
2

Algorithm Analysis

Algorithms are the most important and durable part of computer science because
they can be studied in a language- and machine-independent way. This means that
we need techniques that enable us to compare the efficiency of algorithms without
implementing them. Our two most important tools are (1) the RAM model of
computation and (2) the asymptotic analysis of worst-case complexity.

Assessing algorithmic performance makes use of the “big Oh” notation that,
proves essential to compare algorithms and design more efficient ones. While the
hopelessly practical person may blanch at the notion of theoretical analysis, we
present the material because it really is useful in thinking about algorithms.

This method of keeping score will be the most mathematically demanding part
of this book. But once you understand the intuition behind these ideas, the for-
malism becomes a lot easier to deal with.

2.1 The RAM Model of Computation

Machine-independent algorithm design depends upon a hypothetical computer
called the Random Access Machine or RAM. Under this model of computation,
we are confronted with a computer where:

• Each simple operation (+, *, –, =, if, call) takes exactly one time step.

• Loops and subroutines are not considered simple operations. Instead, they
are the composition of many single-step operations. It makes no sense for
sort to be a single-step operation, since sorting 1,000,000 items will certainly
take much longer than sorting 10 items. The time it takes to run through a
loop or execute a subprogram depends upon the number of loop iterations or
the specific nature of the subprogram.

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4 2,
c© Springer-Verlag London Limited 2008

32 2 . ALGORITHM ANALYSIS

• Each memory access takes exactly one time step. Further, we have as much
memory as we need. The RAM model takes no notice of whether an item is
in cache or on the disk.

Under the RAM model, we measure run time by counting up the number of
steps an algorithm takes on a given problem instance. If we assume that our RAM
executes a given number of steps per second, this operation count converts naturally
to the actual running time.

The RAM is a simple model of how computers perform. Perhaps it sounds too
simple. After all, multiplying two numbers takes more time than adding two num-
bers on most processors, which violates the first assumption of the model. Fancy
compiler loop unrolling and hyperthreading may well violate the second assump-
tion. And certainly memory access times differ greatly depending on whether data
sits in cache or on the disk. This makes us zero for three on the truth of our basic
assumptions.

And yet, despite these complaints, the RAM proves an excellent model for
understanding how an algorithm will perform on a real computer. It strikes a fine
balance by capturing the essential behavior of computers while being simple to
work with. We use the RAM model because it is useful in practice.

Every model has a size range over which it is useful. Take, for example, the
model that the Earth is flat. You might argue that this is a bad model, since it
has been fairly well established that the Earth is in fact round. But, when laying
the foundation of a house, the flat Earth model is sufficiently accurate that it can
be reliably used. It is so much easier to manipulate a flat-Earth model that it is
inconceivable that you would try to think spherically when you don’t have to.1

The same situation is true with the RAM model of computation. We make
an abstraction that is generally very useful. It is quite difficult to design an algo-
rithm such that the RAM model gives you substantially misleading results. The
robustness of the RAM enables us to analyze algorithms in a machine-independent
way.

Take-Home Lesson: Algorithms can be understood and studied in a language-
and machine-independent manner.

2.1.1 Best, Worst, and Average-Case Complexity

Using the RAM model of computation, we can count how many steps our algorithm
takes on any given input instance by executing it. However, to understand how good
or bad an algorithm is in general, we must know how it works over all instances.

To understand the notions of the best, worst, and average-case complexity,
think about running an algorithm over all possible instances of data that can be

1The Earth is not completely spherical either, but a spherical Earth provides a useful model for such things
as longitude and latitude.

2 .1 THE RAM MODEL OF COMPUTATION 33

1 2 3 4 N

.

.

Problem Size

Best Case

Average Case

Worst Caseof Steps
Number

Figure 2.1: Best, worst, and average-case complexity

fed to it. For the problem of sorting, the set of possible input instances consists of
all possible arrangements of n keys, over all possible values of n. We can represent
each input instance as a point on a graph (shown in Figure 2.1) where the x-axis
represents the size of the input problem (for sorting, the number of items to sort),
and the y-axis denotes the number of steps taken by the algorithm in this instance.

These points naturally align themselves into columns, because only integers
represent possible input size (e.g., it makes no sense to sort 10.57 items). We can
define three interesting functions over the plot of these points:

• The worst-case complexity of the algorithm is the function defined by the
maximum number of steps taken in any instance of size n. This represents
the curve passing through the highest point in each column.

• The best-case complexity of the algorithm is the function defined by the min-
imum number of steps taken in any instance of size n. This represents the
curve passing through the lowest point of each column.

• The average-case complexity of the algorithm, which is the function defined
by the average number of steps over all instances of size n.

The worst-case complexity proves to be most useful of these three measures in
practice. Many people find this counterintuitive. To illustrate why, try to project
what will happen if you bring n dollars into a casino to gamble. The best case,
that you walk out owning the place, is possible but so unlikely that you should not
even think about it. The worst case, that you lose all n dollars, is easy to calculate
and distressingly likely to happen. The average case, that the typical bettor loses
87.32% of the money that he brings to the casino, is difficult to establish and its
meaning subject to debate. What exactly does average mean? Stupid people lose

34 2 . ALGORITHM ANALYSIS

more than smart people, so are you smarter or stupider than the average person,
and by how much? Card counters at blackjack do better on average than customers
who accept three or more free drinks. We avoid all these complexities and obtain
a very useful result by just considering the worst case.

The important thing to realize is that each of these time complexities define a
numerical function, representing time versus problem size. These functions are as
well defined as any other numerical function, be it y = x2 − 2x + 1 or the price
of Google stock as a function of time. But time complexities are such complicated
functions that we must simplify them to work with them. For this, we need the
“Big Oh” notation.

2.2 The Big Oh Notation

The best, worst, and average-case time complexities for any given algorithm are
numerical functions over the size of possible problem instances. However, it is very
difficult to work precisely with these functions, because they tend to:

• Have too many bumps – An algorithm such as binary search typically runs
a bit faster for arrays of size exactly n = 2k − 1 (where k is an integer),
because the array partitions work out nicely. This detail is not particularly
significant, but it warns us that the exact time complexity function for any
algorithm is liable to be very complicated, with little up and down bumps as
shown in Figure 2.2.

• Require too much detail to specify precisely – Counting the exact number
of RAM instructions executed in the worst case requires the algorithm be
specified to the detail of a complete computer program. Further, the precise
answer depends upon uninteresting coding details (e.g., did he use a case
statement or nested ifs?). Performing a precise worst-case analysis like

T (n) = 12754n2 + 4353n + 834 lg2 n + 13546

would clearly be very difficult work, but provides us little extra information
than the observation that “the time grows quadratically with n.”

It proves to be much easier to talk in terms of simple upper and lower bounds
of time-complexity functions using the Big Oh notation. The Big Oh simplifies
our analysis by ignoring levels of detail that do not impact our comparison of
algorithms.

The Big Oh notation ignores the difference between multiplicative constants.
The functions f(n) = 2n and g(n) = n are identical in Big Oh analysis. This
makes sense given our application. Suppose a given algorithm in (say) C language
ran twice as fast as one with the same algorithm written in Java. This multiplicative

2 .2 THE BIG OH NOTATION 35

0n
f(n)

n
.......4321

lower bound

upper bound

Figure 2.2: Upper and lower bounds valid for n > n0 smooth out the behavior of complex
functions

factor of two tells us nothing about the algorithm itself, since both programs imple-
ment exactly the same algorithm. We ignore such constant factors when comparing
two algorithms.

The formal definitions associated with the Big Oh notation are as follows:

• f(n) = O(g(n)) means c · g(n) is an upper bound on f(n). Thus there exists

n ≥ n0 for some constant n0).

• f(n) = Ω(g(n)) means c · g(n) is a lower bound on f(n). Thus there exists
some constant c such that f(n) is always ≥ c · g(n), for all n ≥ n0.

• f(n) = Θ(g(n)) means c1 · g(n) is an upper bound on f(n) and c2 · g(n) is
a lower bound on f(n), for all n ≥ n0. Thus there exist constants c1 and c2

such that f(n) ≤ c1 ·g(n) and f(n) ≥ c2 ·g(n). This means that g(n) provides
a nice, tight bound on f(n).

Got it? These definitions are illustrated in Figure 2.3. Each of these definitions
assumes a constant n0 beyond which they are always satisfied. We are not concerned

care whether one sorting algorithm sorts six items faster than another, but seek
which algorithm proves faster when sorting 10,000 or 1,000,000 items. The Big Oh
notation enables us to ignore details and focus on the big picture.

Take-Home Lesson: The Big Oh notation and worst-case analysis are tools
that greatly simplify our ability to compare the efficiency of algorithms.

Make sure you understand this notation by working through the following ex-
amples. We choose certain constants (c and n0) in the explanations below because

some constant c such that f(n) is always ≤ c · g(n), for large enough n (i.e.,

about small values of n (i.e., anything to the left of n0). After all, we don’t really

36 2 . ALGORITHM ANALYSIS

(c)

f(n)

c2*g(n)

n
n0

c1*g(n)
c*g(n)

f(n)

n
n0

f(n)

c*g(n)

n
n0

(b)(a)

Figure 2.3: Illustrating the big (a) O, (b) Ω, and (c) Θ notations

they work and make a point, but other pairs of constants will do exactly the same
job. You are free to choose any constants that maintain the same inequality—ideally
constants that make it obvious that the inequality holds:

3n2 − 100n + 6 = O(n2), because I choose c = 3 and 3n2 > 3n2 − 100n + 6;

3n2 − 100n + 6 = O(n3), because I choose c = 1 and n3 > 3n2 − 100n + 6 when n > 3;

3n2 − 100n + 6 �= O(n), because for any c I choose c × n < 3n2 when n > c;

3n2 − 100n + 6 = Ω(n2), because I choose c = 2 and 2n2 < 3n2 − 100n + 6 when n > 100;

3n2 − 100n + 6 �= Ω(n3), because I choose c n2 − 100n + 6 < n3 when n > 3;

3n2 − 100n + 6 = Ω(n), because for any c I choose cn < 3n2 − 100n + 6 when n > 100c;

3n2 − 100n + 6 = Θ(n2), because both O and Ω apply;

3n2 − 100n + 6 �= Θ(n3), because only O applies;

3n2 − 100n + 6 �= Θ(n), because only Ω applies.

The Big Oh notation provides for a rough notion of equality when comparing
functions. It is somewhat jarring to see an expression like n2 = O(n3), but its
meaning can always be resolved by going back to the definitions in terms of upper
and lower bounds. It is perhaps most instructive to read the “=” here as meaning
one of the functions that are. Clearly, n2 is one of functions that are O(n3).

= 1 and 3

2 .3 GROWTH RATES AND DOMINANCE RELATIONS 37

Stop and Think: Back to the Definition

Problem: Is 2n+1 = Θ(2n)?

Solution: Designing novel algorithms requires cleverness and inspiration. However,
applying the Big Oh notation is best done by swallowing any creative instincts
you may have. All Big Oh problems can be correctly solved by going back to the
definition and working with that.

• Is 2n+1 = O(2n)? Well, f(n) = O(g(n)) iff (if and only if) there exists a
constant c such that for all sufficiently large n f(n) ≤ c · g(n). Is there? The
key observation is that 2n+1 = 2 · 2n, so 2 · 2n ≤ c · 2n for any c ≥ 2.

• Is 2n+1 = Ω(2n)? Go back to the definition. f(n) = Ω(g(n)) iff there exists
a constant c > 0 such that for all sufficiently large n f(n) ≥ c · g(n). This
would be satisfied for any 0 < c ≤ 2. Together the Big Oh and Ω bounds
imply 2n+1 = Θ(2n)

Stop and Think: Hip to the Squares?

Problem: Is (x + y)2 = O(x2 + y2).

Solution: Working with the Big Oh means going back to the definition at the
slightest sign of confusion. By definition, this expression is valid iff we can find
some c such that (x + y)2 ≤ c(x2 + y2).

My first move would be to expand the left side of the equation, i.e. (x + y)2 =
x2+2xy+y2. If the middle 2xy term wasn’t there, the inequality would clearly hold
for any c > 1. But it is there, so we need to relate the 2xy to x2+y2. What if x ≤ y?
Then 2xy ≤ 2y2 ≤ 2(x2 +y2). What if x ≥ y? Then 2xy ≤ 2x2 ≤ 2(x2 +y2). Either
way, we now can bound this middle term by two times the right-side function. This
means that (x + y)2 ≤ 3(x2 + y2), and so the result holds.

2.3 Growth Rates and Dominance Relations

With the Big Oh notation, we cavalierly discard the multiplicative constants. Thus,
the functions f(n) = 0.001n2 and g(n) = 1000n2 are treated identically, even
though g(n) is a million times larger than f(n) for all values of n.

38 2 . ALGORITHM ANALYSIS

n f(n) lg n n n lg n n2 2n n!
10 0.003 μs 0.01 μs 0.033 μs 0.1 μs 1 μs 3.63 ms
20 0.004 μs 0.02 μs 0.086 μs 0.4 μs 1 ms 77.1 years
30 0.005 μs 0.03 μs 0.147 μs 0.9 μs 1 sec 8.4 × 1015 yrs
40 0.005 μs 0.04 μs 0.213 μs 1.6 μs 18.3 min
50 0.006 μs 0.05 μs 0.282 μs 2.5 μs 13 days

100 0.007 μs 0.1 μs 0.644 μs 10 μs 4 × 1013 yrs
1,000 0.010 μs 1.00 μs 9.966 μs 1 ms
10,000 0.013 μs 10 μs 130 μs 100 ms
100,000 0.017 μs 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 μs 1 ms 19.93 ms 16.7 min
10,000,000 0.023 μs 0.01 sec 0.23 sec 1.16 days
100,000,000 0.027 μs 0.10 sec 2.66 sec 115.7 days
1,000,000,000 0.030 μs 1 sec 29.90 sec 31.7 years

Figure 2.4: Growth rates of common functions measured in nanoseconds

The reason why we are content with coarse Big Oh analysis is provided by
Figure 2.4, which shows the growth rate of several common time analysis functions.
In particular, it shows how long algorithms that use f(n) operations take to run
on a fast computer, where each operation takes one nanosecond (10−9 seconds).
The following conclusions can be drawn from this table:

• All such algorithms take roughly the same time for n = 10.

• Any algorithm with n! running time becomes useless for n ≥ 20.

• Algorithms whose running time is 2n have a greater operating range, but
become impractical for n > 40.

• Quadratic-time algorithms whose running time is n2 remain usable up to
about n = 10, 000, but quickly deteriorate with larger inputs. They are likely
to be hopeless for n > 1,000,000.

• Linear-time and n lg n algorithms remain practical on inputs of one billion
items.

• An O(lg n) algorithm hardly breaks a sweat for any imaginable value of n.

The bottom line is that even ignoring constant factors, we get an excellent idea
of whether a given algorithm is appropriate for a problem of a given size. An algo-
rithm whose running time is f(n) = n3 seconds will beat one whose running time is
g(n) = 1,000,000 · n2 seconds only when n < 1,000,000. Such enormous differences
in constant factors between algorithms occur far less frequently in practice than
large problems do.

2 .3 GROWTH RATES AND DOMINANCE RELATIONS 39

2.3.1 Dominance Relations

The Big Oh notation groups functions into a set of classes, such that all the func-
tions in a particular class are equivalent with respect to the Big Oh. Functions
f(n) = 0.34n and g(n) = 234,234n belong in the same class, namely those that are
order Θ(n). Further, when two functions f and g belong to different classes, they are
different with respect to our notation. Either f(n) = O(g(n)) or g(n) = O(f(n)),
but not both.

We say that a faster-growing function dominates a slower-growing one, just as
a faster-growing country eventually comes to dominate the laggard. When f and
g belong to different classes (i.e., f(n) �= Θ(g(n))), we say g dominates f when
f(n) = O(g(n)), sometimes written g � f .

The good news is that only a few function classes tend to occur in the course
of basic algorithm analysis. These suffice to cover almost all the algorithms we will
discuss in this text, and are listed in order of increasing dominance:

• Constant functions, f(n) = 1 – Such functions might measure the cost of
adding two numbers, printing out “The Star Spangled Banner,” or the growth
realized by functions such as f(n) = min(n, 100). In the big picture, there is
no dependence on the parameter n.

• Logarithmic functions, f(n) = log n – Logarithmic time-complexity shows up
in algorithms such as binary search. Such functions grow quite slowly as n
gets big, but faster than the constant function (which is standing still, after
all). Logarithms will be discussed in more detail in Section 2.6 (page 46)

• Linear functions, f(n) = n – Such functions measure the cost of looking at
each item once (or twice, or ten times) in an n-element array, say to identify
the biggest item, the smallest item, or compute the average value.

• Superlinear functions, f(n) = n lg n – This important class of functions arises
in such algorithms as Quicksort and Mergesort. They grow just a little faster
than linear (see Figure 2.4), just enough to be a different dominance class.

• Quadratic functions, f(n) = n2 – Such functions measure the cost of looking
at most or all pairs of items in an n-element universe. This arises in algorithms
such as insertion sort and selection sort.

• Cubic functions, f(n) = n3 – Such functions enumerate through all triples of
items in an n-element universe. These also arise in certain dynamic program-
ming algorithms developed in Chapter 8.

• Exponential functions, f(n) = cn for a given constant c > 1 – Functions like
2n arise when enumerating all subsets of n items. As we have seen, exponential
algorithms become useless fast, but not as fast as. . .

• Factorial functions, f(n) = n! – Functions like n! arise when generating all
permutations or orderings of n items.

40 2 . ALGORITHM ANALYSIS

The intricacies of dominance relations will be futher discussed in Section 2.9.2
(page 56). However, all you really need to understand is that:

n! � 2n � n3 � n2 � n log n � n � log n � 1

Take-Home Lesson: Although esoteric functions arise in advanced algorithm
analysis, a small variety of time complexities suffice and account for most
algorithms that are widely used in practice.

2.4 Working with the Big Oh

You learned how to do simplifications of algebraic expressions back in high school.
Working with the Big Oh requires dusting off these tools. Most of what you learned
there still holds in working with the Big Oh, but not everything.

2.4.1 Adding Functions

The sum of two functions is governed by the dominant one, namely:

O(f(n)) + O(g(n)) → O(max(f(n), g(n)))

Ω(f(n)) + Ω(g(n)) → Ω(max(f(n), g(n)))

Θ(f(n)) + Θ(g(n)) → Θ(max(f(n), g(n)))

This is very useful in simplifying expressions, since it implies that n3 + n2 +
n + 1 = O(n3). Everything is small potatoes besides the dominant term.

The intuition is as follows. At least half the bulk of f(n) + g(n) must come
from the larger value. The dominant function will, by definition, provide the larger
value as n → ∞. Thus, dropping the smaller function from consideration reduces
the value by at most a factor of 1/2, which is just a multiplicative constant. Suppose
f(n) = O(n2) and g(n) = O(n2). This implies that f(n) + g(n) = O(n2) as well.

2.4.2 Multiplying Functions

Multiplication is like repeated addition. Consider multiplication by any constant
c > 0, be it 1.02 or 1,000,000. Multiplying a function by a constant can not affect
its asymptotic behavior, because we can multiply the bounding constants in the
Big Oh analysis of c · f(n) by 1/c to give appropriate constants for the Big Oh
analysis of f(n). Thus:

O(c · f(n)) → O(f(n))

Ω(c · f(n)) → Ω(f(n))

2 .5 REASONING ABOUT EFFICIENCY 41

Θ(c · f(n)) → Θ(f(n))

Of course, c must be strictly positive (i.e., c > 0) to avoid any funny business,
since we can wipe out even the fastest growing function by multiplying it by zero.

On the other hand, when two functions in a product are increasing, both are
important. The function O(n! log n) dominates n! just as much as log n dominates
1. In general,

O(f(n)) ∗ O(g(n)) → O(f(n) ∗ g(n))

Ω(f(n)) ∗ Ω(g(n)) → Ω(f(n) ∗ g(n))

Θ(f(n)) ∗ Θ(g(n)) → Θ(f(n) ∗ g(n))

Stop and Think: Transitive Experience

Problem: Show that Big Oh relationships are transitive. That is, if f(n) = O(g(n))
and g(n) = O(h(n)), then f(n) = O(h(n)).

Solution: We always go back to the definition when working with the Big Oh. What
we need to show here is that f(n) ≤ c3h(n) for n > n3 given that f(n) ≤ c1g(n) and
g(n) ≤ c2h(n), for n > n1 and n > n2, respectively. Cascading these inequalities,
we get that

f(n) ≤ c1g(n) ≤ c1c2h(n)

for n > n3 = max(n1, n2).

2.5 Reasoning About Efficiency

Gross reasoning about an algorithm’s running time of is usually easy given a precise
written description of the algorithm. In this section, I will work through several
examples, perhaps in greater detail than necessary.

2.5.1 Selection Sort

Here we analyze the selection sort algorithm, which repeatedly identifies the small-
est remaining unsorted element and puts it at the end of the sorted portion of the
array. An animation of selection sort in action appears in Figure 2.5, and the code
is shown below:

42 2 . ALGORITHM ANALYSIS

S E L E C T I O N S O R T
C E L E S T I O N S O R TC E L E S T I O N S O R T
C E L E S T I O N S O R T
C E E L S T I O N S O R TC E E L S T I O N S O R T
C E E I S T L O N S O R T
C E E I L T S O N S O R T
C E E I L N S O T S O R TC E E I L N S O T S O R T
C E E I L N O S T S O R TC E E I L N O S T S O R T
C E E I L N O O T S S R T
C E E I L N O O R S S T TC E E I L N O O R S S T T
C E E I L N O O R S S T T
C E E I L N O O R S S T TC E E I L N O O R S S T T
C E E I L N O O R S S T TC E E I L N O O R S S T T
C E E I L N O O R S S T T

Figure 2.5: Animation of selection sort in action

selection_sort(int s[], int n)
{

int i,j; /* counters */
int min; /* index of minimum */

for (i=0; i<n; i++) {
min=i;
for (j=i+1; j<n; j++)

if (s[j] < s[min]) min=j;
swap(&s[i],&s[min]);

}
}

The outer loop goes around n times. The nested inner loop goes around n−i−1
times, where i is the index of the outer loop. The exact number of times the if
statement is executed is given by:

S(n) =
n−1∑
i=0

n−1∑
j=i+1

1 =
n−1∑
i=0

n − i − 1

What this sum is doing is adding up the integers in decreasing order starting from
n − 1, i.e.

S(n) = (n − 1) + (n − 2) + (n − 3) + . . . + 2 + 1

How can we reason about such a formula? We must solve the summation formula
using the techniques of Section 1.3.5 (page 17) to get an exact value. But, with
the Big Oh we are only interested in the order of the expression. One way to think
about it is that we are adding up n − 1 terms, whose average value is about n/2.
This yields S(n) ≈ n(n − 1)/2.

2 .5 REASONING ABOUT EFFICIENCY 43

2.5.2 Insertion Sort

A basic rule of thumb in Big Oh analysis is that worst-case running time follows
from multiplying the largest number of times each nested loop can iterate. Consider
the insertion sort algorithm presented on page 4, whose inner loops are repeated
here:

for (i=1; i<n; i++) {
j=i;
while ((j>0) && (s[j] < s[j-1])) {

swap(&s[j],&s[j-1]);
j = j-1;

}
}

How often does the inner while loop iterate? This is tricky because there are
two different stopping conditions: one to prevent us from running off the bounds
of the array (j > 0) and the other to mark when the element finds its proper place
in sorted order (s[j] < s[j − 1]). Since worst-case analysis seeks an upper bound
on the running time, we ignore the early termination and assume that this loop
always goes around i times. In fact, we can assume it always goes around n times
since i < n. Since the outer loop goes around n times, insertion sort must be a
quadratic-time algorithm, i.e. O(n2).

This crude “round it up” analysis always does the job, in that the Big Oh
running time bound you get will always be correct. Occasionally, it might be too
generous, meaning the actual worst case time might be of a lower order than implied
by such analysis. Still, I strongly encourage this kind of reasoning as a basis for
simple algorithm analysis.

2.5.3 String Pattern Matching

Pattern matching is the most fundamental algorithmic operation on text strings.
This algorithm implements the find command available in any web browser or text
editor:

Problem: Substring Pattern Matching
Input: A text string t and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so where?

Another way to think about it is in terms of upper and lower bounds. We have
n terms at most, each of which is at most n−1. Thus, S(n) ≤ n(n−1) = O(n2). We
have n/2 terms each that are bigger than n/2. Thus S(n) ≥ (n/2)×(n/2) = Ω(n2).
Together, this tells us that the running time is Θ(n2), meaning that selection sort
is quadratic.

44 2 . ALGORITHM ANALYSIS

a a b a b b a

 a
 a b b a

 a b b
a b

Figure 2.6: Searching for the substring abba in the text aababba.

Perhaps you are interested finding where “Skiena” appears in a given news
article (well, I would be interested in such a thing). This is an instance of string
pattern matching with t as the news article and p=“Skiena.”

There is a fairly straightforward algorithm for string pattern matching that
considers the possibility that p may start at each possible position in t and then
tests if this is so.

int findmatch(char *p, char *t)
{

int i,j; /* counters */
int m, n; /* string lengths */

m = strlen(p);
n = strlen(t);

for (i=0; i<=(n-m); i=i+1) {
j=0;
while ((j<m) && (t[i+j]==p[j]))

j = j+1;
if (j == m) return(i);

}

return(-1);
}

What is the worst-case running time of these two nested loops? The inner while
loop goes around at most m times, and potentially far less when the pattern match
fails. This, plus two other statements, lies within the outer for loop. The outer loop
goes around at most n−m times, since no complete alignment is possible once we
get too far to the right of the text. The time complexity of nested loops multiplies,
so this gives a worst-case running time of O((n − m)(m + 2)).

We did not count the time it takes to compute the length of the strings using
the function strlen. Since the implementation of strlen is not given, we must guess
how long it should take. If we explicitly count the number of characters until we

2 .5 REASONING ABOUT EFFICIENCY 45

hit the end of the string; this would take time linear in the length of the string.
This suggests that the running time should be O(n + m + (n − m)(m + 2)).

Let’s use our knowledge of the Big Oh to simplify things. Since m + 2 = Θ(m),
the “+2” isn’t interesting, so we are left with O(n + m + (n − m)m). Multiplying
this out yields O(n + m + nm − m2), which still seems kind of ugly.

However, in any interesting problem we know that n ≥ m, since it is impossible
to have p as a substring of t for any pattern longer than the text itself. One
consequence of this is that n + m ≤ 2n = Θ(n). Thus our worst-case running time
simplifies further to O(n + nm − m2).

Two more observations and we are done. First, note that n ≤ nm, since m ≥ 1
in any interesting pattern. Thus n + nm = Θ(nm), and we can drop the additive
n, simplifying our analysis to O(nm − m2).

Finally, observe that the −m2 term is negative, and thus only serves to lower
the value within. Since the Big Oh gives an upper bound, we can drop any negative
term without invalidating the upper bound. That n ≥ m implies that mn ≥ m2,
so the negative term is not big enough to cancel any other term which is left. Thus
we can simply express the worst-case running time of this algorithm as O(nm).

After you get enough experience, you will be able to do such an algorithm
analysis in your head without even writing the algorithm down. After all, algorithm
design for a given task involves mentally rifling through different possibilities and
selecting the best approach. This kind of fluency comes with practice, but if you
are confused about why a given algorithm runs in O(f(n)) time, start by writing
it out carefully and then employ the reasoning we used in this section.

2.5.4 Matrix Multiplication

Nested summations often arise in the analysis of algorithms with nested loops.
Consider the problem of matrix multiplication:

Problem: Matrix Multiplication
Input: Two matrices, A (of dimension x × y) and B (dimension y × z).
Output: An x × z matrix C where C[i][j] is the dot product of the ith row of A
and the jth column of B.

Matrix multiplication is a fundamental operation in linear algebra, presented
with an example in catalog in Section 13.3 (page 401). That said, the elementary
algorithm for matrix multiplication is implemented as a tight product of three
nested loops:

for (i=1; i<=x; i++)

C[i][j] = 0;

C[i][j] += A[i][k] * B[k][j];
}

for (j=1; j<=z; j++) {

for (k=1; k<=y; k++)

46 2 . ALGORITHM ANALYSIS

How can we analyze the time complexity of this algorithm? The number of
multiplications M(x, y, z) is given by the following summation:

M(x, y, z) =
x∑

i=1

y∑
j=1

z∑
k=1

1

Sums get evaluated from the right inward. The sum of z ones is z, so

M(x, y, z) =
x∑

i=1

y∑
j=1

z

The sum of y zs is just as simple, yz, so

M(x, y, z) =
x∑

i=1

yz

Finally, the sum of x yzs is xyz.
Thus the running of this matrix multiplication algorithm is O(xyz). If we con-

sider the common case where all three dimensions are the same, this becomes

2.6 Logarithms and Their Applications

Logarithm is an anagram of algorithm, but that’s not why we need to know what
logarithms are. You’ve seen the button on your calculator but may have forgotten
why it is there. A logarithm is simply an inverse exponential function. Saying bx = y
is equivalent to saying that x = logb y. Further, this definition is the same as saying
blogb y = y.

Exponential functions grow at a distressingly fast rate, as anyone who has
ever tried to pay off a credit card balance understands. Thus, inverse exponen-
tial functions—i.e. logarithms—grow refreshingly slowly. Logarithms arise in any
process where things are repeatedly halved. We now look at several examples.

2.6.1 Logarithms and Binary Search

Binary search is a good example of an O(log n) algorithm. To locate a particular
person p in a telephone book containing n names, you start by comparing p against
the middle, or (n/2)nd name, say Monroe, Marilyn. Regardless of whether p belongs
before this middle name (Dean, James) or after it (Presley, Elvis), after only one
comparison you can discard one half of all the names in the book. The number of
steps the algorithm takes equals the number of times we can halve n until only one
name is left. By definition, this is exactly log2 n. Thus, twenty comparisons suffice
to find any name in the million-name Manhattan phone book!

Binary search is one of the most powerful ideas in algorithm design. This power
becomes apparent if we imagine being forced to live in a world with only unsorted

O(n3)—i.e., a cubic algorithm.

2 .6 LOGARITHMS AND THEIR APPLICATIONS 47

telephone books. Figure 2.4 shows that O(log n) algorithms are fast enough to be
used on problem instances of essentially unlimited size.

2.6.2 Logarithms and Trees

A binary tree of height 1 can have up to 2 leaf nodes, while a tree of height two
can have up to four leaves. What is the height h of a rooted binary tree with n leaf
nodes? Note that the number of leaves doubles every time we increase the height
by one. To account for n leaves, n = 2h which implies that h = log2 n.

What if we generalize to trees that have d children, where d = 2 for the case
of binary trees? A tree of height 1 can have up to d leaf nodes, while one of height
two can have up to d2 leaves. The number of possible leaves multiplies by d every
time we increase the height by one, so to account for n leaves, n = dh which implies
that h = logd n, as shown in Figure 2.7.

The punch line is that very short trees can have very many leaves, which is
the main reason why binary trees prove fundamental to the design of fast data
structures.

2.6.3 Logarithms and Bits

There are two bit patterns of length 1 (0 and 1) and four of length 2 (00, 01, 10, and
11). How many bits w do we need to represent any one of n different possibilities,
be it one of n items or the integers from 1 to n?

The key observation is that there must be at least n different bit patterns of
length w. Since the number of different bit patterns doubles as you add each bit,
we need at least w bits where 2w = n—i.e., we need w = log2 n bits.

2.6.4 Logarithms and Multiplication

Logarithms were particularly important in the days before pocket calculators. They
provided the easiest way to multiply big numbers by hand, either implicitly using
a slide rule or explicitly by using a book of logarithms.

Figure 2.7: A height h tree with d children per node has dh leaves. Here h = 2 and d = 3

48 2 . ALGORITHM ANALYSIS

Logarithms are still useful for multiplication, particularly for exponentiation.

the logs. A direct consequence of this is

loga nb = b · loga n

So how can we compute ab for any a and b using the exp(x) and ln(x) functions
on your calculator, where exp(x) = ex and ln(x) = loge(x)? We know

ab = exp(ln(ab)) = exp(b ln a)

so the problem is reduced to one multiplication plus one call to each of these
functions.

2.6.5 Fast Exponentiation

Suppose that we need to exactly compute the value of an for some reasonably
large n. Such problems occur in primality testing for cryptography, as discussed in
Section 13.8 (page 420). Issues of numerical precision prevent us from applying the
formula above.

The simplest algorithm performs n − 1 multiplications, by computing a × a ×
. . . × a. However, we can do better by observing that n = 	n/2
 + �n/2�. If n is
even, then an = (an/2)2. If n is odd, then an = a(a�n/2�)2. In either case, we have
halved the size of our exponent at the cost of, at most, two multiplications, so
O(lg n) multiplications suffice to compute the final value.

function power(a, n)
if (n = 0) return(1)
x = power(a, 	n/2
)
if (n is even) then return(x2)

else return(a × x2)

This simple algorithm illustrates an important principle of divide and conquer.
It always pays to divide a job as evenly as possible. This principle applies to real
life as well. When n is not a power of two, the problem cannot always be divided
perfectly evenly, but a difference of one element between the two sides cannot cause
any serious imbalance.

2.6.6 Logarithms and Summations

The Harmonic numbers arise as a special case of arithmetic progression, namely
H(n) = S(n,−1). They reflect the sum of the progression of simple reciprocals,
namely,

H(n) =
n∑

i=1

1/i ∼ ln n

Recall that loga(xy) = loga(x) + loga(y); i.e., the log of a product is the sum of

2 .6 LOGARITHMS AND THEIR APPLICATIONS 49

Loss (apply the greatest) Increase in level

(A) $2,000 or less no increase

(B) More than $2,000 add 1

(C) More than $5,000 add 2

(D) More than $10,000 add 3

(E) More than $20,000 add 4

(F) More than $40,000 add 5

(G) More than $70,000 add 6

(H) More than $120,000 add 7

(I) More than $200,000 add 8

(J) More than $350,000 add 9

(K) More than $500,000 add 10

(L) More than $800,000 add 11

(M) More than $1,500,000 add 12

(N) More than $2,500,000 add 13

(O) More than $5,000,000 add 14

(P) More than $10,000,000 add 15

(Q) More than $20,000,000 add 16

(R) More than $40,000,000 add 17

add 18

Figure 2.8: The Federal Sentencing Guidelines for fraud

The Harmonic numbers prove important because they usually explain “where
the log comes from” when one magically pops out from algebraic manipulation. For
example, the key to analyzing the average case complexity of Quicksort is the sum-
mation S(n) = n

∑n
i=1 1/i. Employing the Harmonic number identity immediately

reduces this to Θ(n log n).

2.6.7 Logarithms and Criminal Justice

Figure 2.8 will be our final example of logarithms in action. This table appears in
the Federal Sentencing Guidelines, used by courts throughout the United States.
These guidelines are an attempt to standardize criminal sentences, so that a felon
convicted of a crime before one judge receives the same sentence that they would
before a different judge. To accomplish this, the judges have prepared an intricate
point function to score the depravity of each crime and map it to time-to-serve.

Figure 2.8 gives the actual point function for fraud—a table mapping dollars
stolen to points. Notice that the punishment increases by one level each time the
amount of money stolen roughly doubles. That means that the level of punishment
(which maps roughly linearly to the amount of time served) grows logarithmically
with the amount of money stolen.

(S) More than $80,000,000

50 2 . ALGORITHM ANALYSIS

Think for a moment about the consequences of this. Many a corrupt CEO
certainly has. It means that your total sentence grows extremely slowly with the
amount of money you steal. Knocking off five liquor stores for $10,000 each will
get you more time than embezzling $1,000,000 once. The corresponding benefit of
stealing really large amounts of money is even greater. The moral of logarithmic
growth is clear: “If you are gonna do the crime, make it worth the time!”

Take-Home Lesson: Logarithms arise whenever things are repeatedly halved
or doubled.

2.7 Properties of Logarithms

As we have seen, stating bx = y is equivalent to saying that x = logb y. The b term
is known as the base of the logarithm. Three bases are of particular importance for
mathematical and historical reasons:

• Base b = 2 – The binary logarithm, usually denoted lg x, is a base 2 logarithm.
We have seen how this base arises whenever repeated halving (i.e., binary
search) or doubling (i.e., nodes in trees) occurs. Most algorithmic applications
of logarithms imply binary logarithms.

• Base b = e – The natural log, usually denoted lnx, is a base e = 2.71828 . . .
logarithm. The inverse of lnx is the exponential function exp(x) = ex on your
calculator. Thus, composing these functions gives us

exp(ln x) = x

• Base b = 10 – Less common today is the base-10 or common logarithm,
usually denoted as log x. This base was employed in slide rules and logarithm
books in the days before pocket calculators.

We have already seen one important property of logarithms, namely that

loga(xy) = loga(x) + loga(y)

The other important fact to remember is that it is easy to convert a logarithm
from one base to another. This is a consequence of the formula:

loga b =
logc b

logc a

Two implications of these properties of logarithms are important to appreciate
from an algorithmic perspective:

Thus, changing the base of log b from base-a to base-c simply involves multiplying
by logc a. It is easy to convert a common log function to a natural log function,
and vice versa.

2 .8 WAR STORY: MYSTERY OF THE PYRAMIDS 51

• The base of the logarithm has no real impact on the growth rate- Compare
the following three values: log2(1, 000, 000) = 19.9316, log3(1, 000, 000) =
12.5754, and log100(1, 000, 000) = 3. A big change in the base of the logarithm
produces little difference in the value of the log. Changing the base of the
log from a to c involves dividing by logc a. This conversion factor is lost to
the Big Oh notation whenever a and c are constants. Thus we are usually
justified in ignoring the base of the logarithm when analyzing algorithms.

• Logarithms cut any function down to size- The growth rate of the logarithm
of any polynomial function is O(lg n). This follows because

loga nb = b · loga n

The power of binary search on a wide range of problems is a consequence
of this observation. Note that doing a binary search on a sorted array of
n2 things requires only twice as many comparisons as a binary search on n
things.

Logarithms efficiently cut any function down to size. It is hard to do arith-
metic on factorials except for logarithms, since

n! = Πn
i=1i → log n! =

n∑
i=1

log i = Θ(n log n)

provides another way for logarithms to pop up in algorithm analysis.

Stop and Think: Importance of an Even Split

Problem: How many queries does binary search take on the million-name Manhat-
tan phone book if each split was 1/3 to 2/3 instead of 1/2 to 1/2?

Solution: When performing binary searches in a telephone book, how important
is it that each query split the book exactly in half? Not much. For the Manhattan
telephone book, we now use log3/2(1, 000, 000) ≈ 35 queries in the worst case, not
a significant change from log2(1, 000, 000) ≈ 20. The power of binary search comes
from its logarithmic complexity, not the base of the log.

2.8 War Story: Mystery of the Pyramids

That look in his eyes should have warned me even before he started talking.
“We want to use a parallel supercomputer for a numerical calculation up to

1,000,000,000, but we need a faster algorithm to do it.”

52 2 . ALGORITHM ANALYSIS

I’d seen that distant look before. Eyes dulled from too much exposure to the raw
horsepower of supercomputers—machines so fast that brute force seemed to elim-
inate the need for clever algorithms; at least until the problems got hard enough.

“I am working with a Nobel prize winner to use a computer on a famous problem
in number theory. Are you familiar with Waring’s problem?”

I knew some number theory. “Sure. Waring’s problem asks whether every integer
can be expressed at least one way as the sum of at most four integer squares. For
example, 78 = 82 + 32 + 22 + 12 = 72 + 52 + 22. I remember proving that four
squares suffice to represent any integer in my undergraduate number theory class.
Yes, it’s a famous problem but one that got solved about 200 years ago.”

“No, we are interested in a different version of Waring’s problem. A pyramidal
number is a number of the form (m3 − m)/6, for m ≥ 2. Thus the first several
pyramidal numbers are 1, 4, 10, 20, 35, 56, 84, 120, and 165. The conjecture since
1928 is that every integer can be represented by the sum of at most five such
pyramidal numbers. We want to use a supercomputer to prove this conjecture on
all numbers from 1 to 1,000,000,000.”

“Doing a billion of anything will take a substantial amount of time,” I warned.
“The time you spend to compute the minimum representation of each number will
be critical, because you are going to do it one billion times. Have you thought
about what kind of an algorithm you are going to use?”

“We have already written our program and run it on a parallel supercomputer.
It works very fast on smaller numbers. Still, it takes much too much time as soon
as we get to 100,000 or so.”

Terrific, I thought. Our supercomputer junkie had discovered asymptotic
growth. No doubt his algorithm ran in something like quadratic time, and he got
burned as soon as n got large.

“We need a faster program in order to get to one billion. Can you help us? Of
course, we can run it on our parallel supercomputer when you are ready.”

I am a sucker for this kind of challenge, finding fast algorithms to speed up
programs. I agreed to think about it and got down to work.

I started by looking at the program that the other guy had written. He had
built an array of all the Θ(n1/3) pyramidal numbers from 1 to n inclusive.2 To
test each number k in this range, he did a brute force test to establish whether it
was the sum of two pyramidal numbers. If not, the program tested whether it was
the sum of three of them, then four, and finally five, until it first got an answer.
About 45% of the integers are expressible as the sum of three pyramidal numbers.
Most of the remaining 55% require the sum of four, and usually each of these can
be represented in many different ways. Only 241 integers are known to require the
sum of five pyramidal numbers, the largest being 343,867. For about half of the n
numbers, this algorithm presumably went through all of the three-tests and at least

2Why n1/3? Recall that pyramidal numbers are of the form (m3 − m)/6. The largest m such that the
resulting number is at most n is roughly 3√6n, so there are Θ(n1/3) such numbers.

2 .8 WAR STORY: MYSTERY OF THE PYRAMIDS 53

some of the four-tests before terminating. Thus, the total time for this algorithm
would be at least O(n × (n1/3)

3
) = O(n2) time, where n = 1,000,000,000. No

wonder his program cried “Uncle.”
Anything that was going to do significantly better on a problem this large had to

avoid explicitly testing all triples. For each value of k, we were seeking the smallest
set of pyramidal numbers that add up to exactly to k. This problem is called the
knapsack problem, and is discussed in Section 13.10 (page 427). In our case, the
weights are the set of pyramidal numbers no greater than n, with an additional
constraint that the knapsack holds exactly k items.

A standard approach to solving knapsack precomputes the sum of smaller sub-
sets of the items for use in computing larger subsets. If we have a table of all sums
of two numbers and want to know whether k is expressible as the sum of three
numbers, we can ask whether k is expressible as the sum of a single number plus
a number in this two-table.

Therefore I needed a table of all integers less than n that can be expressed as
the sum of two of the 1,818 pyramidal numbers less than 1,000,000,000. There can
be at most 1, 8182 = 3,305,124 of them. Actually, there are only about half this
many after we eliminate duplicates and any sum bigger than our target. Building
a sorted array storing these numbers would be no big deal. Let’s call this sorted
data structure of all pair-sums the two-table.

To find the minimum decomposition for a given k, I would first check whether
it was one of the 1,818 pyramidal numbers. If not, I would then check whether
k was in the sorted table of the sums of two pyramidal numbers. To see whether
k was expressible as the sum of three such numbers, all I had to do was check
whether k − p[i] was in the two-table for 1 ≤ i ≤ 1, 818. This could be done
quickly using binary search. To see whether k was expressible as the sum of four
pyramidal numbers, I had to check whether k− two[i] was in the two-table for any
1 ≤ i ≤ |two|. However, since almost every k was expressible in many ways as the
sum of four pyramidal numbers, this test would terminate quickly, and the total
time taken would be dominated by the cost of the threes. Testing whether k was
the sum of three pyramidal numbers would take O(n1/3 lg n). Running this on each
of the n integers gives an O(n4/3 lg n) algorithm for the complete job. Comparing
this to his O(n2) algorithm for n = 1,000,000,000 suggested that my algorithm was
a cool 30,000 times faster than his original!

My first attempt to code this solved up to n = 1, 000, 000 on my ancient Sparc
ELC in about 20 minutes. From here, I experimented with different data structures
to represent the sets of numbers and different algorithms to search these tables. I
tried using hash tables and bit vectors instead of sorted arrays, and experimented
with variants of binary search such as interpolation search (see Section 14.2 (page
441)). My reward for this work was solving up to n =1,000,000 in under three
minutes, a factor of six improvement over my original program.

With the real thinking done, I worked to tweak a little more performance out of
the program. I avoided doing a sum-of-four computation on any k when k − 1 was

54 2 . ALGORITHM ANALYSIS

the sum-of-three, since 1 is a pyramidal number, saving about 10% of the total run
time using this trick alone. Finally, I got out my profiler and tried some low-level
tricks to squeeze a little more performance out of the code. For example, I saved
another 10% by replacing a single procedure call with in line code.

At this point, I turned the code over to the supercomputer guy. What he did
with it is a depressing tale, which is reported in Section 7.10 (page 268).

In writing up this war story, I went back to rerun my program more than
ten years later. On my desktop SunBlade 150, getting to 1,000,000 now took 27.0
seconds using the gcc compiler without turning on any compiler optimization. With
Level 4 optimization, the job ran in just 14.0 seconds—quite a tribute to the quality
of the optimizer. The run time on my desktop machine improved by a factor of
about three over the four-year period prior to my first edition of this book, with
an additional 5.3 times over the last 11 years. These speedups are probably typical
for most desktops.

The primary lesson of this war story is to show the enormous potential for
algorithmic speedups, as opposed to the fairly limited speedup obtainable via more
expensive hardware. I sped his program up by about 30,000 times. His million-
dollar computer had 16 processors, each reportedly five times faster on integer
computations than the $3,000 machine on my desk. That gave a maximum potential
speedup of less than 100 times. Clearly, the algorithmic improvement was the big
winner here, as it is certain to be in any sufficiently large computation.

2.9 Advanced Analysis (*)

Ideally, each of us would be fluent in working with the mathematical techniques
of asymptotic analysis. And ideally, each of us would be rich and good looking as
well.

In this section I will survey the major techniques and functions employed in
advanced algorithm analysis. I consider this optional material—it will not be used
elsewhere in the textbook section of this book. That said, it will make some of the
complexity functions reported in the Hitchhiker’s Guide far less mysterious.

2.9.1 Esoteric Functions

The bread-and-butter classes of complexity functions were presented in Section
2.3.1 (page 39). More esoteric functions also make appearances in advanced algo-
rithm analysis. Although we will not see them much in this book, it is still good
business to know what they mean and where they come from:

The exact definition of this function and why it arises will not be discussed
further. It is sufficient to think of it as geek talk for the slowest-growing

• Inverse Ackermann’s function f(n) = α(n) – This function arises in the
detailed analysis of several algorithms, most notably the Union-Find data
structure discussed in Section 6.1.3 (page 198).

2 .9 ADVANCED ANALYSIS (*) 55

complexity function. Unlike the constant function f(n) = 1, it eventually
gets to infinity as n → ∞, but it certainly takes its time about it. The value
of α(n) < 5 for any value of n that can be written in this physical universe.

• f(n) = log log n – The “log log” function is just that—the logarithm of the
logarithm of n. One natural example of how it might arise is doing a binary
search on a sorted array of only lg n items.

• f(n) = log n/ log log n – This function grows a little slower than log n because
it is divided by an even slower growing function.

To see where this arises, consider an n-leaf rooted tree of degree d. For binary
trees, i.e. when d = 2, the height h is given

n = 2h → h = lg n

by taking the logarithm of both sides of the equation. Now consider the height
of such a tree when the degree d = log n. Then

n = (log n)h → h = log n/ log log n

• f(n) = log2 n – This is the product of log functions—i.e., (log n)× (log n). It
might arise if we wanted to count the bits looked at in doing a binary search
on n items, each of which was an integer from 1 to (say) n2. Each such integer
requires a lg(n2) = 2 lg n bit representation, and we look at lg n of them, for
a total of 2 lg2 n bits.

The “log squared” function typically arises in the design of intricate nested
data structures, where each node in (say) a binary tree represents another
data structure, perhaps ordered on a different key.

• f(n) =
√

n – The square root is not so esoteric, but represents the class of
“sublinear polynomials” since

√
n = n1/2. Such functions arise in building

d-dimensional grids that contain n points. A
√

n × √
n square has area n,

and an n1/3 × n1/3 × n1/3 cube has volume n. In general, a d-dimensional
hypercube of length n1/d on each side has volume d.

• f(n) = n(1+ε) – Epsilon (ε) is the mathematical symbol to denote a constant
that can be made arbitrarily small but never quite goes away.

It arises in the following way. Suppose I design an algorithm that runs in
2cn(1+1/c) time, and I get to pick whichever c I want. For c = 2, this is 4n3/2

or O(n3/2). For c = 3, this is 8n4/3 or O(n4/3), which is better. Indeed, the
exponent keeps getting better the larger I make c.

The problem is that I cannot make c arbitrarily large before the 2c term
begins to dominate. Instead, we report this algorithm as running in O(n1+ε),
and leave the best value of ε to the beholder.

56 2 . ALGORITHM ANALYSIS

2.9.2 Limits and Dominance Relations

The dominance relation between functions is a consequence of the theory of lim-
its, which you may recall from Calculus. We say that f(n) dominates g(n) if
limn→∞ g(n)/f(n) = 0.

Let’s see this definition in action. Suppose f(n) = 2n2 and g(n) = n2. Clearly
f(n) > g(n) for all n, but it does not dominate since

lim
n→∞ g(n)/f(n) = lim

n→∞n2/2n2 = lim
n→∞ 1/2 �= 0

This is to be expected because both functions are in the class Θ(n2). What about
f(n) = n3 and g(n) = n2? Since

lim
n→∞ g(n)/f(n) = lim

n→∞n2/n3 = lim
n→∞ 1/n = 0

the higher-degree polynomial dominates. This is true for any two polynomials,
namely that na dominates nb if a > b since

lim
n→∞nb/na = lim

n→∞nb−a → 0

Thus n1.2 dominates n1.1999999.
Now consider two exponential functions, say f(n) = 3n and g(n) = 2n. Since

lim
n→∞ g(n)/f(n) = 2n/3n = lim

n→∞(2/3)n = 0

the exponential with the higher base dominates.
Our ability to prove dominance relations from scratch depends upon our ability

to prove limits. Let’s look at one important pair of functions. Any polynomial (say
f(n) = nε) dominates logarithmic functions (say g(n) = lg n). Since n = 2lg n,

f(n) = (2lg n)ε = 2ε lg n

Now consider

lim
n→∞ g(n)/f(n) = lg n/2ε lg n

In fact, this does go to 0 as n → ∞.

Take-Home Lesson: By interleaving the functions here with those of Section
2.3.1 (page 39), we see where everything fits into the dominance pecking order:

n! � cn � n3 � n2 � n1+ε � n log n � n � √
n �

log2 n � log n � log n/ log log n � log log n � α(n) � 1

Chapter Notes

Most other algorithm texts devote considerably more efforts to the formal analysis
of algorithms than we have here, and so we refer the theoretically-inclined reader

2 .10 EXERCISES 57

elsewhere for more depth. Algorithm texts more heavily stressing analysis include
[CLRS01, KT06].

The book Concrete Mathematics by Knuth, Graham, and Patashnik [GKP89]
offers an interesting and thorough presentation of mathematics for the analysis of
algorithms. Niven and Zuckerman [NZ80] is an nice introduction to number theory,
including Waring’s problem, discussed in the war story.

The notion of dominance also gives rise to the “Little Oh” notation. We say that
f(n) = o(g(n)) iff g(n) dominates f(n). Among other things, the Little Oh proves
useful for asking questions. Asking for an o(n2) algorithm means you want one
that is better than quadratic in the worst case—and means you would be willing
to settle for O(n1.999 log2 n).

2.10 Exercises

Program Analysis

2-1. [3] What value is returned by the following function? Express your answer as a
function of n. Give the worst-case running time using the Big Oh notation.

function mystery(n)

r := 0

for i := 1 to n − 1 do

for j := i + 1 to n do

for k := 1 to j do

r := r + 1

return(r)

2-2. [3] What value is returned by the following function? Express your answer as a
function of n. Give the worst-case running time using Big Oh notation.

function pesky(n)

r := 0

for i := 1 to n do

for j := 1 to i do

for k := j to i + j do

r := r + 1

return(r)

2-3. [5] What value is returned by the following function? Express your answer as a
function of n. Give the worst-case running time using Big Oh notation.

function prestiferous(n)

r := 0

for i := 1 to n do

for j := 1 to i do

for k := j to i + j do

for l := 1 to i + j − k do

58 2 . ALGORITHM ANALYSIS

r := r + 1

return(r)

2-4. [8] What value is returned by the following function? Express your answer as a
function of n. Give the worst-case running time using Big Oh notation.

function conundrum(n)

r := 0

for i := 1 to n do

for j := i + 1 to n do

for k := i + j − 1 to n do

r := r + 1

return(r)

2-5. [5] Suppose the following algorithm is used to evaluate the polynomial

p(x) = anxn + an−1x
n−1 + . . . + a1x + a0

p := a0;

xpower := 1;

for i := 1 to n do

xpower := x ∗ xpower;

p := p + ai ∗ xpower

end

(a) How many multiplications are done in the worst-case? How many additions?

(b) How many multiplications are done on the average?

(c) Can you improve this algorithm?

2-6. [3] Prove that the following algorithm for computing the maximum value in an
array A[1..n] is correct.

function max(A)

m := A[1]

for i := 2 to n do

if A[i] > m then m := A[i]

return (m)

Big Oh

2-7. [3] True or False?

(a) Is 2n+1 = O(2n)?

(b) Is 22n = O(2n)?

2-8. [3] For each of the following pairs of functions, either f(n) is in O(g(n)), f(n) is
in Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship is correct and briefly
explain why.

(a) f(n) = log n2; g(n) = log n + 5

2 .10 EXERCISES 59

(b) f(n) =
√

n; g(n) = log n2

(c) f(n) = log2 n; g(n) = log n

(d) f(n) = n; g(n) = log2 n

(e) f(n) = n log n + n; g(n) = log n

(f) f(n) = 10; g(n) = log 10

(g) f(n) = 2n; g(n) = 10n2

(h) f(n) = 2n; g(n) = 3n

2-9. [3] For each of the following pairs of functions f(n) and g(n), determine whether
f(n) = O(g(n)), g(n) = O(f(n)), or both.

(a) f(n) = (n2 − n)/2, g(n) = 6n

(b) f(n) = n + 2
√

n, g(n) = n2

(c) f(n) = n log n, g(n) = n
√

n/2

(d) f(n) = n + log n, g(n) =
√

n

(e) f(n) = 2(log n)2, g(n) = log n + 1

(f) f(n) = 4n log n + n, g(n) = (n2 − n)/2

2-10. [3] Prove that n3 − 3n2 − n + 1 = Θ(n3).

2-11. [3] Prove that n2 = O(2n).

2-12. [3] For each of the following pairs of functions f(n) and g(n), give an appropriate
positive constant c such that f(n) ≤ c · g(n) for all n > 1.

(a) f(n) = n2 + n + 1, g(n) = 2n3

(b) f(n) = n
√

n + n2, g(n) = n2

(c) f(n) = n2 − n + 1, g(n) = n2/2

2-13. [3] Prove that if f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) + f2(n) =
O(g1(n) + g2(n)).

2-14. [3] Prove that if f1(N) = Ω(g1(n)) and f2(n) = Ω(g2(n)), then f1(n) + f2(n) =
Ω(g1(n) + g2(n)).

2-15. [3] Prove that if f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) · f2(n) =
O(g1(n) · g2(n))

2-16. [5] Prove for all k ≥ 1 and all sets of constants {ak, ak−1, . . . , a1, a0} ∈ R,

aknk + ak−1n
k−1 + + a1n + a0 = O(nk)

2-17. [5] Show that for any real constants a and b, b > 0

(n + a)b = Θ(nb)

2-18. [5] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

60 2 . ALGORITHM ANALYSIS

n 2n n lg n ln n
n − n3 + 7n5 lg n

√
n en

n2 + lg n n2 2n−1 lg lg n
n3 (lg n)2 n! n1+ε where 0 < ε < 1

2-19. [5] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

√
n n 2n

n log n n − n3 + 7n5 n2 + log n
n2 n3 log n

n
1
3 + log n (log n)2 n!

ln n n
log n

log log n

(1/3)n (3/2)n 6

2-20. [5] Find two functions f(n) and g(n) that satisfy the following relationship. If no
such f and g exist, write “None.”

(a) f(n) = o(g(n)) and f(n) �= Θ(g(n))

(b) f(n) = Θ(g(n)) and f(n) = o(g(n))

(c) f(n) = Θ(g(n)) and f(n) �= O(g(n))

(d) f(n) = Ω(g(n)) and f(n) �= O(g(n))

2-21. [5] True or False?

(a) 2n2 + 1 = O(n2)

(b)
√

n = O(log n)

(c) log n = O(
√

n)

(d) n2(1 +
√

n) = O(n2 log n)

(e) 3n2 +
√

n = O(n2)

(f)
√

n log n = O(n)

(g) log n = O(n−1/2)

2-22. [5] For each of the following pairs of functions f(n) and g(n), state whether f(n) =
O(g(n)), f(n) = Ω(g(n)), f(n) = Θ(g(n)), or none of the above.

(a) f(n) = n2 + 3n + 4, g(n) = 6n + 7

(b) f(n) = n
√

n, g(n) = n2 − n

(c) f(n) = 2n − n2, g(n) = n4 + n2

2-23. [3] For each of these questions, briefly explain your answer.

(a) If I prove that an algorithm takes O(n2) worst-case time, is it possible that it
takes O(n) on some inputs?

(b) If I prove that an algorithm takes O(n2) worst-case time, is it possible that it
takes O(n) on all inputs?

(c) If I prove that an algorithm takes Θ(n2) worst-case time, is it possible that it
takes O(n) on some inputs?

2 .10 EXERCISES 61

(d) If I prove that an algorithm takes Θ(n2) worst-case time, is it possible that it
takes O(n) on all inputs?

(e) Is the function f(n) = Θ(n2), where f(n) = 100n2 for even n and f(n) =
20n2 − n log2 n for odd n?

2-24. [3] For each of the following, answer yes, no, or can’t tell. Explain your reasoning.

(a) Is 3n = O(2n)?

(b) Is log 3n = O(log 2n)?

(c) Is 3n = Ω(2n)?

(d) Is log 3n = Ω(log 2n)?

2-25. [5] For each of the following expressions f(n) find a simple g(n) such that f(n) =
Θ(g(n)).

(a) f(n) =
∑n

i=1
1
i
.

(b) f(n) =
∑n

i=1
� 1

i
.

(c) f(n) =
∑n

i=1
log i.

(d) f(n) = log(n!).

2-26. [5] Place the following functions into increasing asymptotic order.

f1(n) = n2 log2 n, f2(n) = n(log2 n)2, f3(n) =
∑n

i=0
2i, f4(n) = log2(

∑n

i=0
2i).

2-27. [5] Place the following functions into increasing asymptotic order. If two or more
of the functions are of the same asymptotic order then indicate this.

f1(n) =
∑n

i=1

√
i, f2(n) = (

√
n) log n, f3(n) = n

√
log n, f4(n) = 12n

3
2 + 4n,

2-28. [5] For each of the following expressions f(n) find a simple g(n) such that
f(n) = Θ(g(n)). (You should be able to prove your result by exhibiting the rel-
evant parameters, but this is not required for the homework.)

(a) f(n) =
∑n

i=1
3i4 + 2i3 − 19i + 20.

(b) f(n) =
∑n

i=1
3(4i) + 2(3i) − i19 + 20.

(c) f(n) =
∑n

i=1
5i + 32i.

2-29. [5] Which of the following are true?

(a)
∑n

i=1
3i = Θ(3n−1).

(b)
∑n

i=1
3i = Θ(3n).

(c)
∑n

i=1
3i = Θ(3n+1).

2-30. [5] For each of the following functions f find a simple function g such that f(n) =
Θ(g(n)).

(a) f1(n) = (1000)2n + 4n.

(b) f2(n) = n + n log n +
√

n.

(c) f3(n) = log(n20) + (log n)10.

(d) f4(n) = (0.99)n + n100.

62 2 . ALGORITHM ANALYSIS

2-31. [5] For each pair of expressions (A, B) below, indicate whether A is O, o, Ω, ω, or
Θ of B. Note that zero, one or more of these relations may hold for a given pair;
list all correct ones.

A B
(a) n100 2n

(b) (lg n)12
√

n

(c)
√

n ncos(πn/8)

(d) 10n 100n

(e) nlg n (lg n)n

(f) lg (n!) n lg n

Summations

2-32. [5] Prove that:

12 − 22 + 32 − 42 + . . . + (−1)k−1k2 = (−1)k−1k(k + 1)/2

2-33. [5] Find an expression for the sum of the ith row of the following triangle, and
prove its correctness. Each entry is the sum of the three entries directly above it.
All non existing entries are considered 0.

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

2-34. [3] Assume that Christmas has n days. Exactly how many presents did my “true
love” send me? (Do some research if you do not understand this question.)

2-35. [5] Consider the following code fragment.

for i=1 to n do

for j=i to 2*i do

output ‘‘foobar’’

Let T (n) denote the number of times ‘foobar’ is printed as a function of n.

a. Express T (n) as a summation (actually two nested summations).

b. Simplify the summation. Show your work.

2-36. [5] Consider the following code fragment.

for i=1 to n/2 do

for j=i to n-i do

for k=1 to j do

output ‘‘foobar’’

Assume n is even. Let T (n) denote the number of times ‘foobar’ is printed as a
function of n.

(a) Express T (n) as three nested summations.

(b) Simplify the summation. Show your work.

2 .10 EXERCISES 63

2-37. [6] When you first learned to multiply numbers, you were told that x × y means
adding x a total of y times, so 5×4 = 5+5+5+5 = 20. What is the time complexity
of multiplying two n-digit numbers in base b (people work in base 10, of course,
while computers work in base 2) using the repeated addition method, as a function
of n and b. Assume that single-digit by single-digit addition or multiplication takes
O(1) time. (Hint: how big can y be as a function of n and b?)

2-38. [6] In grade school, you learned to multiply long numbers on a digit-by-digit basis,

complexity of multiplying two n-digit numbers with this method as a function of
n (assume constant base size). Assume that single-digit by single-digit addition or
multiplication takes O(1) time.

Logarithms

2-39. [5] Prove the following identities on logarithms:

(a) Prove that loga(xy) = loga x + loga y

(b) Prove that loga xy = y loga x

(c) Prove that loga x =
logb x

logb a

(d) Prove that xlogb y = ylogb x

2-40. [3] Show that �lg(n + 1) = �lg n� + 1

2-41. [3] Prove that that the binary representation of n ≥ 1 has �lg2 n� + 1 bits.

2-42. [5] In one of my research papers I give a comparison-based sorting algorithm that
runs in O(n log(

√
n)). Given the existence of an Ω(n log n) lower bound for sorting,

how can this be possible?

Interview Problems

2-43. [5] You are given a set S of n numbers. You must pick a subset S′ of k numbers from
S such that the probability of each element of S occurring in S′ is equal (i.e., each
is selected with probability k/n). You may make only one pass over the numbers.
What if n is unknown?

2-44. [5] We have 1,000 data items to store on 1,000 nodes. Each node can store copies
of exactly three different items. Propose a replication scheme to minimize data loss
as nodes fail. What is the expected number of data entries that get lost when three
random nodes fail?

2-45. [5] Consider the following algorithm to find the minimum element in an array
of numbers A[0, . . . , n]. One extra variable tmp is allocated to hold the current
minimum value. Start from A[0]; ”tmp” is compared against A[1], A[2], . . . , A[N]
in order. When A[i] < tmp, tmp = A[i]. What is the expected number of times that
the assignment operation tmp = A[i] is performed?

2-46. [5] You have a 100-story building and a couple of marbles. You must identify the
lowest floor for which a marble will break if you drop it from this floor. How fast
can you find this floor if you are given an infinite supply of marbles? What if you
have only two marbles?

so that 127 × 211 = 127 × 1 + 127 × 10 + 127 × 200 = 26, 797. Analyze the time

64 2 . ALGORITHM ANALYSIS

2-47. [5] You are given 10 bags of gold coins. Nine bags contain coins that each weigh 10
grams. One bag contains all false coins that weigh one gram less. You must identify
this bag in just one weighing. You have a digital balance that reports the weight of
what is placed on it.

2-48. [5] You have eight balls all of the same size. Seven of them weigh the same, and one
of them weighs slightly more. How can you find the ball that is heavier by using a
balance and only two weighings?

2-49. [5] Suppose we start with n companies that eventually merge into one big company.
How many different ways are there for them to merge?

2-52. [7] Reconsider the pirate problem above, where only one indivisible dollar is to be
divided. Who gets the dollar and how many are killed?

Programming Challenges

These programming challenge problems with robot judging are available at
http://www.programming-challenges.com or http://online-judge.uva.es.

2-1. “Primary Arithmetic” – Programming Challenges 110501, UVA Judge 10035.

2-2. “A Multiplication Game” – Programming Challenges 110505, UVA Judge 847.

2-3. “Light, More Light” – Programming Challenges 110701, UVA Judge 10110.

2-51. [7] Six pirates must divide $300 dollars among themselves. The division is to pro-
ceed as follows. The senior pirate proposes a way to divide the money. Then the
pirates vote. If the senior pirate gets at least half the votes he wins, and that divi-
sion remains. If he doesn’t, he is killed and then the next senior-most pirate gets
a chance to do the division. Now you have to tell what will happen and why (i.e.,
how many pirates survive and how the division is done)? All the pirates are intel-
ligent and the first priority is to stay alive and the next priority is to get as much
money as possible.

2-50. [5] A Ramanujan-Hardy number can be written two different ways as the sum of
two cubes—i.e., there exist distinct a, b, c, and d such that a3 + b3 = c3 + d3.
Generate all Ramanujam numbers where a, b, c, d < n.

	2 Algorithm Analysis
	2.1 The RAM Model of Computation
	2.1.1 Best, Worst, and Average-Case Complexity

	2.2 The Big Oh Notation
	2.3 Growth Rates and Dominance Relations
	2.3.1 Dominance Relations

	2.4 Working with the Big Oh
	2.4.1 Adding Functions
	2.4.2 Multiplying Functions

	2.5 Reasoning About Efficiency
	2.5.1 Selection Sort
	2.5.2 Insertion Sort
	2.5.3 String Pattern Matching
	2.5.4 Matrix Multiplication

	2.6 Logarithms and Their Applications
	2.6.1 Logarithms and Binary Search
	2.6.2 Logarithms and Trees
	2.6.3 Logarithms and Bits
	2.6.4 Logarithms and Multiplication
	2.6.5 Fast Exponentiation
	2.6.6 Logarithms and Summations
	2.6.7 Logarithms and Criminal Justice

	2.7 Properties of Logarithms
	2.8 War Story: Mystery of the Pyramids
	2.9 Advanced Analysis (*)
	2.9.1 Esoteric Functions
	2.9.2 Limits and Dominance Relations

	2.10 Exercises

