
A Valuation Technology for Product Development
Options Using an Executable Meta-modeling Language

Benjamin H. Y. Koo*,1, Willard L. Simmons2, and Edward F. Crawley2

1 Tsinghua University, Beijing, P. R. China
2 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Abstract. Mistakes or foresight in the earlier phases of product development tend
to be amplified over the course of a project. Therefore, having a rigorous approach
and supporting tools to identify and filter a development portfolio at the early
stages can be highly rewarding. This paper presents an executable specification
language, Object-Process Network (OPN), that can be used by system designers to
formally represent the development option space, and automate certain model
refinement activities at earlier phases of product development. Specifically, an
OPN specification model can automatically enumerate a set of alternative
development portfolios. OPN also provides an algebraic mechanism to handle the
knowledge incompleteness problems at varying phases of planning, so that
uncertain properties of different portfolios can be represented and analyzed under
algebraic principles.
In addition, it has a recursively defined model transformation operator that can
iteratively refine the specification models to simplify or enhance the details of the
machine-generated alternatives. A list of successful application cases is presented.

Keywords. OPN, meta-language, Real Options, Algebra of Systems, Model-
Driven Software Development

1 Introduction and Motivation

During the earlier stages of product development, limited engineering resources
and knowledge incompleteness inevitably introduce a high degree of uncertainty.
However, inflexible design decisions made in the earlier phases tend to seal off the
future opportunities of the product development project.
Therefore, it is beneficial to employ a design analysis method that can include not
one, but a set of possible product development options [1, 4, 5]. Real options is
often employed to analyze a set of alternative developmental options. Our paper
describes a model-driven analysis method and a supporting tool that extends
existing real option analysis methods.

108 Benjamin H. Y. Koo,, Willard L. Simmons, and Edward F. Crawley

Real options analysis is related, but different from, financial option analysis. When
a financial option is purchased, certain rights in the future are contractually
protected [7]. Conversely, product development options in the real world usually
provide little if any guarantee. For example, the investment in certain technologies
may or may not create additional opportunities in the future. Therefore, when
modeling real options, the modeling method must deal with this additional level of
uncertainty. Furthermore, when comparing between product development
alternatives, it is often necessary to preserve the structural and behavioral
compositions of the alternative scenarios. Many quantitative option analysis
methods assume that the possible behavioral and structural evolutions of the option
portfolios of interest can be abstracted into a few statistical measures. To preserve
and analyze the structural and behavioral information content in product
development options, we utilize modeling principles inspired by Hoare and Cousot
[2, 6] to develop a modeldriven method for product development option analysis
which can preserve the quantitative, quantitative, and fuzzy aspects of “real”
options.

2 A Model-Driven Analysis Method

Model-driven methods are software development techniques that compose the
resulting model of a software product recursively using other software models as
building blocks. It often employs a special-purpose model manipulation language
[3] that manipulates and generates different versions of models.
We adopt a model-driven method to analyze engineering product development
options because model-driven methods are effective techniques for combination
and comparisons of different options. Competing project plans can also introduce
uncertainty because they require comparative analysis before a decision can be
made. Therefore, when comparing or composing two or more development
options, analysts must first encode options and the respective compositional
structures as standard model data types in a modeling manipulation language.
Then, analysts may apply model manipulation operations to analyzed the
represented options, such as equality or substitution.
Using an executable model-driven language, these analytical operations can be
automated to mechanically reason about the logical consistency or other
quantitative and qualitative (defined over an un-ordered domain) properties of
different options.

2.1 The Modeling Vocabulary

We hereby define three model data types and one operator for the modeldriven
method. These data types are: Vopt, F, and S. They stand for product development
option, payoff function, and product development portfolio respectively. The
operator is called D for product development decision. They are defined as
follows:

A Valuation Technology for Product Development Options 109

Definition 1 (Product Development Option: Vopt). Vopt is a data type, in which
V Vopt is a product development option. An option v represents a set of defined
possibilities, whose actual values are to be determined under certain or uncertain
real world constraints.

When V defines a finite number of possibilities [7], it can be treated as a discrete
variable. When v contains an infinite number of possible values, the option can be
modeled as a symbolic variable, whose actual value can be assigned at the point of
observation. For example, an aircraft frame material option can be chosen from a
finite set, such as {aluminum,wood, steel}. The interest rate of a certain loan can
be represented as a continuous variable, symbolized by a variable name Vr, where
Vr > 0.

Definition 2 (Payoff Function : F). F is a data type, in which f F is an instance
of a payoff function. It relates two or more development options. Each f determines
the payoff values or constrains the allowable value combinations of directly related
options, v’s.

When all related development options are statically related, the payoff function f
can be modeled as a conditional probability function, which represents all possible
value combinations and associated distribution of these options.
Once any one of these options’ values are determined, the payoff function can be
used to compute the value distributions for other related options.When two or more
options are related temporally, a payoff function can be constructed to take the
value of a temporally-causal option and compute the value(s) of the temporally-
dependent option(s). For example, Voutput = f(vinput1, Vinput2, ...).
Payoff functions can also be analyzed using algebraic rules to substitute, simplify,
or compose into different functions or values.

Definition 3 (Product Development Portfolio : S). S is a data type, in which
s S is a portfolio. A portfolio is a collection of v’s and f’s. It may also be written
as a tuple, s = |{v1, ..., vj}, {f1, ..., fki|, where j and k are the number of options and
payoff functions respectively.

A portfolio s is a composition of many product development options. The structure
of a portfolio is captured via an associated set of payoff functions that relate these
options. Under this definition, a portfolio s can be modeled as a graph containing
two domains of elements. One set of elements represent options and the others
represent payoff functions. The structures (relationships) between the options and
payoff functions can be shown as a bi-partite graph.
A bi-partite graph is a highly expressive formalism. It can be used as the basic
syntax for many kinds of computationally complete modeling languages [8].
Based on the computational properties of different s’s, we may treat them
executable specifications that capture the behavioral and structural properties of
different compositions of product development options. One must note that our set-
based definition of development option allows the possibility of recursion. For

110 Benjamin H. Y. Koo,, Willard L. Simmons, and Edward F. Crawley

example, when there exists multiple competing product development portfolios,
these portfolios make up a set that represents an option instance.

Definition 4 (Product Development Decision : D). A product development
decision D is an operator on the S domain, or: D(s) S.
The operator D is a model refinement function over S. It takes one or more
instances of s as inputs, and produces one or more instances of s by assigning
option values or specializing the payoff functions in the output s. For example, by
choosing to build an aircraft frame using aluminum material, the decision operator
D may replace the material option with three choices ({aluminum,wood, steel}),
into an option with only one choice ({wood}).
One should note that D is a meta-operator, whose effects on the domain S is driven
by the inputs’ information content, also specified using elements in S. For
example, the encode, enumerate, and evaluate operations on S (explained further in
Section 3.1) can be thought of as specialized versions of D.

2.2 Identify portfolios using fixed-point search

As defined earlier, a design decision D is closed over the domain of portfolios. It
modifies the information content of a portfolio by adding or removing a collection
of real options or payoff functions. The design process as a whole can be thought
of as an iterative procedure that applies design decisions to successive revisions of
an initial portfolio. Therefore, the evolutionary history of a product development
portfolio, s, can be formulated as a fixed point formula:

sn+1 = Dn(sn)

Where s0 is an initial portfolio that is made up of many related development
options and associated payoff functions. The term n indicates the sequential index
number of decisions made to change the portfolio. The functional operator Dn is the
nth version of the design decision operator. The design decision operator D may
have many versions because at each point a design decision is made, it is mostly
likely to have a different effect on its operand since its behavior is partially defined
by sn. One can view this dynamic definition of D as a way to implement dynamic
programming.
This fixed-point formulation of product design process assumes that all design
information can be encoded in the domain of portfolios, S. When a fixed-point in
the S domain is found (sn+1 = sn), we arrive at a fixed or stabilized portfolio. This
fixed portfolio can be considered for implementation in the real-world. This fixed-
point formulation of portfolio refinement reflects the dynamic nature of portfolio
refinement in practice.

3 An Executable Modeling Tool

The above-mentioned method requires a modeling tool that enables one to encode,
enumerate, and evaluate development portfolios. The rationale of implementing

A Valuation Technology for Product Development Options 111

the tool is twofold. First, the above method involves certain tedious model
manipulation tasks that must be automated. Second, it should serve as an
experimental prototype to determine whether this type of automated model
construction tool can be useful in real-world engineering projects. This section
briefly describes the functional features and high-level software architecture of a
tool, Object-Process Network (OPN). OPN can be characterized as an executable
meta-language designed for model manipulation tasks [8, 9].

3.1 Functional Areas

There are three main functional areas of the tool: encode, enumerate, and evaluate
models that represent option portfolios. They are three specialized versions of the
meta-operator D mentioned earlier. The first functional area is a model editor that
enables users to encode a portfolio as a collection of development options and a
collection of payoff functions. This model editing feature is implemented as a bi-
partite graph editor. It allows users to insert and delete options (represented as
boxes) and payoff functions (represented as ellipses). A screenshot of the editor is
shown in Figure 1. There are specialized editors for development options and
payoff functions that allow users to specify allowable values and function
definitions for these design primitives. The editor also enables users to insert and
remove edges between the boxes and ellipses. Edges are data structures that carry
boolean expressions to determine whether certain value combinations are
acceptable. Each bi-partite graph diagram shown in Figure 1 represents a
development portfolio.
The second functional area is to enumerate all the possible variations of the
development portfolio. For statically related options, a portfolio can be treated as a
Graphical Game model, which can be approximated solved using Bayesian Belief
Network algorithms [8]. The enumeration procedure for temporally dependent
options is realized via a directed graph enumeration algorithm illustrated in detail
in Reference [8]. These algorithms assess the probability distribution of likely sub-
portfolios or generate a collection of portfolio variations.
The third functional area is to evaluate the properties by human or by machine.
During the enumeration process, the algorithm for enumeration also carries out the
calculations of payoff functions, yielding additional information about options, or
eliminating options that are not compatible. Since each payoff function may assess
more than one property, there are usually multiple named properties associated
with each portfolio. These named properties can be used as multi-dimensional
metrics to compare different portfolios.

3.2 Software Architecture
To support the three functional areas, the codebase is organized into three software
packages. They are LanguageKernel, PersistenceServices, and
UserInterfaceWidgets. They are all implemented in Java.
LanguageKernel includes four basic data types: Option, Payoff, Relationship, and
Portfolio. The data type called Relationship implements the constraints specified in
the payoff functions (F). A portfolio is implemented as a bi-partite graph. The

112 Benjamin H. Y. Koo,, Willard L. Simmons, and Edward F. Crawley

decision operator, D is implemented as a Java method that merges or deletes
certain parts of the bi-partite graph. The graph editing, enumeration, and function
evaluation algorithms are all implemented as specialization of the decision
operator. These algorithms always return the results in the portfolio data type. This
implementation strategy is intentionally designed to mimic the nature of an
algebraic system, so that we may inductively reason about the computational
results of this software library.
 UserInterfaceWidgets is the package that provides the graphical user interface
that allows users to visualize and edit portfolios in a number of graphical modes.
The user interface of OPN is intentionally designed to allow users visualize that
both data content as well as structural properties of development portfolios are
being manipulated. Moreover, it shows that portfolio refinement is an iterative
procedure that starts from an initial portfolio and unfolds into many generations of
alternative portfolios. The generated portfolios are listed in the middle section of
the editor and can be individually selected and edited. Each of the portfolios is also
associated with a set of properties listed in the lower right corner of the editor
window. Users can decide between different portfolio options as a part of the
human-in-the-loop decision procedure.
 PersistenceServices is a software package currently implemented to store
portfolios as XML files. This package is designed to allow future extensions that
utilizes scalable database services when users need to deal with a much larger
number of generated portfolios.

4 Applications

This method and its supporting tool, OPN, have been successfully applied to study
varying compositional structures of different product development portfolios and
assess the interactions between many qualitative and quantitative variables. Due to
limitations on article length, the following list briefly summarizes three published
applications:

• A study of Moon and Mars exploration architectures for the NASA Vision for
Space Exploration [10]. In this study, over a thousand alternative, feasible mission-
mode options were generated and compared for human travel to the Moon or Mars.
• A study of developmental options for flight configurations of a particular type of
military aircraft [8]. This study demonstrated OPN’s ability to reason about the
possibility space of physical configurations under incomplete information.
• A study of options for Space Shuttle derived cargo launch vehicles [11]. This
study generated and evaluated hundreds of developmental portfolio options for
evolving the Space Shuttle’s hardware into a new launch vehicle.

 OPN helped streamline the exploration of many combinatorial possibilities in
different option portfolios. It also supports numeric calculation of payoff values,
and the calculations can be postponed or symbolically simplified without
sacrificing the integrity of the analysis results.

A Valuation Technology for Product Development Options 113

Fig. 1. Screen capture of the OPN tool.

114 Benjamin H. Y. Koo,, Willard L. Simmons, and Edward F. Crawley

5 Discussion and Conclusion

This model-driven approach allows us to deal with three critical problems in
product development option analysis. The are listed as follows:

1. Enable product development planners to represent the state-space of real
options as a network of model-driven data elements. Based on modeldriven
analysis principles, combinatorially explosive option state-space maybe
systematically partitioned into a manageable number of sub-spaces each
represented by a sub-network model.
2. Provide an executable language to encode portfolios as executable models,
composed of a collection of options and their payoff functions. The models can
be executed to enumerate alternative combinatorial scenarios and perform
various levels of simulation to assess their strengths and weaknesses.
3. Under incomplete knowledge, portfolios maybe algebraically manipulated
[9]. This approach may proceed by applying algebraic rules to infer certain
logical properties of the portfolios. In contrast, many quantitative analysis
methods often require observational, statistical or stochastic simulation results
before formal analysis may proceed.

This model-driven method tackles knowledge incompleteness problems in option
analysis using an algebraic approach. It also preserves the structural and behavioral
properties of different product development portfolios during the analytical
process. The list of rather different applications of this method, indicates that this
model-driven analysis framework maybe applied to a broad range of decision-
making problems.

References

1. C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The Power of Modularity.
The MIT Press, Mar 2000.
2. P. Cousot and R. Cousot. Compositional and inductive semantic definition in fixpoint,
equational, constraint, closure-conditioned, rule-based and gametheoretic form. In P.
Wolper, editor, Computer Aided Verification: 7th International Conference, LNCS 939,
pages 293–308. Springer-Verlag, July 3-5 1995.
3. K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools and
Applications. Addison-Wesley, 2000.
4. W. Griswold, M. Shonle, K. Sullivan, Y. Song, N. Tewari, Y. Cai, and H. Rajan. Modular
software design with crosscutting interfaces. IEEE Software, 23(1):51– 60, 2006.
5. J. Guttag and J. J. Horning. Formal specification as a design tool. In Proceedings of the
7th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
251–261, New York, NY, USA, 1980. ACM Press.
6. C. A. R. Hoare. Process algebra: A unifying approach. In J. W. S. Aku E. Abdallah, Cliff
B. Jones, editor, Communicating Sequential Processes, July 2005.
7. J. C. Hull. Options, Futures, and other Derivative Securities. Prentice Hall, 2nd
edition, 1993.
8. B. H. Y. Koo. A Meta-language for Systems Architecting. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 2005.

A Valuation Technology for Product Development Options 115

9. B. H. Y. Koo, W. L. Simmons, and E. F. Crawley. Algebra of systems: an executable
framework for model synthesis and evaluation. In Proceedings of the 2007 International
Conference on Systems Engineering and Modeling, 2007.
10. W. L. Simmons, B. H. Y. Koo, and E. F. Crawley. Architecture generation for Moon-
Mars exploration using an executable meta-language. In Proceedings of AIAA Space 2005,
30 August - 1 September, Long Beach, CA, 2005.
11. W. L. Simmons, B. H. Y. Koo, and E. F. Crawley. Space systems architecting using
meta-languages. In 56th International Astronautical Congress, 2005.

