
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 Reflections
and Rotations

9.1 Introduction

Rotating objects and virtual cameras are central to computer animation and computer games and
are traditionally effected using matrix transforms representing Euler angle rotations. For example,
to rotate a 2D point about the origin we use[

x ′

y ′

]
=
[

cos θ −sinθ

sin θ cos θ

] [
x
y

]
. (9.1)

To rotate a 3D point about the origin we use one transform for each axis:
to rotate about the x-axis⎡

⎣x ′

y ′

z ′

⎤
⎦ =

⎡
⎣1 0 0

0 cos(pitch) −sin(pitch)

0 sin(pitch) cos(pitch)

⎤
⎦
⎡
⎣x

y
z

⎤
⎦ (9.2)

to rotate about the y-axis ⎡
⎣x ′

y ′

z ′

⎤
⎦ =

⎡
⎣ cos(yaw) 0 sin(yaw)

0 1 0
−sin(yaw) 0 cos(yaw)

⎤
⎦
⎡
⎣x

y
z

⎤
⎦ (9.3)

and to rotate about the z-axis⎡
⎣x ′

y ′

z ′

⎤
⎦ =

⎡
⎣cos(roll) −sin(roll) 0

sin(roll) cos(roll) 0
0 0 1

⎤
⎦
⎡
⎣x

y
z

⎤
⎦. (9.4)

These rotations are not very intuitive to use, especially when we need to rotate points about an
arbitrary axis, for which the following transform is used:⎡

⎣x ′

y ′

z ′

⎤
⎦ =

⎡
⎣ a2K + cos θ abK − c sin θ acK + b sin θ

abK + c sin θ b2K + cos θ bcK − a sin θ

acK − b sin θ bcK + a sin θ c2K + cos θ

⎤
⎦
⎡
⎣x

y
z

⎤
⎦ (9.5)

125



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

126 Geometric algebra for computer graphics

where

K = 1 − cos θ (9.6)

and the axis of rotation is defined by

v̂ = ai + bj + ck. (9.7)

In recent years, Hamilton’s quaternions have been embraced by the computer animation and
games communities where a point P is rotated to P ′, through an angle θ , about an axis v̂ using
the pure quaternion q. The process involves the following steps:

1. Convert the point P(x , y , z) to a pure quaternion p:

p = [0 + xi + y j + zk]. (9.8)

2. Define the axis of rotation as a unit vector v̂ :

v̂ = [xv i + yv j + zv k]. (9.9)

3. Define the transforming quaternion q:

q = [cos(θ/2) + sin(θ/2)v̂]. (9.10)

4. Define the inverse of the transforming quaternion q−1:

q−1 = [cos(θ/2) − sin(θ/2)v̂]. (9.11)

5. Compute p′:
p′ = qpq−1. (9.12)

6. Unpack (x ′, y ′, z ′) from p′:
p′ = [0 + x ′i + y ′j + z ′k]. (9.13)

Given a quaternion [w + xi + y j + zk], its equivalent matrix is

⎡
⎣1 − 2(y2 + z2) 2(xy − wz) 2(xz + wy)

2(xy + wz) 1 − 2(x2 + z2) 2(yz − wx)

2(xz − wy) 2(yz + wx) 1 − 2(x2 + y2)

⎤
⎦ (9.14)

where

w2 + x2 + y2 + z2 = 1. (9.15)

We saw in the previous chapter that there is a strong relationship between quaternions and GA,
and in this chapter this relationship is further strengthened when we examine how GA implements
reflections and rotations.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 127

9.2 Reflections

9.2.1 Reflecting vectors

Solving problems using vector algebra is not always straight forward, for much depends upon
the nature of the diagram used to annotate the relevant vectors. For instance, say we are given a
mirror whose orientation is defined by an orthogonal unit vector n̂, and the task is to find the
reflection of the vector a in the mirror. Figure 9.1 shows the advantages of placing the vector so
that its tail touches the mirror. It then becomes obvious that the vector’s head is a distance a · n̂
in front of the mirror, which means that the head of the reflected vector a′ is an equal distance
behind the mirror. Thus, we can write the following vector equation for a′ as

a′ = a − (2a · n̂)n̂ (9.16)

which is rather succinct.

Figure 9.1.

Now let’s solve the problem using GA.
Figure 9.2 shows the same diagram, but annotated differently.

Figure 9.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

128 Geometric algebra for computer graphics

As the mirror’s surface normal is defined as a unit vector, then n̂2 = 1, which permits us to
write

a = n̂2a = n̂(n̂a) (9.17)

and substituting the geometric product we have

a = n̂(n̂ · a + n̂ ∧ a). (9.18)

From Fig. 9.2 it is obvious that
a = a⊥ + a‖ (9.19)

and
a‖ = (n̂ · a)n̂. (9.20)

Therefore,
a = n̂(n̂ ∧ a) + a‖

which means that
a⊥ = n̂(n̂ ∧ a). (9.21)

From Fig. 9.2 it is also obvious that
a′ = a⊥ − a‖. (9.22)

Substituting Eqs. (9.20) and (9.21) in Eq. (9.22) we have

a′ = n̂(n̂ ∧ a) − (n̂ · a)n̂.

Reordering the products we get

a′ = −(n̂ · a)n̂ + n̂(n̂ ∧ a). (9.23)

Recalling from the previous chapter that vectors and bivectors anticommute, i.e. aB = −Ba,
therefore,

n̂(n̂ ∧ a) = −(n̂ ∧ a)n̂ (9.24)

which means that we can write Eq. (9.23) as

a′ = −(n̂ · a)n̂ − (n̂ ∧ a)n̂ (9.25)

which simplifies to
a′ = −((n̂ · a) + (n̂ ∧ a))n̂. (9.26)

The reason behind the above strategy was to create the geometric product n̂a within Eq. (9.26),
which now simplifies to

a′ = −n̂an̂. (9.27)

This sandwiching effect is reminiscent of the structure for using quaternions to rotate vectors, and
will become even more obvious when we consider rotations. For the moment, let’s test Eq. (9.27)
with an example.

Figure 9.3 shows a vector a with reflection a′ in the plane defined by e12, with surface normal
n̂ = e3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 129

Figure 9.3.

If, for example,
a = e1 + 2e2 + 2e3 (9.28)

then, from Fig. 9.3 it is obvious that its reflection is

a′ = e1 + 2e2 − 2e3. (9.29)

We can confirm this result using Eq. (9.27):

a′ = −n̂an̂

= −e3(e1 + 2e2 + 2e3)e3

= −(e313 + 2e323 + 2e333)

a′ = e1 + 2e2 − 2e3. (9.30)

It is important to note that this reflection formula assumes that the line and plane intersect at the
origin. Now let’s investigate what happens when a bivector is reflected.

9.2.2 Reflecting bivectors

As a bivector is formed from a pair of vectors, its reflection must be formed from the reflections
of its vectors, as shown in Fig. 9.4.

If B = a ∧ b then its reflection is B′ = a′ ∧ b′ where a′ and b′ are the reflections of the original
vectors. Algebraically, we proceed as follows using Eq. (9.27):

a′ = −n̂an̂ (9.31)

and
b′ = −n̂bn̂. (9.32)

Therefore,
B′ = (−n̂an̂) ∧ (−n̂bn̂)

B′ = (n̂an̂) ∧ (n̂bn̂). (9.33)

But we know that

B = a ∧ b = 1

2
(ab − ba) (9.34)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

130 Geometric algebra for computer graphics

Figure 9.4.

therefore,

B′ = 1

2
(n̂an̂n̂bn̂ − n̂bn̂n̂an̂)

= 1

2
(n̂abn̂ − n̂ban̂)

= 1

2
n̂(ab − ba)n̂

B′ = n̂Bn̂ (9.35)

which, apart from the minus sign, is identical to the equation for reflecting a vector.
Again, it’s worth testing the action of Eq. (9.35) with an example.
Figure 9.5 shows a bivector B = a ∧ b reflected in the plane defined by n̂ = e3.

Figure 9.5.

If
a = e1 + 2e2 + 2e3 (9.36)

and
b = e1 + 2e3 (9.37)

then
B = (e1 + 2e2 + 2e3) ∧ (e1 + 2e3). (9.38)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 131

To save time evaluating outer products, the following aide-mémoire reminds us how to calculate
the coefficients of the bivector terms.

e1 e2 e3

m m1 m2 m3

n n1 n2 n3

m ∧ n x = m2n3 − m3n2 y = m3n1 − m1n3 z = m1n2 − m2n1

e23 e31 e12

therefore,

e1 e2 e3

a 1 2 2
b 1 0 2
B 4 0 −2

e23 e31 e12

and
B = −2e12 + 4e23. (9.39)

Now let’s calculate the reflections of a and b.
From Eq. (9.30)

a′ = e1 + 2e2 − 2e3. (9.40)

From Eq. (9.27)

b′ = −n̂bn̂

= −e3(e1 + 2e3)e3

b′ = e1 − 2e3. (9.41)

Therefore,

B′ = a′ ∧ b′

= (e1 + 2e2 − 2e3) ∧ (e1 − 2e3)

e1 e2 e3

a′ 1 2 −2
b′ 1 0 −2
B′ −4 0 −2

e23 e31 e12

and
B′ = −2e12 − 4e23. (9.42)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

132 Geometric algebra for computer graphics

Comparing Eq. (9.39) and Eq. (9.42) we see that the sign of the unit basis bivector e23 coefficient
has flipped.

Alternatively, we can calculate B′ using Eq. (9.35):

B′ = n̂Bn̂

= e3(−2e1 ∧ e2 + 4e2 ∧ e3)e3

= e3(−2e12 + 4e23)e3

= −2e3123 + 4e3233

B′ = −2e12 − 4e23. (9.43)

It should be obvious from Fig. 9.5 why the coefficients of e12 and e23 are negative, and why the
coefficient of e31 is zero.

9.2.3 Reflecting trivectors

Finally, let’s examine how trivectors behave when reflected in a mirror. Experience confirms that
when we hold up our right hand in front of a mirror, we see a reflection identical to an image of
our left hand – and vice versa. Therefore, a set of right-handed orthogonal axes should appear
reflected as a left-handed set, as shown in Fig. 9.6. We can confirm this algebraically as follows:

Figure 9.6.

Starting with the unit trivector, which is also a pseudoscalar:

I = e1 ∧ e2 ∧ e3 (9.44)

its reflection consists of three reflected unit vectors:

−n̂e1n̂ −n̂e2n̂ −n̂e3n̂ (9.45)

which form the reflected unit trivector

(−n̂e1n̂) ∧ (−n̂e2n̂) ∧ (−n̂e3n̂). (9.46)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 133

Expanding the first two terms of Eq. (9.46) using a ∧ b = 1
2
(ab − ba) we have:

(−n̂e1n̂) ∧ (−n̂e2n̂) = 1

2
((−n̂e1n̂)(−n̂e2n̂) − (−n̂e2n̂)(−n̂e1n̂))

= 1

2
(n̂e12n̂ − n̂e21n̂)

= 1

2
(n̂e12n̂ + n̂e12n̂)

therefore,
(−n̂e1n̂) ∧ (−n̂e2n̂) = n̂e12n̂. (9.47)

Expanding the rest of Eq. (9.46) we have

(n̂e12n̂) ∧ (−n̂e3n̂) (9.48)

and using B ∧ a = 1
2
(Ba + aB) we have:

n̂e12n̂ ∧ (−n̂e3n̂) = 1

2
((n̂e12n̂) ∧ (−n̂e3n̂) + (−n̂e3n̂) ∧ (n̂e12n̂))

= 1

2
((n̂e12n̂)(−n̂e3n̂) + (−n̂e3n̂)(n̂e12n̂))

= 1

2
(−n̂e123n̂ − n̂e312n̂)

= −n̂e123n̂

therefore,
(−n̂e1n̂) ∧ (−n̂e2n̂) ∧ (−n̂e3n̂) = −n̂I n̂ (9.49)

where I is the pseudoscalar, which commutes with vectors. Therefore,

(−n̂e1n̂) ∧ (−n̂e2n̂) ∧ (−n̂e3n̂) = −n̂n̂I = −I . (9.50)

Equation (9.50) confirms that the sign of the trivector’s reflection has switched from positive to
negative, as predicted.

It is possible to show that the reflection of a general trivector behaves in exactly the same way.

9.3 Rotations

9.3.1 Rotating by double reflecting

The reason why we started with reflections is that they provide a way to rotate vectors. To illustrate
this, consider Fig. 9.7(a) showing a mirror m and a vector a forming an angle α with the mirror.
By the laws of reflection, a’s reflection is b forming an equal angle α on the other side of the
mirror. Now consider Fig. 9.7(b) which shows two superimposed mirrors m and n, where a’s
reflection in m is b, and b’s reflection in n is c , which must coincide with a. We can reason that



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

134 Geometric algebra for computer graphics

as the separating angle between the mirrors is 0◦, the separating angle between a and its double
reflection c is also 0◦.

Figure 9.7.

Now consider Fig. 9.7(c) where the two mirrors m and n are separated by an angle θ . Vector a’s
reflection is still b, whilst b’s reflection in n has rotated anticlockwise to c . By inspection, the angle
of rotation between b and n is θ + α, which places c at an angle θ + α on the opposite side of
n. The interesting result about this double mirror arrangement is that the angle between a and
c is 2θ , exactly double the angle between the mirrors. Now let’s make a subtle substitution by
representing the mirror m by a perpendicular unit vector m̂, and mirror n by a perpendicular unit
vector n̂. This in no way changes the geometry, but allows us to describe the double reflection
using GA. We will also define the plane supporting the mirrors by the outer product m̂ ∧ n̂, as
this represents the order of the mirrors.

Vector a’s reflection b is given by
b = −m̂am̂ (9.51)

which, in turn, is reflected in n to create c :

c = −n̂bn̂

= −n̂(−m̂am̂)n̂

c = n̂m̂am̂n̂. (9.52)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 135

Substituting R = n̂m̂ in Eq. (9.52) we have

c = RaR̃ (9.53)

where R̃ = m̂n̂, the reverse product of R.
Although this description is based on an imaginary 2D scenario, it works in any number of

dimensions, however, we are particularly interested in R
3.

Figure 9.8 shows two mirrors m and n represented by their normal vectors m̂ and n̂, separated
by an angle θ . Vector a’s reflection is still b, and b’s reflection in n is still c , and effectively, a has
been rotated 2θ to c .

Figure 9.8.

To illustrate this double reflection, consider the two mirrors shown in Fig. 9.9 with normal
vectors

m̂ = −e3 (9.54)

n̂ = −e1. (9.55)

Figure 9.9.

If the vector a is
a = e1 + e2 + e3 (9.56)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

136 Geometric algebra for computer graphics

then

R = n̂m̂

R = (−e1)(−e3) = e13 (9.57)

and

R̃ = m̂n̂

R̃ = (−e3)(−e1) = e31. (9.58)

Therefore,

c = RaR̃

= e13(e1 + e2 + e3)e31

= (−e3 + e132 + e1)e31

= −e1 + e2 − e3

c = −e1 + e2 − e3 (9.59)

which is as expected.
We have seen from the previous examples that the mirrors and the angle of rotation are

controlled by the bivector associated with the plane perpendicular to the mirrors, so let’s drop the
idea of mirrors and reflections and adopt the idea of rotating vectors using a bivector.

Figure 9.10 shows two vectors m and n forming the bivector m ∧ n directed anticlockwise. As
the internal angle of the bivector is 60◦, vector a will be rotated 120◦ anticlockwise, which we can
predict will be e1 + e3. Now let’s construct the geometric products to perform the rotation.

Figure 9.10.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 137

First we define the unit vectors m̂ and n̂:

m̂ = 1√
2
(e1 − e3) (9.60)

n̂ = 1√
2
(e2 − e3) (9.61)

and

a = e2 + e3. (9.62)

Therefore,

R = n̂m̂

= 1

2
(e2 − e3)(e1 − e3)

R = 1

2
(e21 − e23 − e31 + 1) (9.63)

and

n̂m̂a = 1

2
(e21 − e23 − e31 + 1)(e2 + e3)

= 1

2
(e212 + e213 − e232 − e233 − e312 − e313 + e2 + e3)

= 1

2
(−e1 − e123 + e3 − e2 − e123 + e1 + e2 + e3)

n̂m̂a = e3 − e123. (9.64)

Now we compute the reverse product

R̃ = m̂n̂

= 1

2
(e1 − e3)(e2 − e3)

R̃ = 1

2
(e12 − e13 − e32 + 1) (9.65)

and

RaR̃ = 1

2
(e3 − e123)(e12 − e13 − e32 + 1)

= 1

2
(e312 − e313 − e332 + e3 − e12312 + e12313 + e12332 − e123)

RaR̃ = e1 + e3 (9.66)

which confirms our prediction.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

138 Geometric algebra for computer graphics

9.3.2 Rotors

Much of mathematics is about patterns, especially in formulae. One such pattern is about to
emerge, and whoever discovered it deserves some sort of recognition. In chapter 3 we saw that a
complex number is rotated in the complex plane by multiplying it by eiθ , which is equivalent to
cos θ + i sin θ . We are about to discover that a multivector can also be rotated in a plane defined
by a unit bivector, which plays a similar role to the imaginary i.

As sandwiching a multivector between R and R̃ results in a rotation, R is called a rotor, much
like eiθ . What is strange, though, is that the bivector defining the plane is m̂ ∧ n̂, whilst the rotor
sequence is R = n̂m̂. The vectors are switched, and we will have to watch out for this.

We start the process as follows:
R = n̂m̂ (9.67)

which, using the geometric product, expands to

R = n̂ · m̂ + n̂ ∧ m̂. (9.68)

But
n̂ · m̂ = ‖n̂‖‖m̂‖ cos θ = cos θ (9.69)

therefore,
R = cos θ + n̂ ∧ m̂. (9.70)

This is where we begin looking for a pattern. We already know that

eiθ = cos θ + i sin θ (9.71)

so could it be that R has a similar structure? To find the answer to this question consider the
following expansion (m̂ ∧ n̂)2 using

m̂ ∧ n̂ = m̂n̂ − m̂ · n̂

and
m̂ ∧ n̂ = m̂ · n̂ − n̂m̂. (9.72)

Therefore,

(m̂ ∧ n̂)2 = (m̂n̂ − m̂ · n̂)(m̂ · n̂ − n̂m̂)

= m̂n̂(m̂ · n̂) − m̂n̂2m̂ − (m̂ · n̂)2 + n̂m̂(m̂ · n̂)

= m̂ · n̂(m̂n̂ + n̂m̂) − m̂n̂2m̂ − (m̂ · n̂)2

(m̂ ∧ n̂)2 = −m̂2n̂2 − (m̂ · n̂)2. (9.73)

But as
(m̂ · n̂)2 = ‖m̂‖2‖n̂‖2 cos2 θ (9.74)

and
m̂2n̂2 = ‖m̂‖2‖n̂‖2 (9.75)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 139

then

(m̂ ∧ n̂)2 = −‖m̂‖2‖n̂‖2 − ‖m̂‖2‖n̂‖2 cos2 θ

= −1 − cos2 θ

(m̂ ∧ n̂)2 = − sin2 θ . (9.76)

Note the imaginary feature of this result, which can be interpreted as follows:

m̂ ∧ n̂ = B̂ sin θ (9.77)

where B̂ is the unit bivector in the m̂ ∧ n̂ plane where B̂2 = −1.
Similarly,

n̂ ∧ m̂ = −B̂ sin θ (9.78)

which can be substituted in Eq. (9.70)

R = cos θ − B̂ sin θ (9.79)

which has a similar structure to Eq. (9.71) apart from a negative imaginary component.
We can convert Eq. (9.79) to its exponential form as follows:

R = exp(−B̂θ). (9.80)

Remembering that the double reflection technique doubles the angle of rotation, we must
compensate for this by halving the original angle:

R = exp(−B̂θ/2). (9.81)

Similarly,
R̃ = exp(B̂θ/2) (9.82)

which enables us to write the result

c = e−B̂θ/2aeB̂θ/2. (9.83)

More generally, the vector a is rotated through an angle θ in the plane defined by the unit bivector
B̂ using

a′ = e−B̂θ/2aeB̂θ/2. (9.84)

So now we have two ways of visualizing a rotor: either as a bivector or as an exponential, which is
readily represented as

exp(−B̂θ/2) = cos(θ/2) − B̂ sin(θ/2) (9.85)

Therefore, we can rewrite Eq. (9.84) as

a′ = (cos(θ/2) − B̂ sin(θ/2))a(cos(θ/2) + B̂ sin(θ/2)). (9.86)

Let’s test Eq. (9.86) with an example.
Figure 9.11 shows two vectors m and n forming a bivector m ∧ n. The angle of rotation is 120◦,

which means that the vector a = e2 + e3 will be rotated to a′ = e1 + e3 as shown in Fig. 9.12.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

140 Geometric algebra for computer graphics

Figure 9.11.

Figure 9.12.

Using Eq. (9.86) we have

a′ = (cos 60◦ − B̂ sin 60◦)(e2 + e3)(cos 60◦ + B̂ sin 60◦)

=
(

1

2
− B̂

√
3/2

)
(e2 + e3)

(
1

2
+ B̂

√
3/2

)

a′ = 1

4

(
1 − B̂

√
3
)
(e2 + e3)

(
1 + B̂

√
3
)
. (9.87)

Given that

m = e1 − e3 (9.88)

and

n = e2 − e3 (9.89)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 141

we evaluate the outer product using our aide-mémoire.

e1 e2 e3

m 1 0 −1
n 0 1 −1
m ∧ n x = 1 y = 1 z = 1

e23 e31 e12

where
m ∧ n = e23 + e31 + e12. (9.90)

But we require a unit bivector, which makes

B̂ = 1√
3
(e23 + e31 + e12). (9.91)

Therefore,

a′ = 1

4
(1 − e23 − e31 − e12)(e2 + e3)(1 + e23 + e31 + e12)

= 1

4
(e2 + e3 − e232 − e233 − e312 − e313 − e122 − e123)(1 + e23 + e31 + e12)

= 1

2
(e3 − e123)(1 + e23 + e31 + e12)

= 1

2
(e3 + e323 + e331 + e312 − e123 − e12323 − e12331 − e12312)

a′ = e1 + e3 (9.92)

which is what we predicted.

9.3.3 Rotor matrix

Another way of implementing a rotor is using a matrix, which is created as follows. We begin with
the bivector defining the plane m ∧ n, about which the rotation is effected, where

m = m1e1 + m2e2 + m3e3 (9.93)

and
n = n1e1 + n2e2 + n3e3. (9.94)

Notice in the following how the bivectors are associated with their perpendicular axes.
Therefore,

R = mn

R = w + xe23 + ye31 + ze12 (9.95)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

142 Geometric algebra for computer graphics

and

R̃ = nm

R̃ = w − xe23 − ye31 − ze12 (9.96)

where

w2 + x2 + y2 + z2 = 1 (9.97)

and x , y and z are computed using the outer product aide-mémoire.
We derive the matrix [[R]] representing RaR̃ by expanding the individual elements for

Re1R̃, Re2R̃ and Re3R̃:

Re1R̃ = (w + xe23 + ye31 + ze12)e1(w − xe23 − ye31 − ze12)

= (we1 + xe123 + ye3 − ze2)(w − xe23 − ye31 − ze12)

Re1R̃ = (w2 + x2 − y2 − z2)e1 + 2(−wz + xy)e2 + 2(wy + xz)e3. (9.98)

The first term is simplified by substituting

w2 + x2 = 1 − y2 − z2 (9.99)

Re1R̃ = (1 − 2(y2 + z2))e1 + 2(xy − wz)e2 + 2(xz + wy)e3. (9.100)

Next is Re2R̃

Re2R̃ = (w + xe23 + ye31 + ze12)e2(w − xe23 − ye31 − ze12)

= (we2 − xe3 + ye123 + ze1)(w − xe23 − ye31 − ze12)

Re2R̃ = 2(xy + wz)e1 + (w2 − x2 + y2 − z2)e2 + 2(yz − wx)e3. (9.101)

Substituting

w2 + y2 = 1 − x2 − z2 (9.102)

Re2R̃ = 2(xy + wz)e1 + (1 − 2(x2 + z2))e2 + 2(yz − wx)e3. (9.103)

Finally Re3R̃

Re3R̃ = (w + xe23 + ye31 + ze12)e3(w − xe23 − ye31 − ze12)

= (we3 + xe2 − ye1 + ze123)(w − xe23 − ye31 − ze12)

Re3R̃ = 2(xz − wy)e1 + 2(yz + wx)e2 + (w2 − x2 − y2 + z2)e3. (9.104)

Substituting

w2 + z2 = 1 − x2 − y2 (9.105)

Re3R̃ = 2(xz − wy)e1 + 2(yz + wx)e2 + (1 − 2(x2 + y2))e3. (9.106)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 143

Therefore, the final matrix is

[[R]] =
⎡
⎣1 − 2(y2 + z2) 2(xy − wz) 2(xz + wy)

2(xy + wz) 1 − 2(x2 + z2) 2(yz − wx)

2(xz − wy) 2(yz + wx) 1 − 2(x2 + y2)

⎤
⎦ (9.107)

which is also used in its transposed form. Notice that it is identical to the matrix representing a
quaternion. (Eq. (9.52)).

Let’s illustrate this matrix using the previous example.
Figure 9.11 shows the bivector m ∧ n which will be used to rotate the vector a through an

angle 120◦.
Given the following vectors:

m = e1 − e3 (9.108)

n = e2 − e3 (9.109)

a = e2 + e3 (9.110)

then
m · n = (e1 − e3) · (e2 − e3) = 1 (9.111)

and
m ∧ n = e23 + e31 + e12. (9.112)

Therefore,

R = mn

= m · n + m ∧ n

R = 1 + e23 + e31 + e12. (9.113)

But this has to be normalized, which makes the scaling factor 1
2

and in matrix form using Eq.
(9.107) becomes

[[R]] =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦. (9.114)

Multiplying vector a by this matrix we have

a′ =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ ·
⎡
⎣0

1
1

⎤
⎦ =

⎡
⎣1

0
1

⎤
⎦ (9.115)

which shows that a′ is now pointing to (1, 0, 1).
If a′ is subjected to the same rotation we obtain

a′′ =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ ·
⎡
⎣1

0
1

⎤
⎦ =

⎡
⎣1

1
0

⎤
⎦ (9.116)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

144 Geometric algebra for computer graphics

which shows that a′′ is now pointing to (1, 1, 0).
If a′′ is subjected to the same rotation we should return to the original vector:

a =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ ·
⎡
⎣1

1
0

⎤
⎦ =

⎡
⎣0

1
1

⎤
⎦ (9.117)

which does reassuringly, brings us back to the original vector a. These rotations are shown in
Fig. 9.12.

This seems too good to be true! So let’s test it with another example. This time, let’s reverse the
bivector as shown in Fig. 9.13, where the bivector creates a clockwise rotation of 45◦.

Figure 9.13.

Given the following vectors:

m = −e1 (9.118)

n = −e1 + e2 (9.119)

a = e2 + e3. (9.120)

e1 e2 e3

m −1 0 0
n −1 1 0
m ∧ n x = 0 y = 0 z = −1

e23 e31 e12

Therefore,
m · n = (−e1) · (−e1 + e2) = 1 (9.121)

and
m ∧ n = −e12. (9.122)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 145

Therefore,

R = mn = m · n + m ∧ n

R = 1 − e12. (9.123)

But this has to be normalized, which makes the scaling factor 1/
√

2 and in matrix form using
Eq. (9.107) becomes

[[R]] =
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦. (9.124)

Multiplying vector a by this matrix we have

a′ =
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦ ·
⎡
⎣0

1
1

⎤
⎦ =

⎡
⎣1

0
1

⎤
⎦ (9.125)

which shows that a′ is now pointing to (1, 0, 1).
If a′ is subjected to the same rotation we obtain

a′′ =
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦ ·
⎡
⎣1

0
1

⎤
⎦ =

⎡
⎣ 0

−1
1

⎤
⎦ (9.126)

which shows that a′′ is now pointing to (0, −1, 1).
If a′′ is subjected to the same rotation we obtain

a′′′ =
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦ ·
⎡
⎣ 0

−1
1

⎤
⎦ =

⎡
⎣−1

0
1

⎤
⎦. (9.127)

Finally, If a′′′ is subjected to the same rotation we obtain

a =
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦ ·
⎡
⎣−1

0
1

⎤
⎦ =

⎡
⎣0

1
1

⎤
⎦ . (9.128)

which again reassuringly, brings us back to the original vector a. These rotations are shown in
Fig. 9.14.

So once again, we see how close GA is to the algebra discovered by Hamilton. And even
though Grassmann had discovered many of the ideas outlined above, he was unable to persuade
mathematicians of the day to adopt his algebra, and it was left to Clifford to unify both men’s
work. Furthermore, it has taken several decades for GA to be applied seriously to science and
physics, and only during the past decade has GA found application within computer graphics.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

146 Geometric algebra for computer graphics

Figure 9.14.

Figure 9.15.

9.3.4 Building rotors

In the previous section we discovered how to rotate a vector using a bivector. In this section
we investigate how to derive the rotor that rotates one vector into another vector. Figure 9.15(a)
illustrates the problem, where we see two vectors a and b in the plane defined by a ∧ b, and the
objective is to find a rotor R that rotates a into b.

To do this, we bisect the angle θ between the two vectors and create a mid-vector n using

n = â + b̂

‖â + b̂‖ . (9.129)

Perpendicular to vector n is a reflector ln which is used to create a reflection of â: −nân, as shown

in Fig. 9.15(b), which must equal −b̂. But rather than use

b̂ = nân (9.130)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 147

we create a reflection about the line lb perpendicular to b̂:

b̂ = −b̂(−nân)b̂

b̂ = b̂nânb̂ (9.131)

which enables us to define b̂n as the rotor:

R = b̂n (9.132)

and
b̂ = RâR̃. (9.133)

We now have a geometric product which expands to

R = b̂n

= b̂

(
â + b̂

‖â + b̂‖

)

R = 1 + b̂â

‖â + b̂‖ . (9.134)

We can simply the denominator to avoid unnecessary arithmetic by the following subterfuge.

Figure 9.16 shows part of the geometry associated with vectors â and b̂, where we see that
d = cos(θ/2), which means that using the half-angle identity

cos(θ/2) =
√

1 + cos θ

2
(9.135)

we have

‖â + b̂‖ = 2d

= 2 cos(θ/2)

‖â + b̂‖ = √2(1 + cos θ). (9.136)

This permits us to substitute

cos θ = â · b̂ (9.137)

and

R = 1 + b̂â√
2(1 + b̂ · â)

(9.138)

which has the effect of rotating â to b̂.
In chapter 3 we showed that a complex number is rotated through an angle θ in the complex

plane using
z ′ = zeiθ . (9.139)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

148 Geometric algebra for computer graphics

Figure 9.16.

Could it be that in the above scenario that â can be rotated into b̂ using a similar formula? In fact,
the answer is “yes”, and we can prove it as follows. Using Eq. (9.138) we have

Râ = (1 + b̂â)â√
2(1 + b̂ · â)

Râ = â + b̂√
2(1 + b̂ · â)

(9.140)

and

R̃ = 1 + âb̂√
2(1 + b̂ · â)

(9.141)

therefore

âR̃ = â(1 + âb̂)√
2(1 + b̂ · â)

âR̃ = â + b̂√
2(1 + b̂ · â)

(9.142)

and

Râ = âR̃. (9.143)

Equation (9.143) confirms that pre-multiplying a vector by a rotor is equivalent to post-
multiplying it by the rotor’s inverse, which leads to

R2â = âR̃2

= RâR̃

R2â = b̂. (9.144)

But we showed above in Eq. (9.81) that

R = exp(−B̂θ/2) (9.145)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 149

where B̂ is the unit bivector representing the plane of rotation. Therefore, applying the rules of
exponentiation to Eq. (9.144) we have

R2 = (e−B̂θ/2
)2

= e−B̂θ

R2 = exp(−B̂θ). (9.146)

From Eq. (9.144) we have

b̂ = R2â

= exp(−B̂θ)â

= âeB̂θ

b̂ = â(cos θ + B̂ sin θ). (9.147)

Let’s illustrate this process with an example.
Figure 9.17 shows two vectors

â = e1 b̂ = e2 (9.148)

which belong to the plane defined by B̂ = e12. The separating angle is π/2 radians. Using
Eq. (9.147) we have

b̂ = e1ee12 π/2

= e1(cos(π/2) + e12 sin(π/2))

b̂ = e1e12 = e2 (9.149)

which is correct.
Now let’s try another combination, as shown in Figure 9.18 using vectors

â = e1 b̂ = −e1. (9.150)

Figure 9.17.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150 Geometric algebra for computer graphics

Figure 9.18.

Using Eq. (9.147) we have

b̂ = e1ee12 π

= e1(cos π + e12 sin π)

b̂ = −e1 (9.151)

which is correct.

9.3.5 Interpolating rotors

Interpolating scalars is a trivial exercise and is readily implemented using the linear interpolant

s = s1(1 − λ) + s2λ 0 ≤ λ ≤ 1. (9.152)

And there is no reason why we cannot use the same equation for interpolating two vectors:

v = v1(1 − λ) + v2λ 0 ≤ λ ≤ 1 (9.153)

apart from the fact that the magnitude of the interpolated vector is not preserved, and could
collapse to zero under some conditions. To overcome this problem a slerp (spherical linear
interpolant) [8] is used

v = sin((1 − λ)θ)

sin θ
v1 + sin(λθ)

sin θ
v2 0 ≤ λ ≤ 1 (9.154)

where θ is the angle between two vectors or quaternions, which preserves the integrity of their
magnitude during the interpolation.

Fortunately, this slerp can also be used to interpolate between two rotors as follows:

R = sin((1 − λ)θ/2)

sin(θ/2)
R1 + sin(λθ/2)

sin(θ/2)
R2 0 ≤ λ ≤ 1 (9.155)

where θ is the angle of rotation. An example will quickly reveal the action of Eq. (9.155).
Figure 9.19 shows a vector a = e1 and a plane of rotation defined by the bivector e12. We

will now design an interpolant that will interpolate between two rotors using the scalar λ, where
0 ≤ λ ≤ 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 151

Figure 9.19.

We begin by defining the two rotors R1 and R2, where R1 is the rotor locating a and R2 rotates
a to a′. Using Eq. (9.85)

R = cos(θ/2) − B̂ sin(θ/2) (9.156)

then

R1 = cos 0◦ − e12 sin 0◦

R1 = 1 (9.157)

and

R2 = cos 45◦ − e12 sin 45◦

R2 = √
2/2(1 − e12). (9.158)

Therefore, R1 and R2 can be substituted in Eq. (9.155) to produce

R = sin((1 − λ)45◦)
sin(45◦)

+ sin(λ45◦)
sin(45◦)

√
2(1 − e12)

2
. (9.159)

We can see from Eq. (9.159) that when λ = 0, R0 = 1, and when λ = 1,

R1 = √
2/2(1 − e12). (9.160)

Using R0 to rotate vector a we have

a′ = R0aR̃0 = a (9.161)

which is expected.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

152 Geometric algebra for computer graphics

Using R1 to rotate a we have

a′ = R1aR̃1

= √
2/2(1 − e12)a

√
2/2(1 + e12)

= 1

2
(1 − e12)e1(1 + e12)

a′ = 1

2
(e1 + e2)(1 + e12) (9.162)

and

a′ = 1

2
(e1 + e2 + e2 − e1)

a′ = e2 (9.163)

which is also correct.
Now let’s compute a half-way rotor when λ = 1

2
.

R 1
2

= sin(45◦/2)

sin(45◦)
+ sin(45◦/2)

sin(45◦)

√
2(1 − e12)

2

= sin(45◦/2)

sin(45◦)

(
1 +

√
2(1 − e12)

2

)

R 1
2

� 0.9238 − 0.3827e12. (9.164)

Using R 1
2

to rotate a we have

a′ � (0.9239 − 0.3827e12)e1(0.9239 + 0.3827e12)

Table 9.1

Action Algebra

Reflecting a vector a′ = −n̂an̂
Reflecting a bivector B′ = n̂Bn̂
Reflecting a trivector T ′ = −n̂T n̂
Rotating a vector a′ = RaR̃
Rotor R = exp(−B̂θ/2) = cos(θ/2) − B̂ sin(θ/2)

Rotor matrix [[R]] =
⎡
⎣1 − 2(y2 + z2) 2(xy − wz) 2(xz + wy)

2(xy + wz) 1 − 2(x2 + z2) 2(yz − wx)

2(xz − wy) 2(yz + wx) 1 − 2(x2 + y2)

⎤
⎦

where w2 + z2 = 1 − x2 − y2.

Interpolating between two rotors R = sin((1 − λ)θ/2)

sin(θ/2)
R1 + sin(λθ/2)

sin(θ/2)
R2 0 ≤ λ ≤ 1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 153

and
a′ � 0.7071e1 + 0.7071e2 (9.165)

which shows that a has been rotated 45◦ anticlockwise.
Hopefully, the reader is convinced that the interpolant works for all other values of λ!

9.4 Summary

Reflections and rotations are one of GA’s strengths and it is interesting to discover a notation
that does not require an explicit matrix transform, even though one is lurking just beneath the
surface. Finally, one must be extremely careful to ensure that the correct sign is used for the
different blades. Table 9.1 summarizes most of the important formulae associated with reflections
and rotations.




