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Replication’s Role in Software Engineering

A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller

Abstract We provide motivation for researchers to replicate experiments in 
 software engineering. The ideology of replication is discussed. We address the 
question: Is an experiment worth repeating? The current lack of replication studies 
is highlighted. We make clear that exact replication is unattainable and we draw 
on our first experience of performing an external replication. To categorise various 
kinds of replication, we propose a simple extension to Basili et al.’s framework for 
experimentation in software engineering. We present guidance as to the level of 
reported detail required to enable others perform a replication. Our conclusion is 
that there is only one route for empirical software engineering to follow: to make 
available laboratory packages of experimental materials to facilitate internal and 
external replications, especially the latter, which have greater confirming power.

1. Introduction

Experimental design is difficult and the experimental process can be error prone. 
As a consequence, all experimental results should be reproducible by an external 
agency. By other researchers successfully repeating an experiment, confidence is 
built in the procedure and the result. Without the confirming power of external 
replications, a result should be at best regarded as of limited importance and at 
worst with suspicion and mistrust.

We distinguish two main forms of replication: internal and external. Internal 
replication is undertaken by the original experimenters (or teams that contain mem-
bers of the original experimental team): they repeat their own experiment. External 
replication is undertaken by independent researchers and is a critical verification step. 
We are not concerned here with replication as it applies to an individual experimental 
design.

The section that immediately follows provides motivation for researchers to 
replicate experiments in software engineering. There then follows sections on 
the theory of replication and replication in practice. As subsections of the latter, 
we discuss criteria for deciding whether an experiment is worth repeating, the 
 frequency of replication studies, the unattainability of an exact replication, and 
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our first experience of performing an external replication. In the section that 
then  follows, to categorise various kinds of replication, we present a simple 
extension to Basili et al.’s (1986) framework for experimentation in software 
engineering. The penultimate section presents guidance as to the level of 
reported detail required to enable others perform a replication. In the final 
 section, we conclude that there is only one route for empirical software 
 engineering to follow: to make available  laboratory packages of experimental 
materials to facilitate internal and external replications, especially the latter, 
which have greater confirming power.

2. Replication: The Motivation

No one doubts the need for software engineers to work from principles and guide-
lines in which the professional community has high confidence, all the more so if 
the application is safety critical. High levels of confidence are only attained when 
independent researchers successfully replicate an experiment. Without the confirm-
ing power of external replication, many principles and guidelines in software 
 engineering should be treated with caution.

Much is to be gained, therefore, by critical examination of previous experiments, 
by identifying experiments that are worthy of replication, and by replicating these 
experiments externally.

Huxley (1965) has noted,

And in science, as in common life, our confidence in a law is in exact proportion to the 
absence of variation in the result of our experimental verifications.

So the greater the number of experimental verifications the better, at least until 
such time as additional verifications carry no further power of confirmation. 
Moreover, given the human component and the rich variety of software and hard-
ware technologies, it surely is beholden on the community to perform many, many, 
such verifications. Only under exceptional circumstances should one-shot studies 
involving subjects be relied upon. For example, when the following criteria are all 
met: (1) a large number of subjects were used, (2) the effect present is so large, the 
use of statistical tests to convince the reader that an effect exists are unnecessary, 
and (3) peer review has not found any criticism with the work. Even then of course 
the effect cannot be extrapolated to just any context. Thus, we strongly agree with 
Curtis (1980) when he says,

…results are far more impressive when they emerge from a program of research rather than 
from one-shot studies.

Much is said and written about quality control in software development 
(e.g. Card (1990) ). It is ironic, to say the least, that the quality control mechanism 
of replication, especially external replication, is so little practiced amongst those 
doing the science behind the engineering. There is an additional irony: because of 
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the current state of software development practice, N-version programming has 
been suggested as a fault recovery mechanism (see, for example Kelly et al. 
(1991) ). We know so little about doing it right, we end up replicating system 
 functionality across several programs.

Concerning a particular flawed study in psychology which was accepted as 
being valid for a long time, Broad and Wade (1986) wrote,

Why did nobody helping to raise generations of undergraduates…replicate the study?

Such a question could equally as well be addressed to many educators of 
 software engineering students regarding numerous studies whose results are com-
municated often quite uncritically to students. We should all be motivated to carry 
out replications or at least give support to those who do.

3. Replication: The Ideology

Subjecting theory to experimental test is a crucial scientific activity. Popper (1968), 
however, explains that researchers must be sure of their results before reporting 
them, stating,

We do not take even our own observations quite seriously, or accept them as scientific 
observation, until we have repeated and tested them.

Coupled with this advice, modern scientific ideology now also demands that 
experimental results are replicable by an external agency. For example, as Lewis 
et al. (1991) rightly claim,

The use of precise, repeatable experiments is the hallmark of a mature scientific or engi-
neering discipline.

Furthermore, Goldstein and Goldstein (1978) take this one step further, stating,

We now take for granted that any observation, any determination of a ‘fact’, even if made 
by a reputable and competent scientist, might be doubted. It may be necessary to repeat an 
observation to confirm or reject it. Science is thus limited to what we might call ‘public’ 
facts. Anybody must be able to check them; experimental observations must be 
repeatable.

Not only must the researcher make his work repeatable, however, some even 
regard it as being beholden on the scientific community to execute replications just 
to verify the experimental results, as we ourselves do. For example, Huxley (1965) 
has stated,

In scientific inquiry it becomes a matter of duty to expose a supposed law to every possible 
kind of verification…

Broad and Wade (1986), in their description of the scientific ideology, consider 
replication to be the third check in verifying scientific claims, the first two being 
the peer review system that awards research grants and the journal refereeing that 
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takes place prior to publication. They also describe the ideal of reporting experiments 
as follows,

A scientist who claims a new discovery must do so in such a way that others can verify the 
claim. Thus in describing an experiment a researcher will list the type of equipment used 
and the procedure followed, much like a chef’s recipe. The more important the new 
 discovery, the sooner researchers will try to replicate it in their own laboratories.

Replication is also concerned with the way the original hypothesis is expressed. 
As Smith (1983) has stated,

Replication does two things: first, it tests the linguistic formulation of the hypothesis; 
 second, it tests the sufficiency of the explicit conditions for the occurrence of the 
phenomena.

For example, an original hypothesis may be linguistically expressed to almost 
encourage conclusions to be expressed with the wrong meaning. Henry and 
Humphrey (1990) state their hypothesis as follows: “the hypothesis of this study is 
that systems designed and implemented in an object-oriented manner are easier to 
maintain than those designed and implemented using structured techniques.” In 
order to test this, their subjects were asked to make modifications to an object-oriented 
system and a functionally equivalent procedure-oriented system. After their data 
analysis, Henry and Humphrey concluded that the “experiment supports the 
hypothesis that subjects produce more maintainable code with an object-oriented 
language than with a procedure-oriented language,” which turns around the meaning 
of the original hypothesis: the idea was not for subjects to produce code to be tested 
for maintainability, but rather to test the maintainability of two different  systems by 
having subjects perform maintenance tasks on them.

Another important example is that criteria for subject participation in a software 
engineering experiment may be insufficiently specific and, as a result, the replica-
tion yields different results due to variability unaccounted for between the 
subjects.

4. Replication: In Practice

4.1. Determining Worthy Experiments

Even if an empirical study was found to be replicable in terms of the availability of 
experimental artifacts, there can be, and usually are, several other reasons why one 
should first be wary of devoting the resources necessary to performing a replication 
study. The background may not be properly researched and the empirical study may 
be addressing the wrong issue. Inappropriate methods may be used; for example, 
when people are involved, very strictly controlled laboratory experiments may be 
less useful than more qualitative or ethnographic forms of experimentation. Errors 
of commission or omission may be made or experimental variables may be incorrectly 
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classified. For example, Scanlan (1989) criticises Shneiderman et al. (1977) for not 
making use of time as a measurable dependent variable (the subjects were all given 
as much time as they required) and claims as a result that “any significant differ-
ence may have been washed out.” From his experimental result, however, 
Shneiderman et al. called into question the utility of detailed flowcharts, stating 
“we conjecture that detailed flowcharts are merely a redundant presentation of the 
information contained in the programming language statements.” The experimental 
flaw identified by Scanlan can be classified as an error of omission, and one which, 
according to Scanlan, has seen “the decline of flowcharts as a way to represent 
algorithms.” Scanlan then went on to design a new experiment to test the same 
hypothesis using time as a dependent measure and claimed “my experiment shows 
that significantly less time is required to comprehend algorithms represented as 
flowcharts.”

Missing details may prevent the reader from forming their own view of the worth 
of the data, for example, error estimates may not be provided for some or all of the 
critical measures or raw data may be crudely summarised when it could have been 
presented in full. Statistical procedures may be misapplied. Alternative interpreta-
tions may not be presented: when people are involved it is more than likely that more 
than one interpretation can be placed on the data. We agree with Collins (1985) who 
regards an experiment to have been incompetently performed if some alternative 
explanation for the data has been overlooked. For example, in a comparative study 
of C and C++ development times involving only four subjects, Moreau and 
Dominick (1990) concluded that there was a significant difference in favour of C++. 
One of the four subjects, however, took very much longer on the third C++ task. The 
experimenters simply attributed this to a debugging difficulty, i.e. they appeared not 
to have checked that use of C++ itself was the real cause of the problem. Failure to 
discuss alternative interpretations of data can prevent a reviewer performing a mean-
ingful meta-analysis of the research area. (Brooks and Vezza (1989) is an example 
of a paper providing the reader with alternative interpretations.)

Should the report of an experiment pass a detailed critical reading of its design, 
execution, analysis and interpretation, then it can be deemed worthy enough to 
replicate.

4.2. Frequency of Replication Studies

In schools, colleges, and universities, replication studies are performed daily. But 
such studies are usually scaled-down versions of an original experiment, are 
performed by students in the act of learning, and have no confirming power. As 
Collins (1985) notes,

As more becomes known about an area however, the confirmatory power of similar-looking 
experiments becomes less. This is why the experiments performed every day in schools and 
universities as part of the scientific training of students have no confirming power; in no 
way are they tests of the results they are supposed to reveal.
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Those employed in research rarely perform replication studies. Again, as Collins 
(1985) notes,

For the vast majority of science, replicability is an axiom rather than a matter of practice.

Broad and Wade (1986) also draw attention to the lack of replication work by 
stating,

How much erroneous…science might be turned up if replication were regularly practiced, 
if self-policing were a more than imaginary mechanism?

Broad and Wade (1986) reckon that the Simpson–Traction replication is,

…probably one of the very few occasions in the history of science in which the philoso-
pher’s ideal of replicability has been attained.

In 1961, Simpson had Traction watched while Traction unsuccessfully tried to 
repeat a biochemistry experiment concerned with protein synthesis.

Of course, since Broad and Wade’s remark was made, there has been the saga of cold 
fusion. Many laboratories around the world tried to repeat the cold fusion experiment 
by Pons and Fleischmann – see Close (1990) or Amato (1993). Ordinarily, no scientist 
would have dreamt of trying to replicate a poorly reported experiment. The lure of 
cheap, relatively pollution free energy in abundance, was an exceptional motivation.

Historically the frequency of external replication work in software engineering 
research has been low. For example, no mention of external replication studies were 
made in Sharpe et al.’s (1991) investigation of the characteristics of empirical 
software maintenance studies between 1980 and 1989, nor in Roper’s (1992) 
selected annotated bibliography of software testing.

More recently, even with the advent of a specialist journal such as the Empirical 
Software Engineering journal, the frequency of external replication work remains 
low, with fewer than 15 publications specifically addressing replication since the 
inception of the journal in 1996. A systematic survey of controlled experiments in 
software engineering between 1993 and 2002 by Sjoberg et al. (2005) found only 
twenty studies claiming to be replications of which only nine were external replications. 
Interestingly, six of these nine external replications are said to have failed to 
confirm the results of the original experiment.

This relative lack of output is likely because of the effort and resources needed 
to conduct an experiment, the lack of availability of laboratory packages of experi-
mental materials, and last, but perhaps not least, the lack of glamour associated with 
replicating the work of others.

4.3. The Unattainability of Exact Replication

Care must be taken, however, to clarify what is meant by replication. The Universe 
is forever changing. Human observers and subjects are unique (Brooks (1980) and 
Curtis (1980) report on empirically discovered programming ability differences 
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ranging from 4–1 to 25–1). There is no end to the number of measurements that can 
be made to describe the experimental setting. The art of experimental science is in 
making neither errors of commission or omission. Accuracy of observations can 
always be improved upon until such time as the Uncertainty Principle becomes 
important. Strictly speaking, it is more correct to talk of partial replication and the 
goal of performing as near exact replication as possible. Exact replication is 
unattainable.

According to Broad and Wade, exact replication is an impractical undertaking 
because the recipe of methods is incompletely reported, because to do so is very 
resource intensive, and because credit in science is won by performing original 
work. They do, however, draw attention to the important activity of improving upon 
experiments. They state,

Scientists repeat the experiments of their rivals and colleagues, by and large, as ambitious 
cooks repeat recipes - for the purpose of improving them. All will be adaptations or 
improvements or extensions. It is in this recipe-improvement process, of course, that an 
experiment is corroborated.

With respect to poor statistical power levels caused by too few subjects, Baroudi 
and Orlikowski (1989) qualify this and note,

Where a study fails to reject a null hypothesis due to low power, conclusions about the 
phenomenon are not possible. Replications of the study, with greater power, may resolve 
the indeterminacy.

Statistical power is the probability that a particular experiment will detect an 
effect between the control group (e.g. no use of inheritance) and the treatment 
group (e.g. use of inheritance). Calculations of statistical power probabilities 
depend on how many subjects take part, the size of any effect, and the p-value used 
in statistical tests (often 0.05). If the effect size is not large, and too few subjects 
are used, statistical power may be much less than 0.8 (a typical recommended 
level). The effect may go undetected. A replication with twice the number of sub-
jects may boost the power level beyond 0.8 so that there is now a good chance of 
detecting the effect – at least eight out of ten experiments will detect the effect. In 
pioneering experimental work, it can be difficult knowing what effect size to 
expect, and it becomes the duty of the investigator to use as many subjects as is 
practically possible.

4.4. An Example: Our Replication of Korson’s Experiment

Korson (1986) and Korson and Vaishnavi (1986) designed a series of four experi-
ments each testing some aspect of maintenance. The experiment which was of 
greatest interest to us (Experiment 1) was designed to test if a modular program 
used to implement information hiding, which localizes changes required by a modi-
fication, is faster to modify than a non-modular but otherwise equivalent version of 
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the same program. The non-modular (or monolithic) program was created by 
replacing every procedure and function call in the modular version with the body 
of that procedure or function. Programmers were asked to make functionally 
equivalent changes to an inventory, point of sale program – either the modular version 
(approximately 1,000 lines long) or the monolithic version (approximately 1,400 
lines long). Both programs were written in Turbo Pascal. The changes required 
could be classified as perfective maintenance as defined by Lientz and Swanson 
(1980) i.e. changes made to enhance performance, cost effectiveness, efficiency, 
and maintainability of a program. Korson reckoned that the time taken to make the 
perfective maintenance changes would be significantly faster for the modular 
version. This is exactly what he found. On average, subjects working with a 
modular program took 19.3 min to make the required changes as opposed to the 
85.9 min taken by subjects working with a monolithic version of the program. With 
a factor of 4 between the timings, and with the details provided in Korson’s thesis, 
we were confident that we could successfully externally replicate Korson’s first 
experiment.

Our external replication (Daly et al., 1994b), however, shocked us. On average, 
our subjects working with the modular program took 48 min to make the required 
changes as opposed to the 59.1 min taken with the monolithic version of the pro-
gram. The factor between the timings was 1.3 rather than 4 and the difference was 
not found to be statistically significant.

To determine possible reasons for our failure to verify Korson’s results, we 
resorted to an inductive analysis. A database of all our experimental findings was 
built and data-mining performed.

A suggested relationship was found between the total times taken for the experiment 
and a pretest that was part of subjects’ initial orientation. All nine of the monolithic 
subjects appeared in the top twelve places when ranked by pretest timings. We had 
unwittingly assigned more able subjects to the monolithic program and less able 
subjects to the modular program. Subject assignment had simply been at random, 
whereas in retrospect it should have also been based on an ability measure such as 
that given by the pretest timings. The ability effect interpretation is the béte noir of 
performance studies with subjects and researchers must be vigilant regarding the 
lack of homogeneity of subjects across experimental conditions.

Our inductive analysis also revealed quite different approaches taken to program 
understanding by our subjects. Some subjects were observed tracing flows of 
execution to develop a deep understanding. We had evidence that the four slowest 
modular subjects all tried to understand the code more than was strictly necessary 
to satisfy the maintenance request. Others worked very pragmatically and focused 
simply on the editing actions that were required. We call this pragmatic  maintenance. 
Our two fastest finishers with the monolithic program explained in a debriefing 
questionnaire that they had no real understanding of the code.

Our inductive analysis revealed at least two good reasons as to why we did not 
verify Korson’s results and taught us many valuable lessons about conducting 
experimental research with human subjects. We were motivated to develop 
an experiment that would be easily replicable, and which would show once and for 
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all that modular code is superior to monolithic code, but it was clear to us that it 
was more important to understand the nature of pragmatic maintenance. How do 
software maintainers in industry go about their work? Is pragmatic maintenance a 
good or bad thing?

5. A Simple Extension to Basili et al.’s Framework

As stated earlier, we are not concerned here with replication as it applies to an indi-
vidual experimental design.

What we mean by internal replication is when researchers repeat their own 
experiments. For example, Korson (1986) and Korson and Vaishnavi (1986) 
claimed to have succeeded in providing internal replicability and stated,

…the study has demonstrated that a carefully designed empirical study using programmers 
can lead to replicable, unambiguous conclusions.

Internal replications involving an evolutionary series of experiments have some 
confirmatory power. In many areas of science, internal replications, carried out 
either by design, or as part of a program of research, or because the sensitivity of 
the results required improving, are relatively commonplace.

By external replication we mean published experiments carried out by 
researchers who are independent of those who originally carried out the empirical 
work. Greater confirmatory power inevitably comes with external replications.

Exact replication is unattainable, so it is important to consider and categorise the 
differences.

First, researchers must consider the experimental method. Should a similar or 
alternative method be used? A basic finding replicated over several different methods 
carries greater weight. As Brewer and Hunter (1989) have stated,

The employment of multiple research methods adds to the strength of the evidence.

Does a keystroke analysis of a software engineering task yield the same 
conclusions as observing users’ performance on the task? Are the conclusions the 
same as those obtained from a questionnaire survey of users who have performed 
the task?

As a first step, the existing method could be improved. For example, the replica-
tion might add a debriefing session with subjects after the formal experiment is over 
if no such debriefings too place during the original experiment. Such debriefings 
can provide many useful insights into the processes involved. This type of improve-
ment does not compromise the integrity of the replication.

Second, researchers must consider the task. Should a similar or alternative task 
be used? A basic finding replicated over several different tasks carries greater 
weight. As Curtis (1980) has stated,

When a basic finding…can be replicated over several different tasks…it becomes more 
convincing.
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Does a complex refactoring task yield the same conclusions as a simple refactoring 
task?

Or should the task be improved by, for example, making it more realistic? For 
example, rather than refactor a small program of a few hundred lines, refactor 
widely used open source software of many tens of thousands of lines of code.

Third, researchers must consider the subjects. For example, should a similar or 
alternative group of subjects be used? A basic finding replicated over several different 
categories of subjects carries greater weight. Does working with undergraduates 
produce the same conclusions as working with postgraduates? Are the conclusions 
the same as those obtained working with professional software engineers?

Or should the group of subjects be improved by, for example, by using more 
subjects or more stringent criteria for participation?

A comprehensive framework for experimentation in software engineering was 
established by Basili et al. (1986). The four main phases of the framework are: 
definition, planning, operation, and interpretation.

In the definition phase, a study is characterized by six elements: motivation, 
object, purpose, perspective, domain, and scope. For example: A motivation might 
be to understand the benefits of inheritance. The object might be the maintenance 
process. The purpose might be to evaluate. The perspective might be that of the 
software maintainer. The domain might be the individual programmer working on 
a program. The scope might be several programmers working on several programs, 
which captures the notion of internal replication within an individual experimental 
design.

In the planning phase, a study is characterised by design, criteria, and measure-
ment. For example: A 2 × 3 factorial design might be used if we have several 
observations from two types of programmers (inexperienced and experienced) 
across three types of programs (no existing inheritance, inheritance of depth three 
used, inheritance of depth five used). Criteria might be the cost of implementing a 
maintenance request. Measurement might be the time taken to fulfill the request, as 
well as programmers’ views on the ease or difficulty of making the code changes.

In the operation phase, a study is characterised by three elements: preparation, 
execution, and analysis. For example: In preparation, a pilot study might be 
performed to check that implementing the maintenance request does not take an 
excessive amount of time. In execution, start and end times might be recorded and 
programmers’ views taken in debriefing sessions. In analysis, a 2 × 3 analysis of 
variance might be applied and statistical results compared with programmers’ views.

In the interpretation phase, a study is characterised by three elements: interpreta-
tion context, extrapolation, and impact. For example: The context might include the 
results of other published work on the maintenance of object-oriented programs. 
Extrapolation might suggest that the results from the laboratory study are generalizable 
to industry settings because professional programmers were employed in the study. 
Impact might involve applying the results in an industrial context. Basili et al. also 
point to another possible impact: that of replicating the experiment. They, however, 
do not explicitly distinguish between replication by the original experimenters 
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(internal replication) and replication by independent researchers (external replication). 
We propose their framework should be extended to distinguish between internal 
and external replication and its various forms where method, task, and subjects can 
each be either similar, alternative, or improved. So, for example: Under impact in 
the interpretation phase, the original experimenters might declare their intention to 
(internally) replicate the experiment with an alternative group of subjects or they 
might declare that the experiment needs now to be externally replicated. Under 
motivation in the definition phase, independent researchers might declare a motiva-
tion to verify findings by externally replicating a study but with an improved 
method.

We believe it unnecessary at this stage to work with more detailed categoriza-
tions of replication. We note that Sjoberg et al. (2005) chose to categorise replica-
tions simply as close or differentiated. By close replications they mean that as far 
as possible the known conditions of the original experiment are retained. By differ-
entiated replications they mean variations are present in key aspects of the experi-
mental conditions such as the kind of subjects used.

Of course, if too many alternatives are used, or if the scale of any recipe-improving 
is too substantial, it becomes debatable whether the study counts as a replication. 
Initially, the power of confirmation will be high with external replication studies but 
there will come a point when a result is so well established that the replication 
ceases to have research value and the experiment should be moved from the 
research laboratory into the teaching laboratory.

Across the vector of (method, task, and subjects), we categorize our 
Korson (Daly et al., 1994b) replication as an example of (improved, similar, 
similar). The method is categorized as improved because we debriefed our 
subjects.

6. Reporting for Replications

Once an experiment has been performed, analyzed and the time comes for writing 
the findings, the researcher must provide as much detail surrounding the empirical 
work as possible in order to allow others to replicate. Jedlitschka and Pfahl (2005) 
have reviewed reporting guidelines for controlled experiments in software 
engineering, as is described elsewhere in this book, and present a proposal for a 
standard. As a minimum, their guidelines on the reporting of experimental design, 
analysis, and interpretation should be followed.

Unfortunately, numerous empirical studies in the software engineering literature 
are lacking in that the experimental methods are poorly reported so that it is impos-
sible to perform an external replication study. For example, instructions and task 
materials given to subjects may not be given in full, or may otherwise be unobtainable. 
Various authors in the past have criticised poor reporting, for example Basili et al. 
(1986) and MacDonell (1991).



376 A. Brooks et al.

In our Korson replication (Daly et al., 1994a), we found problems with several 
details which prevented the fullest possible analysis and interpretation of both 
Korson’s results and ours. Reporting inadequacies with the Korson experiment 
were:

1. The experimenter employed monitors to time his subjects, and sort out problems 
which might arise with hardware failure and the like. It was not reported, how-
ever, whether these monitors controlled when a subject was ready to move from 
one experimental phase to the next, or simply just noted each phase time. Such 
information would have prevented speculation about monitor variability across 
the two studies.

2. Subject selection criteria was subjective in that almost any computer science 
student who had completed a practical Pascal programming course could have 
met it. For example, one criterion was “an amount of programming experience.” 
This should have been more objective by stating the minimum experience 
required, for example at least 2 years programming experience at college level. 
This may have reduced subject variability.

3. Expert times for testing the program were not published. There were three sepa-
rate ways to test the program, one way taking much longer than the other two. 
A comparison of results is required in order to explain variability that might have 
arisen.

4. Pretest results were not published. This would have made important reading as 
all subjects performed the same task; this would have allowed a direct compari-
son with our subjects’ times, and hence a direct comparison of the ability of our 
subjects to the original subjects. When timings such as these are collected they 
should always be published.

5. It was not made clear what was verbally communicated to the subjects prior to 
the experiment: was additional information given to them, were any points in the 
instructions highlighted, or was nothing said?

Of these reporting inadequacies, only the one regarding subjection selection is 
explicitly addressed by the guidelines proposed in Jedlitschka and Pfahl (2005). 
This illustrates the difficulties in conveying all necessary information required for 
external replication.

The original researcher, Korson, however, went much further than many 
researchers in reporting experimental details, and he must be commended for that. 
In his thesis he published his code for the experiments (both the pretest and the 
experimental code), and the instructions for both the pretest and experiment. 
He published individual subject timings rather than just averages, along with the 
statistical tests and their results. So, the original researcher has presented the 
major issues surrounding his experiment, but has unfortunately omitted details 
preventing the fullest possible interpretation of his work and the external 
replication.

We believe it is impractical to convey all the information necessary for external 
replication in a journal or conference paper. Experimental artifacts under considera-
tion such as designs, code, instructions, questionnaires, and the raw data, would 
typically add too many pages as appendices. Such information is best conveyed 
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over the internet as a downloadable laboratory package along with any underlying 
technical report or thesis. With a laboratory package in place, original researchers 
can more easily conduct internal replications, independent researchers more easily 
conduct external replications, and meta-analysts more easily combine raw data. 
Work by Basili et al. (1999) is exemplary in this regard, with the availability of lab-
oratory packages (http://www.cs.umd.edu/projects/SoftEng/ESEG/downloads.
html) stimulating a small family of internal and external replications and a conse-
quent improved understanding of perspective-based reading. Without a laboratory 
package in some form, an experiment is unlikely ever to be verified through internal 
or external replication. Given the scale of effort and resources required to conduct 
an experiment, not to facilitate reuse of the experimental artifacts, by providing a 
laboratory package, seems folly.

We agree with Basili et al. (1999) that somewhere in the laboratory package, 
validity threats should be detailed so that these may be addressed in future replication 
attempts. There is no advantage in performing a close replication – similar, similar, 
similar – of an experiment where a serious validity threat is present. Making an 
improvement to address a serious threat will yield a better experiment and results.

We also recommend that any laboratory package should report even seemingly 
minor details, for example, verbal instructions made at the beginning of an experi-
ment, to enable others perform an external replication. There may be times, however, 
when the only way reporting inadequacies are actually discovered is by replicating 
an experiment and analysing the results.

7. Conclusions

Basili et al. (1986) established a comprehensive experimental framework for soft-
ware engineering in which replication is recognised in the scope of an individual 
experiment and as an impact on future work. We have proposed a simple extension 
to this framework to explicitly recognise internal and external replication and its 
various forms: similar, alternative, improved, across method, task, and subjects. This 
extension applies to the motivation and impact subsections of the framework.

Routinely we are told Tool X or Technique Y is a panacea to many of software 
engineering’s problems, but where is the accompanying empirical evidence that can 
stand scrutiny, that has been verified by an independent research team? We con-
clude that there exists only one route for empirical software engineering to follow: 
to make available laboratory packages of experimental materials to facilitate inter-
nal and external replications, especially the latter, which have greater confirming 
power. The work of the replicator should be seen as glamorous not gruesome. By 
verifying results, so experiments can be subsequently crafted which software engi-
neering students can repeat as laboratory exercises. If results are not verified, we 
need not be too despondent. As with our replication of Korson’s experiment, it is 
very likely that the real issue requiring investigation comes to the fore. And those 
involved in conducting the replication will have improved their investigation skills 
enormously.
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