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Preface 

The field of Reconfigurable Process Control - the control of process opera
tions requiring a high degree of reconfigurability - is relatively new although 
its roots go back almost thirty years in the early work of Morari and his 
co-workers. Until recently, research in this direction has been at a relatively 
low level due to the industry's preferred focus on mass production and on 
reducing production costs. But with recent trends in the process industry -
increased competition and globalisation that require customisation in prod
ucts and processes - the notion of reconfigurability is again on the agenda of 
industrial practitioners, and is thus deserving of research effort. 

The problem of reconfigurability in process operations can be examined in 
a number of different ways. The research presented in this monograph consid
ers a distributed approach to the organisation of key process control elements, 
and unlike more 'conventional' approaches, seeks to make a fundamental ar
chitectural change to the way in which control is organised. We propose this 
because of the lack of flexibility available in existing, hierarchically-based in
dustrial control systems and hence an inability to easily support operations 
with changing conditions. Instead, we examine an alternative distributed, non-
hierarchical approach to specifying industrial control systems. The specific dis
tributed approach considered in this work - so-called holonic manufacturing 
approach - has been widely developed in the discrete manufacturing domain 
as a means of addressing limitations of existing hierarchical control systems. 
However, the approach has not yet been considered in the process industry 
domain. The present work thus provides an introduction to the way in which 
distributed control architectures might be deployed in a process environment. 

This monograph presents a distributed approach to the control of process 
operations that require a high degree of reconfigurability. The key to the 
approach is to consider a process as comprising a set of readily integrable, 
modular elements - each of which is able to operate relatively independently 
and, in control terms, is supported by a degree of stand-alone decision-making 
capability. 



vi Preface 

The rationale for the developments reported in this book is that increas
ing industrial demand for product customisation requires in turn that process 
operations and hence their control systems should be highly flexible and recon-
figurable. This work builds on related recent developments in process control 
- such as the ISA S88 standard - which seek to enable greater interoperability 
in batch process control. Such developments also partly address the require
ment for increased reconfigurability, yet these developments remain limited in 
this sense due to the underlying (hierarchical) architecture of today's process 
control systems. Hierarchical architectures for control systems are known to 
work well when conditions are orderly, planned and stable but are less effec
tive under rapidly changing situations. For example, frequent arrivals of new 
production orders, each requiring numerous adjustments to be made at differ
ent layers of a control hierarchy, can lead to significant downtime for a process 
plant whose control systems need to be adjusted at many levels to accommo
date such changes. The research in this monograph argues that to effectively 
address process reconfigurability, a modular, distributed architecture, can pro
vide the necessary means for a process control system to effectively respond 
to evolving production conditions. 

Seeking inspiration from existing distributed approaches to systems man
agement - the so-called Holonic Manufacturing approach in discrete man
ufacturing and Supply Network Coordination in supply chain management 
- we present the tools here to enable a distributed process control system 
capable of reconfigurability. The overall approach is referred to as the Dis
tributed Reconfigurable Process Control or DRPC approach. We make three 
main contributions in this research which relate to the structure, behaviour 
and operating strategy of the DRPC system: 

i. A reconfigurable process control architecture: The architecture comprises 
four interacting process control elements - called process elements - which 
are designed to be able to reorganise themselves into alternative processing 
schemes that can meet the changing production requirements, 

ii. An interaction model for process elements: The interaction model devel
oped supports plant-wide coordination of process elements and provides 
these elements with two different approaches for their interaction depend
ing on. 

iii. Distributed process control strategy: To investigate aspects of the opera
tional behaviour of process elements, an algorithm compatible with the 
distributed nature of the process elements and their interactions has been 
developed. By examining a simplified process control problem, it is shown 
that it is possible to solve typical plant-wide control problems via inter
actions between distributed process control elements. 

Through a systematic evaluation of the proposed approach, we show that 
the approach presented in this work meets the underpinning business re
quirements of supporting product/process diversity and enabling dynamic re-
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sponse. In particular, three features of the proposed solution help to achieve 
this: 

a. Distribution on physical processes: The reconfigurable control system ar
chitecture is developed in a completely distributed form which reflects the 
physical operations, which then provides increased modularity in process 
elements. 

b. Separation of structure and behaviour: All process control algorithms are 
maintained separate from the underlying control architecture. These al
gorithms, therefore, can be developed or modified independently of the 
architecture and vice versa. 

c. Separation of product and equipment: The product recipe information on 
'how to produce a specific product' is retained separate from the equip
ment control of process units. This recipe information is then integrated 
dynamically in a distributed manner as and when the production condi
tion change. 

This book is presented in three parts. In Part I we introduce the problem 
being examined and review existing approaches to reconfigurability in a pro
cess control setting as well as other related material. In Part II we present the 
main elements of the DRPC approach and then in Part III we illustrate how 
the approach might be deployed using an illustrative case example. 

The work in this monograph combines an extension to the Ph.D. work of 
the first author and many years of experience in distributed control research 
of the second author. The authors would like to acknowledge the support of 
the Nehru Foundation, Cambridge Commonwealth Trust, the EU IPROMS 
Network and the UK EPSRC IMRC. We also acknowledge various people 
involved in this research, including Professor Nick Karcanias, Dr Julian All-
wood, Dr Andrew Ogden-Swift, Amro Farid, Professor Vlad Marik, Dr Paul 
Valckenaars, Wuttiphat Covanich, Alan Thorne, Dr Jin-Lung Chirn and Dr 
Stefan Bussmann for helpful discussions and suggestions during the course 
of this work. Our acknowledgement also goes to Neil Macintosh for carefully 
proofreading the key material, and to Professor Due Pham at Cardiff, and 
Anthony Doyle and Simon Rees at Springer-Verlag for providing opportunity 
to publish this manuscript. 

Cambridge, UK 
July 2007 

Nirav N. Chokshi 
Duncan C. McFarlane 
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Problem Development 



1 

Introduction 

1.1 Introduction 

"We live in an age of change". This is the opening line of many current articles 
in the popular press and nowhere is this permanent evolution being more 
keenly felt than in the industrial sector. Existing under the shadow of relentless 
cost cutting for decades, it is now clear that no level of price reduction is 
capable of preserving the industrial status quo. The hope for industries - at 
least in Western countries - lies in variety, differentiation and customisation 
- all for little or no extra cost. At the heart of successful industrial change 
management is being able to adapt and reconfigure operations simply and 
effectively. That is the essence of this book which focuses on the process 
industries and in particular how control systems of the future can best support 
the reconfigurability of process operations. The approach being taken here 
proposes a fundamental architectural change to the way in which control is 
organised - we examine a distributed, non-hierarchical approach to specifying 
industrial control systems. We propose this because of the lack of flexibility 
demonstrated by existing, hierarchically-based industrial control systems and 
their subsequent inability to easily support the operations required to adapt 
to changing conditions. 

This book is divided into three parts. In this, the first part, we provide 
background to the issue of reconfigurability in process control and review the 
rationale for examining the problem and for choosing to take a distributed ap
proach. We also review existing academic and industrial developments which 
impact on this area. The second part of the book then presents the main results 
of this work, introducing the overall approach to distributed, reconfigurable 
process control (DRPC) and then developing the underlying architecture, in
teraction mechanisms and control strategies that describe its operations. The 
final third part of the book assesses the effectiveness of the DRPC develop
ment through an illustrative case study. 
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1.2 Need for Reconfigurable Process Control 

To motivate the D R P C development, we begin with an examination of the 
process industries, the emergence of the need for reconfigurable process control 
and the current shortcomings of the industry in addressing this need. 

1.2.1 E m e r g i n g B u s i n e s s Dr ivers 

The process industries form an important industrial sector contributing to 
the growth of major national economies, both in developed and developing 
world. Among others, the process sector covers a large spectrum of manu
facturing processes including petroleum, petrochemical, pharmaceutical, pulp 
and paper, consumer goods, metal, utilities and others. Fig. 1.1 shows the 
scale of world-wide sales of chemicals excluding pharmaceuticals in the year 
2005. Within EU the process industry enjoys a strong position with chemicals 
sector contributing roughly 2 — 2.5% of the GDP and 30% of the world-wide 
sales of chemicals (Cefic 2006). 

Historically, the modern process industry emerged during the second in
dustrial revolution in the early twentieth century, alongside other capital in
tensive industries such as metals, electrical machines, food processing and 
automobiles. The early process system designs were based on small-scale unit 
operations operating in an isolated, ad hoc manner. Developments such as 
plastic for metal replacement led to innovation in the industry especially after 
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the second world war (Landau & Arora 1999, Chandler 2005). As demands 
soared for commodities such as polymers and plastics, the industry enjoyed a 
rapid growth until the mid-70s when the energy crisis and worldwide recession 
suddenly hit the process markets with unanticipated shocks. Energy, as the 
basic ingredient of process businesses, was no longer available cheaply or easily. 
Nor was it easy to maintain a sustainable demand as markets started to sat
urate. Many new suppliers from countries having oil reserves (such as Korea, 
China, Mexico) entered in the market and quickly captured a large share due 
to low costs. Faced with overcapacity and sunk investment, many companies 
were forced to reduce costs and improve productivity through restructuring 
and adapting local processes (Edgar 2004, Chandler 2005). Achieving mate
rial and energy efficiency thus became important and started to dominate the 
agenda of most designers and operators of process businesses and such has 
remained the case for a period since then. 

The last decade has seen a major shift in the way many manufactur
ing businesses have been managed and process industries have remained 
no exception to them. Recent surveys conducted in global process industry 
(Anderson 1997, Bolton & Perris 1999, Backx, Bosgra & Marquardt 2000, 
Felcht 2002, Shah 2004, Shah 2005) suggest the growing concerns of low-cost 
customisation and global competition that create new business pressures in 
consumer sectors such as fast-moving goods and pharmaceuticals where the 
demand to meet customer expectations has become increasingly significant. 
Other sectors such as polymers, plastics and petrochemicals are following suit. 

It has been claimed (Backx et al. 2000, Shah 2005) that to survive against 
these changing trends the industry will need to move away from conventional 
mass production type operations to more agile and dynamic processes op
erating close to the market. Undoubtedly, the emphasis on profitability will 
continue to hold, yet the driving force in future will shift towards building 
and maintaining close relations with customers and suppliers in global supply 
chains. Dynamic reconfiguration of plants, achieved through flexible process 
designs, will become essential to quickly and efficiently meet the changing de
mands. As will be important the ability of the plants to produce a variety of 
product types at time-varying capacities with potentially diverse sources of 
raw-materials and utilities (Shah 2005). 

Influenced by these changing trends, designers and integrators in process 
engineering have been seeking new and often radical ways of operating pro
cess plants. In the fast-moving goods sector, for instance, the trend has been 
to move away from large, steady-state designs to more discontinuous and 
dynamic production routines that can be quickly reconfigured; the reuse of 
equipment through batch and semicontinuous designs has become norm in 
these sectors and is only likely to continue in future (Keller & Bryan 2000). 

Yet, the industry has a long way to progress. To deal with the emerging 
demands, it will be essential that the plants are made more flexible and re-
configurable. Further support will be necessary to support the dynamic, fast 
and smooth reorganisation of processes to adapt with the changing market 
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Table 1.1. Business drivers of future process systems 

• MARGIN COMPRESSION AND INTENSIFIED COMPETITION will continue to de

mand: 

- Competitive production yields 

- Economic consumption of materials, energy and utilities 

- Scalable, resilient on-stream parameters 

- Reduced capital and operational investment 

• INCREASINGLY VOLATILE MARKETS will demand: 

- Diverse product portfolio from seasoned to non-standard products 

- Dynamic production and supply networks operating as extended enterprises 

- Fast, smooth change management with make-to-order production 

- Responsiveness to disturbances and external/internal variations 

conditions. The surveys cited above on the changing structure of process in
dustry clearly indicate this shift and suggest a range of parameters where 
further improvements will be sought. Table 1.1, in summary, gives a short list 
of key such parameters (adapted from Bolton & Perris 1999). The emphasis 
on efficient and cost-effective operations will continue, yet the future will ask 
for increased diversity in products and processes and responsiveness to change 
and disturbances and to achieve these, a high level of reconfigurability in pro
cess designs and control systems. We return to the needs for reconfigurable 
process control again in more detail in Section 2.3.3. 

1.2.2 S h o r t c o m i n g s of Current Industr ia l P r a c t i c e 

Modern industrial practices in process engineering and control have evolved 
alongside the changing structure of the industry. The drive for reduced pro
duction costs in the late seventies led to increased use of integration and 
recycles and the need for long spells of steady-state operations. As the sizes of 
processes increased they also became complex in their design and operations 
(Lenhoff & Morari 1982). It soon became impossible to control such plants 
using centralised management structures operating in isolated, silo mode. The 
concept of hierarchical control was thus born. Multiple levels of control with 
higher-levels governing the global aspects of production provided the neces
sary stability and visibility in the business levels tha t the managers craved 
for, and so has remained the practice since then. 

However, as the industry enters into a new era of customisation and global
isation, the hierarchically-based control structures require a re-assessment. A 
hierarchical system, by design, works well when conditions internal or external 
to the production system are orderly, planned and stable but not otherwise, 
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i.e., when disturbances or changes arise. Delays in interpreting information 
passing between levels in hierarchy result in a control structure that is un
able to adapt with the changing conditions where perhaps a sub-optimal but 
dynamic response may be preferred (Backx et al. 2000, McFarlane 1995). 

This same argument also extends to engineering and design methods for 
process engineering. Conventional methods for building physical processes or 
control systems operate top-down, i.e., they start with the scoping of end-user 
requirements and building from that a conceptual design that forms the basis 
of further developments (Douglas 1988). However, it is false to assume that 
the end-user requirements of today will remain the same tomorrow. The errors 
and omissions made in the conceptual design thus prevail and as the design 
progresses, become difficult to rectify. These restrict the later stages in design 
life cycle to have any influence on the design performance. Process systems 
built as a basis of only today's requirements thus become sensitive and fail to 
change, where again perhaps a bottom-up design approach is preferred. 

1.2.3 Future Requirements for Process Control 

Developing plants of the future that meet the emerging business demands will 
pose new challenges to practitioners. Achieving fast and smooth changeover 
between products will require control systems to be made easily reconfig-
urable, both in their design and in operations. Ability of process systems to 
react to changing conditions will require the decisions on how to respond to 
such changes to be distributed down to locations where change occur and 
not at the higher levels where the visibility to disturbances remains poor and 
is subjected to delays. As noted by Bolton & Perris (1999), the current ap
proach of learning and improving incrementally from past experiences can 
keep the industry competitive in short-term, but to sustain and survive in the 
long-term the industry will need to employ a policy of strategic learning, i.e., 
doing things not just better, but differently; a fundamental, if not radical, 
change in the design or operations of process plants will be necessary. 

1.3 Motivation for Research 

This research is motivated by the need for strategic innovation in the design of 
process operations in general and process control systems in particular in order 
to enable simple and feasible reconfiguration. We consider here a distributed 
approach to developing process control systems in which we construct the 
control system by combining sets of readily-integrable, modular, autonomous 
control elements. Each of these control elements - which align with physi
cal functions in the process plant - can operate relatively independent, and 
in control terms, can support a degree of stand-alone decision-making. The 
rationale for such a distributed approach is that by constructing the over
all system from self-contained modules aligned with process operations, if a 
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process reconfiguration is required, the control elements should be able to be 
reorganised simply and effectively. 

Our investigation was stimulated by similar research in other domains, in
cluding discrete manufacturing control, supply chain management, coordina
tion of large-scale power systems and the control of communication networks. 
These other domains face similar challenges of emerging demands requiring 
dynamic response to changes both within and external to the system. In par
ticular in discrete manufacturing control the (distributed) concepts of so-called 
holonic manufacturing systems or agent-based manufacturing control have re
ceived a wider attention in recent years (Christensen 1994, Seidel 1994, van 
Brussel, Bongaerts, Wyns, Valckenaers & Ginderachter 1999, McFarlane & 
Bussmann 2000). Recent studies (Mafik & McFarlane 2005, Pechoucek & 
Mafik 2006) on the industrial deployment of these new technologies show 
promising signs for their uptake in industry primarily because of the ap
parent benefits compared to conventional centralised or hierarchical ap
proaches. However, apart from the work of a small number of authors (e.g., 
McFarlane 1995, Chokshi & McFarlane 2002, Seilonen, Appelqvist, Vainio, 
Halme & Koskinen 2002, Niemand 2003), studies on systematic application of 
these distributed approaches in the process industry are scarce. The research 
presented in this text hence attempts to bridge this gap by presenting a sys
tematic framework for the application of a distributed approach to continuous 
process operations requiring a high degree of reconfigurability. 

1.4 Outline of the DRPC Approach 

The DRPC approach proposed in this text builds upon two key aspects: (i) 
the so-called concept of distributed coordination motivated by the existing re
search in holonic and agent-based manufacturing and (ii) an analogy between 
process plants and so-called virtual enterprises. The former is considered the 
primary approach for this work while the latter is considered as a conceptual 
strategy to help define the design and operational behaviour of distributed 
control elements. The outcome of the combination of two aspects is an archi
tectural framework that leads to developing the tools necessary for building 
a reconfigurable process control system. 

1.4.1 The Concept of Distributed Coordination 

The concept of distributed coordination - coordination of multiple, distributed 
entities using direct interactions between them - is central to the DRPC ap
proach. The term coordination, used vividly in the routine life, found some 
early success within industrial control in the 70's and 80's as a method for 
distributed problem solving (Mesarovic, Macko & Takahara 1970). However, 
its use in control has been dormant since then. This lack of interest can be 
attributed more to the success of hierarchical principles in managing large, 
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complex process operations than to the difficulties faced in putting coordi
nation techniques to work as part of on-line control. However, with the ever 
increasing pace of computing and communication technologies, the principle 
of coordination, in particular distributed coordination, is thought to provide 
a successful alternative to hierarchical structures to address the challenges of 
reconfigurability (Backx et al. 2000). 

The DRPC approach, similar to the previous research in holonic and agent 
fields, takes a view of minimal coupling between control components is a key to 
enhancing reconfigurability. This, on one hand, leads to a distributed architec
ture that comprises modular components with stand-alone decision-making, 
and on the other hand to a coordination mechanism that delays the binding 
commitments linking these components to their run-time operations where 
these links are established via considering the latest status of operations on 
the shop-floor. An example of the latter is a separation of product recipe 
information (how to make a product) from the procedural control of equip
ment on the plant. The recipe information is then integrated via dynamic, 
distributed interactions between control elements responsible for each as and 
when a product is to be produced. It is envisaged that this dual approach will 
be better positioned to tackle the frequent, time-varying changes expected to 
arise in high-variety, low-volume industries (such as plastics, polymer, phar
maceuticals) than a hierarchical structure based on multiple-levels of control. 

1.4.2 Viewing Process Plants as Virtual Enterprises 

While the existing work in holonic or agent-based research is starting to ma
ture, the results therein do not translate directly to process domain due to 
the tight, finite, physical couplings between process units. In order to extend 
the existing work, we hence consider an analogy of process plants as being one 
form of supply chains, in particular, so-called virtual enterprises (Camarinha-
Matos, Afsarmanesh & Rabelo 2003). A supply chain, similar to a process 
plant, also involves the network constraints such as transport routes. The 
success of how well a chain is operating depends on the sharing of information 
between companies and the coordination of their localised policies (Tayur, 
Ganeshan & Magazine 1999). Our interest for choosing the analogy then is to 
look at how companies in a virtual enterprise - being a co-operative alliance -
manage and coordinate their operations via mutual interactions; i.e., how do 
they form, operate and dissolve the alliance in changing times. An analogous 
model, repeated now at a lower of a process plant, is taken as a conceptual 
tool to visualise the design and operations of distributed elements in a DRPC 
system in a manner much similar to the use of so-called contracting principle 
in previous holonic and agent research. 
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1.4.3 R e s e a r c h C o n t r i b u t i o n s 

In the course of developing the D R P C approach presented here, we make three 
main contributions to the fields of reconfigurable process control and holonic 
and agent-based manufacturing. 

i. A reconfigurable process control architecture: A new control architecture is 
proposed as comprising four interacting process control elements - called 
process elements - which are designed to be able to reorganise themselves 
into alternative processing schemes tha t can meet the changing production 
requirements, 

ii. An interaction model for process elements: To support the plant-wide 
coordination of process elements, an interaction model is developed tha t 
provides these elements with the interaction approach to build and operate 
alternative process schemes, 

iii. A Distributed process control strategy: To investigate aspects of the oper
ational behaviour of process elements, an algorithm compatible with the 
distributed nature of process elements and their interactions is proposed. 
By examining a simplified process control problem, it is shown tha t it 
is possible to solve typical plant-wide control problems via interactions 
between distributed process control elements. 

Combining these three developments together provides an underpinning 
framework for a more detailed specification of a reconfigurable process control 
system. In order to motivate how such a system might operate, the next section 
outlines a hypothetical vision for the process control system of the future. 

1.4.4 A L o n g - t e r m V i s i o n of a D R P C S y s t e m 

To quickly illustrate how a D R P C approach might work, we describe below 
a long-term, imaginary vision of a reconfigurable process control system built 
based upon it. The vision is deliberately taken to the extreme to demonstrate 
the potential range of achievements tha t can be made. 

Plant D e s i g n 

A reconfigurable process plant built using DRPC approach comprises an 
assortment of multiple dedicated and flexible process entities (the so-called 
process elements) integrated together in a flexible configuration. The process 
elements are modular and integrated in a bottom-up manner. The dedicated 
elements, such as main reactor unit, transfer equipment etc., provide the 
scalable production throughput at optimum operating costs. The flexible 
elements are of 'plug-and-produce' nature and possess the multipurpose 
functionality to support their re-use in producing a diverse mix of products 
or product grades. These elements can either be designed a priori and 
included in the process or can be integrated during run-time operations as 
and when needed. This facility allows replacing a dedicated process element 
with a combination of multiple flexible elements if necessary. 
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Control Design 

Each process element possesses its own control and coordination modules. 
Compared to conventional control hierarchy, each level in the hierarchy is 
split along the physical dimension (i.e., individual process units, process 
headers etc.), followed by vertically integrating the local blocks into the 
control and coordination modules of the process elements. Fig. 1.2 illus
trates this decomposition. The coordination modules are associated with 
the decision-making levels in the hierarchy (i.e., planning, scheduling and 
optimisation) while the control modules with the execution levels (i.e., basic 
control and the interface to the physical process). 

Conventional Process Control 

Distributed Reconflgurable Process Control 

Coordinating Function 

Fig. 1.2. Conventional control vs. Distributed reconflgurable process control 

Plant Operations 

Fig. 1.3 - in abstract - depicts the nature of operations of process elements 
in a reconflgurable process plant. When idle, the process elements wait for 
a production order to arrive. On arrival of an order, a new product element 
is created representing the order requirements, e.g., quality and throughput 
requirement, product recipe. Multiple product elements can co-exist, how
ever only a few will be produced at a time. Each product element together 
with other process elements representing the available production capabil
ities then carry out a round of distributed interactions to obtain a process 
scheme that can meet the production requirements for that order. The ele
ments may follow an economic production goal to arrive at the choice. 

The elements involved subsequently reorganise the physical process as 
agreed. The actual production then begins when advised by the product 
element. During operations, if a deviation occurs, e.g., one of the process 
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Fig. 1.3. A long-term vision of distributed reconfigurable process control approach 

units fails, the associated elements attempt to absorb the disruption in a 
graceful manner with a minimal loss of performance. If this is not possible, 
the elements initiate a new round of interactions to reconfigure the relevant 
parts of process scheme, or if necessary, terminate the order. 

A d d i n g a N e w P r o c e s s E l e m e n t 

At any stage in the operations, a new process element can be added to 
join the network of other elements. The arriving element takes part in the 
ongoing process schemes (or interactions) by announcing its capabilities to 
other process elements. The elements that can make use of its capabilities 
then interact to identify a switch to an alternative configuration of the 
relevant process schemes. 

T e r m i n a t e P r o d u c t i o n Order 

Once the order requirements are met, the process element engaged in the 
order dissolve the process scheme. Those elements involved in other schemes 
reconfigure their operations as necessary. 

As generally evident from the above description, in a D R P C approach the 
plantwide response to normal or abnormal situations emerge from localised 
actions of process elements acting within dynamically organised groups as 
part of process schemes. This is conceptually different from conventional hi
erarchical models where the response remains governed by higher-levels plans 
and schedules tha t transcend top-down; a change in plant condition may re
quire complete reschedule or even replan (if a minor change or disturbance 
occurs) or taking plants offline (if a major system fails). 
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1.5 Structure of the Monograph 

As discussed earlier, this monograph is structured in three parts: (i) problem 
development, (ii) a distributed reconfigurable process control approach and 
(iii) an assessment of the DRPC approach. The three parts comprise a total 
of eight chapters. Fig. 1.4 outlines the structure. 

1. Introduction 

• Need for reconfigurable control 
• Motivation for research 
• Outline of new approach 

2. RPC Research 

• Production systems 
• Industrial process control 
• Reconfigurable process control 
• Distributed approaches in control 
• Research in other domains 

3. Distributed Approach to RPC 

• Addressing the needs for RPC 
• Supply chain analogy 
• Outline of new developments 

4. DRPC Architecture ] C 5. DRPC Interaction Model ] [ 6. DRPC Strategy 

• Role of control architecture 
• Overview of the approach 
• DRPC Architecture 
• Illustrative Example 
• Evaluation 

• Role of interaction model 
• Overview of the approach 
• DRPC interaction model 
• Illustrative example 
• Evaluation 

• Role of control strategy in DRPC 
• Overview of the approach 
• Distributed control problem 
• DRPC Algorithm 
• Numerical examples 
• Evaluation 

7. Application Case Study 

• Process Description 
• Problem Description 
• Application of DRPC Approach 

8. Conclusions 

Fig. 1.4. Structure of the monograph 

Chapter 2 starts the discussion by assessing the existing structure of in
dustrial process control systems. Reconfigurable process control, the topic of 
this monograph, is then examined in order to understand the needs for recon-
figurability and the requirements they place on the design of process systems, 
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in particular process control systems. Numerous solution approaches devel
oped in the past in distributed control research are next reviewed, with an 
extended focus on the holonic and multi-agent systems research. Finally, the 
experiences learnt from other industrial or non-industrial domains are evalu
ated to motivate the present work and to seek inspiration from the solution 
concepts they can offer to improve reconfigurability of control systems. 

Chapter 3 next provides an outline of the key developments in Part II. 
It first reassesses the needs for reconfigurability and links them with the dis
tributed coordination concepts suggested in holonic and related other fields 
in order to identify the exact scope of work in this research and to provide a 
conceptual overview of a how a reconfigurable process control system based 
on the proposed DRPC approach might operate. 

Chapter 4, the first in the series of three chapters, presents a control ar
chitecture for defining the basic elements in a reconfigurable process system 
and their control functionality. It also defines the structure of process control 
system resulting from their combination. 

Chapter 5 next presents an interaction model to support the real-time in
teractions of process elements. The model defines the information exchange 
mechanisms that the elements use to form and operate (temporary) process 
schemes. A particular emphasis is placed on the manner in which these el
ements identify a feasible process scheme from the details given in product 
recipes and the production capabilities available in the plant. 

Chapter 6 associates the interaction model from the previous chapters with 
a distributed solution strategy that the process elements can use to identify 
their local operating settings. To formalise the strategy mathematically, a 
simplified process control problem involving a linear, steady-state dynamic 
model of process units is considered. The concept of so-called nested decom
position is then borrowed from the optimisation literature to systematically 
define the strategy in the form of an iterative algorithm. Numerical examples 
demonstrating its operation in small-scale examples are presented based on a 
software prototype developed in MATLAB®. Results of this analysis are also 
validated against the benchmark of equivalent centralised implementation. 

Chapter 7 brings together the developments in the previous three chapters 
by applying them to an industrial case study of a multipurpose process plant. 

Chapter 8 finally concludes the monograph by summarising the key con
tributions and identifying the areas where further developments can be made. 
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Reconfigurable Process Control Research 

2.1 Introduction 

In this chapter we collect together a number of different developments which 
lay the foundations for the distributed, reconfigurable process control (DRPC) 
approach we are proposing. We begin by positioning process operations within 
the spectrum of industrial production approaches and in particular provide a 
contrast between continuous process and discrete manufacturing. (This is im
portant when reviewing existing work in distributed reconfigurable control.) 
We then examine the evolution of process control and in particular develop
ments which have dealt with reconfigurability challenges and their limitations. 
The second part of the chapter then goes on to introduce distributed coor
dination methods in process control and then to provide a comprehensive 
review of the way in which distributed coordination has been applied in other 
industrial domains. 

2.2 Classification of Manufacturing Systems 

Manufacturing industries involve a range of production operations and oper
ating conditions. Based on the physical layout of production processes these 
can be split broadly into: discrete parts manufacturing (automobile, semi
conductor industries) and continuous processes (polymer, pharmaceuticals, 
petroleum industries). 

In a discrete process, the individual parts are produced first using various 
discrete, loosely coupled operations such as machining, drilling, grinding etc. 
These parts are then pieced together in an assembly line to create the main 
end-product. Often a large number of parts may be involved (e.g., in a car 
engine) with parts, being physically stable in nature, can be stored or trans
ferred between lines. Unfinished orders can be pre-empted or transferred for 
more important orders where facility exists. 
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Table 2.1. Production control in discrete and continuous processes 

Physical Layout 

Objective 

Coupling 

Controlled Variables 

Control Freedom 

Control Strategy 

Example 

DISCRETE 

Jobshop/flowshop with parallel machines 

Part or job centered 

Intermediate buffers due to conveyors,AGVs 

Time/schedule based 

Stable intermediate forms of parts 

Due date, arrival time, processing time 

Machine assignment, route flexibility 

Discrete on-off logic (using PLC) 

Semiconductor, Automobile 

CONTINUOUS 

Line / series of equipment 

Product or recipe centered 

Tightly coupled with piping network 

Product based (non-mixing) 

Possibly unstable chemistry 

Process values / set-points, product quality 

Equipment operational modes, 
route Flexibility 

PID/multivariable control (using DCS/PLC) 

Petrochemicals, Polymer 

A continuous process instead involves continuous flow of materials (such as 
bulk chemicals) and utilities through process units interconnected via piping 
streams. New property values are added to these streams as they pass through 
process units. Normally, an interim form of the end-product is first produced 
using one or more reaction operations. The un-reacted raw-materials are then 
separated and re-used while the interim product is purified and processed to 
bring into final form. The interim product can be mostly unstable and may 
not sustain long storage. Therefore, pre-empting or transferring of unfinished 
orders is not normally possible. 

These physical differences between discrete and continuous processes lead 
to their use of different production goals and control methods as summarised 
in Table 2.1. In a discrete process, the target is to identify a routing of discrete 
parts across shop-floor and assign appropriate tasks to machines and define 
their scheduling. In a continuous process the routing remains normally fixed, 
and the goal instead is to identify the local operating settings of process units 
and their combinations across the plant that meet the required quality and 
throughput of the end-product. 

A misconception generally prevails, particularly in the research commu
nity, that continuous processes are primarily long-term, steady-state opera
tions. This is strictly not true however. By shortening the range and horizon 
of operations, a continuous process can be made to behave as discontinuous or 
discrete as in a batch process. Fig. 2.1 depicts the spectrum of discontinuous 
operations that can be found in process industries. As Keller & Bryan (2000) 
note, almost half of the production tonnage in process industry comes from 
discontinuous processes - the proportion which is only likely to grow in future. 

Particularly important to this monograph is the so-called semicontinuous 
class of processes in Fig. 2.1, which similar to a continuous process also involve 
continuous flow of materials and utilities, however the plants are not operated 



2.2 Classification of Manufacturing Systems 17 

Discrete 
(e.g.automotive, 
semiconductor) 

Batch-Batch - .. Semicontinuous i Continuous 
{e.g. FMCG, S e r ? ' ™ n ^ c

U O U S {e.g. PE, PP I (e.g. petroleum/ 
pharma.) PTA steel) polymers) I petrochem.) 

I I I I I 

1 
Degree of continuous flow in production j -

I 

Discontinuous / 
Operations 

Fig. 2.1. Discontinuous operations in process industry 

in a purely steady-state mode. Instead, so-called campaign mode of operation 
is often used (Papageorgiou & Pantelides 1996). The overall planning horizon 
in a campaign operation is split into multiple product campaigns, each asso
ciated with a different product, product grade and/or raw-materials. Subse
quently, a campaign for any one product is first produced for a defined period. 
The production conditions are then changed and a separate campaign for an
other product is produced using the same set of equipment. Thus, although 
each campaign operates in a continuous mode, the sequence of campaigns over 
a certain period results in discontinuity of operations. 

The key rationale for the move towards discontinuous operations has been 
to increase the re-use of equipment particularly when a number of products 
are to be produced in typically small amounts that do not justify the use of 
stand-alone plants. The level of re-use required and therefore the plant design 
may vary depending on the number and type of products to be produced 
and the variations expected in market demands. In a so-called multiproduct 
design the process is organised such that all products follow the same path and 
use the same equipment with typically one product produced at a time. In a 
more flexible multipurpose design each product may take one or more distinct 
processing paths with possibly more than one products produced together 
where necessary. Multiproduct designs are thus suitable for conditions when 
the products and processes to be used are known in advance but the quantities 
or time scales are not, whereas multipurpose designs are suitable when none 
of these is known and the plant is constructed to contain equipment suitable 
for certain unit operations with a range of parameters (Mah 1990). 

The management of (dis) continuous operations involves a great deal more 
control operations than purely continuous processes in order to define which 
products to be produced, when and how. To understand this role of control 
more clearly, we next discuss the evolution in process control and the structure 
of modern process control systems. 
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2.3 Industrial Process Control Systems 

The domain of industrial process control encompasses a range of activities 
to produce products of right quality, type and specification, and importantly, 
at the right time. To understand how a process control system meets these 
targets, we discuss in this section a brief history of the field of process control 
over last few decades. The structure of modern control systems in terms of the 
information and control functions involved is described later in the section. 
The final subsection then explores the emerging needs of reconfigurability in 
process control to put the present work in an appropriate context. 

2.3.1 Evolution in Industrial Process Control 

Modern process control systems came into existence after various phases of 
evolution, with each phase having a distinct impression on a particular as
pect of the system design. The early designs were governed by then-current 
business drivers, or indeed the inhibitors such as energy crisis, but in recent 
years numerous other factors such as IT and communication technologies have 
played their role in changing the perception of process control in the industry. 

The early control systems developed in the 1950's or before were focussed 
on regulatory control, i.e., the PID controller was the key building block of 
control. The advent of mechanical and pneumatic devices at this time and 
subsequently electronic controllers in the early 60's allowed a level of remote 
control to be achieved but the scope of control was limited to a single or 
at most few process variables. Coordination of unit systems was mainly the 
operator's responsibility. 

The first major shift in process control occurred in the 1960's when digital 
circuits and computers were introduced. In a so-called Direct Digital Control 
(DDC) application, a computer was used to replace analog controllers and 
panelboard displays. This was a pioneering change in control as it allowed 
advanced strategies, such as sampled data control, to be employed as part 
regulatory functions. However, the centralised role of computer was a risk of 
failure with possible complete loss of control. The costs and skills required to 
deploy computers were also prohibitive (around $30, 000-250,000) and proved 
difficult to justify against simple, PID control in most cases (Smith 1970). 

By the early 1970's it became clear that putting computers (or the optimal 
controllers developed based upon them) in direct control of physical processes 
is neither convenient nor necessary when a two-level scheme is employed com
prising a supervisory (optimising) controller and the bottom-level regulatory 
controllers. The supervisory computer would focus on key variables (such as 
reactor yield) and provide regulatory controllers with set points for imple
mentation through analog or digital hardware. Since the computer did not 
replace underlying hardware, its failure was not critical (Edgar 2004). The 
use of supervisory control was a conceptual change in the design of control 
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Fig. 2.2. Architecture of a distributed control system (DCS) 

system architectures that led to the birth of so-called distributed control sys
tems as shown in Fig. 2.2. The significant reduction in size and costs achieved 
by DCSs and the parallel development of so-called programmable logic con
trollers (PLCs) led to the widespread acceptance of these new architectures 
in the industry (Samad, McLaughlin & Lu 2007). 

A number of events occurred in the 1970's and 80's that changed the per
ception and hence the structure of process control in the industry. The energy 
crisis in the mid-70s had a profound influence in this as energy was no longer 
available cheaply or easily, nor was it easy to sustain long-term demand as new 
suppliers entered in the markets from countries having access to oil reserves. 
Sunk with overcapacity and costs many enterprises, particularly in western 
world, were forced to restructure their businesses. While the economies of scale 
and scope still remained the dominant means for cutting costs, it became clear 
that further reduction could only be achieved by reducing the material and 
energy consumptions and importantly, from making improvements in process 
control. New control functions such as planning and scheduling, statistical 
process control, optimisation etc., thus started to take shape as part of the 
mainstream components of production control and have remained so for the 
time since then (Chandler 2005). 

The period of 1990's saw process control moving one step further from 
that of managing individual plants to managing enterprise-wide functions. 
The integration of online enterprise data consisting commercial and financial 
information with the real-time functions of planning, scheduling and control 
has become significant (Shobrys & White 2002). Equally significant has been 
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Fig. 2.3. Process control interface to other enterprise functions 

the need to create open system architectures tha t enable the system inte
grators to mix-and-match control components from different suppliers and 
technologies in a seamless fashion. The adoption of open technologies such as 
OLE for process control, fieldbus networks and Commercial-off-the-Shelf tools 
(e.g., based on Microsoft Windows platform) have become the norm in many 
cases for developing modular system designs tha t can be rapidly engineered 
and reconfigured (O'Brien & Woll 2005). 

In summary, the past six decades of history have seen process control grow 
from a primitive regulatory mechanism to a function central to an enterprise 
tha t provides the means necessary to deliver the emerging business goals in 
changing times. 

2.3.2 K e y Features of M o d e r n P r o c e s s Contro l S y s t e m s 

Today's state-of-the-art process control system includes a variety of tools and 
techniques to control plant(s) comprising multiple, interconnected unit op
erations. The control system also interfaces with numerous other enterprise 
functions shown in Fig. 2.3. In this section, we now discuss the key structural 
aspects of the modern systems to examine the underlying information flows 
in coordinating the plantwide operations. 
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Structure of P r o c e s s Contro l Hierarchy 

The structure of modern process control systems is based on a hierarchical ap
proach developed as part of wider Computer Integrated Manufacturing (CIM) 
initiatives in the early 80's. A system hierarchy was preferred as a suitable, 
and at times a necessary, mechanism to deal with the growing complexity and 
size of process systems tha t involved control problems spanning hundreds of 
variables. 

The design of a hierarchical control system has been structured around 
a functional hierarchy tha t decomposes the business goals defining which 
products to produce, when and how, to lowest-level set points for regula
tory control. Multiple levels of decomposition may be used with each level 
fixing certain key variables. The implementation of the resulting goals is then 
carried out via an aggregation hierarchy tha t , in most cases, parallels to the 
physical decomposition of a plant into its constituent elements (i.e., area, cell, 
units etc.). Fig. 2.4 depicts the two forms of hierarchy using a so-called Purdue 
Reference Model (PRM) employed widely in the industry (Williams 1989). 

In both forms of hierarchy, the controllers at successively higher levels 
cover the larger and broader but relatively slower aspects of overall system be
haviour to provide the visibility to global, long-term operations. The decision-
time horizon of higher levels also remain longer than those of lower levels. To 
limit the size of problem formulations, the higher level problem descriptions 
are generally less structured, involving more uncertainties, than those for lower 
levels (Mesarovic et al. 1970). 

The control of production in a hierarchical system under both normal and 
abnormal conditions is governed by hierarchical communication. When sit
uations are normal, the business goals are propagated to lower levels where 
decisions at each level are made based on the fixed parameters . When an error 
occurs, the controller responsible for tha t level a t tempts to resolve the uncer
tainty. If this is not achievable, the higher level controller is invoked to alter 
the decisions on these fixed parameters . If in turn, the error can still be not 
resolved, the problem passes up a further level and so on. Hierarchical control 
thus provides a level of visibility in production operations when conditions 
are planned and stable, and a level of flexibility in decisions when contin
gencies arise. Historically, these at t r ibutes have underpinned the success of 
hierarchical control in mass production environment where operations remain 
largely steady-state and the focus of production control is to economise the 
production costs through planned, stable, long-term operations. 

In format ion F low and C o o r d i n a t i o n 

Looking further in detail at Fig. 2.4, the control functions in a hierarchical 
system can be split into two categories: levels 4 and 3, referred to collec
tively as manufacturing control, and levels 2, 1 and 0, referred to as real-time 
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control. The manufacturing control levels are responsible for decisions on pro
duction management (i.e., which products to produce and when) and the co
ordination of product flows (i.e., how to produce these products) , while the 
real-time control levels are responsible for executing the outcomes of these 
decisions onto physical process. These functions also feedback the necessary 
plant information back to higher levels. 

The research in this monograph is mainly focussed on manufacturing con
trol levels, i.e., levels 3 and 4 and the interface between the two. Fig. 2.5 
shows the different categories of information involved at these levels, which 
can be described as follows (adapted from A N S I / I S A 2003): 

• Product Definition Information: This covers the information on product 
production rules and the bill of materials and resources required in pro
duction. The production rules are abstract and only define how a chemist 
would produce the product on a laboratory scale, i.e., the information 
about materials involved in unit operations and their operating conditions. 
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• Production Capability Information : This represents the capability infor
mation for production resources available on the plant, such as equipment, 
materials, personnel, energy, consumables etc. The information may in
clude details about their design and operational attributes, their current 
maintenance status and the capacity scheduled for near future. 

• Production Information: This defines the information necessary to facil
itate the actual production. It may cover the areas such as production 
history, in-process inventory, scheduling of equipment, and the detailed 
operating procedures etc. 

The product definition information (how to make a product) is interpreted 
in terms of the production capability information (what is available) to de
fine the production information (what to make and results). In traditional or 
legacy systems this integration may be carried out by an operator or a plan
ning and scheduling function operating offline and using spreadsheet tools 
and/or human knowledge. In more modern systems the standards such as 
ISA-S88 (ANSI/ISA 1995) and ISA-S95 (ANSI/ISA 2003) are employed to 
speed up the process and support rapid integration. The key to rapid integra
tion in both standards is the separation of production rules (so-called recipes 
in ISA-S88) from production capabilities of equipment and other resources in 
the plant. The separation enables creating site-independent, generic recipes 
that can be deployed across different sites, situated perhaps in different coun
tries and/or having access to different types of resources. As discussed later 
in Section 2.4, this principle of separating product (recipe) information from 
that of the processing operations has also been identified as being key for 
enhancing reconfigurability elsewhere - for example in the holonic and agent-
based industrial control research (van Brussel, Wyns, Valckenaers, Bongaerts 
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& Peeters 1998, Chirn & McFarlane 2001). The separation, in turn, also forms 
one of the key principles in developing the D R P C approach. 

2.3 .3 Reconf igurabi l i ty in P r o c e s s Contro l 

We now revisit the main topic of this monograph - reconfigurable process 
control - to understand the incentives for enhancing the reconfigurability of 
process operations and the factors tha t characterise reconfigurability in terms 
of underpinning system requirements. 

In a dictionary sense, the term reconfigurability of a (computing) system 
can be defined as its ability to adapt to a new task by altering its configuration 
(based on Oxford English Dictionary (2005) definition of to reconfigure). In 
the context of production control, reconfigurability then refers to the ability 
of the control system to adapt to emerging changes (e.g., introduction of new 
products, processes, raw-materials, utilities, technologies) or disturbances in 
production operations (e.g., changes in market demands, prices, failure of a 
process unit, loss or raw-material or utility supplies). 

The term reconfigurable process control (in short RPC) defines a paradigm 
in the design of process control systems where reconfigurability forms an es
sential criteria of the design process. Intuitively, it translates to a facility in 
the design method with which the control elements can be (i) decoupled, (ii) 
reorganised, and (hi) recoupled into a new configuration in a possibly smooth 
and transient manner. The type and nature of reconfigurability required may 
depend on the ult imate needs of the specific application and the trade-offs 
tha t it may have with other design goals. An R P C approach for control de
sign thus provides a layer of additional design decisions tha t combined with 
other design criteria and fundamental technical principles should lead to a 
required level of reconfigurability in the design of control operations. 

To develop a new R P C approach, we must therefore understand the mo
tives for introducing reconfigurability in process control. In broad terms, these 
can be divided into three categories: (i) business needs, (ii) engineer and design 
needs and (hi) operational needs from end-users. 

B u s i n e s s N e e d s for Reconf igurabi l i ty 

The business needs for reconfigurability emerge from the changing structure 
of global process industry, i.e., the increased attention on product customi
sation and globalisation in recent years with a move towards service-centric 
operations. 

As generally true, the process industry sits in the middle of wider sup
ply chains (such as in semiconductor, automotive, consumer goods etc.) and 
faces the impact of technological growth, not just within its own, but also in 
other industries. With the emergence of new manufacturing technologies and 
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increased pace of technological change (e.g., in electronics industry), the de
mand patterns of consumers of process industries have been constantly chang
ing. For example, the inventions in mobile phones, computing, audio/visual 
equipment, home appliances and consumer goods, etc., all nowadays require 
new varieties of basic products (i.e., polymers, plastic) with additional fea
tures, high product quality and better service life. Against this increased va
riety, the demand for conventional products and commodities has also been 
sustained or even increased over the past few years as a result of the growing 
demand from emerging economies in the developing world (Cefic 2006). 

However, as Shah (2005) rightly points out, production systems or supply 
chains in process businesses have yet to catch up with these changing trends or 
the widening scope of operations. Performance benchmarks for process supply 
chains generally do not compare well with other sectors (e.g., automotive), for 
example: 

• the stock levels in the chain amount to 30 — 90% of annual demand, with 
usually 4 — 24 weeks' worth of finished good stocks in 'pipeline'; 

• the supply chain cycle times (time elapsed between raw-materials entering 
and products leaving the chain) tend to lie between 1000 to 8000 hours, 
of which only 0.3-5% actually involve value-adding operations; 

• the material efficiencies tend to be low or below average with only a small 
proportion of materials entering the chain end up as final products (in case 
of fine chemicals and pharmaceuticals this figure can be as low as 1-10%). 

Clearly, there are incentives to improve here, but large improvements can
not be achieved simply by changing the logistics or transactional processes 
in supply chains. Rather, some fundamental changes are necessary, partic
ularly at the process and plant level and at the interfaces between various 
constituents of the value chains (Shah 2005). To a manager responsible for a 
process enterprise, this means some new challenges for reconfigurable opera
tions: 

• shorter product life cycles, with shorter time from innovate-to-market; 
• diverse product portfolio with a drive to deliver specialty products at com

modity prices; 
• enhanced relations with suppliers and customers in global supply chains. 

Engineering and Design Needs for Reconfigurability 

Even if the business demands of today have been the same as they were 
twenty years ago, still there are reasons for building reconfigurable process 
designs from an engineering and design point of view, especially with having 
the benefits of all technical knowhow gained over the years. 

As stated earlier in Chapter 1, the peril of conventional design techniques, 
both in process systems engineering and control (see, for example, Douglas 
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Fig. 2.6. Cost of change across process life cycle 

1988, Biegler, Grossmann & Westerberg 1997), comes from their use of a 
top-down method for scoping the end-user requirements and building from 
that a conceptual design that forms the basis of further developments. While 
this approach certainly aids in visibility to the subsequent design phases, the 
process or control designs built as a basis of conceptual design can become 
customised and susceptible to change as the design progresses as shown by 
the 'cost of change' curve in Fig. 2.6. Instead, a combined approach of top-
down decomposition of requirements followed by bottom-up integration of 
standardised components would be preferred as it can support the design 
modifications at any stage in the life-cycle. 

The use of standardised, reusable designs is also preferred to more cus
tomised or bespoke designs by the developers of process and control compo
nents (Schug & Realff 1996). While customised designs match the require
ments of specific applications and incur sale (e.g., in replacing an existing 
kit), they also need repeating the same design effort and regulatory approval 
time and expenses. This can be cumbersome in safety or quality critical appli
cations (such as in nuclear, chemicals and pharmaceuticals industries) where 
standardised designs may be preferred as they can be re-used with shorter 
lead times and lower engineering costs. 

With the increasing pace of technological advances, there also remains 
a scope for introducing new technologies, e.g., IT and communications, to 
avoid obsolescence. Often, the new technologies are also more efficient, cheap 
to procure and easy to build. However, the benchmarks in this case also do not 
compare well against, for example, to those in automotive or semiconductor 
industry. In producing chemicals and plastics, the capital and raw-materials 
cost as much as 50 — 60%. Because the plants cost so much, they are usually 
run for many years and only upgraded when obsolete. This often means lost 
opportunities. Instead, many lessons can be learnt from experiences in the 
automobile industry where the use of cheap sensors and on-board computers 
has transformed motor cars into more comfortable and reliable machines that 
are also economical to build (Anderson 1997). 

In summary, the engineering and design needs for reconfigurability are: 
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• support for design modifications, during and after the design life-cycle 
• use of standardised, re-usable designs with shorter lead-times 
• support for technological advances 

Operat ional Needs for Reconfigurability 

With increased emphasis on material and energy conservation, it has been a 
common practice in recent years to design plants with reduced losses, i.e., the 
use of recycles and heat integration has been norm for a while. While such 
measures do work in practice and deliver the end results of reduced invest
ment and inventory, they also add up to the operational costs because fluids 
need to be pumped around constantly. More importantly, they lead to stronger 
interactions between process units that often cause operational difficulties par
ticularly during transients (Lenhoff & Morari 1982). To maintain satisfactory 
performance, the plants are hence designed with tighter margins and run in 
steady-state modes for longer periods. In practical situations, with increased 
emphasis on product and process variety, the design efficiency can however 
be a secondary concern. The primary concern instead is to make processes 
flexible, operable and controllable to handle product/process changeovers or 
internal and external disturbances such as changes in demands, market prices 
or arrival of new opportunities (Shah 2005). Many of these require invariably 
some changes in conventional practices. 

On reliability of operations, it has also been a practice to assume that 
process components are unreliable and that operational upsets are likely to 
occur, hence redundancy is considered by default (Koolen 1998). Although this 
helps keep the plants running unattended, it also means the inclusion of spare 
equipment, devices and sensors. More often this can be avoided if equipment 
functions are simplified and combined into multipurpose equipment (such as 
reactive distillation) or broken down into manageable, modular functions that 
can enhance transparency of operations without compromising on reliability 
(Schugfe Realff 1996). 

But, as with any other system, failures do occur, e.g., a process unit fails 
or becomes bottleneck due to its age or frequent use. Whilst plants or control 
systems built with redundancy can tackle failures better, there always remains 
a scope for a level of built-in fault-tolerance, i.e., the ability to provide graceful 
degradation of performance, and where possible, support easy recovery or 
replacement of failed component. This also is a reconfigurability issue as the 
losses from a failure or recovering from a failure can sometimes outweigh the 
cost of the equipment or control system itself. 

To summarise, the reconfigurability needs from the perspective of an end-
user responsible for operating a process plant are: 

• transparent design that is easy to comprehend and operate 
• flexible, operable design that supports easy changeover management and 

disturbance handling 
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Fig. 2.7. System requirements for reconfigurable process control (the shaded labels 
show a major link for all four system properties) 

• fault-tolerant design with graceful degradation of performance when failure 
occurs 

S u m m a r y 

Focussing particularly on process control, the reconfigurability needs identified 
in this section can be summarised into four key system properties as shown 
in Fig. 2.7 and defined below: 

• Divers i ty: The ability to introduce new products and processes including 
raw-materials, utilities and product recipes; 

• Modif iabi l i ty: The ability to support ready integration of new compo
nents or the reorganisation of existing components; 

• R e s p o n s i v e n e s s : The ability to provide a timely response to product 
changeovers or disturbances or to adapt to new plant conditions; 

• Faul t - to lerance: The ability to tolerate failures or disturbances and when 
necessary provide graceful degradation of performance. 

While diversity and modifiability are more static properties tha t concern 
with the underlying architecture and information flows between control ele
ments, responsiveness and fault-tolerance are both static and dynamic mea
sures and relate to how well the control system is able to cope with dynamic 
changes, disturbances or failures. We believe a process control system tha t 
possesses the above properties should have a high degree of reconfigurabil
ity. It is for this reason tha t we focus this work on distributed coordination 
methods - which are reviewed next. 
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2.4 Distributed Approaches in Control 

This research presents a distributed approach to reconfigurable process con
trol. In order to understand the rationale for taking such an approach, we now 
discuss the general concepts behind distributed control approaches developed 
in the past and in particular, examine in the so-called holonic manufacturing 
and agent-based control fields. 

2.4.1 Understanding Distributed Control 

The concept of distribution in control, sometimes referred to as decentralised 
control, is rooted in large-scale and complex systems such as power networks, 
communication networks, markets and organisations. In such large systems, 
the standard presupposition for control that information about the system, 
or calculations based upon it, are available centrally in a single location does 
not often hold. In some cases it may be impossible to collect all information 
centrally (e.g., in case of markets, the companies may prefer not to disclose 
their internal details to others) or in other cases the information transfer may 
have an economic or reliability cost which cannot be ignored (Siljak 1991). In 
general though, it remains important that the system is flexible and robust 
enough to absorb various and sudden changes and be able to accommodate 
graceful failures in components where a centralised decision system can easily 
fail (Androulakis & Reklaitis 1999). 

A distributed control or decision-making system circumvents this informa
tion constraint of a large-scale or complex system by spreading the control 
calculations or decisions directly to the locations where information exists. 
The process of distribution generally follows three key principles: 

i. Decomposition: The overall system is split into multiple subsystems such 
that variables local to any subsystem are strongly coupled while those 
among subsystems are only weakly coupled; the term coupling here may 
refer to the impact that a change in any variable has on other variables; 

ii. Local decisions: Each subsystem is associated with a local decision-making 
agent or controller that possesses the knowledge of its own subsystem plus 
at most a partial knowledge of its neighboring subsystems; these local 
controllers may work towards their individual control objectives or to a 
team objective or to a combination of both; 

iii. Coordination: The impact of local actions of any controller on other sub
systems is assessed and where necessary, coordinated via some form of 
communication to solve the local problems or a common, global prob
lem or a combination of both; the communication may be either direct 
(through communication links) or indirect (via observing the perturba
tions from other subsystems). 

Process plants, in one sense, can be perceived as a form of large-scale, 
complex systems because of their highly interconnected nature. A process 
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control problem, if cast as a computational problem, would exhibit this large-
scale behaviour in terms of its model coefficients, e.g., a large number of 
model elements referring to piping connections between process units would 
be either small or zero in value. This suggests tha t a process control problem 
might be decomposed and solved - in principle - in a similar distributed 
manner. In modern DCS architectures this assertion has been used - at least 
partially - to implement the bot tom regulatory control level in a distributed 
form. A similar interest is also growing to distribute the other levels in the 
hierarchy (see, for example, Camponogara, Jia, Krogh & Talukdar 2002, Lu 
2003, Venkat, Hiskens, Rawlings & Wright 2006) and the planning and control 
problems concerning process supply chains (Perea-Lopez, Grossmann, Ydstie 
& Tahmassebi 2001). 

2.4.2 S o l u t i o n Techniques for D i s t r i b u t e d Contro l 

The solution approaches developed in the past for distributed control - while 
all follow the above-mentioned three principles - differ in the way the lo
cal problems are defined and coordinated across the system. Based on the 
type of coordination mechanism used for problem solving these can be split 
broadly into so-called hierarchical coordination and distributed coordination 
techniques. 

Hierarchical C o o r d i n a t i o n 

In a hierarchical, or so-called multi-level scheme, the coordination is achieved 
by a separate higher level controller. Each local controller receives a freedom 
to choose its control actions based on its local system model and cost criterion, 
both derived from a simplification of the overall model and cost criterion. In 
order tha t these independently arrived choices are coherent, a separate higher-
level controller or so-called coordinator is used which incrementally adjusts 
the individual models or criteria such tha t the combined cost for the whole 
system improves. The interactions thus repeat between two levels until a form 
of convergence is achieved. 

Research in hierarchical coordination received wide interest in the 60's and 
70's when it was difficult to solve large-scale linear programs using limited 
computing facilities available then. The first known coordination or so-called 
decomposition algorithm is due to Dantzig & Wolfe (1961) where distribu
tion was used to solve large-scale planning problems via coordination. A dual 
method was suggested therein where the coordinator adjusts Lagrange multi
pliers or so-called marginal costs for coupling constraints associating the local 
subsystems. Benders (1962) proposed the first primal algorithm for linear pro
grams tha t was later generalised by Geoffrion (Geoffrion 1970, Geoffrion 1972) 
for wider class of non-linear problems. In a primal scheme the coordinator 
directly fixes the coupling variables connecting the local subsystems so as 
to incrementally refine the bounds within which the local controllers can 
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choose their actions. Numerous coordination algorithms and solution tech
niques have been developed since this early work for applications in op
erations research and later in systems theory and control engineering. See 
(Mesarovic et al. 1970, Findeisen, Bailey, Brdys, Malinowski, Tatjewski & 
Wozniak 1980, Jamshidi 1983) for detailed overviews. 

Application of hierarchical coordination in process applications has been 
scattered throughout the years. The early references include (Brosilow & 
Lasdon 1965, Lasdon 1970, Morari, Arkun & Stephanopoulos 1980). More 
recently, Katebi & Johnson (1997) considered a dual method for optimising 
control of chemical processes. Jose & Ungar (2000) applied the so-called Slack 
Auction method to process optimisation where a purpose-built auction mech
anism was used to coordinate the interaction variables associated with piping 
connections between process units. Grothey (2001) proposed a mixed primal-
dual technique in a fixed-and-price algorithm for more general class of process 
control problems of nonlinear form. Hou (2001) applied a dual method for 
coordinating large-scale neural network problems arising in optimal control. 

It is worth noting that the above multi-level schemes are different than 
multi-layer schemes used in conventional control hierarchy (Fig. 2.4). In a 
multi-layer scheme, the higher-level controller solves the same plantwide prob
lem, but at an aggregate level, to fix certain key variables. In a multi-level 
scheme the coordinator is not required to solve any such problem. This has 
an advantage that modifications required in any part of the system are only 
made at the local level. The coordinator, being a centralised function, however 
still poses a threat of single point of failure. Also, the process of coordination 
is a synchronous process and can be limiting as all local solutions problems 
must be communicated to coordinator before it can adjust local models or cost 
criteria. The computational speed of the overall problem can thus be limited 
by the slowest or busiest local processor among all. 

Distributed Coordination 

In a distributed coordination scheme, the role of coordinator is removed. In
stead the coordination is achieved by the decision-making controllers them
selves (called below as agents). The agents interact in a distributed mode and 
are guided by some form of global rule that leads them to converge towards 
a consensus. 

Central to distributed coordination is the information that agents exchange 
in making local decisions. Agents may not communicate at all and still reach 
concensus by using some form of min-max strategy of choosing local deci
sions that satisfy the worst-case physical interactions. Problems of these form 
have been studied in the fields of decentralised control (Siljak 1991, Sandell, 
Varaiya, Athans & Safonov 1978) and game theory (Basar & Olsder 1995) 
and applied to large-scale industrial problems (Samyudia, Lee & Cameron 
1994, Samyudia, Lee, Cameron & Green 1995, Guo, Hill & Wang 2000). The 
lack of communication naturally results in a suboptimal global performance. 
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This can be improved if the agents can be allowed to communicate. In the 
setting of dynamical control, the agents can be made to communicate vari
ous forms of information, for example: (a) the abstraction of their local dy
namic models, (ii) the predictions of their future interactions, (hi) the cost-
to-produce and cost-to-respond to incoming and outgoing interactions, etc. 
(Tenney & Sandell 1981). With increased availability and reliability of commu
nication tools, such communication based structures, in particular those based 
on prediction, have found application in distributing so-called model predic
tive control calculations (see, for example, Camponogara et al. 2002, Venkat 
et al. 2006, Keviczky, Borrelli & Balas 2006). 

A large body of work on distributed algorithms that also uses commu
nication as part of problem solving belongs to so-called relaxation tech
niques from optimisation and operations research literature (Bertsekas & 
Tsitsiklis 1989). In simple terms, the relaxation methods build upon a princi
ple that, if problem structure permits, the optimisation step in a centralised 
technique, e.g., a gradient step x(t + 1) = x(t) — ryVF(x(t)), can be split 
and distributed among agents responsible for subsets of variables. The agents 
iteratively solve their local problems and communicate these local solutions 
in some form. The overall solution is made to converge by imposing a global 
constraint such as the order in which their local problems are solved. See 
(Bertsekas & Tsitsiklis 1989) for an extensive overview of this class of algo
rithms. The concept of dynamic programming also provides a communication-
based method for solving multi-stage problems such as in process synthesis 
(Jackson 1964b, Jackson 1964a, Rudd & Watson 1968) and process modelling 
(Kisala, Trevino-Lozano, Boston, Britt & Evans 1987, Westerberg, Hutchison, 
Motard & Winter 1979, Alkaya, Vasantharajan & Biegler 2000). 

An important class of distributed solution techniques based on so-called 
nested decomposition concept have remained dormant over the years (Glassey 
1973, Ho & Manne 1974, O'Neill 1976), however, as shown later in this mono
graph, these can provide an excellent tool for solving distributed control prob
lems arising in multi-stage networks such as process plants. The word nested 
refers to a sequential solution of multiple, two-level coordination problems, 
each associated with a junction (or link) connecting two or more agents or 
subsystems. Starting from the root of the network, each agent in the sequence 
coordinates its own actions plus those of its predecessors and passes relevant 
information down to its successors. The interactions repeat across the network 
whereby agents incrementally build and refine abstractions of cost objectives 
and feasible regions and utilise this information in solving the global problem. 
See Chapter 6 for further details on nested decomposition. 

Discussion 

Both coordination methods described above offer improved benefit of reconfig-
urability over conventional methods because the formulation of local controller 
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problems are distributed and can be easily modified. However, both coordi
nation methods also need a separate mechanism for coordinating the local 
solutions to guarantee coherent global operations. Historically, coordination 
is perceived as a complex process difficult to implement within industrial pro
cess control due to: (a) the process problems can be complicated due to the 
use of material and energy recycles and (b) the problem formulations used 
at higher-levels, e.g., in planning and scheduling problems, remain generally 
monolithic. The use of coordination in this context for problem solving can 
lead to slower convergence and may not work reliably due to the reliance 
placed on communication tools. However, with the advances in communication 
and computing technologies in recent years, these issues have remained less of 
a concern nowadays. As discussed earlier in the previous section, if the com
plexities of recycles and heat integrated are t reated secondary to the recon-
figurability of operations then the benefits offered by coordination methods, 
in particular those based on distributed coordination, can provide attractive 
alternatives for building modular control architectures tha t also support such 
rapid integration and reconfiguration (Backx et al. 2000, Samad et al. 2007). 

2.4 .3 D i s t r i b u t e d P a r a d i g m s for Reconf igurable Manufac tur ing 
Contro l 

As mentioned earlier, distributed approaches have been used previously in de
veloping greater reconfigurability in distributed manufacturing control. The 
driver for such development was the business pressures felt by manufactur
ing industries in the early nineties. The increased attention on product cus
tomisation and diversification led to many researchers tackle the problem of 
manufacturing agility by seeking inspiration from other man-made or nat
ural systems where adaptabili ty to change has been key to their survival. 
Some examples of new paradigms include fractal factory (Askin, Ciarallo & 
Lundgren 1999), bionic manufacturing, (Ueda 1992, Tharumara jah , Wells & 
Nemes 1996), holonic manufacturing (Christensen 1994, Seidel 1994) etc. Al
though motivational and insightful, many of these new approaches failed to 
make an impact due to their rather radical nature. The two concepts which 
did succeed namely, holonic and agent-based manufacturing, led to major re
search interests internationally. We give in this section a brief overview of 
the research in these fields with an aim to identify the background concepts 
relevant to this work. More comprehensive overviews can be found in surveys 
(McFarlane & Bussmann 2000, Mafik, Fletcher & Pechouccek 2002, Babiceanu 
& Chen 2006, Shen, Hao, Yoon & Norrie 2006, Shen, Wang & Hao 2006). 
Industrial deployment of these technologies has been reviewed in (Mafik & 
McFarlane 2005, Pechoucek & Mafik 2006). 

Holon ic Manufac tur ing S y s t e m s 

The concept of holon was proposed by Koestler (1967) in his studies on the 
evolution in biological and social systems. The word holon, a combination of 
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holos (meaning 'whole') and -on (meaning 'par t ' ) , describes a self-reliant ele
ment of a system tha t is able to exist on its own as an autonomous entity and 
also is able to integrate with other such elements in the system to create a 
larger system i.e., a holon demonstrates the dual characteristics of autonomy 
and co-operation at the same time. The holonic concept was brought to man
ufacturing by Suda in his work (Suda 1989, Suda 1990) where he observed 
tha t properties analogous of holons in a biological or social system would be 
desirable in a manufacturing environment when faced with the challenges of 
customisation and global competition. To motivate the analogy, he proposed 
the concept of manufacturing holons and the associated manufacturing model 
as holonic manufacturing systems. Suda's work led to a number of research 
efforts promoting the holonic concept as the paradigm for next generation 
manufacturing systems. The motivation behind these developments was to 
create a distributed manufacturing architecture tha t is made up of a modular 
mix of (semi-) autonomous manufacturing holons tha t can make stand-alone 
decisions and are able to collaborate among themselves to produce goods. 
A bot tom-up integration of manufacturing holons, achieved through recon
figurable, distributed interactions is then considered a rational approach to 
building manufacturing systems of the future. 

A g e n t - B a s e d Manufac tur ing Contro l 

In parallel to holonic research, the concept of agent-based control also emerged 
as a paradigm to address similar challenges in manufacturing. An agent, by 
definition, is a flexible, computational element possessing a level of intelligence 
to operate independently (Wooldridge 2002). A multi-agent system, compris
ing multiple interacting agents, is considered to provide the intelligence neces
sary to create a dynamically reconfigurable and to an extent self-organisable 
design of manufacturing elements. 

The agency concepts, while studied previously in computer science, were 
largely untested in manufacturing and led to bringing together the researchers 
from holonic and agent communities, with the former providing a physical 
platform for building agent-based manufacturing systems (Fischer 1999, Mafik 
et al. 2002, Giret & Botti 2004). The concepts of pro-activeness and reactive-
ness from agency research are since used widely in holonic and agent research 
to define the various coordination issues such as communication protocols, 
decision-making strategies and the planning and scheduling algorithms (Mafik 
et al. 2002, Shen, Hao, Yoon & Norrie 2006). 

H o l o n i c and A g e n t R e s e a r c h in D i s c r e t e Manufac tur ing 

The mainstream holonic or agent research, while focussed on discrete manu
facturing, has followed the so-called low and late commitment principle from 
the theory of flexibility (Valckenaers & van Brussel 2005), which suggests 
tha t to enhance flexibility a designer should commit to a design decision as 
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late as possible and the severity of the commitment should be kept as low 
as possible, i.e., (a) where possible, the design decisions should be postponed 
or avoided by providing alternatives and (b) the design process should avoid 
building "inertia" that makes it harder to rectify the errors at a later stage 
(Wyns 1999). 

In a make-to-order environment, the principle of late commitment has 
been employed to provide the support for customisation and diversification 
of products. The concepts of so-called product holon and resource holon are 
introduced - the former representing the recipe knowledge on 'how to produce 
a product' for a specific order and the latter as the production capabilities in 
terms of machines and other resources available on the shopfloor (van Brus-
sel et al. 1998, Chirn & McFarlane 2001, Leitao & Restivo 2006). These two 
aspects are separated in the design and only integrated during run-time oper
ations via distributed interactions between product and resource holons. By 
delaying their integration, the developers of the recipe knowledge or the ma
chine control receive a freedom to choose design solutions that best suit the 
local conditions. Equally, the most recent status of conditions on the shopfloor 
is taken into account before assigning tasks that fit with the order require
ments. As a result new orders can be dynamically introduced or the existing 
orders shuffled to better utilise the resources. 

The principle of low commitment is also extended to engineering and de
sign of control system so as to suggest a method of top-down decomposition, 
bottom-up integration. A bottom-up method is preferred for integration as it 
avoids the pitfalls of initial global design which can be restrictive (van Brussel 
et al. 1999). In the proposed method, the decomposition of end-user require
ments still occurs top-down however little or no design choices are made en-
route. Resulting bottom-level requirements from the decomposition are then 
associated with appropriate holons from a set of pre-identified holon types. 
Selected holons are then designed and implemented in a bottom-up manner 
such that their final designs are reusable, preferably of multifunctional nature. 
To support the identification of holons, a number of different classifications 
have been suggested in the form of so-called reference architectures. Some 
prominent examples of these include PROS A (van Brussel et al. 1998), HCBA 
(Chirn & McFarlane 2001), ADACOR (Leitao & Restivo 2006) and Meta-
Morph (Maturana & Norrie 1996, Shen, Maturanan & Norrie 2000). Internal 
design of holons that supports this architectural research has also received 
vivid interest. Some key references include (Christensen 1994, Rannanjarvi & 
Heikkila 1998, Heikkila, Jarviluoma & Juntunen 1997, Fischer 1999, Brennan, 
Fletcher & Norrie 2002). 

The holons operate in a distributed mode and share information to reor
ganise their operations and coordinate associated decisions. The function
ality of conventional hierarchy is loosened and distributed among holons; 
holons solve related planning, scheduling and control problems in a dis
tributed form. Development of coordination techniques to support these in
teractions has formed an essential part of research, not just to define the 
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problem solving mechanisms but also to provide an ontological description 
of the interactions that are used to standardise the communication pro
tocols used by holons and their internal designs. The key solution con
cepts considered include contracting (Smith 1980), lagrangian decomposition 
(Gou, Luh & Kyoya 1998), market programming (Vancza & Markus 2000) 
and behaviour-based techniques (Valckenaers, van Brussel, Kollingbaum & 
Bochmann 2001, Tharumarajah & Wells 1996). Associated applications in 
control cover holonic planning (Deen 1993), scheduling (Gou et al. 1998, Sousa 
& Ramos 1998) and execution control (Heikkila et al. 1997). See (McFarlane 
& Bussmann 2000, Tharumarajah 2001, Shen, Hao, Yoon & Norrie 2006) for 
recent overviews. 

Holonic and Agent Research in Process Applications 

Research on holonic or agent-based based systems or similar principles has 
been scarce in the process industry. One of the early interests was in agent 
applications to support design and engineering of process plants purely 
to perform mundane tasks such as collecting the data and checking dif
ferent design alternatives. (Jennings, Faratin, Norman, O'Brien, Odgers & 
Alty 2000, Batres, Asprey, Fuchino & Naka 1999). More technical use of 
agents has been found in distributed fault diagnosis (Seilonen, Appelqvist, 
Halme & Koskinen 2002, Eo, Chang, Shin & Yoon 2000, Maturana, Tichy, 
Slechta, Staron, Discenzo & Hall 2003). The agents here represent and moni
tor one or more pieces of equipment. During a fault scenario, they build and 
postulate possible hypothesis of the fault scenarios and communicate results 
to eliminate unlikely possibilities. Ultimately they recognise the nature and 
extent of the fault and advise the operator of potential remedies for repair. On 
a different front, Chokshi, Matson & McFarlane (2000) considered a holonic 
framework for batch re-scheduling in a steel-making. The concept of partial 
global planning (Durfee & Lesser 1991) was considered from distributed Al 
research to define the coordination of start and end-times of batch tasks and 
the movement of ladles between unit operations. 

More recently, agent-based research has found a surge of interest in the 
coordination of process supply chains. Among them the key references include 
(Garcia-Flores, Wang & Goltz 2000, Julka, Srinivasan & Karimi 2002, Julka, 
Karimi & Srinivasan 2002, Gjerdrum, Shah & Papageorgiou 2001, Aldea, 
Banares Alcaantara, Jimenez, Moreno, Martinez & Riafio 2004). Backx et al. 
(2000) gave an interesting insight on the need for intentionally dynamic, 
supply-chain conscious process operations. They showed that a decentralised 
design of process plants operating in a so-called cooperative mode will be es
sential to support the future requirements. Their initial results defining the 
control algorithms for market-oriented optimisation and scheduling of process 
operations are reported in (Tousain 2002, Tousain & Bosgra 2006). 
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Fig. 2.8. Satisfaction of reconfigurability requirements using a distributed approach 
(the shaded labels show a major link) 

2.4.4 Summary 

Fig. 2.8 summarises the key properties of distributed approaches in holonic 
and agent research by linking them with the reconfigurability requirements in 
Fig. 2.7. As can be seen, the architectural properties can address the static 
requirements of product/process diversity and easy modifiability, while the op
erational properties can address the dynamic requirements of responsiveness 
and fault-tolerance and also help improve the diversity via dynamic integra
tion of product information. 

2.5 Reconfigurable Control Research in Other Domains 

The concept of reconfigurable control based on distributed approaches has 
also been studied in domains other than manufacturing, particularly where it 
remains impossible to employ a centralised control structure. A brief review of 
this related research is presented in this section to gain insights on the nature 
of approaches used therein to attain reconfigurability. 

2.5.1 Formation Control of Robots or Aircraft 

Maintaining a formation of multiple robots or aircraft operating in a close 
proximity has gained interest recently in areas where unmanned operations 
are essential (Egerstedt & Hu 2001, Beard, Lawton & Hadaegh 2001, Giulietti, 
Pollini & Innocenti 2000). Typical of such applications include exploration 
of unknown environments, coordinated path following and pushing objects 
in a coordinated fashion. The formation may be time-varying and may be 
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subjected to various hard or soft constraints, such as retain minimum distance 
between robots or aircraft. 

The use of multi-agent control schemes based on coordination have become 
popular in this domain primarily because the environmental stimulations in 
which the distributed entities operate remain unknown a priori. Beard et al. 
(2001), for example, classified the coordination approaches used into three 
categories: (i) leader-following, where all agents {i.e., robots or aircraft con
trollers) follow the pa th of a common leader agent; (ii) behavioural, where 
the group behaviour emerge from the localised behaviour of all agents and 
(hi) virtual structure, where the formation is t reated and controlled as a sin
gle structure, which in turn directs the actions of the individual agents. See 
(Beard et al. 2001) for further details. 

2.5.2 C o n g e s t i o n Contro l in C o m m u n i c a t i o n N e t w o r k s 

With ever increasing use of internet and communication technology, the con
trol of traffic management in communication networks has become important . 
The problem is further complicated because of uncertainties in the t ime at 
which traffic may arise or the amount of network resources tha t it may de
mand (Kelly, Maulloo & Tan 1998). One problem in traffic management is 
flow control - for a given network configuration, adjust the incoming traffic 
such tha t the network utilisation is maximised. The other problem is routing -
for a given network configuration and utilisation level, determine the routing 
of da ta packets across the network such tha t the priority constraints {e.g., 
importance of certain da ta over others) are satisfied. 

Two streams of solution strategies have evolved over the years for these 
two problems. One stream assumes tha t individual users are self-maximising 
agents and aim to maximise their utility for a given shared access of the 
network. The concept of non-cooperative game theory (Basar & Olsder 1995) 
is used to characterise the resulting equilibrium conditions for the solution. 
The properties such as fairness, efficiency of utilisation and quality of service 
are studied here (Korilis & Lazar 1995, Korilis, Lazar & Orda 1997, Altman, 
Ba§ar & Srikant 2002, Orda, Rom & Shimkin 1993). The other stream takes 
a control-theoretic view where the aim of the study is the stability of the 
equilibrium in the presence of feedback delays arising between user/source 
pairs. The metrics such as convergence, capacity tracking and robustness to 
changing dynamics are studied to define the distributed control laws for traffic 
management (Kelly et al. 1998, Vinnicombe 2000, Johari & Tan 2001). 

2.5 .3 P o w e r S y s t e m s and Electr ic i ty M a r k e t s 

Increasing competition has led to many electricity markets being deregulated 
worldwide. Under new trading rules, individual generators and consumers 
submit their bids for supply or demand of electricity to a common regula
tor. The regulator evaluates the bids based on forecast demand and decides 
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a market clearing price at which the electricity is traded. Since the gener
ators and consumers operate as self-utility maximisers, the concept of non-
cooperative game theory provides a right platform to study the equilibrium 
pricing and establish trading mechanisms to reach equilibrium for a given 
structure of grid and transmission capacity (Stothert & MacLeod 2000, Green 
& Newbery 1992, Kleindorfer, Wu & Fernando 2001, Hobbs, Metzler & 
Pang 2000). 

Power networks also face the problem of responsiveness against faults and 
disturbances. Similar to process plants, the grid connections between indi
vidual generators or consumers introduce tight coupling between their local 
processes. A minor or small fault in one part of the network can, as a result, 
propagate to other parts or the whole network if not properly managed in 
time. A prompt diagnosis and isolation of fault thus remains ever so impor
tant, but the ability of remaining generators or consumers to compensate for 
this grid imbalance also is equally important to avoid blackouts. It is however 
impossible to manage this problem centrally due to large size of the networks 
in most cases. Instead, the concept of decentralised control has been used fre
quently as discussed earlier in the review of distributed coordination literature 
(see, for example, Guo et al. 2000). 

2.5.4 Supply Chain Management 

Research in supply chain management and control has nourished in recent 
years due to increased attention on customisation and diversification in global 
markets (Maloni & Benton 1997, Tayur et al. 1999, Strader, Lin & Shaw 1998). 
The supply chains nowadays are required to respond and adapt to constantly 
changing conditions. Their conventional monopolistic form cannot however 
realise this level of response due to fixed and rigid structure. Instead supply 
chains are now regarded as supply chain networks (SCN) - an integration of 
multiple supply chains that evolve and scale according to changing needs of 
the market (Fox, Barbuceanu & Teigen 2000). 

Specifically, the concept of so-called virtual enterprise (Strader et al. 1998, 
Camarinha-Matos et al. 2003) has emerged. In a virtual enterprise multiple 
equal-interest companies come together to form a chain that can exploit the 
fast-changing market opportunities. Each alliance is formed and operated via 
distributed interactions between companies. Once the opportunity ceases, the 
alliance is dissolved and the companies move towards forming new partner
ships. The effective operation of supply chains, in particular virtual enter
prises, requires sharing information between partners and synchronising their 
local operating policies. The multi-agent technology in this sense has pro
vided a platform for modelling the underlying distributed interactions. See 
(Chaib-draa & Miiller 2006) for a collection of recent references. 
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2.5.5 Discussion 

When considering reconfigurable process control, many lessons can be learnt 
from developments in the above and other domains. Similar to process plants, 
in all four domains described above the agents are subjected to hard or soft 
network constraints. In formation control, robots or aircrafts must maintain 
a fixed distance. In communication networks, the capacity of network links 
may limit the data that the users can put on the network. In supply chains, 
companies remain connected via transport routes and the operating policies 
they use also need to fit with those of immediate customers, suppliers and 
transporters. Similarly, in all four domains, the agents must also maintain 
a stable operation of the global system under time-varying conditions. In 
formation control or supply chains, the behaviour emerges via co-operation 
between distributed entities, while in communication or power networks this 
is enforced by the need for reaching a system-wide equilibrium. Note that 
in all four domains these static or dynamic properties of the global system 
emerges via direct, bottom-up interactions between distributed agents. 

The research in supply chain networks is particularly relevant to this work. 
Supply chains exhibit a multi-stage character of commodity flow which - in a 
sense - is similar to the flow of materials in manufacturing systems compris
ing network constraints such as process plants. The notions such as 'product', 
'product demand', 'customer order' as viewed in a manufacturing system also 
relate to supply chains in a similar manner. Interestingly, the supply chain 
paradigm also extends the market or contracting approach used in previous 
holonic or agent research by introducing the network interactions of 'supplier-
to-supplier' type apart from 'customer-to-supplier' type in a market or con
tracting approach. As discussed in the next chapter, this extension provides 
the basis for our distributed approach to reconfigurable process control. 

2.6 Summary 

This chapter has built a foundation for understanding existing work in process 
control, distributed control and coordination and the role of reconfigurability 
in this domain. We next move onto the main body of the monograph which 
proposes a distributed approach to reconfigurable process control. 
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A Distributed Reconfigurable Process Control 
Approach 
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DRPC: Distributed Reconfigurable Process 
Control 

3.1 Introduction 

In the previous chapter we noted that a distributed approach to the design of a 
process control environment may provide a route to increased reconfigurability 
and with that the associated business benefits. In this overview chapter and 
the following three chapters we begin to build up a blueprint for how such a 
distributed control system might be constructed. We have already noted that 
such an approach is - conceptually - fundamentally different to conventional, 
hierarchically-based control systems and because of this we begin with a re
casting of the process control system structure before moving on to examine 
the way such a system might operate. 

In this chapter we first gather together the needs for a reconfigurable pro
cess control system - as discussed in Chapter 2 - and then marry these with 
the notions of distributed coordination as defined from the related but dif
ferent developments described in Section 2.5. This allows us to produce a 
conceptual overview of how a distributed and reconfigurable process control 
system might operate. From here, we identify the key developments needed 
in order to construct such a system, namely, the architecture and element 
designs, the interaction between distributed elements and the governing opti
misation strategy for achieving globally well behaved control. 

3.2 Addressing the Needs for Reconfigurable Process 
Control 

In the solution we are going to develop we seek to address the needs for 
reconfigurable process control as identified in Section 2.3.3. These were sum
marised into four system requirements: (i) product and process diversity, (ii) 
easy modifiability, (hi) responsiveness to change and disturbances, and (iv) 
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fault-tolerance with graceful degradation of performance (Fig. 2.7). The state-
of-the-art review of research in process control showed tha t each of these re
quirements have been addressed - but only individually and only for rather 
limited class of applications. A holistic approach addressing them within a 
single framework is yet to appear. We propose here tha t a distributed coordi
nation approach based on holonic principles can provide one such approach. 
The previous results in holonic research, however, apply to discrete manufac
turing and therefore do not t ranslate straight to process control. So, to develop 
a distributed R P C approach, we need to understand what opportunities and 
constraints exist in process control tha t are different to discrete control, and 
from tha t , decide how to adapt the existing holonic research. 

3.2 .1 T h e Reconf igurat ion P r o c e s s 

Before assessing how to use the existing research to address the needs of re-
configurability, we firstly examine the process of reconfiguration itself. Fig. 3.1 
outlines all the key steps in the reconfiguration of a complex system which 
range from the identification of an opportunity to the coupling/recoupling 
of elements, the reorganisation of those elements and the monitoring of the 
outcome. First we concentrate on the central section: tha t of effecting the 
reconfiguration process. Intuitively, this can be split into three actions: (i) 
decouple - pull apar t system elements from existing configuration, (ii) reor
ganise - reorganise them into new configuration, and (hi) recouple - put them 
together to operate. All three actions may involve a physical change (phys
ical set-up of the process units or their interconnections) and /or a control 
change (operating settings, recipe parameters etc.). The reconfiguration may 
be requested as planned {e.g., introduction of a new product order) or un
planned {e.g., failure of a process unit) . An R P C system capable of tackling 
these conditions shall provide the support necessary to carry out the above 
actions smoothly and efficiently, and preferably in an automated fashion. In 
addition, the R P C system must also identify tha t a reconfiguration is neces
sary from monitoring of the plant conditions or the arrival of new production 
opportunities (new orders etc.), and define the structure of the new configura
tion. In conventional practices, these actions would be performed offline (when 
planned) or by human intervention (when unplanned). However, in more dy
namic scenarios tha t can arise in future, such methods may fail to cope with 
the complexity and fast timescales tha t may be demanded. Instead, we believe 
these actions shall as well be included as part of the scope of the R P C system 
with, if necessary, an extra level of automation and intelligence provided tha t 
induces self-reconfiguration. 

3.2 .2 A d a p t i n g E x i s t i n g H o l o n i c S y s t e m s R e s e a r c h 

The previous holonic research has used distributed interactions between 
holons to manage the reconfiguration process in a manner described above. 
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Generally, a contracting protocol (Smith 1980) or its extended variants such 
as based on lagrangian decomposition (Gou et al. 1998) or market program
ming (Vancza & Markus 2000) are used to define the information structure 
for interactions between holons (Fig. 3.2(a)). In contracting the interactions 
occur between product and resource holons. In a so-called task-based view of 
contracting, the product holons act as the managers and distribute tasks to 
appropriate resource holons. In turn, they also coordinate the flow of parts 
across shopfloor. In a dispatching mode of operation, the interactions build 
progressively with new tasks only assigned when the previous tasks have fin
ished. The resource holons themselves are assumed physically decoupled (in 
jobshops) or connected via buffers such as storage units and conveyor queues 
that are assumed to decouple their operations (in flowshops). The resource 
holons therefore do not interact directly or coordinate their operations. In an 
alternative resource-based view, the resource holons instead act as the man
agers and announce their availability and accept tasks that best suite the local 
conditions. Again the interactions occur between product and resource holons 
with the former acting as the coordinators of the flow of parts. 

In a continuous process the situation remains different though because the 
process units remain tightly connected via piping streams and their local dy
namics interact in most cases due to lack of interim storage or buffer tanks. 
That means, the processing tasks assigned to any process unit must match 
- in a physicochemical term - to that of its neighboring units. A tight co
ordination of unit operations is thus essential, both at the time of allocating 
tasks to process units and also when these tasks are being executed. In most 
cases it may also be necessary that the entire task sequence in the product 
recipe, i.e., from raw-materials to end-products, is developed first before the 
execution of the first task can start; a dispatching mode of task release and 
assignment cannot simply work. In these conditions if the above task-based 
view is used for managing interactions, then it is likely that the coordination 
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Fig. 3.2. Distinction between: (a) contracting-style resource allocation in discrete 
manufacturing, (b) proposed form of distributed coordination in process plants 

effort required to satisfy these additional constraints can become excessive due 
to centralised role of product holons and the chances of potential conflicts be
tween their task assignments. Instead, a distributed method for RPC must 
be better off by achieving coordination through direct interactions between 
production functions themselves (i.e., resource holons) whilst also interacting 
with product functions (i.e., product holons) where necessary. This distinction 
is clarified in Fig. 3.2(b). 

3.2.3 Analogy from Virtual Enterprise Management 

A useful coordination method for a DRPC approach can be developed by 
extending the contracting principle in previous research with an analogy from 
supply chain management. In particular, we borrow an analogy from so-called 
virtual enterprises or dynamic supply chains as discussed earlier in Section 2.5. 
In a virtual enterprise multiple equal-interest companies come together to form 
a temporary alliance that delivers the fast-changing customer demands. The 
alliance evolves in time and adapts to changing marketplace when necessary. 
The reconfiguration of the whole chain, including that of coordinating the 
material flows, occurs via direct, distributed interactions between companies 
themselves. A framework analogous to these interactions of companies can 
be considered to define the interactions of product and production functions 
within an RPC system. 

In particular, we consider an analogy from the 'life cycle model' of a vir
tual enterprise. A virtual enterprise normally goes through four main phases 
during its life cycle as shown in Fig. 3.3: (i) identification, (ii) formation, (hi) 
operation, and (iv) termination (Strader et al. 1998). The identification phase 
starts with a research of available market opportunities and identifying an 
opportunity that can be pursued further. This is then input to the formation 
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Fig. 3.3. Life-cycle model of a virtual enterprise (Source: Strader et al. 1998) 

phase. The formation involves identification and selection of partnering com
panies and building from that a chain that can deliver the order requirements. 
Different combinations of partners and business processes may be evaluated 
before the companies arrive at a choice of the configuration. The selected 
partners then integrate their business processes during the operation phase in 
order to deliver the order. During this they may exchange local information 
such as stock levels, demand forecasts etc. to improve their visibility across 
the chain. The network is finally dissolved and the shared assets, if any, are 
dispersed or re-used to initiate a new opportunity. 

In an analogous manner, the production functions in the proposed DRPC 
approach use distributed interactions to manage the reconfiguration process in 
Fig. 3.1. An outline of how this analogy would operate is illustrated in Fig. 3.4, 
which compares the order fulfillment process in a virtual enterprise and in 
a DRPC system. In a virtual enterprise, the evolving market opportunities 
drive the partnering companies to come together and form alliances while in 
a DRPC system, the customer orders (or so-called product elements) drive the 
different production functions to configure appropriate process schemes and 
deliver the order requirements. 

The analogy, while conceptually sound, is faced with certain challenges. 
Process plants, unlike supply chains, are characterised by shorter time-scales, 
the non-linear and dynamic behaviour of process units, and the material and 
energy recycles - the features which are not normally critical in supply chains. 
However, if these complexities are taken aside and if the processes are seen 
purely as chains of material and energy flows, then it is possible that the 
network behaviour of process units, e.g., in a multiproduct or multipurpose 
plant, can still be examined in a manner similar to that of companies in a 
virtual enterprises. The analogy in this sense can provide an useful aid to 
visualise the operations of distributed production functions in a process plant 
in a manner much similar to the use of contracting in previous holonic research. 
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Fig. 3.4. Order fulfillment process in a virtual enterprise and a DRPC system 

3.3 Introducing the DRPC Approach 

In line with the previous research in holonic and agent-based industrial con
trol, we now begin to develop the D R P C approach by describing the tools 
necessary for constructing an R P C system. The method of top-down decompo
sition and bottom-up integration is considered the key to these developments. 
In particular in the following chapters we focus on the following three areas. 
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i. Distributed Control Architecture: A control architecture is developed in 
order to characterise the different production functions (so-called process 
elements) and their primary control responsibility. 

ii. Distributed Interaction Model: Next the structure of information exchange 
between process elements is defined so as to cover the interactions neces
sary for implementing the reconfiguration process in Fig. 3.1. 

hi. Distributed Control Strategy: To support their reconfiguration decisions, 
the process elements are finally supplied with control strategies in the 
form of a distributed algorithm. Only a generic problem is investigated at 
this stage so as to complete the architectural description. 

The following chapters in this part of the book address each of these de
velopments in turn. 
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Reconfigurable Process Control Architecture 

4.1 Introduct ion 

We now begin to construct the DRPC system from its basic elements and 
specify how these elements are denned for typical process control functions. 
The connection between these elements - the so-called control architecture 
- defines the structure for the process control system resulting from their 
combination. 

4.1.1 Overview 

We start with understanding the terms architecture and control architecture, 
i.e., what properties should a control architecture have and what are its key 
elements. 

The term architecture can be defined broadly as the attributes of a system 
as seen by its designer, or formally as, a conceptual structure of the system 
that also defines its functional behaviour while being distinct from the detailed 
design and physical implementation (Amdahl, Blaauw & Brooks 1964). An 
architecture in this sense forms a critical input to the design process to lay 
down the specifications of end-user requirements based on which the actual 
system can be built. 

Over the years, two different meanings of 'architecture' have evolved in 
systems engineering: (i) the architecture as a generic 'style' or a 'method' for 
building one or more systems, called the reference architecture and (ii) the 
architecture as a 'product' or a 'template' for a specific system, called the 
system architecture (Williams 1989, Zwegers 1998). The reference architec
ture sets out the generic behaviour and attributes and possibly the rules of 
design for a number of similar systems. A system architecture instantiates 
the behaviour and attributes of the reference architecture by applying these 
rules to a specific application. Fig. 4.1 outlines the use of reference and system 
architectures within overall systems engineering process. 
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Fig. 4.1. Role of architectures in systems engineering (Source: Williams T.J. 1989) 

The term control architecture refers to an architecture of a manufactur
ing control system (or in the context of this research, for a process control 
system). We limit it to be a reference architecture in this text. The role of a 
control architecture in this regard is to allocate the various decision-making 
responsibilities for production control to the specific control components or 
controllers. Further, it should determine the relationships between these con
trollers so as to establish a mechanism for coordinating the execution of their 
decisions (Dilts, Boyd & Whorms 1991, Senehi, Wallace & Luce 1992). 

The research on manufacturing control architectures has evolved over the 
years. Historically, the early architectures defined as part of Computer Inte
grated Manufacturing (CIM) were hierarchical - so-called 'proper' hierarchical 
as Dilts et al. (1991) call them. Some key examples include AMRF (Jones & 
McLean 1986) and MSI (Senehi et al. 1992) in discrete manufacturing and Pur
due Reference Model (Williams 1989) in process industry. Hierarchy helped 
manage the size and complexity of control functions that the earlier centralised 
structures failed to handle. But as the time progressed, it was recognised that 
hierarchy can have its own shortfalls. The inflexible structure of hierarchy 
due to multiple levels of control and the delays in passing information be
tween these levels could result in poor response to unforeseen change and 
disturbances. To overcome these shortfalls so-called heterarchical or fiat ar
chitectures were proposed as comprising distributed, locally autonomous con
trollers without any master/slave relationships (Duffie & Piper 1987, Duffle 
& Prabhu 1994). The benefits of hierarchy and heterarchy have been long 
debated as heterarchy can result in chaotic performance due to lack of coordi
nation where hierarchy was shown to perform better (Bongaerts, Monostori, 
McFarlane & Kadar 2000). Holarchy, a term coined as part of holonic research 
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(Koestler 1967, Christensen 1994), is considered to deliver the benefits of both 
hierarchy and heterarchy whilst also avoiding their shortcomings. Unlike hier
archy, the system elements in a holarchy remain distributed, loosely-coupled, 
but unlike heterarchy they also coordinate their operations across the plant. 
They can behave both as pro-actively and reactively under different conditions 
that in a way enhances their reconfigurability. We exploit this dual property 
of holarchy in defining the behaviour of process elements in the control archi
tecture to be developed in this and later chapters. 

4.1.2 Requirements for the RPC Architecture 

In this chapter, we aim to develop a control architecture for RPC systems 
with a focus on so-called semicontinuous class of process systems. The ar
chitecture is expected to help at least meet the requirements from Fig. 2.7 
of product/process diversity and easy modifiability as they both heavily de
pend on the architectural properties of a process control system. In addition, 
it should help improve responsiveness and fault-tolerance of the system by 
ensuring that constituent control elements of the architecture are sufficiently 
decoupled and that the propagation of disturbance or failures across the sys
tem remains limited or occurs gracefully. 

This chapter is structured as follows. Section 4.2 next describes the struc
ture, data models and basic control functions of distributed process elements 
in the architecture. An incremental approach to migrating to this fully dis
tributed form of control is suggested in Section 4.3 so as to allow industrial 
practitioners to experiment with these new concepts using existing off-the-
shelf control tools. Section 4.4 applies the architecture to an example polymer 
process plant. Some comments on the architecture in terms of the above men
tioned requirements and the other conventional and distributed architectures 
are presented finally in Section 4.5. 

4.2 Specification of Process Elements in a R P C System 

We now describe the specification of distributed process elements in the pro
posed RPC architecture. Following the approach described in Section 3.2, we 
consider a supply chain (in particular virtual enterprise) based analogy to 
visualise the structure and behaviour of elements in the architecture. 

4.2.1 Basic Types of Process Elements 

The proposed architecture divides the functionality of a process control system 
into four primary types of process elements, called: (i) unit element, (ii) piping 
header element (in short, header element), (iii) service supplier element (in 
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short, service element),1 (iv) product element. The functionality is divided 
based on physical structure of the process instead of temporal or multi-level 
decomposition as in a hierarchical system. 

The functionality of these individual types of process elements in the ar
chitecture can be defined as follows: 

• Unit Element: A process unit element (in short unit element) represents 
a physicochemical processing task such as reaction, distillation etc. in the 
process. The task may have associated with at least one but possibly more 
control decisions that the unit element can regulate on its own. 

• Header Element: A header element represents the logistics of materials or 
services within a specific segment of the overall process network. Physically, 
it may contain a number of piping streams, transfer equipment (pumps, 
compressors etc.), final control elements, energy transfer units (heat ex
changers etc.) and storage units. These component sub-units should not 
incur any physicochemical operation, however they can be used to change 
the physical state of the material or service being transferred, e.g., heat, 
cool, pressurise or depressurise them. 

• Service Element: A service supplier element represents a custodian re
sponsible for allocating a service to customer process elements that use 
this service in their local tasks. The customer elements can be either unit 
or header elements. Multiple service elements may exist in the process, 
each supplying one or more different services. 

• Product Element: A product element represents the production require
ments of a specific customer order in the form of a product recipe (spec
ifying the sequence of processing tasks to be used or allowed) and other 
requirements such as quality, quantity and throughput of the product de
mand. Multiple product elements may co-exist in the process, each repre
senting a specific customer order, but only a few may be produced at a 
time. Note that unlike the previous three elements, the product element 
does not have a physical presence in the process; it only acts as an in
formation component supplying necessary product information to other 
process elements. 

Fig. 4.2 depicts examples of various unit, header and service elements that 
can be found in process industries. Important to notice is that the header ele
ments decouple the operations of unit and service elements in a sense that the 
physicochemical tasks of unit elements or the service supply tasks of service 
elements can be identified and defined more clearly and separately from the 

The term service refers to utilities such as steam, cooling water, electricity and 
other such enabling facilities (for example manpower) that are used in the exe
cution of various processing tasks and the transfer of materials. 
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Fig. 4.2. Examples of unit, header and service elements in process industry 

transfer/transform tasks of header elements; the header elements can thus be 
made flexible as and when necessary by adding extra transfer facilities without 
having to modify the interface of unit or service elements. 

We note that the above identification of such element types is not strictly 
new to the distributed coordination field. Except for the service element, the 
notions of unit, header and product elements have previously appeared in vivid 
forms as so-called resource, transport and product holons in other distributed 
architectures in holonic and agent research (e.g., PROSA (van Brussel et al. 
1998), HCBA (Chirn & McFarlane 2001), HSCF (Cheung, Yeung, Ng & Fung 
2000), ADACOR (Leitao & Restivo 2006)). However, as explained later in this 
chapter and the next chapter, the roles and interactions of process elements 
are different in the current architecture than these previous architectures. The 
differences primarily emerge due to the physically distinct nature of operations 
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Table 4.1. Analogy between supply chains and reconfigurable process plants 

Process Plants Supply Chains 

Unit elements Echelons (manufacturers, retailers etc.) 

Header elements Logistics providers (transporters, storage units etc.) 

Service elements Facilitators (investors, banks etc.) 

Product elements Customers 

in a continuous process then in a discrete manufacturing process discussed 
later in this chapter. 

The concept of service element is specifically new to this architecture. 
It relates to process enterprises where a number of plants or process units 
situated next to each other share common services (steam, cooling water, raw-
materials, etc.) supplied by separate supplier facilities (captive power plant, 
cooling water plant, etc.). It is widely known tha t an effective distribution of 
common services can prove to be significant at times when the supplier plants 
fail or the supply-demand balance of services is disturbed for some reasons. At 
other times when conditions are planned, an optimal distribution can increase 
company profits substantially. The role of a service element, being a custodian 
of one or more services, is to interact with the respective customer elements 
so as to coordinate the distribution of its services in a manner tha t is effective 
and responsive at times. 

We note in passing tha t the above identification of four process elements is 
also related to their analogous components in supply chains and in particular 
virtual enterprises. Table 4.1 shows this link, which suggests tha t if a process 
plant is considered a form of (mini-)supply chain, then the unit elements 
are the echelons in the supply chains, the header elements are the logistics 
providers, the service elements are the facilitators or service providers, and 
the product elements are the final customers. The analogy thus provides a 
systematic, ontological concept (as an extension to the contracting principle 
in previous holonic or agent research) to define the interactions of process 
elements. This is discussed in more detail in the next chapter. 

4.2 .2 D a t a M o d e l and Contro l Funct ions of P r o c e s s E l e m e n t s 

All four process element types possess associated roles, da ta models and con
trol functions in the architecture. These can be described as below. This infor
mation then forms a part of the interactions of elements in the next chapter: 

• Unit Element: The role of a unit element is to perform one or more pro
cessing tasks. To satisfy this role, it executes the following functions: (i) 
identify the processing tasks it should perform by interacting with re
spective product elements and other unit elements; (ii) acquire necessary 
feedstocks and services for these tasks from respective supplier elements; 
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and, (iii) perform the processing tasks to convert incoming feedstocks to 
outgoing products. Depending on the properties of incoming feedstocks 
and the specification of outgoing products, the exact tasks tha t a unit el
ement performs and the type of services it requires can vary time-to-time. 

• Header Element: The role of a header element is to transfer one or more 
materials or services within a segment of the process network. To satisfy 
this role, it executes the following functions: (i) identify the configura
tion of the process routes through which the materials or services are to 
be transferred; (ii) identify the requirements for property change for the 
materials or services being transferred {e.g., heat, cool, pressurise, depres-
surise them); (iii) develop and implement a procedure(s) to switch the 
process routes from their current configuration to required target config
uration; and, (iv) transfer materials or services in a controlled manner by 
interacting with respective unit or header elements. 

• Service Element: The role of a service element is to distribute one or more 
services to its customer elements. To satisfy this role, it executes the fol
lowing functions: (i) identify the nature of service demands from customer 
elements and decide the service supplies available for those demands; (ii) 
determine an optimal, or when necessary an emergent but sub-optimal, 
distribution of services while taking into account the priorities of service 
demands; and, (iii) distribute the services in a controlled manner via in
teracting with respective customer elements.2 

• Product Element: The role of a product element is to represent the require
ments of a production order and to ensure tha t these are met. To satisfy 
this role, it executes the following functions: (i) identify the processing 
tasks to be executed; (ii) map these tasks onto production capabilities of 
unit and header elements available in the plant; and, (iii) engage with unit 
and header elements to allocate these tasks (see next chapter for more 
details on how this mapping and allocation of tasks is carried out) . Unlike 
previous distributed architectures and as discussed in Section 3.2, the prod
uct elements do not directly coordinate the operations of unit or header 
elements or the flow of materials or services in the network; this is done 
by unit, header and service elements themselves via direct interactions. 

Fig. 4.3 depicts an UML diagram (Unified Modelling Language) of the 
da ta model and control functions of all four element types. The association 
relations, shown by solid lines, denote the presence of interactions between 

2 A service element may comprise its own internal production system to produce 
services. This process can be similarly represented via appropriate unit, header 
and service elements. When referred to the main system, the service element 
then also acts as a type of product element representing the composite demands 
of customer elements requesting its services. 



58 4 Reconfigurable Process Control Architecture 

Reconfigurable Process Control 
System 

Unit Element 

Process model/constraints 
Task Capabilities 
Physical connections 
Unit selection logic 
Process status 
Data log 

Acquire feedstock() 
Acquire service() 
Identify processing task() 
Execute processing task() 
Optimisation() 
DiagnoseQ 

0. 

Header Element 

Structural organisation 
Routing capabilities 
Header network status 
Mixing constraints 

Identify route() 
Plan route switching() 
Switch route() 
Transfer material() 
Diagnose() 
Deadlock HandlingQ 

Product Element 

Product recipe 
Quality/quantity specs. 
Throughput demand 

Announce task() 
Map task onto capabilities() 
Assign taskQ 

Service Element 

Service capabilities 
Supply quota available 
Data log 

Identify demand() 
Distribute/allocate service() 
Produce service() 
Acquire service() 
Manage wasteQ 

Fig. 4 .3 . Data model and control functions of process elements 

process elements while the aggregation relations, shown by solid lines with 
diamond heads, denote the aggregation of process elements into an R P C sys
tem (Booch & Rumbaugh 2005). As the multiplicities in the figure suggest, 
a continuous process based on an R P C system must have at least one unit 
element and one product element in order to be able to produce a product. 
As the complexity of the process grows with more unit elements included 
and these elements sharing various services, the architecture requires adding 
further header and service elements. 

4.2 .3 Internal S truc ture of P r o c e s s E l e m e n t s 

Internally, each process element is considered a self-contained control function 
comprising its local control module, a co-ordination module and the associated 
(optional) physical process part as shown in Fig. 4.4. 

The internal design is derived initially from a decomposition of the multi
level control hierarchy as illustrated in Fig. 4.5. Each layer in the hierarchy 
is split along the physical dimension, followed by integrating vertically the 
localised blocks into control and coordination modules of process elements. 
The control module in Fig. 4.4 covers the execution functions (i.e., basic 
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Fig. 4.4. Internal structure of process elements 

control and some advanced control functions) and the coordination module 
the decision functions (i.e., advanced control and levels above in Fig. 4.5). In 
addition to this, new components are included within coordination module to 
define the da ta models (process structure, capability etc.), the coordination 
functions (proactive and reactive behaviour) and the communication means 
to interact with other elements. Each process element thus receives the ability 
to plan, optimise and control its operations plus tha t of the relevant global 
system by coordinating with other elements. 

4.2 .4 Phys i ca l C o n n e c t i o n s B e t w e e n P r o c e s s E l e m e n t s 

Because of the manner in which basic element types are identified (i.e., based 
on physical s tructure of the process instead of functional hierarchy), the pro
cess elements remain connected via material and service streams at process 
level. Fig. 4.6 depicts the five categories of such connections. 

• Material flow between unit elements: This flow leads to production of the 
end-products. The flow may occur on a forward path (from raw-materials 
to end-products) or on a recycle pa th (from recovery units back to up
stream units or intermediate storage). 

• Service flow to unit elements: This flow may be required for the execution 
of processing tasks of unit elements (e.g., supply of steam or cooling water 
for a reaction task) . 

• Service flow to header elements: This flow supports the transfer of mate
rials or allows changing their properties, e.g., heat or cool them. 
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• Exchange of services between unit and header elements: This flow refers 
to recovered services from unit elements to be reused in the process (e.g., 
heat released by exothermic reactor can be used to heat other materials) 

• Exchange of services between header elements: This flow refers to recovered 
services from header elements to be reused in the process. 

Note that the product elements do not have a physical presence and are 
not shown in Fig. 4.6 or described here. Their role is to provide unit and 
header elements with the product recipe information and they do so at the 
coordination level. 

4.3 Migrating to Process Elements 

The identification and design of process elements, being of fully distributed 
form, can be a radical change to the design practices currently in use in the 
industry. In order that these new concepts can be experimented - at least 
partially - using the commercial off-the-shelf tools available in DCS and PLC 
architectures, we can consider a migration approach based on an incremental 
decomposition of the control hierarchy. Previously, such an approach was also 
suggested by Chirn & McFarlane (2001) in the context of a discrete manufac
turing architecture. 
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As a first step to migration, it is proposed tha t only the individual levels in 
hierarchy are decomposed as shown in Fig. 4.7(b); Fig. 4.7(a) shows the exist
ing structure. These individual levels can still be implemented separately as in 
a conventional system using commercial tools of today. The individual levels 
may require developing a separate problem solving mechanism to enable them 
solve the control problems in a distributed form.3 Next, one or more levels 
in the hierarchy in this distributed form should be integrated vertically (e.g., 
optimisation and advanced control) so as to distribute more of higher level 
decisions down to lower levels (Fig. 4.7(c)). Finally, all levels in the hierarchy 
should be integrated vertically (Fig. 4.7(d)) such tha t the decisions requiring 
coordination are made by the coordination modules of elements and the exe
cution of the outcomes of decisions is carried out by the control modules. It 
is envisaged tha t these vertically integrated design can be packaged together 
with respective physical process parts of process elements and supplied as 
stand-alone components to be plugged into an R P C system. 

4.4 An Illustrative Example 

We now apply the proposed architecture to a polymer process example shown 
in Fig. 4.8. The purpose of the example is to illustrate the selection and basic 
functions of process elements within an industrial process. 

4.4.1 D e s c r i p t i o n of t h e P r o c e s s 

The example process comprises two independent production lines, each com
prising two polymerisation reactors. The process starts with reaction between 

3 In Chapter 6 a method to achieve this form of distribution is developed for a 
simplified control problem relating to the optimisation or advanced control levels. 
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Fig. 4.7. Migration approach for developing internal designs of process elements 

two main raw-materials (monomer and demineralized water) in the presence 
of other ingredients. This results in a slurry form of the end-product contain
ing un-reacted raw-materials. The un-reacted raw-materials are separated in 
the flash vessels and stripper columns while the purified product is dehydrated 
and dried in the centrifuge and drier units before sent for storage. The recov
ered monomer is compressed and cooled for reuse again in the main reaction. 
The whole process operate in a batch-semicontinuous type, i.e., the reactors 
operate in a batch mode while the other units in a semicontinuous mode. 

The polymer end-product is supplied in a solid-grain form and is used in 
the manufacture of plastic products, e.g., roof sheets, tanks, films and bottles. 
Depending on the type of application, the polymer grade that is used may 
differ in various chemical properties. The process considered here is capable of 
producing five grades (called grades A to E), each having further sub-grades. 
While all five grades use the same sequence of unit operations, the processing 
tasks used for each may vary in terms of the reaction conditions, separation 
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temperatures and the ratio and quality of recycled monomer to be allowed 
to be mixed with the fresh monomer. For instance, in a 'film' grade product 
only fresh monomer is allowed with stringent control of reaction conditions to 
achieve the desired quality of final product. 

The process units consume various services for their processing tasks. The 
reaction occurs at a temperature between 50 — 90°C, hence the feedstock en
tering the reactor is first heated to bring it to this temperature before it can 
enter the reactor. The reaction itself is exothermic and releases heat. This is 
removed via circulating cooling water (atmospheric temperature) and chilled 
water (4°C) in jacket and baffles of the reactor. The stripper columns use 
pressurised steam to purify the slurry and remove un-reacted monomer. The 
purified slurry thus contains extra heat which is conserved by heating the feed 
entering the reactor. The drier units similarly use pressurised steam to dry 
the purified slurry into a solid form. 

Fig. 4.9 shows the layout of the process considered here. The layout offers 
a level of physical flexibility in terms of each line comprising certain parallel 
equipment that can be interconnected in various combinations. Each line can 
also be configured to produce a different polymer grade independently of the 
other line. Within each line, the reactors operate in a batch mode, hence indi
vidual reactor can be set up to produce a specific sub-grade without causing a 
significant mix up. The three stripper columns are shared between both lines 
such that only two columns are in operation while the third is being cleaned 
and regenerated. A similar facility exist to interconnect the centrifuge and 
drier units between lines, but this is not normally used unless necessary. 
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Fig. 4.9. Layout of the selected polymer plant 

A.A.I Identification of Process Elements 

Based on the description in Section 4.2.1, the selection and assignment of 
process elements in the above process can be done as follows: 

• Unit Elements: All process units, namely reactors, flash vessels, stripper 
columns, centrifuges, driers, and compressors are represented by individ
ual unit elements. Each unit element possesses its local decisions that it 
regulates on its own. The reactor element, for instance, decides the yield 
of reaction (percentage of monomer converted to polymer) while the flash 
vessels and stripper columns decide the recycle flow of monomer. Note 
that these local decisions of unit elements interact physically due to their 
recycle connections. There often exists trade-offs. For example, the cost 
of separation and purification can be reduced if the reaction yield is in
creased, however this also means slow reaction times and hence reduced 
overall throughput. An optimum selection of local conditions is thus nec
essary to achieve global production goal. 

• Header Elements: All 'switchable' piping networks in the process are rep
resented by individual header elements. The identification is done based 
on materials or services being transferred, e.g., monomer header, slurry 
header (or so-called blowdown header), purified product header, cooling 
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water header, etc. Although not shown in Fig. 4.9, the header elements 
also contain transfer equipments and heat exchangers where necessary. 

• Service Elements: The supplier plants for all services (e.g., cooling wa
ter, chilled water, pressurised steam) are represented by different service 
elements. An effective distribution of services remains crucial to plant op
erations. For example, the stripper columns must receive a minimum sup
ply of steam at a pressure above certain value in order to produce an 
on-grade product. If the available supplies drop suddenly, then shedding 
of steam supply to other unit elements, e.g., to driers, may be necessary 
with a simultaneous reduction in production throughput by unit elements. 

• Product Elements: Each customer order for a separate sub-grade is rep
resented by a product element. Multiple product elements may exist, al
though only two would be produced at a time as only two lines are avail
able. The customer orders may span a number of campaigns, each cam
paign comprising multiple batches. A detailed schedule of recipe informa
tion, quality, quantity, etc. may be supplied as part of the definition of 
product elements but not all parameters may be needed depending on 
how the process of recipe management is managed between product and 
unit elements (see the next chapter for details). 

4.5 Comments on the DRPC Architecture 

Having proposed the new architecture and illustrated its use, we use the fi
nal section of this chapter to reflect on the features and properties of the 
architecture. 

4.5.1 Comparison with Conventional Process Control 

The proposed architecture differs from conventional approaches in that it is 
modular and distributed. The plant-wide control is decomposed into control 
modules of process elements. The network-level response of process operation 
emerges via direct interactions between these elements. To this end, it is first 
shown that the proposed architecture is compatible with conventional control 
systems. Apart from that, its distributed nature offers certain additional ben
efits in terms of the two main attributes: improved product/process diversity 
and modifiability, where it supersedes conventional architectures. 

Compatibility with Conventional Control 

The four process elements are sufficient to cover all control functions com
monly performed by a conventional control system. In a fully distributed case, 
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the vertical hierarchy of control is decomposed into local control modules of 
elements. In an ideal case, the boundaries between planning, scheduling, op
timisation and control levels are also blurred. The process elements solve the 
plantwide control problem at different level of abstraction depending on the 
nature of operating conditions and the disturbances arising, i.e., operate in 
a long-term planning or proactive mode when there are no disturbances and 
in a short-term reactive mode when frequent disturbances are likely to arise. 
In the course of migrating to this fully distributed case, one can still consider 
an intermediate hierarchical form in which the elements first solve a planning 
problem in a distributed form and using its solution decide the set-points for 
lower-level scheduling or optimisation problems. By restructuring the control 
algorithms in this way one can develop and implement the same control func
tionality of a conventional system but now in a distributed way. This argument 
hence proves the sufficiency. 

The functions of unit, header and service elements also relate directly to 
the physical decomposition of a continuous process into its constituent ele
ments, i.e., process units, piping networks and service suppliers. The product 
recipes of product elements specify the requirements of customer orders to 
bring together the physical elements to derive a process scheme. This is illus
trated in Fig. 4.10. The presence of all four types of process elements is thus 
essential in a typical medium-to-large size plant to produce an end-product. 
The four types are thus also necessary to cover all control functions of a con
ventional control system. 

Improved Product and Process Diversity 

By using the notion of a product element, the architecture separates the pro
cedural aspects of equipment control from the technical aspects of product 
recipes. This separation is important since it allows for the modification of 
both aspects in run-time. For instance, in case of frequent disturbances, it 
might be more sensible to consider an alternative product recipe or process
ing scheme than to reschedule the entire operation. Moreover, as discussed in 
the next chapter in detail, this integration is delayed until the stage where the 
actual production of a specific order is required, hence the most recent status 
of conditions on the plant can be taken into account. 

Although the dynamic integration of recipe information can equally be in
corporated in a conventional approach, the distributed nature of the architec
ture provides a sensible framework to implement it for two reasons. Firstly, the 
procedural control of process units is distributed, hence the equipment control 
can be easily modified. Secondly, the actual integration of product recipe oc
curs in a bottom-up manner by localised assignment of tasks to unit elements. 
As a result, emerging changes or disturbances can be managed in a graceful 
manner compared to conventional systems where this requires rescheduling 
the parts of or the full operation. 
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Fig. 4.10. Basic process elements cover all functions in a process plant 

Easy Modifiability 

The decoupling in local control of unit, header and service elements in the 
architecture can be expected to improve the modifiability of the control sys
tem. For example, one can easily replace a unit element with an equivalent 
another unit element provided their interfaces to other elements are same or 
compatible. The decoupling allows developing generic, multipurpose design 
of elements that can be standardised across a range of processes and re-used 
with little design and engineering effort as it has been the case for various 
package systems used in the industry, e.g., industrial refrigeration. 

Also, the use of header elements in the architecture introduces a further 
level of decoupling between unit elements. Unlike conventional control designs 
where each unit controller is pre-defined with exactly which other unit con
trollers it is connected with, in the proposed model the unit elements acquire 
this information on physical connectivity via header elements. The modifiabil
ity of the control system is hence enhanced in two respects: (a) it allows unit 
elements can be added or removed without changing the structure of their 
connections to other unit elements, i.e., they only need to be defined with 
the header elements they are connected with, and (b) the level of flexibility 
supported in the design of header elements can be changed as necessary {e.g., 
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by adding extra piping streams or transfer equipment) without changing the 
definitions of unit elements. 

4.5 .2 C o m p a r i s o n w i t h Other D i s t r i b u t e d A r c h i t e c t u r e s 

The proposed architecture retains the key features of previous distributed 
architectures in holonic or agent research (e.g., PROS A (van Brussel et al. 
1998) and its similar architectures). This is in terms of: (a) the product recipe 
information is kept separate from the procedures for equipment control, and 
(b) the architectural properties are kept independent of the control strategies 
of elements. The proposed architecture is thus equally able to manage the 
foreseen or unforeseen plant conditions as these other architectures. But, the 
proposed architecture also differs from the previous architectures in three 
respects as described below. 

I n t r o d u c t i o n of H e a d e r E l e m e n t T y p e 

A new element type, the header element, is introduced to separate the control 
functions of t ransport mechanisms from tha t of processing tasks. A more 
advanced function than this could as well be assigned to header elements -
tha t is to derive sequential operating procedures for the transfer of materials 
and services. Optimisation of the t ransport routes can equally be dealt with 
by header elements. Since these functions are implemented independently of 
the unit or service elements, a new form of decoupling is achieved tha t should 
help improve the modifiability of the control system. 

I n t r o d u c t i o n of Service E l e m e n t T y p e 

A new element type of service element is also introduced to address the ab
sence of a separate mechanism in other architectures to support the distri
bution of services. Although such functions are equally important in discrete 
manufacturing, they play an absolutely vital role in the timely and correct 
operations of process plants. Note tha t the service elements do not directly 
perform any processing tasks, hence could not, and should not, be represented 
by unit elements. 

Speci f icat ion of In terac t ion B e h a v i o u r of P r o c e s s E l e m e n t s 

While the interaction behaviour of process elements is discussed at length in 
the next chapter, it suffices here to say tha t the role of product elements in 
the proposed architecture is different to tha t in the other architectures. The 
product elements interact with unit elements to map the product recipes onto 
production capabilities in the plant. Unlike PROSA or related architectures 
though, the product elements do not manage the logistics of materials or 
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services in the network nor do they define the operating conditions of these 
other elements. Such decisions are made by unit or header elements themselves 
once they are assigned with their tasks in the production. 

4.6 Summary 

In this chapter we have proposed a distributed architecture to support the 
reconfigurable process control. We next go onto examine how these elements 
in the architecture interact to allow the process to operate. 
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An Interaction Model for Reconfigurable 
Process Control 

5.1 Introduction 

The previous chapter developed a reconfigurable architecture for process con
trol comprising four basic types of process elements. As discussed these el
ements must interact in order to exchange information and make collective 
decisions required for a complete plant-wide control. In this chapter we develop 
a model to support such interactions so as to describe how elements carry out 
information exchanges in order to produce the required end-products. The 
proposed model is a direct and necessary supplement to the reconfigurable 
control architecture developed in the previous chapter. 

5.1.1 Overview 

We again start by defining the term interaction and the meaning of an inter
action model in the context of a distributed control architecture. 

The term interaction - defined in a dictionary term as action or influence 
of persons or things on each other (Oxford English Dictionary, 2005) - has 
different meanings when referred to distributed architectures.These include: 
(i) communication (a pre-determined, passive message-passing protocol), (ii) 
collaboration (communication with dynamic selection of messages from an 
application-specific library), and (iii) coordination (collaboration with an abil
ity to reason about and synthesise messages dynamically) (Wooldridge 2002). 
While the first two forms are used vividly in day-to-day life, it is the third form 
that has found convincing use in distributed decision-making applications such 
as in multi-agent systems, manufacturing control, supply chain management, 
etc. Coordination is also the meaning used in our interaction model, however, 
the current chapter only focusses on the collaboration aspects as defining the 
structure of information exchanged between process elements. The strategies 
for reasoning about local decisions are addressed in the next chapter. 

The previous work in holonic or agent-based research has generally used 
contracting or its extended variant as the means for defining the message 
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structure for inter-element interactions between product and resource holons. 
As discussed in Section 3.2, contracting alone cannot be applied to continu
ous processes because of the various restrictions such as the tight and finite 
interconnections between process units and the continuous flow of materials. 
These constraints can make the interactions significantly complex if the re
sponsibility of managing unit, header or service elements is passed solely to 
product elements. Instead, we seek an interaction approach that allows these 
three latter elements to coordinate their operations directly among themselves 
while also interacting with product elements. 

We seek inspiration from the research on information and life-cycle man
agement in supply chain and virtual enterprise fields (Camarinha-Matos 
et al. 2003, Strader et al. 1998). The proposed model is then framed around 
developing an interaction method that process elements can use to implement 
the entire reconfiguration process shown earlier in Fig. 3.1 in a distributed 
manner, i.e., how they identify the need for reconfiguration; define the new 
configuration; reorganise the process schemes; and, deliver the order require
ments. The interaction model essentially builds upon a key concept analogous 
to market transactions between companies: a customer process element (e.g., 
a unit element) that needs to acquire a material or service for its task can 
buy it from a supplier process element that can supply it, i.e., the interac
tions between unit, header and service elements in the DRPC architecture are 
modelled as forms of supplier-customer type transactions between companies 
in a supply chain. 

5.1.2 Requirements for RPC Interaction Model 

The interaction model (including the coordination strategy to be developed in 
the next chapter) is aimed to deliver the dynamical aspects of reconfigurability 
requirements, in particular, product and process diversity, responsiveness and 
fault-tolerance. In addition, it should retain the modularity of the distributed 
architecture, i.e., it should not impose any centralised information constraints 
that can disturb the modifiability of the RPC system. The key focus of this 
chapter is then to define the method for initial integration and its subsequent 
refinement of product recipe information with production capabilities in the 
plant so as to address these requirements in a distributed manner. 

This chapter is structured as follows. The next section specifies the struc
ture of process elements' interactions to implement the process of reconfigu
ration. The key important phases of this model are also explored with details 
about how the low-level message-passing protocols are organised for exchange 
of materials and services between elements. Section 5.3 then explains the in
teraction model by applying it to a small process example. Section 5.4 finally 
discusses the key features of the model by comparing it against the above 
requirements and the previous conventional and distributed approaches. 
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Fig. 5.1. Distributed reconfiguration process 

5.2 Specification of the Interactions Between Process 
Elements 

Fig. 5.1 depicts the distributed reconfiguration process to define the interac
tions of process elements in the DRPC architecture. The figure is developed 
from an earlier Fig. 3.1, with an additional 'Terminate' phase is now included 
and the overall activities of reconfiguration are split into five key phases. 

We now describe each of these phases in a brief detail. To provide consis
tency in the discussions, we use the terms product recipe, processing task, and 
process scheme in the description below. A product recipe in the sense of ISA-
S88 standard (ANSI/ISA 1995) refers to the minimum set of information that 
uniquely defines the manufacturing requirements for a specific product, i.e., it 
identifies raw-materials, their relative quantities and the required processing, 
but without referring to particular equipment. A processing task in a product 
recipe refers to a unit operation (e.g., reaction) that converts its incoming 
feedstocks to outgoing products. The recipe may define relative quantities of 
materials (and services if used) but not the exact values as they depend on the 
throughput of final products. A product recipe is then defined as a sequence 
of processing tasks that converts the main raw-materials to final products. A 
process scheme refers to the physical and control configuration of a segment 
of process that meets the requirements of product recipe for a specific order. 
Multiple process schemes may exist in the same process for different product 
orders sharing some unit, header or service elements common between them. 
Not all unit, header or service elements may be part of a process scheme 
though, i.e., they can be idle at times and await for a new product order to 
arrive that is relevant to them. 

• Identify Phase: The reconfiguration starts with identifying an oppor
tunity for production (when a new production order arrive) or deciding 
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whether to adapt the ongoing process schemes (when a change occurs). 
Such changes in particular can be planned or unplanned and can provide 
with a new opportunity (e.g., availability of a unit element, raw-material 
or service) or impose a constraint (e.g., a unit element fails or becomes 
bottleneck). Subsequently, each of the opportunities or constraints are re
fined into the detailed requirements for reconfiguration of the process. In 
case of a new customer order, an appropriate new product element is cre
ated. (Note that these requirements are not defined explicitly anywhere or 
centrally within an element; they only define the goal with which the pro
cess elements set out to initiate a new round of interactions, for example, 
to develop a new process scheme when a new customer order arrives.) 

• Define Phase: The define phase is divided into two sub-phases: (i) recipe 
mapping, to map the product recipe information onto production capabil
ities available in the plant, and (ii) synthesis, to derive a specific process 
scheme from the potential choices created by recipe mapping. 

- Recipe Mapping: In the recipe mapping phase, the product elements 
associated with customer orders interact with the unit and header ele
ments in the plant to assign (or refine already assigned) processing tasks 
in product recipes with the production capabilities available in the 
plant. The interactions lead to a number of tentative process schemes 
which could be used in the production. Not all tentative schemes may 
be feasible though because the selection of specific unit or header ele
ments or their operational settings are not defined yet. 

- Synthesis: Next, in the synthesis phase, the unit elements involved in 
the tentative schemes interact among themselves as well as with the 
header and service elements to refine these tentative schemes into a sin
gle scheme that can be implemented for the production. The elements 
use a global production goal, such as production cost, to arrive at the 
solution. It is possible that some elements may be already engaged 
with other process schemes. Such elements interact among associated 
elements in those schemes to identify how should they reconfigure their 
operations. Eventually, all concerned elements agree on the structure of 
the new process scheme including various network parameters (process 
routes, material and service flow rates, etc.) and the operating settings 
of participating elements (reaction temperatures, heat exchanger duty 
etc.). 

As explained later in this section, the unit elements build the process 
scheme in an incremental, bottom-up manner by following demand-pull 
type interactions. In doing so, they also solve both a scheduling prob
lem (defining the configuration of the scheme, i.e., exact assignment of 
tasks to equipment) and an optimisation problem (defining the config-
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uration of control structures and associated local settings). 

• Reconfigure Phase: The procedure for reconfiguring the process scheme 
can now begin. The activities can be split conceptually into three sub-
phases: decouple, reorganise and recouple, where any or all three of them 
may involve a physical and/or a control change. A good example of phys
ical change can be a change in the process routes. The header elements 
involved in this change switch the routes from their current configuration 
to agreed target configuration. A systematic operating procedure may be 
required to meet the physical process constraints such as mixing hazards, 
cleaning-in-place, etc. 

• Operate Phase: As the process scheme is being established, the flow of 
materials and services can also begin. The unit elements along the route 
start executing their processing tasks in a coordinated manner so as to 
convert the incoming feedstocks to their products. The coordination of all 
activities leading up to the start-up and subsequent on-load operations is 
achieved by unit elements themselves. The aim is to maintain the process 
at agreed set-points during synthesis phase. 

During continued operations, the plant conditions may change, e.g., a 
unit element fails or the customer demand changes. The process elements 
affected by the change respond to it in a graceful manner. The elements 
situated next to the point of change attempt to absorb it to the level possi
ble within their local capacity. If this is not achievable, the residual change 
is propagated further in the process up to a point where it can be fully 
absorbed. The elements affected along the route adapt their operations as 
appropriate. If the change or disturbance is small in magnitude or is not 
likely to last long, then the elements may prefer to operate in this mode 
for a required period. Only if it is large in magnitude or if the resulting 
performance is not acceptable, the elements should re-enter into a new 
round of interactions to reconfigure the process scheme starting with the 
identify phase. 

• Terminate Phase: The process scheme is finally dissolved once the 
throughput requirements for the order are met or if a major failure oc
curs (such as a reactor element fails) which requires terminating the order 
altogether. In either case, the process elements involved in the scheme ei
ther join other process schemes or idle themselves and wait for a future 
order to arrive. 

In what follows, we elaborate on the two sub-phases - recipe mapping and 
synthesis - of the define phase, as they are the most critical in terms of how the 
elements define the structure of a new process scheme. A specification of the 
underlying interactions described below would depend on the final application 
and is not developed in great detail here. 
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Fig. 5.2. Interactions between product and unit elements during the recipe mapping 

5.2.1 R e c i p e M a p p i n g P h a s e 

Fig. 5.2 illustrates the structure of the interactions during recipe mapping 
phase. To illustrate the different possibilities, we consider two alternative ways 
in which this mapping can be carried out: (i) product-centric approach and 
(ii) unit-centric approach. 

P r o d u c t - C e n t r i c A p p r o a c h 

In a product-centric approach, the product elements take the leading role in 
assigning the processing tasks to unit elements. Each product element an
nounces each of its tasks in the product recipe to all unit elements existing 
in the plant. The unit elements capable of undertaking the tasks reply back. 
The replies may contain primary information about the nature of unit opera
tion, e.g., 'reaction type 1', tha t the unit elements can perform. Based on the 
replies, the product element identifies the unit element(s) tha t best suite the 
currently announced task and assigns the task to them. It also assigns appro
priate materials and services as well as other processing requirements for tha t 
task (e.g., product quality) to selected unit elements. The interactions repeat 
in this manner until all tasks in the product recipe are assigned to appropri
ate unit elements. Note tha t the same task may be assigned to more than 
one unit elements but not all may be able to undertake the task, because the 
information on the connectivity of these unit elements or their local settings 
is not defined as yet. The interactions thus result in one or more tentative 
process schemes tha t are refined into a single scheme in the synthesis phase. 

U n i t - C e n t r i c A p p r o a c h 

The centralised role of product elements in a product-centric mechanism can 
become bottleneck if they have to match a large number of tasks or the same 
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tasks more frequently. This latter scenario can arise if the process is required 
to produce the same end-products more frequently and/or in a highly recon-
figurable manner (e.g., in case of many polymer plants). 

Instead of product elements, the responsibility of recipe mapping can be 
distributed among unit elements themselves. The unit elements can now be 
denned with additional details about the specific processing tasks they can 
perform and the materials and services they need to acquire to execute these 
tasks. For instance, a distillation column can be specified with two specific 
distillation tasks X =>• {Y, Z} and L =>• {M,N} (where X, Y, Z, L, M and 
N are the materials). The product elements can still be supplied with some 
form of product recipe or parts of it if the customer order requires only certain 
processing tasks to be used in making the product. 

Using recipe-specific details, the unit elements can be asked to identify 
which task(s) they can use to produce a specific material. The recipe mapping 
activity then proceeds as a backward search starting from the unit elements 
that can produce the final product. These unit elements first identify the 
tasks they can use to produce the product and the incoming materials they 
require from other unit elements in the upstream. The unit elements may check 
with product elements whether their selected tasks are not restricted in the 
recipe (if supplied). The interactions repeat from the upstream unit elements 
until the unit elements requiring the main raw-materials are reached. The 
interactions thus result in one or more tentative process schemes which could 
be refined into a single scheme during the synthesis phase. Since the synthesis 
phase is also carried out by unit elements themselves (together with header 
and service elements) it is possible that the recipe mapping and synthesis can 
proceed together. 

Discussion 

It can be seen that both approaches to recipe mapping have their benefits and 
disadvantages - the product-centric approach may require less time to set up 
initially while the unit-centric approach may provide increased freedom to unit 
elements to choose or alter their tasks. The unit-centric approach requires unit 
elements to be defined with additional recipe information on processing tasks 
they can perform. This is not a requirement for product-centric case. The 
initial effort required to set up a unit-centric approach may thus be higher. 
However, the unit-centric approach also allows unit elements to select or alter 
their processing tasks that best match with the changing plant conditions. 
This is instead of those specified by the product elements in a product-centric 
approach. The unit-centric approach should thus be able to better utilise the 
plant facilities than the product-centric approach. 

We must note that the inclusion of recipe-specific information in unit 
elements in the unit-centric approach does not change or violate the basic 
assumption that this product information should be kept separate from pro
duction capabilities as considered in ISA-S88 standard (ANSI/ISA 1995) or 
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the previous distributed research. Wha t the approach suggests is to derive 
this information in a bot tom-up manner by collecting together the tasks of 
unit elements via their direct interactions into a single scheme. As mentioned 
earlier in this section, an approach of this nature may be useful when the 
same products are produced more frequently or the same tasks are reused in 
different products. 

5.2.2 S y n t h e s i s P h a s e 

Having identified the processing tasks, the unit elements in the tentative pro
cess schemes interact among themselves and with respective header and ser
vice elements to identify the structure of a specific process scheme tha t can 
be used for production. The interactions are considered to follow a backward-
search pat tern based on demand-pull in which the unit elements, start ing from 
the terminal stage of the process, a t tempt to incrementally allocate their ma
terial demands to unit elements situated upstream and also the service de
mands to appropriate service elements. Fig. 5.2 outlines the nature of these 
interactions. 

Fig. 5.3. Interactions between unit, header and service elements during the synthesis 
phase 

Internal D e s i g n of P r o c e s s E l e m e n t s 

To model the interactions in detail, we borrow an analogy from the concept of 
so-called transaction between companies in a market or a supply chain in tha t 
'a process element (which can be a unit or a header element) tha t requires a 
material or service for execution of its processing task can buy this from any 
other process element or elements which can supply it ', i.e., the exchange of 
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a material or service between process elements can be modelled as a form of 
contract between two or more different parties in a market or supply chain. 

Using this analogy, we can impose a structure on the internal design of 
process elements, in particular on their coordination modules in Fig. 4.4. A 
process element which requires access to a material or service for its task can 
be represented as a customer and a process element that supplies a material or 
service can be represented as a supplier. Fig. 5.4 depicts this structure. This 
suggests that each unit element can be modelled as: (a) the supplier of its 
outgoing products and services (e.g., heat released from exothermic reaction) 
and (b) the customer of its incoming feedstocks and services. Similarly, each 
header element can be modelled as a supplier or customer for its supply or 
use of services and each service element purely as the supplier of its services. 

Demand 
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Fig. 5.4. Internal design of process elements based on supplier/customer roles 

Interaction Protocol 

Based on the supplier-customer roles, the interaction protocols for allocation 
of material or service demands between two or more process elements can be 
defined to follow a specific time line: 

• Step 1: the customer element announces a demand request for supply of 
relevant material or service; 

• Step 2: the supplier elements which can supply the material or service 
respond to these requests; 

• Step 3: the customer and supplier elements agree on the allocation of 
material or service demand in terms of respective process parameters, e.g., 
process flow rates, temperature, pressure. 

If the exchange of material or service is to occur via a header element, 
then those header elements also get involved in the interactions so as to agree 
on the process routes though which the transfer should occur as well as the 
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requirements for transforming the physical state of the material or service 
being transferred, e.g., heat or cool them. 

Figs. 5.5 and 5.6 show the interaction protocols for material and service 
demand allocation between a customer process element (denoted as theCus-
tomer) and one or more supplier process elements (denoted as theSupplier). 
The exchange occurs via intermediate header elements (denoted as theHeader). 
In the case of material exchange, the customer element must be a unit ele
ment, while the supplier element can be other unit element or an external 
supplier when it is the main raw-material. Similarly, for the service exchange, 
the customer element can be a unit or header element while the supplier can 
be a unit, header or service element depending on where and how the service 
is supplied. 

Note that the protocols in Figs. 5.5 and 5.6 differ in the way the interac
tions between elements are organised. In a material exchange, the customer 
elements initiate the interactions for distributing material demands among 
possible supplier elements; the customer elements therefore act as the coor
dinators of demand allocations. In a service exchange, again the customer 
elements initiate the interactions, however the coordination of interactions in 
terms of the distribution of service is achieved by supplier elements, i.e., the 
supplier elements act as the coordinators. The computational methods for 
implementing these protocols therefore must differ. 

Synthesis of a Complete Process Scheme 

The synthesis of a complete process scheme from tentative process schemes 
identified during recipe mapping occurs via a sequence of nested material 
and service exchanges between unit, header and service elements. Fig. 5.7 
on page 83 depicts an overview of these interactions between unit elements. 
All unit elements therein are shown both as customers and suppliers of their 
feedstocks and products as well as services. 

The round of interactions starts from unit elements in the last stage. 
These unit elements initiate the protocol for material and service allocation 
in Figs. 5.5 and 5.6 by announcing the demand requests for their feedstocks 
and services. For material demands, the interactions proceed in backward di
rection. Not all unit elements in the upstream in tentative schemes which can 
supply feedstocks may respond because there may exist constraints such as 
limited connectivity or physical capacity limits; the connectivity information 
is supplied by the header elements. The unit elements which can meet the sup
ply requirements further initiate a new set of material and service allocation 
protocols to source their feedstocks from unit elements in further upstream 
and services from appropriate service elements. The interactions thus repeat 
until unit elements in the first stage of the process are reached that can ac
quire their feedstocks from raw-material suppliers. At this stage, starting from 
the first stage, all concerned unit elements return back with their supply pro
posals (including the availability and capacity details) to respective customer 
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Fig. 5.5. Interaction protocol for material demand allocation 

elements. The supply proposals thus flow in forward direction towards the 
terminal stage. From the responses, each unit element selects which supplier 
elements are appropriate, and how much material demand it should allocate 
to them. If necessary, this nested sequence of interactions for material and 
service allocations repeats until all participating elements settle on respective 
parameters for material and service demands as well as the process routes 
through which the transfers should occur. The process scheme thus developed 
is then reconfigured in the next 'reconfigure' phase which is not described here 
in detail. 
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Fig. 5.6. Interaction protocol for service demand allocation 

5.3 An Illustrative Example 

We next consider a simple process example to illustrate the nature interac
tions between process elements in the D R P C interaction model. The example 
illustrates a production start-up scenario where a specified product is to be 
produced at a given throughput rate. A further detailed example depicting the 
general production control scenarios such as multiple products is considered 
in Chapter 7. 

5.3.1 P r o c e s s D e s c r i p t i o n 

We consider a process where a product A is produced using the product recipe 
shown in Fig. 5.8. Each rectangle in the figure represents a material and each 
oblong a processing task. Each task is associated with at least one outgoing 
and one incoming material, whereas each material with at least one task. The 
recipe is of a non-linear nature , i.e., there exist two different tasks T3 and 
T4 tha t both can produce material D and hence be involved in producing A. 
Fig. 5.9 depicts the layout of the physical process comprising a set of unit, 
header and service elements. 
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Fig. 5.8. Product recipe for illustrative example 

5.3.2 A p p l i c a t i o n of t h e D R P C Interac t ion M o d e l 

As per D R P C architecture, a product element PR is associated with product 
A. Each unit, header and service element is represented via a unit, header 
and service elements with symbols respectively as U, H and S. The (exter
nal) supplier elements for raw-materials are represented via prefix R. The 
process contains alternative process schemes through which materials A can 
be produced. These include Ul, U2 in combination with any of the suppliers 
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Fig. 5.9. Process layout for illustrative example 

of D, e.g., {U3}, {U4}, or {U3,U4}. The following sub-sections illustrate the 
sequence of interactions between product and unit elements using product-
centric and unit-centric approach for recipe mapping (the header and service 
elements are omitted for simplifying the illustration). 

P r o d u c t - C e n t r i c A p p r o a c h 

Fig. 5.10 illustrates an animated sequence of interactions in the proposed 
model when a product-centric approach is used for recipe mapping. The indi
vidual steps therein can be described briefly as follows (the terms in brackets 
show the phase in interaction model to which the step corresponds to) . 
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Step 0 : (identify) A new product element PR is created; 
Step 1 : (recipe mapping) PR starts with announcing task T l in recipe; 
Step 2 : (recipe mapping) Since Ul can only execute T l , it replies back; 
Step 3 : (recipe mapping) PR assigns T l to Ul; 
Step 4 : (recipe mapping) Interactions repeat until all tasks in recipe are 

assigned; 
Step 5 : (synthesis) Ul and then U2 send material requests to their supplier 

unit elements as identified in Step 4. The supplier elements return 
their proposals; 

Step 6 : (synthesis) Ul and then U2 allocate their material demands to 
supplier elements. The configuration of process scheme is thus fixed; 

Step 7 : (reconfigure & operate) The process scheme is reconfigured (as ap
propriate). Material and service flows are established; 

Step 8 : (terminate) Process scheme is terminated when order requirements 
are met. PR is removed. 

U n i t - C e n t r i c A p p r o a c h 

Fig. 5.11 illustrates the sequence of interactions when a unit-centric approach 
is used for recipe mapping. Again the individual steps therein can be described 
briefly as follows. 

Step 0 : (identify) A new product element PR is created; 
Step 1 : (recipe mapping) PR announces its order requirement for producing 

product A; 
Step 2 : (recipe mapping) Ul can produce A through task T l . It confirms 

with PR tha t T l is allowed in product recipe; 
Step 3 : (recipe mapping) Ul announces material request for B; U2 can 

supply B. It replies its interest; 
Step 4 : (recipe mapping) U2 confirms its task T2 with PR and also extends 

the scheme to U3-U4; 
Step 5 : (recipe mapping) U3 and U4 similarly confirm their tasks and ex

tend the scheme; 
Step 6 : (synthesis) U3-U4 and then U2 return supply proposals to their 

customer elements. Ul and then U2 then allocate their demands; 
Step 7 : (reconfigure & operate) The process scheme is reconfigured (as ap

propriate). Material and service flows are established; 
Step 8 : (terminate) Process scheme is terminated when order requirements 

are met. PR is removed. 

D i s c u s s i o n 

As can be seen from Figs. 5.10 and 5.11, the role of product element PR in the 
interactions is limited to tha t of assigning tasks (product-centric approach) 
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Fig. 5.10. Illustration of interaction model using product-centric approach 

or confirming tha t the tasks selected by unit elements are allowed in the 
recipe (unit-centric approach). The actual synthesis of process scheme in terms 
of deciding the process parameters and local settings is carried out by unit 
elements themselves (together with header and service elements). As discussed 
in detail in the next section, this distinction forms a key difference in the 
proposed model compared to earlier interaction models in holonic or agent 
research. 
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Fig. 5.11. Illustration of interaction model using unit-centric approach 

5.4 Comments on the DRPC Interaction Model 

To conclude this chapter, we comment on potential differences between the 
proposed interaction model and its analogs within existing conventional and 
alternative distributed approaches. 

5.4.1 C o m p a r i s o n w i t h Convent iona l P r o c e s s Contro l 

Conventional control is based on hierarchical information and control flow. 
As discussed in Section 2.3, the production in a hierarchical system is driven 
by a higher-level, long-term plan derived based on customer order forecasts 
(Williams 1989). Below, we first show tha t the interaction model described 
in this chapter is compatible to this conventional information flow in tha t all 
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control functions and interfaces tha t are implemented in a conventional system 
can also be implemented using the D R P C interaction model if need be. In 
addition, the bot tom-up nature of interactions between elements offers several 
new benefits in the areas where hierarchical control is restricted. These are: (i) 
bot tom-up response to change and disturbance, and (ii) graceful degradation 
of performance when failures occur. 

C o m p a t i b i l i t y w i t h Convent iona l Contro l 

The D R P C approach decomposes the conventional hierarchy into localised 
control modules of process elements. Each element thus possesses a capability 
to plan, optimise and control its operations and also coordinate them with 
other elements. This suggests tha t by restricting the interactions of process 
elements to a limited set of process schemes and control configurations, one 
can implement the same control functionality of a conventional system using 
the framework of proposed model. 

To illustrate this, Fig. 5.12 uses a simple example of level control in two 
series-connected tanks. The figure also includes two different control struc
tures used frequently in conventional systems: (a) control in the direction of 
flow, where the product demand directly controls the flow of incoming raw-
material, and (b) control in the direction opposite of flow, where the demand 
is propagated via level control in both tanks. The third scheme in the fig
ure shows a D R P C approach operating in a demand-pull mode. In this case 
the variable pairings for each tank are combined and encapsulated into a 
general-purpose control module. By configuring this module as appropriate, 
the D R P C model can be made to behave as either of the two conventional 
schemes, because in either case the nature of interactions between elements in 
D R P C model remains the same i.e., the demand information flows backwards 
and the variations in material flows forwards. A similar argument can be ex
tended to other control levels to interpret the information flow at those levels 
in a demand-pull form. This indicates the compatibility of D R P C model to 
conventional control. 

B o t t o m - u p R e s p o n s e to C h a n g e and D i s t u r b a n c e s 

The example in the previous section briefly demonstrated the manner in which 
the process elements interact to provide a response to arrival of a new product 
order. The response emerges via bot tom-up (i.e., element-to-element) inter
actions. This behaviour is not predefined in the interaction model. A more 
detailed example illustrating these issues is given in Chapter 7. The model is 
thus able to deal with different scenarios or a combination thereof without an 
explicit definition of global response for each case. 
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(a) Control in the direction of material flow 
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(b) Control in the direction opposite of material flow (On-demand scheme) 
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Fig. 5.12. Comparison of conventional and DRPC control structures 

Graceful Degradation of Performance in Case of Failures 

The interaction model provides a definitive structure and guideline on how 
should elements exchange information. To enhance the predictability of oper
ations the model guarantees that the interactions are flexible but also binding. 
A unit element, for example, should not simply de-commit from supplying its 
products to downstream unit elements in case if its local process becomes bot
tleneck or one of its supplier unit elements fails. Rather, it seeks an alternative 
supplier element for the same feedstock. Only under the circumstance where 
the disturbance is sufficiently large (in magnitude or of long-term nature), it 
opts to propagate the disturbance further or terminate its processing tasks. 
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The interaction model thus ensures tha t performance degrades gracefully until 
a point is reached where the disturbance can be fully absorbed. 

5.4.2 C o m p a r i s o n w i t h Other D i s t r i b u t e d Interac t ion M o d e l s 

As noted in the introduction, the principle of contracting has been the basis 
of research in most previous holonic or agent research (Gou et al. 1998, van 
Brussel et al. 1998, Chirn & McFarlane 2001). The proposed model extends 
contracting or market programming approaches by using a virtual enterprise 
based model so as to address the constraint of physical connections between 
process units. The model thus differs from the previous research in various 
ways. 

T h e R o l e of P r o d u c t E l e m e n t s 

In the proposed model, the product elements interact with unit and header el
ements to map the processing tasks onto production capabilities. Unlike other 
architectures though (e.g., PROSA (van Brussel et al. 1998) or its related 
architectures), the product elements do not manage the logistics of materials 
or services in the network nor do they define the operating conditions of unit, 
header or service elements. Such decisions are made by these latter elements 
themselves once the processing tasks are assigned. This modification hence 
avoids the complexity of coordination if the product elements are allocated 
with this responsibility. Additionally, as it was shown with unit-centric ap
proach, the distribution of recipe mapping provides unit elements with an 
increased freedom to select local tasks tha t best match with the current plant 
s tatus. 

N e t w o r k B e h a v i o u r of P r o c e s s E l e m e n t s 

As can be seen, the virtual enterprise paradigm provides an effective approach 
to contracting or market approaches in dealing with the physical constraints. 
The unit, header and service elements, for instance, are now made able to in
teract with: (a) other such elements on process connections, and (b) product 
elements on product-recipe related issues. Product elements instead behave 
purely as information servers monitoring the adherence to product recipes. 
Moreover, as mentioned in Section 4.5, the whole network operation is de
coupled by the use of header elements, tha t similar to t ransporters in supply 
chains, can be made flexible as necessary (by adding extra piping streams or 
transfer equipment equipment) irrespective of other elements requiring their 
use. 

The proposed model also operates on a demand-driven basis, i.e., the 
unit elements build processing schemes (in the form of material and service 
exchange protocols) in backward direction start ing from the end-products to 
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raw-materials. Subsequently, any new demand changes imposed on the process 
are also propagated in the process in an incremental manner. This behaviour 
ensures that the production remains fitting to changing demands. 

The use of backward search in building or extending process schemes (see 
Fig. 5.10 and Fig. 5.11) also guarantees that the resulting partial schemes are 
feasible, i.e., physically implementable. This may not so with other architec
tures mentioned above where the interactions between product and resource 
elements generally follow a dispatching mode of task allocation, i.e., the next 
task in sequence is only announced when the previous task is finished. This 
could possibly result in dead-locks and dead-ends where the product elements 
may find no further machine available to progress the partly finished parts. 
The proposed model avoids this scenario by ensuring that the unit elements 
(together with header and service elements) build a complete process scheme 
from raw-materials to end-products before the actual production commences. 

Distribution of Information and Control Functionality 

Unlike contracting, the proposed model also improves the distribution of in
formation and control among elements as the product elements are no longer 
responsible for coordinating local operations. Hence, little or no production in
formation (depending on the product or unit-centric approach used for recipe 
mapping) needs to be transferred to product elements. This feature can be of 
significant use when: (a) the number of product elements that can coexist in 
the process is large; (b) the product elements are designed and developed by 
teams situated remotely, or (c) multiple product elements share some of the 
materials or unit elements which can lead to deadlocks because the supplies 
of materials or these shared unit elements are likely to fail. 

5.5 Summary 

In this chapter we have proposed a distributed interaction model to support 
the run-time interactions of process elements in the control architecture. We 
next go onto examining the quantitative aspect of these interactions, i.e., 
to define a distributed solution strategy for use of the process elements, in 
particular the unit elements, to identify their local operating settings during 
the define, reconfigure or operate phases. 
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A Distributed Algorithm for Reconfigurable 
Process Control 

6.1 Introduction 

We now develop a strategy to effectively coordinate the operation of the DRPC 
system. Predictably, this is in the form of a distributed algorithm for guid
ing and managing the distributed interactions of process elements to achieve 
suitable control settings. We focus in particular on the interactions between 
unit elements during synthesis phase of the reconfiguration process (Fig. 5.1) 
where the settings of each element are established. The proposed algorithm is 
used by unit elements to find control settings for their local and other network 
parameters once the physical layout of the specific process scheme to be used 
for production has been established. 

6.1.1 Overview 

Before beginning with the strategy development, we position the proposed 
approach in the context of existing distributed approaches. 

As reviewed in Section 2.4, previous research on distributed approaches in 
control, both in manufacturing and other domains, has used distribution to 
solve large control problems by breaking them into multiple smaller problems 
referring to individual subsystems and then solving them either independently 
(Siljak 1991) or via iterative coordination based on hierarchical (Mesarovic 
et al. 1970) or distributed (Bertsekas & Tsitsiklis 1989) techniques. Alterna
tively, when problems are already distributed, the question of problem solving 
is to coordinate the local solutions so as to ensure a global objective or con
straint is satisfied. Problems of these nature arise in numerous large-scale 
domains as explored in Section 2.5 which just looks at few. 

Previous research in distributed manufacturing paradigms of holonic and 
agent-based manufacturing control have taken a view of separating the con
trol architecture from control algorithms to enhance reconfigurability of the 
architecture, i.e., the desire for reconfigurability of the architecture and soft
ware drives distribution rather than computational simplification. Bongaerts 
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(Bongaerts et al. 2000, Bongaerts 1998) in this sense used a mix of hierarchi
cal hierarchical (fully distributed) control to switch between proactive (when 
conditions are planned) and reactive behaviour (when disturbances arise) of 
distributed holons in so-called PROS A architecture (van Brussel et al. 1998). 
More advanced work on distributed scheduling has used lagrangian decom
position (Liu & Sycara 1997, Gou et al. 1998) and market programming 
approaches (Vancza & Markus 1998, Tharumarajah 2001, Shen, Wang & 
Hao 2006) to define the methods for resource allocation, i.e., assignment of 
tasks to machines and scheduling of their start and end times. 

In this chapter we use a distributed coordination technique of nested de
composition, studied previously for multi-stage optimisation problems (Ho & 
Manne 1974, O'Neill 1976, Wittrock 1985), to define the coordination strategy 
for process elements. Our rationale for using this approach is two-fold: 

a. The process units in a continuous process remain tightly interconnected, 
therefore the coordination of their distributed settings should occur via 
direct interactions between them instead of achieved by separate product 
elements as in previous holonic and agent research. It is likely that if the 
latter approach is used the amount of coordination effort required could 
become excessive; 

b. The approach of nested decomposition provides an economic interpreta
tion that can be linked to the price and demand guided interactions be
tween companies in a virtual enterprise, and so, to the use of this analogy 
in defining the protocol for material exchange in the interaction model. 

The previous techniques in nested decomposition are not immediately ap
plicable to process control problems though because they can only be linked 
to multi-stage process networks of series-connected form. Instead, we seek an 
extension which can be applied to process networks of arbitrary form. 

6.1.2 Requirements for a Distributed Coordination Strategy 

The coordination approach is expected to support the distributed nature of 
control architecture and interaction model in previous two chapters. This dis
tribution was considered essential to promote a maximum level of reconfig-
urability in the design and interactions of process elements. Any numerical 
technique used as part of coordination must not disturb the reconfigurability, 
i.e., the use of a centralised entity or constraint must be avoided. We also 
aim that the elemental sub-problems (as obtained after distribution) adhere 
to a common production objective which in this chapter is considered as the 
sum of all local costs. This is to ensure the distributed solution meets the 
optimality and global coherence of hierarchical control where possible. With 
regards to the four requirements in Fig. 2.7, the strategy is also expected to 
provide a level of responsiveness to variations in local problem formulations 
and other disturbances. 
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Fig. 6.1. Schematic of a large-Scale or complex system 

This chapter is structured as follows. The next section introduces the for
mulation of distributed control problem to be used in this chapter as the 
basis of analysis. Section 6.3 characterises the technique behind overall solu
tion strategy. Sections 6.4 to 6.6 then develop the distributed algorithm in a 
constructive manner. Illustrative examples and the potential future extensions 
of the approach are discussed in Sections 6.7 and 6.8. 

6.2 Distributed Control Problem 

We start by mathematically formalising the distributed control problem to be 
used in this chapter. 

A chemical process can be seen as a large-scale system comprised of multi
ple subsystems or process units as shown in Fig. 6.1(a). In this network form, 
the outputs of each unit become the inputs to its downstream units and so 
on. By imposing an orderly input-output matrix H, this network form can be 
converted into a generic form shown in Fig. 6.1(b) where H now represents 
the network structure of the process, with each row in H referring to an input 
and each column to an output of associated process unit. 

Assuming there are N units in the process, we then use the following model 
structure to define the dynamics of the whole process. 
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ii(t) = hi(xi(t),Ui(t),Vi(t),t) i = l,...,N 
Vi (t) = 9i (xi (t), m (t), Vi (t), t) 
Vi(t)= £ HijVj(t) ,ars 

j=l,...,N (6.1) 

Gi{xi{t),Ui{t),Vi{t),t) £ Si 
r(x(t),u(t),v(t),t) £ R 

where Xi £ Xt is the vector of states, Ui £ Ui is the vector of manipulated 
variables, yi £ Yi is the output vector and vi £ Vi is the interaction vector 
associated with unit i. The vectors x,u and v are the aggregate vectors of 
Xi,Ui and Vi, i = 1,...,N respectively. The constraints hi and gi represent 
the state and output equations, Gj are the local constraints, and r is the 
shared constraint coupling one or more process units. The matrix H{j then 
aggregates the effects of all units j ^ i on unit i. • 

Assuming process units are connected via piping streams only, we can 
derive a specific formulation of matrix H. To do so, we adopt the so-called 
P-Graph model proposed by Friedler, Tarjan, Huang & Fan (1992). 

Omitting services (e.g., steam, cooling water), in a P-Graph form the pro
cess is represented as a finite set of materials M being transformed by a finite 
set of process units O available in the process. Each process unit i in this sense 
is written as a material tuple (mat™,mat""*) where mat™ and mat""* £ M 
are the sets of incoming and outgoing materials. If p(M) is the set of all 
possible subsets of M, then we get the following two relationships: 

O C p(M) x p(M) 0 ^ 0 , 

and 

M = j (j matr} U j U matr*} 
lieo ) lieo ) 

We can then use the P-Graph (M, O) to represent the network structure 
of the process as a directed, bipartite graph comprising material nodes (as 
elements of M) and unit nodes (as elements of O). Fig. 6.2 shows an example 
P-Graph comprising three unit nodes, where M and O can be written as 
M = {A, B, C, D, E, F} and O = {UI, U2, U3}. 

O Unit Node 

fj Material Node 

Unit 1 A 

*£D—*0 

Fig. 6.2. An example of P-Graph model 
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In what follows, we consider a specific interpretation of vectors V{,Ui,X{ 
and yi in Eq. 6.1 to relate the model equations with demand-pull type inter
actions between unit elements in the interaction model. 

• Interactions V{: The interactions V{ are taken as the flow rate demands for 
outgoing materials mat?"* of unit i, i.e., the flow-rate demands act as a 
form of disturbances tha t the unit cannot control on its own but are set 
by the units in its downstream. Other types of interactions, e.g., due to 
pressure and temperature variables, are omitted here. 

• Manipulated Inputs U{: The manipulated inputs U{ are divided into three 
types: Ui^„, U{^uta and Uijoc. The Ui^n are set as the input flow-rates 
for materials mat™, Wj,ut« as the input flow-rates of utilities, and Uijoc as 
other local variables (e.g., agitator speed of a reactor) associated with unit 
*• Uij,in as the j t l i element of Ui^n then refers to unit i's input demand to 
unit j in its upstream. 

• States X{: The state variables X{ refer to various local properties of unit i, 
such as level, volume or material concentrations. 

• Outputs 2/j.' The outputs yi are taken as input demands Ui^n, i.e., yi for 
materials mat™ of unit i. 

Using the above assignment of variables and P-graph model (M,0), we 
get at the following equivalent form of Eq. 6.1 where P-graph (M, O) is now 
used to replace matrix H. 

ii(t) = hi(xi(t),Ui(t),Vi(t),t) i = 1,...,N 

Vi (*) = {««,*»» (*)} for all j G Sf, q G mat™ 

Vi(t) = \ E Uji4n(t) \ for all d G mat™* (6.2) 

Gi(xi(t),Ui(t),Vi(t),t) G Si 
r{x{t),u{t),v{t),t) G R 

where, in reference to P-Graph (M,0), M ^ and Sj are: 

M.f : indices of units j G [ 1 , . . . , N] connected to unit i 
through a material stream d G mat""* 

Sf : indices of units j G [ 1 , . . . , N] connected to unit i 
through a material stream q G mat™. • 

In this chapter, to simplify the discussion and limit the amount of math
ematical rigor involved, we restrict ourselves to a linear, steady-state form of 
Eq. 6.2 as follows. 

0 = A{Xi + Bim - EiVi 

Vi = {uij,in} for all j G Sf, q G matf 

jt,m for all d G mat""* (6.3) 
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where Xi,Ui,Vi and j / , now all refer to their steady-state values. Matrices Ai 
and Bi in Eq. 6.3 are assumed to be of appropriate dimensions, while Cj, Dj, 
Ei and Hij are assumed to possess a special form as discussed later in this 
section. Note that we have omitted the shared constraint r(x,u,v) € R in 
Eq. 6.2. 

Fig. 6.3 depicts the example from Fig. 6.2 with the dynamics of individual 

units and their interactions. Note that process units are connected through 

relationship V{ = < YJ-pMiU3i>in f ^or a u ^ e mat""*. For units 2 and 3 the 

set M^ refers to unit 1 as the only customer unit for material C. 

Unit 2 

( x2 = A2x2 + B2u2 - E2v2 ') 

Unit 3 

-K_ x3 = ^ 3 ^ 3 + B3U3 - E3V3 ) 

Unitl 

: A1X1 + B1U1 — E1V1 

vi n un 

Fig. 6.3. Local unit dynamics for P-Graph in Fig. 6.2 

In what follows we make a further assumption that the interaction vector 
Vi for all units i = 1 , . . . , N is of the dimension equal to number of materials 
in mat""*, i.e., each element in V{ refers to a demand for a material in mat""*. 
If unit i supplies the same material to multiple customer units, then the total 
sum of all demands is used as the value for respective element in V{. 

With this assumption, the formulation of matrices Cj, Di and Ei in Eq. 6.3 
can be simplified. In particular, all entries in Ei are set to 0 except where a 1 
appears when an element in V{ is connected to an element in state vector X{ 
via the state equation. The matrix C{ similarly becomes a zero matrix with 
all entries 0, while D{ becomes a matrix with all entries 0 except where a 1 
appears when any element of Ui^n is connected to an element of y{. Note that 
each element in U{^n in this form is connected to only one element in yi. 

Using the revised form of Ei we can also simplify Eq. 6.3 by separating 
the rows in Ai and Bi which do not contain any element of Vi into separate 
local matrices Ai 

Xoc &nd Bjjoc. The constraints involving A.i^oc and Bijoc then 
become the local constraints of unit i. For the sake of simplicity, we separate 
these constraints from remaining constraints and assume that Ai and Bi now 
only refer to those rows that correspond to an element of Wj. For simplicity, we 
also assume that each row in Ai and Bi is associated with only one element 
in Vi, i.e., the number of rows in Ai and Bi equal the length of Vi, which, 
in turn, equals the number of outgoing material streams d £ mat""*. We can 
then eliminate Ei from Eq. 6.3 altogether. 
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We now define the distributed control problem used in this chapter. For
mally, the problem assigned to each unit i = 1 , . . . ,N is to find an optimal, 
steady-state deviation in its variables X{ and U{ from a nominal operating 
point X{ and U{ for a given demand deviation of V{ from the nominal demand 
V{. The nominal point for all three vectors may refer to a target set point 
supplied by the higher-level optimiser. 

Problem 6.1 (Distributed Control Problem). 

N 

minimise Y fi(xi>ui) i = 1, • • • ,N 

s.t. AtXi + BiUi = Vi, 
-ri^ loc i I *-)% loc i — ? 

Vi'={ui3,inh foralljeS?,gematf (6-4) 

Vj = I YJ Ujijn > , for all d £ mat?"*, 
U'€Mf ' J 

Xi e xhUi GUi • 

The objective function /j(-) is assumed to be strictly convex jointly on 
its constituent variables X{ and U{. For simplicity, we assume that fi is 
linear-quadratic, i.e., xjQiXi + ujRiiii + cj[xj,uf]T where []T represents 
the transpose operator. This together with the affine nature of the constraint 
equations guarantees that the dual problem of Prob. 6.1 is differentiable 
(Rockafellar 1970). 

In summary, the distributed control problem to be solved for the overall 
process is to minimise the joint total cost (as the sum of individual costs) 
of all units in the P-Graph subject to a constraint that all material flow 
interactions are satisfied between units. The solution of this problem then 
defines the material flow-rates V'i^in in the network. 

Note that although the local costs ft(xi,Ui) of all units i = 1,...,N 
are separable, the individual sub-problems are not, because the constraints 
Vi = {Y -eM

d uji,in}^d € mat°Mt link them. As a result the overall problem 
cannot simply be decomposed into sub-problems and solved independently. A 
distributed approach to solving Prob. 6.1 must be able to coordinate these 
linking constraints via distributed interactions. 

Prob. 6.1 is general enough to be applied to a process network of any arbi
trary nature. However, in this work, we limit ourselves to processes of acyclic 
nature only (i.e., processes that do not contain material or energy recycles) 
and having no by-products. Recycles or by-products play an important role 
in modern process plants, however the developments made in this chapter 
cannot support such process forms at present. 

We observe that this and other assumptions made in this section regarding 
problem formulation and network structure help us to simplify the solution 
strategy described next. These can be relaxed as appropriate by generalising 
the approach discussed here. 



100 6 A Distributed Algorithm for Reconfigurable Process Control 
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Fig. 6.4. Supplier-customer relationships between unit elements 

6.3 Distributed Coordination Approach 

Having defined the problem formulation, we now develop the distributed co
ordination approach used in this chapter for solving Prob. 6.1. We use the 
concept of so-called nested decomposition from optimisation and operations 
research literature (Ho & Manne 1974, O'Neill 1976, Wittrock 1985) to develop 
the approach. In simple terms, it refers to solving a multi-stage optimisation 
problem (e.g., in a staircase type linear program) by solving multiple, smaller 
coordination problems, each associated with a linking constraint connecting 
two successive stages. 

We split the development of the proposed approach into three main steps: 

i. Problem decomposition: Develop a method for decomposing the overall 
process network into multiple two-stage problems; 

ii. Solution of two-stage problems: Develop a general method for solving 
customer-supplier coordination (the two-stage problems); 

iii. Solution of multi-stage problems: Develop an algorithm for solving the 
two-stage problems in a nested sequence. 

Before describing each of these in detail (Sections 6.4-6.6), below we pro
vide in this section an outline of the overall approach. 

Fig. 6.4 repeated here from Chapter 5 depicts the form of supplier-
customer type relationships between unit elements in the interaction model 
- the unit elements act as the suppliers for their outgoing products and cus
tomers for their incoming feedstocks. In order to formalise this relationship 
mathematically, we consider a further analogy of price-demand type interac
tions between companies in a supply chain, or specifically a virtual enterprise, 
when operating under a make-to-order environment. 
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Tier 1 Price Quotes Tier 2 Price Quotes Tier 3 Price Quotes 

Total Qty Total Qty Total Qty 

Tier 1 

1 ,T i 

Tier 2 

j Y'* 1 

Tier 3 

— > Price quotes 

< Demand order quant i ty 

Fig. 6.5. Price-demand oriented interactions between companies in a supply chain 

In a supply chain, as shown in Fig. 6.5, companies share price quotes 
and demand quantities to make decisions on which suppliers to select and 
how much demand is allocated to each supplier. The customer companies 
along each tier request potential supplier companies upstream for price quotes 
for expected demand quantities. The price quotes then flow forwards. The 
customer companies use these price quotes to select suppliers and allocate 
demands. The interactions thus remain bidirectional and may repeat until all 
companies settle on a price-demand contract, at which point the operations 
can commence. 

When viewed in an analogous manner, we can formalise the interactions 
between unit elements by attaching a price quote to a supply proposal as the 
variation in local cost of the supplier unit element for a unit change in the 
product flow rate. The interactions would then proceed as follows. 

Starting from the terminal stage in the process, each unit element in its role 
as a customer together with all unit elements acting as its suppliers attempt 
to form a two-stage control problem of the form of Prob. 6.1 involving only 
these unit elements. The objective is to distribute the customer's feedstock 
demands among suppliers in a manner that the total cost of suppliers and of 
the customer is minimised. The same principle is then applied to these supplier 
elements who attempt to distribute their demands by forming appropriate 
two-stage control problems involving unit elements further upstream. The 
process is repeated until unit elements in the first stage of the process are 
reached. 
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At this stage, we obtain multiple two-stage problems involving unit ele
ments from successive stages of the process. The overall solution approach 
then operates by solving these two-stage problems sequentially in a nested, 
iterative fashion. 

Each individual two-stage problem is itself associated with a two-level 
coordination algorithm based on the so-called primal decomposition concept 
(Geoffrion 1970). A detailed explanation of primal decomposition approach is 
given in Appendix A. Within the two-stage problem, each unit element has 
two roles. In its role as a customer, it becomes the coordinator of its demand 
distribution, and as a supplier a sub-problem where its role is supplying the 
price quotes. We next exploit an economic interpretation of the primal de
composition algorithm to link the solution of two-stage problems with the 
price-demand type interactions in Fig. 6.5. 

At first, each unit element in its role as a customer (called the customer 
unit) selects a distribution of its feedstock demands and passes that as coor
dination variables to all unit elements acting as its suppliers (called supplier 
units). For a given demand, the supplier units attempt to solve their local 
problems to find the optimum supply costs and a solution to other local vari
ables. The supplier units return back to customer units their supply proposals 
comprising: (a) the supply cost for the specified demand, and (b) the marginal 
cost as an indication of the variation in supply cost for a unit change in the 
demand flow rate. In the language of primal decomposition, this supply pro
posal refers to so-called optimality cut that is included in customer unit's local 
problem at the next iteration. Subsequently, at each iteration, the customer 
unit adjusts its demand, taking into account the previous supply proposals, 
such that the total cost of all suppliers plus its own is minimised. 

The overall interactions across the process then operate in a chain whereby 
all these two-stage problems are solved iteratively in a nested, iterative se
quence. Starting from terminal stage, each individual customer unit allocates 
its feedstock demands to its supplier units. These supplier units then further 
propagate the demands upstream until the first stage is reached. Next, start
ing from the first stage, the supplier units return their supply proposals (as 
optimality cuts) back to customer units downstream. The customer units in 
each stage then include the new supply proposals to solve their local problems 
and alter the demands allocated. This multi-level chain of interactions thus 
repeat, first backwards and then forwards, until all interim demand flow rates 
converge to an optimum value. 

The solution strategy described above supports the reconfigurability of 
the interaction model in following ways. Firstly, the above solution approach 
operates in a completely distributed form, i.e., the overall problem is solved 
by direct interactions between unit elements themselves without referral to 
a centralised coordinator. Secondly, because all unit element problems are 
made independent via distributed interactions, the approach allows adding or 
removing unit elements from problem formulation without having to refor
mulate the dynamics model in Prob. 6.1 which otherwise would be necessary 
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in a centralised implementation. Thirdly, under certain conditions it can be 
shown that the solution obtained for interim flow rates converges to the same 
optimal solution as that obtained by solving a centralised problem. Finally, if 
there are bounds on supply capacities of the supplier units that can be mod
elled in the formulation of customer problems, then it is possible to restrict 
the interim demands of customer units to be within these bounds to ensure 
feasibility. The above solution process, hence, can be interrupted at any stage 
in the sequence to use a suboptimal but immediately usable solution. This 
might be desirable, for example, in a constantly changing environment. The 
proposed approach thus retains distributed character of the interaction model 
whilst also maintaining optimality of the solution. 

In the next three sections we now address the three steps of the proposed 
distributed coordination approach in detail. 

6.4 Problem Decomposition 

In the first step to solving Prob. 6.1, the overall problem is decomposed into 
a set of two-stage problems, each referring to a network junction between two 
or more process streams. We refer to such a junction as a Junction Block. 
Each junction block is thus a two-stage process consisting all unit elements 
and process streams associated with that junction. 

Fig. 6.6 shows the four different types of junction blocks that can be found 
in any acyclic process network. The MIXER and SPLITTER blocks represent 
the junctions associated with process units such as mixer, splitter or a pip
ing header where multiple material streams of identical properties are mixed 
together or a single stream split into multiple such streams. The MULTIFEED 

and MULTIPROD represent the junctions associated with process units such as 
feed preparation, reactor, distillation column etc., where material streams of 
non-identical properties are merged together or are produced as outcomes of 
the processing task. Note that a more complex junction with multiple incom
ing and outgoing streams can be always represented by superimposing MIXER 
or MULTIFEED blocks on top of SPLITTER or MULTIPROD blocks. 

Fig. 6.7 shows an example of problem decomposition in which an arbi
trary process network is decomposed into its constituent junction blocks. The 
junction blocks are interconnected via process units common between them. 

6.5 Solution of Two-Stage Problems 

In the next step to solving Prob. 6.1, each junction block, being a two-stage 
process, is associated with a two-level coordination algorithm based on primal 
decomposition concept of the type introduced in Section 6.3. This algorithm is 
used to solve the associated mini control problem of junction block involving 
local problems of unit elements in both stages in a distributed manner. The 
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\hcy 
MIXER 

/CHI 

SPLITTER 

\HOHk 

MULTIFEED 

(Units with Multiple Feestocks) 

MULTIPROD 

(Units with Multiple Products) 

Fig. 6.6. Four types of 'junction blocks' in an acyclic process network 

\h&-\h(I>h<I>Tk<I>\\ 

\H^Hhd>W 

(1) MULTIPROD (2) SPLITTER (3) MULTIFEED 

Fig. 6.7. Decomposition of a process network into junction blocks 

unit elements in the second stage become the coordinators or so-called master 
problems and those in the first stage as so-called sub-problems. In economic 
terms, the first and second stage elements also act as suppliers and customers 
of materials through which they are connected in the P-Graph. 

Since all four junction blocks in Fig. 6.6 have different network structures, 
i.e., joins in M I X E R and M U L T I F E E D blocks and forks in S P L I T T E R and M U L -

T I P R O D blocks, they need different coordination techniques. The problems for 
M I X E R and M U L T I F E E D blocks involve a single coordinator and can be solved 
based on primal decomposition technique as described in Appendix A. How
ever, for S P L I T T E R and M U L T I P R O D blocks, this is not directly possible as 
they involve multiple customers and hence multiple coordinators. Therefore, 
we develop a variant of primal decomposition using the techniques from para
metric programming field (Fiacco 1983) to accommodate this variation. 
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In what follows, we develop a single algorithm that can be applied to 
all four types of junction blocks with a facility to tailor the algorithm for 
individual type of block. To develop the necessary algorithm, we consider 
solving three problems of increasing complexity: 

i. Two-Units problem involving two, series-connected units (Section 6.5.1) 
ii. Two-Units problem with an uncontrolled parameter (Section 6.5.2) 

hi. Multi-unit problem, so-called superset block problem, which enables the 
solution to all four junction blocks (Section 6.5.3). 

6.5.1 Solution of Two-Units Problem 

We consider first a process network comprising two unit elements connected 
in series, the so-called STAIRCASE block. Based on Prob. 6.1, the associated 
control problem for this block can be written as: 

Problem 6.2 (Two-Units Problem). 

minimise / i (xi , i t i ) + f2(x2,u2) 
X2,U2 

s.t. A1X1 + B1U1 = vi 
A2x2 + B2u2 = v2 (6-5) 

x2 e x2, u2 e u2 

where v\ = y2 = u2\^n represents the demand from unit 2 to unit l.D 

In the proposed use of primal decomposition, unit 2 becomes the coordi
nator or master problem (denoted by SP2), unit 1 as the only sub-problem 
(denoted by SP\), and v\ is the interaction variable linking them. The solu
tion process then operates iteratively. For an initial value of v\, the problem 
5Pi is solved first to find the optimal values of the value function a.\ and 
the Lagrange multiplier Ai for linking constraint A\X\ + B\U\ = v\. This 
information is passed as an optimality cut to the master problem SP2. With 
including this new cut, the master problem SP2 is solved to find a revised 
value of v\ that minimises the total cost of both problems. The process thus 
repeats between solving 5Pi and SP2 until a form of convergence is achieved. 
Algorithm 6.1, based on the description in Section A.2, Appendix A, formally 
defines this solution procedure. 

Fig. 6.8 outlines the information exchange between 5Pi and SP2 problems. 
Note that v2 in SP2 represents the supremum of piecewise-linear approxima
tions of 5Pi 's optimal value function OL\(V\). This together with f2(x2,u2) 
equals the approximate total cost of both unit elements at any one iteration. 
Given that the optimality cuts do not overestimate cti(wi), the optimal cost 
obtained from solving SP2 provides a lower-bound on the total cost of both 
units. Since each new optimality cut should improve upon the linear approxi
mation of cti(wi), the lower-bound obtained should improve at each iteration 
until SP2 converges to an optimal solution. 
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Algorithm 6.1 (Two-Units Problem) 

Step 0: Initialise: Set K := 1. Assume an initial value of x2 £ X2 and u.2 £ U-2-
Set v[0) = yf] C2x2

0) + D2u2
0) = u2% 

Step 1: Sub-problem SP± : At any iteration K, fixing v{ (K-l) 

(K) 
2/2 

(K-l) 

unit 1 's problem SP^ as 

SP± (K) 

minimise a\ = fi(xi,ui) 
X\ ,1/1 

S.t. A\X\ + BjUi = V[ 

Xi e l i . i i i £ Ui 

solve 

(6.6) 

Set z{ = A\x{ + Biu[ . Pass a\ , X{ and z{ to unit 2. 
l(K). (K) ,(K) JK) Step 2: Master Problem SP>2 ': Use a\ >, X\ ' and z-y to construct a new 

optimality cut in unit 2's problem, SP.2 . Solve the resulting problem as: 

' minimise a-2 = v2 + fi(x2, M2) 

SP. (K) 
S.t. IS2 > a[ ' + \ \ '(Z[ ' - U2l,in), 

A 1 D --(K-l) 

A2X2 + B2U2 = V2 , 

k£K 

X2 £ X2, U2 £ U2, 

where K = set of iterations 

Step 3: Terminate/Iterate: Terminate if the convergence criteria is s 
which is considered to be as 

II f (K) (K) (K) (K)\ f (K-l) (K-l) (K-l) (K-l)\\ 
1-<*1 , (tj ,X 2 , U>2 j- U ! , « ! ,X 2 , U>2 j -

Else, set K := K + 1 and return to step 1. • 

<e. 

(6.7) 

(6.8) 

Unitl 

A1X1 + B1U1 — vi 

~(K-i) (K-l) (K-l 
1 ~ y2 

(K) (K) ,(K) 

-a: , z\ , A: 

Unit 2 

1 ' 1 ' 1 

<—v2 

Fig. 6.8. Information exchange between units 1 and 2 sub-problems in Two-Units 
problem 

6.5.2 S o l u t i o n of T w o - U n i t s P a r a m e t r i c P r o b l e m 

We consider next an extension of the Two-Units problem (Prob. 6.2) where 
we now assume tha t SPi contains an uncontrolled parameter vector 9 which 
it cannot alter. 

P r o b l e m 6.3 (Parametr i c T w o - U n i t s P r o b l e m ) . 
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minimise fi(x\,ui) + f2(x2,u2) 
X2,U2 

s.t. Aixi + Biui = vi 
Alfixx + Blfim = 9 (6.9) 
A2X2 + B2U2 = V2 

x\ e X i , « i £ U\ 
x2 G X2, u2 £ U2 

where 9 £ 0 is a vector of additional parameters local to unit 1. Assume tha t 
0 is a convex, compact sub-set of We where pe denotes the dimension of 9. 

• 
If Algorithm 6.1 for Two-Units problem is applied to the above problem, 

then sub-problem SPitg would have the following formulation at an iteration 
K. 

SPi 
(K) 

' minimise a\ $ = fi(x\,ui) 
Xl:Ul 

S.t. A\x\ + Biui = v 

Aijxi + Bxjui = 
x\ e X i , M i s Jj\ 

K-l) 

- - e ^ 
•s^ 

s^> 

Ai*> (6.10) 

where 0(K) denotes the value of 8 at iteration K. 

Considering tha t the second constraint in SP± e is a function of x\, u\ and 

9, any change in 6 from 8^K' would change the feasible region of (xi,ui) and 

hence their optimal values for a given v[ '. Any such variation therefore 

would lead to a non-unique response from SP\j to master problem SP2 for 

a given v^ '. A significant variation in 6 may also invalidate the optimality 

cuts passed to master problem in the previous iterations. 
The situation can be recovered if the Algorithm 6.1 is restarted at every 

instance when 9 changes. However, this is undesirable if 6 is likely to change 
frequently (as in the case considered in the next sub-section). Instead, we 
propose a simple alteration to Algorithm 6.1 which interprets the change in 
9 and updates the previous optimality cuts passed to the master problem. 
The proposed technique is based on so-called basic sensitivity theorem from 
sensitivity analysis studies (Fiacco 1983) and is referred to as the approximate 
optimality cut update technique. See Section A. l in Appendix A for a brief 
discussion of the relevant concepts from sensitivity analysis. 

We first consider the following first-order approximation result based on 
basic sensitivity theorem (Theorem 3.2.2 in Fiacco 1983). 

L e m m a 6.4. Consider the optimal solution a\ e' of the value function a\^ 

A[ BX in Eq. 6.10. Assume the constraint matrix 

i.e., the rows are linearly independent, then 
A\fi Bive 

has a full row rank, 
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dal,0 
Aff (6.11) 

where \\j £ Aitg C M?J.A is the vector of Lagrange multipliers for the second 

constraint Ai^xi + Bi^u\ = 9, and \\ e' denotes its value for a given 9 = 

The lemma suggests that for a change of A9 in 9 from 9^, the optimal 
value of the value function a.\ can be expected to change at least by Aai^g = 
—\[ p . Note that this is still a first-order approximation, and cannot be used 

to find the exact change in a\ 0'. However, even when A9 is large, the following 
is true. 

Lemma 6.5. Consider the value function a\,$ in Eq. 6.10. If the function / i 
is convex in {x\,u\) and the sets X\ and U\ in Prob. 6.3 are convex, then the 
optimal value function a\,$ is convex on 0. Furthermore, for a change in 9 
from any 9^ to 9^k\k> ),9^ ,9^ £ 0, 

«S>"iV A 8V* ) -* a ) )> (6-12) 
where a^'0 and a\ '0 are the optimal values of a.\j obtained by solving Eq. 6.10 

for value of 9 being 9^> and 9^'. In other words, the change in optimal value 
of aive as obtained from solving Eq. 6.11 for a change in 9 from 9^> to 9^' is 

always an underestimation of the optimal value of a10 that results by solving 

the sub-problem in Eq. 6.10 again at 9^>. 

Proof. The first part of the statement follows from standard convexity results 
in parametric nonlinear programming (see e.g., Proposition 2.1 in Fiacco & 
Kyparisis 1986) while considering in addition that both constraints in Eq. 6.10 
are linear in {x\,ui). The second part follows due to convexity of aie in 9 

and noting that a\3'e — X^'e (9 — 9^) is a linear support to optimal a\J'e at 
9 = 9^.0 

Fig. 6.9 illustrates the intention behind considering above lemma. The bold 
curve therein shows the variation in optimal value function QL-\ g clS Si function 

of 9 with v[ ~ ' being constant, while the straight line shows the gradient to 
a l 9 

at 9 = 9ij\ By using this gradient, we can obtain an approximate value 
of al e for 9 = 9^ to update the optimality cuts in the master problem from 
previous iterations. 

The modified procedure then operates exactly the same as Algorithm 6.1 
except the following. At Step 1, the values of parameter 9 and the Lagrange 
multiplier Ai^ for constraint Aitgxi +Bitgiii = 9 from the previous iterations 
and the current iteration (respectively as 9^ and X\"'g, k £ K) are used to 
construct an update vector a{ uvdt, k £ K, where a\ dt is calculated as: 
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Actual Value of a (k) 

Approximate Value of a 
(k) 

• > 

Fig. 6.9. Linear approximation of function of variation in 

a 

..(*) 

(*) 
l,updt 

-A ( * )T (eW-e(*) ) , fceK. (6.13) 

At Step 2, a{ ' d t , k £ K is then used to update the optimality cuts in the 
master problem SP2 before solving the revised SB2 as: 

SB (K) 

minimise «2 V'2 + h{x2,U2) 

S.t. V2 > aie + alupdt + \ {zx 

A2X2 + B2U2 = V2, 
X2 £ X2 , U2 € U2 , 

where K = set of iteration indices 

• W 2 1 , fce K 
(6.14) 

Compared to Algorithm 6.1, the above modification thus requires calcu
lating a\ updt,k £ K as a reflection of the change in optimal value function 
a\yo for a change in 6. The modified Algorithm 6.1 is not described here for 
brevity. 

Note that in the above modification we still retain the same multipliers 
(k) 

\{ , k € K in the master problem as before. In fact, the use of sensitivity 
analysis suggests that Â  also vary with a change in 9. Arguments similar to 
Lemma 6.4 can be used to obtain a first-order approximation of multipliers 
(Fiacco 1983). However, our numerical experience (see Section 6.7) indicates 
that using the same \\ do not lead to a significant problem considering i(*) (*) that — X\ ' denote the sub-gradient of value function a\ 'e for a unit change 

„-,(*=-!) l ( * ) (*) \nv\ '. As a result, unless Â  ; changes widely, the hyperplane v^ > a\ 'g + 
(k) 

al,updt 
k ( * ) „(*) .(*) Wi — it2i,in) still underestimates the value function 

as required by the approximate cut update technique. 

6.5.3 Solution of Superset Block Problem 

The approximate cut update technique can be used to develop a solution 
algorithm for SPLITTER and MULTIPROD blocks. In particular, for each cus-
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Sub- Problems^ 
Supplier Units 

mat" mat1: Master Problems/ 
Customer Units 

Fig. 6.10. Superset junction block 

tomer element j in the second stage of either of these junction blocks, the 
demands umi^n from all other customer elements m ^ j can be treated as an 
uncontrollable parameter vector 9 in the sub-problem of the supplier unit. The 
procedure in the modified Algorithm 6.1 can hence be repeated for all cus
tomer elements separately to coordinate the parametric effect of their demand 
changes onto the supplier element's problem. 

Below we build upon this logic by developing a generic algorithm which 
can be applied to all four junction blocks, in particular the S P L I T T E R and 
M U L T I P R O D blocks. To do so, we consider a superset junction block as shown 
in Fig. 6.10 which captures within it all four types of blocks in Fig. 6.6, 
i.e., the configuration of any block Fig. 6.6 can be obtained by selecting the 
appropriate edges and nodes in Fig. 6.10 while deleting the rest. Table 6.1 
shows the notation we use to describe the superset block. 

Based on the framework of Prob. 6.1, the control problem for superset 
block can be written as follows: 

P r o b l e m 6.6 (Superse t J u n c t i o n B l o c k ) . For i = 1,...,S and j = 
1 , . . . , M , 

Xi,Ui 
Xj ,Uj 

s.t. 

S M 

minimise £ fi(xi,Ui) + £ / j O j ^ j ) 
i=\ j=\ 

AjXj + BjUj = Vj 

^-i:loc%i i ^ijoc^i — U 

Xi e Xi,Ui e Ui 
Xj £ Xj, Uj £ Uj 

d £ mat: out 

(6.15) 

where i = 1 , . . . , S and j = 1 , . . . , M respectively are the indices of supplier 
and customer elements. The first constraint represents the links between sup
plier and customer elements through material streams d £ mat""*, where A^i 
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Table 6 .1 . Notation for superset junction block 

M : Number of customer units in the second stage (units indexed by j £ 
[1 , . . . ,M]) 

S : Number of supplier units in the first stage (units indexed by i £ 
[1 , . . . ,5]) 

mat""* : Set of out going material streams of supplier unit i (streams indexed by 
d £ mat?"*) 

mat]™ : Set of incoming material streams of customer unit j (streams indexed 
by q £ mat}") 

Mj : Indices of customer units associated with supplier unit i 
Sj : Indices of supplier units associated with customer unit j 
Mf : Indices of customer units connected with material stream d in supplier 

unit i (M? C Mi) 
S | : Indices of supplier units connected with material stream q in customer 

u n i t j ( S j C S j ) 
K : Current iteration index in the algorithm 
K : Set of iterations { 1 , . . . , K} 
k : Iteration index, k £ { 1 , . . ., K} 

and Bdt represent the dth row of Ai and Bj . As discussed previously, the vari
able Ujitin represents the input demand from customer unit j to supplier unit 
i, while Vj is the demand tha t customer unit j receives from its customer units 
in the further downs t r eam. • 

In what follows, we assume for simplicity tha t the local constraints 
AijocXi + Biti0CUi = 0 and Ajti0CXj + Bjti0CUj = 0 together with x{ € X{,Ui € 
Ui,i = {1,...,S} and Xj £ Xj, Uj £ Uj,j £ { 1 , . . . , M } in Prob. 6.6 are 
sufficiently relaxed to absorb any demand imposed on respective unit ele
ment, i.e., the sub- or master problems for supplier or customer units do not 
become infeasible for any vi and Vj. The assumption, in turn , eliminates the 
need for generating feasibility cuts in the primal decomposition algorithm (see 
Section A.2, Appendix A). Consequently, to reduce the complexity of the de
scription, we also omit these local constraints and implicitly assume tha t they 
always exist. 

Algorithm 6.2 describes the generic procedure used for solving the superset 
block problem. The important step in the algorithm is the calculation of the 
update terms aij^up(it{k) for individual junction blocks as listed in Table 6.2. 
For M I X E R and M U L T I F E E D the algorithm operates exactly as per primal 
decomposition, with a single customer element, therefore the updates are set 
to 0. For S P L I T T E R block, the sum of demands vms for all customer elements 
j £ [ 1 , . . . , M],m ^ j are t reated as the parametric vector 9 when referring 
to a customer element m £ [ 1 , . . . , M]. For M U L T I P R O D block, the vector of 
demands vis, • • • ,Vj-is,i>j+is," •" ,VMS for all customer elements except m 
is t reated as the parameter vector for element m. Thus, for both S P L I T T E R 
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Algorithm 6.2 (Superset Block Problem) 

Step 0: Initialise Set K := 1. Given Vj = Vj,j = 1, . . ., M, the demands for all 
second stage units. Assume an initial value of Uyi^n = vSiin. Set «•; = u-iin for 
all i £ Sj, q£ matf, j = 1,..., M. 

Step 1: Sub-problem SP- ,i = 1,..., S: At any iteration K, solve unit i's prob
lem 

{ minimise a-i = fi(xi,v,i) 

s.t. AdiXi+BdiUi= £ v£~l\ d£ma,t°ut (6-16) 

j£Mf 

to obtain the optimal values of x\ , i4tn> Lagrange multipliers \\ for linking 

equality constraints, and the objective function a\ 
Set z\, = Vj{ , j £ Mf, d £ mat°ut, i.e., assume the demands from all 

master problems for all material streams d £ mat°ut is satisfied. 
Step 2: Master Problem SP^K\j = 1 , . . . , M: Use a\K) ,\\P and z\f] to form a 
new optimality cut in unit j's problem, SP- . Solve the resulting problem 

minimise ctj = VJ + fj (XJ , Uj) 

SPlK) 

Xj,Uj ,Vj 

s.t »i > E { « ^ + «|*?updt + A<f(^» - u^in)} , k£K 
AjXj +BjUj =VJ 

(6-17) 
to obtain the solution u-i in and x • . The a{j dt are the approximate optimality 
cut updates used for updating the master problem j for perturbations in the demands 
from remaining other master problems m £ [1,.. . ,M],m ^ j . The updates are 
calculated by the first stage units i = 1,. . . , S and passed to the second-stage units 
j = 1 , . . . ,M. Table 6.2 describes the specific formulation of these updates for all 
four junction blocks. 
Step 3: Iterate/Terminate: Terminate if the convergence criteria is satisfied, 
which is considered here as, for a given e > 0 and i = 1, . . ., S, j = 1,. . . , M, 

\{xf\uf\xf\uf)}-{x?-1\u\K-1\xf-1\uf-1)}\<e (6.18) 

i.e., the solutions of sub-problems SP^ , i = 1 , . . . , S and master problems SPj , 
j = 1,...,M converge to a fixed point with tolerance e. Else, set «•; = u,{ in, 
K := K + 1, and return to Step 1. • 

and M U L T I P R O D blocks, a parametric update vector as': updt is calculated at 
each iteration for each of the customer elements m = 1 , . . . , M. In summary, 
Algorithm 6.2 provides a solution strategy for solving the two-stage control 
problems for each of the junction blocks in a distributed manner. 
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Table 6.2. Approximate optimality cut updates for junction blocks 

MIXER af^updt = 0 

MULTIFEED a) (*) M,updt 

SPLITTER 
Sj,updt 

A \(fc) E "Is / , "mS 

\ 

m e [ l , . . . , M ] m £ [ l M ] 
/ 

fee K 

(6.19) 
where 5* is the single supplier unit, j is the customer unit for which 
the update is being calculated, and M is the last customer unit. 

*(fc) 

Sj,updt 

MULTIPROD 

A [ , ( * ) ,(fc) ,(fc) ,(fc) 1 
~~ [ A S 1 > ' ' ' > A S j - l ' A S j + U • • • > A S M j ' 

"MS y 
.(fc-i) 
'is > 

^ - i ) 

~(fc-l) ~ o - l ) 

- ( / f - i ) - ( i f - i ) - ( / f -
J ^ ' - l S >Wj + l S J - ' ' ! B M S 

fc G K (6.20) 

where S is the single supplier unit, j is the customer unit for which 
the update is being calculated, and M is the last customer unit. 

6.6 Solution of the Multi-Stage Problem 

As the final step to solving Prob. 6.1, we need to ensure tha t all of the in
terconnected two-level junction block problems are solved iteratively in an 
appropriate sequence. 

In what follows, we consider solving a sequence of three problems to de
velop the strategy in a constructive manner. 

i. TV-Units problem involving N series-connected units (Section 6.6.1) 
ii. TV-Units problem with an uncontrolled parameter in one or more of unit 

problems (Section 6.6.2) 
hi. Main distributed control problem - Prob. 6.1 (Section 6.6.3) 
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N 

minimise J2 fi(ui,Xi) 
i=i,'...',N i=1 

s.t. AiX{ + BiUi = V{ i = 1, . 
Xi € Xi,Ui GUi i = l,.. 

. . , 7 V 
. , 7 V . 

6 .6.1 S o l u t i o n of TV-Units P r o b l e m 

We consider first an extension of the Two-Units problem to an TV-Units prob
lem as comprising TV series-connected unit elements. 

P r o b l e m 6.7 (TV-Units P r o b l e m ) . For i = 1 , . . . , TV 

(6.21) 

where vi = J/J+I = Ui+u,in represents the demand to unit i = 1 , . . . , TV — 1. • 

A nested decomposition algorithm based on primal decomposition simply 
extends Algorithm 6.1 to repeatedly solve a sequence of TV — 1 two-units prob
lems, one corresponding to each link between two successive unit elements. 
The sub-problem for each unit i = 2 , . . . , TV is considered as a master problem 
for a composite problem comprising all predecessor units 1 to i — 1. The com
bined problem of units 1 to i — 1 and unit i then becomes the sub-problem 
for unit i + 1, and so on, until unit TV is reached. The sub-problems of units 
i = 1 , . . . ,7V are thus solved sequentially to construct a new optimality cut 
in the immediate next master problem. Once a complete iteration is finished, 
the procedure repeats start ing from unit 1. In reference to Algorithm 6.1, the 
formulation of sub-problem SPi at iteration K for i = 2, . . . ,TV along the 
sequence becomes as follows. We do not describe the complete algorithm for 
brevity. 

S tep i: Sub-problem SPi, i = 2,... ,N: Use ai_l,\i_{ and z\_{ to construct a 

new optimality cut in unit i's problem SP- . Solve the resulting problem as: 

' minimise a, = Vi + /,(xi,v,i) 
Xi,Ui,Vi 

s.t. vi > a\k_\ + ^-i(zl-i ~ uu-i,in), k£K 
AiXi + BiU^vf^, (6-22) 
Xi G XiyUi G Ui 

where K = set of iterations 

SP<K) 

Set z\K) = AiX\K) + Biuf\ Pass af\ \\K) and z\K) to unit i + 1. 

6.6.2 S o l u t i o n of TV-Units P a r a m e t r i c P r o b l e m 

We next consider an extension of the TV-Units problem where the sub-problem 
of unit element 1 now contains an additional parameter vector 9 £ 0 while the 
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remaining sub-problems SPi, i = 2 , . . . , N are same as in Prob. 6.7. Formally, 
the modified problem is: 

P r o b l e m 6.8 (TV-Units P r o b l e m w i t h P a r a m e t r i c SPij). 

N 

minimise £ fi(xi,Ui) 
i=i,'..',N i=1 

s.t. AiXi + BiUi = Vi i = l,...,N (6-2 3) 
^-1,6^1 + BigU\ = 9 i = 1 
Xi £ Xi,iii £Ui i = l,...,N. 

where V{ = yi+\ = C J + I X J + I + P / J+IWJ+I represents the interaction variable to 
unit i, i = 1,.. .,N — 1. 

The solution of the above problem is faced with the same challenge because 
the parametric Two-Units problem (Prob. 6.3) as the changes in 9 in SP\ re
sults in a non-unique response to SPi, and therefore, the non-unique response 
of all subsequent sub-problems to their immediate next master problem. For
tunately, an extension of the approximate cut update technique provides a 
method to resolve this. In this extension, we simply pass the upda te vector 
a\ J dt (of dimension K) from unit 1 to all units i = 2,...,N to modify the 
optimality cuts in their problems SPi in a similar manner to sub-problem SP2 
in solving the parametric Two-Units problem. In the modified form of iV-units 
algorithm, the sub-problem SPi at iteration K is solved as follows. 

Step i: Sub-problem SPi, i = 2,.. . ,N: For each k £ K, use a[ u dt to calculate 

a 
(K) A (K) , (K) «i_i + a\ udt, and solve the modified SPi in Eq. 6.22, i = 2 , . . . , N as: i — l,mod 2 — 1 ' l.updt 

' minimise a, = Vi + fi(v,i, Xi) 
Ui ,Xi ,l*i 

spr} s.t. ^ a ^ + ^ ^ - ^ i G K 

Aixi + Biui=v<K-1)~>)tK) (6-24) 

Xi G Xt,Ui G Ui 
where y, = uu-i,in 

Note tha t we use the same update vector a\ 'dt to all update all unit 
sub-problems SPi, i = 2,...,N. This communication of upda te vector can 
be made symmetric by assigning a.2Jpdt = a[Jpdt and repeating a\Jpdt = 

ai*iupdt f o r aU i = 3 , . . . , iV, and using a{^\mod = a{^\ + a^lupdt. 
We consider next a further extension where instead of just sub-problem 

5 P i , one or more of other sub-problems are also parameterized with param
eter vectors 9i £ (9j. The approximate cut update technique can as well be 
extended to solve this problem in an analogous manner. 
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For SP±jg1 we still continue to propagate the approximate cut update 
ai updt t ° &H units i = 2,...,N. In addition, for any sub-problem SPi^{, 
i = 2,... ,N — 1, we also generate a separate approximate cut update that 
reflects the effects of parametric variations in its parameter vector 6{. This 

can be written as: a\"ioc dt = —\\ g. (9\ ' — 9\ '), k £ K where \^i is the 
Lagrange multiplier associated with the constraint A^g^i + Bi^tUi = 9{. 

We then simply add this update to the update received from previous sub-
problem SPi-itgi_1 and pass the composite update to the next sub-problem 

SPi+1,0i+1, i.e., a(^pdt = a{*}
lupdt + a{^]

ocupdt. With this modification the 

sub-problem SP^g', i = 2 , . . . , N at iteration K is now solved as follows. 

Calculate a{*lmod = a{*l + a{*\updt. Use a{*\mod in solving 

minimise on = Vi + fi(ui,Xi) 

s-t. Vi > a ^ L d + ^ - i ^ - i - J / i ) . ^ K 

SP (K) (6.25) Aixi + Biui = 4K-1\^^K) 

Ai,9ixi + B^m = e\K) -» \§] 
Xi e xuui e Ui 

where y{ = uu-itin 

Using \\ s!, calculate the approximate cut update to be passed to the next 

unit i + 1 as afuldt = a{*\updt + a{^cupdt where 

(*) Ax(Kf{e(K)_e(k)) k R 
ai,loc,updt — Ai,8i y°i Pj J,«, t fV 

6.6.3 Solution of Distributed Control Problem (Prob. 6.1) 

We can now develop the distributed coordination algorithm for solving main 
distributed problem (Prob. 6.1) for an arbitrary, acyclic process network. To 
define the interactions between unit elements more systematically, we first 
develop an indexing of unit elements in the P-Graph. 

Assume the process contains S different stages with each stage containing 
possibly one or more unit elements. The word stage refers to a typical pro
cessing task, such as the primary reaction, separation, etc. Each such stage 
may contain a number of unit elements of similar processing capabilities. We 
then use the following procedure to assign an index (n, s) to all unit elements. 

We first assign the stage index 1 to all unit elements that use the main raw-
materials as their feedstocks, i.e., the input-set mat m for these unit elements 
comprise only the main raw-materials. All unit elements connected to these 
first stage unit elements are then assigned the stage index 2. The assignment 
is thus repeated until the unit elements in the terminal stage reached whose 
output-set mat0"* comprise only the end-products. These elements receive the 
stage index S. In this process of assigning stage indices, if an element receives 
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two or more different indices, because of it being connected to unit elements 
from two or more stages, then the highest stage index among all is used. Next, 
within each stage, the units are numbered from 1 to a maximum value (called 
Ns) tha t depends on the unit elements contained in tha t stage. We use a 
simple rule of progressing from top to bot tom in the P-Graph to define this 
unit number. At the end of this indexing, each unit element thus receives an 
index (n, s) where s refers to the stage index and n as the number of the unit 
element within tha t stage. 

We next use the notation described in Table 6.3 to define the solution 
procedure for Prob. 6.1. Note tha t for any stage s, S~ and 5 + denote the 
stages preceding and succeeding to stage s and comprise unit elements linked 
to any unit element in stage s. Note also tha t as per above indexing rules at 
least one unit in any stage s must be linked to stage s — 1 as well as stage s +1. 
Unit elements in stage s may also be linked to other stages in S~ and 5 + . The 
set M ( „ g ) hence encompasses the indices of unit elements in stages 5 + which 
are connected to unit element (n, s) in stage s. The set M.fn^s\ then denotes 
the subset of unit elements within M ( „ g ) tha t are connected to element (n, s) 
through the material stream d £ ma t ?^ - , . Similar interpretation can be given 
for S(n,g) and S ^ g ) . 

The nested solution procedure for Prob. 6.1 extends the algorithm for su
perset block (Algorithm 6.2) by using the results from parametric ./V-unit 
problems from the previous subsection. Algorithm 6.3 describes this dis
tr ibuted algorithm. As expected, the important step in the algorithm is to 
compute the approximate cut update terms a, K. dt to be passed between 
stages while taking into account the specific type of junction block by which 
the associated unit element is connected to other unit elements. 

Table 6.3. Notation for distributed coordination algorithm 

Number of process stages (stages indexed by s £ [ 1 , . . . , S]) 
Indices of stages preceding to stage s 
Indices of stages succeeding to stage s 
Number of units in stage n (units indexed by n £ [ 1 , . . . , Ns]) 
Index of unit n in stage s, n £ [1 , . . ., Ns], s £ [ 1 , . . . , S] 
Set of outgoing material streams of unit (n, s) (indexed by d £ mat?"*s)) 
Set of incoming material streams of unit (n, s) (indexed by q £ mat!" N) 
Indices of units in Ŝ t" connected with unit (n, s) 
Indices of units in Ŝ t" connected with outgoing stream d of unit (n, s) 

(Mfn,,) C M(n,*)) 
Indices of units in Ss connected with unit (n, s) 
Indices of units in S7 connected with incoming stream q of unit (n, s) 

(S(„,S) ^ S(n,S)) 

s 
s+ 

(n,s) 

M(„,3 ) 
Mt«,s) 

k ( j i , a ) 
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Algorithm 6.3 (Distributed Coordination Algorithm) 

Step 0: Set K := 1. Given f(n,s) = V(nts), the demands for unit elements (n,S) , 
n = 1 , . . . , Ns in the terminal stage S. For all s = [1,... , S] and n = [ 1 , . . . , Ns], 
assume an initial value of U(n,3)i^n = u L j ) j i n , and for all i £ S(n,a) set v, s-)i = 

(o) 
M , . . . 

(n,s)i,in 

Step s, s = 1,...,S: Sub-problem SP^s),n = 1,...,NS: Use a^s), z\*^s), 
i £ S(n,s) t° form, a new optimality cut in unit (n,s)'s problem, SP(nL. Solve the 
resulting problem 

op(K) 

minimise 
3 ( n , „ ) . « ( n , a ) 

S.t. 

a(n,s) — v(n,s) + J(n,s)(X(n,s),U(n,s)) 

v(n,s) d_ 2-j \ai(n,s) + ai(n,s),updt + 

Ai(n,s)\Zi(n,s) u(n,s)i,in)j 

A I D V ^ ~(K-l) 
Ad(n,s)%(n,s) + &d(n,s)U(n,s) ~ Xj Vj(n,s)' 

k£K 

d £ mat°£a) 

(6.26) 

to obtain the optimal values of x, s-.,U/n K{ in, optimal Lagrange multipliers X, K 

associated with the linking equality constraints and the optimal objective value a, ,. 

Note that ^4,j(n,s) and -Bd(n,s) denote the d* row in constraint matrices -A(n,s) and 

-B(njS) associated with unit (n, s). The solution u, K{ in defines the demands sent by 

unit (n,s) to all linked supplier elements S(HtS) at the next iteration. 

™e z™a)j = v ^ , J G M[n,a), d £ mat^s). Set \™a)j = Xd
(n,s), Vj £ M ^ , 

where \<ns\ denotes the ct element in X.K. Calculate the aggregate cut update 
&(n,s)j,updt ^? 

(n,s)j,updt ~ Z-^ \ai(n,s),updt J + a(n,s)j,loc,updt (6.27) 

where a, ,. loc dt denotes the approximate cut updates that unit element (n, s) 
generates locally for parametric demand variations from customer elements j £ 
M(„jS) while a\,„ s) updt are the approximate cut updates that it receives from supplier 
elements i £ 5(„]S). 
Step N+l: Iterate/Terminate: Terminate if the specific convergence criteria is 
satisfied, which is considered as, for a given e > 0 and for all s = [1,. . . , S] and 
n = [l,...,Ns], 

Ux{K) v{K) \-lx(K-1) u(K-1)\\\<e (6 28) 

Else, set v) ,. = u, ,. . , K := K + 1 and return to Step 1. • 
: (n,s)i (n,s)i,in: L 



6.7 Implementation and Numerical Examples 119 

Note the bidirectional nature of information flow between unit elements in 
Algorithm 6.3 - the flowrate demands for feedstocks (in the form of u) K. . ) 
flow backwards and the resulting supply proposals (in the form of optimality 
cuts) flow forwards. 

6.7 Implementation and Numerical Examples 

The distributed coordination algorithm (Algorithm 6.3) developed in the pre
vious section was implemented using MATLAB® software, the details of the 
implementation are provided in Appendix C. In what follows, we simply de
scribe a few numerical examples to illustrate the different features of the al
gorithms discussed in the previous sections. An application of Algorithm 6.3 
to an industrial-scale, multipurpose process problem is discussed in the next 
chapter. 

Example 6.9. The first example illustrates the approximate optimality cut up
date technique described in Section 6.5.2. Consider the following problem. 

minimise x\ 1 + x\ 2 + x\ 3 + x\ + x\ \ + x\ 2 + x\ 3 
151,1,151,2,£1,3,3:2 ' ' ' 1 . 1 

Xi,i + Xi,2 + ^1,3 + X2 = 3 (6.29) 
2.5x1,1+0.7x1,2 + 1.6x1,3+61 = 5 

where xi, . and X2 refer to the local variables of unit elements 1 and 2, while 
0 is the parameter vector local to unit element 1. The formulation of the 
associated sub-problems at iteration K in the form of Algorithm 6.1 can be 
written as follows: 

minimise a.\ = x\ 1 + x\ 2 + x\ 3 + xi , i + xi 2 + xi 3 
£ i , i , a ; i , 2 , a : i , 3 ' ' ' ' ' ' 

o -(-K-i) \(K) (6.30) 
S.t. Xi,i + Xi,2 + Xi,3 = 3 - X\ ' ~* \ \ ' \v.uvj 

2.5xi,i + 0.7xi,2 + l-6xi,3 +0 = 5 

and 

minimise «2 = ^2 + x\ 
vi,xi (a QI N 

s.t. i/2 > a\ ' + X{ '(x{ { + x{ 2 + x2 - 3),fc G K 
where Ai is the Lagrange multiplier. Assume 6 = 1 when the algorithm is 
started and tha t it changes to 9 = 5 at iteration 5 and remains the same 
thereafter. If the approximate cut updates are not used when 6 changes, then 
the master problem will retain the optimality cuts from previous iterations 
and result in an incorrect solution. Fig. 6.11 illustrates this effect by comparing 
the value function ct2 as a function of X2 for three different scenarios: Case 

SP[f 

SB (K) 
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A - when no updates are used; Case B - when the algorithm is restarted 
at iteration 6 after 9 is changed; and, Case C - when the approximate cut 
updates are applied. Note tha t the parametric effect results in an incorrect 
solution in case A, while the use of approximate cut updates in case C gives 
the same result as case B where the algorithm is restarted after the change 
in 0. 

(A) Without Using <xupdt (B) Target: With 6 = 5 (C) With Using <xupdt 

for All Iterations 

Value Function 
Curves at 

Different Iterations 

Fig. 6 .11. Example 6.9: Effect of using approximate cut updates aupdt - (A): 
Without aupdt results in an incorrect solution, (B): Target solution - restarting the 
algorithm with 8 = 5, (C): With aupdt - results in a correct Solution 

The next four examples refer to application of the Superset block algorithm 
(Algorithm 6.2) to four different process networks shown in Fig. 6.12. The 
da ta for matrices Qi, Ai, Aijoc and vectors Cj, B{, Bijoc for these examples 
are given in Appendix C. 

Example 6.10. ( M I X E R ) The first example refers to a M I X E R block with three 
unit elements. Table C.2 in Appendix C shows the progress of iterations during 
an execution of Algorithm 6.2. The variables U(ns^ and X(njg^) therein refer 
to the zth element of the input and state vectors of sub-problem <SP(„)g), 
while the last column shows the solution obtained for overall problem using a 
centralised algorithm. As can be verified, the solution obtained via distributed 
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Fig. 6.12. Process configuration for Examples 6.10 to 6.13 

algorithm matches with that from centralised algorithm within a predefined 
tolerance. 

Example 6.11. (SPLITTER) The next problem refers to a SPLITTER block with 
three unit elements as shown in Fig. 6.12. Note that for unit (1,1), the demand 
from unit (2, 2) becomes the uncontrollable parameter 9 when referred to 
(1,2). Similarly, the demand from unit (1,2) becomes the parameter 6 when 
referred to unit (2,2). The approximate cut update technique resolves these 
parametric effects by updating the optimality cuts in the sub-problems of units 
(1,2) and (2,2). Table C.4 in Appendix C shows the progress of iterations 
for Algorithm 6.2, where again the last column confirms that the resulting 
solution matches with that from centralised algorithm within a predefined 
tolerance. 

To demonstrate an additional feature of approximate cut updates, we 
change the terminal demands from 10 to 20 deviation units for units (1,2) 
and (2, 2) while the execution of the algorithm is in progress. Fig. 6.13 shows 
that the algorithm is able to pick up the change and converge to a new opti
mum. 

Example 6.12. (SPLITTER-STAIRCASE) The next example illustrates the nest
ing of junction blocks in a SPLITTER -STAIRCASE process, where the STAIR

CASE block refers to a Two-Units process as a special case of the MIXER or 
MULTIFEED blocks. 

As per the information flow described in Section 6.3, the demand t'(i,3)(i)2) 
from unit (1,3) to (1,2) propagates backwards to demand W(i)2)(i,i) that unit 
(1, 2) sends to unit (1,1). The same applies to units (2, 3) and (2, 2). The de
mands from terminal units (1,3) and (2, 3) thus parameterize the sub-problem 
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10 15 
Iterations 

10 15 
Iterations 

Fig. 6.13. Example 6.11: Effects of change in terminal demands for units (1, 2) and 
(2,2) 

of unit (1,1). The use of propagation of approximate cut updates along the 
network resolves these parametric effects by updat ing the optimality cuts in 
all four units (1,2), (1,3), (2,2) and (2,3) as described in Algorithm 6.3. Ta
ble C.6 in Appendix C summarises the progress of iterations and a comparison 
with the equivalent centralised solution. 

Fig. 6.14, similar to Fig. 6.13, shows the ability of the algorithm to pick up 
a change in demands for units (1,3) and (2,3) from 10 to 20 deviation units. 
The plots refer to the input demands W(I ,2 , I ) ! U (2 ,2 , I )> M ( I ,3 , I )> M (2 ,3 , I ) tha t the 
second and third stage units (1,2), (2, 2), (1,3) and (2,3) request from their 
supplier units. As can be seen, the algorithm converges to a new optimum. 

Example 6.13. ( M U L T I P R O D - S P L I T T E R ) The final example illustrates the nest
ing of a M U L T I P R O D block with a S P L I T T E R block. The example shows the 
combined parametric effects from M U L T I P R O D and S P L I T T E R blocks within 
a single problem. The demand from unit (3, 2) becomes the parameter 9 for 
unit (1,1) when referring to a combined problem of units (1,2) and (2,2). 
Units (1,2) and (2,2) thus both receive the same approximate cut update 
of the M U L T I P R O D type (Eq. 6.20) for demand variations from unit (1,3). 
Unit (3,2) similarly also receives a cut update of M U L T I P R O D type (Eq. 6.20) 
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Fig. 6.14. Example 6.12: Effects of change in terminal demands for units (1, 3) and 
(2,3) 

for a combined demand from units (1, 2) and (2, 2). In addition, the demands 
from units (1, 2) and (2, 2) also parameterize unit (1, l) 's sub-problem for each 
other's demand. Hence, these two units also receive an additional SPLITTER 

type cut update of the form Eq. 6.19. 
Tables C.8 in Appendix C summarises the progress of iterations and the 

convergence to the optimal solution obtained by a centralised algorithm. 

6.8 Future Extensions 

In the course of developing the distributed algorithm, we made various as
sumptions that helped us simplify the discussions. The algorithm can be ex
tended and generalised to a wider class of problems if one or more of these 
assumptions are relaxed. For example: 

• Infeasible Sub-problems: The assumption that constraints xi £ Xi, Ui £ U{ 
or Aij0CXi + Bii0CUi = 0 are sufficiently relaxed to allow unit i to accept 
any product demand V{ from downstream units can be relaxed by using 
so-called feasibility restoration technique for primal decomposition concept 
(Grothey, Leyffer & McKinnon 1999). 
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• Incorporating Linking Inequality Constraints: Apart from equality con
straints A{Xi + BiU{ = Vi, one can also include inequalities such as sharing 
of a limited quota of services (e.g., energy flow) linking multiple units. 

• Multiple Demand Variables: The case of singleton demand in vi can be ex
tended to a vector-valued demand, e.g., a trajectory of demand variations 
in time domain in the context of an optimal control problem. 

• Recycle and By-products: The case of recycle or by-products can be con
sidered. This requires further analysis as the unit elements acting as the 
customers along recycle are now situated upstream in the process. An 
approach based on classical research in process flowsheeting (Westerberg 
et al. 1979) can be considered in which the interactions along recycles are 
coordinated separately by breaking the recycle loop and treating the unit 
elements on one side as the final customers and the other side as the main 
suppliers. 

6.9 Summary 

This chapter proposed a distributed coordination strategy for reconfigurable 
process control. The key to the approach is a modular, bottom-up type prob
lem solving mechanism that solves the overall control problem by interac
tions between (distributed) unit elements. The decoupling between unit sub-
problems in the solution technique enables the introduction of new unit ele
ments. The unit elements are also able to respond to local disturbances dy
namically and adjust their settings (as shown via demand changes in Exam
ples 6.11 to 6.13). We also note that - in line with typical supply chain be
haviour - each unit element, acting as the customer of its feedstock demands, 
attempts to coordinate these demands among potential supplier elements. A 
propagation of this demand distributed across the process scheme ensures the 
process responds to changes in the demands in a dynamic and incremental 
manner. 
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Application of Distributed Coordination 
Approach — A Case Example 

7.1 Introduction 

To illustrate the application of distributed coordination approach, we now 
describe an example of an industrial-scale, multipurpose process plant. The 
example is derived from a similar example in Friedler et al. (1992) and re
flects largely the characteristics of modern process plants in petrochemicals, 
polymers and chemicals industries, except that, for simplicity, we omit the 
complexities of recycles or byproducts. These limitations however do not im
pede the generality of discussions in this chapter. The multipurpose nature of 
the example allows us to analyse a number of potential production scenarios 
that can be expected to arise in this class of industry in future. In this sense 
the example also reflects the long-term vision of a highly reconfigurable pro
cess control system and shows that it can be developed using a distributed 
approach. The system has developed in sufficient detail that it might be used 
as a benchmark problem. 

This chapter is structured as follows. The next section describes the exam
ple process considered in this chapter. Section 7.3 then introduces the problem 
formulation in terms of six different production scenarios used for analysis. 
The subsequent three sections then apply the developments from previous 
chapters to example process and these scenarios to illustrate how the pro
posed distributed coordination would operate under these conditions. 

7.2 Process Description 

The multipurpose process considered as example comprises 18 process units, 
each capable of performing one or more processing tasks. Fig. 7.1 diagram-
matically shows the initial physical layout of the process, which might, for 
example, be used for polymer, polyester and some petrochemical products. 
The process is able to produce three products A, B and C. Fig. 7.2 shows 
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Fig. 7.1. Process layout for multipurpose process example 

the initial product recipes for these products in terms of the sequence of pro
cessing tasks required to convert raw-materials to end-products. The oblong 
symbols therein represent the processing tasks while the rectangles represent 
the materials. The flow of materials is thus from top to bottom. Table 7.1 lists 
the structure of processing tasks in terms of the associated unit operation and 
the input and output materials for each task. Note that the recipes for all three 
products are of non-linear type, i.e., there exists more than one task sequence 
that can produce the same end-product. The dark-lined sequence in each case 
is the preferred sequence over others. 

We note that the tasks in Table 7.1 are not assigned to any processing units 
at this stage yet. Later in Section 7.4 we consider three different combinations 
of these 'initial' physical layout and product recipes to understand how the 
process of managing task assignment, i.e., recipe mapping, works and the 
various physical and product issues that surround it. 
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Product A Product B Product C 

Fig. 7.2. Product recipes for products A, B, and C (the dark lines show the pre
ferred task sequence 

As can be seen we have omitted services in both Figs 7.1 and 7.2 in order 
to simplify the discussions, and to also focus on the key aspect of demand-pull 

Table 7 .1 . List of processing tasks in multipurpose process example 

No. Type 

1. Reactor 
2. Reactor 
3. Reactor 
4. Reactor 
5. Washer 
6. Dissolver 
7. Dissolver 
8. Filter 
9. Reactor 
10. Washer 
11. Reactor 
12. Filter 
13. Filter 
14. Dryer 
15. Dryer 
16. Dryer 
17. Filter 
18. Dryer 

Inputs 

0,S 
S,W,Q 
S,R 
S,P 
K 
T 
U 
F 
K,L 
L,M 
U,N 
F,G 
H 
D 
E 
I 
H Y 
X 

Outputs 

K 
N 
T 
U 
F 
L 
M 
D 
F 
H 
H 
E 
E 
A 
B 
C 
I 
B 



130 7 Application of Distributed Coordination Approach - A Case Example 

Product 

A 

B 

I. Start II. Add 
product B product A 

order order 

VI. Change in 
product demands 

Time 
1 v ' IV. 'Reactor V Add a new 

III. Changeover Type 3' 'Reactor 
from product f a l l s TYPe 3 ' 

BtoC 

Fig. 7.3. Schedule of product campaigns and example scenarios 

type behaviour of process elements. The description in this chapter can simply 
be extended to also cover service flows. 

7.3 Problem Description 

Our main purpose for the example considered in this chapter is to analyse 
the ability of a process control system to respond to a change in plant con
dition tha t demands a level of reconfigurability from process operations. To 
perform this analysis systematically, we propose a set of production scenar
ios representing the type of changes or disturbances tha t can be expected to 
arise in future process operations. These scenarios, while not fully exhaustive, 
illustrate a number of the features of the proposed distributed approach in 
a best possible way. Fig. 7.3 shows a time-line for these scenarios within a 
production run. They are defined as follows. 

• Scenario I — Start p r o d u c t B order: Assume the process is idle at start , 
and tha t a new order for product B arrives. A campaign for producing B is 
initiated (This scenario should illustrate the process of integrating product 
recipe information in developing a process scheme); 

• Scenario II — A d d p r o d u c t A order: While B is being produced, as
sume an order for product A also arrives and is initiated immediately (This 
scenario should illustrate the process of managing change, in particular for 
those units which can be involved in both process schemes). 

• Scenario I I I — Changeover from p r o d u c t B t o C: While the order 
for B is nearing to its completion, assume an order for C arrives and 
is initiated in parallel to A and B. On completion, the order for B is 
stopped and removed (This scenario, similar to scenario II, should depict 
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Table 7.2. Links between scenarios and reconfigurability requirements 

R
eq

ui
re

m
en

ts
 Product/process diversity 

Easy modifiability 

Responsiveness 

Fault-tolerance 

Scenario 

1 

Y 

II 

Y 

Y 

Y 

III 

Y 

Y 

Y 

IV 

Y 

Y 

V 

Y 

VI 

Y 

the process of changeover but in an opposite way, i.e., the product B is 
now also removed). 

• Scenario IV — 'Reactor Type 3' fails: Assume at this stage one of 
the 'reactor type 3' fails, and is unable to perform its task. (This scenario 
should illustrate the ability of the system to tackle failures and support 
graceful degradation of performance); 

• Scenario V — Add a new 'Reactor Type 3': Finally, assume a new 
'reactor type 3' is added in its place or assume the failed unit recovers after 
repair (This scenario should illustrate the modifiability of the network to 
support inclusion of a new facility, e.g., a new process unit in this case). 

The above scenarios illustrate the qualitative aspects of reconfiguration, 
which in the distributed case refer to architectural and interaction issues. In 
addition, a sixth scenario is considered below to demonstrate the quantitative 
aspect of the system to respond to a control change or disturbance. 

• Scenario VI — Change in product demands: Assume all three prod
ucts are being produced at the same time (e.g., during changeover from 
B to C) and that the demands for all three change by 10 deviation units 
from their current demand set-points (This scenario should illustrate the 
responsiveness of the system in terms of propagation of demand changes 
to whole process network). 

The above scenarios directly relate to four RPC requirements provided in 
Chapter 2 as shown in Table 7.2. 

7.4 Application of the D R P C Approach 

We now describe the distributed approach applied to this example. The de
scription below follows the outline of developments in the previous three chap
ters, i.e., (i) identification, (ii) organisation from Chapter 4 and (iii) interac
tion behaviour of process elements from Chapter 5 and (iv) coordination of 
their distributed process parameters from Chapter 6. 
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7.4.1 Identification of Process Elements 

The identification of process elements is carried out based on the physical 
structure of the process. 

• Unit Elements: Each process unit in Fig. 7.1 is associated with a separate 
unit element in the control architecture. In total, this results in 18 unit 
elements, each having a capability to perform one or more processing tasks 
from Table 7.1. The exact number of task(s) that a unit element performs 
is varied between a single task or multiple tasks as discussed in the next 
subsection. 

• Header Elements: Each piping network connecting unit elements in subse
quent stages in Fig. 7.1 is represented by a separate header element. This 
basically results in a header element for each raw-material, intermediate 
material and end-product. However, in a more flexible layout, as shown 
later in Figs. 7.5 and 7.6, the header elements can also be associated with 
more than one material types. We note that not all piping segments in 
the process need to be identified as header elements (e.g., the connection 
between units 3 and 6 in Fig. 7.1) if their role is purely to connect two 
or more unit elements with no added decisions about process or routing 
flexibility. 

• Service Elements: While services are omitted from discussions here, the 
suppliers of each service used by unit or header elements in Fig. 7.1 can 
be represented by an appropriate service element. 

• Product Elements: Each customer order for any of the three products is 
represented by a product element. All three product elements can thus 
coexist in the process as in scenario III. 

The process elements identified above are defined with their data models 
and control functions as shown in Fig. 4.3. We however omit these details and 
limit our focus onto their organisation and interaction behaviour. 

7.4.2 Organisation of Process Elements 

Similar to identification, the organisation of process elements mirrors their 
physical involvement in the process. In particular, each unit element is defined 
by the header elements that it is connected with, and each header elements 
by the unit or service elements that it connects together. In order to under
stand how this physical structure and interconnection of elements supports 
reconfigurability, we consider below how changing the flexibility available in 
the local design of unit, header or product elements can affect this property. 

• Unit Elements: The capability of unit elements is varied between each 
being able to perform: (i) a single task, or (ii) multiple tasks, where a task, 
as defined in Section 5.2, refers to a unit operation (e.g., reaction) with its 
associated materials and services. 
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Table 7.3. Variations in the organisation of process elements 

Case 1 

Case 2 

Case 3 

Recipe mapping 
Approach 

Product-centric 

Unit-centric 

Unit-centric 

Unit Element 
Capability 

Single task 

Single task 

Multiple tasks 

Physical 
Layout 

Fixed 

Full 

Flexible 

• Header Elements: The capability of header elements is varied by changing 
their flexibility to interconnect process units between: (i) fixed connec
tivity, where connectivity is limited as in Fig. 7.1, (ii) full connectivity, 
where all unit elements can be connected to all other unit elements, and 
(hi) flexible connectivity, on the spectrum between fixed and full connec
tivity, where connectivity is enhanced by increasing the number of possible 
connections between unit elements in the fixed layout. 

• Product Elements: The capability of product elements is varied by chang
ing their their involvement in the process based on the approach used for 
recipe mapping, (see Section 5.2), i.e., : (i) product-centric approach, where 
product elements are supplied with (non-linear) product recipes shown in 
Fig. 7.2, and (ii) unit-centric approach, where product elements are not 
supplied with any recipe at all, but this information is defined as part 
of the design of unit elements themselves. In the former, the product ele
ments centrally assign processing tasks to unit elements, while in the latter 
the unit elements themselves select the tasks based on recipe information 
supplied to them. 

The above variations thus entail different options by which the elements 
can be organised within the overall system. We consider, in particular, three 
such combinations characterised in Table 7.3 and represented in Fig. 7.4 (case 
1), Fig. 7.5 (case 2) and Fig. 7.6 (case 3). The oblong symbols therein repre
sent the unit elements, the rectangles represent the materials, and the lines 
connecting oblong and rectangle symbols are possible connections between 
unit elements. From these figures, we can make the following observations. 

• In all three cases, it is assumed that the unit elements are not defined with 
any a priori information about other unit elements they may be connected 
with. They acquire this information from the associated header elements 
during synthesis phase. 

• As compared to fixed layout in Fig. 7.4, the unit elements in the full 
(Figs. 7.5) or flexible (Fig. 7.6) layouts are defined with the exact set of 
materials they need to consume or produce. Embedding this additional 
information however does not fix the process schemes for either case as 
there exists multiple combinations of unit elements (in Fig. 7.5) or their 
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Fig. 7.4. Process layout: Case 1 - single task, fixed connectivity 

selection of local tasks (in Fig. 7.6) which can produce the same end-
product. The selection of a specific process scheme from these combinations 
occurs via distributed interactions between unit elements together with the 
associated product, header and service elements. 

• In the full connectivity layout (Fig. 7.5), there exists no clear distinction 
between different header elements, rather the whole network can be seen 
as a single header element comprising multiple sub-networks connecting 
individual process stages. Note that a layout of this nature would be rare 
to find in reality however it shows the possibility of interconnections in 
so-called pipeless plants where the header elements can be thought as the 
material carrying equipment being moved around the plant. 

• The flexible layout in Fig. 7.6 assumes that the unit elements are capable 
of performing multiple tasks. This feature in turn leads to a reduction in 
the unit element types from 18 in Figs. 7.4 or 7.5 to 8 in Fig. 7.6. As 
discussed later, this multipurpose capability combined with the flexible 
process layout in Fig. 7.6 helps enhance the reconfigurability of the control 
system to deal with changes or disturbances in a distributed way. 

7.4.3 Interaction Behaviour of Process Elements 

The process elements interact based on the interaction model presented in 
Chapter 5. With reference to the six scenarios described earlier, the identify 
phase leads to interpreting the effects of change or disturbance into specific 
requirements for reconfiguration. Where required (as in scenarios I, II, III), a 
new product element is also created to impose these requirements onto other 
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Fig. 7.5. Process layout: Case 2 - single task, full connectivity 

process elements. The define and reconfigure phases then involve the unit el
ements in the process together with associated header and service elements 
to build or amend the appropriate process scheme from possible interconnec
tions. The production of the order starts during operate phase. On completion 
of the order the process scheme is terminated in the terminate phase (e.g., in 
scenario III). During the operate phase, the process elements monitor plant 
conditions and invoke a new round of reconfiguration if a major failure or a 
disturbance is detected (e.g., as in scenario IV where a unit element fails or 
in scenario VII where the demands for end-products change). 

In what follows, we use the first five scenarios to describe the nature of 
interactions between process elements in all three cases in Table 7.3 individu
ally. We assume tha t the above interaction sequence operates in background 
and focus only on the key interactions between unit and product elements and 
also the outcomes of these interactions in terms of the structure of resulting 
process schemes. 

In the description we use the following notation: U followed by the number 
in process layout to refer to a unit element, PR followed by the product name 
to refer to a product element, and T followed by the number in Table 7.1 to 
refer to a task. 
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Fig. 7.6. Process layout: Case 3 - multiple tasks, flexible connectivity 

Case 1: Single Task, Fixed Connectivity, Product-centric 
Approach 

The first example demonstrates the interactions for Case 1 using the product-
centric approach for recipe mapping in the define phase. We describe the 
operations required for scenarios I-V. As stated earlier, in a product-centric 
approach the product elements are supplied with product recipes shown in 
Fig. 7.2 and their role purely is to assign those tasks on the dark-lined sequence 
to suitable unit elements, but if this is not achievable an alternative sequence 
may be chosen. 

I. Start product B order: On arrival of a new order for product B, a new 
product element PRB is created during identify phase. In the next define 
phase, PRB then engages with all unit elements in the process to perform 
recipe mapping. It announces each of its processing task on the preferred 
task sequence (i.e., dark-lined sequence for product B in Fig. 7.2) and 
assigns them to suitable unit elements based on the responses received. If 
no response is received for any of the tasks, then it may choose a nearest 
alternative sequence in the recipe to minimise de-assignment of previ
ously assigned tasks. The unit elements involved in the resulting tentative 
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schemes then refine these schemes into a single scheme that is used for 
reconfiguration and operation. Fig. 7.7(a) shows the layout of the final 
scheme if this whole sequence is completed satisfactorily. Note that PRB 
only selects unit elements which match with its preferred sequence. 

II. Add product A order: Next, a new product element PRA is created for 
product A which leads to a similar round of interactions involving all unit 
elements. Fig. 7.7(b) shows the process scheme resulting from these in
teractions. It now comprises both PRA and PRB. Note that although unit 
element U5 also produces material F for product A which is also an in
gredient in producing B, it is in fact not involved in the production of B 
because the task T5 is not allowed on the preferred sequence of PRB. Unit 
element Ul is however involved in both schemes. 

III. Changeover from product B to C: The changeover leads to creation of 
PRc and removal of PRB. Initially when PRc is created all unit elements 
in the process get involved in the creation of new process scheme for C, 
but as PRB is removed, those involved in producing B also terminate their 
tasks for PRB. Figs. 7.7(c) and 7.7(d) depict the resulting process schemes 
when all three product elements exist together and when only PRA and 
PRc remain. 

IV. Unit element Ull fails: Assume unit element Ull of type 'reactor type 1' 
fails and cannot supply material H any more. Thus, unit elements U17 
and hence U16 also cannot continue with their tasks. An alternative source 
of H is thus required. Since no other unit elements on the preferred task 
sequence of PRc can supply H, PRC invokes a new round of interactions. 
During identify phase, the requirement imposed for PRc is to choose an al
ternative sequence that can produce C. The subsequent interactions then 
follow as in previous scenarios. Fig. 7.7(e) shows the process scheme based 
on a different sequence involving U10. 

V. Unit element Ull Rejoins: The incoming unit element in this case an
nounces its capability to all product and unit elements. Since PRc can 
make use of its facility to revert back to its preferred sequence, it has 
a choice whether to continue with the ongoing scheme or to choose this 
preferred option. Assuming the decision rule defined in PRc is to choose 
the preferred sequence where possible, it invokes a new round of interac
tions and reassigns the tasks as appropriate to return to the scheme in 
Fig. 7.7(d). 

Note that unit elements in the above description only possess localised 
knowledge of their task capability (i.e., the type of unit operation they can 
perform). They do not have the knowledge of preferred task sequence or the 
materials or services associated with the individual tasks. Such information is 
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assigned to them by the product elements. As a result unit elements are unable 
to respond to process disturbances (such as failure of Ull) without interacting 
with product elements. This limitation is removed in the unit-centric approach 
as discussed in the next two cases. 

Case 2: Single Task, Full Connectivity, Unit-centric Approach 

Case 2 refers to full connectivity among unit elements which are now also 
defined with the exact set of materials for their tasks. Their role now involves 
finding from a large number of connections (due to full connectivity) a single 
process scheme that fits with the requirement of the product order. Below 
we describe the same scenarios (TV) to describe how the interactions would 
proceed in this case. 

I. Start product B order: On arrival of a new order for B, a product element 
PRB is created during identify phase. PRB is however not supplied with 
any recipe. Instead, the unit elements themselves identify the tasks they 
can to use to produce requested material. The interactions thus proceed 
in a demand-pull fashion starting from the end-product B. Since two 
unit elements, U15 and U18, can produce B, both initiate building a new 
process scheme. The build-up proceeds in the backward direction. Both 
units attempt to acquire the feedstock for their tasks (material E for T15 
of U15 and material X for T18 of U18) from upstream unit elements. 
All unit elements which can supply these feedstocks get involved. U18 
will however find that no other unit element in the process can supply 
X. It therefore cannot involve in producing B. For U15, the interactions 
proceed further. Fig. 7.8(a) shows the process scheme that results from 
these interactions after the synthesis phase is completed. 

It can be noted that, unlike Fig. 7.7(a) in Case 1, the final scheme 
includes all unit elements which could involve in producing B as there are 
no constraints on the task selection from product recipe. Note also that 
materials L and U are used by multiple unit elements - material L used 
by U9 and U10 and material U by U7 and Ull . These materials thus fall 
along two different branches of the same process scheme that lead to prod
uct B. Thus, if a unit element in either branch fails, the unit elements in 
the other branch should be able to take over its load within their capacity 
(see scenario IV). 

II. Add product A order: Arrival of a new product order for A leads to cre
ation of product element PRA and a new round of interactions. Since only 
U14 can produce A, it initiates the formation of a process scheme. The 
interactions proceed similar to previous scenario. Fig. 7.8(b) shows the fi
nal process scheme. Note that material F is now involved in both process 
schemes. Thus, when U8 makes its request for F, both U5 and U9, which 
are already engaged in producing B, also engage in producing A. These 
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elements subsequently reallocate their feedstock demands for K and L by 
re-interacting with upstream supplier unit elements. The effects of this 
reallocation incrementally propagates to other unit elements in both pro
cess schemes. 

III. Changeover from product B to C: Changeover from product B to C leads 
to creation of PRc and removal of PRB. Fig. 7.8(c) and 7.8(d) show the 
process schemes when all three product elements coexist and when only 
PRA and PRc remain. In total, two new unit elements U16 and U17 get 
involved while U12, U13 and U15 are removed. Subsequently, the latter 
three elements also terminate their interactions for material E and then 
for materials F and H. The unit elements upstream reallocate their ma
terial demands accordingly. 

IV. Unit Element Ull Fails: Failure of Ull leads to an abrupt termination of 
all its interactions with upstream and downstream unit elements. U2 will 
thus also be removed from process scheme for product C. Since U10 also 
supplies material H, it takes over the load from Ull within its capacity 
and reallocates its feedstock demands as appropriate. This response to 
failure emerges directly by the interactions between failed element Ull , 
and the affected elements U17 and U10. The resulting scheme from these 
interactions is not shown here for brevity, but its structure can be easily 
derived from Fig. 7.8(d). 

V. Add a New Unit U19 or Ull Rejoins: In either case the incoming unit 
element announces its presence to other unit elements in terms of the 
materials it can supply. Unit elements which can use this facility, e.g., U17 
here, then interact with it to reallocate its feedstock demands accordingly. 
The interactions should thus reinstate the scheme in Fig. 7.8(d). 

It can be seen that by supplying material-specific information for their 
tasks, the unit elements are able to manage recipe mapping activity in a 
distributed manner. This distribution helps manage a change or failure in 
a graceful manner compared to product-centric approach in Case 1. More 
importantly, the unit elements are also capable of selecting processing tasks 
that are known locally that otherwise may not be specified by the developers 
of product recipes situated often remotely. A benefit of this can be seen by 
comparing Fig. 7.7(a) with Fig. 7.8(a). In the former only those unit elements 
whose tasks match with the recipe are selected, while in the latter all unit 
elements which can involve in making B are selected. The latter is thus also 
likely to have a better chance to respond to a change or failure than the 
former. 
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Fig. 7.8. Illustration of process schemes: Case 2, Scenarios I, II 
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(c) III: Products A, B and C together 
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Fig. 7.8. Illustration of process schemes: Case 2, Scenarios III, IV 
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Case 3: Multiple Tasks, Flexible Connectivity, Unit-Centric 
Approach 

Case 3 (Fig. 7.6) removes the limitation of single task capability and also 
considers flexible connectivity among unit elements. The unit elements now 
receive a combined choice of selecting local tasks and/or the supplier elements 
for their feedstocks in developing the process schemes. As the description of 
scenarios I-V next illustrate, this flexibility leads to an added freedom in 
responding to emerging changes or disturbances than the previous two cases. 

I. Start product B order: On arrival of product order for B, a new order 
PRB is similarly created with a new round of demand-pull interactions. 
Four unit elements, U14, U15, U16 and U18, can produce B. For U18 the 
scheme cannot proceed as no unit element can supply X. For the other 
three elements the interactions proceed further. U8, U13, U12 and U17 can 
supply E: U8 and U13 via task T13 and U12 and U17 via T12. All four 
hence get involved and try to extend the process scheme by acquiring their 
feedstock H for T13, and {F, G} for T12. Note that there are multiple 
task sequences available for producing both F and H. Unit elements U5 
and U10 can use task T5 to produce F and T10 for H. Similarly U9 and 
Ull can use task T9 for F and T i l for H. These unit elements thus face a 
choice when they attempt to acquire feedstocks for these alternative tasks. 
The final selection of a specific task would occur during synthesis phase 
when unit elements refine these tentative process schemes into a single 
scheme. To simplify the discussion, we consider an assumption that the 
unit elements select the first task in the sequence in Fig. 7.6 when they 
have such a choice, i.e., U5 and U10 select tasks T5 and T10 respectively, 
while U9 and Ull select tasks T9 and Ti l . The complete process scheme 
thus developed involves six more unit elements from upstream. We do not 
show the resulting scheme for brevity. We can see however that compared 
to Cases 1 or 2, the introduction of multipurpose character of unit ele
ments with flexible connections leads to increased choice available to unit 
elements for producing B. 

II. Add product A: On arrival of product A order a new product element 
PRA is created which announces its requirements. Unit elements U14, U15 
and U16 which all can produce A are however engaged with PRB. These 
unit elements, while continuing with their tasks, initiate a new round 
of interactions to develop the tentative schemes for A. During synthesis 
phase these elements then use a production goal to decide whether or not 
to de-commit from their existing tasks and involve in the production of A. 
For simplicity of discussion, we assume that U14 prefers the first task (i.e., 
T14) in sequence in Fig. 7.6 over T15. It hence de-commits from T15. Its 
capacity for producing B is transferred to U15 and U16 as appropriate. 
The same decision rule also extends to unit element U8 which de-commits 
from its task to involve in the process scheme for A. 
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III. Changeover from product B to C: Creation of PRc leads to U16 chang
ing its task from T15 to T16 (by continuing with the assumption of task 
preference). Unit element U15 is now the only element producing B. The 
same change also occurs for U17 which changes from T12 to T17. Subse
quently, when PRB is removed, all unit elements which were engaged with 
product B de-commit from their tasks. These unit elements now become 
available and announce their capabilities to other unit elements. The pro
cess schemes for products A and C are thus revised to involve these unit 
elements as appropriate. 

IV. Unit Element Ull fails: The failure of Ull results in a partial loss of sup
ply for material H. U10 which is also involved in producing H attempts 
to take over its load through T10. It is possible here that U9 could replace 
Ull if material H is more essential than F when comparing the impor
tance of product C to product A or if the capacity for F can be shifted to 
other unit elements in the process scheme for A. The unit elements make 
these decisions during synthesis phase in deciding the final process scheme 
and their local operating settings. 

V. Add a New Unit U19 or Ull Rejoins: The new element announces its 
capabilities and gets involved in the interactions. If U9 has changed its 
task in the previous scenario than it has a choice to revert back to its 
original task since an alternative supplier of H is available. Using the rule 
of task preference, it will do so. The outcome of the interactions should 
lead to reinstating the scheme in Scenario III. 

As we can see, the enhancement in local capabilities of unit elements aided 
by the flexibility in their interconnections leads to an increased choice and re-
configurability in all scenarios described above compared to Cases 1 and 2. 
This observation thus provides a crucial guideline in organising the process 
elements based on the distributed architecture and the interaction model dis
cussed in previous chapters. 

7.4.4 Coordination of Distributed Operating Settings 

The coordination of local and network parameters of process elements occurs 
via their distributed interactions. During synthesis of a process scheme from 
multiple tentative schemes this coordination involves various mixed-integer 
decisions such as which tasks and hence supplier elements should be selected 
(as discussed in Case 3). While a complete computational framework covering 
all such decisions is beyond the scope of this text, the algorithm presented 
in Chapter 6 provides a sensible framework to define these interactions in a 
mathematical form. 

Below, we illustrate the developments in Chapter 6 by applying them 
to the current example, in particular to scenario VI. We use the layout in 
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Fig. 7.8(c) which includes all 17 unit elements involved in making A, B, and 
C. It is assumed tha t the unit elements have found this process scheme during 
synthesis phase and the aim of distributed algorithm is to find the settings of 
local and interaction parameters . 

M o d e l l i n g t h e Local D y n a m i c s of P r o c e s s E l e m e n t s 

The local dynamics and interconnections of unit elements are modelled us
ing the linear, dynamical model presented in Section 6.2. In particular, the 
demands for outgoing products of a unit element are treated as disturbances 
and the demands tha t it places for materials and services to upstream unit 
elements and service elements are treated as the manipulated variables tha t it 
controls. Tables C.9 and C I O in Appendix C define the problem da ta for all 
17 units in Fig. 7.8(c). The problem da ta is implemented using the framework 
defined in Appendix B. 

O p e r a t i o n of t h e D i s t r i b u t e d A l g o r i t h m 

Each of the 17 unit elements is supplied with the generic unit software mod
ule defined in Appendix B. As stated therein, the module is generic in tha t 
it applies to all four types of junction block connections of a unit element. 
Depending on the type of junction block generated in the synthesis phase, the 
optimality cuts generated are varied as appropriate. 

To model scenario VI, we assume tha t all three products initially have a 
demand of 10 deviation units from a nominal set-point. Tables C . l l and C.12 
in Appendix C summarise the progress of the distributed algorithm for local 
state and manipulated variables X{tZ and u^z for unit element i = 1 , . . . , 17, 
where z refers to zth element of X{ and U{ for unit element i. Note tha t we 
have numbered unit elements by i = 1 , . . . , 17 instead of the ordering (n, s) 
in Chapter 6. It can be seen tha t the algorithm converges to optimal solution 
within three or four iterations, although an accuracy of four digits requires 
further iterations. 

As a next step to scenario VI, the demand for all three products is changed 
from 10 to 20 deviation units after iteration 10. Fig. 7.9 shows the effects of 
approximate cut updates on the sub-problems of unit elements 14 and 16. 
Fig. 7.10 demonstrates the effects of this change in demands in terms of the 
feedstock demands tha t unit elements 14 and 16 place to their upstream units. 
The solution algorithm is able to absorb this change and converge to a new 
optimum solution after 21 iterations. 

Fig. 7.11(a) on Page 148 shows the computational performance of the 
distributed algorithm in terms of floating-point calculations (flops) required 
as compared to a centralised algorithm for solving a series of 30 different 
data-sets for the same problem. In the case of the distributed algorithm, we 
terminate the algorithm if the number of iterations reaches more than 20. We 
can observe tha t the distributed algorithm, although not as efficient (which is 
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Fig. 7.9. Effects of approximate cut updates on the value functions of unit elements 
14 and 16 sub-problems 
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Fig. 7.10. Effects of change in terminal demands of unit elements 14 and 16 
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not the aim for reconfigurable control), compares well to centralised algorithm 
in most cases. Fig. 7.11(b) shows the number of iterations required for solving 
all 30 problems in the distributed algorithm. Again, the iterations remain 
limited and within a range of 5 to 20. 

7.5 Summary 

This chapter considered a case example of a multipurpose process plant to 
illustrate the reconfigurable process control developments from the previous 
three chapters. The discussions in the chapter have clearly highlighted the 
nature of bot tom-up response of process elements under changing conditions 
which should be compared to those of a conventional system where the same 
response would be derived by a higher-level scheduler or optimiser. We em
phasise tha t in D R P C this response is not pre-defined in any of the three 
cases considered, but rather it emerges from the localised decision rules of 
the product and unit elements involved and a global method for coordinating 
these decisions through the interaction model. 
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Conclusions 

The research in this monograph has presented a distributed approach to the 
control of process operations that require a high degree of reconfigurability. 
A distributed coordination approach based on the distributed paradigms of 
holonic manufacturing and supply chain management was developed in this 
text to develop a blueprint for reconfigurable process control systems. 

In this chapter we now summarise the key contributions from this work, the 
limitations of the research, and the areas for future work where this research 
can be extended. 

8.1 Main Contributions 

The DRPC approach promotes a bottom-up method to the design and inte
gration of process control systems. The bottom-up approach is preferred as 
it enables rapid integration and reconfiguration, both during and after the 
design life-cycle. The overall design method of a DRPC system then operates 
in the following sequence: 

i. a top-down decomposition of the top-level requirements into correspond
ing low-levels requirements; 

ii. interpretation of the low-level requirements into the selection of process 
elements and assignment of their control responsibilities; and 

hi. design, implementation, and integration of process elements into a com
plete system in a bottom-up manner. 

While the top-level requirements in step (i) are expected to cover a range 
of possible production scenarios, they may not - and need not be - exhaustive 
as the design should be reconfigurable enough to allow for new requirements 
at any stage in the design or operation life-cycle. Similarly, the decomposition 
of top-level requirements may only be required to the level of abstraction 
where they can be delivered by the self-contained design of process elements. 
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For example, in case of a reaction operation, if the design of the reactor 
element permits, the low-level requirement assigned to tha t element should 
be of the form (perform reaction 'X') as opposed to specifying in detail the 
operation of individual actuators or the control policies. In steps (ii) and 
(hi), it remains important tha t the principle of low and least commitment 
(Valckenaers & van Brussel 2005) is employed so as to induce a maximum 
level of flexibility between elements to operate over a range of conditions, 
both planned or unplanned. 

Within this framework, the developments in Chapters 4, 5 and 6 provide 
the concepts and necessary guidelines to develop a design process from which 
an R P C system can be developed. These developments can be summarised as 
below. 

D i s t r i b u t e d Contro l A r c h i t e c t u r e 

The description in Chapter 4 started with introducing a new concept of process 
element as a stand-alone, modular building block of a D R P C system. It was 
suggested tha t the identification of process elements is done based on their 
physical involvement in the process while also observing tha t each element 
must have at least one but possibly more decisions tha t it can regulate on its 
own. A systematic method to perform such an identification was developed by 
Bussmann (Bussmann, Jennings & Wooldridge 2001, Jennings & Bussmann 
2003, Bussmann 2003) in the context of a discrete process. 

Chapter 4 later also identified and defined the structure of four key pro
cess element types as forming any D R P C system. When engineering a D R P C 
system, this identification of element types should be used to develop a library 
of multipurpose designs of process elements tha t can be deployed as 'off-the-
shelf. In step (ii) in the overall design method discussed at the beginning of 
the section, an appropriate element can be selected from this library to meet 
the low-level requirements. 

D i s t r i b u t e d Interac t ion M o d e l 

Chapter 5 introduced a distributed model for managing the interactions be
tween process elements. The proposed model builds upon two key aspects: 
(a) the supplier-customer design of process elements is used based on which 
these elements acquire their feedstocks and services from respective supplier 
elements and (b) the demand-pull type interaction behaviour is used to build 
the plantwide process schemes. The five steps of the reconfiguration process 
(Fig. 5.1) then define the sequence of interactions tha t elements must follow 
to develop or reconfigure a process scheme in response to changing plant con
ditions. The interaction model also characterised product-centric and unit-
centric approaches for recipe mapping as the two distinct approaches, the 
former being more appropriate for high variety of products while the latter 
more appropriate for frequent changes between the same products. 
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Distributed Coordination Algorithm 

One particular aspect of the interaction model - that of identifying the lo
cal operating settings of unit elements - was considered in Chapter 6 as an 
example of developing a distributed coordination strategy for managing the 
localised operations of process elements. It was shown that an economic in
terpretation of so-called nested decomposition algorithm can provide a sys
tematic method to implement the intended demand-pull type, price-demand 
guided interactions between elements in a mathematical form. While the clas
sical techniques in nested decomposition (Ho & Manne 1974, O'Neill 1976, 
Wittrock 1985) apply generally to series-connected networks, their extension 
using so-called approximate cut update technique enables their use in process 
networks of arbitrary but acyclic nature. The implementation of the algorithm 
is centered around a single, general-purpose unit module (see Appendix B) 
that covers all possible combinations of connections in which a unit element 
can be located within an acyclic network. For a practitioner intending to de
ploy the algorithm (even as part of conventional hierarchical model), it thus 
suffices to develop a single such module that can be incorporated as part of 
the design of any unit element. 

8.2 Limitations of the Research 

This work forms one of the first attempts at using distributed coordination 
for developing reconfigurable process operations. Since the scope of the de
velopment is wide, naturally some limitations remain. Below we describe key 
such limitations where further work could be useful. 

• Organisation of process elements: The control architecture in Chapter 4 
was developed to the extent of identifying the types of process elements and 
defining their structure, i.e., data models, control functions and connec
tions. An account of the flexibility in terms of the alternative configurations 
in which they can be organised (when developing a reconfigurable pro
cess plant from grass route) or the existing configurations can be changed 
(when revamping an existing control system) was not discussed at length 
as this forms a question of practical implementation. Some examples of al
ternative choices were given in Chapter 7, however for more specific design 
practices, it will be necessary to quantify how much flexibility is sufficient 
and cost-effective so as to address the end-user needs for a foreseeable 
future. 

• Interaction behaviour of header and service elements: The discussions in 
Chapters 5 and 6 can be extended to cover the interactions of header and 
service elements. For header elements, the issue is to define systematic 
methods for reconfiguring the process routes in a coordinated manner es
pecially when the transients occur. For service elements, the methods for 
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service distribution must be linked closely with the material exchange in
teractions because the consumer elements which use these services may 
also be connected via physical routes and therefore change in service allo
cation at one point can affect the operations in other parts of the network. 

• Nonlinear dynamics, transients and recyles in distributed coordination: 
The distributed control problem used as a basis in Chapter 6 was lim
ited to a simplified problem based on linear, steady-state dynamics model. 
The solution strategy developed therein could be generalised to other class 
of problems involving non-linear and/or dynamical models - the former 
class of problems can arise in distributing the optimisation layer while the 
latter in distributing the advanced control layer. 

8.3 Future Challenges 

In addition to the above limitations, there remain other broader issues con
cerned with this research where further challenges remain. 

• Tools for human interactions: Tools for human interactions should be de
veloped to define where and how a human role is involved as part of the 
reconfiguration process. Inclusion of the human role will be important in 
DRPC in identifying that a reconfiguration is necessary, and defining a 
feasible configuration from the available choices. It is envisaged that the 
actual reorganisation of elements will be automated in future, but humans 
will play a key role in making this happen. 

• Design methodology and integration within industrial practice: A compre
hensive design method for DRPC should be developed that offer complete 
guidelines for developing a system that fulfills end-user requirements for a 
sufficiently foreseeable future. The method should be also detailed enough 
to enable an engineer not familiar with distributed concepts to perform 
design tasks with little or no external help. For the short-term future, 
the design method should also consider a migration strategy for operators 
of the existing plants to incrementally move towards building the DRPC 
system envisioned here. Some aspects of migration have been discussed in 
Section 4.3. 

• Management of virtual enterprises: Finally, the most closely related field 
to the research in this text is the field of managing virtual enterprises 
themselves. In the past, supply chain management has benefited from con
trol engineering tools, e.g., for studying inventory control (Deonckheere, 
Disney, Lambrecht & Towill 2002, Perea-Lopez, Grossmann, Ydstie & 
Tahmassebi 2000, Chaib-draa & Miiller 2006). The distributed coordi
nation strategy developed in Chapter 6 could be extended to solve the 
large-scale control problems associated with managing a virtual enterprise 
in a distributed manner. 
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Appendix to Chapter 6: Background Concepts 

This appendix discusses the background concepts for Chapter 6. The so-called 
basic sensitivity theorem from sensitivity analysis is described in the next 
section to characterise the parametric sensitivity of an optimisation problem 
to variations in an exogenous parameter vector forming an internal part of 
the problem. The description here is adapted from Fiacco (1983). Section A.2 
then explains the concept of primal decomposition in a greater detail. The 
discussion therein is based on Geoffrion (1970) and Grothey et al. (1999). 

A . l Basic Sensitivity Theorem 

Consider the following optimisation problem 

Prh»{0) { 

minimise fix) 
x(0) JK ' 

s.t. hi(x)=0i, i = l,...,p, (AA) 
gj(x)<9p+j, j = l,...,m. 

where x € ffi™ and 9 is an exogenous parameter vector in Rk. 
Let x* be the strict local optima of Prhs(9), and A* and fj,* be the cor

responding Lagrange multipliers for equality and inequality constraints when 
9 = 0 (i.e., there exists a neighborhood of x* where there does not exists any 
feasible x ^ x* such that f(x, 0) < /(x*,0)). Let f*{9) = f(x(9)) denote the 
(local) optimal value function of Prhs{9) when x(9) solves Prhs{9) for 9 near 
0. 

The following result characterises the sensitivity of f*{9) for variations in 
9 in a neighborhood of 0. 
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Theorem A . l (Optimal Value Function Derivatives for Prhs(9), Corol
lary (3.4.4) in (Fiacco 1983)). 

If 

(i). the functions defining Prhs{9) in a neighborhood of 9 = 0 are twice con
tinuously differentiable in x in a neighborhood of x*, 

(ii). the second-order sufficient conditions for a local minimum of Prhs(0) hold 
at x*, with associated Lagrange multipliers A* and JJL* , 

(Hi), the gradients Vgi(x*,0) (fori such that g%{x* , 0) = 0) andVhj(x*,0) (all 
j) are linearly independent, i.e., Slater constraint qualification is satisfied 
(see Bazaraa, Sherali & Shetty (1993) for a definition of Slater condition), 

(iv). nl > 0 when gi(x*, 0) = 0, i = 1 , . . . , m, i.e., strict complementarity slack
ness holds, then 

then in a neighborhood of 6 = 0, 

• 
The above result, also known as Lagrange Multiplier Sensitivity theorem, 

suggests that for any given 9, the Lagrange multipliers resulting from solving 
P-rhs (9) provide the sensitivity of the optimal value function for variations in 
9 in a close neighbourhood of 0. In economic sense, these multipliers can also 
be interpreted as the so-called shadow prices or marginal costs defining the 
variation in optimum supply costs for a unit change in the product demands 9 
(Edgar, Himmelblau & Lasdon 2001). The theorem was used in Section 6.5.2 
to develop the so-called approximate cut update technique for the parametric 
two-units problem. 

A.2 The Concept of Pr imal Decomposition 

This section now describes the concept of so-called primal decomposition from 
(Geoffrion 1970) for the types of problems considered in Chapter 6. 

Consider the following optimisation problem for a large-scale system com
prising N subsystems. 

Problem A.2. 
N 

minimise £) fi(xi) 
x i=l 

N 

s.t. T,ri(xi)<R, i = l,...,N 
i=l 
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where X{ is an rij dimensional vector of real-valued variables associated with 
ith subsystem, Xt is a subset of ffin;, fi is the cost function for ith subsystem. 
The constraint Y!ii=nri(xi) — R i = I,- • -,N connects all subsystems and 
may represent a limited quota of resources being shared by the subsystems.• 

The presence of this linking constraint means that the local sub-problems 
cannot be solved independently. However, by assigning individual local limits 
fi, i = 1 , . . . , N, the problem can be recast to the following separable form: 

N N 

minimise 2_\ai(?i) subject to / _ V j < i ? , (A.2) 
i=\ i=\ 

where cti(fi) are the value functions denned as: for alH = 1 , . . . , N: 

ai(fi) = minimise fi(xi,Ui) (A.3) 
Xi,Ui 

S.t. X{ — riiyXjjUj) 

Xi e xhUi e Ui 
ri(xi,Ui) < f{. 

A primal decomposition algorithm (Geoffrion 1970) exploits this restruc
tured form to solve the problem via iterative, two-level coordination mecha
nism. The problem in Eq. A.2, denoted as SPM, is assigned to a higher-level 
coordinator, and the sub-problems in Eq. A.3, denoted as SPi, are assigned to 
individual subsystems i = 1 , . . . , N. The two-level coordination scheme then 
operates as shown in Fig. A.l. 

The coordinator first solves its problem SPM to find a feasible value of fi 
N 

for alii = 1 , . . . , N such that J2 ri(xi) < ^ i = 1,... ,N. These fi are then 
i=l 

sent to the subsystems. For a given value of fi, the subsystems then solve their 
problems SPi to find the optimum values x\ and /*, and the optimal Lagrange 
multipliers A|, which are returned to the coordinator. Using all responses, the 
coordinator problem is revised using to find a new value of fi that can reduce 
the total cost ^ i = 1 a\ for all subsystems. The interactions between two levels 
thus repeat until fi,i = 1 , . . . , N converge to a fixed point. 

Note that to decide optimal distribution fi, the coordinator needs an ex
plicit representation of the value functions on. Similarly, it also needs to ensure 
that the value of fi passed to subsystem i is such that the sub-problem SPi 
in Eq. A.3 remains feasible, i.e., fi belongs to a set 

Vi = { fi\ 3 Xi,Ui for which Xi = hi{xi,Ui) (A.4) 
Ti[Xi, Ui) \ Ti 

Xi e Xi,ut e Ui}. 

In (Geoffrion 1970), Geoffrion suggested a tangential approximation scheme 
to build an approximation of both en and Vi in an iterative manner and use 
that in solving the problem in a decomposed form. 
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Solution of 
Local Sub-problems 

esource Distribution 

„ ff(*h \ « .••• 

Fig. A . l . Primal decomposition scheme 

A . 2 . 1 A p p r o x i m a t i o n of a i ( f i ) 

Under a set of suitable regularity assumptions (see assumptions A l and A2 
in Geoffrion 1970), the value function cti(fi), for any i = 1,...,N can be 
represented as a supremum of its linear supports, where a linear support has 
the following definition. 

Def in i t ion A . 3 (Linear S u p p o r t (Geoffrion 1970 , Rockafel lar 1 9 7 0 ) ) . 
A linear support to a smooth, convex function f(x) is any linear function 
whose value is always less than or equal to that of the f(x), with equality 
holding at some point in the domain of f(x), i.e., in the range of x values 
where f(x) is finite (see Fig. A.2). A linear support can be represented as the 
inequality 

f{x)>f{x) + Vf{x){x-x) 

where V / ( x ) denotes the gradient of f(x) with respect to x at x. • 

We then have the following result. 

P r o p o s i t i o n A . 4 ( T h e o r e m 3 , Geoffrion ( 1 9 7 0 ) ) . Let fj be such that the 
problem in Eq. A.3 has an optimal solution (xi,Ui) and an optimal multiplier 
vector Aj(fj) € Ai C ffi™7-; associated with ri(xi,iii) < f{ constraints. Then 
the function 

OLiih) ~ \ (fi)(fi -fi), 

is a linear support to cti(fi) at f{, and that 

(A.5) 

ai(fi) > ai(fi) - \J(fi)(fi - fi) for all ft 
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Linear Support of f(x) 

Fig. A.2 . Linear support 

Proof. From the basic sensitivity theorem (see (Fiacco 1983) or Theorem (A.l) 
in this appendix), it is known tha t 

Vet,- -Aj(r j ) . 

The statement then follows from the definition of linear support . • 

This result can be used to develop an iterative algorithm tha t incremen
tally builds an improving approximation of ctj using its linear supports . For 
example, consider a case where we are at the Kth iteration in an algorithm for 
solving Prob. A.2 and tha t an optimal value of the multiplier vector Â  for 

(k) 

alii = 1 , . . . , N has been found at each point f\ , k € K , where k indexes the 
iteration count and K = { 1 , . . . , K}, then the corresponding approximation 
to ctj at iteration K can be written as a piecewise linear function. 

„ ( * : 
(n) sup 

k=l,...,K 
{"»( r,(fc))-(AJ*>)r(r4 f> ) } , (A.6) 

Fig. A.3 depicts the nature of this approximation. The figure on the right 
therein shows how the linear supports approximate the actual value function 
ai(fi) in the figure on the left. 

*i(n)t Linear Supports 

Ti 

(Xi(Pi)y 

>=> 

Ti 

Linear Supports Piecewise Linear Approximation 

Fig. A.3. Piecewise linear approximation of ai(fj) 
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We now have the following intermediate algorithm for solving Prob. A.2, 
where we are yet to decide the method for approximating the feasible regions 
Vi tha t ensure feasibility of sub-problems. 

Algorithm A . l (Primal Decomposition) 

Step 0: Initialise: Take a feasible solution f\ £ Vi, for all i = 1 , . . . , N in Eq. A.2 
such that the sub-problems in A.3 are feasible. Take K = 1. 
Step 1: Sub-problem SPi : Solve sub-problems in Eq. A.3 by any suitable optimi
sation solver. Recover an optimal multiplier vector \\ , i = 1,..., N. 
Step 2: Master Problem SPM: Add a new linear support to the master problem 
using A.5. Solve the resulting tangential approximation of the master problem using 
a suitable optimisation solver to get a new r. This can be written as, 

N 

minimise }_, ot\ yri) 

s.t. Jt,ri<R, (A'7) 

fieVi, i = i,...,N. 

By exploiting the form, of piecewise linear approximation a\ ifi) as in Fig. A.3, 
the above problem can be written more conveniently as, 

N 

minimise ^ Vi 
f'"i j = l 

s.t. Vi > a i ( r , ( 0 ) ) - ( A j
a ) ) T ( f i - f < 0 ) ) , i = l,...,N 

(A.8) 

Vi>ai(r\ ') - (\\ ') {ri-r\ '), i = l,...,N 
fiGVi, i = l,...,N. 

where [] denotes the transpose. Let the optimal solution of Eq. A.8 be denoted by 
f{K). 
Step 3: Iterate/Terminate: If r ^ in Eq. A.2 is converged to a fixed point (see 
below), then terminate. Else, set K := K + 1 and return to step 1. • 

Fig. A. l outlines the information exchange between sub-problems SPi, 
i = 1 , . . . , N and master problem SPM- Since a\ - being a piece-wise linear 
approximation - never overestimates the value function ctj, the optimal value 
of Prob. A.8 at each iteration provides a monotonically increasing lower bound 
on the optimal value of Prob. A.2. This coupled with the upper bounds tha t 
can be obtained from summing the optimal sub-problem objectives leads to a 
termination criteria for step K: Stop if 
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N N 

5 > i * ° t o ) - sup { J > ( f f - 1 ' ) } < e (A.9) 
i=l 0<k<K-l i=1 

where e is a small positive number. The first term represents the sum of opti
mal costs supplied by sub-problem solutions, while the second is the optimal 
cost obtained by the master problem using approximation of ^2i=1 on built 
over the last K i terations. 

Remark A.5. Note tha t , at each iteration, we add N new linear supports in the 
master problem in Eq. A.8. Tha t means, at the Kth i teration, Prob . A.8 will 
have KN linear constraints. This number can grow large as iterations proceed. 
We can instead interchange the summation E j = i v% and the supremum of i/j 
over its linear supports in Eq. A.8 to obtain an alternative master problem 
written as follows. 

minimise v 

N 

s.t. I / > E { a i M 0 ) ) - ( A r ) ) T ( r J - f | ° ) ) } ) 
i=i ( ' 

: (A.10) 

- > E U ( r f - 1 ) ) - ( A r ) ) T ( n - r f - 1 ) ) } , 

fiGVt, i = l,...,N. 

Prob. A. 10 now contains only K linear constraints instead of KN previ
ously. • 

Remark A.6 (Optimality Cut). In light of (Benders 1962, Geoffrion 1970), the 
linear support in Eq. A.5 is also often referred to as optimality cut. This is due 
to the fact tha t each such new linear support improves the approximation of 
the value function ctj in the master problem and hence leads to an improved 
lower bound of the optimal global objective cost. • 

A . 2 . 2 A p p r o x i m a t i o n of Vi 

A similar iterative scheme can be used to build an approximation of the fea

sible region V{ in Eq. A.4. The procedure starts with an initial approximation 

of Vt , for instance, a simple box constraint. At any iteration K of the Al

gorithm A. l , a value fj £ V^ for all i = 1 , . . . ,N can then be tested to 

be feasible by checking the feasibility of sub-problem SPi in Eq. A.3. 1 If fea

sible, we generate a new approximation a\ ' as before. Else, we exclude the 

1 Most commercial optimisation tools, such as the optimisation toolbox in MAT-
LAB, provide a facility to check whether a problem is feasible or not before solving 
it. 
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r(K-l) respective region of Vt ' by including in its approximation at the previous 
iteration a separating hyperplane tha t passes through the current value of fj . 
The formulation of this hyperplane can be obtained as follows. 

A point fi is in Vi if and only if it satisfies the system of linear constraints 

minimise 
UiEUi 

\fri(xi,Ui) < Xffi VAj £ Ai (A . l l ) 

where Ai = {Aj £ R™; : Aj > 0 and Y^j=i ^ij = 1} ' w n e r e K a r e the Lagrange 
multipliers obtained by solving the problem in Eq. A . l l . 2 Any constraint of 
the form A . l l is a separating half-space for Vi. Since scaling of Xf does not 
affect the solution of the above problem, a simple formulation of the separating 
hyperplane would be to include the constraint 

xf^r^u^xf^ff^ (A.12) 

into master problem SPM where K denotes the iteration count in Algo
ri thm A. l . This then allows for building an increasingly bet ter approximation 
of Vi for any infeasible value of fj . Fig. A.4 shows the logic behind building Vi 
in this manner where two different supports to Vi are obtained at two different 
infeasible values of r,-. 

Initial Approximation of Vi 

Boundary of V. 

Fig. A.4. Approximation of Vi using supporting hyperplanes 

Remark A.l (Feasibility Cut). Similar to the naming of optimality cut, the 
hyperplane in Eq. A . l l is also referred to as feasibility cut (Geoffrion 1970). 
• 

The above scheme of approximating Vi can now be incorporated in Algo
ri thm A.l to iteratively approximate both fi and Vi together. In a worst-case 

2 Again, many commercial tools, such as the optimisation toolbox in MATLAB, 
automatically return these infeasibility related Lagrange multipliers, when the 
original sub-problem in Eq. A.3 is infeasible. 
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scenario, however, such an algorithm can lead to a situation where it requires 
an infinite number of iterations to approximate Vi, i.e., it requires infinite 
separating hyperplanes to characterise Vi completely. 

A useful remedy to this effect was suggested by Geoffrion (1972) which 
is tha t any such infinite sequence can be detected at an early stage through 
providing separate provisions in the algorithm, and can be terminated prema
turely by extrapolating the sequence {f\ ,... ,f\ } to its limit point and 
building a hyperplane passing through this limit point. 

Alternatively, the authors in (Grothey et al. 1999, Grothey 2001) suggest a 
so-called feasibility restoration technique tha t tackles the worst-case scenario 
in a systematic manner. As the authors note, the failure of convergence in 
building Vi is due to the fact tha t a feasibility cut of the form in Eq. A. 11 
added in the master problem does not incur any new information about the 
effectiveness of the last change made in fj towards optimality of the global 
solution. The key idea behind their feasibility restoration technique is to solve 
again the infeasible sub-problem with an artificially enlarged feasible region 
tha t includes the infeasible solution within its interior. The modification then 
recovers a value of aq ' and Â  ' and provides the necessary cost objective 
information for algorithm to continue further. Thus, if 

f\ = max f 0,n(x\ ,u\"') - f\ ') 

denotes the vector of infeasibility in the resource constraints for a given value 

of r\ (where maximum is taken componentwise), then the following sub-
problem is feasible: 

a\ = m i n i m i s e / J ( X J , U J ) (A.13) 
Xi,Ui 

S.t. Xi — UiyXi7Uj) 

Xi e Xi,Ui e Ui 

ri(Xi,Ui) < r\ +m\r\ 

where m\ > 0 to ensure tha t the resulting sub-problem has at least one feasible 

solution strictly interior to its domain. The solution a] ' and A) ' of this 

modified sub-problem can then be used to build an additional optimality cut 

in the master problem apart from the usual feasibility cut as in Eq. A . l l . 
The remainder of the algorithm then proceeds according to Algorithm A.l 
together with the scheme for building Vi as discussed here. 

A . 2 . 3 Re levant R e s e a r c h 

The word primal in primal decomposition refers to the use of primal interac
tion variables (e.g., f{) in coordinating the sub-problems. In an alternative dual 
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coordination scheme, the dual variables, i.e., the Lagrange multipliers, are 
used for the same coordination purpose. The first primal coordination scheme 
is due to Benders (1962), while the first dual scheme is due to Dantzig & Wolfe 
(1961). Kornai & Liptak (1965) applied Benders's (1962) algorithm for solving 
a large-scale linear program for Hungarian national planning bureau. The pri
mal decomposition algorithm described here was taken from Geoffrion (1970). 
Geoffrion (1972) later extended much of the earlier work on the topic of pri
mal decomposition in his so-called Generalised Benders Decomposition (GBD) 
scheme for solving large-scale non-linear programs. Geoffrion's work was pio
neering in that it was later extended to various applications, for instance, in 
multicommodity distribution systems (Geoffrion & Graves 1974), process en
gineering (Takama & Umeda 1980), power systems (Alguacil & Conejo 2000), 
water resources management (Cai, McKinney, Lasdon & Watkins 2001) and 
communication networks (Mahey, Benchakroun & Boyer 2001). Molina (1979) 
surveyed the early research on both types of decomposition schemes. Various 
theoretical aspects on (generalised) primal decomposition were examined in 
(Bagajewicz & Manousiouthakis 1991, Sahinidis & Grossmann 1991, Grothey 
et al. 1999, Wu, Hartman & Wilson 2003). In process applications, Gross
mann and his co-workers applied several variants of primal algorithm and its 
extension (in the form of so-called generalised outer approximation) for solv
ing large-scale and/or non-linear problems of mixed-integer nature in process 
synthesis. See Grossmann & Daichendt (1996) for a review of related research. 
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Appendix to Chapter 6 — Implementation of 
Distributed Coordination Algorithm 

This appendix describes an implementation of the distributed coordination 
algorithm (Algorithm 6.3) discussed in Chapter 6. The prototype was devel
oped using MATLAB® software and its Optimisation Toolbox. MATLAB® 
was chosen as the preferred tool because of the different vector and matrix 
manipulation facilities that are available therein. The QP routine from Opti
misation toolbox was used to solve all quadratic programs in Algorithm 6.3. 
Development of a separate QP solver that best fits with the requirements 
of coordination algorithm was not considered necessary as the MATLAB QP 
routine provides the sufficient information for our implementation. 

B.l Data Structures 

The prototype was developed using the framework of Prob. 6.1. The unit 
elements were numbered using indexing method specified in Section 6.6. Dif
ferent components involved in the problem formulation were modelled using 
appropriate data structures and cell arrays in MATLAB. A brief description 
of these data structures and cell arrays is given below. 

B . l . l MtrlType and UnitType 

To model the P-graph form of the process, two different data structures 
namely - MtrlType and UnitType - were considered, MtrlType representing 
the material nodes and UnitType representing the unit elements. Tables B.l 
and B.2 depict their formulation. 

The sets of material and unit nodes in a P-graph were represented as 
MATLAB arrays mtrl or unit. Each element in these arrays is modelled using 
appropriate MtrlType or UnitType data structure. 
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Table B.l . MtrlType structure 

MtrlType.id % Material ID 
MtrlType.UnitTypeJn % UnitTypes which consume it 
MtrlType.UnitType_out % UnitTypes which produce it 
MtrlType.rmtrlflag % Raw-material flag, = 1 if raw-material, = 0 otherwise 
MtrlType.prdctflag % Product flag, = 1 if product, = 0 otherwise 

Table B.2. UnitType structure 

UnitType.UnitTypeJd % UnitType ID 
UnitType.type % Type of unit = 'interim', 'source', 'sink' 
UnitType.mtrLin % ID of incoming materials 
UnitType.mtrLout % ID of outgoing materials 
UnitType.unit_qty % Total number of units of this type 
UnitType.unit-id % Id of actual units of this type 
UnitType.CustCnxn % Customer connection object 
UnitType.SuppCnxn % Supplier connection object 
UnitType.Q % Unit's cost objective coefficients 
UnitType.c % 
UnitType.eqcon % Local equality constraints 
UnitType.ineqcon % Local inequality constraints (not used at present) 
UnitType.xss % State variables 
UnitType.uin % Input flow-rates 
UnitType.uutil % Other local variables/degrees of freedom 
UnitType.vout % Demand disturbance at outlet 

B . l . 2 CustCnxn a n d SuppCnxn 

The piping connections between unit elements were modelled using two data 
structures CustCnxn (denning the connection to a customer unit downstream) 
and SuppCnxn (defining the connection to a supplier unit upstream). Ta
bles B.3 and B.4 depict the structure of both connection entities. 

Each unit element may be connected to multiple supplier and customer 
elements. The associated instances of CustCnxn and SuppCnxn are combined 
into appropriate cell arrays and attached to corresponding instance of Unit-
Type data structure (see Table B.2). The number of instances of CustCnxn 
or SuppCnxn correspond to the number of entries in output-set (mat?"*) and 
input-set (mat™) of materials of specific unit element. 

B. l .3 Product Recipe and Mapping onto UnitType 

The product recipes of product elements were modelled using a cell array 
recipe. Each element in recipe refers to an individual product and comprises a 
sequence of recipe tasks modelled as a combination of incoming and outgoing 
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Table B.3. CustCnxn structure 

CustCnxn.UnitType % UnitType linked to this connection 
CustCnxn.mtrl % Type of material associated 
CustCnxn.minJIow % Minimum flow 
CustCnxn.max_flow % Maximum flow 
CustCnxn.CustUnit % Details of customer UnitTypes and units 
CustCnxn.eqcon % Output dynamics 

Table B.4. SuppCnxn structure 

SuppCnxn.UnitType % UnitType linked to this connection 
SuppCnxn.mtrl % Type of material associated 
SuppCnxn.minJIow % Minimum flow 
SuppCnxn.maxJIow % Maximum flow 
SuppCnxn.SuppUnit % Details of supplier UnitTypes and units 

materials. Two other variable arrays rmtrl and prdct were used to store the 
indices of incoming raw-materials and outgoing end-products. 

B.2 Unit Module 

Central to the implementation of Algorithm 6.3 was a unit module written 
as a MATLAB sub-routine. Table B.5 depicts the pseudo-code version of unit 
module. Note that this unit module is generic in that it can be applied to any 
unit element placed in any arbitrary network configuration. 

B.3 Overall Implementat ion 

Fig. B.l outlines the overall implementation of the prototype. The procedure 
runs in two parts: (i) initial definition phase, where all data structures and 
cell arrays are defined, and (ii) execution of the algorithm. 

To verify the optimality of the resulting solution, we also form an equiv
alent centralised problem and solve it using MATLAB QP routine. The aim 
is that the solution obtained from distributed algorithm must match that 
from the centralised algorithm. On occasions, we measure the number of flops 
(floating point operations) involved in both cases to make a comparison of the 
computational load. 
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Table B.5. Pseudo-code programme listing for Unit module 

Shared memory variables: vt, Zi, at, aij,Updt, A* for all units i in the network. 
The variables are indexed by iteration count K in order to store new values at each 
subsequent iteration. 
Local variables: Xi, u% 
for each CustCnxn do 

Retrieve Customer unitJds 
Construct Ai,Bi and AijOClBijoc matrices from CustCnxn.eqcon 
Construct 6, vector by combining total demand from all customer units 

end for 
for k = 1 to K do 

for each SuppCnxn do 
for all SuppUnits indexed by j do 

Retrieve Supplier unit-ids 
Retrieve a(k) a ( K ) \(k) z(k) k G K rteuieve ixji , WjiiUpdt, A ^ , z}H , n t xv 
Construct optimality cuts for iteration k £ K using this information 

end for 
end for 

end for 
Solve sub-problem SP^ associated with the current unit i 
for each supplier unit j do 

Update w> to be passed to unit j 
end for 
for all supplier units indexed by s do 

for p = 1 to K do 

Calculate total updates received from all suppliers otf,updt,supp — ̂ 2s aa,lpdt 
end for 

end for 
for each customer unit j do 

Update z\j and a], to be passed to j 

Calculate total a^updt = a(flpdt3upp + a^updtloc 

for p = 1 to K do 
Calci 

end for 
Pass the whole vector a:. u dt, the vector of cut updates, to customer unit j 

end for 
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• Generate recipe structure 
• Identify materials 
• Identify raw-materials & products 
• Identify recipe tasks 

• Define one UnitType for each task 
• Define SuppCnxn, CustCnxn 
• Define UnitType model data 

• Define network structure 
• Accordingly modify units 
• Identify supplier and customer 

unit_ids for each unit 

Define Problem Data 

1. Generate MtrlTypes 

2. Generate UnitTypes 

3. Generate units 

4. Define solution order 
between units 

5. Form and solve 
a centralised Problem 

Distributed Coordination Algorithm 

Iteration 0: Initialise 

Start forward pass 
Select Unit 1 in order 

Compare centralised 
and distributed solution 

Fig. B . l . MATLAB implementation of distributed coordination algorithm 



c 
Appendix to Chapters 6 and 7 - Problem Data 
for Numerical Examples 

This appendix provides the problem data for numerical examples discussed 
in Chapters 6 and 7. Tables C.l, C.3, C.5, C.7, C.9 and CIO define this data 
for Examples 6.10, 6.11, 6.12, 6.13 in Chapter 6 and the multipurpose process 
example in Section 7.4.4 in Chapter 7. 

Matrices [Bi Aj\ and [Bijoc Aivioc] in the tables represent the dynamics 
equations for individual unit. The cost terms Cj refer to linear economic objec
tives such as the consumption of utilities (as a function of incoming flow-rates 
Ui,in and states X{) or the linear costs emerging from deviation terms (ui—iii)2 

or (xi -Xi)2. 

We note the following points in reference to the data presented in this 
appendix: 

• The problem data for all examples were generated using MATLAB's rand 
and randn functions. Care has been taken to ensure that resulting Qi ma
trices in the objective functions fi(xi,Ui) are strictly positive-definite, i.e., 
the functions / , are strictly convex. 

• All units in the terminal tier (i.e., those which produce the end-products) 
receive a demand ij of 10 deviation units. 

• Separate cost coefficients for raw-material supply are not used but it is 
assumed that such are included as part of the objective functions. 

• The distributed algorithm is initialised using a feasible solution derived in a 
centralised manner by solving a linear program (using MATLAB's LP sub
routine) with zero objective terms and a composite model of all process 
units. In principle, this problem can equally be solved in a distributed 
manner using the Algorithm 6.3. 
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Table C . l . Problem data for MIXER example (Example 6.10) 

Variable Name unit (1,1) unit (2,1) unit (1,2) 

[Bi A{] 

/0.8 0 0 
0 0.9 0 

\ 0 0 0.5 

(0.2 0.4 1.5 
(14.1 11.7 15.0 

0.5 0 0 \ 
0 0.3 0 
0 0 0 .1 / 

-0.3 0.7 0.8) 
15.8 17.6 14.5) 

/0.3 0 0 0 \ 
0 0.2 0 0 
0 0 1 0 

\ 0 0 0 0.2/ 
(1 -0 .9 0.3 0.3) 
0.5 0.5 16.9 3.8 

[Bi,loc M 

Table C.2. 

Iteration 

loc\ 

Prog 

1 

(18.9 17.7 7.6) 

ress of iterations 

2 3 

(0.4 7.1 19.4) (3.2 3.2 17.6 19.9) 

in MIXER example (Example 6.10) 

4 5 6 Centralised 

u ( i , i , i ) 
x ( i , i , i ) 
x ( l , l , 2 ) 

U(2,M) 
x ( 2 , l , l ) 
x ( 2 , l , 2 ) 

U ( l , 2 , l ) 

« ( 1 , 2 , 2 ) 
x ( l , 2 , l ) 
x ( l , 2 , 2 ) 

Total Cost 

0.3250 
-0.1631 
-0.4284 

0.9793 
-0.8651 
0.2964 

-3.6762 
4.5199 
0.7455 

-0.7950 

-4.2441 

0.3236 
-0.1650 
-0.4206 

0.9785 
-0.8661 
0.2968 

-3.6777 
4.5201 
0.7455 

-0.7948 

-4.1877 

0.3237 
-0.1649 
-0.4208 

0.9785 
-0.8661 
0.2968 

-3.6777 
4.5201 
0.7455 

-0.7948 

-4.1877 

0.3237 
-0.1649 
-0.4208 

0.9785 
-0.8661 
0.2968 

-3.6777 
4.5201 
0.7455 

-0.7948 

-4.1877 

0.3237 
-0.1649 
-0.4208 

0.9785 
-0.8661 
0.2968 

-3.6777 
4.5201 
0.7455 

-0.7948 

-4.1877 

0.3237 
-0.1649 
-0.4208 

0.9785 
-0.8661 
0.2968 

-3.6777 
4.5201 
0.7455 

-0.7948 

-4.1877 

0.3237 
-0.1649 
-0.4208 

0.9785 
-0.8661 
0.2968 

-3.6777 
4.5201 
0.7455 

-0.7948 

-4.1877 
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Table C.3 . Problem data for SPLITTER example (Example 6.11) 

"Variable Name unit (1,1) unit (1,2) unit (2,2) 
/3.6 0 0~T /2.3 0 (T\ /0.23 0 0 \ 

Qi 0 2.3 0 0 1.5 0 0 0.15 0 
\ 0 0 3.1/ \ 0 0 2.1/ \ 0 0 0.21/ 

cf (-1.1 -0.6 -0.2) (0.7 -1.2 -0.5) (-0.4 1.0 1.8) 
[B{ Ai] (6.3 1.1 2.0) (2.7 2.6 4.0) (4.0 -4.2 -1.5) 
[Bi^loc Ai 

Table C.4. 

Iteration 1 

,loc\ (-6.8 0.9 --1.7) 

Progress of iterations 

2 3 

in 

4 

(0.6 2.9 • -0.1) (0.7 -0 .4 -5.1) 

SPLITTER example (Example 6.11) 

7 10 12 Centralised 

M(i,i,i) 0.0191 0.0523 0.0290 0.0338 0.0304 0.0306 0.0307 0.0307 
x (i' M ) 0.0150 0.4065 0.1314 0.1890 0.1485 0.1510 0.1516 0.1515 
X(i,i,2) -0.0684 0.0062 -0.0462 -0.0353 -0.0430 -0.0425 -0.0424 -0.0424 

M(i,2,i) 0.6317 0.4718 0.5841 0.5606 0.5771 0.5761 0.5759 0.5759 
s(i'2'i) -0.0579 -0.0219 -0.0472 -0.0419 -0.0456 -0.0454 -0.0453 -0.0453 
Z(i^2) 2.1112 2.1958 2.1364 2.1488 2.1401 2.1406 2.1407 2.1407 

«(2,2,i) 0.1571 -0.2373 -0.2337 -0.2917 -0.2911 -0.2996 -0.3010 -0.3010 
£(2^1) -2.3036 -2.6701 -2.6667 -2.7206 -2.7201 -2.7280 -2.7293 -2.7293 
x(2^2) 0.2022 0.1769 0.1771 0.1734 0.1734 0.1728 0.1727 0.1727 

Total Cost 2.7059 2.6980 2.7676 2.7694 2.7710 2.7710 2.7710 2.7710 
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Table C.5. Problem data for SPLITTER-STAIRCASE example (Example 6.12) 

Variable Name unit (1,3) unit (2,3) 

/2.2 0 0 \ /1.7 0 0 \ 
Qi 0 3.1 0 0 1.3 0 

\ 0 0 2.8/ \ 0 0 1.9/ 
cf (-2.4 -0 .2 -0.1) (-0.4 -0 .2 -1.5) 
[B{ A,] (2.0 -1 .9 -1.1) (0.2 -7 .5 -3.0) 
[Bj,ioc Aitloc] (-1.1 0.8 -1.5) (3.8 1.8 2.9) 

The problem data for unit elements (1,1), (1, 2) and (2, 2) are taken from those in 
Table C.3 for Example 6.11. 

Table C.6. Progress of iterations in SPLITTER-STAIRCASE example (Example 6.12) 

Iteration 

u(i,i,i) 

£(1,1,1) 

^(1,1,2) 

U(l,2,l) 

£(1,2,1) 

£(1,2,2) 

W(2,2,l) 

£(2,2,1) 

£(2,2,2) 

U(l,3,l) 

£(1,3,1) 

£(1,3,2) 

"(2,3,1) 

£(2,3,1) 

£(2,3,2) 

1 

0.0191 
0.0150 
-0.0684 

0.0357 
0.0220 
0.8523 

-0.7245 
-0.8261 
-0.0346 

2.5196 
-1.1776 
-2.4758 

0.4161 
-1.4688 
0.3665 

2 

-0.0099 
-0.3268 
-0.1335 

0.0788 
0.0035 
0.5744 

-0.3801 
-0.4552 
-0.0165 

2.5426 
-1.1516 
-2.4788 

0.4177 
-1.4676 
0.3636 

3 

0.0064 
-0.1345 
-0.0969 

0.0024 
0.0209 
0.6205 

-0.2417 
-0.3269 
-0.0075 

2.5388 
-1.1559 
-2.4783 

0.4183 
-1.4672 
0.3626 

4 

0.0090 
-0.1037 
-0.0910 

-0.0106 
0.0238 
0.6264 

-0.2727 
-0.3559 
-0.0095 

2.5383 
-1.1565 
-2.4782 

0.4181 
-1.4673 
0.3629 

6 

0.0076 
-0.1207 
-0.0943 

-0.0037 
0.0222 
0.6227 

-0.2767 
-0.3596 
-0.0098 

2.5386 
-1.1562 
-2.4783 

0.4181 
-1.4673 
0.3629 

8 

0.0074 
-0.1234 
-0.0948 

-0.0026 
0.0220 
0.6221 

-0.2774 
-0.3602 
-0.0098 

2.5387 
-1.1561 
-2.4783 

0.4181 
-1.4673 
0.3629 

10 

0.0073 
-0.1238 
-0.0949 

-0.0024 
0.0219 
0.6220 

-0.2775 
-0.3603 
-0.0098 

2.5387 
-1.1561 
-2.4783 

0.4181 
-1.4673 
0.3629 

Centralised 

0.0073 
-0.1239 
-0.0949 

-0.0024 
0.0219 
0.6220 

-0.2775 
-0.3603 
-0.0098 

2.5387 
-1.1561 
-2.4783 

0.4181 
-1.4673 
0.3629 

Total Cost 12.7200 12.8080 12.8409 12.8409 12.8413 12.8413 12.8413 12.8413 
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Table C.7. Problem data for MULTIPROD-SPLITTER example (Example 6.13) 

Variable Name unit (1,1) 

cf 

/3.6 0 0 0 \ 

0 2.3 0 0 

0 0 3.1 0 

\ 0 0 0 3.5/ 

(-1.1 -0 .6 -0 .2 1.5) 

[Bi A{] (6.3 1.1 2.0 -3.5) 

[Bj,iQC Aj,loc] (-6.8 0.9 -1 .7 1.8) 

The problem data for unit elements (1, 2) and (2, 2) are taken from those in Table C.3 

for Example 6.11 while that for unit element (3, 2) from Table C.5 for element (2, 3). 

Table C.8. Progress of iterations in MULTIPROD-SPLITTER example (Example 6.13) 

Iteration 

«(M,i) 

£(i,i,i) 

^(1,1,2) 

£(1,1,3) 

M(l,2,l) 

£(1,2,1) 

£(1,2,2) 

M(2,2,l) 

£(2,2,1) 

£(2,2,2) 

«(3,2,1) 

£(3,2,1) 

£(3,2,2) 

Total Cost 

1 

0.0285 

-0.0078 

-0.1680 

-0.0472 

0.6738 

-0.0674 

2.0890 

0.5036 

-1.9815 

0.2245 

0.3878 

-1.4896 

0.4165 

3.8165 

2 

-0.0266 

0.3239 

-0.0535 

-0.3131 

0.5185 

-0.0324 

2.1711 

-0.0963 

-2.5391 

0.1859 

0.3930 

-1.4857 

0.4072 

3.8455 

3 

0.0008 

0.0987 

-0.1118 

-0.1521 

0.6170 

-0.0546 

2.1190 

0.0369 

-2.4153 

0.1945 

0.3910 

-1.4872 

0.4108 

3.9382 

4 

-0.0077 

0.1678 

-0.0939 

-0.2016 

0.5868 

-0.0478 

2.1350 

-0.0791 

-2.5230 

0.1870 

0.3916 

-1.4868 

0.4097 

3.9393 

7 

-0.0030 

0.1289 

-0.1039 

-0.1738 

0.6038 

-0.0516 

2.1260 

-0.0721 

-2.5165 

0.1875 

0.3913 

-1.4870 

0.4103 

3.9428 

10 

-0.0031 

0.1303 

-0.1035 

-0.1748 

0.6032 

-0.0515 

2.1263 

-0.0760 

-2.5202 

0.1872 

0.3913 

-1.4870 

0.4103 

3.9429 

13 

-0.0031 

0.1300 

-0.1036 

-0.1746 

0.6033 

-0.0515 

2.1262 

-0.0760 

-2.5202 

0.1872 

0.3913 

-1.4870 

0.4103 

3.9429 

Centralised 

-0.0031 

0.1300 

-0.1036 

-0.1746 

0.6033 

-0.0515 

2.1262 

-0.0760 

-2.5202 

0.1872 

0.3913 

-1.4870 

0.4103 

3.9429 
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Table C.9. Problem data for multipurpose process example (Section 7.4.4) 

Unit 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

diag(Qi) 
1.9 2.5 2.3 2.0 2.3 
2.5 2.2 3.1 2.6 2.9 2.9 2.7 
2.7 2.4 2.9 2.1 2.5 
2.3 2.7 3.0 2.5 2.6 
1.8 3.0 2.0 
3.5 3.9 2.0 
3.0 2.7 2.3 
1.7 1.7 1.9 1.9 
1.8 2.4 2.4 2.2 2.9 
2.3 2.1 2.5 2.2 2.0 
1.8 1.6 1.8 1.9 1.9 
1.7 1.7 1.6 1.6 
1.7 1.7 1.6 1.7 
1.8 1.5 2.5 
1.7 1.7 1.8 1.8 
2.5 2.2 2.5 
1.7 1.7 1.7 1.6 

4 
-4.2 
-2.7 
1.4 
2.5 
2.6 
-3 

0.2 
1 

0.6 
-5.1 
-2.1 
-2.2 
-2.2 
-2.1 
-0.3 
0.5 
1.6 

-0.3 
-0.8 
0.9 
0.7 

-1.9 
-1.5 

-4 
1 

1.2 
-0.7 
-0.2 
-2.2 
-2.2 
1.1 

-0.3 
1.1 
1.6 

0.1 -0.5 
-3.3 -2.2 

0 1.3 
2.3-2.8 

-2.4 
1.5 

-3.5 
-1.8 -0.7 
-0.6 3.6 
-6.7 1.3 
0.3 -3.2 
0.6-1.4 
0.9-1.1 

-1.2 
1.8 0.1 
3.9 

-0.3 2.4 

0.2 
0.5 0 -0.7 

-2.7 
1 

4.1 
0 

2.1 

Table CIO. Problem data for multipurpose process case example (Section 7.4.4) 

Unit 
1 

2 

3 

4 

5 
6 
7 
8 
9 

10 

11 

12 
13 
14 
15 
16 
17 

6.4 

-4.9 

-8.2 

-1.4 

1.5 
-0.5 
3.2 
1.5 
7.3 

-5.5 

1 

1.2 
-3 

-0.4 
-1.1 

7 
5.5 

0.6 

-4.4 

-4.8 

1.3 

-3.8 
-2.3 
-6.8 
1.5 

3 

4.1 

11.3 

1.2 
-3 

5.9 
-1.1 
2.9 
5.5 

[Bi 
0.9 

2.1 

0.2 

10.1 

-1.6 
2 

1.7 
1.3 
4.3 

-0.5 

3.4 

-0.7 
1.7 

-6.7 
-1.5 
4.2 
-8 

Ai] 
4.5 2.6 

-2.5 2.1 1.5 3.9 

2.4 1.5 

3.8-5.3 

2.1 
3.6 7.7 

-4.5 -2 

0.9 6.7 

-8.6 
1.5 

-0.8 

1.1 

-3 
-10.3 

-4.7 
0.5 

[Bi,loc 
7.5 
0.3 
4.1 
0.6 

1.8 13.7 
-4.9 
3.5 

-2.9 
-4.4 
-3.6 
5.1 

-1.4 
5.6 

-5.1 
1.1 

2 
4.9 
1.3 

10.5 
-7.1 
3.7 
1.5 
2.9 
2.3 
1.5 

-3 
3.5 

-7.4 
1.6 
0.8 
0.4 

-3.4 
5.6 

-1.3 
12.5 
0.2 

-4.6 
1.7 
1.5 

-7.1 
3.7 
4.1 
2.9 

-3.4-
2.3 

-0.1 
0.9 

-6.5 
2 

2.5 
5.4 

-6.7 
2.7 
1.8 
4.9 
5.6 

-4.9 
0.9 

-4.2 
4.1 
-4 

-8.3 
-2.9 
4.5 

-2.5 
4.5 
0.7 
5.7 

11.1 
-6.1 

^ M , 

1 
3.8 
1.2 

-2.9 
0.2 

-8.1 
-7.2 
-3.4 
3.5 

6.1 
3.8 

-8.5 
3 

2.8 
4.3 
4.9 
-2 

-0.7 

-7.3 

1.2 

oc] 
0.7 
1.5 

6 4.2 6.6 
3.9 0.5 6.2 

-13.2 4.3 4.8 
-0.7 
-5.6 
4.5 

-10.6 

-8 
5.6 
0.4 
2.3 

-0.3 
6.6 
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Table C . l l . Progress of iterations for m variables in multipurpose process example 
(Section 7.4.4) 

Iteration 

Wl,l 

Ml,2 

«2,1 

M2,2 

«2,3 

«3,1 

«3,2 

«4,1 

M4,2 

«5,1 

«6,1 

«7,1 

«8,1 

«8,2 

«9,1 

«9,2 

«10,1 

Ul0,2 

Un,i 

Mil,2 

Ml2,l 

Ml2,2 

«13,1 

«13,2 

Ml4,l 

«16,1 

«16,2 

«16,1 

«17,1 

«17,2 

1 

0.0095 

0.0076 

0.1328 

-0.1431 

0.5550 
0.0411 

0.0308 
-0.3654 

0.1104 

-0.1527 
0.3582 

-0.0825 

-0.1921 

-0.2702 

0.8506 
-0.0292 

1.2992 

0.7731 
0.3484 

-0.4351 

0.1609 

0.0828 

-0.0240 

0.4433 
1.4841 

-1.4539 

-1.6569 

1.1624 

0.0349 

0.1560 

2 

0.0456 
0.0082 

0.0941 

-0.1659 

0.5670 
0.0074 

0.0142 

-0.3524 

0.1277 
-0.1622 

0.1253 

-0.0349 

-0.4540 

-0.5528 

0.8216 

-0.0445 

1.1814 

0.6854 

0.3348 

-0.4772 

0.1461 
0.0474 

0.1611 

0.5912 

0.5846 

-1.4619 

-1.5965 

1.1627 

0.0270 
0.1252 

3 

0.0436 

0.0081 

0.0956 

-0.1650 

0.5665 

0.0293 

0.0250 

-0.3525 

0.1276 

-0.1628 

0.1477 

-0.0398 

-0.2680 

-0.3971 

0.8083 
-0.0641 

1.1834 

0.6998 

0.3337 

-0.4863 
0.1624 

0.0333 
0.1514 

0.5883 

1.0408 

-1.4606 

-1.5985 

1.1627 

0.0249 
0.1282 

5 

0.0433 

0.0081 

0.0957 

-0.1650 
0.5664 

0.0269 

0.0238 
-0.3522 

0.1280 
-0.1624 

0.1486 

-0.0389 

-0.3163 

-0.4346 
0.8122 

-0.0591 

1.1848 

0.6996 

0.3337 

-0.4863 

0.1566 
0.0384 

0.1517 

0.5883 

0.9063 

-1.4608 
-1.5984 

1.1627 

0.0250 

0.1281 

8 

0.0432 

0.0081 

0.0957 

-0.1650 
0.5664 

0.0270 

0.0239 
-0.3522 

0.1280 
-0.1622 

0.1491 

-0.0389 

-0.3300 

-0.4428 

0.8133 

-0.0576 

1.1851 

0.6998 

0.3337 

-0.4863 

0.1538 

0.0409 

0.1517 

0.5884 

0.8679 

-1.4609 
-1.5984 

1.1627 

0.0250 

0.1281 

12 

0.0431 

0.0081 

0.0957 

-0.1650 
0.5664 

0.0271 

0.0239 
-0.3522 

0.1280 
-0.1622 

0.1492 

-0.0389 

-0.3306 

-0.4431 

0.8133 

-0.0576 

1.1851 

0.6998 

0.3337 

-0.4863 

0.1536 
0.0411 

0.1517 

0.5884 

0.8664 

-1.4609 
-1.5984 

1.1627 

0.0250 

0.1281 

15 ( 

0.0431 

0.0081 

0.0957 

-0.1650 
0.5664 

0.0271 

0.0239 
-0.3522 

0.1280 
-0.1622 

0.1492 

-0.0389 

-0.3306 

-0.4431 
0.8134 

-0.0576 

1.1851 

0.6998 

0.3337 

-0.4863 

0.1536 
0.0411 

0.1517 

0.5884 

0.8664 

-1.4609 
-1.5984 

1.1627 

0.0250 

0.1281 

Centralised 

0.0431 

0.0081 

0.0957 

-0.1650 
0.5664 

0.0271 

0.0239 
-0.3522 

0.1280 
-0.1622 

0.1492 

-0.0389 

-0.3306 

-0.4431 
0.8134 

-0.0576 

1.1851 

0.6998 

0.3337 

-0.4863 

0.1536 
0.0411 

0.1517 

0.5884 

0.8664 

-1.4609 
-1.5984 

1.1627 

0.0250 

0.1281 

Total Cost 3.2155 4.2393 4.6262 4.7294 4.7339 4.7340 4.7340 4.7340 
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Table C.12. Progress of iterations for xi variables in multipurpose process example 
(Section 7.4.4) 

Iteration 1 2 3 5 8 12 15 Centralised 

xi,i -0.0463 -0.0315 -0.0323 -0.0325 -0.0325 -0.0325 -0.0325 -0.0325 
xi,2 0.1257 0.2054 0.2010 0.2003 0.2000 0.2000 0.2000 0.2000 
xi,3 -0.2268 -0.1902 -0.1922 -0.1925 -0.1926 -0.1926 -0.1926 -0.1926 
x2,i 1.0867 1.0790 1.0793 1.0793 1.0793 1.0793 1.0793 1.0793 
x2,2 0.1587 0.1395 0.1402 0.1403 0.1403 0.1403 0.1403 0.1403 
x2,3 0.2800 0.2932 0.2927 0.2926 0.2926 0.2926 0.2926 0.2926 
x2,4 0.2100 0.2189 0.2185 0.2185 0.2185 0.2185 0.2185 0.2185 
x3,i -0.3697 -0.3982 -0.3797 -0.3817 -0.3816 -0.3816 -0.3816 -0.3816 
x3,2 -0.3655 -0.3572 -0.3626 -0.3620 -0.3620 -0.3620 -0.3620 -0.3620 
x3,3 0.9572 0.9492 0.9544 0.9538 0.9538 0.9538 0.9538 0.9538 
x4,i 0.1144 0.1618 0.1613 0.1625 0.1625 0.1625 0.1625 0.1625 
x4,2 0.7293 0.7219 0.7220 0.7218 0.7218 0.7218 0.7218 0.7218 
x4,3 0.4286 0.4314 0.4313 0.4314 0.4314 0.4314 0.4314 0.4314 
x6,i -0.0140 -0.0061 0.0721 0.0473 0.0341 0.0351 0.0351 0.0351 
x6,2 -0.1099 -0.1182 -0.1314 -0.1270 -0.1247 -0.1249 -0.1249 -0.1249 
x6,i -0.3118 -0.6389 -0.6057 -0.6041 -0.6032 -0.6033 -0.6033 -0.6033 
x6,2 -0.3040 -0.0684 -0.0912 -0.0922 -0.0928 -0.0928 -0.0927 -0.0927 
x7,i -0.0268 -0.1088 -0.0994 -0.1010 -0.1009 -0.1009 -0.1009 -0.1009 
x7,2 0.0422 0.0854 0.0804 0.0812 0.0812 0.0812 0.0812 0.0812 
x8,i -0.1998 1.0638 0.3030 0.4924 0.5469 0.5409 0.5406 0.5406 
x8,2 0.4539 0.7673 0.5659 0.6167 0.6322 0.6306 0.6305 0.6305 
x9,i 0.6172 0.6404 0.6346 0.6353 0.6355 0.6355 0.6355 0.6355 
x9,2 -0.2951 -0.3085 -0.3430 -0.3346 -0.3320 -0.3321 -0.3321 -0.3321 
x9,3 -1.0017 -0.9993 -1.0010 -1.0006 -1.0005 -1.0005 -1.0005 -1.0005 
xio.i -0.0032 0.0276 0.0109 0.0120 0.0120 0.0120 0.0120 0.0120 
xio,2 -0.9043 -0.7842 -0.8079 -0.8073 -0.8076 -0.8076 -0.8076 -0.8076 
xio,3 -0.1324 -0.0917 -0.0987 -0.0987 -0.0988 -0.0988 -0.0988 -0.0988 
xii.i 0.5779 0.5732 0.5716 0.5716 0.5716 0.5716 0.5716 0.5716 
xn,2 0.3776 0.3966 0.3997 0.3997 0.3997 0.3997 0.3997 0.3997 
xn,3 -1.1298-1.1095-1.1068-1.1067-1.1068-1.1068-1.1068 -1.1068 
xi2,i -0.7694 -0.7556 -0.7633 -0.7611 -0.7599 -0.7600 -0.7600 -0.7600 
xi2,2 0.0966 0.2576 0.2594 0.2590 0.2589 0.2589 0.2589 0.2589 
xis.i -0.1822 -0.4730 -0.4621 -0.4625 -0.4625 -0.4625 -0.4625 -0.4625 
xi3,2 1-0451 0.9361 0.9387 0.9386 0.9386 0.9386 0.9386 0.9386 
xi4,i -0.2373 0.0408 -0.1003 -0.0587 -0.0457 -0.0463 -0.0463 -0.0463 
xi4,2 -1.7901 -1.4915 -1.6430 -1.5983 -1.5843 -1.5850 -1.5851 -1.5851 
xis.i -2.6308 -2.6657 -2.6652 -2.6652 -2.6651 -2.6651 -2.6651 -2.6651 
xi5,2 -3.2900 -3.2964 -3.2964 -3.2963 -3.2963 -3.2963 -3.2963 -3.2963 
xie.i 0.5278 0.5261 0.5264 0.5264 0.5264 0.5264 0.5264 0.5264 
xie,2 0.0792 0.0798 0.0797 0.0797 0.0797 0.0797 0.0797 0.0797 
xi7,i -0.2482 -0.2600 -0.2596 -0.2596 -0.2596 -0.2596 -0.2596 -0.2596 
xi7,2 -1.6041 -1.5954 -1.5963 -1.5963 -1.5963 -1.5963 -1.5963 -1.5963 
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