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A Distributed Algorithm for Reconfigurable 
Process Control 

6.1 Introduction 

We now develop a strategy to effectively coordinate the operation of the DRPC 
system. Predictably, this is in the form of a distributed algorithm for guid­
ing and managing the distributed interactions of process elements to achieve 
suitable control settings. We focus in particular on the interactions between 
unit elements during synthesis phase of the reconfiguration process (Fig. 5.1) 
where the settings of each element are established. The proposed algorithm is 
used by unit elements to find control settings for their local and other network 
parameters once the physical layout of the specific process scheme to be used 
for production has been established. 

6.1.1 Overview 

Before beginning with the strategy development, we position the proposed 
approach in the context of existing distributed approaches. 

As reviewed in Section 2.4, previous research on distributed approaches in 
control, both in manufacturing and other domains, has used distribution to 
solve large control problems by breaking them into multiple smaller problems 
referring to individual subsystems and then solving them either independently 
(Siljak 1991) or via iterative coordination based on hierarchical (Mesarovic 
et al. 1970) or distributed (Bertsekas & Tsitsiklis 1989) techniques. Alterna­
tively, when problems are already distributed, the question of problem solving 
is to coordinate the local solutions so as to ensure a global objective or con­
straint is satisfied. Problems of these nature arise in numerous large-scale 
domains as explored in Section 2.5 which just looks at few. 

Previous research in distributed manufacturing paradigms of holonic and 
agent-based manufacturing control have taken a view of separating the con­
trol architecture from control algorithms to enhance reconfigurability of the 
architecture, i.e., the desire for reconfigurability of the architecture and soft­
ware drives distribution rather than computational simplification. Bongaerts 
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(Bongaerts et al. 2000, Bongaerts 1998) in this sense used a mix of hierarchi­
cal hierarchical (fully distributed) control to switch between proactive (when 
conditions are planned) and reactive behaviour (when disturbances arise) of 
distributed holons in so-called PROS A architecture (van Brussel et al. 1998). 
More advanced work on distributed scheduling has used lagrangian decom­
position (Liu & Sycara 1997, Gou et al. 1998) and market programming 
approaches (Vancza & Markus 1998, Tharumarajah 2001, Shen, Wang & 
Hao 2006) to define the methods for resource allocation, i.e., assignment of 
tasks to machines and scheduling of their start and end times. 

In this chapter we use a distributed coordination technique of nested de­
composition, studied previously for multi-stage optimisation problems (Ho & 
Manne 1974, O'Neill 1976, Wittrock 1985), to define the coordination strategy 
for process elements. Our rationale for using this approach is two-fold: 

a. The process units in a continuous process remain tightly interconnected, 
therefore the coordination of their distributed settings should occur via 
direct interactions between them instead of achieved by separate product 
elements as in previous holonic and agent research. It is likely that if the 
latter approach is used the amount of coordination effort required could 
become excessive; 

b. The approach of nested decomposition provides an economic interpreta­
tion that can be linked to the price and demand guided interactions be­
tween companies in a virtual enterprise, and so, to the use of this analogy 
in defining the protocol for material exchange in the interaction model. 

The previous techniques in nested decomposition are not immediately ap­
plicable to process control problems though because they can only be linked 
to multi-stage process networks of series-connected form. Instead, we seek an 
extension which can be applied to process networks of arbitrary form. 

6.1.2 Requirements for a Distributed Coordination Strategy 

The coordination approach is expected to support the distributed nature of 
control architecture and interaction model in previous two chapters. This dis­
tribution was considered essential to promote a maximum level of reconfig-
urability in the design and interactions of process elements. Any numerical 
technique used as part of coordination must not disturb the reconfigurability, 
i.e., the use of a centralised entity or constraint must be avoided. We also 
aim that the elemental sub-problems (as obtained after distribution) adhere 
to a common production objective which in this chapter is considered as the 
sum of all local costs. This is to ensure the distributed solution meets the 
optimality and global coherence of hierarchical control where possible. With 
regards to the four requirements in Fig. 2.7, the strategy is also expected to 
provide a level of responsiveness to variations in local problem formulations 
and other disturbances. 
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Fig. 6.1. Schematic of a large-Scale or complex system 

This chapter is structured as follows. The next section introduces the for­
mulation of distributed control problem to be used in this chapter as the 
basis of analysis. Section 6.3 characterises the technique behind overall solu­
tion strategy. Sections 6.4 to 6.6 then develop the distributed algorithm in a 
constructive manner. Illustrative examples and the potential future extensions 
of the approach are discussed in Sections 6.7 and 6.8. 

6.2 Distributed Control Problem 

We start by mathematically formalising the distributed control problem to be 
used in this chapter. 

A chemical process can be seen as a large-scale system comprised of multi­
ple subsystems or process units as shown in Fig. 6.1(a). In this network form, 
the outputs of each unit become the inputs to its downstream units and so 
on. By imposing an orderly input-output matrix H, this network form can be 
converted into a generic form shown in Fig. 6.1(b) where H now represents 
the network structure of the process, with each row in H referring to an input 
and each column to an output of associated process unit. 

Assuming there are N units in the process, we then use the following model 
structure to define the dynamics of the whole process. 
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ii(t) = hi(xi(t),Ui(t),Vi(t),t) i = l,...,N 
Vi (t) = 9i (xi (t), m (t), Vi (t), t) 
Vi(t)= £ HijVj(t) ,ars 

j=l,...,N (6.1) 

Gi{xi{t),Ui{t),Vi{t),t) £ Si 
r(x(t),u(t),v(t),t) £ R 

where Xi £ Xt is the vector of states, Ui £ Ui is the vector of manipulated 
variables, yi £ Yi is the output vector and vi £ Vi is the interaction vector 
associated with unit i. The vectors x,u and v are the aggregate vectors of 
Xi,Ui and Vi, i = 1,...,N respectively. The constraints hi and gi represent 
the state and output equations, Gj are the local constraints, and r is the 
shared constraint coupling one or more process units. The matrix H{j then 
aggregates the effects of all units j ^ i on unit i. • 

Assuming process units are connected via piping streams only, we can 
derive a specific formulation of matrix H. To do so, we adopt the so-called 
P-Graph model proposed by Friedler, Tarjan, Huang & Fan (1992). 

Omitting services (e.g., steam, cooling water), in a P-Graph form the pro­
cess is represented as a finite set of materials M being transformed by a finite 
set of process units O available in the process. Each process unit i in this sense 
is written as a material tuple (mat™,mat""*) where mat™ and mat""* £ M 
are the sets of incoming and outgoing materials. If p(M) is the set of all 
possible subsets of M, then we get the following two relationships: 

O C p(M) x p(M) 0 ^ 0 , 

and 

M = j (j matr} U j U matr*} 
lieo ) lieo ) 

We can then use the P-Graph (M, O) to represent the network structure 
of the process as a directed, bipartite graph comprising material nodes (as 
elements of M) and unit nodes (as elements of O). Fig. 6.2 shows an example 
P-Graph comprising three unit nodes, where M and O can be written as 
M = {A, B, C, D, E, F} and O = {UI, U2, U3}. 

O Unit Node 

fj Material Node 

Unit 1 A 

*£D—*0 

Fig. 6.2. An example of P-Graph model 
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In what follows, we consider a specific interpretation of vectors V{,Ui,X{ 
and yi in Eq. 6.1 to relate the model equations with demand-pull type inter­
actions between unit elements in the interaction model. 

• Interactions V{: The interactions V{ are taken as the flow rate demands for 
outgoing materials mat?"* of unit i, i.e., the flow-rate demands act as a 
form of disturbances tha t the unit cannot control on its own but are set 
by the units in its downstream. Other types of interactions, e.g., due to 
pressure and temperature variables, are omitted here. 

• Manipulated Inputs U{: The manipulated inputs U{ are divided into three 
types: Ui^„, U{^uta and Uijoc. The Ui^n are set as the input flow-rates 
for materials mat™, Wj,ut« as the input flow-rates of utilities, and Uijoc as 
other local variables (e.g., agitator speed of a reactor) associated with unit 
*• Uij,in as the j t l i element of Ui^n then refers to unit i's input demand to 
unit j in its upstream. 

• States X{: The state variables X{ refer to various local properties of unit i, 
such as level, volume or material concentrations. 

• Outputs 2/j.' The outputs yi are taken as input demands Ui^n, i.e., yi for 
materials mat™ of unit i. 

Using the above assignment of variables and P-graph model (M,0), we 
get at the following equivalent form of Eq. 6.1 where P-graph (M, O) is now 
used to replace matrix H. 

ii(t) = hi(xi(t),Ui(t),Vi(t),t) i = 1,...,N 

Vi (*) = {««,*»» (*)} for all j G Sf, q G mat™ 

Vi(t) = \ E Uji4n(t) \ for all d G mat™* (6.2) 

Gi(xi(t),Ui(t),Vi(t),t) G Si 
r{x{t),u{t),v{t),t) G R 

where, in reference to P-Graph (M,0), M ^ and Sj are: 

M.f : indices of units j G [ 1 , . . . , N] connected to unit i 
through a material stream d G mat""* 

Sf : indices of units j G [ 1 , . . . , N] connected to unit i 
through a material stream q G mat™. • 

In this chapter, to simplify the discussion and limit the amount of math­
ematical rigor involved, we restrict ourselves to a linear, steady-state form of 
Eq. 6.2 as follows. 

0 = A{Xi + Bim - EiVi 

Vi = {uij,in} for all j G Sf, q G matf 

jt,m for all d G mat""* (6.3) 
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where Xi,Ui,Vi and j / , now all refer to their steady-state values. Matrices Ai 
and Bi in Eq. 6.3 are assumed to be of appropriate dimensions, while Cj, Dj, 
Ei and Hij are assumed to possess a special form as discussed later in this 
section. Note that we have omitted the shared constraint r(x,u,v) € R in 
Eq. 6.2. 

Fig. 6.3 depicts the example from Fig. 6.2 with the dynamics of individual 

units and their interactions. Note that process units are connected through 

relationship V{ = < YJ-pMiU3i>in f ^or a u ^ e mat""*. For units 2 and 3 the 

set M^ refers to unit 1 as the only customer unit for material C. 

Unit 2 

( x2 = A2x2 + B2u2 - E2v2 ') 

Unit 3 

-K_ x3 = ^ 3 ^ 3 + B3U3 - E3V3 ) 

Unitl 

: A1X1 + B1U1 — E1V1 

vi n un 

Fig. 6.3. Local unit dynamics for P-Graph in Fig. 6.2 

In what follows we make a further assumption that the interaction vector 
Vi for all units i = 1 , . . . , N is of the dimension equal to number of materials 
in mat""*, i.e., each element in V{ refers to a demand for a material in mat""*. 
If unit i supplies the same material to multiple customer units, then the total 
sum of all demands is used as the value for respective element in V{. 

With this assumption, the formulation of matrices Cj, Di and Ei in Eq. 6.3 
can be simplified. In particular, all entries in Ei are set to 0 except where a 1 
appears when an element in V{ is connected to an element in state vector X{ 
via the state equation. The matrix C{ similarly becomes a zero matrix with 
all entries 0, while D{ becomes a matrix with all entries 0 except where a 1 
appears when any element of Ui^n is connected to an element of y{. Note that 
each element in U{^n in this form is connected to only one element in yi. 

Using the revised form of Ei we can also simplify Eq. 6.3 by separating 
the rows in Ai and Bi which do not contain any element of Vi into separate 
local matrices Ai 

Xoc &nd Bjjoc. The constraints involving A.i^oc and Bijoc then 
become the local constraints of unit i. For the sake of simplicity, we separate 
these constraints from remaining constraints and assume that Ai and Bi now 
only refer to those rows that correspond to an element of Wj. For simplicity, we 
also assume that each row in Ai and Bi is associated with only one element 
in Vi, i.e., the number of rows in Ai and Bi equal the length of Vi, which, 
in turn, equals the number of outgoing material streams d £ mat""*. We can 
then eliminate Ei from Eq. 6.3 altogether. 
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We now define the distributed control problem used in this chapter. For­
mally, the problem assigned to each unit i = 1 , . . . ,N is to find an optimal, 
steady-state deviation in its variables X{ and U{ from a nominal operating 
point X{ and U{ for a given demand deviation of V{ from the nominal demand 
V{. The nominal point for all three vectors may refer to a target set point 
supplied by the higher-level optimiser. 

Problem 6.1 (Distributed Control Problem). 

N 

minimise Y fi(xi>ui) i = 1, • • • ,N 

s.t. AtXi + BiUi = Vi, 
-ri^ loc i I *-)% loc i — ? 

Vi'={ui3,inh foralljeS?,gematf (6-4) 

Vj = I YJ Ujijn > , for all d £ mat?"*, 
U'€Mf ' J 

Xi e xhUi GUi • 

The objective function /j(-) is assumed to be strictly convex jointly on 
its constituent variables X{ and U{. For simplicity, we assume that fi is 
linear-quadratic, i.e., xjQiXi + ujRiiii + cj[xj,uf]T where []T represents 
the transpose operator. This together with the affine nature of the constraint 
equations guarantees that the dual problem of Prob. 6.1 is differentiable 
(Rockafellar 1970). 

In summary, the distributed control problem to be solved for the overall 
process is to minimise the joint total cost (as the sum of individual costs) 
of all units in the P-Graph subject to a constraint that all material flow 
interactions are satisfied between units. The solution of this problem then 
defines the material flow-rates V'i^in in the network. 

Note that although the local costs ft(xi,Ui) of all units i = 1,...,N 
are separable, the individual sub-problems are not, because the constraints 
Vi = {Y -eM

d uji,in}^d € mat°Mt link them. As a result the overall problem 
cannot simply be decomposed into sub-problems and solved independently. A 
distributed approach to solving Prob. 6.1 must be able to coordinate these 
linking constraints via distributed interactions. 

Prob. 6.1 is general enough to be applied to a process network of any arbi­
trary nature. However, in this work, we limit ourselves to processes of acyclic 
nature only (i.e., processes that do not contain material or energy recycles) 
and having no by-products. Recycles or by-products play an important role 
in modern process plants, however the developments made in this chapter 
cannot support such process forms at present. 

We observe that this and other assumptions made in this section regarding 
problem formulation and network structure help us to simplify the solution 
strategy described next. These can be relaxed as appropriate by generalising 
the approach discussed here. 
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Fig. 6.4. Supplier-customer relationships between unit elements 

6.3 Distributed Coordination Approach 

Having defined the problem formulation, we now develop the distributed co­
ordination approach used in this chapter for solving Prob. 6.1. We use the 
concept of so-called nested decomposition from optimisation and operations 
research literature (Ho & Manne 1974, O'Neill 1976, Wittrock 1985) to develop 
the approach. In simple terms, it refers to solving a multi-stage optimisation 
problem (e.g., in a staircase type linear program) by solving multiple, smaller 
coordination problems, each associated with a linking constraint connecting 
two successive stages. 

We split the development of the proposed approach into three main steps: 

i. Problem decomposition: Develop a method for decomposing the overall 
process network into multiple two-stage problems; 

ii. Solution of two-stage problems: Develop a general method for solving 
customer-supplier coordination (the two-stage problems); 

iii. Solution of multi-stage problems: Develop an algorithm for solving the 
two-stage problems in a nested sequence. 

Before describing each of these in detail (Sections 6.4-6.6), below we pro­
vide in this section an outline of the overall approach. 

Fig. 6.4 repeated here from Chapter 5 depicts the form of supplier-
customer type relationships between unit elements in the interaction model 
- the unit elements act as the suppliers for their outgoing products and cus­
tomers for their incoming feedstocks. In order to formalise this relationship 
mathematically, we consider a further analogy of price-demand type interac­
tions between companies in a supply chain, or specifically a virtual enterprise, 
when operating under a make-to-order environment. 
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Tier 1 Price Quotes Tier 2 Price Quotes Tier 3 Price Quotes 

Total Qty Total Qty Total Qty 

Tier 1 

1 ,T i 

Tier 2 

j Y'* 1 

Tier 3 

— > Price quotes 

< Demand order quant i ty 

Fig. 6.5. Price-demand oriented interactions between companies in a supply chain 

In a supply chain, as shown in Fig. 6.5, companies share price quotes 
and demand quantities to make decisions on which suppliers to select and 
how much demand is allocated to each supplier. The customer companies 
along each tier request potential supplier companies upstream for price quotes 
for expected demand quantities. The price quotes then flow forwards. The 
customer companies use these price quotes to select suppliers and allocate 
demands. The interactions thus remain bidirectional and may repeat until all 
companies settle on a price-demand contract, at which point the operations 
can commence. 

When viewed in an analogous manner, we can formalise the interactions 
between unit elements by attaching a price quote to a supply proposal as the 
variation in local cost of the supplier unit element for a unit change in the 
product flow rate. The interactions would then proceed as follows. 

Starting from the terminal stage in the process, each unit element in its role 
as a customer together with all unit elements acting as its suppliers attempt 
to form a two-stage control problem of the form of Prob. 6.1 involving only 
these unit elements. The objective is to distribute the customer's feedstock 
demands among suppliers in a manner that the total cost of suppliers and of 
the customer is minimised. The same principle is then applied to these supplier 
elements who attempt to distribute their demands by forming appropriate 
two-stage control problems involving unit elements further upstream. The 
process is repeated until unit elements in the first stage of the process are 
reached. 



102 6 A Distributed Algorithm for Reconfigurable Process Control 

At this stage, we obtain multiple two-stage problems involving unit ele­
ments from successive stages of the process. The overall solution approach 
then operates by solving these two-stage problems sequentially in a nested, 
iterative fashion. 

Each individual two-stage problem is itself associated with a two-level 
coordination algorithm based on the so-called primal decomposition concept 
(Geoffrion 1970). A detailed explanation of primal decomposition approach is 
given in Appendix A. Within the two-stage problem, each unit element has 
two roles. In its role as a customer, it becomes the coordinator of its demand 
distribution, and as a supplier a sub-problem where its role is supplying the 
price quotes. We next exploit an economic interpretation of the primal de­
composition algorithm to link the solution of two-stage problems with the 
price-demand type interactions in Fig. 6.5. 

At first, each unit element in its role as a customer (called the customer 
unit) selects a distribution of its feedstock demands and passes that as coor­
dination variables to all unit elements acting as its suppliers (called supplier 
units). For a given demand, the supplier units attempt to solve their local 
problems to find the optimum supply costs and a solution to other local vari­
ables. The supplier units return back to customer units their supply proposals 
comprising: (a) the supply cost for the specified demand, and (b) the marginal 
cost as an indication of the variation in supply cost for a unit change in the 
demand flow rate. In the language of primal decomposition, this supply pro­
posal refers to so-called optimality cut that is included in customer unit's local 
problem at the next iteration. Subsequently, at each iteration, the customer 
unit adjusts its demand, taking into account the previous supply proposals, 
such that the total cost of all suppliers plus its own is minimised. 

The overall interactions across the process then operate in a chain whereby 
all these two-stage problems are solved iteratively in a nested, iterative se­
quence. Starting from terminal stage, each individual customer unit allocates 
its feedstock demands to its supplier units. These supplier units then further 
propagate the demands upstream until the first stage is reached. Next, start­
ing from the first stage, the supplier units return their supply proposals (as 
optimality cuts) back to customer units downstream. The customer units in 
each stage then include the new supply proposals to solve their local problems 
and alter the demands allocated. This multi-level chain of interactions thus 
repeat, first backwards and then forwards, until all interim demand flow rates 
converge to an optimum value. 

The solution strategy described above supports the reconfigurability of 
the interaction model in following ways. Firstly, the above solution approach 
operates in a completely distributed form, i.e., the overall problem is solved 
by direct interactions between unit elements themselves without referral to 
a centralised coordinator. Secondly, because all unit element problems are 
made independent via distributed interactions, the approach allows adding or 
removing unit elements from problem formulation without having to refor­
mulate the dynamics model in Prob. 6.1 which otherwise would be necessary 
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in a centralised implementation. Thirdly, under certain conditions it can be 
shown that the solution obtained for interim flow rates converges to the same 
optimal solution as that obtained by solving a centralised problem. Finally, if 
there are bounds on supply capacities of the supplier units that can be mod­
elled in the formulation of customer problems, then it is possible to restrict 
the interim demands of customer units to be within these bounds to ensure 
feasibility. The above solution process, hence, can be interrupted at any stage 
in the sequence to use a suboptimal but immediately usable solution. This 
might be desirable, for example, in a constantly changing environment. The 
proposed approach thus retains distributed character of the interaction model 
whilst also maintaining optimality of the solution. 

In the next three sections we now address the three steps of the proposed 
distributed coordination approach in detail. 

6.4 Problem Decomposition 

In the first step to solving Prob. 6.1, the overall problem is decomposed into 
a set of two-stage problems, each referring to a network junction between two 
or more process streams. We refer to such a junction as a Junction Block. 
Each junction block is thus a two-stage process consisting all unit elements 
and process streams associated with that junction. 

Fig. 6.6 shows the four different types of junction blocks that can be found 
in any acyclic process network. The MIXER and SPLITTER blocks represent 
the junctions associated with process units such as mixer, splitter or a pip­
ing header where multiple material streams of identical properties are mixed 
together or a single stream split into multiple such streams. The MULTIFEED 

and MULTIPROD represent the junctions associated with process units such as 
feed preparation, reactor, distillation column etc., where material streams of 
non-identical properties are merged together or are produced as outcomes of 
the processing task. Note that a more complex junction with multiple incom­
ing and outgoing streams can be always represented by superimposing MIXER 
or MULTIFEED blocks on top of SPLITTER or MULTIPROD blocks. 

Fig. 6.7 shows an example of problem decomposition in which an arbi­
trary process network is decomposed into its constituent junction blocks. The 
junction blocks are interconnected via process units common between them. 

6.5 Solution of Two-Stage Problems 

In the next step to solving Prob. 6.1, each junction block, being a two-stage 
process, is associated with a two-level coordination algorithm based on primal 
decomposition concept of the type introduced in Section 6.3. This algorithm is 
used to solve the associated mini control problem of junction block involving 
local problems of unit elements in both stages in a distributed manner. The 
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(Units with Multiple Feestocks) 
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(Units with Multiple Products) 

Fig. 6.6. Four types of 'junction blocks' in an acyclic process network 
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(1) MULTIPROD (2) SPLITTER (3) MULTIFEED 

Fig. 6.7. Decomposition of a process network into junction blocks 

unit elements in the second stage become the coordinators or so-called master 
problems and those in the first stage as so-called sub-problems. In economic 
terms, the first and second stage elements also act as suppliers and customers 
of materials through which they are connected in the P-Graph. 

Since all four junction blocks in Fig. 6.6 have different network structures, 
i.e., joins in M I X E R and M U L T I F E E D blocks and forks in S P L I T T E R and M U L -

T I P R O D blocks, they need different coordination techniques. The problems for 
M I X E R and M U L T I F E E D blocks involve a single coordinator and can be solved 
based on primal decomposition technique as described in Appendix A. How­
ever, for S P L I T T E R and M U L T I P R O D blocks, this is not directly possible as 
they involve multiple customers and hence multiple coordinators. Therefore, 
we develop a variant of primal decomposition using the techniques from para­
metric programming field (Fiacco 1983) to accommodate this variation. 
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In what follows, we develop a single algorithm that can be applied to 
all four types of junction blocks with a facility to tailor the algorithm for 
individual type of block. To develop the necessary algorithm, we consider 
solving three problems of increasing complexity: 

i. Two-Units problem involving two, series-connected units (Section 6.5.1) 
ii. Two-Units problem with an uncontrolled parameter (Section 6.5.2) 

hi. Multi-unit problem, so-called superset block problem, which enables the 
solution to all four junction blocks (Section 6.5.3). 

6.5.1 Solution of Two-Units Problem 

We consider first a process network comprising two unit elements connected 
in series, the so-called STAIRCASE block. Based on Prob. 6.1, the associated 
control problem for this block can be written as: 

Problem 6.2 (Two-Units Problem). 

minimise / i (xi , i t i ) + f2(x2,u2) 
X2,U2 

s.t. A1X1 + B1U1 = vi 
A2x2 + B2u2 = v2 (6-5) 

x2 e x2, u2 e u2 

where v\ = y2 = u2\^n represents the demand from unit 2 to unit l.D 

In the proposed use of primal decomposition, unit 2 becomes the coordi­
nator or master problem (denoted by SP2), unit 1 as the only sub-problem 
(denoted by SP\), and v\ is the interaction variable linking them. The solu­
tion process then operates iteratively. For an initial value of v\, the problem 
5Pi is solved first to find the optimal values of the value function a.\ and 
the Lagrange multiplier Ai for linking constraint A\X\ + B\U\ = v\. This 
information is passed as an optimality cut to the master problem SP2. With 
including this new cut, the master problem SP2 is solved to find a revised 
value of v\ that minimises the total cost of both problems. The process thus 
repeats between solving 5Pi and SP2 until a form of convergence is achieved. 
Algorithm 6.1, based on the description in Section A.2, Appendix A, formally 
defines this solution procedure. 

Fig. 6.8 outlines the information exchange between 5Pi and SP2 problems. 
Note that v2 in SP2 represents the supremum of piecewise-linear approxima­
tions of 5Pi 's optimal value function OL\(V\). This together with f2(x2,u2) 
equals the approximate total cost of both unit elements at any one iteration. 
Given that the optimality cuts do not overestimate cti(wi), the optimal cost 
obtained from solving SP2 provides a lower-bound on the total cost of both 
units. Since each new optimality cut should improve upon the linear approxi­
mation of cti(wi), the lower-bound obtained should improve at each iteration 
until SP2 converges to an optimal solution. 
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Algorithm 6.1 (Two-Units Problem) 

Step 0: Initialise: Set K := 1. Assume an initial value of x2 £ X2 and u.2 £ U-2-
Set v[0) = yf] C2x2

0) + D2u2
0) = u2% 

Step 1: Sub-problem SP± : At any iteration K, fixing v{ (K-l) 

(K) 
2/2 

(K-l) 

unit 1 's problem SP^ as 

SP± (K) 

minimise a\ = fi(xi,ui) 
X\ ,1/1 

S.t. A\X\ + BjUi = V[ 

Xi e l i . i i i £ Ui 

solve 

(6.6) 

Set z{ = A\x{ + Biu[ . Pass a\ , X{ and z{ to unit 2. 
l(K). (K) ,(K) JK) Step 2: Master Problem SP>2 ': Use a\ >, X\ ' and z-y to construct a new 

optimality cut in unit 2's problem, SP.2 . Solve the resulting problem as: 

' minimise a-2 = v2 + fi(x2, M2) 

SP. (K) 
S.t. IS2 > a[ ' + \ \ '(Z[ ' - U2l,in), 

A 1 D --(K-l) 

A2X2 + B2U2 = V2 , 

k£K 

X2 £ X2, U2 £ U2, 

where K = set of iterations 

Step 3: Terminate/Iterate: Terminate if the convergence criteria is s 
which is considered to be as 

II f (K) (K) (K) (K)\ f (K-l) (K-l) (K-l) (K-l)\\ 
1-<*1 , (tj ,X 2 , U>2 j- U ! , « ! ,X 2 , U>2 j -

Else, set K := K + 1 and return to step 1. • 

<e. 

(6.7) 

(6.8) 

Unitl 

A1X1 + B1U1 — vi 

~(K-i) (K-l) (K-l 
1 ~ y2 

(K) (K) ,(K) 

-a: , z\ , A: 

Unit 2 

1 ' 1 ' 1 

<—v2 

Fig. 6.8. Information exchange between units 1 and 2 sub-problems in Two-Units 
problem 

6.5.2 S o l u t i o n of T w o - U n i t s P a r a m e t r i c P r o b l e m 

We consider next an extension of the Two-Units problem (Prob. 6.2) where 
we now assume tha t SPi contains an uncontrolled parameter vector 9 which 
it cannot alter. 

P r o b l e m 6.3 (Parametr i c T w o - U n i t s P r o b l e m ) . 
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minimise fi(x\,ui) + f2(x2,u2) 
X2,U2 

s.t. Aixi + Biui = vi 
Alfixx + Blfim = 9 (6.9) 
A2X2 + B2U2 = V2 

x\ e X i , « i £ U\ 
x2 G X2, u2 £ U2 

where 9 £ 0 is a vector of additional parameters local to unit 1. Assume tha t 
0 is a convex, compact sub-set of We where pe denotes the dimension of 9. 

• 
If Algorithm 6.1 for Two-Units problem is applied to the above problem, 

then sub-problem SPitg would have the following formulation at an iteration 
K. 

SPi 
(K) 

' minimise a\ $ = fi(x\,ui) 
Xl:Ul 

S.t. A\x\ + Biui = v 

Aijxi + Bxjui = 
x\ e X i , M i s Jj\ 

K-l) 

- - e ^ 
•s^ 

s^> 

Ai*> (6.10) 

where 0(K) denotes the value of 8 at iteration K. 

Considering tha t the second constraint in SP± e is a function of x\, u\ and 

9, any change in 6 from 8^K' would change the feasible region of (xi,ui) and 

hence their optimal values for a given v[ '. Any such variation therefore 

would lead to a non-unique response from SP\j to master problem SP2 for 

a given v^ '. A significant variation in 6 may also invalidate the optimality 

cuts passed to master problem in the previous iterations. 
The situation can be recovered if the Algorithm 6.1 is restarted at every 

instance when 9 changes. However, this is undesirable if 6 is likely to change 
frequently (as in the case considered in the next sub-section). Instead, we 
propose a simple alteration to Algorithm 6.1 which interprets the change in 
9 and updates the previous optimality cuts passed to the master problem. 
The proposed technique is based on so-called basic sensitivity theorem from 
sensitivity analysis studies (Fiacco 1983) and is referred to as the approximate 
optimality cut update technique. See Section A. l in Appendix A for a brief 
discussion of the relevant concepts from sensitivity analysis. 

We first consider the following first-order approximation result based on 
basic sensitivity theorem (Theorem 3.2.2 in Fiacco 1983). 

L e m m a 6.4. Consider the optimal solution a\ e' of the value function a\^ 

A[ BX in Eq. 6.10. Assume the constraint matrix 

i.e., the rows are linearly independent, then 
A\fi Bive 

has a full row rank, 
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dal,0 
Aff (6.11) 

where \\j £ Aitg C M?J.A is the vector of Lagrange multipliers for the second 

constraint Ai^xi + Bi^u\ = 9, and \\ e' denotes its value for a given 9 = 

The lemma suggests that for a change of A9 in 9 from 9^, the optimal 
value of the value function a.\ can be expected to change at least by Aai^g = 
—\[ p . Note that this is still a first-order approximation, and cannot be used 

to find the exact change in a\ 0'. However, even when A9 is large, the following 
is true. 

Lemma 6.5. Consider the value function a\,$ in Eq. 6.10. If the function / i 
is convex in {x\,u\) and the sets X\ and U\ in Prob. 6.3 are convex, then the 
optimal value function a\,$ is convex on 0. Furthermore, for a change in 9 
from any 9^ to 9^k\k> ),9^ ,9^ £ 0, 

«S>"iV A 8V* ) -* a ) )> (6-12) 
where a^'0 and a\ '0 are the optimal values of a.\j obtained by solving Eq. 6.10 

for value of 9 being 9^> and 9^'. In other words, the change in optimal value 
of aive as obtained from solving Eq. 6.11 for a change in 9 from 9^> to 9^' is 

always an underestimation of the optimal value of a10 that results by solving 

the sub-problem in Eq. 6.10 again at 9^>. 

Proof. The first part of the statement follows from standard convexity results 
in parametric nonlinear programming (see e.g., Proposition 2.1 in Fiacco & 
Kyparisis 1986) while considering in addition that both constraints in Eq. 6.10 
are linear in {x\,ui). The second part follows due to convexity of aie in 9 

and noting that a\3'e — X^'e (9 — 9^) is a linear support to optimal a\J'e at 
9 = 9^.0 

Fig. 6.9 illustrates the intention behind considering above lemma. The bold 
curve therein shows the variation in optimal value function QL-\ g clS Si function 

of 9 with v[ ~ ' being constant, while the straight line shows the gradient to 
a l 9 

at 9 = 9ij\ By using this gradient, we can obtain an approximate value 
of al e for 9 = 9^ to update the optimality cuts in the master problem from 
previous iterations. 

The modified procedure then operates exactly the same as Algorithm 6.1 
except the following. At Step 1, the values of parameter 9 and the Lagrange 
multiplier Ai^ for constraint Aitgxi +Bitgiii = 9 from the previous iterations 
and the current iteration (respectively as 9^ and X\"'g, k £ K) are used to 
construct an update vector a{ uvdt, k £ K, where a\ dt is calculated as: 
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Actual Value of a (k) 

Approximate Value of a 
(k) 

• > 

Fig. 6.9. Linear approximation of function of variation in 

a 

..(*) 

(*) 
l,updt 

-A ( * )T (eW-e(*) ) , fceK. (6.13) 

At Step 2, a{ ' d t , k £ K is then used to update the optimality cuts in the 
master problem SP2 before solving the revised SB2 as: 

SB (K) 

minimise «2 V'2 + h{x2,U2) 

S.t. V2 > aie + alupdt + \ {zx 

A2X2 + B2U2 = V2, 
X2 £ X2 , U2 € U2 , 

where K = set of iteration indices 

• W 2 1 , fce K 
(6.14) 

Compared to Algorithm 6.1, the above modification thus requires calcu­
lating a\ updt,k £ K as a reflection of the change in optimal value function 
a\yo for a change in 6. The modified Algorithm 6.1 is not described here for 
brevity. 

Note that in the above modification we still retain the same multipliers 
(k) 

\{ , k € K in the master problem as before. In fact, the use of sensitivity 
analysis suggests that Â  also vary with a change in 9. Arguments similar to 
Lemma 6.4 can be used to obtain a first-order approximation of multipliers 
(Fiacco 1983). However, our numerical experience (see Section 6.7) indicates 
that using the same \\ do not lead to a significant problem considering i(*) (*) that — X\ ' denote the sub-gradient of value function a\ 'e for a unit change 

„-,(*=-!) l ( * ) (*) \nv\ '. As a result, unless Â  ; changes widely, the hyperplane v^ > a\ 'g + 
(k) 

al,updt 
k ( * ) „(*) .(*) Wi — it2i,in) still underestimates the value function 

as required by the approximate cut update technique. 

6.5.3 Solution of Superset Block Problem 

The approximate cut update technique can be used to develop a solution 
algorithm for SPLITTER and MULTIPROD blocks. In particular, for each cus-
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Sub- Problems^ 
Supplier Units 

mat" mat1: Master Problems/ 
Customer Units 

Fig. 6.10. Superset junction block 

tomer element j in the second stage of either of these junction blocks, the 
demands umi^n from all other customer elements m ^ j can be treated as an 
uncontrollable parameter vector 9 in the sub-problem of the supplier unit. The 
procedure in the modified Algorithm 6.1 can hence be repeated for all cus­
tomer elements separately to coordinate the parametric effect of their demand 
changes onto the supplier element's problem. 

Below we build upon this logic by developing a generic algorithm which 
can be applied to all four junction blocks, in particular the S P L I T T E R and 
M U L T I P R O D blocks. To do so, we consider a superset junction block as shown 
in Fig. 6.10 which captures within it all four types of blocks in Fig. 6.6, 
i.e., the configuration of any block Fig. 6.6 can be obtained by selecting the 
appropriate edges and nodes in Fig. 6.10 while deleting the rest. Table 6.1 
shows the notation we use to describe the superset block. 

Based on the framework of Prob. 6.1, the control problem for superset 
block can be written as follows: 

P r o b l e m 6.6 (Superse t J u n c t i o n B l o c k ) . For i = 1,...,S and j = 
1 , . . . , M , 

Xi,Ui 
Xj ,Uj 

s.t. 

S M 

minimise £ fi(xi,Ui) + £ / j O j ^ j ) 
i=\ j=\ 

AjXj + BjUj = Vj 

^-i:loc%i i ^ijoc^i — U 

Xi e Xi,Ui e Ui 
Xj £ Xj, Uj £ Uj 

d £ mat: out 

(6.15) 

where i = 1 , . . . , S and j = 1 , . . . , M respectively are the indices of supplier 
and customer elements. The first constraint represents the links between sup­
plier and customer elements through material streams d £ mat""*, where A^i 



6.5 Solution of Two-Stage Problems 111 

Table 6 .1 . Notation for superset junction block 

M : Number of customer units in the second stage (units indexed by j £ 
[1 , . . . ,M]) 

S : Number of supplier units in the first stage (units indexed by i £ 
[1 , . . . ,5]) 

mat""* : Set of out going material streams of supplier unit i (streams indexed by 
d £ mat?"*) 

mat]™ : Set of incoming material streams of customer unit j (streams indexed 
by q £ mat}") 

Mj : Indices of customer units associated with supplier unit i 
Sj : Indices of supplier units associated with customer unit j 
Mf : Indices of customer units connected with material stream d in supplier 

unit i (M? C Mi) 
S | : Indices of supplier units connected with material stream q in customer 

u n i t j ( S j C S j ) 
K : Current iteration index in the algorithm 
K : Set of iterations { 1 , . . . , K} 
k : Iteration index, k £ { 1 , . . ., K} 

and Bdt represent the dth row of Ai and Bj . As discussed previously, the vari­
able Ujitin represents the input demand from customer unit j to supplier unit 
i, while Vj is the demand tha t customer unit j receives from its customer units 
in the further downs t r eam. • 

In what follows, we assume for simplicity tha t the local constraints 
AijocXi + Biti0CUi = 0 and Ajti0CXj + Bjti0CUj = 0 together with x{ € X{,Ui € 
Ui,i = {1,...,S} and Xj £ Xj, Uj £ Uj,j £ { 1 , . . . , M } in Prob. 6.6 are 
sufficiently relaxed to absorb any demand imposed on respective unit ele­
ment, i.e., the sub- or master problems for supplier or customer units do not 
become infeasible for any vi and Vj. The assumption, in turn , eliminates the 
need for generating feasibility cuts in the primal decomposition algorithm (see 
Section A.2, Appendix A). Consequently, to reduce the complexity of the de­
scription, we also omit these local constraints and implicitly assume tha t they 
always exist. 

Algorithm 6.2 describes the generic procedure used for solving the superset 
block problem. The important step in the algorithm is the calculation of the 
update terms aij^up(it{k) for individual junction blocks as listed in Table 6.2. 
For M I X E R and M U L T I F E E D the algorithm operates exactly as per primal 
decomposition, with a single customer element, therefore the updates are set 
to 0. For S P L I T T E R block, the sum of demands vms for all customer elements 
j £ [ 1 , . . . , M],m ^ j are t reated as the parametric vector 9 when referring 
to a customer element m £ [ 1 , . . . , M]. For M U L T I P R O D block, the vector of 
demands vis, • • • ,Vj-is,i>j+is," •" ,VMS for all customer elements except m 
is t reated as the parameter vector for element m. Thus, for both S P L I T T E R 
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Algorithm 6.2 (Superset Block Problem) 

Step 0: Initialise Set K := 1. Given Vj = Vj,j = 1, . . ., M, the demands for all 
second stage units. Assume an initial value of Uyi^n = vSiin. Set «•; = u-iin for 
all i £ Sj, q£ matf, j = 1,..., M. 

Step 1: Sub-problem SP- ,i = 1,..., S: At any iteration K, solve unit i's prob­
lem 

{ minimise a-i = fi(xi,v,i) 

s.t. AdiXi+BdiUi= £ v£~l\ d£ma,t°ut (6-16) 

j£Mf 

to obtain the optimal values of x\ , i4tn> Lagrange multipliers \\ for linking 

equality constraints, and the objective function a\ 
Set z\, = Vj{ , j £ Mf, d £ mat°ut, i.e., assume the demands from all 

master problems for all material streams d £ mat°ut is satisfied. 
Step 2: Master Problem SP^K\j = 1 , . . . , M: Use a\K) ,\\P and z\f] to form a 
new optimality cut in unit j's problem, SP- . Solve the resulting problem 

minimise ctj = VJ + fj (XJ , Uj) 

SPlK) 

Xj,Uj ,Vj 

s.t »i > E { « ^ + «|*?updt + A<f(^» - u^in)} , k£K 
AjXj +BjUj =VJ 

(6-17) 
to obtain the solution u-i in and x • . The a{j dt are the approximate optimality 
cut updates used for updating the master problem j for perturbations in the demands 
from remaining other master problems m £ [1,.. . ,M],m ^ j . The updates are 
calculated by the first stage units i = 1,. . . , S and passed to the second-stage units 
j = 1 , . . . ,M. Table 6.2 describes the specific formulation of these updates for all 
four junction blocks. 
Step 3: Iterate/Terminate: Terminate if the convergence criteria is satisfied, 
which is considered here as, for a given e > 0 and i = 1, . . ., S, j = 1,. . . , M, 

\{xf\uf\xf\uf)}-{x?-1\u\K-1\xf-1\uf-1)}\<e (6.18) 

i.e., the solutions of sub-problems SP^ , i = 1 , . . . , S and master problems SPj , 
j = 1,...,M converge to a fixed point with tolerance e. Else, set «•; = u,{ in, 
K := K + 1, and return to Step 1. • 

and M U L T I P R O D blocks, a parametric update vector as': updt is calculated at 
each iteration for each of the customer elements m = 1 , . . . , M. In summary, 
Algorithm 6.2 provides a solution strategy for solving the two-stage control 
problems for each of the junction blocks in a distributed manner. 
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Table 6.2. Approximate optimality cut updates for junction blocks 

MIXER af^updt = 0 

MULTIFEED a) (*) M,updt 

SPLITTER 
Sj,updt 

A \(fc) E "Is / , "mS 

\ 

m e [ l , . . . , M ] m £ [ l M ] 
/ 

fee K 

(6.19) 
where 5* is the single supplier unit, j is the customer unit for which 
the update is being calculated, and M is the last customer unit. 

*(fc) 

Sj,updt 

MULTIPROD 

A [ , ( * ) ,(fc) ,(fc) ,(fc) 1 
~~ [ A S 1 > ' ' ' > A S j - l ' A S j + U • • • > A S M j ' 

"MS y 
.(fc-i) 
'is > 

^ - i ) 

~(fc-l) ~ o - l ) 

- ( / f - i ) - ( i f - i ) - ( / f -
J ^ ' - l S >Wj + l S J - ' ' ! B M S 

fc G K (6.20) 

where S is the single supplier unit, j is the customer unit for which 
the update is being calculated, and M is the last customer unit. 

6.6 Solution of the Multi-Stage Problem 

As the final step to solving Prob. 6.1, we need to ensure tha t all of the in­
terconnected two-level junction block problems are solved iteratively in an 
appropriate sequence. 

In what follows, we consider solving a sequence of three problems to de­
velop the strategy in a constructive manner. 

i. TV-Units problem involving N series-connected units (Section 6.6.1) 
ii. TV-Units problem with an uncontrolled parameter in one or more of unit 

problems (Section 6.6.2) 
hi. Main distributed control problem - Prob. 6.1 (Section 6.6.3) 
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N 

minimise J2 fi(ui,Xi) 
i=i,'...',N i=1 

s.t. AiX{ + BiUi = V{ i = 1, . 
Xi € Xi,Ui GUi i = l,.. 

. . , 7 V 
. , 7 V . 

6 .6.1 S o l u t i o n of TV-Units P r o b l e m 

We consider first an extension of the Two-Units problem to an TV-Units prob­
lem as comprising TV series-connected unit elements. 

P r o b l e m 6.7 (TV-Units P r o b l e m ) . For i = 1 , . . . , TV 

(6.21) 

where vi = J/J+I = Ui+u,in represents the demand to unit i = 1 , . . . , TV — 1. • 

A nested decomposition algorithm based on primal decomposition simply 
extends Algorithm 6.1 to repeatedly solve a sequence of TV — 1 two-units prob­
lems, one corresponding to each link between two successive unit elements. 
The sub-problem for each unit i = 2 , . . . , TV is considered as a master problem 
for a composite problem comprising all predecessor units 1 to i — 1. The com­
bined problem of units 1 to i — 1 and unit i then becomes the sub-problem 
for unit i + 1, and so on, until unit TV is reached. The sub-problems of units 
i = 1 , . . . ,7V are thus solved sequentially to construct a new optimality cut 
in the immediate next master problem. Once a complete iteration is finished, 
the procedure repeats start ing from unit 1. In reference to Algorithm 6.1, the 
formulation of sub-problem SPi at iteration K for i = 2, . . . ,TV along the 
sequence becomes as follows. We do not describe the complete algorithm for 
brevity. 

S tep i: Sub-problem SPi, i = 2,... ,N: Use ai_l,\i_{ and z\_{ to construct a 

new optimality cut in unit i's problem SP- . Solve the resulting problem as: 

' minimise a, = Vi + /,(xi,v,i) 
Xi,Ui,Vi 

s.t. vi > a\k_\ + ^-i(zl-i ~ uu-i,in), k£K 
AiXi + BiU^vf^, (6-22) 
Xi G XiyUi G Ui 

where K = set of iterations 

SP<K) 

Set z\K) = AiX\K) + Biuf\ Pass af\ \\K) and z\K) to unit i + 1. 

6.6.2 S o l u t i o n of TV-Units P a r a m e t r i c P r o b l e m 

We next consider an extension of the TV-Units problem where the sub-problem 
of unit element 1 now contains an additional parameter vector 9 £ 0 while the 
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remaining sub-problems SPi, i = 2 , . . . , N are same as in Prob. 6.7. Formally, 
the modified problem is: 

P r o b l e m 6.8 (TV-Units P r o b l e m w i t h P a r a m e t r i c SPij). 

N 

minimise £ fi(xi,Ui) 
i=i,'..',N i=1 

s.t. AiXi + BiUi = Vi i = l,...,N (6-2 3) 
^-1,6^1 + BigU\ = 9 i = 1 
Xi £ Xi,iii £Ui i = l,...,N. 

where V{ = yi+\ = C J + I X J + I + P / J+IWJ+I represents the interaction variable to 
unit i, i = 1,.. .,N — 1. 

The solution of the above problem is faced with the same challenge because 
the parametric Two-Units problem (Prob. 6.3) as the changes in 9 in SP\ re­
sults in a non-unique response to SPi, and therefore, the non-unique response 
of all subsequent sub-problems to their immediate next master problem. For­
tunately, an extension of the approximate cut update technique provides a 
method to resolve this. In this extension, we simply pass the upda te vector 
a\ J dt (of dimension K) from unit 1 to all units i = 2,...,N to modify the 
optimality cuts in their problems SPi in a similar manner to sub-problem SP2 
in solving the parametric Two-Units problem. In the modified form of iV-units 
algorithm, the sub-problem SPi at iteration K is solved as follows. 

Step i: Sub-problem SPi, i = 2,.. . ,N: For each k £ K, use a[ u dt to calculate 

a 
(K) A (K) , (K) «i_i + a\ udt, and solve the modified SPi in Eq. 6.22, i = 2 , . . . , N as: i — l,mod 2 — 1 ' l.updt 

' minimise a, = Vi + fi(v,i, Xi) 
Ui ,Xi ,l*i 

spr} s.t. ^ a ^ + ^ ^ - ^ i G K 

Aixi + Biui=v<K-1)~>)tK) (6-24) 

Xi G Xt,Ui G Ui 
where y, = uu-i,in 

Note tha t we use the same update vector a\ 'dt to all update all unit 
sub-problems SPi, i = 2,...,N. This communication of upda te vector can 
be made symmetric by assigning a.2Jpdt = a[Jpdt and repeating a\Jpdt = 

ai*iupdt f o r aU i = 3 , . . . , iV, and using a{^\mod = a{^\ + a^lupdt. 
We consider next a further extension where instead of just sub-problem 

5 P i , one or more of other sub-problems are also parameterized with param­
eter vectors 9i £ (9j. The approximate cut update technique can as well be 
extended to solve this problem in an analogous manner. 
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For SP±jg1 we still continue to propagate the approximate cut update 
ai updt t ° &H units i = 2,...,N. In addition, for any sub-problem SPi^{, 
i = 2,... ,N — 1, we also generate a separate approximate cut update that 
reflects the effects of parametric variations in its parameter vector 6{. This 

can be written as: a\"ioc dt = —\\ g. (9\ ' — 9\ '), k £ K where \^i is the 
Lagrange multiplier associated with the constraint A^g^i + Bi^tUi = 9{. 

We then simply add this update to the update received from previous sub-
problem SPi-itgi_1 and pass the composite update to the next sub-problem 

SPi+1,0i+1, i.e., a(^pdt = a{*}
lupdt + a{^]

ocupdt. With this modification the 

sub-problem SP^g', i = 2 , . . . , N at iteration K is now solved as follows. 

Calculate a{*lmod = a{*l + a{*\updt. Use a{*\mod in solving 

minimise on = Vi + fi(ui,Xi) 

s-t. Vi > a ^ L d + ^ - i ^ - i - J / i ) . ^ K 

SP (K) (6.25) Aixi + Biui = 4K-1\^^K) 

Ai,9ixi + B^m = e\K) -» \§] 
Xi e xuui e Ui 

where y{ = uu-itin 

Using \\ s!, calculate the approximate cut update to be passed to the next 

unit i + 1 as afuldt = a{*\updt + a{^cupdt where 

(*) Ax(Kf{e(K)_e(k)) k R 
ai,loc,updt — Ai,8i y°i Pj J,«, t fV 

6.6.3 Solution of Distributed Control Problem (Prob. 6.1) 

We can now develop the distributed coordination algorithm for solving main 
distributed problem (Prob. 6.1) for an arbitrary, acyclic process network. To 
define the interactions between unit elements more systematically, we first 
develop an indexing of unit elements in the P-Graph. 

Assume the process contains S different stages with each stage containing 
possibly one or more unit elements. The word stage refers to a typical pro­
cessing task, such as the primary reaction, separation, etc. Each such stage 
may contain a number of unit elements of similar processing capabilities. We 
then use the following procedure to assign an index (n, s) to all unit elements. 

We first assign the stage index 1 to all unit elements that use the main raw-
materials as their feedstocks, i.e., the input-set mat m for these unit elements 
comprise only the main raw-materials. All unit elements connected to these 
first stage unit elements are then assigned the stage index 2. The assignment 
is thus repeated until the unit elements in the terminal stage reached whose 
output-set mat0"* comprise only the end-products. These elements receive the 
stage index S. In this process of assigning stage indices, if an element receives 
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two or more different indices, because of it being connected to unit elements 
from two or more stages, then the highest stage index among all is used. Next, 
within each stage, the units are numbered from 1 to a maximum value (called 
Ns) tha t depends on the unit elements contained in tha t stage. We use a 
simple rule of progressing from top to bot tom in the P-Graph to define this 
unit number. At the end of this indexing, each unit element thus receives an 
index (n, s) where s refers to the stage index and n as the number of the unit 
element within tha t stage. 

We next use the notation described in Table 6.3 to define the solution 
procedure for Prob. 6.1. Note tha t for any stage s, S~ and 5 + denote the 
stages preceding and succeeding to stage s and comprise unit elements linked 
to any unit element in stage s. Note also tha t as per above indexing rules at 
least one unit in any stage s must be linked to stage s — 1 as well as stage s +1. 
Unit elements in stage s may also be linked to other stages in S~ and 5 + . The 
set M ( „ g ) hence encompasses the indices of unit elements in stages 5 + which 
are connected to unit element (n, s) in stage s. The set M.fn^s\ then denotes 
the subset of unit elements within M ( „ g ) tha t are connected to element (n, s) 
through the material stream d £ ma t ?^ - , . Similar interpretation can be given 
for S(n,g) and S ^ g ) . 

The nested solution procedure for Prob. 6.1 extends the algorithm for su­
perset block (Algorithm 6.2) by using the results from parametric ./V-unit 
problems from the previous subsection. Algorithm 6.3 describes this dis­
tr ibuted algorithm. As expected, the important step in the algorithm is to 
compute the approximate cut update terms a, K. dt to be passed between 
stages while taking into account the specific type of junction block by which 
the associated unit element is connected to other unit elements. 

Table 6.3. Notation for distributed coordination algorithm 

Number of process stages (stages indexed by s £ [ 1 , . . . , S]) 
Indices of stages preceding to stage s 
Indices of stages succeeding to stage s 
Number of units in stage n (units indexed by n £ [ 1 , . . . , Ns]) 
Index of unit n in stage s, n £ [1 , . . ., Ns], s £ [ 1 , . . . , S] 
Set of outgoing material streams of unit (n, s) (indexed by d £ mat?"*s)) 
Set of incoming material streams of unit (n, s) (indexed by q £ mat!" N) 
Indices of units in Ŝ t" connected with unit (n, s) 
Indices of units in Ŝ t" connected with outgoing stream d of unit (n, s) 

(Mfn,,) C M(n,*)) 
Indices of units in Ss connected with unit (n, s) 
Indices of units in S7 connected with incoming stream q of unit (n, s) 

(S(„,S) ^ S(n,S)) 

s 
s+ 

(n,s) 

M(„,3 ) 
Mt«,s) 

k ( j i , a ) 
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Algorithm 6.3 (Distributed Coordination Algorithm) 

Step 0: Set K := 1. Given f(n,s) = V(nts), the demands for unit elements (n,S) , 
n = 1 , . . . , Ns in the terminal stage S. For all s = [1,... , S] and n = [ 1 , . . . , Ns], 
assume an initial value of U(n,3)i^n = u L j ) j i n , and for all i £ S(n,a) set v, s-)i = 

(o) 
M , . . . 

(n,s)i,in 

Step s, s = 1,...,S: Sub-problem SP^s),n = 1,...,NS: Use a^s), z\*^s), 
i £ S(n,s) t° form, a new optimality cut in unit (n,s)'s problem, SP(nL. Solve the 
resulting problem 

op(K) 

minimise 
3 ( n , „ ) . « ( n , a ) 

S.t. 

a(n,s) — v(n,s) + J(n,s)(X(n,s),U(n,s)) 

v(n,s) d_ 2-j \ai(n,s) + ai(n,s),updt + 

Ai(n,s)\Zi(n,s) u(n,s)i,in)j 

A I D V ^ ~(K-l) 
Ad(n,s)%(n,s) + &d(n,s)U(n,s) ~ Xj Vj(n,s)' 

k£K 

d £ mat°£a) 

(6.26) 

to obtain the optimal values of x, s-.,U/n K{ in, optimal Lagrange multipliers X, K 

associated with the linking equality constraints and the optimal objective value a, ,. 

Note that ^4,j(n,s) and -Bd(n,s) denote the d* row in constraint matrices -A(n,s) and 

-B(njS) associated with unit (n, s). The solution u, K{ in defines the demands sent by 

unit (n,s) to all linked supplier elements S(HtS) at the next iteration. 

™e z™a)j = v ^ , J G M[n,a), d £ mat^s). Set \™a)j = Xd
(n,s), Vj £ M ^ , 

where \<ns\ denotes the ct element in X.K. Calculate the aggregate cut update 
&(n,s)j,updt ^? 

(n,s)j,updt ~ Z-^ \ai(n,s),updt J + a(n,s)j,loc,updt (6.27) 

where a, ,. loc dt denotes the approximate cut updates that unit element (n, s) 
generates locally for parametric demand variations from customer elements j £ 
M(„jS) while a\,„ s) updt are the approximate cut updates that it receives from supplier 
elements i £ 5(„]S). 
Step N+l: Iterate/Terminate: Terminate if the specific convergence criteria is 
satisfied, which is considered as, for a given e > 0 and for all s = [1,. . . , S] and 
n = [l,...,Ns], 

Ux{K) v{K) \-lx(K-1) u(K-1)\\\<e (6 28) 

Else, set v) ,. = u, ,. . , K := K + 1 and return to Step 1. • 
: (n,s)i (n,s)i,in: L 
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Note the bidirectional nature of information flow between unit elements in 
Algorithm 6.3 - the flowrate demands for feedstocks (in the form of u) K. . ) 
flow backwards and the resulting supply proposals (in the form of optimality 
cuts) flow forwards. 

6.7 Implementation and Numerical Examples 

The distributed coordination algorithm (Algorithm 6.3) developed in the pre­
vious section was implemented using MATLAB® software, the details of the 
implementation are provided in Appendix C. In what follows, we simply de­
scribe a few numerical examples to illustrate the different features of the al­
gorithms discussed in the previous sections. An application of Algorithm 6.3 
to an industrial-scale, multipurpose process problem is discussed in the next 
chapter. 

Example 6.9. The first example illustrates the approximate optimality cut up­
date technique described in Section 6.5.2. Consider the following problem. 

minimise x\ 1 + x\ 2 + x\ 3 + x\ + x\ \ + x\ 2 + x\ 3 
151,1,151,2,£1,3,3:2 ' ' ' 1 . 1 

Xi,i + Xi,2 + ^1,3 + X2 = 3 (6.29) 
2.5x1,1+0.7x1,2 + 1.6x1,3+61 = 5 

where xi, . and X2 refer to the local variables of unit elements 1 and 2, while 
0 is the parameter vector local to unit element 1. The formulation of the 
associated sub-problems at iteration K in the form of Algorithm 6.1 can be 
written as follows: 

minimise a.\ = x\ 1 + x\ 2 + x\ 3 + xi , i + xi 2 + xi 3 
£ i , i , a ; i , 2 , a : i , 3 ' ' ' ' ' ' 

o -(-K-i) \(K) (6.30) 
S.t. Xi,i + Xi,2 + Xi,3 = 3 - X\ ' ~* \ \ ' \v.uvj 

2.5xi,i + 0.7xi,2 + l-6xi,3 +0 = 5 

and 

minimise «2 = ^2 + x\ 
vi,xi (a QI N 

s.t. i/2 > a\ ' + X{ '(x{ { + x{ 2 + x2 - 3),fc G K 
where Ai is the Lagrange multiplier. Assume 6 = 1 when the algorithm is 
started and tha t it changes to 9 = 5 at iteration 5 and remains the same 
thereafter. If the approximate cut updates are not used when 6 changes, then 
the master problem will retain the optimality cuts from previous iterations 
and result in an incorrect solution. Fig. 6.11 illustrates this effect by comparing 
the value function ct2 as a function of X2 for three different scenarios: Case 

SP[f 

SB (K) 
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A - when no updates are used; Case B - when the algorithm is restarted 
at iteration 6 after 9 is changed; and, Case C - when the approximate cut 
updates are applied. Note tha t the parametric effect results in an incorrect 
solution in case A, while the use of approximate cut updates in case C gives 
the same result as case B where the algorithm is restarted after the change 
in 0. 

(A) Without Using <xupdt (B) Target: With 6 = 5 (C) With Using <xupdt 

for All Iterations 

Value Function 
Curves at 

Different Iterations 

Fig. 6 .11. Example 6.9: Effect of using approximate cut updates aupdt - (A): 
Without aupdt results in an incorrect solution, (B): Target solution - restarting the 
algorithm with 8 = 5, (C): With aupdt - results in a correct Solution 

The next four examples refer to application of the Superset block algorithm 
(Algorithm 6.2) to four different process networks shown in Fig. 6.12. The 
da ta for matrices Qi, Ai, Aijoc and vectors Cj, B{, Bijoc for these examples 
are given in Appendix C. 

Example 6.10. ( M I X E R ) The first example refers to a M I X E R block with three 
unit elements. Table C.2 in Appendix C shows the progress of iterations during 
an execution of Algorithm 6.2. The variables U(ns^ and X(njg^) therein refer 
to the zth element of the input and state vectors of sub-problem <SP(„)g), 
while the last column shows the solution obtained for overall problem using a 
centralised algorithm. As can be verified, the solution obtained via distributed 
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Fig. 6.12. Process configuration for Examples 6.10 to 6.13 

algorithm matches with that from centralised algorithm within a predefined 
tolerance. 

Example 6.11. (SPLITTER) The next problem refers to a SPLITTER block with 
three unit elements as shown in Fig. 6.12. Note that for unit (1,1), the demand 
from unit (2, 2) becomes the uncontrollable parameter 9 when referred to 
(1,2). Similarly, the demand from unit (1,2) becomes the parameter 6 when 
referred to unit (2,2). The approximate cut update technique resolves these 
parametric effects by updating the optimality cuts in the sub-problems of units 
(1,2) and (2,2). Table C.4 in Appendix C shows the progress of iterations 
for Algorithm 6.2, where again the last column confirms that the resulting 
solution matches with that from centralised algorithm within a predefined 
tolerance. 

To demonstrate an additional feature of approximate cut updates, we 
change the terminal demands from 10 to 20 deviation units for units (1,2) 
and (2, 2) while the execution of the algorithm is in progress. Fig. 6.13 shows 
that the algorithm is able to pick up the change and converge to a new opti­
mum. 

Example 6.12. (SPLITTER-STAIRCASE) The next example illustrates the nest­
ing of junction blocks in a SPLITTER -STAIRCASE process, where the STAIR­

CASE block refers to a Two-Units process as a special case of the MIXER or 
MULTIFEED blocks. 

As per the information flow described in Section 6.3, the demand t'(i,3)(i)2) 
from unit (1,3) to (1,2) propagates backwards to demand W(i)2)(i,i) that unit 
(1, 2) sends to unit (1,1). The same applies to units (2, 3) and (2, 2). The de­
mands from terminal units (1,3) and (2, 3) thus parameterize the sub-problem 
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10 15 
Iterations 

10 15 
Iterations 

Fig. 6.13. Example 6.11: Effects of change in terminal demands for units (1, 2) and 
(2,2) 

of unit (1,1). The use of propagation of approximate cut updates along the 
network resolves these parametric effects by updat ing the optimality cuts in 
all four units (1,2), (1,3), (2,2) and (2,3) as described in Algorithm 6.3. Ta­
ble C.6 in Appendix C summarises the progress of iterations and a comparison 
with the equivalent centralised solution. 

Fig. 6.14, similar to Fig. 6.13, shows the ability of the algorithm to pick up 
a change in demands for units (1,3) and (2,3) from 10 to 20 deviation units. 
The plots refer to the input demands W(I ,2 , I ) ! U (2 ,2 , I )> M ( I ,3 , I )> M (2 ,3 , I ) tha t the 
second and third stage units (1,2), (2, 2), (1,3) and (2,3) request from their 
supplier units. As can be seen, the algorithm converges to a new optimum. 

Example 6.13. ( M U L T I P R O D - S P L I T T E R ) The final example illustrates the nest­
ing of a M U L T I P R O D block with a S P L I T T E R block. The example shows the 
combined parametric effects from M U L T I P R O D and S P L I T T E R blocks within 
a single problem. The demand from unit (3, 2) becomes the parameter 9 for 
unit (1,1) when referring to a combined problem of units (1,2) and (2,2). 
Units (1,2) and (2,2) thus both receive the same approximate cut update 
of the M U L T I P R O D type (Eq. 6.20) for demand variations from unit (1,3). 
Unit (3,2) similarly also receives a cut update of M U L T I P R O D type (Eq. 6.20) 
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Fig. 6.14. Example 6.12: Effects of change in terminal demands for units (1, 3) and 
(2,3) 

for a combined demand from units (1, 2) and (2, 2). In addition, the demands 
from units (1, 2) and (2, 2) also parameterize unit (1, l) 's sub-problem for each 
other's demand. Hence, these two units also receive an additional SPLITTER 

type cut update of the form Eq. 6.19. 
Tables C.8 in Appendix C summarises the progress of iterations and the 

convergence to the optimal solution obtained by a centralised algorithm. 

6.8 Future Extensions 

In the course of developing the distributed algorithm, we made various as­
sumptions that helped us simplify the discussions. The algorithm can be ex­
tended and generalised to a wider class of problems if one or more of these 
assumptions are relaxed. For example: 

• Infeasible Sub-problems: The assumption that constraints xi £ Xi, Ui £ U{ 
or Aij0CXi + Bii0CUi = 0 are sufficiently relaxed to allow unit i to accept 
any product demand V{ from downstream units can be relaxed by using 
so-called feasibility restoration technique for primal decomposition concept 
(Grothey, Leyffer & McKinnon 1999). 
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• Incorporating Linking Inequality Constraints: Apart from equality con­
straints A{Xi + BiU{ = Vi, one can also include inequalities such as sharing 
of a limited quota of services (e.g., energy flow) linking multiple units. 

• Multiple Demand Variables: The case of singleton demand in vi can be ex­
tended to a vector-valued demand, e.g., a trajectory of demand variations 
in time domain in the context of an optimal control problem. 

• Recycle and By-products: The case of recycle or by-products can be con­
sidered. This requires further analysis as the unit elements acting as the 
customers along recycle are now situated upstream in the process. An 
approach based on classical research in process flowsheeting (Westerberg 
et al. 1979) can be considered in which the interactions along recycles are 
coordinated separately by breaking the recycle loop and treating the unit 
elements on one side as the final customers and the other side as the main 
suppliers. 

6.9 Summary 

This chapter proposed a distributed coordination strategy for reconfigurable 
process control. The key to the approach is a modular, bottom-up type prob­
lem solving mechanism that solves the overall control problem by interac­
tions between (distributed) unit elements. The decoupling between unit sub-
problems in the solution technique enables the introduction of new unit ele­
ments. The unit elements are also able to respond to local disturbances dy­
namically and adjust their settings (as shown via demand changes in Exam­
ples 6.11 to 6.13). We also note that - in line with typical supply chain be­
haviour - each unit element, acting as the customer of its feedstock demands, 
attempts to coordinate these demands among potential supplier elements. A 
propagation of this demand distributed across the process scheme ensures the 
process responds to changes in the demands in a dynamic and incremental 
manner. 




