
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Quaternion
Algebra

5.1 Introduction

Quaternions are the result of one man’s determination to find the 3D equivalent of complex
numbers. Sir William Rowan Hamilton was the man, and in 1843 he revealed to the world his
discovery which had taken him over a decade to resolve.

Knowing that a complex number in R
2 has the form

z = a + ib (5.1)

it is reasonable to presume that a complex number in R
3 should take the form

z = a + ib + jc (5.2)

where i and j are unit imaginaries: i2 = j2 = −1. However, when two such objects are multiplied
together we have

z1z2 = (a1 + ib1 + jc1)(a2 + ib2 + jc2) (5.3)

which expands to

z1z2 = a1a2 + ia1b2 + ja1c2 + ib1a2 + i2b1b2 + ijb1c2 + jc1a2 + jic1b2 + j2c1c2. (5.4)

Substituting i2 = j2 = −1 into Eq. (5.4) and collecting up like terms we obtain

z1z2 = (a1a2 − b1b2 − c1c2) + i(a1b2 + b1a2) + j(a1c2 + c1a2) + ijb1c2 + jic1b2 (5.5)

which leaves the terms ij and ji undefined. These stumped Hamilton for many years, but his
tenacity won the day, and he eventually came up with an incredible idea which involved extending
the triple into a 4-tuple:

z = a + ib + jc + kd . (5.6)

When two such objects are multiplied together we have

z1z2 = (a1 + ib1 + jc1 + kd1)(a2 + ib2 + jc2 + kd2) (5.7)
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40 Geometric algebra for computer graphics

which expands to

z1z2 = a1a2 + ia1b2 + ja1c2 + ka1d2

+ ib1a2 + i2b1b2 + ijb1c2 + ikb1d2

+ jc1a2 + jic1b2 + j2c1c2 + jkc1d2

+ kd1a2 + kid1b2 + kjd1c2 + k2d1d2. (5.8)

Substituting i2 = j2 = k2 = −1 in Eq. (5.8) and collecting up like terms we obtain

z1z2 = a1a2 − b1b2 − c1c2 − d1d2

+ i(a1b2 + b1a2) + j(a1c2 + c1a2) + k(a1d2 + d1a2)

+ ijb1c2 + ikb1d2 + jic1b2 + jkc1d2 + kid1b2 + kjd1c2. (5.9)

But this, too, has some undefined terms: ij , ik, ji, jk, ki, kj. However, Hamilton was a genius and
he resolved the problem by proposing the following rules:

ij = k jk = i ki = j ji = −k kj = −i ik = −j (5.10)

which when substituted into Eq. (5.9) produces

z1z2 = a1a2 − b1b2 − c1c2 − d1d2

+ i(a1b2 + b1a2) + j(a1c2 + c1a2) + k(a1d2 + d1a2)

+ kb1c2 − jb1d2 − kc1b2 + ic1d2 + jd1b2 − id1c2. (5.11)

Collecting up like terms we obtain

z1z2 = a1a2 − (b1b2 + c1c2 + d1d2)

+ i(a1b2 + b1a2 + c1d2 − d1c2)

+ j(a1c2 + c1a2 + d1b2 − b1d2)

+ k(a1d2 + d1a2 + b1c2 − c1b2). (5.12)

Although this does not have any undefined terms it can be tidied up as follows:

z1z2 = a1a2 − (b1b2 + c1c2 + d1d2)

+ a1(ib2 + jc2 + kd2) + a2(ib1 + jc1 + kd1)

+ i(c1d2 − d1c2) + j(d1b2 − b1d2) + k(b1c2 − c1b2) (5.13)

The last step is to write the original object as the sum of a scalar and a vector starting with:

z1 = s1 + v1 z2 = s2 + v2 (5.14)

and the following symmetry emerges:

z1z2 = s1s2 − v1 · v2 + s1 v2 + s2 v1 + v1 × v2. (5.15)

Hamilton called this object a ‘quaternion’ and gave the name ‘vector ’ to the imaginary portion.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quaternion algebra 41

The product v1 · v2 is equivalent to

b1b2 + c1c2 + d1d2 (5.16)

and became the scalar or dot product, whilst v1 × v2, which is equivalent to

i(c1d2 − d1c2) + j(d1b2 − b1d2) + k(b1c2 − c1b2) (5.17)

became the vector or cross product and led to the definitions:

v1 · v2 = ‖v1‖‖v2‖ cos θ (5.18)

and
v1 × v2 = v3 (5.19)

where
v3 = i(c1d2 − d1c2) + j(d1b2 − b1d2) + k(b1c2 − c1b2) (5.20)

and
‖v3‖ = ‖v1‖‖v2‖ sin θ (5.21)

where
θ is the angle between v1 and v2.

Strictly speaking, the i, j and k are unit imaginaries which obey Hamilton’s rules where

i2 = j2 = k2 = ijk = −1 (5.22)

ij = k jk = i ki = j ji = −k kj = −i ik = −j. (5.23)

However, when vector algebra became the preferred system over quaternion algebra, the i, j and
k terms became the Cartesian unit vectors i, j and k.

One very important feature of quaternion algebra is its anticommuting rules. Maintaining
order between the unit imaginaries is vital for the algebra to remain consistent, which is also a
feature of GA.

5.2 Adding quaternions

Two quaternions q1 and q2

q1 = s1 + ix1 + jy1 + kz1 (5.24)

q2 = s2 + ix2 + jy2 + kz2 (5.25)

are equal if, and only if, their corresponding terms are equal. Furthermore, like vectors, they can
be added or subtracted as follows:

q1 ± q2 = [(s1 ± s2) + i(x1 ± x2) + j(y1 ± y2) + k(z1 ± z2)]. (5.26)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42 Geometric algebra for computer graphics

For example, given two quaternions

q1 = 1 + i2 + j3 + k4 (5.27)

q2 = 2 − i + j5 − k2 (5.28)

their sum is given by

q1 + q2 = 3 + i + j8 + k2. (5.29)

5.3 The quaternion product

Given two quaternions

q1 = s1 + v1 = s1 + ix1 + jy1 + kz1 (5.30)

q2 = s2 + v2 = s2 + ix2 + jy2 + kz2 (5.31)

their product is given by

q1q2 = s1s2 − v1 · v2 + s1v2 + s2v1 + v1 × v2 (5.32)

which is still a quaternion and ensures closure. However, the quaternion product anticommutes,
which we can prove by computing q2q1:

q2q1 = s2s1 − v2 · v1 + s2v1 + s1v2 + v2 × v1. (5.33)

The pure scalar terms s2s1, v2 · v1 and the products s2v1 and s1v2 commute, but the cross product
v2 × v1 anticommutes, therefore q1q2 �= q2q1.

For example, given the quaternions

q1 = 1 + i2 + j3 + k4 (5.34)

q2 = 2 − i + j5 − k2 (5.35)

their product q1q2 is

q1q2 = (1 + i2 + j3 + k4)(2 − i + j5 − k2) (5.36)

= [1 × 2 − (2 × (−1) + 3 × 5 + 4 × (−2))

+ 1(−i + j5 − k2) + 2(i2 + j3 + k4)

+ i(3 × (−2) − 4 × 5) + j(4 × (−1) − (−2) × 2) + k(2 × 5 − (−1) × 3)]
= −3 + i3 + j11 + k6 − i26 + k13

q1q2 = −3 − i23 + j11 + k19 (5.37)

which is a quaternion.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quaternion algebra 43

Whereas the product q2q1 is

q2q1 = (2 − i + j5 − k2)(1 + i2 + j3 + k4)

= [2 − ((−1) × 2 + 5 × 3 + (−2) × 4)

+ 2(i2 + j3 + k4) + 1(−i + j5 − k2)

+ i(5 × 4 − 3 × (−2)) + j((−2) × 2 − 4 × (−1)) + k((−1) × 3 − 2 × 5)]
q2q1 = −3 + i29 + j11 − k7 (5.38)

which is also a quaternion, but q2q1 �= q1q2.

5.4 The magnitude of a quaternion

Given the quaternion
q = s + ix + jy + kz (5.39)

its magnitude is defined as

‖q‖ = √s2 + x2 + y2 + z2. (5.40)

For example, given the quaternion

q = 1 + i2 + j3 + k4 (5.41)

‖q‖ = √
12 + 22 + 32 + 42 = √

30. (5.42)

5.5 The unit quaternion

Like vectors, quaternions have a unit form where the magnitude equals unity. For example, the
magnitude of the quaternion

q = 1 + i2 + j3 + k4 (5.43)

is
‖q‖ = √

12 + 22 + 32 + 42 = √
30 (5.44)

therefore, the unit quaternion q̂ equals

q̂ = 1

30
(1 + i2 + j3 + k4). (5.45)

5.6 The pure quaternion

Hamilton named a quaternion with a zero scalar term a pure quaternion. For example,

q1 = ix1 + jy1 + kz1 and q2 = ix2 + jy2 + kz2 (5.46)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44 Geometric algebra for computer graphics

are pure quaternions. Let’s see what happen when we multiply them together:

q1q2 = (ix1 + jy1 + kz1)(ix2 + jy2 + kz2)

q1q2 = [−(x1x2 + y1y2 + z1z2) + i(y1z2 − y2z1) + j(z1x2 − z2x1) + k(x1y2 − x2y1)] (5.47)

which is no longer a pure quaternion, as a negative scalar term has emerged. Thus the algebra of
pure quaternions is not closed.

5.7 The conjugate of a quaternion

Given the quaternion

q = s + v

q = s + ix + jy + kz (5.48)

by definition, its conjugate is

q = s − v = s − (ix + jy + kz). (5.49)

For example, the quaternion
q = 1 + i2 + j3 + k4 (5.50)

its conjugate is
q = 1 − i2 − j3 − k4. (5.51)

5.8 The inverse quaternion

Given the quaternion
q = s + ix + jy + kz (5.52)

the inverse quaternion q−1 is

q−1 = s − ix − jy − kz

‖q‖2
(5.53)

because this satisfies the product

qq−1 = (s + ix + jy + kz)(s − ix − jy − kz)

‖q‖2
= 1. (5.54)

We can show that this is true by expanding the product as follows:

qq−1 =
(

s2 − isx − jsy − ksz + isx + x2 − ijxy − ikxz +
jsy − jixy + y2 − jkyz + ksz − kixz − kjyz + z2

)
/‖q‖2

= s2 + x2 + y2 + z2 − ijxy − ikxz − jixy − jkyz − kixz − kjyz

‖q‖2

qq−1 = s2 + x2 + y2 + z2

‖q‖2
= 1 (5.55)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quaternion algebra 45

and confirms that the inverse quaternion q−1 is

q−1 = q

‖q‖2
. (5.56)

Because the unit imaginaries do not commute, we need to discover whether

qq−1 = q−1q. (5.57)

Expanding this product

q−1q = (s − ix − jy − kz)(s + ix + jy + kz)

‖q‖2

=
(

s2 + isx + jsy + ksz − isx + x2 − ijxy − ikxz−
jsy − jixy + y2 − jkyz − ksz − kixz − kjyz + z2

)
/‖q‖2

= s2 + x2 + y2 + z2 − ijxy − ikxz − jixy − jkyz − kixz − kjyz

‖q‖2

q−1q = s2 + x2 + y2 + z2

‖q‖2
= 1

therefore,
qq−1 = q−1q. (5.58)

5.9 Quaternion algebra

The axioms associated with quaternions are as follows:

Given q, q1, q2, q3 ∈ C: (5.59)

Closure

For all q1 and q2

addition q1 + q2 ∈ C (5.60)

multiplication q1q2 ∈ C. (5.61)

Identity

For each q there is an identity element 0 and 1 such that:

addition q + 0 = 0 + q = q (0 = 0 + i0 + j0 + k0) (5.62)

multiplication q(1) = (1)q = q (1 = 1 + i0 + j0 + k0). (5.63)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46 Geometric algebra for computer graphics

Inverse

For each q there is an inverse element −q and q−1 such that:

addition q + (−q) = −q + q = 0 (5.64)

multiplication qq−1 = q−1q = 1 (q �= 0). (5.65)

Associativity

For all q1, q2 and q3

addition q1 + (q2 + q3) = (q1 + q2) + q3 (5.66)

multiplication q1(q2q3) = (q1q2)q3. (5.67)

Commutativity

For all q1 and q2

addition q1 + q2 = q2 + q1 (5.68)

multiplication q1q2 �= q2q1. (5.69)

Distributivity

For all q1, q2 and q3

q1(q2 + q3) = q1q2 + q1q3 (5.70)

(q1 + q2)q3 = q1q3 + q2q3. (5.71)

5.10 Rotating vectors using quaternions

One excellent application for quaternions is rotating vectors, and readers requiring an introduc-
tion to this topic are directed to the author’s book Mathematics for Computer Graphics [8].

It can be shown that a position vector p can be rotated about an axis û by an angle θ to p′ using
the following operation:

p′ = qpq−1 (5.72)

where

p = xi + y j + zk (5.73)

p = 0 + ix + jy + kz (5.74)

q = cos(θ/2) + sin(θ/2)û (5.75)

q−1 = cos(θ/2) − sin(θ/2)û (5.76)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quaternion algebra 47

and the axis of rotation is
û = [xui + yu j + zuk] (‖û‖ = 1). (5.77)

This is best demonstrated through an example.
Let the point to be rotated be

P(0, 1, 1). (5.78)

Let the axis of rotation be
û = j. (5.79)

Let the angle of rotation be
θ = 90◦. (5.80)

Therefore,

p = 0 + i0 + j + k (5.81)

q = cos 45◦ + sin 45(i0 + j + k0)

q =
√

2

2
(1 + i0 + j + k0) (5.82)

q−1 = cos 45◦ − sin 45(i0 + j + k0)

q−1 =
√

2

2
(1 − i0 − j − k0). (5.83)

The rotated point is given by

p′ = qpq−1

p′ =
√

2

2
(1 + i0 + j + k0)(0 + i0 + j + k)

√
2

2
(1 − i0 − j − k0). (5.84)

This is best expanded in two steps, and zero imaginary terms are included for clarity.
qp followed by (qp)q−1.

Step 1

qp =
√

2

2
(1 + i0 + j + k0)(0 + i0 + j + k)

qp =
√

2

2
(−1 + i + j + k). (5.85)

Step 2

(qp)q−1 =
√

2

2
(−1 + i + j + k)

√
2

2
(1 − i0 − j − k0)

= 1

2
(−1 + 1 + j + i + j + k + i − k)

= 1

2
(0 + i2 + j2 + k0)

(qp)q−1 = 0 + i + j + k0. (5.86)

The coordinates of the rotated point are stored in the pure part of the quaternion: (1, 1, 0).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48 Geometric algebra for computer graphics

5.11 Summary

Out of all the algebras we have so far considered, quaternion algebra paves the way to geometric
algebra. In fact, as we will soon discover, GA shows that quaternions are a left-handed system and
employ the concepts of GA. The good news is that if you understand quaternions, you will find it
much easier to understand GA.




