
3

Data Structures

Changing a data structure in a slow program can work the same way an organ
transplant does in a sick patient. Important classes of abstract data types such as
containers, dictionaries, and priority queues, have many different but functionally
equivalent data structures that implement them. Changing the data structure does
not change the correctness of the program, since we presumably replace a correct
implementation with a different correct implementation. However, the new imple-
mentation of the data type realizes different tradeoffs in the time to execute various
operations, so the total performance can improve dramatically. Like a patient in
need of a transplant, only one part might need to be replaced in order to fix the
problem.

But it is better to be born with a good heart than have to wait for a replace-
ment. The maximum benefit from good data structures results from designing your
program around them in the first place. We assume that the reader has had some
previous exposure to elementary data structures and pointer manipulation. Still,
data structure (CS II) courses these days focus more on data abstraction and ob-
ject orientation than the nitty-gritty of how structures should be represented in
memory. We will review this material to make sure you have it down.

In data structures, as with most subjects, it is more important to really un-
derstand the basic material than have exposure to more advanced concepts. We
will focus on each of the three fundamental abstract data types (containers, dic-
tionaries, and priority queues) and see how they can be implemented with arrays
and lists. Detailed discussion of the tradeoffs between more sophisticated imple-
mentations is deferred to the relevant catalog entry for each of these data types.

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4 3,
c© Springer-Verlag London Limited 2008

66 3 . DATA STRUCTURES

3.1 Contiguous vs. Linked Data Structures

Data structures can be neatly classified as either contiguous or linked, depending
upon whether they are based on arrays or pointers:

• Contiguously-allocated structures are composed of single slabs of memory, and
include arrays, matrices, heaps, and hash tables.

• Linked data structures are composed of distinct chunks of memory bound
together by pointers, and include lists, trees, and graph adjacency lists.

In this section, we review the relative advantages of contiguous and linked data
structures. These tradeoffs are more subtle than they appear at first glance, so I
encourage readers to stick with me here even if you may be familiar with both
types of structures.

3.1.1 Arrays

The array is the fundamental contiguously-allocated data structure. Arrays are
structures of fixed-size data records such that each element can be efficiently located
by its index or (equivalently) address.

A good analogy likens an array to a street full of houses, where each array
element is equivalent to a house, and the index is equivalent to the house number.
Assuming all the houses are equal size and numbered sequentially from 1 to n, we
can compute the exact position of each house immediately from its address.1

Advantages of contiguously-allocated arrays include:

• Constant-time access given the index – Because the index of each element
maps directly to a particular memory address, we can access arbitrary data
items instantly provided we know the index.

• Space efficiency – Arrays consist purely of data, so no space is wasted with
links or other formatting information. Further, end-of-record information is
not needed because arrays are built from fixed-size records.

• Memory locality – A common programming idiom involves iterating through
all the elements of a data structure. Arrays are good for this because they
exhibit excellent memory locality. Physical continuity between successive data
accesses helps exploit the high-speed cache memory on modern computer
architectures.

The downside of arrays is that we cannot adjust their size in the middle of
a program’s execution. Our program will fail soon as we try to add the (n +

1Houses in Japanese cities are traditionally numbered in the order they were built, not by their physical
location. This makes it extremely difficult to locate a Japanese address without a detailed map.

3 .1 CONTIGUOUS VS. LINKED DATA STRUCTURES 67

1)st customer, if we only allocate room for n records. We can compensate by
allocating extremely large arrays, but this can waste space, again restricting what
our programs can do.

Actually, we can efficiently enlarge arrays as we need them, through the miracle
of dynamic arrays. Suppose we start with an array of size 1, and double its size from
m to 2m each time we run out of space. This doubling process involves allocating a
new contiguous array of size 2m, copying the contents of the old array to the lower
half of the new one, and returning the space used by the old array to the storage
allocation system.

The apparent waste in this procedure involves the recopying of the old contents
on each expansion. How many times might an element have to be recopied after a
total of n insertions? Well, the first inserted element will have been recopied when
the array expands after the first, second, fourth, eighth, . . . insertions. It will take
log2 n doublings until the array gets to have n positions. However, most elements
do not suffer much upheaval. Indeed, the (n/2 + 1)st through nth elements will
move at most once and might never have to move at all.

If half the elements move once, a quarter of the elements twice, and so on, the
total number of movements M is given by

M =
lg n∑
i=1

i · n/2i = n

lg n∑
i=1

i/2i ≤ n
∞∑

i=1

i/2i = 2n

Thus, each of the n elements move only two times on average, and the total work
of managing the dynamic array is the same O(n) as it would have been if a single
array of sufficient size had been allocated in advance!

The primary thing lost using dynamic arrays is the guarantee that each array
access takes constant time in the worst case. Now all the queries will be fast, except
for those relatively few queries triggering array doubling. What we get instead is a
promise that the nth array access will be completed quickly enough that the total
effort expended so far will still be O(n). Such amortized guarantees arise frequently
in the analysis of data structures.

3.1.2 Pointers and Linked Structures

Pointers are the connections that hold the pieces of linked structures together.
Pointers represent the address of a location in memory. A variable storing a pointer
to a given data item can provide more freedom than storing a copy of the item
itself. A cell-phone number can be thought of as a pointer to its owner as they
move about the planet.

Pointer syntax and power differ significantly across programming languages, so
we begin with a quick review of pointers in C language. A pointer p is assumed to

68 3 . DATA STRUCTURES

ClintonJeffersonLincoln NIL

Figure 3.1: Linked list example showing data and pointer fields

All linked data structures share certain properties, as revealed by the following
linked list type declaration:

typedef struct list {
item_type item; /* data item */
struct list *next; /* point to successor */

} list;

In particular:

• Each node in our data structure (here list) contains one or more data fields
(here item) that retain the data that we need to store.

• Each node contains a pointer field to at least one other node (here next).
This means that much of the space used in linked data structures has to be
devoted to pointers, not data.

• Finally, we need a pointer to the head of the structure, so we know where to
access it.

The list is the simplest linked structure. The three basic operations supported
by lists are searching, insertion, and deletion. In doubly-linked lists, each node points
both to its predecessor and its successor element. This simplifies certain operations
at a cost of an extra pointer field per node.

Searching a List

Searching for item x in a linked list can be done iteratively or recursively. We opt
for recursively in the implementation below. If x is in the list, it is either the first
element or located in the smaller rest of the list. Eventually, we reduce the problem
to searching in an empty list, which clearly cannot contain x.

2C permits direct manipulation of memory addresses in ways which may horrify Java programmers, but we
will avoid doing any such tricks.

give the address in memory where a particular chunk of data is located.2 Pointers
in C have types declared at compile time, denoting the data type of the items they
can point to. We use *p to denote the item that is pointed to by pointer p, and &x
to denote the address of (i.e., pointer to) of a particular variable x. A special NULL
pointer value is used to denote structure-terminating or unassigned pointers.

3 .1 CONTIGUOUS VS. LINKED DATA STRUCTURES 69

list *search_list(list *l, item_type x)
{

if (l == NULL) return(NULL);

if (l->item == x)
return(l);

else
return(search_list(l->next, x));

}

Insertion into a List

Insertion into a singly-linked list is a nice exercise in pointer manipulation, as shown
below. Since we have no need to maintain the list in any particular order, we might
as well insert each new item in the simplest place. Insertion at the beginning of the
list avoids any need to traverse the list, but does require us to update the pointer
(denoted l) to the head of the data structure.

void insert_list(list **l, item_type x)
{

list *p; /* temporary pointer */

p = malloc(sizeof(list));
p->item = x;
p->next = *l;
*l = p;

}

Two C-isms to note. First, the malloc function allocates a chunk of memory
of sufficient size for a new node to contain x. Second, the funny double star (**l)
denotes that l is a pointer to a pointer to a list node. Thus the last line, *l=p;

Deletion From a List

Deletion from a linked list is somewhat more complicated. First, we must find a
pointer to the predecessor of the item to be deleted. We do this recursively:

copies p to the place pointed to by l, which is the external variable maintaining
access to the head of the list.

70 3 . DATA STRUCTURES

list *predecessor_list(list *l, item_type x)
{

if ((l == NULL) || (l->next == NULL)) {

return(NULL);
}

if ((l->next)->item == x)
return(l);

else
return(predecessor_list(l->next, x));

}

The predecessor is needed because it points to the doomed node, so its next
pointer must be changed. The actual deletion operation is simple, once ruling out
the case that the to-be-deleted element does not exist. Special care must be taken
to reset the pointer to the head of the list (l) when the first element is deleted:

delete_list(list **l, item_type x)
{

list *p; /* item pointer */
list *pred; /* predecessor pointer */
list *search_list(), *predecessor_list();

p = search_list(*l,x);
if (p != NULL) {

pred = predecessor_list(*l,x);

*l = p->next;
else

pred->next = p->next;

free(p); /* free memory used by node */
}

}

C language requires explicit deallocation of memory, so we must free the
deleted node after we are finished with it to return the memory to the system.

3.1.3 Comparison

The relative advantages of linked lists over static arrays include:

• Overflow on linked structures can never occur unless the memory is actually
full.

//predecessor sought on null list

if (pred == NULL) /* splice out of list */

3 .2 STACKS AND QUEUES 71

• Insertions and deletions are simpler than for contiguous (array) lists.

• With large records, moving pointers is easier and faster than moving the
items themselves.

while the relative advantages of arrays include:

• Linked structures require extra space for storing pointer fields.

• Linked lists do not allow efficient random access to items.

• Arrays allow better memory locality and cache performance than random
pointer jumping.

Take-Home Lesson: Dynamic memory allocation provides us with flexibility
on how and where we use our limited storage resources.

One final thought about these fundamental structures is that they can be
thought of as recursive objects:

• Lists – Chopping the first element off a linked list leaves a smaller linked list.
This same argument works for strings, since removing characters from string
leaves a string. Lists are recursive objects.

• Arrays – Splitting the first k elements off of an n element array gives two
smaller arrays, of size k and n− k, respectively. Arrays are recursive objects.

This insight leads to simpler list processing, and efficient divide-and-conquer
algorithms such as quicksort and binary search.

3.2 Stacks and Queues

We use the term container to denote a data structure that permits storage and
retrieval of data items independent of content. By contrast, dictionaries are abstract
data types that retrieve based on key values or content, and will be discussed in
Section 3.3 (page 72).

Containers are distinguished by the particular retrieval order they support. In
the two most important types of containers, this retrieval order depends on the
insertion order:

• Stacks – Support retrieval by last-in, first-out (LIFO) order. Stacks are simple
to implement and very efficient. For this reason, stacks are probably the
right container to use when retrieval order doesn’t matter at all, such as
when processing batch jobs. The put and get operations for stacks are usually
called push and pop:

72 3 . DATA STRUCTURES

– Push(x,s): Insert item x at the top of stack s.

– Pop(s): Return (and remove) the top item of stack s.

LIFO order arises in many real-world contexts. People crammed into a subway
car exit in LIFO order. Food inserted into my refrigerator usually exits the
same way, despite the incentive of expiration dates. Algorithmically, LIFO
tends to happen in the course of executing recursive algorithms.

• Queues – Support retrieval in first in, first out (FIFO) order. This is surely
the fairest way to control waiting times for services. You want the container
holding jobs to be processed in FIFO order to minimize the maximum time
spent waiting. Note that the average waiting time will be the same regardless
of whether FIFO or LIFO is used. Many computing applications involve data
items with infinite patience, which renders the question of maximum waiting
time moot.

Queues are somewhat trickier to implement than stacks and thus are most
appropriate for applications (like certain simulations) where the order is im-
portant. The put and get operations for queues are usually called enqueue
and dequeue.

– Enqueue(x,q): Insert item x at the back of queue q.

– Dequeue(q): Return (and remove) the front item from queue q.

We will see queues later as the fundamental data structure controlling
breadth-first searches in graphs.

Stacks and queues can be effectively implemented using either arrays or linked
lists. The key issue is whether an upper bound on the size of the container is known
in advance, thus permitting the use of a statically-allocated array.

3.3 Dictionaries

The dictionary data type permits access to data items by content. You stick an
item into a dictionary so you can find it when you need it.

The primary operations of dictionary support are:

• Search(D,k) – Given a search key k, return a pointer to the element in dic-
tionary D whose key value is k, if one exists.

• Insert(D,x) – Given a data item x, add it to the set in the dictionary D.

• Delete(D,x) – Given a pointer to a given data item x in the dictionary D,
remove it from D.

3 .3 DICTIONARIES 73

Certain dictionary data structures also efficiently support other useful opera-
tions:

• Max(D) or Min(D) – Retrieve the item with the largest (or smallest) key from
D. This enables the dictionary to serve as a priority queue, to be discussed
in Section 3.5 (page 83).

through the elements of the data structure.

Many common data processing tasks can be handled using these dictionary
operations. For example, suppose we want to remove all duplicate names from a
mailing list, and print the results in sorted order. Initialize an empty dictionary
D, whose search key will be the record name. Now read through the mailing list,
and for each record search to see if the name is already in D. If not, insert it
into D. Once finished, we must extract the remaining names out of the dictionary.
By starting from the first item Min(D) and repeatedly calling Successor until we
obtain Max(D), we traverse all elements in sorted order.

By defining such problems in terms of abstract dictionary operations, we avoid
the details of the data structure’s representation and focus on the task at hand.

In the rest of this section, we will carefully investigate simple dictionary imple-
mentations based on arrays and linked lists. More powerful dictionary implemen-
tations such as binary search trees (see Section 3.4 (page 77)) and hash tables (see
Section 3.7 (page 89)) are also attractive options in practice. A complete discussion
of different dictionary data structures is presented in the catalog in Section 12.1
(page 367). We encourage the reader to browse through the data structures section
of the catalog to better learn what your options are.

Stop and Think: Comparing Dictionary Implementations (I)

Problem: What are the asymptotic worst-case running times for each of the seven
fundamental dictionary operations (search, insert, delete, successor, predecessor,
minimum, and maximum) when the data structure is implemented as:

• An unsorted array.

• A sorted array.

• Predecessor(D,x) or Successor(D,x) – Retrieve the item from D whose key is
immediately before (or after) x in sorted order. These enable us to iterate

Solution: This problem (and the one following it) reveals some of the inherent
tradeoffs of data structure design. A given data representation may permit effi-
cient implementation of certain operations at the cost that other operations are
expensive.

74 3 . DATA STRUCTURES

In addition to the array in question, we will assume access to a few extra
variables such as n—the number of elements currently in the array. Note that we
must maintain the value of these variables in the operations where they change
(e.g., insert and delete), and charge these operations the cost of this maintenance.

The basic dictionary operations can be implemented with the following costs
on unsorted and sorted arrays, respectively:

Unsorted Sorted
Dictionary operation array array
Search(L, k) O(n) O(log n)
Insert(L, x) O(1) O(n)
Delete(L, x) O(1)∗ O(n)
Successor(L, x) O(n) O(1)
Predecessor(L, x) O(n) O(1)
Minimum(L) O(n) O(1)
Maximum(L) O(n) O(1)

We must understand the implementation of each operation to see why. First,
we discuss the operations when maintaining an unsorted array A.

• Search is implemented by testing the search key k against (potentially) each
element of an unsorted array. Thus, search takes linear time in the worst case,
which is when key k is not found in A.

• Insertion is implemented by incrementing n and then copying item x to
the nth cell in the array, A[n]. The bulk of the array is untouched, so this
operation takes constant time.

• Deletion is somewhat trickier, hence the superscript(∗) in the table. The
definition states that we are given a pointer x to the element to delete, so
we need not spend any time searching for the element. But removing the xth
element from the array A leaves a hole that must be filled. We could fill the
hole by moving each of the elements A[x + 1] to A[n] up one position, but
this requires Θ(n) time when the first element is deleted. The following idea
is better: just write over A[x] with A[n], and decrement n. This only takes
constant time.

• The definition of the traversal operations, Predecessor and Successor, refer
to the item appearing before/after x in sorted order. Thus, the answer is
not simply A[x− 1] (or A[x + 1]), because in an unsorted array an element’s
physical predecessor (successor) is not necessarily its logical predecessor (suc-
cessor). Instead, the predecessor of A[x] is the biggest element smaller than
A[x]. Similarly, the successor of A[x] is the smallest element larger than A[x].
Both require a sweep through all n elements of A to determine the winner.

• Minimum and Maximum are similarly defined with respect to sorted order,
and so require linear sweeps to identify in an unsorted array.

3 .3 DICTIONARIES 75

Implementing a dictionary using a sorted array completely reverses our notions
of what is easy and what is hard. Searches can now be done in O(log n) time, using
binary search, because we know the median element sits in A[n/2]. Since the upper
and lower portions of the array are also sorted, the search can continue recursively
on the appropriate portion. The number of halvings of n until we get to a single
element is �lg n�.

The sorted order also benefits us with respect to the other dictionary retrieval
operations. The minimum and maximum elements sit in A[1] and A[n], while the
predecessor and successor to A[x] are A[x − 1] and A[x + 1], respectively.

Insertion and deletion become more expensive, however, because making room
for a new item or filling a hole may require moving many items arbitrarily. Thus
both become linear-time operations.

Take-Home Lesson: Data structure design must balance all the different op-
erations it supports. The fastest data structure to support both operations A
and B may well not be the fastest structure to support either operation A or
B.

Stop and Think: Comparing Dictionary Implementations (II)

Problem: What is the asymptotic worst-case running times for each of the seven
fundamental dictionary operations when the data structure is implemented as

• A singly-linked unsorted list.

• A doubly-linked unsorted list.

• A singly-linked sorted list.

• A doubly-linked sorted list.

Solution: Two different issues must be considered in evaluating these implementa-
tions: singly- vs. doubly-linked lists and sorted vs. unsorted order. Subtle operations
are denoted with a superscript:

Singly Double Singly Doubly
Dictionary operation unsorted unsorted sorted sorted
Search(L, k) O(n) O(n) O(n) O(n)
Insert(L, x) O(1) O(1) O(n) O(n)
Delete(L, x) O(n)∗ O(1) O(n)∗ O(1)
Successor(L, x) O(n) O(n) O(1) O(1)
Predecessor(L, x) O(n) O(n) O(n)∗ O(1)
Minimum(L) O(n) O(n) O(1) O(1)
Maximum(L) O(n) O(n) O(1)∗ O(1)

76 3 . DATA STRUCTURES

As with unsorted arrays, search operations are destined to be slow while main-
tenance operations are fast.

• Insertion/Deletion – The complication here is deletion from a singly-linked
list. The definition of the Delete operation states we are given a pointer x to
the item to be deleted. But what we really need is a pointer to the element
pointing to x in the list, because that is the node that needs to be changed.
We can do nothing without this list predecessor, and so must spend linear
time searching for it on a singly-linked list. Doubly-linked lists avoid this
problem, since we can immediately retrieve the list predecessor of x.

Deletion is faster for sorted doubly-linked lists than sorted arrays, because
splicing out the deleted element from the list is more efficient than filling
the hole by moving array elements. The predecessor pointer problem again
complicates deletion from singly-linked sorted lists.

• Search – Sorting provides less benefit for linked lists than it did for arrays. Bi-
nary search is no longer possible, because we can’t access the median element
without traversing all the elements before it. What sorted lists do provide is
quick termination of unsuccessful searches, for if we have not found Abbott by
the time we hit Costello we can deduce that he doesn’t exist. Still, searching
takes linear time in the worst case.

• Traversal operations – The predecessor pointer problem again complicates
implementing Predecessor. The logical successor is equivalent to the node
successor for both types of sorted lists, and hence can be implemented in
constant time.

• Maximum – The maximum element sits at the tail of the list, which would
normally require Θ(n) time to reach in either singly- or doubly-linked lists.

However, we can maintain a separate pointer to the list tail, provided we
pay the maintenance costs for this pointer on every insertion and deletion.
The tail pointer can be updated in constant time on doubly-linked lists: on
insertion check whether last->next still equals NULL, and on deletion set
last to point to the list predecessor of last if the last element is deleted.

We have no efficient way to find this predecessor for singly-linked lists. So
why can we implement maximum in Θ(1) on singly-linked lists? The trick is
to charge the cost to each deletion, which already took linear time. Adding
an extra linear sweep to update the pointer does not harm the asymptotic
complexity of Delete, while gaining us Maximum in constant time as a reward
for clear thinking.

3 .4 BINARY SEARCH TREES 77

1
2

1 3

13

1

2

3

2

2

3

1

2

3

Figure 3.2: The five distinct binary search trees on three nodes

3.4 Binary Search Trees

We have seen data structures that allow fast search or flexible update, but not fast
search and flexible update. Unsorted, doubly-linked lists supported insertion and
deletion in O(1) time but search took linear time in the worse case. Sorted arrays
support binary search and logarithmic query times, but at the cost of linear-time
update.

Binary search requires that we have fast access to two elements—specifically
the median elements above and below the given node. To combine these ideas, we
need a “linked list” with two pointers per node. This is the basic idea behind binary
search trees.

A rooted binary tree is recursively defined as either being (1) empty, or (2)
consisting of a node called the root, together with two rooted binary trees called
the left and right subtrees, respectively. The order among “brother” nodes matters
in rooted trees, so left is different from right. Figure 3.2 gives the shapes of the five
distinct binary trees that can be formed on three nodes.

A binary search tree labels each node in a binary tree with a single key such
that for any node labeled x, all nodes in the left subtree of x have keys < x while
all nodes in the right subtree of x have keys > x. This search tree labeling scheme
is very special. For any binary tree on n nodes, and any set of n keys, there is
exactly one labeling that makes it a binary search tree. The allowable labelings for
three-node trees are given in Figure 3.2.

3.4.1 Implementing Binary Search Trees

Binary tree nodes have left and right pointer fields, an (optional) parent pointer,
and a data field. These relationships are shown in Figure 3.3; a type declaration
for the tree structure is given below:

78 3 . DATA STRUCTURES

left
right

parent

Figure 3.3: Relationships in a binary search tree (left). Finding the minimum (center) and
maximum (right) elements in a binary search tree

typedef struct tree {
item_type item; /* data item */
struct tree *parent; /* pointer to parent */
struct tree *left; /* pointer to left child */
struct tree *right; /* pointer to right child */

} tree;

The basic operations supported by binary trees are searching, traversal, inser-
tion, and deletion.

Searching in a Tree

at the root. Unless it contains the query key x, proceed either left or right depending
upon whether x occurs before or after the root key. This algorithm works because
both the left and right subtrees of a binary search tree are themselves binary search
trees. This recursive structure yields the recursive search algorithm below:

tree *search_tree(tree *l, item_type x)
{

if (l == NULL) return(NULL);

if (l->item == x) return(l);

if (x < l->item)
return(search_tree(l->left, x));

else
return(search_tree(l->right, x));

}

The binary search tree labeling uniquely identifies where each key is located. Start

3 .4 BINARY SEARCH TREES 79

This search algorithm runs in O(h) time, where h denotes the height of the
tree.

Finding Minimum and Maximum Elements in a Tree

Implementing the find-minimum operation requires knowing where the minimum
element is in the tree. By definition, the smallest key must reside in the left subtree
of the root, since all keys in the left subtree have values less than that of the root.
Therefore, as shown in Figure 3.3, the minimum element must be the leftmost
descendent of the root. Similarly, the maximum element must be the rightmost
descendent of the root.

tree *find_minimum(tree *t)
{

tree *min; /* pointer to minimum */

if (t == NULL) return(NULL);

min = t;
while (min->left != NULL)

min = min->left;
return(min);

}

Traversal in a Tree

Visiting all the nodes in a rooted binary tree proves to be an important component
of many algorithms. It is a special case of traversing all the nodes and edges in a
graph, which will be the foundation of Chapter 5.

A prime application of tree traversal is listing the labels of the tree nodes.
Binary search trees make it easy to report the labels in sorted order. By definition,
all the keys smaller than the root must lie in the left subtree of the root, and all
keys bigger than the root in the right subtree. Thus, visiting the nodes recursively
in accord with such a policy produces an in-order traversal of the search tree:

void traverse_tree(tree *l)
{

if (l != NULL) {
traverse_tree(l->left);
process_item(l->item);
traverse_tree(l->right);

}

}

80 3 . DATA STRUCTURES

Each item is processed once during the course of traversal, which runs in O(n)
time, where n denotes the number of nodes in the tree.

Alternate traversal orders come from changing the position of process item
relative to the traversals of the left and right subtrees. Processing the item first
yields a pre-order traversal, while processing it last gives a post-order traversal.
These make relatively little sense with search trees, but prove useful when the
rooted tree represents arithmetic or logical expressions.

Insertion in a Tree

There is only one place to insert an item x into a binary search tree T where we
know we can find it again. We must replace the NULL pointer found in T after an
unsuccessful query for the key k.

This implementation uses recursion to combine the search and node insertion
stages of key insertion. The three arguments to insert tree are (1) a pointer l to
the pointer linking the search subtree to the rest of the tree, (2) the key x to be
inserted, and (3) a parent pointer to the parent node containing l. The node is
allocated and linked in on hitting the NULL pointer. Note that we pass the pointer to
the appropriate left/right pointer in the node during the search, so the assignment
*l = p; links the new node into the tree:

insert_tree(tree **l, item_type x, tree *parent)
{

tree *p; /* temporary pointer */

if (*l == NULL) {
p = malloc(sizeof(tree)); /* allocate new node */
p->item = x;
p->left = p->right = NULL;
p->parent = parent;
l = p; / link into parent’s record */
return;

}

if (x < (*l)->item)
insert_tree(&((*l)->left), x, *l);

else
insert_tree(&((*l)->right), x, *l);

}

Allocating the node and linking it in to the tree is a constant-time operation
after the search has been performed in O(h) time.

3 .4 BINARY SEARCH TREES 81

initial tree delete node with zero children (3)

5

5

2

6

8

7

3

1

2

8

7

4

3

1

2

5

6

8

7

4

1

delete node with 2 children (4)delete node with 1 child (6)

6

8

7

4

3

1

5

2

Figure 3.4: Deleting tree nodes with 0, 1, and 2 children

Deletion from a Tree

Deletion is somewhat trickier than insertion, because removing a node means ap-
propriately linking its two descendant subtrees back into the tree somewhere else.
There are three cases, illustrated in Figure 3.4. Leaf nodes have no children, and
so may be deleted by simply clearing the pointer to the given node.

The case of the doomed node having one child is also straightforward. There
is one parent and one grandchild, and we can link the grandchild directly to the
parent without violating the in-order labeling property of the tree.

But what of a to-be-deleted node with two children? Our solution is to relabel
this node with the key of its immediate successor in sorted order. This successor
must be the smallest value in the right subtree, specifically the leftmost descendant

labeled binary search tree, and reduces our deletion problem to physically removing
a node with at most one child—a case that has been resolved above.

The full implementation has been omitted here because it looks a little ghastly,
but the code follows logically from the description above.

The worst-case complexity analysis is as follows. Every deletion requires the
cost of at most two search operations, each taking O(h) time where h is the height
of the tree, plus a constant amount of pointer manipulation.

3.4.2 How Good Are Binary Search Trees?

When implemented using binary search trees, all three dictionary operations take
O(h) time, where h is the height of the tree. The smallest height we can hope for
occurs when the tree is perfectly balanced, where h = �log n�. This is very good,
but the tree must be perfectly balanced.

in the right subtree. Moving this to the point of deletion results in a properly-

82 3 . DATA STRUCTURES

Our insertion algorithm puts each new item at a leaf node where it should have
been found. This makes the shape (and more importantly height) of the tree a
function of the order in which we insert the keys.

Unfortunately, bad things can happen when building trees through insertion.
The data structure has no control over the order of insertion. Consider what hap-
pens if the user inserts the keys in sorted order. The operations insert(a), followed
by insert(b), insert(c), insert(d), . . . will produce a skinny linear height tree
where only right pointers are used.

Thus binary trees can have heights ranging from lg n to n. But how tall are
they on average? The average case analysis of algorithms can be tricky because we
must carefully specify what we mean by average. The question is well defined if we
consider each of the n! possible insertion orderings equally likely and average over
those. If so, we are in luck, because with high probability the resulting tree will
have O(log n) height. This will be shown in Section 4.6 (page 123).

This argument is an important example of the power of randomization. We can
often develop simple algorithms that offer good performance with high probabil-
ity. We will see that a similar idea underlies the fastest known sorting algorithm,
quicksort.

3.4.3 Balanced Search Trees

Random search trees are usually good. But if we get unlucky with our order of
insertion, we can end up with a linear-height tree in the worst case. This worst
case is outside of our direct control, since we must build the tree in response to the
requests given by our potentially nasty user.

What would be better is an insertion/deletion procedure which adjusts the tree a
little after each insertion, keeping it close enough to be balanced so the maximum
height is logarithmic. Sophisticated balanced binary search tree data structures
have been developed that guarantee the height of the tree always to be O(log n).
Therefore, all dictionary operations (insert, delete, query) take O(log n) time each.
Implementations of balanced tree data structures such as red-black trees and splay
trees are discussed in Section 12.1 (page 367).

From an algorithm design viewpoint, it is important to know that these trees
exist and that they can be used as black boxes to provide an efficient dictionary
implementation. When figuring the costs of dictionary operations for algorithm
analysis, we can assume the worst-case complexities of balanced binary trees to be
a fair measure.

Take-Home Lesson: Picking the wrong data structure for the job can be
disastrous in terms of performance. Identifying the very best data structure
is usually not as critical, because there can be several choices that perform
similarly.

3 .5 PRIORITY QUEUES 83

Stop and Think: Exploiting Balanced Search Trees

Problem: You are given the task of reading n numbers and then printing them
out in sorted order. Suppose you have access to a balanced dictionary data struc-
ture, which supports the operations search, insert, delete, minimum, maximum,
successor, and predecessor each in O(log n) time.

Solution: The first problem allows us to do insertion and inorder-traversal. We can
build a search tree by inserting all n elements, then do a traversal to access the
items in sorted order:

Sort1()
initialize-tree(t)
While (not EOF)

read(x);
insert(x,t)

Traverse(t)

Sort2()
initialize-tree(t)
While (not EOF)

read(x);
insert(x,t);

y = Minimum(t)
While (y �= NULL) do

print(y → item)
y = Successor(y,t)

Sort3()
initialize-tree(t)
While (not EOF)

read(x);
insert(x,t);

y = Minimum(t)
While (y �= NULL) do

print(y→item)
Delete(y,t)
y = Minimum(t)

The second problem allows us to use the minimum and successor operations
after constructing the tree. We can start from the minimum element, and then
repeatedly find the successor to traverse the elements in sorted order.

The third problem does not give us successor, but does allow us delete. We
can repeatedly find and delete the minimum element to once again traverse all the
elements in sorted order.

Each of these algorithms does a linear number of logarithmic-time operations,
and hence runs in O(n log n) time. The key to exploiting balanced binary search
trees is using them as black boxes.

3.5 Priority Queues

Many algorithms process items in a specific order. For example, suppose you must
schedule jobs according to their importance relative to other jobs. Scheduling the

1. How can you sort in O(n log n) time using only insert and in-order traversal?

2. How can you sort in O(n log n) time using only minimum, successor, and
insert?

3. How can you sort in O(n log n) time using only minimum, insert, delete?

84 3 . DATA STRUCTURES

jobs requires sorting them by importance, and then evaluating them in this sorted
order.

Priority queues are data structures that provide more flexibility than simple
sorting, because they allow new elements to enter a system at arbitrary intervals.
It is much more cost-effective to insert a new job into a priority queue than to
re-sort everything on each such arrival.

The basic priority queue supports three primary operations:

• Insert(Q,x)– Given an item x with key k, insert it into the priority queue Q.

• Find-Minimum(Q) or Find-Maximum(Q)– Return a pointer to the item
whose key value is smaller (larger) than any other key in the priority queue
Q.

• Delete-Minimum(Q) or Delete-Maximum(Q)– Remove the item from the pri-
ority queue Q whose key is minimum (maximum).

Many naturally occurring processes are accurately modeled by priority queues.
Single people maintain a priority queue of potential dating candidates—mentally
if not explicitly. One’s impression on meeting a new person maps directly to an
attractiveness or desirability score. Desirability serves as the key field for inserting
this new entry into the “little black book” priority queue data structure. Dating is
the process of extracting the most desirable person from the data structure (Find-
Maximum), spending an evening to evaluate them better, and then reinserting
them into the priority queue with a possibly revised score.

Take-Home Lesson: Building algorithms around data structures such as dictio-
naries and priority queues leads to both clean structure and good performance.

Stop and Think: Basic Priority Queue Implementations

Problem: What is the worst-case time complexity of the three basic priority queue
operations (insert, find-minimum, and delete-minimum) when the basic data struc-
ture is

• An unsorted array.

• A sorted array.

• A balanced binary search tree.

Solution: There is surprising subtlety in implementing these three operations, even
when using a data structure as simple as an unsorted array. The unsorted array

3 .6 WAR STORY: STRIPPING TRIANGULATIONS 85

For sorted arrays, we can implement insert and delete in linear time, and mini-
mum in constant time. However, all priority queue deletions involve only the min-
imum element. By storing the sorted array in reverse order (largest value on top),
the minimum element will be the last one in the array. Deleting the tail element
requires no movement of any items, just decrementing the number of remaining
items n, and so delete-minimum can be implemented in constant time.

All this is fine, yet the following table claims we can implement find-minimum
in constant time for each data structure:

Unsorted Sorted Balanced
array array tree

Insert(Q, x) O(1) O(n) O(log n)
Find-Minimum(Q) O(1) O(1) O(1)
Delete-Minimum(Q) O(n) O(1) O(log n)

The trick is using an extra variable to store a pointer/index to the minimum
entry in each of these structures, so we can simply return this value whenever we
are asked to find-minimum. Updating this pointer on each insertion is easy—we
update it if and only if the newly inserted value is less than the current minimum.
But what happens on a delete-minimum? We can delete the minimum entry have,
then do an honest find-minimum to restore our canned value. The honest find-
minimum takes linear time on an unsorted array and logarithmic time on a tree,
and hence can be folded into the cost of each deletion.

Priority queues are very useful data structures. Indeed, they will be the hero of
two of our war stories, including the next one. A particularly nice priority queue
implementation (the heap) will be discussed in the context of sorting in Section 4.3
(page 108). Further, a complete set of priority queue implementations is presented
in Section 12.2 (page 373) of the catalog.

3.6 War Story: Stripping Triangulations

Geometric models used in computer graphics are commonly represented as a tri-
angulated surface, as shown in Figure 3.5(l). High-performance rendering engines
have special hardware for rendering and shading triangles. This hardware is so fast
that the bottleneck of rendering is the cost of feeding the triangulation structure
into the hardware engine.

Although each triangle can be described by specifying its three endpoints, an
alternative representation is more efficient. Instead of specifying each triangle in
isolation, suppose that we partition the triangles into strips of adjacent triangles

dictionary (discussed on page 73) implemented insertion and deletion in constant
time, and search and minimum in linear time. A linear time implementation of
delete-minimum can be composed from find-minimum followed by delete.

86 3 . DATA STRUCTURES

Figure 3.5: (l) A triangulated model of a dinosaur (r) Several triangle strips in the model

a) b)

i

i

i-1

i-2

i-3

i-4
i-1

i-2

i-3

i-4

Figure 3.6: Partitioning a triangular mesh into strips: (a) with left-right turns (b) with the
flexibility of arbitrary turns

and walk along the strip. Since each triangle shares two vertices in common with
its neighbors, we save the cost of retransmitting the two extra vertices and any
associated information. To make the description of the triangles unambiguous, the
OpenGL triangular-mesh renderer assumes that all turns alternate from left to
right (as shown in Figure 3.6).

The task of finding a small number of strips that cover each triangle in a mesh
can be thought of as a graph problem. The graph of interest has a vertex for
every triangle of the mesh, and an edge between every pair of vertices represent-
ing adjacent triangles. This dual graph representation captures all the information
about the triangulation (see Section 15.12 (page 520)) needed to partition it into
triangular strips.

Once we had the dual graph available, the project could begin in earnest. We
sought to partition the vertices into as few paths or strips as possible. Partition-
ing it into one path implied that we had discovered a Hamiltonian path, which
by definition visits each vertex exactly once. Since finding a Hamiltonian path is
NP-complete (see Section 16.5 (page 538)), we knew not to look for an optimal
algorithm, but concentrate instead on heuristics.

The simplest heuristic for strip cover would start from an arbitrary triangle
and then do a left-right walk until the walk ends, either by hitting the boundary of

3 .6 WAR STORY: STRIPPING TRIANGULATIONS 87

253 254 255 2561 2 3 4

top

Figure 3.7: A bounded height priority queue for triangle strips

the object or a previously visited triangle. This heuristic had the advantage that
it would be fast and simple, although there is no reason why it should find the
smallest possible set of left-right strips for a given triangulation.

The greedy heuristic would be more likely to result in a small number of strips
however. Greedy heuristics always try to grab the best possible thing first. In the
case of the triangulation, the natural greedy heuristic would identify the starting
triangle that yields the longest left-right strip, and peel that one off first.

Being greedy does not guarantee you the best possible solution either, since the
first strip you peel off might break apart a lot of potential strips we might have
wanted to use later. Still, being greedy is a good rule of thumb if you want to get
rich. Since removing the longest strip would leave the fewest number of triangles
for later strips, the greedy heuristic should outperform the naive heuristic.

But how much time does it take to find the largest strip to peel off next? Let
k be the length of the walk possible from an average vertex. Using the simplest
possible implementation, we could walk from each of the n vertices to find the
largest remaining strip to report in O(kn) time. Repeating this for each of the
roughly n/k strips we extract yields an O(n2)-time implementation, which would
be hopelessly slow on a typical model of 20,000 triangles.

How could we speed this up? It seems wasteful to rewalk from each triangle
after deleting a single strip. We could maintain the lengths of all the possible
future strips in a data structure. However, whenever we peel off a strip, we must
update the lengths of all affected strips. These strips will be shortened because
they walked through a triangle that now no longer exists. There are two aspects of
such a data structure:

• Priority Queue – Since we were repeatedly identifying the longest remaining
strip, we needed a priority queue to store the strips ordered according to
length. The next strip to peel always sat at the top of the queue. Our priority
queue had to permit reducing the priority of arbitrary elements of the queue
whenever we updated the strip lengths to reflect what triangles were peeled

88 3 . DATA STRUCTURES

Model name Triangle count Naive cost Greedy cost Greedy time
Diver 3,798 8,460 4,650 6.4 sec
Heads 4,157 10,588 4,749 9.9 sec
Framework 5,602 9,274 7,210 9.7 sec
Bart Simpson 9,654 24,934 11,676 20.5 sec
Enterprise 12,710 29,016 13,738 26.2 sec
Torus 20,000 40,000 20,200 272.7 sec
Jaw 75,842 104,203 95,020 136.2 sec

Figure 3.8: A comparison of the naive versus greedy heuristics for several triangular meshes

away. Because all of the strip lengths were bounded by a fairly small integer
(hardware constraints prevent any strip from having more than 256 vertices),
we used a bounded-height priority queue (an array of buckets shown in Figure
3.7 and described in Section 12.2 (page 373)). An ordinary heap would also
have worked just fine.

To update the queue entry associated with each triangle, we needed to quickly
find where it was. This meant that we also needed a . . .

• Dictionary – For each triangle in the mesh, we needed to find where it was in
the queue. This meant storing a pointer to each triangle in a dictionary. By
integrating this dictionary with the priority queue, we built a data structure
capable of a wide range of operations.

Although there were various other complications, such as quickly recalculating
the length of the strips affected by the peeling, the key idea needed to obtain better
performance was to use the priority queue. Run time improved by several orders
of magnitude after employing this data structure.

How much better did the greedy heuristic do than the naive heuristic? Consider
the table in Figure 3.8. In all cases, the greedy heuristic led to a set of strips that
cost less, as measured by the total size of the strips. The savings ranged from about
10% to 50%, which is quite remarkable since the greatest possible improvement
(going from three vertices per triangle down to one) yields a savings of only 66.6%.

After implementing the greedy heuristic with our priority queue data structure,
the program ran in O(n · k) time, where n is the number of triangles and k is the
length of the average strip. Thus the torus, which consisted of a small number of
very long strips, took longer than the jaw, even though the latter contained over
three times as many triangles.

There are several lessons to be gleaned from this story. First, when working with
a large enough data set, only linear or near linear algorithms (say O(n log n)) are
likely to be fast enough. Second, choosing the right data structure is often the key
to getting the time complexity down to this point. Finally, using smart heuristic

3 .7 HASHING AND STRINGS 89

like greedy is likely to significantly improve quality over the naive approach. How
much the improvement will be can only be determined by experimentation.

3.7 Hashing and Strings

Hash tables are a very practical way to maintain a dictionary. They exploit the fact
that looking an item up in an array takes constant time once you have its index. A
hash function is a mathematical function that maps keys to integers. We will use
the value of our hash function as an index into an array, and store our item at that
position.

The first step of the hash function is usually to map each key to a big integer.
Let α be the size of the alphabet on which a given string S is written. Let char(c)
be a function that maps each symbol of the alphabet to a unique integer from 0 to
α − 1. The function

H(S) =
|S|−1∑
i=0

α|S|−(i+1) × char(si)

maps each string to a unique (but large) integer by treating the characters of the
string as “digits” in a base-α number system.

The result is unique identifier numbers, but they are so large they will quickly
exceed the number of slots in our hash table (denoted by m). We must reduce this
number to an integer between 0 and m−1, by taking the remainder of H(S) mod m.
This works on the same principle as a roulette wheel. The ball travels a long
distance around and around the circumference-m wheel 	H(S)/m
 times before
settling down to a random bin. If the table size is selected with enough finesse
(ideally m is a large prime not too close to 2i −1), the resulting hash values should
be fairly uniformly distributed.

3.7.1 Collision Resolution

No matter how good our hash function is, we had better be prepared for collisions,
because two distinct keys will occasionally hash to the same value. Chaining is the
easiest approach to collision resolution. Represent the hash table as an array of m
linked lists, as shown in Figure 3.9. The ith list will contain all the items that hash
to the value of i. Thus search, insertion, and deletion reduce to the corresponding
problem in linked lists. If the n keys are distributed uniformly in a table, each list
will contain roughly n/m elements, making them a constant size when m ≈ n.

Chaining is very natural, but devotes a considerable amount of memory to
pointers. This is space that could be used to make the table larger, and hence the
“lists” smaller.

The alternative is something called open addressing. The hash table is main-
tained as an array of elements (not buckets), each initialized to null, as shown in
Figure 3.10. On an insertion, we check to see if the desired position is empty. If so,

90 3 . DATA STRUCTURES

Figure 3.9: Collision resolution by chaining

1 2 3 4 5 6 7 8 9 10 11

X X X X X

Figure 3.10: Collision resolution by open addressing

we insert it. If not, we must find some other place to insert it instead. The simplest
possibility (called sequential probing) inserts the item in the next open spot in the
table. If the table is not too full, the contiguous runs of items should be fairly
small, hence this location should be only a few slots from its intended position.

Searching for a given key now involves going to the appropriate hash value and
checking to see if the item there is the one we want. If so, return it. Otherwise we
must keep checking through the length of the run.

Deletion in an open addressing scheme can get ugly, since removing one element
might break a chain of insertions, making some elements inaccessible. We have no
alternative but to reinsert all the items in the run following the new hole.

Chaining and open addressing both require O(m) to initialize an m-element
hash table to null elements prior to the first insertion. Traversing all the elements
in the table takes O(n + m) time for chaining, because we have to scan all m
buckets looking for elements, even if the actual number of inserted items is small.
This reduces to O(m) time for open addressing, since n must be at most m.

When using chaining with doubly-linked lists to resolve collisions in an m-
element hash table, the dictionary operations for n items can be implemented in
the following expected and worst case times:

Hash table Hash table
(expected) (worst case)

Search(L, k) O(n/m) O(n)
Insert(L, x) O(1) O(1)
Delete(L, x) O(1) O(1)
Successor(L, x) O(n + m) O(n + m)
Predecessor(L, x) O(n + m) O(n + m)
Minimum(L) O(n + m) O(n + m)
Maximum(L) O(n + m) O(n + m)

3 .7 HASHING AND STRINGS 91

Pragmatically, a hash table is often the best data structure to maintain a dic-
tionary. The applications of hashing go far beyond dictionaries, however, as we will
see below.

3.7.2 Efficient String Matching via Hashing

Strings are sequences of characters where the order of the characters matters, since
ALGORITHM is different than LOGARITHM. Text strings are fundamental to a
host of computing applications, from programming language parsing/compilation,
to web search engines, to biological sequence analysis.

The primary data structure for representing strings is an array of characters.
This allows us constant-time access to the ith character of the string. Some auxiliary
information must be maintained to mark the end of the string—either a special
end-of-string character or (perhaps more usefully) a count of the n characters in
the string.

The most fundamental operation on text strings is substring search, namely:

Problem: Substring Pattern Matching
Input: A text string t and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so where?

The simplest algorithm to search for the presence of pattern string p in text t
overlays the pattern string at every position in the text, and checks whether every
pattern character matches the corresponding text character. As demonstrated in
Section 2.5.3 (page 43), this runs in O(nm) time, where n = |t| and m = |p|.

This quadratic bound is worst-case. More complicated, worst-case linear-time
search algorithms do exist: see Section 18.3 (page 628) for a complete discussion.
But here we give a linear expected-time algorithm for string matching, called the
Rabin-Karp algorithm. It is based on hashing. Suppose we compute a given hash
function on both the pattern string p and the m-character substring starting from
the ith position of t. If these two strings are identical, clearly the resulting hash
values must be the same. If the two strings are different, the hash values will
almost certainly be different. These false positives should be so rare that we can
easily spend the O(m) time it takes to explicitly check the identity of two strings
whenever the hash values agree.

This reduces string matching to n−m+2 hash value computations (the n−m+1
windows of t, plus one hash of p), plus what should be a very small number of O(m)
time verification steps. The catch is that it takes O(m) time to compute a hash
function on an m-character string, and O(n) such computations seems to leave us
with an O(mn) algorithm again.

But let’s look more closely at our previously defined hash function, applied to
the m characters starting from the jth position of string S:

H(S, j) =
m−1∑
i=0

αm−(i+1) × char(si+j)

92 3 . DATA STRUCTURES

What changes if we now try to compute H(S, j + 1)—the hash of the next
window of m characters? Note that m−1 characters are the same in both windows,
although this differs by one in the number of times they are multiplied by α. A
little algebra reveals that

H(S, j + 1) = α(H(S, j) − αm−1char(sj)) + char(sj+m)

This means that once we know the hash value from the j position, we can find
the hash value from the (j + 1)st position for the cost of two multiplications, one
addition, and one subtraction. This can be done in constant time (the value of
αm−1 can be computed once and used for all hash value computations). This math
works even if we compute H(S, j) mod M , where M is a reasonably large prime
number, thus keeping the size of our hash values small (at most M) even when the
pattern string is long.

Rabin-Karp is a good example of a randomized algorithm (if we pick M in some
random way). We get no guarantee the algorithm runs in O(n+m) time, because we
may get unlucky and have the hash values regularly collide with spurious matches.
Still, the odds are heavily in our favor—if the hash function returns values uniformly
from 0 to M − 1, the probability of a false collision should be 1/M . This is quite
reasonable: if M ≈ n, there should only be one false collision per string, and if
M ≈ nk for k ≥ 2, the odds are great we will never see any false collisions.

3.7.3 Duplicate Detection Via Hashing

The key idea of hashing is to represent a large object (be it a key, a string, or a
substring) using a single number. The goal is a representation of the large object
by an entity that can be manipulated in constant time, such that it is relatively
unlikely that two different large objects map to the same value.

Hashing has a variety of clever applications beyond just speeding up search. I
once heard Udi Manber—then Chief Scientist at Yahoo—talk about the algorithms
employed at his company. The three most important algorithms at Yahoo, he said,
were hashing, hashing, and hashing.

Consider the following problems with nice hashing solutions:

• Is a given document different from all the rest in a large corpus? – A search
engine with a huge database of n documents spiders yet another webpage.
How can it tell whether this adds something new to add to the database, or
is just a duplicate page that exists elsewhere on the Web?

Explicitly comparing the new document D to all n documents is hopelessly
inefficient for a large corpus. But we can hash D to an integer, and compare
it to the hash codes of the rest of the corpus. Only when there is a collision
is D a possible duplicate. Since we expect few spurious collisions, we can
explicitly compare the few documents sharing the exact hash code with little
effort.

3 .8 SPECIALIZED DATA STRUCTURES 93

• Is part of this document plagiarized from a document in a large corpus? – A
lazy student copies a portion of a Web document into their term paper. “The
Web is a big place,” he smirks. “How will anyone ever find which one?”

This is a more difficult problem than the previous application. Adding, delet-
ing, or changing even one character from a document will completely change
its hash code. Thus the hash codes produced in the previous application
cannot help for this more general problem.

However, we could build a hash table of all overlapping windows (substrings)
of length w in all the documents in the corpus. Whenever there is a match of
hash codes, there is likely a common substring of length w between the two
documents, which can then be further investigated. We should choose w to
be long enough so such a co-occurrence is very unlikely to happen by chance.

The biggest downside of this scheme is that the size of the hash table becomes
as large as the documents themselves. Retaining a small but well-chosen
subset of these hash codes (say those which are exact multiples of 100) for
each document leaves us likely to detect sufficiently long duplicate strings.

• How can I convince you that a file isn’t changed? – In a closed-bid auction,
each party submits their bid in secret before the announced deadline. If you
knew what the other parties were bidding, you could arrange to bid $1 more
than the highest opponent and walk off with the prize as cheaply as possible.
Thus the “right” auction strategy is to hack into the computer containing
the bids just prior to the deadline, read the bids, and then magically emerge
the winner.

How can this be prevented? What if everyone submits a hash code of their
actual bid prior to the deadline, and then submits the full bid after the dead-
line? The auctioneer will pick the largest full bid, but checks to make sure the
hash code matches that submitted prior to the deadline. Such cryptographic
hashing methods provide a way to ensure that the file you give me today is
the same as original, because any changes to the file will result in changing
the hash code.

Although the worst-case bounds on anything involving hashing are dismal, with
a proper hash function we can confidently expect good behavior. Hashing is a fun-
damental idea in randomized algorithms, yielding linear expected-time algorithms
for problems otherwise Θ(n log n), or Θ(n2) in the worst case.

3.8 Specialized Data Structures

The basic data structures described thus far all represent an unstructured set of
items so as to facilitate retrieval operations. These data structures are well known
to most programmers. Not as well known are data structures for representing more

94 3 . DATA STRUCTURES

structured or specialized kinds of objects, such as points in space, strings, and
graphs.

The design principles of these data structures are the same as for basic objects.
There exists a set of basic operations we need to perform repeatedly. We seek a data
structure that supports these operations very efficiently. These efficient, specialized
data structures are important for efficient graph and geometric algorithms so one
should be aware of their existence. Details appear throughout the catalog.

• String data structures – Character strings are typically represented by arrays
of characters, perhaps with a special character to mark the end of the string.
Suffix trees/arrays are special data structures that preprocess strings to make
pattern matching operations faster. See Section 12.3 (page 377) for details.

• Geometric data structures – Geometric data typically consists of collections of
data points and regions. Regions in the plane can be described by polygons,
where the boundary of the polygon is given by a chain of line segments.
Polygons can be represented using an array of points (v1, . . . , vn, v1), such
that (vi, vi+1) is a segment of the boundary. Spatial data structures such as
kd-trees organize points and regions by geometric location to support fast
search. For more details, see Section 12.6 (page 389).

• Graph data structures – Graphs are typically represented using either adja-
cency matrices or adjacency lists. The choice of representation can have a
substantial impact on the design of the resulting graph algorithms, as dis-
cussed in Chapter 6 and in the catalog in Section 12.4.

• Set data structures – Subsets of items are typically represented using a dictio-
nary to support fast membership queries. Alternately, bit vectors are boolean
arrays such that the ith bit represents true if i is in the subset. Data struc-
tures for manipulating sets is presented in the catalog in Section 12.5. The
union-find data structure for maintaining set partitions will be covered in
Section 6.1.3 (page 198).

3.9 War Story: String ’em Up

The human genome encodes all the information necessary to build a person. This
project has already had an enormous impact on medicine and molecular biology.
Algorists have become interested in the human genome project as well, for several
reasons:

• DNA sequences can be accurately represented as strings of characters on the
four-letter alphabet (A,C,T,G). Biologist’s needs have sparked new interest
in old algorithmic problems such as string matching (see Section 18.3 (page
628)) as well as creating new problems such as shortest common superstring
(see Section 18.9 (page 654)).

3 .9 WAR STORY: STRING ’EM UP 95

A C G T T A T C C A

C G T T A

G T T A T

T T A T C

T A T C C

Figure 3.11: The concatenation of two fragments can be in S only if all sub-fragments are

• DNA sequences are very long strings. The human genome is approximately
three billion base pairs (or characters) long. Such large problem size means
that asymptotic (Big-Oh) complexity analysis is usually fully justified on
biological problems.

• Enough money is being invested in genomics for computer scientists to want
to claim their piece of the action.

One of my interests in computational biology revolved around a proposed tech-
nique for DNA sequencing called sequencing by hybridization (SBH). This proce-
dure attaches a set of probes to an array, forming a sequencing chip. Each of these
probes determines whether or not the probe string occurs as a substring of the
DNA target. The target DNA can now be sequenced based on the constraints of
which strings are (and are not) substrings of the target.

We sought to identify all the strings of length 2k that are possible substrings
of an unknown string S, given the set of all length k substrings of S. For example,
suppose we know that AC, CA, and CC are the only length-2 substrings of S.
It is possible that ACCA is a substring of S, since the center substring is one of
our possibilities. However, CAAC cannot be a substring of S, since AA is not a
substring of S. We needed to find a fast algorithm to construct all the consistent
length-2k strings, since S could be very long.

The simplest algorithm to build the 2k strings would be to concatenate all O(n2)
pairs of k-strings together, and then test to make sure that all (k − 1) length-k
substrings spanning the boundary of the concatenation were in fact substrings, as
shown in Figure 3.11. For example, the nine possible concatenations of AC, CA,
and CC are ACAC, ACCA, ACCC, CAAC, CACA, CACC, CCAC, CCCA,
and CCCC. Only CAAC can be eliminated because of the absence of AA.

We needed a fast way of testing whether the k − 1 substrings straddling the
concatenation were members of our dictionary of permissible k-strings. The time
it takes to do this depends upon which dictionary data structure we use. A binary
search tree could find the correct string within O(log n) comparisons, where each

96 3 . DATA STRUCTURES

comparison involved testing which of two length-k strings appeared first in alpha-
betical order. The total time using such a binary search tree would be O(k log n).

That seemed pretty good. So my graduate student, Dimitris Margaritis, used a
binary search tree data structure for our implementation. It worked great up until
the moment we ran it.

“I’ve tried the fastest computer in our department, but our program is too slow,”
Dimitris complained. “It takes forever on string lengths of only 2,000 characters.
We will never get up to 50,000.”

We profiled our program and discovered that almost all the time was spent
searching in this data structure. This was no surprise since we did this k − 1 times
for each of the O(n2) possible concatenations. We needed a faster dictionary data
structure, since search was the innermost operation in such a deep loop.

“How about using a hash table?” I suggested. “It should take O(k) time to hash
a k-character string and look it up in our table. That should knock off a factor of
O(log n), which will mean something when n ≈ 2,000.”

Dimitris went back and implemented a hash table implementation for our dic-
tionary. Again, it worked great up until the moment we ran it.

“Our program is still too slow,” Dimitris complained. “Sure, it is now about
ten times faster on strings of length 2,000. So now we can get up to about 4,000
characters. Big deal. We will never get up to 50,000.”

“We should have expected this,” I mused. “After all, lg2(2, 000) ≈ 11. We need
a faster data structure to search in our dictionary of strings.”

“But what can be faster than a hash table?” Dimitris countered. “To look up
a k-character string, you must read all k characters. Our hash table already does
O(k) searching.”

“Sure, it takes k comparisons to test the first substring. But maybe we can do
better on the second test. Remember where our dictionary queries are coming from.
When we concatenate ABCD with EFGH, we are first testing whether BCDE
is in the dictionary, then CDEF . These strings differ from each other by only one
character. We should be able to exploit this so each subsequent test takes constant
time to perform. . . .”

“We can’t do that with a hash table,” Dimitris observed. “The second key is not
going to be anywhere near the first in the table. A binary search tree won’t help,
either. Since the keys ABCD and BCDE differ according to the first character,
the two strings will be in different parts of the tree.”

“But we can use a suffix tree to do this,” I countered. “A suffix tree is a trie
containing all the suffixes of a given set of strings. For example, the suffixes of
ACAC are {ACAC,CAC,AC,C}. Coupled with suffixes of string CACT , we get
the suffix tree of Figure 3.12. By following a pointer from ACAC to its longest
proper suffix CAC, we get to the right place to test whether CACT is in our set
of strings. One character comparison is all we need to do from there.”

Suffix trees are amazing data structures, discussed in considerably more detail
in Section 12.3 (page 377). Dimitris did some reading about them, then built a nice

3 .9 WAR STORY: STRING ’EM UP 97

a t
c

c

c

ca

a

t

t

t

Figure 3.12: Suffix tree on ACAC and CACT , with the pointer to the suffix of ACAC

suffix tree implementation for our dictionary. Once again, it worked great up until
the moment we ran it.

“Now our program is faster, but it runs out of memory,” Dimitris complained.
“The suffix tree builds a path of length k for each suffix of length k, so all told there
can be Θ(n2) nodes in the tree. It crashes when we go beyond 2,000 characters.
We will never get up to strings with 50,000 characters.”

I wasn’t ready to give up yet. “There is a way around the space problem, by
using compressed suffix trees,” I recalled. “Instead of explicitly representing long
paths of character nodes, we can refer back to the original string.” Compressed
suffix trees always take linear space, as described in Section 12.3 (page 377).

Dimitris went back one last time and implemented the compressed suffix tree
data structure. Now it worked great! As shown in Figure 3.13, we ran our simu-
lation for strings of length n = 65,536 without incident. Our results showed that
interactive SBH could be a very efficient sequencing technique. Based on these
simulations, we were able to arouse interest in our technique from biologists. Mak-
ing the actual wet laboratory experiments feasible provided another computational
challenge, which is reported in Section 7.7 (page 263).

The take-home lessons for programmers from Figure 3.13 should be apparent.
We isolated a single operation (dictionary string search) that was being performed
repeatedly and optimized the data structure we used to support it. We started with
a simple implementation (binary search trees) in the hopes that it would suffice,
and then used profiling to reveal the trouble when it didn’t. When an improved
dictionary structure still did not suffice, we looked deeper into the kind of queries we
were performing, so that we could identify an even better data structure. Finally,
we didn’t give up until we had achieved the level of performance we needed. In
algorithms, as in life, persistence usually pays off.

98 3 . DATA STRUCTURES

String Binary Hash Suffix Compressed
length tree table tree tree

8 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0
32 0.1 0.0 0.0 0.0
64 0.3 0.4 0.3 0.0

128 2.4 1.1 0.5 0.0
256 17.1 9.4 3.8 0.2
512 31.6 67.0 6.9 1.3

1,024 1,828.9 96.6 31.5 2.7
2,048 11,441.7 941.7 553.6 39.0
4,096 > 2 days 5,246.7 out of 45.4
8,192 > 2 days memory 642.0

16,384 1,614.0
32,768 13,657.8
65,536 39,776.9

Figure 3.13: Run times (in seconds) for the SBH simulation using various data structures

Chapter Notes

Our triangle strip optimizing program, stripe, is described in [ESV96]. Hashing
techniques for plagiarism detection are discussed in [SWA03].

Surveys of algorithmic issues in DNA sequencing by hybridization include
[CK94, PL94]. Our work on interactive SBH reported in the war story is reported
in [MS95a].

3.10 Exercises

Stacks, Queues, and Lists

3-1. [3] A common problem for compilers and text editors is determining whether the
parentheses in a string are balanced and properly nested. For example, the string
((())())() contains properly nested pairs of parentheses, which the strings)()(and
()) do not. Give an algorithm that returns true if a string contains properly nested
and balanced parentheses, and false if otherwise. For full credit, identify the position
of the first offending parenthesis if the string is not properly nested and balanced.

Optimizing hash table performance is surprisingly complicated for such a concep-
tually simple data structure. The importance of short runs in open addressing has
led to more sophisticated schemes than sequential probing for optimal hash table
performance. For more details, see Knuth [Knu98].

3 .10 EXERCISES 99

3-2. [3] Write a program to reverse the direction of a given singly-linked list. In other
words, after the reversal all pointers should now point backwards. Your algorithm
should take linear time.

3-3. [5] We have seen how dynamic arrays enable arrays to grow while still achieving
constant-time amortized performance. This problem concerns extending dynamic
arrays to let them both grow and shrink on demand.

(a) Consider an underflow strategy that cuts the array size in half whenever the
array falls below half full. Give an example sequence of insertions and deletions
where this strategy gives a bad amortized cost.

(b) Then, give a better underflow strategy than that suggested above, one that
achieves constant amortized cost per deletion.

Trees and Other Dictionary Structures

3-4. [3] Design a dictionary data structure in which search, insertion, and deletion can
all be processed in O(1) time in the worst case. You may assume the set elements
are integers drawn from a finite set 1, 2, .., n, and initialization can take O(n) time.

3-5. [3] Find the overhead fraction (the ratio of data space over total space) for each
of the following binary tree implementations on n nodes:

(a) All nodes store data, two child pointers, and a parent pointer. The data field
requires four bytes and each pointer requires four bytes.

(b) Only leaf nodes store data; internal nodes store two child pointers. The data
field requires four bytes and each pointer requires two bytes.

3-6. [5] Describe how to modify any balanced tree data structure such that search,
insert, delete, minimum, and maximum still take O(log n) time each, but successor
and predecessor now take O(1) time each. Which operations have to be modified
to support this?

3-7. [5] Suppose you have access to a balanced dictionary data structure, which supports
each of the operations search, insert, delete, minimum, maximum, successor, and
predecessor in O(log n) time. Explain how to modify the insert and delete operations
so they still take O(log n) but now minimum and maximum take O(1) time. (Hint:
think in terms of using the abstract dictionary operations, instead of mucking about
with pointers and the like.)

3-8. [6] Design a data structure to support the following operations:

• insert(x,T) – Insert item x into the set T .

• delete(k,T) – Delete the kth smallest element from T .

• member(x,T) – Return true iff x ∈ T .

All operations must take O(log n) time on an n-element set.

3-9. [8] A concatenate operation takes two sets S1 and S2, where every key in S1

is smaller than any key in S2, and merges them together. Give an algorithm to
concatenate two binary search trees into one binary search tree. The worst-case
running time should be O(h), where h is the maximal height of the two trees.

100 3 . DATA STRUCTURES

Applications of Tree Structures

3-10. [5] In the bin-packing problem, we are given n metal objects, each weighing between
zero and one kilogram. Our goal is to find the smallest number of bins that will
hold the n objects, with each bin holding one kilogram at most.

• The best-fit heuristic for bin packing is as follows. Consider the objects in the
order in which they are given. For each object, place it into the partially filled
bin with the smallest amount of extra room after the object is inserted.. If
no such bin exists, start a new bin. Design an algorithm that implements the
best-fit heuristic (taking as input the n weights w1, w2, ..., wn and outputting
the number of bins used) in O(n log n) time.

• Repeat the above using the worst-fit heuristic, where we put the next object in
the partially filled bin with the largest amount of extra room after the object
is inserted.

3-11. [5] Suppose that we are given a sequence of n values x1, x2, ..., xn and seek to
quickly answer repeated queries of the form: given i and j, find the smallest value
in xi, . . . , xj .

(a) Design a data structure that uses O(n2) space and answers queries in O(1)
time.

(b) Design a data structure that uses O(n) space and answers queries in O(log n)
time. For partial credit, your data structure can use O(n log n) space and have
O(log n) query time.

3-12. [5] Suppose you are given an input set S of n numbers, and a black box that if
given any sequence of real numbers and an integer k instantly and correctly answers
whether there is a subset of input sequence whose sum is exactly k. Show how to
use the black box O(n) times to find a subset of S that adds up to k.

3-13. [5] Let A[1..n] be an array of real numbers. Design an algorithm to perform any
sequence of the following operations:

• Add(i,y) – Add the value y to the ith number.

• Partial-sum(i) – Return the sum of the first i numbers, i.e.
∑i

j=1
A[j].

There are no insertions or deletions; the only change is to the values of the numbers.
Each operation should take O(log n) steps. You may use one additional array of size
n as a work space.

3-14. [8] Extend the data structure of the previous problem to support insertions and
deletions. Each element now has both a key and a value. An element is accessed
by its key. The addition operation is applied to the values, but the elements are
accessed by its key. The Partial sum operation is different.

• Add(k,y) – Add the value y to the item with key k.

• Insert(k,y) – Insert a new item with key k and value y.

• Delete(k) – Delete the item with key k.

3 .10 EXERCISES 101

• Partial-sum(k) – Return the sum of all the elements currently in the set whose
key is less than , i.e.

∑
xj<y

xi.

The worst case running time should still be O(n log n) for any sequence of O(n)
operations.

3-15. [8] Design a data structure that allows one to search, insert, and delete an integer

stored). Assume that 1 ≤ X ≤ n and that there are m + n units of space available,
where m is the maximum number of integers that can be in the table at any one
time. (Hint: use two arrays A[1..n] and B[1..m].) You are not allowed to initialize
either A or B, as that would take O(m) or O(n) operations. This means the arrays
are full of random garbage to begin with, so you must be very careful.

Implementation Projects

3-16. [5] Implement versions of several different dictionary data structures, such as linked
lists, binary trees, balanced binary search trees, and hash tables. Conduct exper-
iments to assess the relative performance of these data structures in a simple ap-
plication that reads a large text file and reports exactly one instance of each word
that appears within it. This application can be efficiently implemented by main-
taining a dictionary of all distinct words that have appeared thus far in the text
and inserting/reporting each word that is not found. Write a brief report with your
conclusions.

3-17. [5] A Caesar shift (see Section 18.6 (page 641)) is a very simple class of ciphers for
secret messages. Unfortunately, they can be broken using statistical properties of
English. Develop a program capable of decrypting Caesar shifts of sufficiently long
texts.

Interview Problems

3-18. [3] What method would you use to look up a word in a dictionary?

3-19. [3] Imagine you have a closet full of shirts. What can you do to organize your shirts
for easy retrieval?

3-20. [4] Write a function to find the middle node of a singly-linked list.

3-21. [4] Write a function to compare whether two binary trees are identical. Identical
trees have the same key value at each position and the same structure.

3-22. [4] Write a program to convert a binary search tree into a linked list.

3-23. [4] Implement an algorithm to reverse a linked list. Now do it without recursion.

3-24. [5] What is the best data structure for maintaining URLs that have been visited by
a Web crawler? Give an algorithm to test whether a given URL has already been
visited, optimizing both space and time.

3-25. [4] You are given a search string and a magazine. You seek to generate all the char-
acters in search string by cutting them out from the magazine. Give an algorithm
to efficiently determine whether the magazine contains all the letters in the search
string.

X in O(1) time (i.e., constant time, independent of the total number of integers

k

102 3 . DATA STRUCTURES

3-26. [4] Reverse the words in a sentence—i.e., “My name is Chris” becomes “Chris is
name My.” Optimize for time and space.

3-27. [5] Determine whether a linked list contains a loop as quickly as possible without
using any extra storage. Also, identify the location of the loop.

3-28. [5] You have an unordered array X of n integers. Find the array M containing
n elements where Mi is the product of all integers in X except for Xi. You may
not use division. You can use extra memory. (Hint: There are solutions faster than
O(n2).)

3-29. [6] Give an algorithm for finding an ordered word pair (e.g., “New York”) occurring
with the greatest frequency in a given webpage. Which data structures would you
use? Optimize both time and space.

Programming Challenges

These programming challenge problems with robot judging are available at
http://www.programming-challenges.com or http://online-judge.uva.es.

3-1. “Jolly Jumpers” – Programming Challenges 110201, UVA Judge 10038.

3-2. “Crypt Kicker” – Programming Challenges 110204, UVA Judge 843.

3-3. “Where’s Waldorf?” – Programming Challenges 110302, UVA Judge 10010.

3-4. “Crypt Kicker II” – Programming Challenges 110304, UVA Judge 850.

	3 Data Structures

	3.1 Contiguous vs. Linked Data Structures

	3.1.1 Arrays
	3.1.2 Pointers and Linked Structures
	3.1.3 Comparison

	3.2 Stacks and Queues

	3.3 Dictionaries

	3.4 Binary Search Trees

	3.4.1 Implementing Binary Search Trees
	3.4.2 How Good Are Binary Search Trees?
	3.4.3 Balanced Search Trees

	3.5 Priority Queues

	3.6 War Story: Stripping Triangulations

	3.7 Hashing and Strings

	3.7.1 Collision Resolution
	3.7.2 Efficient String Matching via Hashing
	3.7.3 Duplicate Detection Via Hashing

	3.8 Specialized Data Structures

	3.9 War Story: String 'em Up

	3.10 Exercises

