

instructions, the parallel TM,N, will take n moments to find the solution, while

the corresponding deterministic machine, D, will take somewhere between:

ðk� 1Þ þ ðk2 � 2Þ þ . . .þ ðkn�1 � 1Þ þ ðkn � nÞ

¼ kþ 2k2 þ . . .þ ðn� 1Þkn�1 þ nkn moments in the worst case,

and

ðk� 1Þ þ ðk2 � 2Þ þ . . .þ ðkn�1 � n� 1Þ þ n

¼ kþ 2k2 þ . . .þ ðn� 1Þkn�1 þ n moments in the best case.

Now, as we have already seen, even simple Turing machines, such as those we

have seen in this book, consist of many more than three quintuples. Moreover,

solving even the simplest problems usually requires the application of a sequence

considerably longer than four quintuples. For example, if a 10-quintuple non-

deterministic parallel TM (a very simple machine) found the solution in 11 moments

(a very short solution), the best the corresponding deterministic TM constructed by

our method could hope to do (as predicted by the above formula) is find a solution in

109 876 543 221 moments. To consider the extent of the difference in magnitude

here, let us suppose a moment is the same as 1 millionth of a second (a reasonably

slow speed for a modern machine to carry out an operation as simple as a Turing

machine transition). Then:

l the non-deterministic machine executes the 11 transitions in slightly over
1

100;000 of a second,
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while

l its deterministic counterpart takes around 30.5 hours to achieve the same

solution!

The above example may seem rather contrived, but consider that a parallel

algorithm is, say, updating a complex graphical image, and millions of individual

operations are being carried out simultaneously. Such computations would be

impossible to carry out in a reasonable time by a serial processor. We would not

wish to wait 30.5 hours for an image in an animation to change, for example.

12.4 A Brief Look at an Unsolved Problem
of Complexity

The preceding discussion leads us to an as yet unsolved problem of computer

science. You may, on reading the discussion, think that the disparity between the

non-deterministic TMs and their 4-tape deterministic counterparts is entirely due

to the rather simple-minded conversion scheme we have applied. You may think

that there is a more ‘‘efficient’’ way to model the behaviour of the non-determi-

nistic machine than by attempting to execute every possible sequence of its

quintuples. We have shown that for any non-deterministic TM we can construct

a deterministic TM that does the same job. The question that now arises is: can we

construct one that does the same job as efficiently? In order to discuss whether

this question can be answered, we take a slightly more detailed look at complexity.

12.5 A Beginner’s Guide to the ‘‘Big O’’

As far as we are concerned here, the theory of complexity examines the relation-

ship between the length (number of symbols) of the input to a TM and the

number of instructions it executes to complete its computation. The same applies

to programs, where the relationship concerned is between the number of input

elements and the number of program instructions executed. In considering this

relationship, we usually take account only of the components of the program that

dominate the computation in terms of time expenditure.

12.5.1 Predicting the Running Time of Algorithms

Suppose we are to sum all of the elements in a two-dimensional array of numbers,

then print the result, and we can only access one element of the array at a time.
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We must visit each and every element of the array to obtain each value to be

added in to the running total. The time taken by the program is dominated by this

process. If the array is ‘‘square’’, say, n� n, then we are going to need n2 accessing

operations. The times taken by the other operations (e.g. adding the element to

the running total in the loop, and printing out the result) we can ignore, as they do

not change significantly whatever the size of n.

In overall terms, our array summing program can be said to take an amount of

time approximately proportional to n2þc. Even if we had to compute the array

subscripts by adding in an offset value each time, this would not change this

situation (the computation of the subscripts would be subsumed into c).

Obviously, since c is a constant measure of time, the amount of time our algorithm

takes is dominated by n2 (for large values of n). n2 is called the dominant

expression in the equation n2þc. In this case, then, we say our array processing

program takes time in the order of n2. This is usually written, using what is called

big O { ‘‘Oh’’, not nought or zero { notation, as O(n2). Similarly, summing the

elements of a one-dimensional array of length n would be expected to take time

O(n). There would be other operations, but they would be assumed to take

constant time, and so n would be the dominant expression. In a similar way,

summing up the elements of a three-dimensional n� n� n array could be assumed

to take time O(n3).

In estimating the running time of algorithms, as we have said above, we ignore

everything except for the dominant expression. Table 12.1 shows several running

time expressions and their ‘‘big O’’ equivalents.

Table 12.1 Some expressions and their ‘‘big O’’ equivalents. In the Table, c1... cj are constants,
n is some measure of the size of the input.

Expression Big O equivalent Type of running time

c O(1) Constant

c1þ c2þ ... þ cj O(1) Constant

n O(n) Linear

cn O(n) Linear

n2 O(n2) Polynomial

cn2 O(n2) Polynomial

c1nc2 O(nc2) Polynomial

cn O(cn) Exponential

n þ c1þ c2þ ... þ cj O(n) Linear

ncþ nc{1þ nc{2þ ... þ n O(nc) Polynomial (if c > 1)

(1/c1)nc2 O(nc2) Polynomial (if c2 > 1)

(n2þ n)/2 O(n2) Polynomial

(n2{ n)/2 O(n2) Polynomial

log2n O(log2n) Logarithmic

n � log2n O(n� log2n) Logarithmic
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Finally, if it can be demonstrated that an algorithm will execute in the least

possible running time for a particular size of input, we describe it as an optimal

algorithm. A large part of computer science has been concerned with the development

of optimal algorithms for various tasks. The following discussion briefly addresses

some of the key issues in algorithm analysis. We discuss the main classes of algorith-

mic running times, these being linear, logarithmic, polynomial and exponential.

12.5.2 Linear time

If the running time of an algorithm is described by an expression of the form nþ c,

where n is a measure of the size of the input, we say the running time is O(n) { ‘‘of

the order of n’’ { and we describe it as a linear time algorithm. The ‘‘size’’ of the

input depends on the type of input with which we are dealing. The ‘‘size’’ of a

string, would be its length. The ‘‘size’’ of an array, list or sequence would be the

number of elements it contains.

As an example of a linear time algorithm, consider the sequential search of an

array of n integers, sorted in ascending order. Table 12.2 shows a Pascal-like

program to achieve this task. As stated earlier, the components assumed to

require constant running time are ignored. The key part of the algorithm for the

purposes of running time estimation is indicated in the table.

If you are alert, you may have noticed that the algorithm in Table 12.2 does

not always search the whole of the array (it gives up if it finds the number or it

Table 12.2 Linear search of a one-dimensional array, a, of n integers, indexed from 1 to n,
sorted in ascending order.

ftarget is an integer variable that holds the element to be foundg
done := false

foundindex := 0 fIf target is found, foundindex will hold its index number. If not
found, foundindex will remain at 0g

i := 1

while i� n and not(done) do fthe number of times this loop iterates, as a function of n, the size
of the input, is the key element in the algorithm’s running timeg

if target = a[i] then ffoundg
done := true

foundindex := i

else

if target < a[i] then fwe are not going to find itg
done := true

endif

endif

i := i þ 1

endwhile
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becomes obvious that the number isn’t there). For many algorithms, a single

estimate of the running time is insufficient, since properties of the input other

than its size can determine their performance. It is therefore sometimes useful

to talk of the best, average and worst case running times. The best, worst and

average cases for the algorithm in Table 12.2, and their associated running times,

are shown in Figure 12.2. You will note that though the average case involves

Number 
found on 
examining 
first 
element 

55 smaller
than first 
element, 
so
abandon
search

55 found 
after
examining 
all
elements 

55 greater 
than each 
element, 
all
elements 
examined 

55 found 
after
examining 
about half 
of the 
elements 

55 smaller 
than element, 
around half 
way along, 
about half of 
the elements 
examined 

Best case

Worst case

Avg. case

O(1)

O(n)

O(n)

55 56 60 70 71 93 95 99

56 57 60 70 71 93 95 99

23 30 40 42 43 51 53 55

23 30 40 42 43 51 53 54

35 40 41 55 58 59 62 87

35 40 41 56 58 59 62 87

Figure 12.2 The best, worst and average cases for linear search of a sorted array
of integers, when the number being searched for is 55.
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n/2 searches, as far as big O is concerned, this is O(n). We ignore coefficients, and

n/2 = 1/2n, so the ‘‘1/2’’ is ignored.

Since an abstract machine can embody an algorithm, it is reasonable, given

that model of time is based on the number of transitions that are made, to talk of

the efficiency of the machine. A deterministic finite state recogniser, for example,

embodies an O(n) algorithm for accepting or rejecting a string, if n is the length of

the string.

12.5.3 Logarithmic Time

Consider again the algorithm of Table 12.1. As stated earlier, it performs a

linear search of a sorted array. To appreciate why this algorithm is not optimal,

consider a telephone directory as being analogous to a sorted array. If I asked

you to look up ‘‘Parkes’’ in the directory, you are hardly likely to begin at the

first entry on page 1 and completely peruse, in order, all of the entries on that

page before moving to page 2, and so on. You are more likely to open the book

somewhere where you think the ‘‘Ps’’ might be. If you are lucky, you will find

‘‘Parkes’’ on that very page. Suppose the page you have reached has names

beginning with ‘‘S’’. You then know you’ve gone too far, so you open the book at

some point before the current page, and so on. The process you are following is a

very informal version of what is known as binary search. We consider this in

more detail now.

Binary search searches for a given item within a sorted list (such as an array),

as does linear search, discussed above. However, it is much more efficient. Figure

12.3 schematically represents the operation of binary search on a particular exam-

ple. Binary search is represented algorithmically in Table 12.3.

So what is the running time of binary search? As hinted in Figure 12.3, it

turns out to be O(log2n), i.e., the running time is proportional to the binary

logarithm of the number of input items. Many students have a problem in

grasping logarithmic running times, so we will spend a little time considering

why this is so.

Firstly, for those who have forgotten (or who never knew) what logarithms

are, let us have a brief revision (or first time) session on ‘‘logs’’. Some of you may be

used to base 10 logarithms, so we’ll start there. If x is a number, then log10x is the

number y, such that 10y = x. For example, log10100 = 2, since 102 = 100. Similarly,

log101000 = 3, since 103 = 1000. We can get a reasonable estimate of the log10 of a

number by repeatedly dividing the number by 10 until we reach 1 or less. The

number of divisions we carry out will be the estimate of the log10 value. Take 1000

for example:
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1000=10 ¼ 100� step 1

100=10 ¼ 10� step 2

10=10 ¼ 1� step 3:

We require 3 steps, so log101000 is approximately (in fact it is exactly) 3. Let us

consider a less convenient example. This time we’ll try to estimate log10523:

523=10 ¼ 52:3� step 1

52:3=10 ¼ 5:23� step 2

5:23=10 ¼ 0:523� step 3:

23  35  55  74 89  93  95  99 

Examine element 
at midpoint. 55 < 74,
so we know we 
only have to search
left half of array. 

23  35  55

Examine element at 
midpoint. 55 > 35, 
so we know we 
only have to search
right half of sub-
array.

55

Examine element at
midpoint.   

FOUND!

1 2 8 73 4 5 6 

See algorithm in 
Table 12.3 for 
details of how 
position of 
midpoint is 
computed. 

NOTE:
• n = 8
• 3 comparisons 

required 
• log28 = 3 

Figure 12.3 How binary search (Table 12.3) works, when trying to find 55 in a
sorted array of integers.
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Here, the result of the final step is less than 1. This tells us that log10523 is more

than 2 but less than 3 (it is in fact 2.718501689, or thereabouts!). That this

approach is a gross simplification does not concern us here; for the purposes of

algorithm analysis it is perfectly adequate (and as we shall shortly see, very useful

in analysing the running time of binary search).

The same observations apply to logarithms in any number base. If x is a

number, log2x is the number y, such that 2y = x. For example, log264 = 6, as 26 = 64.

We can use the same technique as we used for log10 to estimate the log2 of a

number (but this time we divide by 2). Let us consider log210:

10=2 ¼ 5� step 1

5=2 ¼ 2:5� step 2

2:5=2 ¼ 1:25� step 3

1:25=2 ¼ 0:625� step 4:

So we know that log210 is more than 3 but less than 4 (it’s actually around

3.322).

It turns out that our method for estimating the log2 of a number is very relevant

in analysing the running time of binary search. As you can see from Figure 12.3,

Table 12.3 Binary search of a one-dimensional array, a, of n integers, indexed from 1 to n,
sorted in ascending order.

ftarget is an integer variable that holds the element to be foundg
low := 1

high := n flow and high are used to hold the lower and upper indexes
of the portion of the array currently being searchedg

foundindex := 0 fIf target is found, foundindex will hold its index number.
If not found, foundindex will remain at 0g

done := false

while low� high and not(done) do

mid := (low + high) div 2 fcalculate midpoint of current portion of array (div is
integer division)g

if target = a[mid] then ffoundg
foundindex := mid

done := true

else

if target < a[mid] then fneed to search left half of current portiong
high := mid { 1

else

low := mid + 1 fneed to search right half of current portiong
endif

endif

endwhile
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binary search actually reduces by half the number of items to be searched at each

stage. Assume the worst case, which is that the item is found as the last examina-

tion of an element in the array is made, or the searched for item is not in the array

at all. Then the number of items examined by binary search beginning with an

array of n items will closely follow our method for estimating the log2 of n:

examine an item, split array in half ½n=2� step 1�

examine an item, split half array in half ½ðn=2Þ=2� step 2�

�

�

. . . until only an array of 1 element remains to be searched. Hence, the number of

items in an n-element array that need to be examined by binary search is around

log2n in the worst case. All of the other operations in the algorithm are assumed to

be constant and, as usual, can be ignored. The running time of binary search is

thus O(log2n).

In general, any algorithm that effectively halves the size of the input each time

it loops will feature a logarithm in the running time. The importance of logarith-

mic running time is that it represents a great saving, even over a linear time

algorithm. Consider the different in performance between linear search, discussed

above, and binary search if the number of items to be searched is 1 000 000. In

cases tending towards the worst, linear search may have to examine nearly all of

the 1 000 000 items, while binary search would need to examine only around 20.

Binary search is justifiably a famous algorithm. Also among the better known

of the logarithmic algorithms is a sorting algorithm known as quicksort. Quicksort

sorts an array of integers, using the approach schematically represented for an

example array in Figure 12.4. As can be seen, the algorithm works by placing one

item (the pivot) into its correct position, then sorting the two smaller arrays on

either side of the pivot using the same (quicksort) procedure. However, quicksort

is not just a log2n algorithm, but actually an O(n� log2n) algorithm, as hinted in

Figure 12.4. As we shall see shortly, many established sorting algorithms are

O(n2), and thus n� log2n is a considerable improvement. An n2 sorting algorithm

would require about 225 000 000 units of time to sort 15 000 items, while quicksort

could achieve the same job in 210 000 time units.

12.5.4 Polynomial Time

Programs that take times such as O(n2) and O(n3), where n is some measure

of the size of the input, are said to take polynomial time in terms of the input
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data. Consider an algorithm related to our linear search, above. This time,

the algorithm searches for an element in a two-dimensional (n� n) array,

sorted as specified in Figure 12.5. This can be searched in an obvious way

by the program in Table 12.4. This algorithm has a running time O(n2) for

both the average case (target element somewhere around position a[n/2,

n/2] { or search can be abandoned at this point) and worst case (target

element at position a[n, n], or not in array at all). The average case is

O(n2) because as far as big O analysis is concerned, n2/2 might just as well

be n2.

55  53  38  27  35  22 72  61  99  95  93  89  74 

99  95  93  89  59  55  53  38  74 72  61  27  76  35  22  16 

1 2 8 73 4 5 6 9 10 11 12 13 14 15 16 

1 2 8 73 4 5 6 9 10 11 12 13 14 15 16 

55  53  38  27  35  22  16 

22  16  27 55  53  38 

1 2 7 3 4 5 6 

1 2 7 3 4 5 6 

1 2 3 75 6 

1 2 3 75 6 

PARTITION

QUICKSORT

QUICKSORT QUICKSORT

QUICKSORT

QUICKSORT

PARTITION

PARTITION PARTITION

(right half of array is
sorted in the same way

as the left) 

Partition
This involves selecting an item known as the
pivot.

The pivots are indicated like this:   

The elements are then rearranged so that the
pivot is in its correct position (i.e. all
elements to its left are less, and all to its right
are greater than the pivot). 

Quicksort’s performance is optimal when the
chosen pivot results in the array being
divided into two equal (or very similar) sized
partitions. 

NOTE:
• n = 16 
• 4 levels of activity 
• log216 = 4 
• combined partitioning activity on

each level is O(n)
• running time O(n × log2n)

x

  16  59  76

22  16  27  35  55  53  38 

16  22  27 38  53  55 

Figure 12.4 How quicksort sorts an array of 16 integers into ascending order.
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Table 12.4 The obvious, but inefficient, algorithm to search a two-dimensional n� n array, a,
of integers, sorted as specified in Figure 12.5.

ftarget is an integer variable that holds the element to be foundg
done := false

foundindexi := 0

foundindexj := 0 fIf targetis found, foundindexi and foundindexj hold its index
valuesg

i := 1 fi is row index variableg
while i� n and not(done) do fouter loop controls row indexg

j := 1 fj is column index variableg
while j � n and not(done)

do
finner loop controls column indexg

if target = a[i, j] then ffoundg
done := true

foundindexi := i

foundindexj := j

else

if target < a[i, j] then fwe are not going to find itg
done := true

endif

endif

j := j þ 1

endwhile

i := i þ 1

endwhile

5 7 20 22 25 

27 29 32 33 34 

36 40 43 50 54 

62 71 73 75 80 

82 83 90 91 95 

each row is sorted in
ascending order the last

element of
each row is
greater than
the first
element in the
next row 

same number
of rows and
columns 

example 5 × 5
array that meets
the specification

Figure 12.5 A sorted two-dimensional n� n array { specification and example.

12.5 A Beginner’s Guide to the ‘‘Big O’’ 307



However, there is a simple but clever algorithm that can do the task in O(n)

time. The algorithm is outlined in Figure 12.6. An exercise asks you to convince

yourself that its running time is indeed O(n).

As a final example of an O(n2) algorithm, let us reopen our discussion of

sorting which began with our analysis of quicksort, above. We consider the

algorithm known as bubble (or sometimes exchange) sort. This algorithm is

interesting partly because it has a best case running time of O(n), though its

worst case is O(n2). The bubble sort algorithm is shown in Table 12.5. Figure

12.7 shows a worst case for the algorithm based on a six-element array. The

algorithm gets its name from the way the smaller elements ‘‘bubble’’ their way to

the ‘‘top’’.

Considering the bubble sort algorithm (Table 12.5) and the trace of the worst

case (Figure 12.7), it is perhaps not obvious that the algorithm is O(n2). The outer

loop iterates n { 1 times, as pointer i moves up the array from the second to the last

Set the new current element to be the
element to the left of the current element.
If there is no such element, stop with not
found.

If the target equals the current element,
stop with found.

If the target is greater than the current
element, stop with not found.

If the target is less than the current
element, start again at the top of this box.

If the target equals the element at the
end of the current row, stop with
found.

If the target is greater than the element
at the end of the current row, drop to
the next row and start again at the top
of this box. If there is no next row,
stop with not found.

If the target is less than the element at
the end of the current row, go to box 2.

start here

1

2

position (1, 1)
position (1, n)

Figure 12.6 A sketch of an O(n) algorithm to search for an element in an n� n
array that meets the specification in Figure 12.5.
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element. However, for each value of i, the second pointer, j, moves from position n

down to position i. The number of values taken on by j then, is not simply n2, but

rather (n { 1) þ (n { 2) þ ... þ 1. Let us write this the other way round, i.e.

1þ . . .þ ðn� 2Þ þ ðn� 1Þ:

Now, there is an equation that tells us that

1þ 2þ . . .þ n ¼ ðn2 þ nÞ=2:

You may like to verify this general truth for yourself. However in our case, we

have a sum up to n { 1, rather than n. For n { 1, the equation should be expressed

as:

ððn� 1Þ2 þ ðn� 1ÞÞ=2

¼ ðn2 þ 1� 2nþ n� 1Þ=2

¼ ðn2 � nÞ=2:

This tells us that, in the worst case for bubble sort, the inner loop goes through

(n2{ n)/2 iterations. (n2 { n)/2 = 1/2n2 { 1/2n. Ignoring the coefficients and the

smaller term, this reduces to a big O of O(n2).

An exercise asks you to define the best case scenario for bubble sort, and to

argue that in the best case it has a running time O(n).

Table 12.5 The bubble (or exchange) sort procedure that sorts an array, a, of n integers in
ascending order. The operation of this algorithm is shown in Figure 12.7.

i := 2

sorted := false

while i� n and not(sorted) do

sorted := true fif sorted is still true at the end of the outer loop, the array is
sorted and the loop terminatesg

for j := n downto i do fdownto makes the counter j go down from n to i in steps of 1g
if a[j] < a[j { 1] then

sorted := false fthe following three statements swap the elements at positions j
and j { 1g

temp := a[j]

a[j] := a[j { 1]

a[j { 1] := temp

endif

endfor

i := i þ 1

endwhile
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Figure 12.7 An example worst case scenario for bubble sort (see Table 12.5),
resulting in a running time O(n2).
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We complete the discussion of polynomial time algorithms with a look at an

O(n3) algorithm. The algorithm we consider is known as Warshall’s algorithm.

The algorithm applies to directed graphs (an abstract machine is one form of

directed graph). The algorithm computes what is known as the transitive closure

of a directed graph. It takes advantage of the fact that if there is an arc from one

node, A, to another, B, and an arc from node B to node C, there is a path from

node A to C, and so on. We shall apply Warshall’s algorithm to the problem of

seeing if all non-terminals in a regular grammar feature in the derivation of a

terminal string. To do this we will use the following grammar, G:

S ! aB j aC

B! cB j cD

C ! cC j fD j d

D! dB j dD:

We represent G using techniques from Chapter 4, as the FSR in Figure 12.8. We

then represent this as a structure known as an adjacency matrix, shown in Table

12.6. The matrix is indexed by node names. The existence of an arc from any node,

X, to a node Yis indicated by a 1 in position (X, Y) of the matrix. Note that the

matrix we are using does not represent the labels on the arcs of our machine. It

could do, if we wished (we simply use the arc label instead of a 1 to indicate an

arc), but we do not need this in the discussion that follows.

We now apply Warshall’s algorithm (Table 12.7) to the matrix in Table 12.6.

The algorithm results in the matrix in Table 12.8, which is known as a connectivity

matrix. For any two nodes X and Y, in the connectivity matrix, if position (X, Y)

is marked with a 1, then there is a path from X to Y in the represented graph.

S

c

D

B
a

C

a

H

f

c

c
d

d
d

Figure 12.8 A finite state recogniser (see Chapter 4).
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For example, the existence of a path from S to D in the FSR (Figure 12.8) is

indicated by the 1 in position (S, D) of the matrix. Note that there is no correspond-

ing path from D to S, hence 0 is the entry in position (D, S).

Warshall’s algorithm is clearly O(n3), where n is the number of states in the

FSR, since it contains an outer n-loop, encompassing another n-loop which, in

turn, encompasses a further n-loop.

Let us return to our problem. We are interested in any state (apart from H)

from which there is not a path to the halt state (such states are useless, since

Table 12.6 An adjacency matrix, M, for the finite state recogniser in Figure 12.8, indexed by
state names. If M(X,Y) = 1, there is an arc from X to Y in the represented machine.

S B C D H

S 0 1 1 0 0

B 0 1 0 1 0

C 0 0 1 1 1

D 0 1 0 1 0

H 0 0 0 0 0

Table 12.7 Warshall’s algorithm for producing a connectivity matrix from an n� n adja-
cency matrix, M, representing a directed graph. The connectivity matrix tells us which nodes
in the graph can be reached from each of the nodes.

for k := 1 to n do

for i := 1 to n do

for j := 1 to n do

if M[i, j] = 0 then

if M[i, k] = 1 and M[k, j] = 1 then

M[i, j] = 1

endif

endif

endfor

endfor

endfor

Table 12.8 The connectivity matrix, C, derived by applying Warshall’s algorithm (Table
12.7) to the adjacency matrix of Table 12.6. If C(X,Y) = 1, there is a path (i.e., series of one or
more arcs) from X to Y in the represented machine (Figure 12.8). Note that the matrix tells us
that the machine cannot reach its halt state from states B or D.

S B C D H

S 0 1 1 1 1

B 0 1 0 1 0

C 0 1 1 1 1

D 0 1 0 1 0

H 0 0 0 0 0
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they cannot feature in the acceptance of any strings). In Table 12.8, the row for

any such state will have a 0 in the column corresponding to the halt state. In

Table 12.8, these states are B and D. They serve no purpose and can be removed

from the FSR along with all of their ingoing arcs. This results in the FSR shown

in Figure 12.9. The corresponding productions can, of course, be removed from

the original grammar, leaving:

S ! aC

C ! cC j d:

The purpose of the above has been to illustrate how an algorithm that runs in time

O(n3) can help us solve a problem that is relevant to Part 1 of this book. There are

other algorithms that can achieve the task of removing what are known as useless

productions from regular and context free grammars. We will not consider them

here. There are books in the Further Reading section that discuss such algo-

rithms. There is an exercise based on the approach above at the end of this

chapter.

12.5.5 Exponential Time

Now, if the dominant expression in an equation denoting the running time of a

program is O(xn), where x > 1 and, again, n is some measure of the size of the

input, the amount of execution time rises dramatically as the input length

increases. Programs like this are said to take exponential time in their execution.

S

C

a

H

c d

Figure 12.9 The finite state recogniser of Figure 12.8 with its useless states and
associated arcs omitted.
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Let us briefly consider the subset algorithm (Table 4.6 of Chapter 4) that

removes non-determinism from a finite state recogniser, M, leaving a determinis-

tic version of the same machine, Md. The deterministic machine is such that each

of its states represents a distinct subset of the states of M. In fact, in the worst

case, we could have to create a new state for every single subset of set of states of

M. Consider the FSR in Figure 12.10, which represents a worst case scenario for

the subset algorithm. If you apply the subset algorithm to this machine (as you

are asked to do in an exercise at the end of this chapter), you should produce 8

states, as there are 8 subsets of the set f1, 2, 3g (including the empty set).

In general, for a set of n elements, there are 2n subsets. Thus, in the worst case,

the running time of the subset algorithm is, at the very least, O(2n), where n is the

number of states in the original non-deterministic machine. This is an algorithm

that can have an exponential running time. For example, a worst case FSR with

30 states might require the algorithm to create 1 073 741 824 new states for the

deterministic machine. A machine that can count up to 1 000 000 in a second would

take around 18 minutes to count up to 1 073 741 824. However, consider a worst

case machine with 75 states. Our counting machine would take over 1 197 000 000

years to count up to the number (275) of states that the new FSR might require!

We now return, as promised, to the example of the 4-tape deterministic

version of the non-deterministic Turing machine from earlier in this chapter.

Simplifying somewhat, we can regard this as taking time O(nkn), where k is the

number of quintuples in the non-deterministic machine, in order to find a solution

of length n. We saw the striking difference between the time taken by the non-

deterministic parallel machine, which was O(n), i.e. of linear relationship to the

length of the solution, and that taken by the deterministic version, for even small

values of n(3 and 11) and small values of k (3 and 10).

We have considered the difference in the time taken by two machines (a non-

deterministic TM and its 4-tape deterministic counterpart) in terms of the length

of a given solution. However, the disparity between the time taken by the two

machines becomes even greater if we also consider the relationship between

the length of the input and the length of the solution. For example, suppose the

1

c

a, b, f
2

a, b, d

3
c

b, d,e

Figure 12.10 A finite state recogniser that represents a worst case situation for
the subset algorithm of Chapter 4.
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non-deterministic machine solves a problem that has minimum length solution n3,

where n is the length of the input. Then the non-deterministic machine will find

that solution in time O(n3). Suppose n = 11, then, simplifying things grossly, our

deterministic machine will find a solution in the best case in a time O kn
3�1

� �
,

which represents a time of 101330 ‘‘moments’’. Remember, we indicated above that

275 is a pretty big number. Imagine, then, how large 101330 is. The point being

made here is that when the non-deterministic machine requires polynomial time

to find the shortest solution, the deterministic machine constructed from it by our

method requires exponential time.

12.6 The Implications of Exponential Time
Processes

If you find big O a little daunting, think about it in this way: for our hypothetical

problem, our non-deterministic machine, N, has 11 squares marked on its input

tape. Since n = 11 and we know that the shortest solution is n3 instructions in

length, N is thus searching for a solution of 113 instructions. If N is a parallel

machine, as described above, it will find the solution in 113 moments.

Now consider the behaviour of D, the deterministic version of N. To get to the

first solution of length 113, D will have to first generate all sequences of quintuple

labels of length 113 { 1. If there are 10 quintuples, there are 10113�1distinct

sequences of labels of length 113{ 1, i.e. 101330.

Let us now consider a simpler example, so that we can appreciate the size of the

numbers that we are dealing with here. Suppose the shortest sequence of instruc-

tions that a particular 10-quintuple non-deterministic machine can find is 101

instructions, for an input of 10 symbols. Before finding the 101-quintuple sequ-

ence that yields the solution, the deterministic version will generate all sequences

of quintuples of length 100. There are 10100 of these sequences, since there are 10

quintuples. The time taken by our deterministic machine is around 10100 moments,

by the most gross simplification imaginable (e.g., even if we assume that the

generation of each sequence takes only a moment, and ignore that our machine

will have generated all the sequences of length 99, of length 98, and so on).

At this point we need to buy a faster deterministic machine. We go to the TM

store and purchase a machine that does 1020 operations in a year. This machine does

in excess of three million million operations each second. If we used it to find the

solution to the problem above that took our original deterministic ‘‘one-million-

instructions-a-second’’ model 30.5 hours to find, it would take our new machine

about 3
100 of a second! However, our new machine would still take in the order of 1080

years to solve our new problem, while our non-deterministic machine, at a similar
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instruction execution rate, would take 1
30;000;000;000 th of a second. Given that, by

some estimations, the Earth is at this time around 400 million years old, if we had

started off our deterministic machine at the time the Earth was born, it would now

be about 1
250;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000;000 th

of the way through the time it needs to find the solution.

12.6.1 ‘‘Is P Equal to NP?’’

From a purely formal point of view, the amount of time taken to solve a problem is

not important. The requirements are that a solution be found in a finite number

of steps, or, put another way in a finite period of time. Now, a time period like 1080

years may be to us an incredibly long period of time, but nevertheless it is finite.

The purpose of the construction we used to create our deterministic machine was

to show functional equivalence, i.e., that whenever there is a solution that the

non-deterministic machine could find, the deterministic machine will find it

(eventually!).

In a more practical vein, in creating a deterministic machine that models

one that is non-deterministic, we may also wish to maintain invariance between

the two machines in the other dimensions of computational power (space and

time) as well as invariance in functionality. Given a non-deterministic TM that

finds solutions in polynomial time, we would ideally like to replace it by a

deterministic machine that also takes polynomial time (and not exponential-

time, as is the case for the construction method we have used in this chapter).

Clearly, this can be done in many, many cases. For example, it would be

possible to model a search program (of the types discussed earlier) determinis-

tically by a polynomial-time TM.

The above discussion leads to a question of formal computer science that is as

yet unanswered. The question is:

For each polynomial-time non-deterministic TM, can we construct an equiva-

lent polynomial-time deterministic TM?

This is known as the ‘‘is P equal to NP?’’ problem, where P is the set of all polynomial-

time TMs, and NP is the set of all non-deterministic polynomial-time TMs. As yet, no

solution to it has been found. Given our analogy between non-deterministic TMs and

parallel processing, the lack of a solution to this problem indicates the possibility that

there are parallel processes that run in polynomial time, that can only be modelled by

serial processes that run in exponential time. More generally, it suggests that there

may be some problems that can be solved in a reasonable amount of time only if

solved non-deterministically. True non-determinism involves random execution of

applicable instructions, rather than the systematic execution processes considered
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above. This means that a truly non-deterministic process is not guaranteed to find a

solution even if there is one.

There may therefore be problems that are such that either,

a solution may be found in polynomial time by a non-deterministic program

(but it may not actually find a solution even if one exists),

or,

a solution will be found in exponential time by a deterministic program, if a

solution exists, but it may take a prohibitive amount of time to discover it.

12.7 Observations on the Efficiency of Algorithms

We discovered earlier in this part of the book that there are well-defined processes

that are deceptively simple in formulation and yet cannot be solved by algorith-

mic means. In this chapter, we have also discovered that certain processes, despite

being algorithmic in formulation, may, in certain circumstances be practically

useless. The caveat ‘‘in certain circumstances’’ is a very important part of the

preceding sentence. Algorithms such as the subset algorithm can be very effective,

for relatively small sizes of input. In any case, the real value of the subset

algorithm is in theoretical terms; its existence demonstrates a property of finite

state recognisers. In that sense, discussion of its running time is meaningless. We

know that it will (eventually) produce a solution, for every possible assignment of

valid input values. Hence, it represents a general truth, and not a practical

solution. The same applies to many of the other algorithms that have supported

the arguments in Parts 1 and 2 of this book.

However, as programmers, we know that efficiency is an important considera-

tion in the design of our programs. An optimal algorithm is desirable. Analysis of

the running time of algorithms using the big O approach is a useful tool in

predicting the efficiency of the algorithm that our program embodies. This

chapter has endeavoured to show certain ways in which our knowledge of formal

computer science can support and enrich the enterprise of programming. This has

hopefully demonstrated, at least in part, the fruitful relationship between the

worlds of abstraction and practicality.

EXERCISES

For exercises marked ‘‘†’’, solutions, partial solutions, or hints to get you started

appear in ‘‘Solutions to Selected Exercises’’at the end of the book.
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12.1.y Justify that the average and worst case running times for the algo-

rithm specified in Figure 12.6 are both O(n).

12.2. Identify the best case scenario for the bubble sort algorithm (Table

12.5). Convince yourself that in such a case, the algorithm has a

running time O(n).

12.3. In connection with the above application of Warshall’s algorithm to

the regular grammar problem:

(a) The solution assumes an adjacency matrix representation of the

equivalent finite state recogniser. Sketch out an algorithm to

produce an adjacency matrix from a regular grammar, and analyse

its running time.

(b) Sketch out the part of the solution that involves searching the

final matrix to detect which states do not lie on any path to the

halt state, and analyse its running time.

Note: see the comments for part (c) in ‘‘Solutions to Selected

Exercises’’.

(c)yThe approach being considered here is not guaranteed to identify

all useless states. Identify why this is so, and suggest a solution.

Hint: our method suggests detecting all states which do not lie on a

path to a halt state. However, there may be states from which the

halt state can be reached that are nevertheless useless.

12.4.y Apply the subset algorithm of Chapter 4 (Table 4.6) to the finite

state recogniser in Figure 12.10.

12.5. Design an algorithm to carry out the partitioning of an array as

required by the quicksort sort routine (see Figure 12.4). A simple

way to choose the pivot is to use the first element in the array. The

running time of your algorithm should be O(n). Convince yourself

that this is the case.
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Further Reading

The following are some suggested titles for further reading. Notes accompany

most of the items. Some of the titles refer to articles that describe practical

applications of concepts from this book.

The numbers in parentheses in the notes refer to chapters in this book.

Church A. (1936) An Unsolvable Problem of Elementary Number Theory.

American Journal of Mathematics, 58, 345–363.

Church and Turing were contemporaneously addressing the same problems

by different, but equivalent means. Hence, in books such as Harel’s we find

references to the ‘‘Church–Turing thesis’’, rather than ‘‘Turing’s thesis’’

(9, 10, 11).

Cohen D.I.A. (1996) Introduction to Computer Thery. John Wiley, New York,

2nd edition.

Covers some additional material such as regular expressions, Moore and

Mealy machines (in this book our FSTs are Mealy machines) (8). Discusses

relationship between multi-stack PDRs (5) and TMs.

Floyd R.W. and Beigel R. (1994) The Language of Machines: an Introduction

to Computability and Formal Languages. W.H. Freeman, New York.

Includes a discussion of regular expressions (4), as used in the UNIXTM

utility ‘‘egrep’’. Good example of formal treatment of minimisation of FSRs

(using equivalence classes) (4).



Harel D. (1992) Algorithmics: the Spirit of Computing. Addison-Wesley,

Reading, MA, 2 nd edition.

Study of algorithms and their properties, such as complexity, big O running

time (12) and decidability (11). Discusses application of finite state

machines to modelling simple systems (8). Focuses on ‘‘counter programs’’:

simple programs in a hypothetical programming language.

Harrison M.A. (1978) Introduction to Formal Language Theory. Addison-

Wesley, Reading, MA.

Many formal proofs and theorems. Contains much on closure properties of

languages (6).

Hopcroft J.E. and Ullman J.D. (1979) Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, Reading, MA.

Discusses linear bounded TMs for context sensitive languages (11).

Jensen K. and Wirth N. (1975) Pascal User Manual and Report. Springer-

Verlag, New York.

Contains the BNF and Syntax chart descriptions of the Pascal syntax (2).

Also contains notes referring to the ambiguity in the ‘‘if’’ statement (3).

Kain R.Y. (1972) Automata Theory: Machines and Languages. McGraw-Hill,

New York.

Formal treatment. Develops Turing machines before going on to the other

abstract machines. Discusses non-standard PDRs (5) applied to context

sensitive languages.

Kelley D. (1998) Automata and Formal languages: an Introduction. Prentice

Hall, London.

Covers most of the introductory material on regular (4) and context free

(5) languages, also has chapters on Turing machine language processing (7),

decidability (11) and computational complexity (12).

Minsky M.L. (1967) Computation: Finite and Infinite Machines. Prentice Hall,

Englewood Cliffs, NJ.

A classic text, devoted to an investigation into effective procedures

(11). Very detailed on most aspects of computer science. Of particular

relevance is description of Shannon’s 2-state TM result (12), and reference

to unsolvable problems (11). The proof we use in this book to show that

FSTs cannot perform arbitrary multiplication (8) is based on Minsky’s.

Post E. (1936) Finite Combinatory Processes – Formulation 1. Journal of

Symbolic Logic, 1, 103–105.
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Post formulated a simple abstract string manipulation machine at the same

time as did Turing (9). Cohen (see above) devotes a chapter to these ‘‘Post’’

machines.

Rayward-Smith V.J. (1983) A First Course in Formal Language Theory.

Blackwell, Oxford, UK.

The notation and terminology for formal languages we use in this book is

based on Rayward-Smith. Very formal treatment of regular languages (plus

regular expressions), FSRs (4), and context free languages and PDRs (5).

Includes Greibach normal form (as does Floyd and Beigel) an alternative

CFG manipulation process to Chomsky Normal Form (5). Much material

on top-down and bottom-up parsing (3), LL and LR grammars (5), but

treatment very formal.

Rich E. and Knight K. (1991) Artificial Intelligence. McGraw-Hill, New York.

Artificial intelligence makes much use of representations such as grammars

and abstract machines. In particular, machines called recursive transition

networks and augmented transition networks (equivalent to TMs) are used

in natural language processing.

Tanenbaum A.S. (1998) Computer Networks. Prentice-Hall, London. 3rd

edition.

Discusses FSTs (8) for modelling protocol machines (sender or receiver

systems in computer networks).

Turing A. (1936) On Computable Numbers with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society,

42, 230–265.

The paper in which Turing introduces his abstract machine, in terms of

computable numbers rather than computable functions. Also includes his

notion of a universal machine (10). A paper of remarkable contemporary

applicability, considering that Turing was considering the human as com-

puter, and not machines.

Winston P.H. (1992) Artificial Intelligence. Addison-Wesley, Reading, MA

(see Rich), 3rd edition.

Wood D. (1987) Theory of Computation. John Wiley, Chichester, UK.

Describes several extensions to PDRs (5). Introduction to proof methods,

including the pigeonhole principle (also mentioned by Harel) on which both

the repeat state theorem (6, 8) and the uvwxy theorem (6) are based.
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Solutions to Selected Exercises

Chapter 2

1. (a) Regular. Every production has a lone non-terminal on its left-hand side,

and the right-hand sides consist of either a single terminal, or a single

terminal followed by a single non-terminal.

(b) Context free. Every production has a lone non-terminal on its left-hand

side. The right-hand sides consist of arbitrary mixtures of terminals and/

or non-terminals, one of which (aAbb) does not conform to the pattern for

regular right-hand sides.

2. (a) fa2ib3j : i, j� 1g i.e., as followed by bs, any number of as

divisible by 2, any number of bs divisible

by 3

(b) faiajb2j : i� 0, j� 1g i.e., zero or more as, followed by one or more

as followed by twice as many bs

(c) fg i.e., the grammar generates no strings at all,

as no derivations beginning with S produce

a terminal string

(d) feg i.e., the only string generated is the empty

string.

3. xyz, where x 2 ðN [ T Þ�, y 2 N , and z 2 ðN [ T Þ�
The above translates into: ‘‘a possibly empty string of terminals and/or non-

terminals, followed by a single non-terminal, followed by another possibly

empty string of terminals and/or non-terminals’’.



5. For an alphabet A, A* is the set of all strings that can be taken from

Aincluding the empty string, e. A regular grammar to generate, say fa, bg* is

S ! " j aS j bS:

e is derived directly from S. Alternatively, we can derive a or b followed by a or

b or e (this last case terminates the derivation), the a or b from the last stage

being followed by a or b or e (last case again terminates the derivation), and so

on ...

Generally, for any alphabet, fa1, a2, ... , ang the grammar

S ! e j a1S j a2S j . . . janS

is regular and can be similarly argued to generate fa1, a2, ... , ang*.

7. (b) The following fragment of the BNF definition for Pascal, taken from

Jensen and Wirth (1975), actually defines all Pascal expressions, not

only Boolean expressions.

<expression> ::= <simple expression> j <simple expression>

<relational operator> <simple expression>

<simple expression> ::= <term> j <sign> <term> j
<simple expression> <adding operator> <term>

<adding operator> ::= þ j – j or

<term> ::= <factor> j <term> <multiplying operator> <factor>

<multiplying operator> ::= * j / j div j mod j and

<factor> ::= <variable> j <unsigned constant> j (<expression>) j
<function designator> j <set> j not <factor>

<unsigned constant> ::= <unsigned number> j <string> j
<constant identifier> j nil

<function designator> ::= <function identifier> j
<function identifier> ( <actual parameter>

f, <actual parameterg)
<function identifier> ::= <identifier>

<variable> ::= <identifier>

<set > ::= [ <element list> ]

<element list> ::= <element> f, <element> g j <empty>

<empty> ::=

Note the use of the empty string to enable an empty<set> to be specified (see

Chapter 5).

10. Given a finite set of strings, each string, x, from the set can be generated by

regular grammar productions as follows:
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x ¼ x1x2 . . .xn; n � 1

S ! x1X1

X1 ! x2X2

�
�
Xn�1 ! xn

For each string, x, we make sure the non-terminals Xi, are unique (to avoid any

derivations getting ‘‘crossed’’).

This applies to any finite set of strings, so any finite set of strings is a

regular language.

Chapter 3

1. (b) faibjck : i, j, k� 1, i = j or j = kg
i.e., strings of as followed by bs followed by cs, where the number of as equals

the number of bs, or the number of bs equals the number of cs, or both.

(c) Grammar G can be used to draw two different derivation trees for the

sentence a3b3c3, as shown in Figure S.1.

The grammar is thus ambiguous.

a b

Xa b

Xa b

X

c

c C

c C

C

S

a

a A

a A

A

b c

Yb c

Yb c

Y

S

Figure S.1 Two derivation trees for the same sentence (a3b3c3).
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2. (b) As for the Pascal example, the semantic implications should be discussed

in terms of demonstrating that the same statement yields different results

according to which derivation tree is chosen to represent its structure.

Chapter 4

1. (a) The FSR obtained directly from the productions of the grammar is shown

in Figure S.2.

The FSR in Figure S.2 is non-deterministic, since it contains states (for

example, state A) with more than one identically labelled outgoing arc going

to different destinations.

The deterministic version, derived using the subset method (null state

removed) is in Figure S.3.

3. One possibility is to represent the FSR as a two-dimensional table (array),

indexed according to (state, symbol) pairs. Table S.1 represents the FSR of

exercise 1(a) (Figure S.2).

In Table S.1, element (A, a), for example, represents the set of states (fS,

Bg) that can be directly reached from state A given the terminal a. Such a

representation would be easy to create from the productions of a grammar

that could be entered by the user, for example. The representation is also

highly useful for creating the deterministic version. This version is also made

more suitable if the language permits dynamic arrays (Pascal does not, but C

and Java are languages that do). The program also needs to keep details of

which states are halt and start states.

S
a b

BA
a

C
b

ba

D
b

H

Figure S.2 A non-deterministic finite state recogniser.

S
a b

S, BA
a

C
b

b

B, H

a

D
b

Figure S.3 A deterministic version of the FSR in Figure S.2.
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An alternative scheme represents the FSR as a list of triples, each triple

representing one arc in the machine. In languages such as Pascal or C, this

scheme can be implemented in linked list form. For example, consider the part

of the FSR from exercise 1 (Figure S.2) shown in Figure S.4.

This can be represented as depicted in Figure S.5.

This representation is particularly useful when applying the reverse opera-

tion in the minimisation algorithm (the program simply exchanges the first

and third elements in each triple). It is also a suitable representation for

languages such as LISP or PROLOG, where the list of triples becomes a list

of three element lists.

Since FSRs can be of arbitrary size, a true solution to the problem of

defining an appropriate data structure would require dynamic data struc-

tures, even down to allowing an unlimited source of names. Although this is

Table S.1 A tabular representation of
the finite state recogniser in Figure S.2.

Terminal symbols

States a b

S A –

A S, B –

B – C

C – D

D – B, H

H – –

S
a

BA
a

a

Figure S.4 Part of the finite state recogniser from Figure S.2.

S a A

A a S
A a B

Figure S.5 The FSR fragment from Figure S.4 represented as a linked list of
(state, arc symbol, next state) triples.
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probably taking things to extremes, you should be aware when you are making

such restrictions, and what their implications are.

Chapter 5

2. First of all, consider that a DPDR is not necessarily restricted to having one

halt state. You design a machine, M, that enters a halt state after reading the

first a, then remains in that state while reading any more as (pushing them on

to the stack, to compare with the bs, if there are any). If there are no bs, M

simply stops in that halt state, otherwise on reading the first b (and popping

off an a) it makes a transition to another state where it can read only bs. The

rest of M is an exact copy of M3
d, of Chapter 5. If there were no bs, any as on

the stack must remain there, even though Mis accepting the string. Why can

we not ensure that in this situation, M clears the as from its stack, but is still

deterministic?

5. The reasons are similar to why arbitrary palindromic languages are not

deterministic. When the machine reads the as and bs part of the string, it

has no way of telling if the string it is reading is of the ‘‘number of as = number

of bs’’, or the ‘‘number of bs = number of cs’’ type. It thus has to assume that

the input string is of the former type, and backtrack to abandon this assump-

tion if the string is not.

6. One possibility is to represent the PDR in a similar way to the list representa-

tion of the FSR described above (sample answer to exercise 3, Chapter 4). In

the case of the PDR, the ‘‘current state, input symbol, next state’’ triples

would become ‘‘quintuples’’ of the form:

‘‘current state, input sym, pop sym, push string, new state’’.

The program could read in a description of a PDR as a list (a file

perhaps) of such ‘‘rules’’, along with details of which states were start

and halt states.

The program would need an appropriate dynamic data structure (e.g.

linked list) to represent a stack. It may therefore be useful to design the

stack and its operations first, as a separate exercise.

Having stored the rules, the program would then execute the algorithm in

Table S.2.

As the PDR is deterministic, the program can assume that only one

quintuple will be applicable at any stage, and can also halt its processing of
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invalid strings as soon as an applicable quintuple cannot be found. The non-

deterministic machine is much more complex to model: I leave it to you to

consider the details.

Chapter 6

3. Any FSR that has a loop on some path linking its start and halt states in which

there is one or more arcs not labelled with e recognises an infinite language.

4. In both cases, it is clear that the v part of the uvw form can consist only of as or

bs or cs. If this were not the case, we would end up with symbols out of their

respective correct order. Then one simply argues that when the v is repeated the

required numeric relationship between as, bs and cs is not maintained.

5. The language specified in this case is the set of all strings consisting of two

copies of any string of as and/or bs. To prove that it is not a CFL, it is useful to

use the fact that we know we can find a uvwxy form for which jvwxj � 2n, and n

is the number of non-terminals in a Chomsky Normal Form grammar to

generate our language. Let k = 2n There are many sentences in our language

of the form anbnanbn, where n> k Consider the vwx form as described imme-

diately above. I leave it to you to complete the proof.

Table S.2 An algorithm to simulate the behaviour of a deterministic pushdown recogniser.
The PDR is represented as quintuples.

can-go := true
C := the start state of the PDR

while not(end-of-input) and can-go
if there is a quintuple, Q, such that

Q’s current state = C, and
Q’s pop sym = the current symbol ‘‘on top’’ of the stack, and
Q’s read sym = the next symbol in the input

then
remove the top symbol from the stack
set up ready to read the next symbol in the input
push Q’s push string onto the stack
set C to be Q’s next state

else
can-go := false

endif
endwhile

if end-of-input and C is a halt state then
return(‘‘yes’’)

else
return(‘‘no’’)

endif
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Chapter 7

1. This can be done by adding an arc labelled x/x (N) for each symbol, x, in the

alphabet of the particular machine (including the blank) from each of the halt

states of the machine to a new halt state. The original halt states are then

designated as non-halt states. The new machine reaches its single halt state

leaving the tape/head configuration exactly as did the original machine.

Chapter 8

1. (The ‘‘or’’ FST) Assuming that the two input binary strings are the same length

and are interleaved on the tape, a bitwise or FST is shown in Figure S.6.

2. An appropriate FST is depicted in Figure S.7.

Chapter 9

4. Functions are discussed in more detail in Chapter 11. A specification of a

function describes what is computed and does not go into detail about how the

computation is done. In this case, then, the TM computes the function:

fðyÞ ¼ y div 2; y � 1:

5. (a) Tape on entry to loop: d1xþ1e

Tape on exit: df xþ1e1xþ1 i.e., the machine copies the xþ 1 1s between d and

e to the right of e, replacing the original 1s by fs.

(b) f(x) = 2xþ 3

1/*

0/1
1/1

0/0
1/1

0/*

Figure S.6 A bitwise ‘‘or’’ finite state transducer. The two binary numbers are
the same length, and interleaved when presented to the machine. The machine

outputs ‘‘*’’ on the first digit of each pair.
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Chapter 10

3. The sextuple (1, a, A, R, 2, 2) of the three-tape machine M might be repre-

sented as shown in Figure S.8.

Chapter 11

1. Assume the TM, P, solves the printing problem by halting with output 1 or 0

according to whether M would, or would not, write the symbol s.

P would need to be able to solve the halting problem, or in cases where M

was not going to halt P would not be able to write a 0 for ‘‘no’’.

Chapter 12

1. There are two worst case scenarios. One is that the element we are looking for

is in position (n, 1), i.e., the leftmost element of the last row. The other is that

the element is not in the array at all, but is greater than every element at the

end of a row except the one at the end of the last row, and smaller than every

element on the last row. In both of these cases we inspect every element at the

1/* 1/*

0/*
*/1

*/3
0/3
1/7

1/*
0/*
*/0

*/2
0/2
1/6

*/0
0/0
1/4

*/1
0/1
1/5

0/*

Figure S.7 A finite state transducer that converts a binary number into an octal
number. The input number is presented to the machine in reverse, and terminated

with ‘‘*’’. The answer is also output in reverse.
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end of a row (there are n of these), then every element on the last row (there

are n– 1 of these, as we already inspected the last one). Thus, we inspect 2n– 1

elements. This represents time O(n).
There are also two average case scenarios. One is that the element is found

midway along the middle row. The other is that the element is not in the array

at all, but is greater than every element at the end of a row above the middle

row, smaller than every element in the second half of the middle row and

greater than the element to the left of the middle element in the middle row. In

this case, we inspect half of the elements at the end of the rows (there are n/2 of

1

3

4

2

a/A (R)

?/? (R)

/  (R)

X/  (R)

/X (R)

5
?/? (R)

/  (R)

6 ?/? (R)

/  (R)

7

?/? (R)

/  (R)

?/? (R)

/  (R)
8

9

a/a (R)
b/b (R)
A/A (R)
1/1 (R)
Z/Z (R)

/  (R)

Y/Y (R) M/M (R)

10

a/a (L)
b/b (L)
A/A (L)
1/1 (L)
Z/Z (L)

/  (L)

9
Y/Y (R)

the write operation  
of the sextuple

X represents the read/write 
head on M ’s tape 1. Since 
the sextuple specifies a 
right move, M must now 
erase the X as a precursor 
to relocating it to indicate 
the new position of the tape 1 
read/write head.

States 3–9 represent the 
move right instruction in 
the sextuple. This involves 
moving 6 squares to the 
right, then placing the X to 
indicate the new position 
of the read/write head.
Note that in reality, each of 
the states 3–8 would need 
to check for the end-of-
tape marker, M, and 
shuffle it right by the 
appropriate number of 
squares.

The sextuple specifies a 
change to tape 2. This 
means that S must now 
search for Y (representing 
the read/write head 
position on M’s tape 2). If 
M reaches the end-of-tape 
marker, then clearly Y must 
have been to the left, not 
the right, so a left search is 
undertaken. 

Figure S.8 A sketch of how a single-tape TM, S, could model the sextuple (1, a,
A, R, 2, 2) of a 3-tape machine, M, from Chapter 10. For how the three tapes are
coded onto S ’s single tape, see Figures 10.21 and 10.22. This sequence of states

applies when S is modelling state 1 of M and S ’s read/write head is on the symbol
representing the current symbol on M’s tape 1.
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these), and we then inspect half of the elements on the middle row (there are

n/2–1) of these, since we already inspected the element at the end of the

middle row. We thus make n/2 þ n/2 – 1 = n– 1 comparisons.

This, once again, is O(n).

3. (c) A further form of useless state, apart from those from which the halt state

cannot be reached, is one that cannot be reached from the start state. To

find these, we simply examine the row in the connectivity matrix for the

start state, S, of the machine. Any entry on that row (apart from position

S, S) that is not a 1 indicates a state that cannot be reached from S, and is

thus useless. If there are nstates in the machine, this operation requires

time O(n).

With respect to part (b) of the question, the column for a state indicates

the states from which that state can be reached. Entries that are not 1 in the

column for the halt state(s) indicate states from which the halt state cannot

be reached (except, of course for entry H, H where H is the halt state in

question). This operation is O(m� n) where n is the total number of states,

and m is the number of halt states. The running time is thus never worse

that O(n2) which would be the case if all states were halt states. For

machines with a single halt state it is, of course O(n).

4. Table S.3 shows the result of applying the subset algorithm (Table 4.6) to the

finite state recogniser of Figure 12.10. For an example see the finite state

recogniser in Figure S.2, which is represented in tabular form in Table S.1.

Here, the tabular form is used in preference to a diagram, as the machine has a

rather complex structure when rendered pictorially.

Table S.3 The deterministic version of the finite state recogniser from Figure 12.10, as
produced by the subset algorithm of Chapter 4 (Table 4.6). There are 8 states, which is the
maximum number of states that can be created by the algorithm from a 3-state machine.

States

Terminal symbols

a b c d e f

1 (start state) 1 2 1 2 3 N 1 3 3 2

2 N N 2 3 N N N

3 (halt state) N N N N N N

1 2 1 2 1 2 3 2 3 1 3 3 2

1 3 (halt state) 1 2 1 2 3 N 1 3 3 2

2 3 (halt state) N N 2 3 N N N

1 2 3 (halt state) 1 2 1 2 3 2 3 1 3 3 2

N (null state) N N N N N N
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context free derivation, 44

Chomsky normal form, 143, 149
empty string in 47
reading 47

see also Derivation
Deterministic context free language, see

Context free language
Deterministic finite state recogniser

(DFSR), see Finite state
recogniser (FSR)

Deterministic pushdown recogniser
(DPDR), see Pushdown
recogniser (PDR)

Deterministic Turing machine, see Turing
machine

Digital computer
regarded as FST, 205, 206, 210
state, 205, 206, 209

see also Finite state transducer (FST)
Directed graph, 58, 99, 311{312

transitive closure, 311
Division by repeated subtraction,

222, 225

", see Empty string
" production, see Context free grammar;

Regular grammar
Effective procedure, 239, 247, 249, 270{273,

280, 284, 320
Empty string, 12{13, 15, 19, 31, 35, 65,

93, 95, 97{98, 103{112, 115, 146,
164, 166, 170, 178, 243, 254, 283,
323{324

see also Context free grammar;
Derivation tree; Grammar;
Parsing; Pascal; Pushdown
recogniser (PDR); Regular
grammar; String concatenation

Equivalence problem for regular
languages, 270

see also Decision problem
Equivalence problem for Turing machines,

271{282
see also Decision problem; Halting

problem

Finite state generator, 58{65
see also Finite state recogniser (FSR)

Finite state recogniser (FSR), 55{91, 93, 95,
100, 104, 125, 127, 155, 158, 163,
169, 170, 189, 204, 238, 270, 287,
294, 302, 311{314, 317{318,
326{327, 333

acceptable string, 65{67, 68, 72, 74
acceptance conditions, 60{61
adjacency matrix representation, 311{312
behaviour, 60{64

loop, 139{141
complement machine, 127, 131
computational limitations of

memory, 104
decision program, 55, 69, 77{80, 88
deterministic finite state recogniser

(DFSR), 55, 68{71, 74, 78{91,
116{117, 127{129, 131, 141, 154,
163, 164, 181, 189

linear time algorithm, 300, 305
empty move, 86{88, 95, 100
equivalence with regular languages, 56,

58, 64, 67, 69, 70, 72, 74, 77, 78,
80, 86{90, 94

intersection machine, 129{130
list representation, 328
minimal, 77{86
non deterministic, 68, 69, 116, 128

equivalent to deterministic FSR,
72{77, 79, 112

rejection conditions, 61, 63
reverse form, 80{86
state, 60{62, 67{69

acceptance, 60{64
multiple start states, 87
name, 71, 88
null ,69{71, 77, 80, 117, 127, 326
rejection, 61{65
useless, 312{313, 317, 318, 333

union machine, 128, 131
Finite state transducer (FST), 189{206,

330, 331
computation, 194{200

binary addition, 195{198
binary subtraction, 195{198
input preparation, 194{200
limitations, 200{204
output interpretation, 194{200
restricted division, 199{200
restricted modular arithmetic,

199{200
restricted multiplication, 200{201, 210
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limited computational model, 205
logical operation

or, 226{229
memory, 191{194

shift operation, 191{194
no halt state, 191
regular language recogniser, 190{191
restricted TM, 189{190, 206
time, 196, 201, 205, 206

clock, 192, 193
Formal language, 1{6, 8, 11{40, 43{44, 49,

126, 138, 153, 185, 282{283, 285,
287{288, 319{321

acceptability of, 286{288
computational properties, 38{41
definition, 15{16

see also Set definition(of formal
language)

finite, 11, 12
infinite, 14{15, 17
non computable, 283{285

FSR, see Finite state recogniser (FSR)
FST, see Finite state transducer (FST)
Function, 270{272, 286, 291{292, 294, 300

association between values, 270{271
represented by program, 270, 271
(TM) computable, 270{271
vs. problem, 270{282
see also; Set definition (of formal

language)

G€odel Kurt, 281
G€odel’s theorem, 281{282
Grammar, 11{41

empty string in, 12{15, 19, 30{31, 35
language generated by, 20{25
(N, T, P, S) form, 30{31
phrase structure, 24, 28{29, 30{38, 32,

33{34, 35, 44, 54{55, 87, 90, 178,
246, 263{26

rule, 20{25
see also Production

see also Context free grammar; Context
sensitive grammar; Regular
grammar; Unrestricted grammar

Guard, 52{53

Halting problem, 5, 240, 269{288
human implications, 282
linguistic implications, 282{288
partial solvability of, 272{274, 280
programming implications, 273{274,

280{282

reduction to, 275{277
theoretical implications, 269
see also Equivalence problem for Turing

machines; Printing problem for
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Infinite loop, 138, 205, 273{274
Infix operator, 199

Java [programming language], 326

K-tape Turing machine see Turing
machine

Leaf node, 45
Linear one dimensional array search,

288{300, 304
Linear two dimensional array search,

298{299
average case, 301
worst case, 301

see also Big O analysis, Clever two
dimensional array search; Running
time of algorithm

LISP [programming language], 12, 143, 327
List, 241, 300, 302, 324, 327{328
Logarithm, 302{305

base2, 201
base10, 302
estimation method, 300{305, 316
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LR(1), 122
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283, 286

Multiplication language, 121, 122, 151,
152, 184

computational properties, 121
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Multiplication, shift and add method, 211,
215{222

base 10 form, 212, 215, 217
binary form, 212{221

Multi-tape Turing machine see Turing
machine

Node, 45, 60, 65, 99, 100, 104, 147, 149, 152,
311{312

see also Terminal node; Leaf node
Non determinism, computational
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Non deterministic context free language,

see Context free language
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Non deterministic finite state recogniser,
see Finite state recogniser (FSR)

Non deterministic pushdown recogniser,
see Pushdown recogniser (PDR)

Non deterministic Turing machine, see
Turing machine

Non deterministic Turing machine, see
Turing machine

Non terminal symbol, 25, 27{34, 108,
144, 152

NPDR,see Pushdown recogniser (PDR)

Octal (base 8) number system, 207, 331

P = NP problem, 316{317
unsolved, 316{317
see also Decision problem; Turing

machine
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275{277, 279{280, 292{293, 297
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Parsing, 43, 47{49, 55{58, 68, 79, 95, 97,
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problems caused by, 95{98
look ahead, 122
reduction method, 48{49, 171{175, 178,

288
Chomsky normal form, 181
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171{175
top-down, 47, 321

Pascal, 3, 12{13, 16{17, 20{23, 25, 43,
50{52, 77, 88{89, 95, 104, 143, 169,
210, 243, 300, 320, 324, 326, 327

arithmetic expression, 50{53
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char data type, 77
compiler error, 95
compound statement, 52, 143
defined in Backus-Naur form, 24
defined by syntax diagrams, 23{25
empty string, 12{13, 95{98

compilation, 95

function, 12{13, 210
identifier, 23{24, 88, 324
if statement, 50{52, 95
non regular language, 143
procedure, 210
program construct, 22{23
record data type, 104
source code, 95, 243

PDR, see Pushdown recogniser (PDR)
Phrase structure language, 155{185, 267,

282, 286, 288
see also Grammar
Pop, see Push down recogniser (PDR)
Post, Emile

abstract machine theory, 238
Printing problem for Turing machine, 272,

275{277, 287
see also Decision problem, Halting

problem
Problem, 269

question associated with function, 271
see also Decidable problem; Decision

problem; Halting problem;
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P = NP problem, semidecidable
language; Solvable problem;
Unsolvable problem

Production, 25{41, 44, 47{48, 54{58,
65{69, 77, 79, 86{90, 93{108, 111,
113, 115, 121, 132, 134{135, 139,
144, 149, 169{173, 175{180, 181,
184, 249, 287{288, 313, 323{324, 326

Program correctness
lack of algorithmic solution, 280
partial, 280

Programming language, 2{3, 11, 12{13,
15{16, 22, 24{25, 38, 42, 43, 50{53,
88{89, 95, 97, 121, 137{138, 143,
199{200, 210, 230, 240, 320

if statement, 16
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118{119
integer division (div), 185, 199
modulus (mod), 200
source code, 44, 95
statement, 16
subroutine, 210{211
syntax definition, 22{25
unconditional jump (goto), 78
vs. natural language, 24

PROLOG, 12, 327
PSG, see Grammar
PSL, see Phrase structure language
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153, 155, 158, 164, 166, 169, 176,
184, 270, 287, 294, 329

computational limitations of, 104
deterministic (DPDR), 112{123, 133,

164{166, 328
acceptance conditions, 117
behaviour, 113{115, 123
characterisation of, 104
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unable to clear stack, 311
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121{122

non deterministic (NPDR), 105{113,
117, 118, 120{123, 164{165,
170, 176

acceptance conditions, 106{107, 109
behaviour, 107
characterisation of, 108
lack of equivalence with DPDRs,

121{122
quintuple representation, 241, 284
relation to FSR, 121
simulation by program, 231
stack, 93, 104{114, 116{119, 123

bottom, 105, 108, 109, 117
operation pop/push, 105, 106,

107{108, 113
top, 105{108, 112, 113

Push, see Push down recogniser (PDR)

Queue, 105
relationship to stack, 105

Quicksort, 305{306, 308, 318
pivot, 305{306, 318
vs. O(n2) algorithm, 305{306

Recursive definition, 186
well formed parentheses, 186

Recursive function theory, 238
Reductio ad absurdum, 129{130, 135, 137,

142, 145, 147, 151, 152, 194, 204,
275{277

Reduction parsing, see Parsing
Regular expression
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86{88

in text editor, 89
Regular grammar, 37{38, 42, 44, 49, 55{59,

64{66, 68, 70, 77, 86{89, 90{91, 97,
100, 104, 116, 121, 132, 143, 170,
273, 311, 318, 324

empty string, 95{98

" production, 96
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Regular expression; Regular
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113, 116, 117, 120, 121, 126{133,
136{139, 141{143, 150, 154, 163,
169{170, 190, 287, 288, 321, 325
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complement, 126{128
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as deterministic CFL, 116{117
finite, 104, 106
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Repeat state theorem for FSRs, 141{143,
150{151
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298{306, 308{310, 314, 317, 318,
320, 333

average case, 301
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dominant process, 299
exponential, 313{315

implications, 315{316
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linear, 300{302, 305, 306, 314
logarithmic, 272, 283, 285, 287{288, 291,

299, 300, 302{305
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optimal, 300, 302, 306, 317
polynomial, 272, 282{283, 288{292, 294,

296{297, 316
worst case, 301, 305, 306, 308

Search algorithm, see Binary search; Clever
two dimensional array search;
Linear one dimensional array
search; Linear two dimensional
array search

Self reference
in logical systems, 238
in Turing machines, 238

Semantics, 43{54
of programs, 23, 43{44
vs. syntax, 23, 43{44

Semidecidable language, 286
Sentence, 11, 12, 16{17, 19{20, 22, 25{27,

31{34, 39{40, 43{44, 47{48, 50, 52,
54, 56, 65, 66, 81, 83, 95, 106, 112,
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144{145, 148{154, 165, 168, 177,
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283, 286, 317, 325, 329

word as synonym for, 16
see also Sentential form; Terminal string

Sentence symbol, see Start symbol
Sentential form, 31{34, 39{40, 44, 104,

287{288
Sequence, 294{298, 300, 315, 332
Sequential search, see Linear two

dimensional array search
Serial computation

deterministic 4-tape machine, 250, 295
exponential running time, 313{315
polynomial running time, 305{313
vs. parallel, 296{298

Set
complement, 126{128
concatenation, 131{132
de Morgan’s law, 129, 130, 137
difference, 19, 115, 126
empty, 16, 314
enumerable (countable), 15, 254, 268

systematic generation (by TM),
235{238, 247, 253{257, 278

finite, 14{15, 126, 254, 288, 324{325
infinite, 15, 126, 254
intersection, 19, 129{130
subset, 65, 126

non proper, 15{16
proper, 15{16, 35, 139, 143, 153

union, 19, 125, 126, 128{131, 133{137
Set definition (of formal language), 17{20,

34, 41, 53, 56, 94, 98
function in, 17{18

Shannon, Claude, 293
Solvability, 269{288

partial, 2
total, 273, 274, 276
vs. decidability, 270{271
see also Problem

Solvable problem, 271{272
Sort algorithm, see Bubble (exchange) sort;

Quicksortof program, 292{293
of Turing machine, 292{293

Stack, see also Push down
recogniser (PDR); Queue

Start symbol, 26{27, 29{30, 32{34, 44, 47,
58, 66, 98, 100, 103, 108, 112,
132{135, 171, 176

String concatenation, 13, 18, 95, 126, 131,
135{136
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String (dynamic data structure), 13
String (formal)

defining properties, 12{13
similarity with arrays and lists, 12{13

see also Empty string; Palindromic string;
String concatenation; String
indexoperator; String power
operator

String index operator, 12, 18, 65, 74, 76
String power operator, 18
Sub-machine TM, 211, 213, 218, 222,

224{225, 254, 266
ADD, 211{226, 230, 232{233, 240,

266{267
COMPARE, 226{229, 231{233, 270
COPY-L, 218{219
COPY-R, 219
INVERT, 224{225, 231
SUBTRACT, 222{226, 230, 233, 266
TWOS-COMP, 224{225
WRITE-A-ONE, 211
WRITE-A-ZERO, 211

see also Turing machine
Subset construction algorithm for FSRs,

69{71, 73, 76, 79{84, 86{87, 91, 129,
314, 317, 318

exponential time, 313{315, 316
termination condition, 70
worst case, 297, 301, 305{306, 308{310,

314
see also Big O analysis; Finite state

recogniser (FSR); Running time
of algorithm

Substring, 26{27, 48, 140{142, 144{146,
148, 150{152, 171

see also String (formal); empty string
Subtraction by addition, 222{225
Syntax, 2{4, 24, 40, 43, 52, 96, 143, 320
Syntax diagram, 22{25
see also Backus-Naur form; Pascal

Terminal node, 45, 65, 104
Terminal string, 27{29, 32{34, 47, 100{102,

136, 144, 171, 181, 311, 323
see also Sentence

Terminal symbol, 25, 27, 30{31, 33, 47,
53{54, 61, 77, 104, 108, 148, 327, 333

TM, see Turing machine
Turing, Alan, 4, 143, 155
Turing machine, 3{5, 40, 153, 155{185, 189,

206, 209{234, 237{268, 274{276, 284,
287{289, 292, 294{295, 297, 314, 320
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abstraction over real machines, 2, 240
architecture

alphabet, 155
blank, 157
tape, 156{157, 162, 164{166,

172{174, 180, 255{260
packed tape, 173, 176, 252
squar tape, 156{157, 159{164, 180,

190, 211, 218, 252, 257{260,
266, 272, 276

behaviour, 5, 158{161, 181
erasing, 159, 161, 220, 225, 238, 252,

261, 275, 332
moving, 159, 161, 265, 266
reading, 156{157
scanning, 170, 171
shuffling, 159, 173, 175{180, 220,

226, 266
skipping, 172
ticking off, 166, 256
writing, 156{157

blank tape assumption, 164{166
coding of, 240{246

direction symbols, 242
input tape, 240, 244{247, 249
machine, 244

complexity
number of states vs. number

of symbols, 293
computation, 292{293

arbitrary integer division, 222{225
arbitrary integer division DIV,

222, 225, 228, 230, 233,
266, 270

arbitrary multiplication, 205,
210{221, 243

arbitrary multiplication MULT,
215{222

binary addition, 210{211, 215, 219,
222, 224, 230

binary subtraction, 222, 224{226,
229, 230

most powerful device, 287
power exceeds computer, 5, 210
vs. FST, 189{190, 209{210

configuration
input212, 217, 226, 227, 233, 234
output, 162, 167, 226

deterministic, 244, 247, 250, 251,
267{268

function, 249{250, 270
instantaneous description, 294
language processing, 166, 270

equivalence with type 0 languages,
237, 238, 249, 267, 286, 287

palindromic language, 119
type 0 language recogniser, 177{181
type 1 language recogniser, 181, 287
vs. FSR, 163{164
vs. PDR, 166{169

logical operations, 226{232
comparison of two numbers, 226{230

model of computer, 206
multi-tape (k-tape) version, 5, 237{238

4-tape example, 237, 250{253, 255,
260{261, 266{268, 295, 298,
314

convenience, 266{267
equivalence with single-tape version,

237, 244, 247, 249{250, 261,
263{268, 332

sextuple representation, 263, 265,
268, 331{332

simulation by 1-tape TM, 261
coding three tapes onto one, 263
simulation of non deterministic TM,

267{268
non deterministic, 249{253

equivalence with deterministic
k-tape TM, 237{238

equivalence with deterministic TMs,
260{261

problem solving process, 238
quintuple representation, 241{244,

246{255, 257, 260{267
simulation of computer, 249, 266{267

memory & array access, 232
program execution, 231{232

state
halt state 163{164, 250{251,

275, 281
single halt state, 185, 330, 333

Turing machine simulation program,
229{232

Turing’s thesis, 4{5, 230{231, 237{268
evidence in support of, 240, 249
vs. theorem, 238

Twos complement number, 224
Type 1 grammar, see Context sensitive

grammar
Type 1 language, see Context sensitive

language

Unacceptable (non computable) language,
283{285

Undecidable language, 285{286
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Unit production graph, see Context free
grammar

Unit production, see Context free grammar
Universal Turing machine, 237,

244{248, 274
3-tape version, 244, 249
behaviour, 244{248
implications, 249
input configuration, 245{247
model of stored program computer, 249
partially solves halting problem, 274
simulation of TM, 229{232
see also Turing machine and halting

problem
Unrestricted grammar, 39, 169, 249

see Unrestricted language
Unrestricted language, 122, 125, 170, 286

see Turing machine; Unrestricted grammar
Unsolvability, 240, 269, 280{282

total, 272, 285, 288
Unsolvable problem, 272, 280
Useless production, see Regular grammar
Useless state, see Finite state

recogniser (FSR)
Uvwxy theorem for CFLs, 125, 139,

143{154, 321

Wang machines
vs. TMs, 238

Warshall’s algorithm, 311{312
applied to adjacency matrix,

311{312
connectivity matrix, 311{312, 333

see also finite state recognisers
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