
5

An Interaction Model for Reconfigurable
Process Control

5.1 Introduction

The previous chapter developed a reconfigurable architecture for process con­
trol comprising four basic types of process elements. As discussed these el­
ements must interact in order to exchange information and make collective
decisions required for a complete plant-wide control. In this chapter we develop
a model to support such interactions so as to describe how elements carry out
information exchanges in order to produce the required end-products. The
proposed model is a direct and necessary supplement to the reconfigurable
control architecture developed in the previous chapter.

5.1.1 Overview

We again start by defining the term interaction and the meaning of an inter­
action model in the context of a distributed control architecture.

The term interaction - defined in a dictionary term as action or influence
of persons or things on each other (Oxford English Dictionary, 2005) - has
different meanings when referred to distributed architectures.These include:
(i) communication (a pre-determined, passive message-passing protocol), (ii)
collaboration (communication with dynamic selection of messages from an
application-specific library), and (iii) coordination (collaboration with an abil­
ity to reason about and synthesise messages dynamically) (Wooldridge 2002).
While the first two forms are used vividly in day-to-day life, it is the third form
that has found convincing use in distributed decision-making applications such
as in multi-agent systems, manufacturing control, supply chain management,
etc. Coordination is also the meaning used in our interaction model, however,
the current chapter only focusses on the collaboration aspects as defining the
structure of information exchanged between process elements. The strategies
for reasoning about local decisions are addressed in the next chapter.

The previous work in holonic or agent-based research has generally used
contracting or its extended variant as the means for defining the message

72 5 An Interaction Model for Reconfigurable Process Control

structure for inter-element interactions between product and resource holons.
As discussed in Section 3.2, contracting alone cannot be applied to continu­
ous processes because of the various restrictions such as the tight and finite
interconnections between process units and the continuous flow of materials.
These constraints can make the interactions significantly complex if the re­
sponsibility of managing unit, header or service elements is passed solely to
product elements. Instead, we seek an interaction approach that allows these
three latter elements to coordinate their operations directly among themselves
while also interacting with product elements.

We seek inspiration from the research on information and life-cycle man­
agement in supply chain and virtual enterprise fields (Camarinha-Matos
et al. 2003, Strader et al. 1998). The proposed model is then framed around
developing an interaction method that process elements can use to implement
the entire reconfiguration process shown earlier in Fig. 3.1 in a distributed
manner, i.e., how they identify the need for reconfiguration; define the new
configuration; reorganise the process schemes; and, deliver the order require­
ments. The interaction model essentially builds upon a key concept analogous
to market transactions between companies: a customer process element (e.g.,
a unit element) that needs to acquire a material or service for its task can
buy it from a supplier process element that can supply it, i.e., the interac­
tions between unit, header and service elements in the DRPC architecture are
modelled as forms of supplier-customer type transactions between companies
in a supply chain.

5.1.2 Requirements for RPC Interaction Model

The interaction model (including the coordination strategy to be developed in
the next chapter) is aimed to deliver the dynamical aspects of reconfigurability
requirements, in particular, product and process diversity, responsiveness and
fault-tolerance. In addition, it should retain the modularity of the distributed
architecture, i.e., it should not impose any centralised information constraints
that can disturb the modifiability of the RPC system. The key focus of this
chapter is then to define the method for initial integration and its subsequent
refinement of product recipe information with production capabilities in the
plant so as to address these requirements in a distributed manner.

This chapter is structured as follows. The next section specifies the struc­
ture of process elements' interactions to implement the process of reconfigu­
ration. The key important phases of this model are also explored with details
about how the low-level message-passing protocols are organised for exchange
of materials and services between elements. Section 5.3 then explains the in­
teraction model by applying it to a small process example. Section 5.4 finally
discusses the key features of the model by comparing it against the above
requirements and the previous conventional and distributed approaches.

5.2 Specification of the Interactions Between Process Elements 73

Identify

Identif ication of
Opportunit ies/

Constraints

a
Requirements

Definition

"E

Define

Recipe Mapping

JJ
Synthesis of

Process Scheme

Reconfigure

Decoupling

Reorganisation

a.
Re-coupling

Operate

Task Execution

£
Monitoring /

Diagnosis

Terminate

Process Scheme
Termination

0.
Wait for

New
Opportunity

Fig. 5.1. Distributed reconfiguration process

5.2 Specification of the Interactions Between Process
Elements

Fig. 5.1 depicts the distributed reconfiguration process to define the interac­
tions of process elements in the DRPC architecture. The figure is developed
from an earlier Fig. 3.1, with an additional 'Terminate' phase is now included
and the overall activities of reconfiguration are split into five key phases.

We now describe each of these phases in a brief detail. To provide consis­
tency in the discussions, we use the terms product recipe, processing task, and
process scheme in the description below. A product recipe in the sense of ISA-
S88 standard (ANSI/ISA 1995) refers to the minimum set of information that
uniquely defines the manufacturing requirements for a specific product, i.e., it
identifies raw-materials, their relative quantities and the required processing,
but without referring to particular equipment. A processing task in a product
recipe refers to a unit operation (e.g., reaction) that converts its incoming
feedstocks to outgoing products. The recipe may define relative quantities of
materials (and services if used) but not the exact values as they depend on the
throughput of final products. A product recipe is then defined as a sequence
of processing tasks that converts the main raw-materials to final products. A
process scheme refers to the physical and control configuration of a segment
of process that meets the requirements of product recipe for a specific order.
Multiple process schemes may exist in the same process for different product
orders sharing some unit, header or service elements common between them.
Not all unit, header or service elements may be part of a process scheme
though, i.e., they can be idle at times and await for a new product order to
arrive that is relevant to them.

• Identify Phase: The reconfiguration starts with identifying an oppor­
tunity for production (when a new production order arrive) or deciding

74 5 An Interaction Model for Reconfigurable Process Control

whether to adapt the ongoing process schemes (when a change occurs).
Such changes in particular can be planned or unplanned and can provide
with a new opportunity (e.g., availability of a unit element, raw-material
or service) or impose a constraint (e.g., a unit element fails or becomes
bottleneck). Subsequently, each of the opportunities or constraints are re­
fined into the detailed requirements for reconfiguration of the process. In
case of a new customer order, an appropriate new product element is cre­
ated. (Note that these requirements are not defined explicitly anywhere or
centrally within an element; they only define the goal with which the pro­
cess elements set out to initiate a new round of interactions, for example,
to develop a new process scheme when a new customer order arrives.)

• Define Phase: The define phase is divided into two sub-phases: (i) recipe
mapping, to map the product recipe information onto production capabil­
ities available in the plant, and (ii) synthesis, to derive a specific process
scheme from the potential choices created by recipe mapping.

- Recipe Mapping: In the recipe mapping phase, the product elements
associated with customer orders interact with the unit and header ele­
ments in the plant to assign (or refine already assigned) processing tasks
in product recipes with the production capabilities available in the
plant. The interactions lead to a number of tentative process schemes
which could be used in the production. Not all tentative schemes may
be feasible though because the selection of specific unit or header ele­
ments or their operational settings are not defined yet.

- Synthesis: Next, in the synthesis phase, the unit elements involved in
the tentative schemes interact among themselves as well as with the
header and service elements to refine these tentative schemes into a sin­
gle scheme that can be implemented for the production. The elements
use a global production goal, such as production cost, to arrive at the
solution. It is possible that some elements may be already engaged
with other process schemes. Such elements interact among associated
elements in those schemes to identify how should they reconfigure their
operations. Eventually, all concerned elements agree on the structure of
the new process scheme including various network parameters (process
routes, material and service flow rates, etc.) and the operating settings
of participating elements (reaction temperatures, heat exchanger duty
etc.).

As explained later in this section, the unit elements build the process
scheme in an incremental, bottom-up manner by following demand-pull
type interactions. In doing so, they also solve both a scheduling prob­
lem (defining the configuration of the scheme, i.e., exact assignment of
tasks to equipment) and an optimisation problem (defining the config-

5.2 Specification of the Interactions Between Process Elements 75

uration of control structures and associated local settings).

• Reconfigure Phase: The procedure for reconfiguring the process scheme
can now begin. The activities can be split conceptually into three sub-
phases: decouple, reorganise and recouple, where any or all three of them
may involve a physical and/or a control change. A good example of phys­
ical change can be a change in the process routes. The header elements
involved in this change switch the routes from their current configuration
to agreed target configuration. A systematic operating procedure may be
required to meet the physical process constraints such as mixing hazards,
cleaning-in-place, etc.

• Operate Phase: As the process scheme is being established, the flow of
materials and services can also begin. The unit elements along the route
start executing their processing tasks in a coordinated manner so as to
convert the incoming feedstocks to their products. The coordination of all
activities leading up to the start-up and subsequent on-load operations is
achieved by unit elements themselves. The aim is to maintain the process
at agreed set-points during synthesis phase.

During continued operations, the plant conditions may change, e.g., a
unit element fails or the customer demand changes. The process elements
affected by the change respond to it in a graceful manner. The elements
situated next to the point of change attempt to absorb it to the level possi­
ble within their local capacity. If this is not achievable, the residual change
is propagated further in the process up to a point where it can be fully
absorbed. The elements affected along the route adapt their operations as
appropriate. If the change or disturbance is small in magnitude or is not
likely to last long, then the elements may prefer to operate in this mode
for a required period. Only if it is large in magnitude or if the resulting
performance is not acceptable, the elements should re-enter into a new
round of interactions to reconfigure the process scheme starting with the
identify phase.

• Terminate Phase: The process scheme is finally dissolved once the
throughput requirements for the order are met or if a major failure oc­
curs (such as a reactor element fails) which requires terminating the order
altogether. In either case, the process elements involved in the scheme ei­
ther join other process schemes or idle themselves and wait for a future
order to arrive.

In what follows, we elaborate on the two sub-phases - recipe mapping and
synthesis - of the define phase, as they are the most critical in terms of how the
elements define the structure of a new process scheme. A specification of the
underlying interactions described below would depend on the final application
and is not developed in great detail here.

76 5 An Interaction Model for Reconfigurable Process Control

Fig. 5.2. Interactions between product and unit elements during the recipe mapping

5.2.1 R e c i p e M a p p i n g P h a s e

Fig. 5.2 illustrates the structure of the interactions during recipe mapping
phase. To illustrate the different possibilities, we consider two alternative ways
in which this mapping can be carried out: (i) product-centric approach and
(ii) unit-centric approach.

P r o d u c t - C e n t r i c A p p r o a c h

In a product-centric approach, the product elements take the leading role in
assigning the processing tasks to unit elements. Each product element an­
nounces each of its tasks in the product recipe to all unit elements existing
in the plant. The unit elements capable of undertaking the tasks reply back.
The replies may contain primary information about the nature of unit opera­
tion, e.g., 'reaction type 1', tha t the unit elements can perform. Based on the
replies, the product element identifies the unit element(s) tha t best suite the
currently announced task and assigns the task to them. It also assigns appro­
priate materials and services as well as other processing requirements for tha t
task (e.g., product quality) to selected unit elements. The interactions repeat
in this manner until all tasks in the product recipe are assigned to appropri­
ate unit elements. Note tha t the same task may be assigned to more than
one unit elements but not all may be able to undertake the task, because the
information on the connectivity of these unit elements or their local settings
is not defined as yet. The interactions thus result in one or more tentative
process schemes tha t are refined into a single scheme in the synthesis phase.

U n i t - C e n t r i c A p p r o a c h

The centralised role of product elements in a product-centric mechanism can
become bottleneck if they have to match a large number of tasks or the same

5.2 Specification of the Interactions Between Process Elements 77

tasks more frequently. This latter scenario can arise if the process is required
to produce the same end-products more frequently and/or in a highly recon-
figurable manner (e.g., in case of many polymer plants).

Instead of product elements, the responsibility of recipe mapping can be
distributed among unit elements themselves. The unit elements can now be
denned with additional details about the specific processing tasks they can
perform and the materials and services they need to acquire to execute these
tasks. For instance, a distillation column can be specified with two specific
distillation tasks X =>• {Y, Z} and L =>• {M,N} (where X, Y, Z, L, M and
N are the materials). The product elements can still be supplied with some
form of product recipe or parts of it if the customer order requires only certain
processing tasks to be used in making the product.

Using recipe-specific details, the unit elements can be asked to identify
which task(s) they can use to produce a specific material. The recipe mapping
activity then proceeds as a backward search starting from the unit elements
that can produce the final product. These unit elements first identify the
tasks they can use to produce the product and the incoming materials they
require from other unit elements in the upstream. The unit elements may check
with product elements whether their selected tasks are not restricted in the
recipe (if supplied). The interactions repeat from the upstream unit elements
until the unit elements requiring the main raw-materials are reached. The
interactions thus result in one or more tentative process schemes which could
be refined into a single scheme during the synthesis phase. Since the synthesis
phase is also carried out by unit elements themselves (together with header
and service elements) it is possible that the recipe mapping and synthesis can
proceed together.

Discussion

It can be seen that both approaches to recipe mapping have their benefits and
disadvantages - the product-centric approach may require less time to set up
initially while the unit-centric approach may provide increased freedom to unit
elements to choose or alter their tasks. The unit-centric approach requires unit
elements to be defined with additional recipe information on processing tasks
they can perform. This is not a requirement for product-centric case. The
initial effort required to set up a unit-centric approach may thus be higher.
However, the unit-centric approach also allows unit elements to select or alter
their processing tasks that best match with the changing plant conditions.
This is instead of those specified by the product elements in a product-centric
approach. The unit-centric approach should thus be able to better utilise the
plant facilities than the product-centric approach.

We must note that the inclusion of recipe-specific information in unit
elements in the unit-centric approach does not change or violate the basic
assumption that this product information should be kept separate from pro­
duction capabilities as considered in ISA-S88 standard (ANSI/ISA 1995) or

78 5 An Interaction Model for Reconfigurable Process Control

the previous distributed research. Wha t the approach suggests is to derive
this information in a bot tom-up manner by collecting together the tasks of
unit elements via their direct interactions into a single scheme. As mentioned
earlier in this section, an approach of this nature may be useful when the
same products are produced more frequently or the same tasks are reused in
different products.

5.2.2 S y n t h e s i s P h a s e

Having identified the processing tasks, the unit elements in the tentative pro­
cess schemes interact among themselves and with respective header and ser­
vice elements to identify the structure of a specific process scheme tha t can
be used for production. The interactions are considered to follow a backward-
search pat tern based on demand-pull in which the unit elements, start ing from
the terminal stage of the process, a t tempt to incrementally allocate their ma­
terial demands to unit elements situated upstream and also the service de­
mands to appropriate service elements. Fig. 5.2 outlines the nature of these
interactions.

Fig. 5.3. Interactions between unit, header and service elements during the synthesis
phase

Internal D e s i g n of P r o c e s s E l e m e n t s

To model the interactions in detail, we borrow an analogy from the concept of
so-called transaction between companies in a market or a supply chain in tha t
'a process element (which can be a unit or a header element) tha t requires a
material or service for execution of its processing task can buy this from any
other process element or elements which can supply it ', i.e., the exchange of

5.2 Specification of the Interactions Between Process Elements 79

a material or service between process elements can be modelled as a form of
contract between two or more different parties in a market or supply chain.

Using this analogy, we can impose a structure on the internal design of
process elements, in particular on their coordination modules in Fig. 4.4. A
process element which requires access to a material or service for its task can
be represented as a customer and a process element that supplies a material or
service can be represented as a supplier. Fig. 5.4 depicts this structure. This
suggests that each unit element can be modelled as: (a) the supplier of its
outgoing products and services (e.g., heat released from exothermic reaction)
and (b) the customer of its incoming feedstocks and services. Similarly, each
header element can be modelled as a supplier or customer for its supply or
use of services and each service element purely as the supplier of its services.

Demand
Requests

V .
Customer Role Supplier Role

Ih^C^Tas^^^-^

uct p i

Supply
— Availability/
' Capacity

y
Demand
Requests

Fig. 5.4. Internal design of process elements based on supplier/customer roles

Interaction Protocol

Based on the supplier-customer roles, the interaction protocols for allocation
of material or service demands between two or more process elements can be
defined to follow a specific time line:

• Step 1: the customer element announces a demand request for supply of
relevant material or service;

• Step 2: the supplier elements which can supply the material or service
respond to these requests;

• Step 3: the customer and supplier elements agree on the allocation of
material or service demand in terms of respective process parameters, e.g.,
process flow rates, temperature, pressure.

If the exchange of material or service is to occur via a header element,
then those header elements also get involved in the interactions so as to agree
on the process routes though which the transfer should occur as well as the

80 5 An Interaction Model for Reconfigurable Process Control

requirements for transforming the physical state of the material or service
being transferred, e.g., heat or cool them.

Figs. 5.5 and 5.6 show the interaction protocols for material and service
demand allocation between a customer process element (denoted as theCus-
tomer) and one or more supplier process elements (denoted as theSupplier).
The exchange occurs via intermediate header elements (denoted as theHeader).
In the case of material exchange, the customer element must be a unit ele­
ment, while the supplier element can be other unit element or an external
supplier when it is the main raw-material. Similarly, for the service exchange,
the customer element can be a unit or header element while the supplier can
be a unit, header or service element depending on where and how the service
is supplied.

Note that the protocols in Figs. 5.5 and 5.6 differ in the way the interac­
tions between elements are organised. In a material exchange, the customer
elements initiate the interactions for distributing material demands among
possible supplier elements; the customer elements therefore act as the coor­
dinators of demand allocations. In a service exchange, again the customer
elements initiate the interactions, however the coordination of interactions in
terms of the distribution of service is achieved by supplier elements, i.e., the
supplier elements act as the coordinators. The computational methods for
implementing these protocols therefore must differ.

Synthesis of a Complete Process Scheme

The synthesis of a complete process scheme from tentative process schemes
identified during recipe mapping occurs via a sequence of nested material
and service exchanges between unit, header and service elements. Fig. 5.7
on page 83 depicts an overview of these interactions between unit elements.
All unit elements therein are shown both as customers and suppliers of their
feedstocks and products as well as services.

The round of interactions starts from unit elements in the last stage.
These unit elements initiate the protocol for material and service allocation
in Figs. 5.5 and 5.6 by announcing the demand requests for their feedstocks
and services. For material demands, the interactions proceed in backward di­
rection. Not all unit elements in the upstream in tentative schemes which can
supply feedstocks may respond because there may exist constraints such as
limited connectivity or physical capacity limits; the connectivity information
is supplied by the header elements. The unit elements which can meet the sup­
ply requirements further initiate a new set of material and service allocation
protocols to source their feedstocks from unit elements in further upstream
and services from appropriate service elements. The interactions thus repeat
until unit elements in the first stage of the process are reached that can ac­
quire their feedstocks from raw-material suppliers. At this stage, starting from
the first stage, all concerned unit elements return back with their supply pro­
posals (including the availability and capacity details) to respective customer

5.2 Specification of the Interactions Between Process Elements 81

theCustomer:Unit theSupplier:Unit

Identify theMaterial
1 required

Announce requests
for theMaterial supply

theHeader: Header

TJ

F
Send proposal for
theMaterial supply

Check availability/capacity
of theMaterial supply

Select theSupplier
for material requested

Announce request for
connectivity to theSupplier

j Send proposal for connection
I between theCustomer & theSupplier

cr
Allocate theMaterial

demand to theSupplier

Confirm theMaterial
supply order

V
Confirm theMaterial

transfer/transform order

V
Check connection

between theCustomer
and theSupplier

V
I
I
I
I

Fig. 5.5. Interaction protocol for material demand allocation

elements. The supply proposals thus flow in forward direction towards the
terminal stage. From the responses, each unit element selects which supplier
elements are appropriate, and how much material demand it should allocate
to them. If necessary, this nested sequence of interactions for material and
service allocations repeats until all participating elements settle on respective
parameters for material and service demands as well as the process routes
through which the transfers should occur. The process scheme thus developed
is then reconfigured in the next 'reconfigure' phase which is not described here
in detail.

82 5 An Interaction Model for Reconfigurable Process Control

theCustomenUnit theSupplier: Service

Identify theService
1 required

Announce requests
for theService supply

theHeader: Header

Cr
Allocate theService supply

Announce request for
connectivity to theSupplier

tP
i
i

Check availability/capacity
of theService supply

j Send proposal for connection
i between theCustomer & theSupplier

W
Confirm theService request

\J •a
Confirm theService

transfer order

U

ti
Check connection

between theCustomer
and theSupplier

*0

Fig. 5.6. Interaction protocol for service demand allocation

5.3 An Illustrative Example

We next consider a simple process example to illustrate the nature interac­
tions between process elements in the D R P C interaction model. The example
illustrates a production start-up scenario where a specified product is to be
produced at a given throughput rate. A further detailed example depicting the
general production control scenarios such as multiple products is considered
in Chapter 7.

5.3.1 P r o c e s s D e s c r i p t i o n

We consider a process where a product A is produced using the product recipe
shown in Fig. 5.8. Each rectangle in the figure represents a material and each
oblong a processing task. Each task is associated with at least one outgoing
and one incoming material, whereas each material with at least one task. The
recipe is of a non-linear nature , i.e., there exist two different tasks T3 and
T4 tha t both can produce material D and hence be involved in producing A.
Fig. 5.9 depicts the layout of the physical process comprising a set of unit,
header and service elements.

5.3 An Illustrative Example 83

3 ^̂ *o

*' 3<^°
Product

Fig. 5.7. Interactions between unit elements in the synthesis of a complete process
scheme

i 1 Material Nodes

i 1 Service Nodes

Task Nodes

Fig. 5.8. Product recipe for illustrative example

5.3.2 A p p l i c a t i o n of t h e D R P C Interac t ion M o d e l

As per D R P C architecture, a product element PR is associated with product
A. Each unit, header and service element is represented via a unit, header
and service elements with symbols respectively as U, H and S. The (exter­
nal) supplier elements for raw-materials are represented via prefix R. The
process contains alternative process schemes through which materials A can
be produced. These include Ul, U2 in combination with any of the suppliers

84 5 An Interaction Model for Reconfigurable Process Control

o Unit Element

| | Header Element

•

Pumps, Compressors,
Heat Exchanger, etc.

Service Element
i Sen

Fig. 5.9. Process layout for illustrative example

of D, e.g., {U3}, {U4}, or {U3,U4}. The following sub-sections illustrate the
sequence of interactions between product and unit elements using product-
centric and unit-centric approach for recipe mapping (the header and service
elements are omitted for simplifying the illustration).

P r o d u c t - C e n t r i c A p p r o a c h

Fig. 5.10 illustrates an animated sequence of interactions in the proposed
model when a product-centric approach is used for recipe mapping. The indi­
vidual steps therein can be described briefly as follows (the terms in brackets
show the phase in interaction model to which the step corresponds to) .

5.3 An Illustrative Example 85

Step 0 : (identify) A new product element PR is created;
Step 1 : (recipe mapping) PR starts with announcing task T l in recipe;
Step 2 : (recipe mapping) Since Ul can only execute T l , it replies back;
Step 3 : (recipe mapping) PR assigns T l to Ul;
Step 4 : (recipe mapping) Interactions repeat until all tasks in recipe are

assigned;
Step 5 : (synthesis) Ul and then U2 send material requests to their supplier

unit elements as identified in Step 4. The supplier elements return
their proposals;

Step 6 : (synthesis) Ul and then U2 allocate their material demands to
supplier elements. The configuration of process scheme is thus fixed;

Step 7 : (reconfigure & operate) The process scheme is reconfigured (as ap­
propriate). Material and service flows are established;

Step 8 : (terminate) Process scheme is terminated when order requirements
are met. PR is removed.

U n i t - C e n t r i c A p p r o a c h

Fig. 5.11 illustrates the sequence of interactions when a unit-centric approach
is used for recipe mapping. Again the individual steps therein can be described
briefly as follows.

Step 0 : (identify) A new product element PR is created;
Step 1 : (recipe mapping) PR announces its order requirement for producing

product A;
Step 2 : (recipe mapping) Ul can produce A through task T l . It confirms

with PR tha t T l is allowed in product recipe;
Step 3 : (recipe mapping) Ul announces material request for B; U2 can

supply B. It replies its interest;
Step 4 : (recipe mapping) U2 confirms its task T2 with PR and also extends

the scheme to U3-U4;
Step 5 : (recipe mapping) U3 and U4 similarly confirm their tasks and ex­

tend the scheme;
Step 6 : (synthesis) U3-U4 and then U2 return supply proposals to their

customer elements. Ul and then U2 then allocate their demands;
Step 7 : (reconfigure & operate) The process scheme is reconfigured (as ap­

propriate). Material and service flows are established;
Step 8 : (terminate) Process scheme is terminated when order requirements

are met. PR is removed.

D i s c u s s i o n

As can be seen from Figs. 5.10 and 5.11, the role of product element PR in the
interactions is limited to tha t of assigning tasks (product-centric approach)

5 An Interaction Model for Reconfigurable Process Control

Fig. 5.10. Illustration of interaction model using product-centric approach

or confirming tha t the tasks selected by unit elements are allowed in the
recipe (unit-centric approach). The actual synthesis of process scheme in terms
of deciding the process parameters and local settings is carried out by unit
elements themselves (together with header and service elements). As discussed
in detail in the next section, this distinction forms a key difference in the
proposed model compared to earlier interaction models in holonic or agent
research.

5.4 Comments on the DRPC Interaction Model 87

Material supply (" S I M a t e r i f ^PP'V
request ' ' availability

Material supply
proposals I PR I Material demand

llocation

Fig. 5.11. Illustration of interaction model using unit-centric approach

5.4 Comments on the DRPC Interaction Model

To conclude this chapter, we comment on potential differences between the
proposed interaction model and its analogs within existing conventional and
alternative distributed approaches.

5.4.1 C o m p a r i s o n w i t h Convent iona l P r o c e s s Contro l

Conventional control is based on hierarchical information and control flow.
As discussed in Section 2.3, the production in a hierarchical system is driven
by a higher-level, long-term plan derived based on customer order forecasts
(Williams 1989). Below, we first show tha t the interaction model described
in this chapter is compatible to this conventional information flow in tha t all

88 5 An Interaction Model for Reconfigurable Process Control

control functions and interfaces tha t are implemented in a conventional system
can also be implemented using the D R P C interaction model if need be. In
addition, the bot tom-up nature of interactions between elements offers several
new benefits in the areas where hierarchical control is restricted. These are: (i)
bot tom-up response to change and disturbance, and (ii) graceful degradation
of performance when failures occur.

C o m p a t i b i l i t y w i t h Convent iona l Contro l

The D R P C approach decomposes the conventional hierarchy into localised
control modules of process elements. Each element thus possesses a capability
to plan, optimise and control its operations and also coordinate them with
other elements. This suggests tha t by restricting the interactions of process
elements to a limited set of process schemes and control configurations, one
can implement the same control functionality of a conventional system using
the framework of proposed model.

To illustrate this, Fig. 5.12 uses a simple example of level control in two
series-connected tanks. The figure also includes two different control struc­
tures used frequently in conventional systems: (a) control in the direction of
flow, where the product demand directly controls the flow of incoming raw-
material, and (b) control in the direction opposite of flow, where the demand
is propagated via level control in both tanks. The third scheme in the fig­
ure shows a D R P C approach operating in a demand-pull mode. In this case
the variable pairings for each tank are combined and encapsulated into a
general-purpose control module. By configuring this module as appropriate,
the D R P C model can be made to behave as either of the two conventional
schemes, because in either case the nature of interactions between elements in
D R P C model remains the same i.e., the demand information flows backwards
and the variations in material flows forwards. A similar argument can be ex­
tended to other control levels to interpret the information flow at those levels
in a demand-pull form. This indicates the compatibility of D R P C model to
conventional control.

B o t t o m - u p R e s p o n s e to C h a n g e and D i s t u r b a n c e s

The example in the previous section briefly demonstrated the manner in which
the process elements interact to provide a response to arrival of a new product
order. The response emerges via bot tom-up (i.e., element-to-element) inter­
actions. This behaviour is not predefined in the interaction model. A more
detailed example illustrating these issues is given in Chapter 7. The model is
thus able to deal with different scenarios or a combination thereof without an
explicit definition of global response for each case.

5.4 Comments on the DRPC Interaction Model

(a) Control in the direction of material flow

89

(b) Control in the direction opposite of material flow (On-demand scheme)

Raw _ * - - i F 1 F 2

material
' ^

SP-H

SP Product
demand

(c) Distributed RPC Scheme

Product

material

Fig. 5.12. Comparison of conventional and DRPC control structures

Graceful Degradation of Performance in Case of Failures

The interaction model provides a definitive structure and guideline on how
should elements exchange information. To enhance the predictability of oper­
ations the model guarantees that the interactions are flexible but also binding.
A unit element, for example, should not simply de-commit from supplying its
products to downstream unit elements in case if its local process becomes bot­
tleneck or one of its supplier unit elements fails. Rather, it seeks an alternative
supplier element for the same feedstock. Only under the circumstance where
the disturbance is sufficiently large (in magnitude or of long-term nature), it
opts to propagate the disturbance further or terminate its processing tasks.

90 5 An Interaction Model for Reconfigurable Process Control

The interaction model thus ensures tha t performance degrades gracefully until
a point is reached where the disturbance can be fully absorbed.

5.4.2 C o m p a r i s o n w i t h Other D i s t r i b u t e d Interac t ion M o d e l s

As noted in the introduction, the principle of contracting has been the basis
of research in most previous holonic or agent research (Gou et al. 1998, van
Brussel et al. 1998, Chirn & McFarlane 2001). The proposed model extends
contracting or market programming approaches by using a virtual enterprise
based model so as to address the constraint of physical connections between
process units. The model thus differs from the previous research in various
ways.

T h e R o l e of P r o d u c t E l e m e n t s

In the proposed model, the product elements interact with unit and header el­
ements to map the processing tasks onto production capabilities. Unlike other
architectures though (e.g., PROSA (van Brussel et al. 1998) or its related
architectures), the product elements do not manage the logistics of materials
or services in the network nor do they define the operating conditions of unit,
header or service elements. Such decisions are made by these latter elements
themselves once the processing tasks are assigned. This modification hence
avoids the complexity of coordination if the product elements are allocated
with this responsibility. Additionally, as it was shown with unit-centric ap­
proach, the distribution of recipe mapping provides unit elements with an
increased freedom to select local tasks tha t best match with the current plant
s tatus.

N e t w o r k B e h a v i o u r of P r o c e s s E l e m e n t s

As can be seen, the virtual enterprise paradigm provides an effective approach
to contracting or market approaches in dealing with the physical constraints.
The unit, header and service elements, for instance, are now made able to in­
teract with: (a) other such elements on process connections, and (b) product
elements on product-recipe related issues. Product elements instead behave
purely as information servers monitoring the adherence to product recipes.
Moreover, as mentioned in Section 4.5, the whole network operation is de­
coupled by the use of header elements, tha t similar to t ransporters in supply
chains, can be made flexible as necessary (by adding extra piping streams or
transfer equipment equipment) irrespective of other elements requiring their
use.

The proposed model also operates on a demand-driven basis, i.e., the
unit elements build processing schemes (in the form of material and service
exchange protocols) in backward direction start ing from the end-products to

5.5 Summary 91

raw-materials. Subsequently, any new demand changes imposed on the process
are also propagated in the process in an incremental manner. This behaviour
ensures that the production remains fitting to changing demands.

The use of backward search in building or extending process schemes (see
Fig. 5.10 and Fig. 5.11) also guarantees that the resulting partial schemes are
feasible, i.e., physically implementable. This may not so with other architec­
tures mentioned above where the interactions between product and resource
elements generally follow a dispatching mode of task allocation, i.e., the next
task in sequence is only announced when the previous task is finished. This
could possibly result in dead-locks and dead-ends where the product elements
may find no further machine available to progress the partly finished parts.
The proposed model avoids this scenario by ensuring that the unit elements
(together with header and service elements) build a complete process scheme
from raw-materials to end-products before the actual production commences.

Distribution of Information and Control Functionality

Unlike contracting, the proposed model also improves the distribution of in­
formation and control among elements as the product elements are no longer
responsible for coordinating local operations. Hence, little or no production in­
formation (depending on the product or unit-centric approach used for recipe
mapping) needs to be transferred to product elements. This feature can be of
significant use when: (a) the number of product elements that can coexist in
the process is large; (b) the product elements are designed and developed by
teams situated remotely, or (c) multiple product elements share some of the
materials or unit elements which can lead to deadlocks because the supplies
of materials or these shared unit elements are likely to fail.

5.5 Summary

In this chapter we have proposed a distributed interaction model to support
the run-time interactions of process elements in the control architecture. We
next go onto examining the quantitative aspect of these interactions, i.e.,
to define a distributed solution strategy for use of the process elements, in
particular the unit elements, to identify their local operating settings during
the define, reconfigure or operate phases.

