
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 The Geometric
Product

8.1 Introduction

Whenever we attempt to learn something completely new, all sorts of mental barriers are raised,
especially if the subject matter appears foreign or irrational. This often happens when we learn a
new language and wonder why its syntax differs from our own native language. Mathematics is a
minefield for such experiences, and as we explore the world of GA, don’t be surprised if you feel
uncomfortable or bewildered by its structure and ideas.

If this is the first time you have studied GA this chapter will be both challenging and exciting.
It will be challenging not because it is difficult, but because there is so much to remember as
the algebra unfolds. For example, some elements of the algebra commute, whilst others anti-
commute. Some functions are symmetric, whilst others are antisymmetric. Certain conditions
arise with orthogonal elements, and others arise with parallel elements, and there is a sense of
being overwhelmed by a world of axioms, rules and special conditions. It will be exciting as GA is
extremely rich in new concepts that will draw you into its strange world of symbol manipulation
that correspond with the world of space.

Basically, GA allows us manipulate scalars, vectors, areas and volumes using a simple and
consistent notation. Combinations of such elements are called multivectors, which may be added,
subtracted and multiplied. Adding or subtracting multivectors create no problems, as we simply
add or subtract like elements. What is strange, however, are the products. In vector algebra there
are only two products to consider: the inner product and the outer vector product. The inner
product creates a scalar, whilst the vector product creates another vector normal to the original
vectors. From these products arise all sorts of triple products such as:

(a · b)c a · (b × c) (a × b) × c a × (b × c) (8.1)

which are easy to interpret and visualize. On the other hand, GA employs a new product called
the geometric product, which operates upon multivectors containing scalars, vectors, areas and
volumes. Visualizing these products can be difficult. For example, how should we visualize the
product of two areas, or the product of a vector and a volume, or even the product of two
volumes? These are new concepts and take some getting used to. What is even more strange is that
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80 Geometric algebra for computer graphics

the algebra involves imaginary elements, which, unlike the reasonably familiar i, do not always
commute with their neighbor. An unusual, but useful, feature of GA is that multivectors can be
divided by vectors, which is something conventional vector algebra is unable to do.

The problem now is how best to reveal this algebra? The approach taken in this chapter is
to split GA’s features in two: the first part explores GA in 2D space followed by 3D space. But
remember, the algebra can be applied to space of any number of dimensions. In the first part we
look at vectors, bivectors (areas), pseudoscalars, multivectors and their products in an R

2 context.
We also discover how these products give rise to rotations, much in the same way that complex
numbers can be rotated. And because there is a close relationship between GA and complex
numbers, we look at how it is possible to move between the two systems. In the second part we
look at vectors, bivectors, trivectors (volumes), pseudoscalars, multivectors and their products in
an R

3 context. We also discover how simple rotations arise from these products, and the close
relationship between GA and quaternions.

This said, let’s begin this journey with a description of Clifford’s geometric product.

8.2 Clifford’s definition of the geometric product

Clifford defined the geometric product of two vectors a and b as

ab = a · b + a ∧ b (8.2)

which is the sum of a scalar and a bivector. Now there is always a good reason why such definitions
are made, and it is far from arbitrary. In order to develop this new product we start by defining
the axioms associated with the algebra. These comprise an associative axiom, distributive axiom,
and a definition of a modulus.

For the moment, let’s put to one side what we have discovered about the outer product, and see
whether its properties emerge from the following axioms.

Associative axiom

a(bc) = (ab)c = abc (8.3)

(λa)b = λ(ab) = λab [λ ∈ R]. (8.4)

Distributive axiom
a(b + c) = ab + ac (8.5)

and
(b + c)a = ba + ca. (8.6)

Modulus
a2 = ±‖a‖2. (8.7)

From these axioms we can derive the meaning of the product ab. Just in case the product is
antisymmetric, we pay particular attention to the order of vectors.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 81

We begin with two vectors a and b and represent their sum as

c = a + b. (8.8)

Therefore,
c2 = (a + b)2 (8.9)

and
c2 = a2 + b2 + ab + ba. (8.10)

To simplify this relationship we investigate how Eq. (8.10) behaves when vectors a and b are
orthogonal, linearly dependent and linearly independent.

8.2.1 Orthogonal vectors

Figure 8.1.

With reference to Fig. 8.1, when
b⊥a

then
‖c‖2 = ‖a‖2 + ‖b‖2. (8.11)

Invoking the modulus axiom, we have

c2 = a2 + b2 (8.12)

which implies that in Eq. (8.10)
ab + ba = 0 (8.13)

or
ab = −ba (8.14)

which confirms that orthogonal vectors anticommute.

8.2.2 Linearly dependent vectors

With reference to Fig. 8.2, when

b ‖ a and b = λa where [λ ∈ R] (8.15)

ab = aλa = λaa = ba (8.16)

which confirms that linearly dependent vectors commute.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82 Geometric algebra for computer graphics

Figure 8.2.

Invoking the modulus axiom we have

λaa = λa2 = λ‖a‖2 (8.17)

which is a scalar.

8.2.3 Linearly independent vectors

Figure 8.3.

With reference to Fig. 8.3

b = b‖ + b⊥. (8.18)

Therefore, we can write

ab = a(b‖ + b⊥) (8.19)

and

ab = ab‖ + ab⊥. (8.20)

Let’s examine the RHS products of Eq. (8.20):
ab‖: As a and b‖ are linearly dependent, ab‖ is a scalar. Furthermore,

ab‖ = ‖a‖‖b‖ cos θ = a · b (8.21)

which is defined as the inner product, or the inner product, and is symmetric.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 83

ab⊥: As a and b⊥ are orthogonal

ab⊥ = ‖a‖‖b‖ sin θ = a ∧ b (8.22)

which is defined as the outer product and is antisymmetric; i.e.

a ∧ b = −b ∧ a. (8.23)

The area of the parallelogram formed by a and b in Fig. 8.20 is

‖a‖‖b‖ sin θ . (8.24)

Therefore,
‖a ∧ b‖ = ‖a‖‖b‖ sin θ (8.25)

which enables us to write Eq. (8.20) as

ab = a · b + a ∧ b. (8.26)

The parallel and orthogonal components created by a · b and a ∧ b describe everything about the
vectors a and b, which is why Clifford combined them into his geometric product. Furthermore,
because these product components are linearly independent, the modulus of ab is computed using
the Pythagorean rule:

‖ab‖2 = ‖a · b‖2 + ‖a ∧ b‖2

‖ab‖2 = ‖a‖2‖b‖2 cos2 θ + ‖a‖2‖b‖2 sin2 θ

‖ab‖2 = ‖a‖2‖b‖2(cos2 θ + sin2 θ) (8.27)

‖ab‖ = ‖a‖‖b‖. (8.28)

Now we already know that a · b is a pure scalar and a ∧ b is a directed area, which we suspect has
an imaginary flavor. So it may seem strange adding two different mathematical objects together,
but no stranger than a complex number. Nevertheless, we still require a name for this new object,
which is a multivector and is described in section 8.5.

If we reverse the product to ba we have

ba = b · a + b ∧ a = a · b − a ∧ b. (8.29)

Note how the antisymmetry of the outer product introduces the negative sign.
Knowing that the geometric product is the sum of the inner and outer products, it is possible

to define the inner and outer products in terms of the geometric product as follows.
Subtracting Eq. (8.29) from Eq. (8.26) we obtain

ab − ba = (a · b + a ∧ b) − (a · b − a ∧ b) = 2(a ∧ b) (8.30)

therefore,

a ∧ b = 1

2
(ab − ba). (8.31)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84 Geometric algebra for computer graphics

Similarly, adding Eq. (8.29) to Eq. (8.26) we obtain

ab + ba = 2a · b (8.32)

therefore,

a · b = 1

2
(ab + ba). (8.33)

These are important relationships and will be called upon frequently.
Now let’s explore the geometric product further using the unit basis vectors for R

2.

8.2.4 The product of identical basis vectors

Before we begin exploring this product, it is worth introducing a shorthand notation that simplifies
our equations. Very often we have to write down a string of basis vectors such as e1e2e1 which can
also be written as e121, and saves space on the printed page. In general this is expressed as:

eiej ek ≡ eijk . (8.34)

So let’s start with the product e1e1:

e1e1 = e1 · e1 + e1 ∧ e1. (8.35)

Now we already know that e1 ∧ e1 = 0 and e1 · e1 = 1, which means that

e1e1 = e2
1 = 1. (8.36)

Similarly,
e2

2 = 1. (8.37)

8.2.5 The product of orthogonal basis vectors

Next, the product e1e2:
e1e2 = e1 · e2 + e1 ∧ e2. (8.38)

Again, we know that e1 · e2 = 0, which means that

e1e2 = e1 ∧ e2. (8.39)

So, whenever we find the unit bivector e1 ∧ e2 we can substitute e1e2 or e12.
Now let’s compute the product e2e1:

e2e1 = e2 · e1 + e2 ∧ e1 = e2 · e1 − e1 ∧ e2. (8.40)

But e2 · e1 = 0, therefore,
e2e1 = −e1 ∧ e2 = −e12. (8.41)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 85

8.2.6 The imaginary properties of the outer product

The imaginary properties of the outer product are revealed by evaluating the product (e1 ∧ e2)
2:

(e1 ∧ e2)
2 = (e1 ∧ e2)(e1 ∧ e2) = e1e2e1e2. (8.42)

But as
e2e1 = −e1e2 (8.43)

then
(e1 ∧ e2)

2 = −e1e1e2e2 = −e2
1e2

2. (8.44)

But as
e2

1 = e2
2 = 1 (8.45)

then
(e1 ∧ e2)

2 = −1. (8.46)

So the unit bivector possess the same qualities as imaginary i in that it squares to −1.
Now this has all sorts of ramifications as it suggests that GA is related to complex numbers and

possibly, quaternions, and could perform rotations in n-dimensions. At this point, the algebra
explodes into many paths, which will have to be explored in turn.

8.3 The unit bivector pseudoscalar

GA uses the term grade to distinguish its algebraic elements. For example, a scalar is grade-0, a
vector grade-1 and a bivector grade-2, etc. In each algebra, the highest grade element is called
the pseudoscalar and its grade equals the dimension of the associated space, which in R

2 is the
bivector e1 ∧ e2 and is a two-dimensional element. Later on, we discover that the trivector in R

3

is also called a pseudoscalar.
Because the pseudoscalar has imaginary properties, some authors use the lowercase i to repre-

sent it, whilst others opt for the uppercase I . The reason for this is that i is normally associated
with scalars, where there are no commuting problems. On the other hand, we will soon discover
that the pseudoscalar anticommutes with vectors in R

2, and it is safer to employ the symbol I so
that its anticommuting properties do not get confused with those of i.

8.3.1 The rotational properties of the pseudoscalar

Now that we know that the unit bivector possesses imaginary properties, let’s confirm that it
rotates vectors in the same way we saw in section 7.2. We begin with the product e1I :

e1I = e1e1e2 = e2
1e2 = e2. (8.47)

Taking the result e2 and post-multiplying this by I :

e2I = e2e1e2 = e2(−e2e1) = −e2
2e1 = −e1. (8.48)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86 Geometric algebra for computer graphics

Taking the result −e1 and post-multiplying this by I :

−e1I = −e1e1e2 = −e2
1e2 = −e2. (8.49)

Taking the result −e2 and multiplying this by I :

−e2I = −e2e1e2 = −e2(−e2e2) = e2
2e1 = e1 (8.50)

which brings us back to the starting point. Similarly, when the product is reversed, the direction
of rotation is reversed.

As a simple example of the algebra in action, consider post-multiplying a vector a by the
pseudoscalar I where

a = a1e1 + a2e2. (8.51)

Then
aI = ae1e2 = (a1e1 + a2e2)e1e2 = a1e2

1e2 + a2e2e1e2 (8.52)

and
aI = a1e2 − a2e2

2e1 = −a2e1 + a1e2 (8.53)

which has clearly rotated the vector 90◦ anticlockwise.
Pre-multiplying the vector a by I produces:

Ia = e1e2a = e1e2(a1e1 + a2e2) = a1e1e2e1 + a2e1e2
2 (8.54)

and
Ia = −a1e2 + a2e1 = a2e1 − a1e2 (8.55)

which has rotated the vector 90◦ clockwise.
Therefore,

aI = −Ia (8.56)

and confirms that in R
2, the pseudoscalar and vectors anticommute.

These rotations are illustrated in Fig. 8.4.

Figure 8.4.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 87

8.4 Summary of the products

Table 8.1 summarizes the products we have encountered so far.

Table 8.1

Products in R
2

Type Product Absolute Value Notes

inner e1 · e1 1 e2 · e2 = e1 · e1

outer e1 ∧ e1 0 e2 ∧ e2 = e1 ∧ e1

geometric e2
1 1 e2

2 = e2
1

e1I = −I e1

inner e1 · e2 0 e2 · e1 = e1 · e2

outer e1 ∧ e2 1 e1 ∧ e2 = −(e2 ∧ e1)

geometric e1e2 1 e12 = −e21

e12 = I
I 2 = −1

inner a · a ‖ a ‖2

outer a ∧ a 0
geometric a2 ‖ a ‖2

inner a · b ‖ a ‖‖ b ‖ cos θ a · b = 1
2 (ab + ba)

a1b1 + a2b2

outer a ∧ b ‖ a ‖‖ b ‖ sin θ a ∧ b = 1
2 (ab − ba)

a1b2 − a2b1 a ∧ b = (a1b2 − a2b1)e1 ∧ e2

geometric ab ‖ a ‖‖ b ‖ ab = a · b + a ∧ b
aI = −Ia

8.5 Multivectors in R
2

In Chapters 2, 3, 4 and 5 we reviewed four algebraic systems with their axioms and elements and
saw that elementary algebra supports scalars; complex algebra supports complex numbers (a scalar
and an imaginary); vector algebra supports vectors (n-tuples); and quaternion algebra supports
quaternions (a scalar and a vector). Clifford required that geometric algebra should support an
element containing scalars, vectors, bivectors and any other object that could be created using the
geometric product, which seems to be an impossible task. But his deep understanding of algebra
and geometry resulted in an object he called a multivector which can be added and multiplied
together just like any other element. For example, a multivector in R

2 contains a scalar, vectors
and a bivector, whereas in R

3 a multivector contains a scalar, vectors, bivectors and a trivector.
Higher-dimensional spaces contain similar combinations of scalar and vector-based objects.

The multivector elements that exist in R
2 are scalars, vectors and bivectors, which are

summarized in Table 8.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88 Geometric algebra for computer graphics

Table 8.2

Element Symbol Grade

1 scalar λ 0
2 vectors {e1, e2} 1
1 unit bivector e1 ∧ e2 = e12 2

A multivector is defined as a linear combination of the graded elements associated with the
size of the linear space, which, in the case of R

2 are scalars, vectors and bivectors. Therefore a
multivector A is defined as follows:

A = λ0 + λ1e1 + λ2e2 + λ3e12 [λi ∈ R] (8.57)

Note that we have substituted the geometric product for the outer product, as this is much more
convenient. Using arbitrary values, the following are possible multivectors:

A = 4 + 3e1 + 4e2 + 5e12 (8.58)

B = 3 + 2e1 + 3e2 + 4e12 (8.59)

which, allows us to write:
A + B = 7 + 5e1 + 7e2 + 9e12 (8.60)

and
A − B = 1 + e1 + e2 + e12. (8.61)

But what about the product AB? To answer this question, let’s define B in general terms and form
the product AB:

B = β0 + β1e1 + β2e2 + β3e12. (8.62)

Therefore,
AB = (λ0 + λ1e1 + λ2e2 + λ3e12)(β0 + β1e1 + β2e2 + β3e12). (8.63)

Expanding, we obtain

AB = λ0β0 + λ0β1e1 + λ0β2e2 + λ0βe12 + λ1β0e1 + λ1β1e2
1

+ λ1β2e12 + λ1βe112 + λ2β0e2 + λ2β1e21 + λ2β2e2
2

+ λ2βe212 + λ3β0e12 + λ3β1e121 + λ3β2e122 + λ3βe2
12. (8.64)

Substituting
e2

1 = e2
2 = 1 e21 = −e12 e2

12 = −1 (8.65)

and collecting up like terms:

AB = (λ0β0 + λ1β1 + λ2β2 − λ3β3) + (λ0β1 + λ1β0 + λ3β2 − λ2β3)e1

+ (λ0β2 + λ1β3 + λ2β0 − λ3β1)e2 + (λ0β3 + λ1β2 + λ3β0 − λ2β1)e12. (8.66)

Which confirms that the multivector product AB creates another multivector and consequently
forms a closed algebra.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 89

Using the above multivectors

AB = (4 + 3e1 + 4e2 + 5e12)(3 + 2e1 + 3e2 + 4e12) (8.67)

then
AB = 10 + 16e1 + 26e2 + 32e12. (8.68)

8.6 The relationship between bivectors, complex numbers and vectors

The geometric product reveals the relationship between bivectors and complex numbers, and is
demonstrated by computing the product of two vectors in R

2.
Given two vectors a and b where

a = a1e1 + a2e2 (8.69)

b = b1e1 + b2e2 (8.70)

then

ab = (a1e1 + a2e2)(b1e1 + b2e2)

= a1b1e2
1 + a1b2e12 + a2b1e21 + a2b2e2

2

= a1b1 + a2b2 + a1b2e12 − a2b1e12

= (a1b1 + a2b2) + (a1b2 − a2b1)e12

ab = (a1b1 + a2b2) + (a1b2 − a2b1)I (8.71)

which is a complex number! Note that (a1b1 + a2b2) is a scalar whilst (a1b2 − a2b1)I is a bivector,
which means that we can form the equivalent of a complex number Z by combining a scalar and
a unit bivector as follows:

Z = a1 + a2e12 = a1 + a2I (8.72)

where a1 is the real part, and a2 is the imaginary part.
Furthermore, we can convert a vector a into a complex number Z as follows.
Given a vector a:

a = a1e1 + a2e2 (8.73)

then pre-multiplying a by e1 we obtain:

e1a = e1(a1e1 + a2e2) = a1e2
1 + a2e1e2 = a1 + a2I . (8.74)

Therefore,
e1a = Z . (8.75)

But what happens if we reverse e1 and a?

ae1 = (a1e1 + a2e2)e1 = a1e2
1 + a2e2e1 = a1 − a2I (8.76)

which we recognize as the complex conjugate. Therefore,

ae1 = Z †. (8.77)

(The dagger symbol † is sometimes used to represent the complex conjugate of a multivector).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90 Geometric algebra for computer graphics

8.7 Reversion

Reversing sequences of symbols happens to be a useful operation in GA. For instance, we may
wish to reverse the sequence of three vectors abc to cba, or swap two bivectors AB to BA. Whatever
the elements may be, the reversion operator performs this task and is used as follows:

(abc · · · d)∼ = (d · · · cba). (8.78)

The tilde superscript reminds us of this action, but other authors may employ the dagger symbol.
For any vectors a and b

(ab)∼ = (a · b + a ∧ b)∼

= a · b − b ∧ a

(ab)∼ = ba. (8.79)

Similarly, for any multivectors A and B

(AB)∼ = B̃Ã. (8.80)

Unfortunately, some reversions involve a sign change, and are summarized in Table 8.3.

Table 8.3

Blade k Sign

scalar 0 +
vector 1 +
bivector 2 −
trivector 3 −
4-vector 4 +
5-vector 5 +
6-vector 6 −
7-vector 7 −
etc.

This sign switching pattern is accommodated by the following formula:

Ãk = (−1)
k(k−1)

2 Ak . (8.81)

8.8 Rotations in R
2

In chapter 3 we saw that a complex number z is rotated through an angle φ using

z ′ = zeiφ (8.82)

where
eiφ = cos φ + i sin φ. (8.83)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 91

But as i2 = I 2

eIφ = cos φ + I sin φ. (8.84)

Therefore,

z ′ = zeIφ . (8.85)

But a multivector consisting of a scalar and a bivector is identical to a complex number, which
means that we can write Eq. (8.85) as

Z ′ = ZeIφ . (8.86)

So now let’s see how a vector is rotated using a similar operation.
Pre-multiplying Eq. (8.75) by e1 we obtain

e1e1v = e1Z (8.87)

and

v = e1Z . (8.88)

Let’s assume that there exists another vector v ′ with an associated multivector Z ′ such that

v ′ = e1Z ′. (8.89)

Substituting Eq. (8.86) we obtain

v ′ = e1ZeIφ . (8.90)

Substituting Eq. (8.75) we obtain

v ′ = e1e1veIφ = veIφ (8.91)

which rotates the vector v through an angle φ to v ′.
Let’s illustrate Eq. (8.91) with an example.
Rotate v = e1 anticlockwise 90◦ in the plane e12:

v ′ = veIφ = e1(cos 90◦ + e12 sin 90◦)

v ′ = e1e12 = e2. (8.92)

Which is correct.

8.9 The vector-bivector product in R
2

In section 8.3.1 we saw that a pseudoscalar rotates a vector 90◦ in the plane without scaling the
vector. Now let’s see what happens when we form the geometric product of a vector and a bivector.
For example, given a vector a and a bivector B where

a = a1e1 + a2e2 (8.93)

B = (b1e1 + b2e2) ∧ (c1e1 + c2e2) (8.94)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92 Geometric algebra for computer graphics

then a′ is the product aB

a′ = aB

= (a1e1 + a2e2)((b1e1 + b2e2) ∧ (c1e1 + c2e2))

= (a1e1 + a2e2)(b1c1e1 ∧ e1 + b1c2e1 ∧ e2 + b2c1e2 ∧ e1 + b2c2e2 ∧ e2)

= (a1e1 + a2e2)(b1c2 − b2c1)e12

= a1(b1c2 − b2c1)e2
1e2 + a2(b1c2 − b2c1)e212

= a1(b1c2 − b2c1)e2 − a2(b1c2 − b2c1)e1

a′ = −a2(b1c2 − b2c1)e1 + a1(b1c2 − b2c1)e2. (8.95)

But
‖B‖ = b1c2 − b2c1. (8.96)

Therefore,
a′ = ‖B‖(−a2e1 + a1e2). (8.97)

It is clear from Eq. (8.97) that vector a has been rotated anticlockwise 90◦ and scaled by the
magnitude of the bivector B. Reversing the product reverses the direction of rotation:

a′ = Ba

= ((b1e1 + b2e2) ∧ (c1e1 + c2e2))(a1e1 + a2e2)

= (b1c2 − b2c1)e12(a1e1 + a2e2)

= a1(b1c2 − b2c1)e121 + a2(b1c2 − b2c1)e122

= −a1(b1c2 − b2c1)e2 + a2(b1c2 − b2c1)e1

= a2(b1c2 − b2c1)e1 − a1(b1c2 − b2c1)e2

a′ = ‖B‖(a2e1 − a1e2). (8.98)

Equation (8.98) confirms that a has been rotated clockwise 90◦ and scaled by the magnitude of
the bivector B.

8.10 Volumes and the trivector

By now you will have observed that geometric algebra is highly structured. We start with scalars,
which in various tuples create vectors, which in turn create bivectors and ultimately lead to
multivectors. The next element after the bivector is the trivector and is used to represent a directed
volume. Starting with a bivector a ∧ b, which represents a directed area, we can imagine that this
is moved along a third vector c to sweep out a parallelpiped as shown in Fig. 8.5 (a).

Remember that we are working with a right-handed axial system, and the bivector a ∧ b is
anticlockwise as viewed from inside the volume and moves along the direction of vector c to
create the trivector (a ∧ b) ∧ c . In Fig. 8.5 (b) the bivector b ∧ c is still anticlockwise as viewed
from inside the volume and moves along the direction of vector a to create the trivector (b ∧ c)∧a.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 93

Figure 8.5.

Finally, in Fig. 8.5 (c), the bivector c ∧ a is still anticlockwise as viewed from inside the volume
and moves along the direction of vector b to create the trivector (c ∧ a) ∧ b. It is obvious that the
three volumes are identical, which allows us to state

(a ∧ b) ∧ c = (b ∧ c) ∧ a = (c ∧ a) ∧ b. (8.99)

Although the volumes in Fig. 8.5 are rectangular parallelpipeds, the above reasoning still holds
for general parallelpipeds. In fact, just as the parallelogram helped us visualize the area comput-
ing powers of the bivector, the parallelpiped is just a useful object to illustrate the volumetric
computing powers of the trivector. However, any volume can be used to visualize a trivector.

When vectors a, b, c are described in terms of the unit basis vectors:

a = a1e1 + a2e2 + a3e3 (8.100)

b = b1e1 + b2e2 + b3e3 (8.101)

c = c1e1 + c2e2 + c3e3 (8.102)

and multiplied together using a ∧ b ∧ c , it is obvious that this will give rise to terms such as:

e1 ∧ e1 ∧ e1 = 0 (8.103)

e2 ∧ e2 ∧ e2 = 0 (8.104)

e3 ∧ e3 ∧ e3 = 0, etc. (8.105)

Furthermore, a variety of new terms arise involving triple outer products such as:

e1 ∧ e2 ∧ e3 (8.106)

e1 ∧ e2 ∧ e1 (8.107)

e1 ∧ e2 ∧ e2, etc. (8.108)

The product e1 ∧ e2 ∧ e3 is interpreted as:
‘sweep the unit bivector e1 ∧ e2 along the orthogonal vector e3 creating a volume represented

by the trivector e1 ∧ e2 ∧ e3.’
The product e1 ∧ e2 ∧ e1 is interpreted as:
‘sweep the unit bivector e1 ∧ e2 along one of its vectors: e1, which does not create a volume.’
The product e1 ∧ e2 ∧ e2 is interpreted as:
‘sweep the unit bivector e1 ∧ e2 along one of its vectors: e2, which also does not create a volume.’



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94 Geometric algebra for computer graphics

Although these interpretations are correct, we require an algebraic explanation, which is
provided as follows.

For completeness, let’s expand the triple outer product:

a ∧ b ∧ c = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3) ∧ (c1e1 + c2e2 + c3e3)

=
⎛
⎝a1b1e1 ∧ e1 + a1b2e1 ∧ e2 + a1b3e1 ∧ e3+

a2b1e2 ∧ e1 + a2b2e2 ∧ e2 + a2b3e2 ∧ e3+
a3b1e3 ∧ e1 + a3b2e3 ∧ e2 + a3b3e3 ∧ e3

⎞
⎠ ∧ (c1e1 + c2e2 + c3e3)

=
(

a1b2e1 ∧ e2 − a1b3e3 ∧ e1 − a2b1e1 ∧ e2+
a2b3e2 ∧ e3 + a3b1e3 ∧ e1 − a3b2e2 ∧ e3

)
∧ (c1e1 + c2e2 + c3e3)

a ∧ b ∧ c =
(

(a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3

+(a3b1 − a1b3)e3 ∧ e1

)
∧ (c1e1 + c2e2 + c3e3) (8.109)

At this point we can reject terms such as

e1 ∧ e2 ∧ e1, e1 ∧ e2 ∧ e2, e2 ∧ e3 ∧ e2 (8.110)

as they are zero volume elements, and means that we are left with the following trivector
coefficients:

a ∧ b ∧ c = (a1b2 − a2b1)c3e123 + (a2b3 − a3b2)c1e123 + (a3b1 − a1b3)c2e123

= ((a2b3 − a3b2)c1 + (a3b1 − a1b3)c2 + (a1b2 − a2b1)c3)e123

and

a ∧ b ∧ c =
∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ e123 (8.111)

which we recognize as the volume of a parallelpiped. Thus a trivector computes a directed volume.

8.11 The unit trivector pseudoscalar

Earlier in this chapter we discovered that

(e1 ∧ e2)
2 = −1 (8.112)

and the name pseudoscalar was given to this product. Now let’s do the same for the trivector:

(e1 ∧ e2 ∧ e3)
2 = (e1e2e3)

2

= e1e2e3e1e2e3 = e1e2e1e3e3e2

(e1 ∧ e2 ∧ e3)
2 = e1e2e1e2 = −1 (8.113)

which shows that the unit trivector also possesses imaginary properties.
With this new-found knowledge, let’s compute the volume of a rectangular parallelpiped and a

general parallelpiped.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 95

We start by defining the edges of a box using the following vectors as shown in Fig. 8.6:

a = 2e1 b = 3e2 c = 4e3. (8.114)

Figure 8.6.

Its volume V is defined as

V = ‖a ∧ b ∧ c‖
= ‖2e1 ∧ 3e2 ∧ 4e3‖
= ‖24e1 ∧ e2 ∧ e3‖
= ‖24e123‖

V = ‖24I‖. (8.115)

Although the volume is represented as 24I , we are only interested in its magnitude, which is 24.
Hopefully, it is obvious that by reversing one of the vectors reverses the sign of the volume.

Figure 8.7.

For a second example, Fig. 8.7 illustrates a general parallelpiped where

a = 2e1 b = 0.5e1 + 2e2 c = 3e3. (8.116)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96 Geometric algebra for computer graphics

Therefore, its volume V is given by

V = ‖a ∧ b ∧ c‖
= ‖2e1 ∧ (0.5e1 + 2e2) ∧ 3e3‖
= ‖4e12 ∧ 3e3‖
= ‖12e123‖

V = 12. (8.117)

At this point it is worth summarizing a pseudoscalar’s features. To begin with, the pseudoscalar
squares to −1:

I 2 = −1 (8.118)

which guarantees
‖I‖2 = 1. (8.119)

Secondly, the pseudoscalar defines orientation. For instance, the 2D unit bivector is defined by
e1 ∧ e2, and if any other bivector has the same sign as e1 ∧ e2 it shares the same orientation.
Similarly, the 3D unit trivector is defined by e1 ∧ e2 ∧ e3, and if any other trivector has the same
sign as e1 ∧ e2 ∧ e3 it shares the same orientation. Convention dictates that e1 ∧ e2 ∧ e3 describes
a right-handed system of axes.

8.12 The product of the unit basis vectors in R
3

8.12.1 The product of identical basis vectors

The three unit basis vectors in R
3 are e1, e2 and e3, and although it is self-evident, for the sake of

completeness, we will record that
e2

1 = e2
2 = e2

3 = 1. (8.120)

8.12.2 The product of orthogonal basis vectors

The third unit basis vector e3 gives rise to three orthogonal unit basis bivector combinations:

e12, e23 and e31. (8.121)

We already know that
e12 = e1 ∧ e2 (8.122)

and it should come as no surprise that

e23 = e2 ∧ e3 (8.123)

and
e31 = e3 ∧ e1. (8.124)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 97

8.12.3 The imaginary properties of the unit bivectors

In section 8.2.6 we discovered that

e2
12 = (e1 ∧ e2)

2 = −1 (8.125)

and the same pattern is repeated for R
3:

e2
23 = (e2 ∧ e3)

2 = −1 (8.126)

and
e2

31 = (e3 ∧ e1)
2 = −1. (8.127)

8.13 The vector-unit bivector product in R
3

In section 8.3.1 we discovered that pre-multiplying a vector in R
2 by the pseudoscalar I = e12

rotates the vector clockwise 90◦ and post-multiplying rotates the vector anticlockwise 90◦. Let’s
see what happens when we multiply a vector in R

3 by a unit bivector. We begin by defining a
vector and a unit bivector e12 = e1 ∧ e2

a = a1e1 + a2e2 + a3e3. (8.128)

Therefore,

e12a = a1e12e1 + a2e12e2 + a3e12e3

= −a1e2 + a2e1 + a3e123

e12a = a2e1 − a1e2 + a3e123. (8.129)

Equation (8.129) contains two elements:
a vector

a2e1 − a1e2 (8.130)

and a volume
a3e123. (8.131)

What has happened is this. The multiplier e12 has:

1. Rotated the projection of a on the bivector e1 ∧ e2, clockwise 90◦. (Fig. 8.8a)
2. Formed a volume of a3 by sweeping e1 ∧ e2 along e3. (Fig. 8.8b)

Reversing the product to ae12 produces

ae12 = a1e1e12 + a2e2e12 + a3e3e12

= a1e2 − a2e1 + a3e123

ae12 = −a2e1 + a1e2 + a3e123. (8.132)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98 Geometric algebra for computer graphics

Figure 8.8.

Equation (8.13) confirms that the direction of rotation has been reversed to anticlockwise, whilst
the sign of the volume remains unchanged.

Similar results are obtained with the products with e23a and e31a:

e23a = a1e23e1 + a2e23e2 + a3e23e3

= a1e123 − a2e3 + a3e2

e23a = a3e2 − a2e3 + a1e123 (Figs. 8.9(a) and (b))

and

ae23 = −a3e2 + a2e3 + a1e123. (8.133)

and

e31a = a1e31e1 + a2e31e2 + a3e31e3

= a1e3 + a2e123 − a3e1

e31a = a1e3 − a3e1 + a2e123 (Figs. 8.10(a) and (b))

and

ae31 = −a1e3 + a3e1 + a2e123. (8.134)

These are interesting patterns, so let’s see what happens when the multiplying bivector is not a
unit bivector.
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Figure 8.9.

Figure 8.10.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 Geometric algebra for computer graphics

8.14 The vector-bivector product in R
3

Our bivector B is defined by the outer product of two vectors, whose precise values are not
important, as any relevant combination will do. The vector a will have the form

a = a1e1 + a2e2 + a3e3. (8.135)

However, it is much more useful to express it in terms of two orthogonal components:

a = a‖ + a⊥ (8.136)

where a‖ is parallel with B and a⊥ is perpendicular to B. This scenario is shown in Fig. 8.11.

Figure 8.11.

Figure 8.11 shows an extra vector b which is orthogonal to a‖ and also lies in the plane B. The
value of b is chosen such that

a‖ ∧ b = B. (8.137)

Therefore, the geometric product a‖b is

a‖b = a‖ · b + a‖ ∧ b = a‖ ∧ b = B (8.138)

therefore,
B = a‖b. (8.139)

Now we explore the product of a vector and a bivector using a‖, a⊥ and B.
Starting with a‖B we obtain

a‖B = a‖(a‖b) = a2
‖b. (8.140)

But
a2

‖ = ‖a‖‖2. (8.141)

Therefore,
a‖B = ‖a‖‖2b (8.142)

which is a vector, and must lie in the plane B. In fact, Eq. (8.142) shows that when a vector and a
bivector are coplanar, their product rotates the vector 90◦ and scales it.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 101

Next, we investigate the product a⊥B:

a⊥B = a⊥(a‖b) = a⊥a‖b. (8.143)

With reference to Fig. 8.11, a⊥, a‖ and b are three orthogonal vectors, and can be visualized as
sweeping the bivector a⊥ ∧a‖ along vector b creating a volume represented by the trivector a⊥a‖b.

Using Eqs. (8.142) and (8.143) we can express the product aB as

aB = (a‖ + a⊥)B

= a‖B + a⊥B

aB = ‖a‖‖2b + a⊥a‖b (8.144)

which is the sum of a vector and a trivector. Although this will not always be the case, because
vector a could be orthogonal to bivector B, which only creates a trivector, in general, we can
predict that the product aB will contain two terms: a vector and a trivector.

We are now in a position to define the product aB in terms of the inner and outer products,
where there is a temptation to assume that it obeys the same rule for the geometric product of
two vectors:

aB = a · B + a ∧ B, (8.145)

which although is true, has to be proved.
We begin by declaring B as the outer product

B = b ∧ c . (8.146)

Therefore,

aB = a(b ∧ c). (8.147)

We now have to find a way of converting Eq. (8.147) into Eq. (8.145), which is achieved as follows:
Using the geometric product

b ∧ c = 1

2
(bc − cb) (8.148)

then

a(b ∧ c) = a
1

2
(bc − cb) = 1

2
(abc − acb). (8.149)

Similarly,

a · b = 1

2
(ab + ba) ⇒ ab = 2a · b − ba (8.150)

and

a · c = 1

2
(ac + ca) ⇒ ac = 2a · c − ca. (8.151)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

102 Geometric algebra for computer graphics

Substituting Eqs. (8.150) and (8.151) in Eq. (8.149)

a(b ∧ c) = 1

2
((2a · b − ba)c − (2a · c − ca)b)

= 1

2
(2(a · b)c − bac − 2(a · c)b + cab)

= (a · b)c − (a · c)b + 1

2
(cab − bac)

= (a · b)c − (a · c)b + 1

2
(abc + abc)

a(b ∧ c) = (a · b)c − (a · c)b + abc . (8.152)

Equation (8.152) shows that the product of a vector and a bivector (aB) creates two components:
a vector

(a · b)c − (a · c)b (8.153)

and a trivector

abc . (8.154)

Next, we will show that reversing the product (Ba) creates a vector

−(a · b)c + (a · c)b (8.155)

and a trivector

abc (8.156)

where the vector is reversed, and the trivector remains unaltered.
What we want to do now is arrange that some combination of aB and Ba forms a · B to create

the vector component, and another combination forms a ∧ B to create the trivector component.
We can isolate each part using the following subterfuge:
Reversing the product a(b ∧ c) to (b ∧ c)a

(b ∧ c)a = 1

2
(bc − cb)a = 1

2
(bca − cba). (8.157)

Now

c · a = 1

2
(ca + ac) ⇒ ca = 2a · c − ac (8.158)

and

b · a = 1

2
(ba + ab) ⇒ ba = 2a · b − ab. (8.159)
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Substituting Eqs. (8.158) and (8.159) in Eq. (8.157)

(b ∧ c)a = 1

2
(b(2a · c − ac) − c(2a · b − ab))

= 1

2
(2b(a · c) − bac − 2c(a · b) + cab)

= (a · c)b − (a · b)c + 1

2
(cab − bac)

= (a · c)b − (a · b)c + 1

2
(abc + abc)

(b ∧ c)a = (a · c)b − (a · b)c + abc . (8.160)

Subtracting Eq. (8.160) from Eq. (8.152)

a(b ∧ c) − (b ∧ c)a = 2(a · b)c − 2(a · c)b. (8.161)

Therefore,

(a · b)c − (a · c)b = 1

2
(aB − Ba). (8.162)

As 1
2
(aB − Ba) creates a vector, which is a lower grade object compared to a bivector, it is defined

using the dot symbol as:

a · B = 1

2
(aB − Ba) = (a · b)c − (a · c)b. (8.163)

Adding Eq. (8.160) and (8.152) together, we obtain

a(b ∧ c) + (b ∧ c)a = 2abc . (8.164)

Therefore,
1

2
(aB + Ba) = abc . (8.165)

As 1
2
(aB + Ba) creates a higher grade object compared to a bivector, it is defined using the outer

symbol as:

a ∧ B = 1

2
(aB + Ba) = abc . (8.166)

Combining Eqs. (8.163) and (8.166) we define the geometric product aB as

aB = a · B + a ∧ B (8.167)

aB = (a · b)c − (a · c)b + abc (8.168)

where
B = b ∧ c . (8.169)

Now let’s derive formulae for the reverse product Ba.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

104 Geometric algebra for computer graphics

Subtracting Eq. (8.168) from Eq. (8.160) we have

(b ∧ c)a − a(b ∧ c) = 2(a · c)b − 2(a · b)c (8.170)

therefore,
1

2
(Ba − aB) = (a · c)b − (a · b)c . (8.171)

As this is a grade lowering operation, it is defined as an inner product:

B · a = 1

2
(Ba − aB) = (a · c)b − (a · b)c . (8.172)

Adding Eq. (8.168) to Eq. (8.160) we have

(b ∧ c)a + a(b ∧ c) = 2abc (8.173)

therefore,
1

2
(Ba + aB) = abc . (8.174)

As this is a grade raising operation, it is defined as an outer product:

B ∧ a = 1

2
(Ba + aB) = abc . (8.175)

Therefore,

B · a + B ∧ a = 1

2
(Ba − aB) + 1

2
(Ba + aB) = Ba (8.176)

and
Ba = B · a + B ∧ a. (8.177)

Let’s bring these results to life with two simple examples.
We start with three vectors

a = 2e1 + e2 − e3 (8.178)

b = e1 − e2 + e3 (8.179)

c = 2e1 + 2e2 + e3. (8.180)

We now construct a bivector B:

B = b ∧ c = (e1 − e2 + e3) ∧ (2e1 + 2e2 + e3)

= 2e12 − e31 + 2e12 − e23 + 2e31 − 2e23

B = 4e12 − 3e23 + e31. (8.181)

Therefore,

aB = (2e1 + e2 − 2e3)(4e12 − 3e23 + e31)

= 8e2 − 6e123 − 2e3 − 4e1 − 3e3 + e123 − 8e123 − 6e2 − 2e1

aB = −6e1 + 2e2 − 5e3 − 13e123. (8.182)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 105

Similarly,

Ba = (4e12 − 3e23 + e31)(2e1 + e2 − 2e3)

= −8e2 + 4e1 − 8e123 − 6e123 + 3e3 + 6e2 + 2e3 + e123 + 2e1

Ba = 6e1 − 2e2 + 5e3 − 13e123. (8.183)

Now let’s calculate the inner and outer products.
The inner product:

a · B = 1

2
(aB − Ba)

= 1

2
(−6e1 + 2e2 − 5e3 − 13e123 − 6e1 + 2e2 − 5e3 + 13e123)

= 1

2
(−12e1 + 4e2 − 10e3)

a · B = −6e1 + 2e2 − 5e3. (8.184)

The outer product:

a ∧ B = 1

2
(aB + Ba)

= 1

2
(−6e1 + 2e2 − 5e3 − 13e123 + 6e1 − 2e2 + 5e3 − 13e123)

a ∧ B = −13e123. (8.185)

Thus

aB = a · B + a ∧ B

aB = −6e1 + 2e2 − 5e3 − 13e123. (8.186)

It is clear from these examples how the inner and outer products identify the two parts of the
geometric product.

In vector algebra the inner product is also known as the scalar product or dot product. Con-
versely, in geometric algebra we can create products between vectors, bivectors, trivectors, etc, and
any combination such as a vector and a bivector, or a bivector and trivector. Because these objects
have different grades, we require a new interpretation of the dot symbol, which also embraces
the original definition. Thus the dot product in Eq. (8.167) means the “lowest grade part of the
product.” Similarly, the outer product in Eq. (8.167) means the “highest grade part of the product.”

If you believe that you have seen the RHS of Eq. (8.163) before, you may recall from vector
algebra that

(b × c) × a = (a · b)c − (a · c)b (8.187)

and
a × (b × c) = (a · c)b − (a · b)c . (8.188)

Later in this chapter we show how GA can be used to derive these relationships.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

106 Geometric algebra for computer graphics

8.15 Unit bivector-bivector products in R
3

In R
3 we have to consider the possible products that exist between e12, e23 and e31. We already

know that
e2

12 = e2
23 = e2

31 = −1 (8.189)

and it is easy to show that

e12e23 = e13 = −e31 (8.190)

e23e31 = e21 = −e12 (8.191)

e31e12 = e32 = −e23 (8.192)

e12e31 = e23 (8.193)

e23e12 = e31 (8.194)

e31e23 = e12. (8.195)

Thus we see that unit bivectors anticommute.
These results are summarized in Table 8.4

Table 8.4

GP e12 e23 e31

e12 −1 −e31 e23

e23 e31 −1 −e12

e31 −e23 e12 −1

Accordingly, when we encounter an expression such as αe12βe23 we can rewrite it as

αβe12e23 = −αβe31. (8.196)

8.16 Unit vector-trivector product in R
3

To begin with, let’s consider the products e1e123, e2e123 and e3e123:

e1e123 = e23 (8.197)

e2e123 = e31 (8.198)

e3e123 = e12. (8.199)

Similarly,

e123e1 = e23 (8.200)

e123e2 = e31 (8.201)

e123e3 = e12. (8.202)

Thus we see that vectors and trivectors commute.
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Let’s illustrate this with a simple example a5e123 where

a = 2e1 + 3e2 + 4e3. (8.203)

Therefore

a5e123 = (2e1 + 3e2 + 4e3)5e123

a5e123 = 20e12 + 10e23 + 15e31. (8.204)

The volumetric element has been reduced to three bivector terms.

8.17 Unit bivector-trivector product in R
3

To begin, let’s consider the products e12e123, e23e123 and e31e123:

e12e123 = −e3 (8.205)

e23e123 = −e1 (8.206)

e31e123 = −e2. (8.207)

Similarly,

e123e12 = −e3 (8.208)

e123e23 = −e1 (8.209)

e123e31 = −e2. (8.210)

Thus we see that bivectors and trivectors commute.
Again, let’s illustrate this product with an example B5e123 where

B = 2e12 + 3e23 + 4e31. (8.211)

Therefore,

B5e123 = (2e12 + 3e23 + 4e31)5e123

B5e123 = −15e1 − 20e2 − 10e3. (8.212)

The volumetric element has been reduced to three vector terms.

8.18 Unit trivector-trivector product in R
3

We have already discovered in section 8.10 that the square of the pseudoscalar equals −1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

108 Geometric algebra for computer graphics

8.19 Higher products in R
3

Having considered the product of two trivectors in R
3, it is worth exploring the concept of

expanded outer products. For example, in R
3, what is meant by

a ∧ b ∧ c ∧ d? (8.213)

We can resolve this question by reasoning that if a, b, c are not coplanar, then d must be a linear
combination of a, b, c :

d = λaa + λbb + λc c [λa , λb , λc ∈ R] (8.214)

therefore,

a ∧ b ∧ c ∧ d = a ∧ b ∧ c ∧ (λaa + λbb + λc c)

and

a ∧ b ∧ c ∧ d = λaa ∧ b ∧ c ∧ a + λba ∧ b ∧ c ∧ b + λc a ∧ b ∧ c ∧ c . (8.215)

Recall that

a ∧ b = −b ∧ a (8.216)

therefore,

a ∧ b ∧ c ∧ a = b ∧ a ∧ a ∧ c . (8.217)

But

a ∧ a = 0 (8.218)

therefore,

a ∧ b ∧ c ∧ a = 0. (8.219)

Similarly,

a ∧ b ∧ c ∧ b = a ∧ b ∧ c ∧ c = 0 (8.220)

therefore,

a ∧ b ∧ c ∧ d = 0. (8.221)

8.20 Blades

Now that we covered bivectors and trivectors and tentatively explored higher dimensions, it
appears that each space possesses a unique element created by the outer product. Starting with
vectors, the outer product produces bivectors, trivectors, and even quadvectors, and there is no
reason why higher n-vector elements cannot exist. Such a pattern was recognized by Hestenes
who proposed the name blade for these elements [14]. Thus a blade is any multivector that can
be formed as the outer product of a set of vectors. However, this definition has been widened by
some authors to embrace scalars as 0-blades, vectors as 1-blades, bivectors as 2-blades, etc.
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8.21 Duality transformation

An interesting relationship exists between blades and the pseudoscalar that is referred to as the
duality transformation. Consider the following products involving the pseudoscalar I = e1 ∧ e2

and 2D basis vectors:

I e1 = e1e2e1 = −e2 (8.222)

I e2 = e1e2e2 = e1 (8.223)

and

e1I = e1e1e2 = e2 (8.224)

e2I = e2e1e2 = −e1. (8.225)

Note that they anticommute. Now consider the following products involving the pseudoscalar
I = e1 ∧ e2 ∧ e3 and the 3D basis vectors:

I e1 = e1e2e3e1 = e2e3 (8.226)

I e2 = e1e2e3e2 = e3e1 (8.227)

I e3 = e1e2e3e3 = e1e2 (8.228)

and

e1I = e1e1e2e3 = e2e3 (8.229)

e2I = e2e1e2e3 = e3e1 (8.230)

e3I = e3e1e2e3 = e1e2. (8.231)

Note that they commute, and further analysis shows that spaces with an odd number of dimen-
sions, the pseudoscalar commutes will all vectors and multivectors, whereas spaces with an even
number of dimensions they anticommute. This relationship is summarized by the relationship:

InAr = (−1)r(n−1)Ar In . (8.232)

Doran and Lasenby [15] show how this relationship can be used to relate the inner and outer
products:

a · (Ar I ) = 1

2
(aAr I − (−1)n−r Ar Ia)

= 1

2
(aAr I − (−1)n−r(−1)n−1Ar aI )

= 1

2
(aAr + (−1)r Ar a)I

a · (Ar I ) = a ∧ Ar I . (8.233)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110 Geometric algebra for computer graphics

The product aI is a grade lowering operation as a volumetric element is reduced into bivector
elements, and consequently is denoted using the dot product:

aI = a · I . (8.234)

Figure 8.12 shows the duality relationship between bivectors and vectors in 3D space.

Figure 8.12.

A convenient notation used to represent the dual of A is A∗.

8.22 Summary of products in R
3

We are now in a position to summarize the above products in tabular form as shown in
Table 8.5.

Table 8.5

Inner product

Vectors commute a · b = b · a
Vectors and bivectors anticommute a · B = −B · a

a · B = 1
2 (aB − Ba)

a · B = (a · b)c − (a · c)b
B · a = 1

2 (Ba − aB)

B · a = (a · c)b − (a · b)c

Outer product

Vectors anticommute a ∧ b = −b ∧ a
Vectors and bivectors commute a ∧ B = B ∧ a

a ∧ B = 1
2 (aB + Ba)

a ∧ B = abc
B ∧ a = 1

2 (Ba + aB)

B ∧ a = abc
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Table 8.5 (continued)

Geometric product

Orthogonal vectors anticommute e12 = −e21

Orthogonal bivectors anticommute e12e23 = −e23e12

Bivectors square to −1 e2
12 = e2

23 = e2
31 = −1

Definition ab = a · b + a ∧ b
Vectors and bivectors anticommute aB = −Ba

aB = a · B + a ∧ B
aB = (a · b)c − (a · c)b + abc
Ba = B · a + B ∧ a
Ba = (a · c)b − (a · b)c + abc

Trivector commutes with all multivectors in the space aT = Ta BT = TB
The pseudoscalar e123 = I
Vectors and the pseudoscalar commute aI = Ia

aI = a · I
Duality transformation e23 = I e1

e31 = I e2

e12 = I e3

The trivector squares to −1 I 2 = −1

Where a and b are vectors, B is a bivector, and T is a trivector.

Table 8.6 summarizes the commutative rules that exist between vectors, bivectors and trivectors
when using the inner, outer and geometric products. The fact that every product is resolved in
terms of the table’s indices means that the product of two multivectors forms a closed algebra.

Table 8.6

GP λ e1 e2 e3 e12 e23 e31 e123

λ λ2 λe1 λe2 λe3 λe12 λe23 λe31 λe123

e1 λe1 1 e12 −e31 e2 e123 −e3 e23

e2 λe2 −e12 1 e23 −e1 e3 e123 e31

e3 λe3 e31 −e23 1 e123 −e2 e1 e12

e12 λe12 −e2 e1 e123 −1 −e31 e23 −e3

e23 λe23 e123 −e3 e2 e31 −1 −e12 −e1

e31 λe31 e3 e123 −e1 −e23 e12 −1 −e2

e123 λe123 e23 e31 e12 −e3 −e1 −e2 −1

8.23 Multivectors in R
3

In section 8.5 we defined a multivector in R
2 as a linear combination of scalars, vectors and

bivectors. We now extend this definition to include trivectors. Table 8.7 summarizes the elements
and confirms that we have 1 scalar, 3 vectors, 3 bivectors and 1 trivector.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

112 Geometric algebra for computer graphics

Table 8.7

Element Symbol Grade

1 scalar λ 0
3 vectors {e1, e2, e3} 1
3 bivectors e1 ∧ e2 = e12 2

e2 ∧ e3 = e23

e3 ∧ e1 = e31

1 trivector e123 3

For completeness, let’s form the product of two multivectors to demonstrate that we have a
closed algebra.

We begin by defining two multivectors A and B:

A = λ0 + λ1e1 + λ2e2 + λ3e12 + λ4e23 + λ5e31 + λ6e123 [λi ∈ R] (8.235)

B = β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123 [βi ∈ R] (8.236)

Therefore,

AB = λ0(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ1e1(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ2e2(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ3e12(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ4e23(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ5e31(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ6e123(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123) (8.237)

expanding

AB = λ0β0 + λ0β1e1 + λ0β2e2 + λ0β3e12 + λ0β4e23 + λ0β5e31 + λ0β6e123 + λ1β0e1 + λ1β1

+ λ1β2e12 + λ1β3e2 + λ1β4e123 − λ1β5e3 + λ1β6e23 + λ2β0e2 − λ2β1e12 + λ2β2

− λ2β3e1 + λ2β4e3 + λ2β5e123 + λ2β6e31 + λ3β0e12 − λ3β1e2 + λ3β2e1 − λ3β3

− λ3β4e31 + λ3β5e23 − λ3β6e3 + λ4β0e23 + λ4β1e123 − λ4β2e3 + λ4β3e31 − λ4β4

− λ4β5e12 − λ4β6e1 + λ5β0e31 + λ5β1e3 + λ5β2e123 − λ5β3e23 + λ5β4e12 − λ5β5

− λ5β6e2 + λ6β0e123 + λ6β1e23 + λ6β2e31 − λ6β3e3 − λ6β4e1 − λ6β5e2 − λ6β6 (8.238)

simplifying and collecting up like terms

AB = λ0β0 + λ1β1 + λ2β2 − λ3β3 − λ4β4 − λ5β5 − λ6β6

+ (λ0β1 + λ1β0 − λ2β3 + λ3β2 − λ4β6 − λ6β4)e1

+ (λ0β2 + λ1β3 + λ2β0 − λ3β1 − λ5β6 − λ6β5)e2
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+ (−λ1β5 + λ2β4 − λ3β6 − λ4β2 + λ5β1 − λ6β3)e3

+ (λ0β3 + λ1β2 − λ2β1 + λ3β0 − λ4β5 + λ5β4)e12

+ (λ0β4 + λ1β6 + λ3β5 + λ4β0 − λ5β3 + λ6β1)e23

+ (λ0β5 + λ2β6 − λ3β4 + λ4β3 + λ5β0 + λ6β2)e31

+ (λ0β6 + λ1β4 + λ2β5 + λ4β1 + λ5β2 + λ6β0)e123 (8.239)

which is another multivector and forms a closed algebra.
A multivector that contains terms of only a single grade is said to be homogeneous.
You may have noticed an obvious pattern associated with the number of elements in each

multivector. Table 8.8 summarizes the number of elements for R
2, R3 and R

4 where it is obvious
that Pascal’s numbers are in control.

Table 8.8

Scalar Vector Bivector Trivector Quadvector

R
2 1 2 1

R
3 1 3 3 1

R
4 1 4 6 4 1

As a multivector contains elements with a variety of grades, it is useful to isolate each grade
using the following notation: 〈A〉n , where n is the required grade. For example, given

A = 3 + 2e1 + e2 − 3e3 + 5e1 ∧ 2e2 + 7e123 (8.240)

then

〈A〉0 = 3 (8.241)

〈A〉1 = 2e1 + e2 − 3e3 (8.242)

〈A〉2 = 5e1 ∧ 2e2 (8.243)

〈A〉3 = 7e123. (8.244)

In the case of the geometric product

ab = a · b + a ∧ b (8.245)

〈ab〉0 = a · b (8.246)

〈ab〉2 = a ∧ b. (8.247)

8.24 Relationship between vector algebra and geometric algebra

We are now in a position to compare vector algebra with geometric algebra, especially with the
way vectors relate to complex numbers, and how rotations in the plane are effected.

Table 8.9 summarizes the two algebras beginning with a vector, the mapping from a vector into
a complex number, and the technique for rotating.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114 Geometric algebra for computer graphics

Table 8.9

Vector Algebra Geometric Algebra

vector v = a1i + a2j vector v = a1e1 + a2e2

map a = a1 b = a2 map Z = e1v
complex number z = a + bi multivector Z = a1 + a2I
rotor z ′ = zeiφ rotor Z ′ = ZeIφ

v ′ = veIφ

90◦ rotor v ′ = −a2i + a1j 90◦ rotor v ′ = vI

8.25 Relationship between the outer product and the cross product

In chapter 7 we discovered the close similarity between the outer product and the cross product
and saw that the bivector coefficients for the outer product are identical to the coefficients for the
axial vector resulting from the cross product. We are now in a position to discover the algebraic
relationship between the two products.

Starting with two vectors a and b, their cross and outer products are

a × b =
∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (8.248)

and
a ∧ b = (a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12. (8.249)

Let’s see what happens when we pre-multiply Eq. (8.249) by the pseudoscalar e123:

e123(a ∧ b) = (a2b3 − a3b2)e123e23 + (a3b1 − a1b3)e123e31 + (a1b2 − a2b1)e123e12

e123(a ∧ b) = −(a2b3 − a3b2)e1 − (a3b1 − a1b3)e2 − (a1b2 − a2b1)e3. (8.250)

This has almost created the cross product in Eq. (8.248) apart from the inverted sign. So let’s
multiply Eq. (8.250) by −1:

−e123(a ∧ b) = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (8.251)

which creates the cross product in Eq. (8.248). Thus we can state that

a × b = −e123(a ∧ b) or − I (a ∧ b). (8.252)

Therefore, given a bivector B, the vector v orthogonal to the planar surface is given by

v = −IB (8.253)

which is determined algebraically.
For example, Fig. 8.13 shows two vectors a and b where

a = −e2 + e3 (8.254)

b = e1 − e2. (8.255)
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Figure 8.13.

The cross product is given by

a × b = c =
∣∣∣∣∣∣
e1 e2 e3

0 −1 1
1 −1 0

∣∣∣∣∣∣
= e1 + e2 + e3 (8.256)

which is expected from the symmetry of the vectors.
Now let’s compute c using Eq. (8.253):

B = a ∧ b

= (−e2 + e3) ∧ (e1 − e2)

= −e2 ∧ e1 + e2 ∧ e2 + e3 ∧ e1 − e3 ∧ e2

B = e12 + e31 + e23. (8.257)

Therefore,

c = −IB

= −e123(e12 + e31 + e23)

= e3 + e2 + e1

c = e1 + e2 + e3 (8.258)

which is identical to the previous result.
Now that we have a mechanism to move between GA and the cross product, we can prove

various identities in vector analysis using GA. For example, let’s expand the vector triple product
(a × b) × c .
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Starting with a × b:

a × b = −I (a ∧ b)

= −e123(a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= −e123((a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12)

a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (8.259)

substitute λi for each coefficient

a × b = λ1e1 + λ2e2 + λ3e3. (8.260)

Expand (a × b) × c :

(a × b) × c = −I (λ1e1 + λ2e2 + λ3e3) ∧ (c1e1 + c2e2 + c3e3)

= −e123((λ2c3 − λ3c2)e23 + (λ3c1 − λ1c3)e31 + (λ1c2 − λ2c1)e12)

(a × b) × c = (λ2c3 − λ3c2)e1 + (λ3c1 − λ1c3)e2 + (λ1c2 − λ2c1)e3.

Re-substitute for each λi

(a × b) × c = ((a3b1 − a1b3)c3 − (a1b2 − a2b1)c2)e1

+ ((a1b2 − a2b1)c1 − (a2b3 − a3b2)c3)e2

+ ((a2b3 − a3b2)c2 − (a3b1 − a1b3)c1)e3. (8.261)

Rearrange the order

(a × b) × c = (a2c2 + a3c3)b1e1 + (a1c1 + a3c3)b2e2(a1c1 + a2c2)b3e3

− ((b2c2 + b3c3)a1e1 + (b1c1 + b3c3)a2e2 + (b1c1 + b2c2)a3e3) (8.262)

Now we add the following zero term to complete the inner products:

(a1c1)b1e1 + (a2c2)b2e2 + (a3c3)b3e3 − (b1c1)a1e1 − (b2c2)a2e2 − (b3c3)a3e3 = 0 (8.263)

(a × b) × c = (a1c1 + a2c2 + a3c3)b1e1 + (a1c1 + a2c2 + a3c3)b2e2(a1c1 + a2c2 + a3c3)b3e3

− ((b1c1 + b2c2 + b3c3)a1e1 + (b1c1 + b2c2 + b3c3)a2e2 + (b1c1 + b2c2 + b3c3)a3e3) (8.264)

therefore,
(a × b) × c = (a · c)b − (b · c)a. (8.265)

8.26 Relationship between geometric algebra and quaternions

In chapter 6 we reviewed the ideas behind quaternions and saw that a quaternion is defined as
the sum of a scalar and a vector, where Hamilton’s imaginaries i, j and k obey the product rules
shown in Table 8.10.
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Table 8.10

i j k

i −1 k −j
j −k −1 i
k j −i −1

and ijk = −1.
If we let

B1 = e2 ∧ e3 (8.266)

B2 = e3 ∧ e1 (8.267)

B3 = e1 ∧ e2 (8.268)

the bivector products obey the rules shown in Table 8.11.

Table 8.11

B1 B2 B3

B1 −1 −B3 B2

B2 B3 −1 −B1

B3 −B2 B1 −1

and
B1B2B3 = +1. (8.269)

The subtle difference between Table 8.10 and Table 8.11 is that, apart from the diagonal, the signs
are reversed, which suggests that there is a difference in the handedness of the axial systems.
To confirm this, Fig. 8.14 shows a left-handed set of bivectors, which obey the rules shown in
Table 8.12.

Figure 8.14.
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Table 8.12

B1 B2 B3

B1 −1 B3 −B2

B2 −B3 −1 B1

B3 B2 −B1 −1

We can see from Tables 8.10 and 8.12 the intimate relationship between Hamilton’s imaginaries
and a left-handed set of bivectors, which is elegantly described by Chris Doran and Anthony
Lasenby in their book Geometric Algebra for Physicists [14]. What is strange, is that even the greatest
mathematicians can misinterpret their discoveries, and what is so ironic is that Grassmann’s alge-
bra embraced vectors, bivectors and quaternions and would have changed the path of mathematics
had it been adopted at the time.

8.27 Inverse of a vector

Associative algebras such as the algebra of real numbers and complex numbers permit division.
For example, if

αβ = δ (8.270)

then

α = δβ−1. (8.271)

Similarly, given these complex numbers

(a + ib)(c + id) = e + if (8.272)

then we can state that

(a + ib) = (e + if )(c + id)−1. (8.273)

And as geometric algebra is associative, we can divide by vectors. For example, given that a
multivector B = ab, then we can multiply throughout by b and state that

Bb = (ab)b = ab2 (8.274)

which means that

B
b

b2
= a (8.275)

or

Bb−1 = a (8.276)

where

b−1 = b

b2
= b

‖b‖2
. (8.277)

We can illustrate this with an example.
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Two vectors a and b are given by

a = 3e1 + 4e2 (8.278)

b = e1 + e2 (8.279)

and a multivector B is given by

B = ab

= (3e1 + 4e2)(e1 + e2)

= 3 + 3e12 − 4e12 + 4

B = 7 − e12. (8.280)

Now let’s compute b−1

b−1 = b

b2

= e1 + e2

‖√e2
1 + e2

2‖2

b−1 = 1

2
(e1 + e2). (8.281)

Therefore, we can recover a from B as follows:

a = Bb−1

= 1

2
(7 − e12)(e1 + e2)

= 1

2
(7e1 + 7e2 − e12e1 − e12e2)

= 1

2
(7e1 + 7e2 + e2 − e1)

a = 3e1 + 4e2 (8.282)

which is correct.
Next, we consider a multivector C = abc , where

a = 3e1 + 4e2 (8.283)

b = e1 + e2 (8.284)

c = e3. (8.285)

Therefore,

C = (3e1 + 4e2)(e1 + e2)e3

= (3e2
1 + 3e12 − 4e12 + 4e2

2)e3

= (7 − e12)e3

C = 7e3 − e123. (8.286)
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Now, if we are given c , we can find the bivector term as follows:

ab = Cc−1

= Cc

‖a‖2

= (7e3 − e123)e3

ab = 7 − e12 (8.287)

which is correct.

8.28 The meet operation

For all sorts of reasons we are always interested in the intersections of lines, planes, spheres,
cylinders, etc., and GA’s meet operation provides a way of calculating such intersections. For
example, the meet of A and B is written A ∨ B, and without proof, is defined as

A ∨ B = A∗ · B. (8.288)

To illustrate how this operation works we first examine the intersections of the three basis 2-blades,
followed by the intersection of two arbitrary blades.

Figure 8.15.

Figure 8.15 shows the three basis 2-blades B1, B2, B3, and it is obvious that

B1 ∨ B2 = e2 B2 ∨ B3 = e3 B3 ∨ B1 = e1. (8.289)

Now let’s demonstrate how the meet operation confirms this result.

B1 = e1 ∧ e2 B2 = e2 ∧ e3 B3 = e3 ∧ e1. (8.290)

Therefore,

B1 ∨ B2 = B∗
1 · B2

= (e123e12) · e23

B1 ∨ B2 = −e3 · e23. (8.291)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 121

Using the identity a · B = 1
2
(aB − Ba)

B1 ∨ B2 = 1

2
(−e323 + e233)

B1 ∨ B2 = e2. (8.292)

Similarly,

B2 ∨ B3 = B∗
2 · B3

= (e123e23) · e31

= −e1 · e31

= 1

2
(−e131 + e311)

B2 ∨ B3 = e3 (8.293)

and

B3 ∨ B1 = B∗
3 · B1

= (e123e31) · e12

= −e2 · e12

= 1

2
(−e212 + e122)

B3 ∨ B1 = e1. (8.294)

Figure 8.16.

The next example is shown in Fig. 8.16 where one of the planes is away from the origin. The
meet of the two blades A and B is a line passing through the two points (1, 0, 0) and (0, 1, 0),
whose direction vector is given by ±(e1 − e2). Let’s compute the product A∗ · B to confirm this
prediction.

Given

a = e1 − e3 (8.295)

b = e2 − e3 (8.296)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

122 Geometric algebra for computer graphics

A = a ∧ b

= (e1 − e3) ∧ (e2 − e3)

A = e12 − e13 − e32 (8.297)

B = e12 (8.298)

then

A ∨ B = A∗ · B

= e123(e12 − e13 − e32) · e12

A ∨ B = (−e3 − e2 − e1) · e12. (8.299)

Expand using a · B = 〈aB〉1

A ∨ B = 〈(−e3 − e2 − e1)e12〉1

A ∨ B = e1 − e2 (8.300)

which is correct.
We explore other applications of the meet operation in the following chapters.

8.29 Summary

This chapter has covered a large number of topics, which, if understood completely, can be
summarized as follows:

Geometric algebra provides a coordinate free, algebraic framework for describing geometry in
any number of dimensions. At the heart of the algebra is an associative, geometric product which
has real and imaginary parts and is defined as the sum of the inner and outer products. It is also
invertible. The inner product is the familiar inner product a · b whereas the outer product is
defined as the outer product a ∧ b. Thus the geometric product of two vectors is defined as

ab = a · b + a ∧ b. (8.301)

The outer product defines a directed area, which, unlike the cross product, exists in space of any
number of dimensions. However, like the cross product, it is antisymmetric:

a ∧ b = −b ∧ a. (8.302)

The outer product creates a new entity called a bivector, which is a directed area defined by a pair
of vectors. In R

2 there is only one unit bivector: e1 ∧ e2 = e12, whereas in R
3 there are three:

e1 ∧ e2, e2 ∧ e3 and e3 ∧ e1. Thus, the outer product of two vectors in R
2 is represented as

a ∧ b = λ1(e1 ∧ e2) {λ1 ∈ R} (8.303)

and in R
3 it is represented as

a ∧ b = λ1(e1 ∧ e2) + λ2(e2 ∧ e3) + λ3(e3 ∧ e1) {λ1, λ2, λ3 ∈ R}. (8.304)

In R
3 the outer product of three vectors a ∧ b ∧ c (i.e. a trivector) represents a directed volume.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 123

It is possible to linearly combine scalars, vectors, bivectors and trivectors to create multivectors
that form a closed algebra. These elements possess a natural hierarchy which is described in terms
of their grade where scalars are grade 0, vectors are grade 1, bivectors are grade 2, and trivectors
are grade 3. The inner product has grade reducing qualities as it transforms two vectors into a
scalar, whereas the outer product has grade raising qualities as it transforms two vectors into a
bivector.

The inner and outer products can be defined in terms of the geometric product using

a · b = 1

2
(ab + ba) (8.305)

and

a ∧ b = 1

2
(ab − ba). (8.306)

The axioms defining the algebra are

a(bc) = (ab)c (8.307)

a(b + c) = ab + ac (8.308)

(b + c)a = ba + ca (8.309)

λa = aλ (8.310)

a2 = ±‖a‖2. (8.311)

An unusual feature of geometric algebra is that the highest graded element for any space (bivector
for R

2, trivector for R
3) squares to −1, which introduces imaginary features to multivectors. These

elements are called pseudoscalars.
Multivectors can be added, subtracted, multiplied together and even divided by a vector. When

adding or subtracting multivectors, like elements are combined individually. However, the product
of two multivectors is computed using the rules summarized in Table 8.5.

The number of elements belonging to a multivector is determined by the number of combi-
nations of n elements selected p at a time nCp . For example, in R

2 we have 1 scalar, 2 unit basis
vectors and 1 unit bivector. Whereas in R

3, we have 1 scalar, three unit basis vectors, three unit
bivectors and 1 unit trivector. In R

4 we have 1 scalar, 4 unit basis vectors, 6 unit bivectors, 4 unit
trivectors and 1 unit quadvector.

In R
2 the product of a unit bivector (pseudoscalar) I and a vector rotate the vector 90◦. For

example

e1I = e2 (8.312)

whereas

I e1 = −e2. (8.313)

In R
3 premultiplying a vector by a bivector performs two operations:

• first, it rotates the projection of the vector on the bivector clockwise 90◦

• second, it creates a volume by sweeping the bivector along the perpendicular component of the
vector.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

124 Geometric algebra for computer graphics

In R
3 premultiplying a vector by a trivector creates a multivector consisting of bivector terms. In

the case of the unit basis vectors we have

e123e1 = e23 (8.314)

e123e2 = e31 (8.315)

e123e3 = e12. (8.316)

Apart from the rotations described above, GA contains some powerful 3D rotation features that
are described in the following chapter.




