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An Interaction Model for Reconfigurable 
Process Control 

5.1 Introduction 

The previous chapter developed a reconfigurable architecture for process con­
trol comprising four basic types of process elements. As discussed these el­
ements must interact in order to exchange information and make collective 
decisions required for a complete plant-wide control. In this chapter we develop 
a model to support such interactions so as to describe how elements carry out 
information exchanges in order to produce the required end-products. The 
proposed model is a direct and necessary supplement to the reconfigurable 
control architecture developed in the previous chapter. 

5.1.1 Overview 

We again start by defining the term interaction and the meaning of an inter­
action model in the context of a distributed control architecture. 

The term interaction - defined in a dictionary term as action or influence 
of persons or things on each other (Oxford English Dictionary, 2005) - has 
different meanings when referred to distributed architectures.These include: 
(i) communication (a pre-determined, passive message-passing protocol), (ii) 
collaboration (communication with dynamic selection of messages from an 
application-specific library), and (iii) coordination (collaboration with an abil­
ity to reason about and synthesise messages dynamically) (Wooldridge 2002). 
While the first two forms are used vividly in day-to-day life, it is the third form 
that has found convincing use in distributed decision-making applications such 
as in multi-agent systems, manufacturing control, supply chain management, 
etc. Coordination is also the meaning used in our interaction model, however, 
the current chapter only focusses on the collaboration aspects as defining the 
structure of information exchanged between process elements. The strategies 
for reasoning about local decisions are addressed in the next chapter. 

The previous work in holonic or agent-based research has generally used 
contracting or its extended variant as the means for defining the message 
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structure for inter-element interactions between product and resource holons. 
As discussed in Section 3.2, contracting alone cannot be applied to continu­
ous processes because of the various restrictions such as the tight and finite 
interconnections between process units and the continuous flow of materials. 
These constraints can make the interactions significantly complex if the re­
sponsibility of managing unit, header or service elements is passed solely to 
product elements. Instead, we seek an interaction approach that allows these 
three latter elements to coordinate their operations directly among themselves 
while also interacting with product elements. 

We seek inspiration from the research on information and life-cycle man­
agement in supply chain and virtual enterprise fields (Camarinha-Matos 
et al. 2003, Strader et al. 1998). The proposed model is then framed around 
developing an interaction method that process elements can use to implement 
the entire reconfiguration process shown earlier in Fig. 3.1 in a distributed 
manner, i.e., how they identify the need for reconfiguration; define the new 
configuration; reorganise the process schemes; and, deliver the order require­
ments. The interaction model essentially builds upon a key concept analogous 
to market transactions between companies: a customer process element (e.g., 
a unit element) that needs to acquire a material or service for its task can 
buy it from a supplier process element that can supply it, i.e., the interac­
tions between unit, header and service elements in the DRPC architecture are 
modelled as forms of supplier-customer type transactions between companies 
in a supply chain. 

5.1.2 Requirements for RPC Interaction Model 

The interaction model (including the coordination strategy to be developed in 
the next chapter) is aimed to deliver the dynamical aspects of reconfigurability 
requirements, in particular, product and process diversity, responsiveness and 
fault-tolerance. In addition, it should retain the modularity of the distributed 
architecture, i.e., it should not impose any centralised information constraints 
that can disturb the modifiability of the RPC system. The key focus of this 
chapter is then to define the method for initial integration and its subsequent 
refinement of product recipe information with production capabilities in the 
plant so as to address these requirements in a distributed manner. 

This chapter is structured as follows. The next section specifies the struc­
ture of process elements' interactions to implement the process of reconfigu­
ration. The key important phases of this model are also explored with details 
about how the low-level message-passing protocols are organised for exchange 
of materials and services between elements. Section 5.3 then explains the in­
teraction model by applying it to a small process example. Section 5.4 finally 
discusses the key features of the model by comparing it against the above 
requirements and the previous conventional and distributed approaches. 
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Fig. 5.1. Distributed reconfiguration process 

5.2 Specification of the Interactions Between Process 
Elements 

Fig. 5.1 depicts the distributed reconfiguration process to define the interac­
tions of process elements in the DRPC architecture. The figure is developed 
from an earlier Fig. 3.1, with an additional 'Terminate' phase is now included 
and the overall activities of reconfiguration are split into five key phases. 

We now describe each of these phases in a brief detail. To provide consis­
tency in the discussions, we use the terms product recipe, processing task, and 
process scheme in the description below. A product recipe in the sense of ISA-
S88 standard (ANSI/ISA 1995) refers to the minimum set of information that 
uniquely defines the manufacturing requirements for a specific product, i.e., it 
identifies raw-materials, their relative quantities and the required processing, 
but without referring to particular equipment. A processing task in a product 
recipe refers to a unit operation (e.g., reaction) that converts its incoming 
feedstocks to outgoing products. The recipe may define relative quantities of 
materials (and services if used) but not the exact values as they depend on the 
throughput of final products. A product recipe is then defined as a sequence 
of processing tasks that converts the main raw-materials to final products. A 
process scheme refers to the physical and control configuration of a segment 
of process that meets the requirements of product recipe for a specific order. 
Multiple process schemes may exist in the same process for different product 
orders sharing some unit, header or service elements common between them. 
Not all unit, header or service elements may be part of a process scheme 
though, i.e., they can be idle at times and await for a new product order to 
arrive that is relevant to them. 

• Identify Phase: The reconfiguration starts with identifying an oppor­
tunity for production (when a new production order arrive) or deciding 
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whether to adapt the ongoing process schemes (when a change occurs). 
Such changes in particular can be planned or unplanned and can provide 
with a new opportunity (e.g., availability of a unit element, raw-material 
or service) or impose a constraint (e.g., a unit element fails or becomes 
bottleneck). Subsequently, each of the opportunities or constraints are re­
fined into the detailed requirements for reconfiguration of the process. In 
case of a new customer order, an appropriate new product element is cre­
ated. (Note that these requirements are not defined explicitly anywhere or 
centrally within an element; they only define the goal with which the pro­
cess elements set out to initiate a new round of interactions, for example, 
to develop a new process scheme when a new customer order arrives.) 

• Define Phase: The define phase is divided into two sub-phases: (i) recipe 
mapping, to map the product recipe information onto production capabil­
ities available in the plant, and (ii) synthesis, to derive a specific process 
scheme from the potential choices created by recipe mapping. 

- Recipe Mapping: In the recipe mapping phase, the product elements 
associated with customer orders interact with the unit and header ele­
ments in the plant to assign (or refine already assigned) processing tasks 
in product recipes with the production capabilities available in the 
plant. The interactions lead to a number of tentative process schemes 
which could be used in the production. Not all tentative schemes may 
be feasible though because the selection of specific unit or header ele­
ments or their operational settings are not defined yet. 

- Synthesis: Next, in the synthesis phase, the unit elements involved in 
the tentative schemes interact among themselves as well as with the 
header and service elements to refine these tentative schemes into a sin­
gle scheme that can be implemented for the production. The elements 
use a global production goal, such as production cost, to arrive at the 
solution. It is possible that some elements may be already engaged 
with other process schemes. Such elements interact among associated 
elements in those schemes to identify how should they reconfigure their 
operations. Eventually, all concerned elements agree on the structure of 
the new process scheme including various network parameters (process 
routes, material and service flow rates, etc.) and the operating settings 
of participating elements (reaction temperatures, heat exchanger duty 
etc.). 

As explained later in this section, the unit elements build the process 
scheme in an incremental, bottom-up manner by following demand-pull 
type interactions. In doing so, they also solve both a scheduling prob­
lem (defining the configuration of the scheme, i.e., exact assignment of 
tasks to equipment) and an optimisation problem (defining the config-
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uration of control structures and associated local settings). 

• Reconfigure Phase: The procedure for reconfiguring the process scheme 
can now begin. The activities can be split conceptually into three sub-
phases: decouple, reorganise and recouple, where any or all three of them 
may involve a physical and/or a control change. A good example of phys­
ical change can be a change in the process routes. The header elements 
involved in this change switch the routes from their current configuration 
to agreed target configuration. A systematic operating procedure may be 
required to meet the physical process constraints such as mixing hazards, 
cleaning-in-place, etc. 

• Operate Phase: As the process scheme is being established, the flow of 
materials and services can also begin. The unit elements along the route 
start executing their processing tasks in a coordinated manner so as to 
convert the incoming feedstocks to their products. The coordination of all 
activities leading up to the start-up and subsequent on-load operations is 
achieved by unit elements themselves. The aim is to maintain the process 
at agreed set-points during synthesis phase. 

During continued operations, the plant conditions may change, e.g., a 
unit element fails or the customer demand changes. The process elements 
affected by the change respond to it in a graceful manner. The elements 
situated next to the point of change attempt to absorb it to the level possi­
ble within their local capacity. If this is not achievable, the residual change 
is propagated further in the process up to a point where it can be fully 
absorbed. The elements affected along the route adapt their operations as 
appropriate. If the change or disturbance is small in magnitude or is not 
likely to last long, then the elements may prefer to operate in this mode 
for a required period. Only if it is large in magnitude or if the resulting 
performance is not acceptable, the elements should re-enter into a new 
round of interactions to reconfigure the process scheme starting with the 
identify phase. 

• Terminate Phase: The process scheme is finally dissolved once the 
throughput requirements for the order are met or if a major failure oc­
curs (such as a reactor element fails) which requires terminating the order 
altogether. In either case, the process elements involved in the scheme ei­
ther join other process schemes or idle themselves and wait for a future 
order to arrive. 

In what follows, we elaborate on the two sub-phases - recipe mapping and 
synthesis - of the define phase, as they are the most critical in terms of how the 
elements define the structure of a new process scheme. A specification of the 
underlying interactions described below would depend on the final application 
and is not developed in great detail here. 
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Fig. 5.2. Interactions between product and unit elements during the recipe mapping 

5.2.1 R e c i p e M a p p i n g P h a s e 

Fig. 5.2 illustrates the structure of the interactions during recipe mapping 
phase. To illustrate the different possibilities, we consider two alternative ways 
in which this mapping can be carried out: (i) product-centric approach and 
(ii) unit-centric approach. 

P r o d u c t - C e n t r i c A p p r o a c h 

In a product-centric approach, the product elements take the leading role in 
assigning the processing tasks to unit elements. Each product element an­
nounces each of its tasks in the product recipe to all unit elements existing 
in the plant. The unit elements capable of undertaking the tasks reply back. 
The replies may contain primary information about the nature of unit opera­
tion, e.g., 'reaction type 1', tha t the unit elements can perform. Based on the 
replies, the product element identifies the unit element(s) tha t best suite the 
currently announced task and assigns the task to them. It also assigns appro­
priate materials and services as well as other processing requirements for tha t 
task (e.g., product quality) to selected unit elements. The interactions repeat 
in this manner until all tasks in the product recipe are assigned to appropri­
ate unit elements. Note tha t the same task may be assigned to more than 
one unit elements but not all may be able to undertake the task, because the 
information on the connectivity of these unit elements or their local settings 
is not defined as yet. The interactions thus result in one or more tentative 
process schemes tha t are refined into a single scheme in the synthesis phase. 

U n i t - C e n t r i c A p p r o a c h 

The centralised role of product elements in a product-centric mechanism can 
become bottleneck if they have to match a large number of tasks or the same 
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tasks more frequently. This latter scenario can arise if the process is required 
to produce the same end-products more frequently and/or in a highly recon-
figurable manner (e.g., in case of many polymer plants). 

Instead of product elements, the responsibility of recipe mapping can be 
distributed among unit elements themselves. The unit elements can now be 
denned with additional details about the specific processing tasks they can 
perform and the materials and services they need to acquire to execute these 
tasks. For instance, a distillation column can be specified with two specific 
distillation tasks X =>• {Y, Z} and L =>• {M,N} (where X, Y, Z, L, M and 
N are the materials). The product elements can still be supplied with some 
form of product recipe or parts of it if the customer order requires only certain 
processing tasks to be used in making the product. 

Using recipe-specific details, the unit elements can be asked to identify 
which task(s) they can use to produce a specific material. The recipe mapping 
activity then proceeds as a backward search starting from the unit elements 
that can produce the final product. These unit elements first identify the 
tasks they can use to produce the product and the incoming materials they 
require from other unit elements in the upstream. The unit elements may check 
with product elements whether their selected tasks are not restricted in the 
recipe (if supplied). The interactions repeat from the upstream unit elements 
until the unit elements requiring the main raw-materials are reached. The 
interactions thus result in one or more tentative process schemes which could 
be refined into a single scheme during the synthesis phase. Since the synthesis 
phase is also carried out by unit elements themselves (together with header 
and service elements) it is possible that the recipe mapping and synthesis can 
proceed together. 

Discussion 

It can be seen that both approaches to recipe mapping have their benefits and 
disadvantages - the product-centric approach may require less time to set up 
initially while the unit-centric approach may provide increased freedom to unit 
elements to choose or alter their tasks. The unit-centric approach requires unit 
elements to be defined with additional recipe information on processing tasks 
they can perform. This is not a requirement for product-centric case. The 
initial effort required to set up a unit-centric approach may thus be higher. 
However, the unit-centric approach also allows unit elements to select or alter 
their processing tasks that best match with the changing plant conditions. 
This is instead of those specified by the product elements in a product-centric 
approach. The unit-centric approach should thus be able to better utilise the 
plant facilities than the product-centric approach. 

We must note that the inclusion of recipe-specific information in unit 
elements in the unit-centric approach does not change or violate the basic 
assumption that this product information should be kept separate from pro­
duction capabilities as considered in ISA-S88 standard (ANSI/ISA 1995) or 
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the previous distributed research. Wha t the approach suggests is to derive 
this information in a bot tom-up manner by collecting together the tasks of 
unit elements via their direct interactions into a single scheme. As mentioned 
earlier in this section, an approach of this nature may be useful when the 
same products are produced more frequently or the same tasks are reused in 
different products. 

5.2.2 S y n t h e s i s P h a s e 

Having identified the processing tasks, the unit elements in the tentative pro­
cess schemes interact among themselves and with respective header and ser­
vice elements to identify the structure of a specific process scheme tha t can 
be used for production. The interactions are considered to follow a backward-
search pat tern based on demand-pull in which the unit elements, start ing from 
the terminal stage of the process, a t tempt to incrementally allocate their ma­
terial demands to unit elements situated upstream and also the service de­
mands to appropriate service elements. Fig. 5.2 outlines the nature of these 
interactions. 

Fig. 5.3. Interactions between unit, header and service elements during the synthesis 
phase 

Internal D e s i g n of P r o c e s s E l e m e n t s 

To model the interactions in detail, we borrow an analogy from the concept of 
so-called transaction between companies in a market or a supply chain in tha t 
'a process element (which can be a unit or a header element) tha t requires a 
material or service for execution of its processing task can buy this from any 
other process element or elements which can supply it ', i.e., the exchange of 
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a material or service between process elements can be modelled as a form of 
contract between two or more different parties in a market or supply chain. 

Using this analogy, we can impose a structure on the internal design of 
process elements, in particular on their coordination modules in Fig. 4.4. A 
process element which requires access to a material or service for its task can 
be represented as a customer and a process element that supplies a material or 
service can be represented as a supplier. Fig. 5.4 depicts this structure. This 
suggests that each unit element can be modelled as: (a) the supplier of its 
outgoing products and services (e.g., heat released from exothermic reaction) 
and (b) the customer of its incoming feedstocks and services. Similarly, each 
header element can be modelled as a supplier or customer for its supply or 
use of services and each service element purely as the supplier of its services. 
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Fig. 5.4. Internal design of process elements based on supplier/customer roles 

Interaction Protocol 

Based on the supplier-customer roles, the interaction protocols for allocation 
of material or service demands between two or more process elements can be 
defined to follow a specific time line: 

• Step 1: the customer element announces a demand request for supply of 
relevant material or service; 

• Step 2: the supplier elements which can supply the material or service 
respond to these requests; 

• Step 3: the customer and supplier elements agree on the allocation of 
material or service demand in terms of respective process parameters, e.g., 
process flow rates, temperature, pressure. 

If the exchange of material or service is to occur via a header element, 
then those header elements also get involved in the interactions so as to agree 
on the process routes though which the transfer should occur as well as the 
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requirements for transforming the physical state of the material or service 
being transferred, e.g., heat or cool them. 

Figs. 5.5 and 5.6 show the interaction protocols for material and service 
demand allocation between a customer process element (denoted as theCus-
tomer) and one or more supplier process elements (denoted as theSupplier). 
The exchange occurs via intermediate header elements (denoted as theHeader). 
In the case of material exchange, the customer element must be a unit ele­
ment, while the supplier element can be other unit element or an external 
supplier when it is the main raw-material. Similarly, for the service exchange, 
the customer element can be a unit or header element while the supplier can 
be a unit, header or service element depending on where and how the service 
is supplied. 

Note that the protocols in Figs. 5.5 and 5.6 differ in the way the interac­
tions between elements are organised. In a material exchange, the customer 
elements initiate the interactions for distributing material demands among 
possible supplier elements; the customer elements therefore act as the coor­
dinators of demand allocations. In a service exchange, again the customer 
elements initiate the interactions, however the coordination of interactions in 
terms of the distribution of service is achieved by supplier elements, i.e., the 
supplier elements act as the coordinators. The computational methods for 
implementing these protocols therefore must differ. 

Synthesis of a Complete Process Scheme 

The synthesis of a complete process scheme from tentative process schemes 
identified during recipe mapping occurs via a sequence of nested material 
and service exchanges between unit, header and service elements. Fig. 5.7 
on page 83 depicts an overview of these interactions between unit elements. 
All unit elements therein are shown both as customers and suppliers of their 
feedstocks and products as well as services. 

The round of interactions starts from unit elements in the last stage. 
These unit elements initiate the protocol for material and service allocation 
in Figs. 5.5 and 5.6 by announcing the demand requests for their feedstocks 
and services. For material demands, the interactions proceed in backward di­
rection. Not all unit elements in the upstream in tentative schemes which can 
supply feedstocks may respond because there may exist constraints such as 
limited connectivity or physical capacity limits; the connectivity information 
is supplied by the header elements. The unit elements which can meet the sup­
ply requirements further initiate a new set of material and service allocation 
protocols to source their feedstocks from unit elements in further upstream 
and services from appropriate service elements. The interactions thus repeat 
until unit elements in the first stage of the process are reached that can ac­
quire their feedstocks from raw-material suppliers. At this stage, starting from 
the first stage, all concerned unit elements return back with their supply pro­
posals (including the availability and capacity details) to respective customer 
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Fig. 5.5. Interaction protocol for material demand allocation 

elements. The supply proposals thus flow in forward direction towards the 
terminal stage. From the responses, each unit element selects which supplier 
elements are appropriate, and how much material demand it should allocate 
to them. If necessary, this nested sequence of interactions for material and 
service allocations repeats until all participating elements settle on respective 
parameters for material and service demands as well as the process routes 
through which the transfers should occur. The process scheme thus developed 
is then reconfigured in the next 'reconfigure' phase which is not described here 
in detail. 
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Fig. 5.6. Interaction protocol for service demand allocation 

5.3 An Illustrative Example 

We next consider a simple process example to illustrate the nature interac­
tions between process elements in the D R P C interaction model. The example 
illustrates a production start-up scenario where a specified product is to be 
produced at a given throughput rate. A further detailed example depicting the 
general production control scenarios such as multiple products is considered 
in Chapter 7. 

5.3.1 P r o c e s s D e s c r i p t i o n 

We consider a process where a product A is produced using the product recipe 
shown in Fig. 5.8. Each rectangle in the figure represents a material and each 
oblong a processing task. Each task is associated with at least one outgoing 
and one incoming material, whereas each material with at least one task. The 
recipe is of a non-linear nature , i.e., there exist two different tasks T3 and 
T4 tha t both can produce material D and hence be involved in producing A. 
Fig. 5.9 depicts the layout of the physical process comprising a set of unit, 
header and service elements. 
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Fig. 5.8. Product recipe for illustrative example 

5.3.2 A p p l i c a t i o n of t h e D R P C Interac t ion M o d e l 

As per D R P C architecture, a product element PR is associated with product 
A. Each unit, header and service element is represented via a unit, header 
and service elements with symbols respectively as U, H and S. The (exter­
nal) supplier elements for raw-materials are represented via prefix R. The 
process contains alternative process schemes through which materials A can 
be produced. These include Ul, U2 in combination with any of the suppliers 
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Fig. 5.9. Process layout for illustrative example 

of D, e.g., {U3}, {U4}, or {U3,U4}. The following sub-sections illustrate the 
sequence of interactions between product and unit elements using product-
centric and unit-centric approach for recipe mapping (the header and service 
elements are omitted for simplifying the illustration). 

P r o d u c t - C e n t r i c A p p r o a c h 

Fig. 5.10 illustrates an animated sequence of interactions in the proposed 
model when a product-centric approach is used for recipe mapping. The indi­
vidual steps therein can be described briefly as follows (the terms in brackets 
show the phase in interaction model to which the step corresponds to) . 
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Step 0 : (identify) A new product element PR is created; 
Step 1 : (recipe mapping) PR starts with announcing task T l in recipe; 
Step 2 : (recipe mapping) Since Ul can only execute T l , it replies back; 
Step 3 : (recipe mapping) PR assigns T l to Ul; 
Step 4 : (recipe mapping) Interactions repeat until all tasks in recipe are 

assigned; 
Step 5 : (synthesis) Ul and then U2 send material requests to their supplier 

unit elements as identified in Step 4. The supplier elements return 
their proposals; 

Step 6 : (synthesis) Ul and then U2 allocate their material demands to 
supplier elements. The configuration of process scheme is thus fixed; 

Step 7 : (reconfigure & operate) The process scheme is reconfigured (as ap­
propriate). Material and service flows are established; 

Step 8 : (terminate) Process scheme is terminated when order requirements 
are met. PR is removed. 

U n i t - C e n t r i c A p p r o a c h 

Fig. 5.11 illustrates the sequence of interactions when a unit-centric approach 
is used for recipe mapping. Again the individual steps therein can be described 
briefly as follows. 

Step 0 : (identify) A new product element PR is created; 
Step 1 : (recipe mapping) PR announces its order requirement for producing 

product A; 
Step 2 : (recipe mapping) Ul can produce A through task T l . It confirms 

with PR tha t T l is allowed in product recipe; 
Step 3 : (recipe mapping) Ul announces material request for B; U2 can 

supply B. It replies its interest; 
Step 4 : (recipe mapping) U2 confirms its task T2 with PR and also extends 

the scheme to U3-U4; 
Step 5 : (recipe mapping) U3 and U4 similarly confirm their tasks and ex­

tend the scheme; 
Step 6 : (synthesis) U3-U4 and then U2 return supply proposals to their 

customer elements. Ul and then U2 then allocate their demands; 
Step 7 : (reconfigure & operate) The process scheme is reconfigured (as ap­

propriate). Material and service flows are established; 
Step 8 : (terminate) Process scheme is terminated when order requirements 

are met. PR is removed. 

D i s c u s s i o n 

As can be seen from Figs. 5.10 and 5.11, the role of product element PR in the 
interactions is limited to tha t of assigning tasks (product-centric approach) 
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Fig. 5.10. Illustration of interaction model using product-centric approach 

or confirming tha t the tasks selected by unit elements are allowed in the 
recipe (unit-centric approach). The actual synthesis of process scheme in terms 
of deciding the process parameters and local settings is carried out by unit 
elements themselves (together with header and service elements). As discussed 
in detail in the next section, this distinction forms a key difference in the 
proposed model compared to earlier interaction models in holonic or agent 
research. 
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Fig. 5.11. Illustration of interaction model using unit-centric approach 

5.4 Comments on the DRPC Interaction Model 

To conclude this chapter, we comment on potential differences between the 
proposed interaction model and its analogs within existing conventional and 
alternative distributed approaches. 

5.4.1 C o m p a r i s o n w i t h Convent iona l P r o c e s s Contro l 

Conventional control is based on hierarchical information and control flow. 
As discussed in Section 2.3, the production in a hierarchical system is driven 
by a higher-level, long-term plan derived based on customer order forecasts 
(Williams 1989). Below, we first show tha t the interaction model described 
in this chapter is compatible to this conventional information flow in tha t all 
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control functions and interfaces tha t are implemented in a conventional system 
can also be implemented using the D R P C interaction model if need be. In 
addition, the bot tom-up nature of interactions between elements offers several 
new benefits in the areas where hierarchical control is restricted. These are: (i) 
bot tom-up response to change and disturbance, and (ii) graceful degradation 
of performance when failures occur. 

C o m p a t i b i l i t y w i t h Convent iona l Contro l 

The D R P C approach decomposes the conventional hierarchy into localised 
control modules of process elements. Each element thus possesses a capability 
to plan, optimise and control its operations and also coordinate them with 
other elements. This suggests tha t by restricting the interactions of process 
elements to a limited set of process schemes and control configurations, one 
can implement the same control functionality of a conventional system using 
the framework of proposed model. 

To illustrate this, Fig. 5.12 uses a simple example of level control in two 
series-connected tanks. The figure also includes two different control struc­
tures used frequently in conventional systems: (a) control in the direction of 
flow, where the product demand directly controls the flow of incoming raw-
material, and (b) control in the direction opposite of flow, where the demand 
is propagated via level control in both tanks. The third scheme in the fig­
ure shows a D R P C approach operating in a demand-pull mode. In this case 
the variable pairings for each tank are combined and encapsulated into a 
general-purpose control module. By configuring this module as appropriate, 
the D R P C model can be made to behave as either of the two conventional 
schemes, because in either case the nature of interactions between elements in 
D R P C model remains the same i.e., the demand information flows backwards 
and the variations in material flows forwards. A similar argument can be ex­
tended to other control levels to interpret the information flow at those levels 
in a demand-pull form. This indicates the compatibility of D R P C model to 
conventional control. 

B o t t o m - u p R e s p o n s e to C h a n g e and D i s t u r b a n c e s 

The example in the previous section briefly demonstrated the manner in which 
the process elements interact to provide a response to arrival of a new product 
order. The response emerges via bot tom-up (i.e., element-to-element) inter­
actions. This behaviour is not predefined in the interaction model. A more 
detailed example illustrating these issues is given in Chapter 7. The model is 
thus able to deal with different scenarios or a combination thereof without an 
explicit definition of global response for each case. 
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(a) Control in the direction of material flow 
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(b) Control in the direction opposite of material flow (On-demand scheme) 
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(c) Distributed RPC Scheme 

Product 

material 

Fig. 5.12. Comparison of conventional and DRPC control structures 

Graceful Degradation of Performance in Case of Failures 

The interaction model provides a definitive structure and guideline on how 
should elements exchange information. To enhance the predictability of oper­
ations the model guarantees that the interactions are flexible but also binding. 
A unit element, for example, should not simply de-commit from supplying its 
products to downstream unit elements in case if its local process becomes bot­
tleneck or one of its supplier unit elements fails. Rather, it seeks an alternative 
supplier element for the same feedstock. Only under the circumstance where 
the disturbance is sufficiently large (in magnitude or of long-term nature), it 
opts to propagate the disturbance further or terminate its processing tasks. 
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The interaction model thus ensures tha t performance degrades gracefully until 
a point is reached where the disturbance can be fully absorbed. 

5.4.2 C o m p a r i s o n w i t h Other D i s t r i b u t e d Interac t ion M o d e l s 

As noted in the introduction, the principle of contracting has been the basis 
of research in most previous holonic or agent research (Gou et al. 1998, van 
Brussel et al. 1998, Chirn & McFarlane 2001). The proposed model extends 
contracting or market programming approaches by using a virtual enterprise 
based model so as to address the constraint of physical connections between 
process units. The model thus differs from the previous research in various 
ways. 

T h e R o l e of P r o d u c t E l e m e n t s 

In the proposed model, the product elements interact with unit and header el­
ements to map the processing tasks onto production capabilities. Unlike other 
architectures though (e.g., PROSA (van Brussel et al. 1998) or its related 
architectures), the product elements do not manage the logistics of materials 
or services in the network nor do they define the operating conditions of unit, 
header or service elements. Such decisions are made by these latter elements 
themselves once the processing tasks are assigned. This modification hence 
avoids the complexity of coordination if the product elements are allocated 
with this responsibility. Additionally, as it was shown with unit-centric ap­
proach, the distribution of recipe mapping provides unit elements with an 
increased freedom to select local tasks tha t best match with the current plant 
s tatus. 

N e t w o r k B e h a v i o u r of P r o c e s s E l e m e n t s 

As can be seen, the virtual enterprise paradigm provides an effective approach 
to contracting or market approaches in dealing with the physical constraints. 
The unit, header and service elements, for instance, are now made able to in­
teract with: (a) other such elements on process connections, and (b) product 
elements on product-recipe related issues. Product elements instead behave 
purely as information servers monitoring the adherence to product recipes. 
Moreover, as mentioned in Section 4.5, the whole network operation is de­
coupled by the use of header elements, tha t similar to t ransporters in supply 
chains, can be made flexible as necessary (by adding extra piping streams or 
transfer equipment equipment) irrespective of other elements requiring their 
use. 

The proposed model also operates on a demand-driven basis, i.e., the 
unit elements build processing schemes (in the form of material and service 
exchange protocols) in backward direction start ing from the end-products to 
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raw-materials. Subsequently, any new demand changes imposed on the process 
are also propagated in the process in an incremental manner. This behaviour 
ensures that the production remains fitting to changing demands. 

The use of backward search in building or extending process schemes (see 
Fig. 5.10 and Fig. 5.11) also guarantees that the resulting partial schemes are 
feasible, i.e., physically implementable. This may not so with other architec­
tures mentioned above where the interactions between product and resource 
elements generally follow a dispatching mode of task allocation, i.e., the next 
task in sequence is only announced when the previous task is finished. This 
could possibly result in dead-locks and dead-ends where the product elements 
may find no further machine available to progress the partly finished parts. 
The proposed model avoids this scenario by ensuring that the unit elements 
(together with header and service elements) build a complete process scheme 
from raw-materials to end-products before the actual production commences. 

Distribution of Information and Control Functionality 

Unlike contracting, the proposed model also improves the distribution of in­
formation and control among elements as the product elements are no longer 
responsible for coordinating local operations. Hence, little or no production in­
formation (depending on the product or unit-centric approach used for recipe 
mapping) needs to be transferred to product elements. This feature can be of 
significant use when: (a) the number of product elements that can coexist in 
the process is large; (b) the product elements are designed and developed by 
teams situated remotely, or (c) multiple product elements share some of the 
materials or unit elements which can lead to deadlocks because the supplies 
of materials or these shared unit elements are likely to fail. 

5.5 Summary 

In this chapter we have proposed a distributed interaction model to support 
the run-time interactions of process elements in the control architecture. We 
next go onto examining the quantitative aspect of these interactions, i.e., 
to define a distributed solution strategy for use of the process elements, in 
particular the unit elements, to identify their local operating settings during 
the define, reconfigure or operate phases. 




