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Abstract. Mistakes or foresight in the earlier phases of product development tend 
to be amplified over the course of a project. Therefore, having a rigorous approach 
and supporting tools to identify and filter a development portfolio at the early 
stages can be highly rewarding. This paper presents an executable specification 
language, Object-Process Network (OPN), that can be used by system designers to 
formally represent the development option space, and automate certain model 
refinement activities at earlier phases of product development. Specifically, an 
OPN specification model can automatically enumerate a set of alternative 
development portfolios. OPN also provides an algebraic mechanism to handle the 
knowledge incompleteness problems at varying phases of planning, so that 
uncertain properties of different portfolios can be represented and analyzed under 
algebraic principles. 
In addition, it has a recursively defined model transformation operator that can 
iteratively refine the specification models to simplify or enhance the details of the 
machine-generated alternatives. A list of successful application cases is presented. 

Keywords. OPN, meta-language, Real Options, Algebra of Systems, Model-
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1 Introduction and Motivation 

During the earlier stages of product development, limited engineering resources 
and knowledge incompleteness inevitably introduce a high degree of uncertainty. 
However, inflexible design decisions made in the earlier phases tend to seal off the 
future opportunities of the product development project. 
Therefore, it is beneficial to employ a design analysis method that can include not 
one, but a set of possible product development options [1, 4, 5]. Real options is 
often employed to analyze a set of alternative developmental options. Our paper 
describes a model-driven analysis method and a supporting tool that extends 
existing real option analysis methods. 



108 Benjamin H. Y. Koo,, Willard L. Simmons, and Edward F. Crawley 

Real options analysis is related, but different from, financial option analysis. When 
a financial option is purchased, certain rights in the future are contractually 
protected [7]. Conversely, product development options in the real world usually 
provide little if any guarantee. For example, the investment in certain technologies 
may or may not create additional opportunities in the future. Therefore, when 
modeling real options, the modeling method must deal with this additional level of 
uncertainty. Furthermore, when comparing between product development 
alternatives, it is often necessary to preserve the structural and behavioral 
compositions of the alternative scenarios. Many quantitative option analysis 
methods assume that the possible behavioral and structural evolutions of the option 
portfolios of interest can be abstracted into a few statistical measures. To preserve 
and analyze the structural and behavioral information content in product 
development options, we utilize modeling principles inspired by Hoare and Cousot 
[2, 6] to develop a modeldriven method for product development option analysis 
which can preserve the quantitative, quantitative, and fuzzy aspects of “real” 
options. 
 

2 A Model-Driven Analysis Method 
 
Model-driven methods are software development techniques that compose the 
resulting model of a software product recursively using other software models as 
building blocks. It often employs a special-purpose model manipulation language 
[3] that manipulates and generates different versions of models. 
We adopt a model-driven method to analyze engineering product development 
options because model-driven methods are effective techniques for combination 
and comparisons of different options. Competing project plans can also introduce 
uncertainty because they require comparative analysis before a decision can be 
made. Therefore, when comparing or composing two or more development 
options, analysts must first encode options and the respective compositional 
structures as standard model data types in a modeling manipulation language. 
Then, analysts may apply model manipulation operations to analyzed the 
represented options, such as equality or substitution. 
Using an executable model-driven language, these analytical operations can be 
automated to mechanically reason about the logical consistency or other 
quantitative and qualitative (defined over an un-ordered domain) properties of 
different options. 
 
2.1 The Modeling Vocabulary 
 
We hereby define three model data types and one operator for the modeldriven 
method. These data types are: Vopt, F, and S. They stand for product development 
option, payoff function, and product development portfolio respectively. The 
operator is called D for product development decision. They are defined as 
follows: 
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Definition 1 (Product Development Option: Vopt). Vopt is a data type, in which  
V  Vopt is a product development option. An option v represents a set of defined 
possibilities, whose actual values are to be determined under certain or uncertain 
real world constraints. 

When V defines a finite number of possibilities [7], it can be treated as a discrete 
variable. When v contains an infinite number of possible values, the option can be 
modeled as a symbolic variable, whose actual value can be assigned at the point of 
observation. For example, an aircraft frame material option can be chosen from a 
finite set, such as {aluminum,wood, steel}. The interest rate of a certain loan can 
be represented as a continuous variable, symbolized by a variable name Vr, where 
Vr > 0. 

Definition 2 (Payoff Function : F). F is a data type, in which f  F is an instance 
of a payoff function. It relates two or more development options. Each f determines 
the payoff values or constrains the allowable value combinations of directly related 
options, v’s. 

When all related development options are statically related, the payoff function f
can be modeled as a conditional probability function, which represents all possible 
value combinations and associated distribution of these options. 
Once any one of these options’ values are determined, the payoff function can be 
used to compute the value distributions for other related options.When two or more 
options are related temporally, a payoff function can be constructed to take the 
value of a temporally-causal option and compute the value(s) of the temporally-
dependent option(s). For example, Voutput = f(vinput1, Vinput2, ...).
Payoff functions can also be analyzed using algebraic rules to substitute, simplify, 
or compose into different functions or values. 

Definition 3 (Product Development Portfolio : S). S is a data type, in which  
s  S is a portfolio. A portfolio is a collection of v’s and f’s. It may also be written 
as a tuple, s = |{v1, ..., vj}, {f1, ..., fki|, where j and k are the number of options and 
payoff functions respectively. 

A portfolio s is a composition of many product development options. The structure 
of a portfolio is captured via an associated set of payoff functions that relate these 
options. Under this definition, a portfolio s can be modeled as a graph containing 
two domains of elements. One set of elements represent options and the others 
represent payoff functions. The structures (relationships) between the options and 
payoff functions can be shown as a bi-partite graph. 
A bi-partite graph is a highly expressive formalism. It can be used as the basic 
syntax for many kinds of computationally complete modeling languages [8]. 
Based on the computational properties of different s’s, we may treat them 
executable specifications that capture the behavioral and structural properties of 
different compositions of product development options. One must note that our set-
based definition of development option allows the possibility of recursion. For 
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example, when there exists multiple competing product development portfolios, 
these portfolios make up a set that represents an option instance. 
 
Definition 4 (Product Development Decision : D). A product development 
decision D is an operator on the S domain, or: D(s)  S. 
The operator D is a model refinement function over S. It takes one or more 
instances of s as inputs, and produces one or more instances of s by assigning 
option values or specializing the payoff functions in the output s. For example, by 
choosing to build an aircraft frame using aluminum material, the decision operator 
D may replace the material option with three choices ({aluminum,wood, steel}), 
into an option with only one choice ({wood}). 
One should note that D is a meta-operator, whose effects on the domain S is driven 
by the inputs’ information content, also specified using elements in S. For 
example, the encode, enumerate, and evaluate operations on S (explained further in 
Section 3.1) can be thought of as specialized versions of D. 
 
2.2  Identify portfolios using fixed-point search 
 
As defined earlier, a design decision D is closed over the domain of portfolios. It 
modifies the information content of a portfolio by adding or removing a collection 
of real options or payoff functions. The design process as a whole can be thought 
of as an iterative procedure that applies design decisions to successive revisions of 
an initial portfolio. Therefore, the evolutionary history of a product development 
portfolio, s, can be formulated as a fixed point formula: 
 

sn+1 = Dn(sn) 
 

Where s0 is an initial portfolio that is made up of many related development 
options and associated payoff functions. The term n indicates the sequential index 
number of decisions made to change the portfolio. The functional operator Dn is the 
nth version of the design decision operator. The design decision operator D may 
have many versions because at each point a design decision is made, it is mostly 
likely to have a different effect on its operand since its behavior is partially defined 
by sn. One can view this dynamic definition of D as a way to implement dynamic 
programming. 
This fixed-point formulation of product design process assumes that all design 
information can be encoded in the domain of portfolios, S. When a fixed-point in 
the S domain is found (sn+1 = sn), we arrive at a fixed or stabilized portfolio. This 
fixed portfolio can be considered for implementation in the real-world. This fixed-
point formulation of portfolio refinement reflects the dynamic nature of portfolio 
refinement in practice. 
 
3 An Executable Modeling Tool 
 
The above-mentioned method requires a modeling tool that enables one to encode, 
enumerate, and evaluate development portfolios. The rationale of implementing 
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the tool is twofold. First, the above method involves certain tedious model 
manipulation tasks that must be automated. Second, it should serve as an 
experimental prototype to determine whether this type of automated model 
construction tool can be useful in real-world engineering projects. This section 
briefly describes the functional features and high-level software architecture of a 
tool, Object-Process Network (OPN). OPN can be characterized as an executable 
meta-language designed for model manipulation tasks [8, 9]. 

3.1 Functional Areas 

There are three main functional areas of the tool: encode, enumerate, and evaluate
models that represent option portfolios. They are three specialized versions of the 
meta-operator D mentioned earlier. The first functional area is a model editor that 
enables users to encode a portfolio as a collection of development options and a 
collection of payoff functions. This model editing feature is implemented as a bi-
partite graph editor. It allows users to insert and delete options (represented as 
boxes) and payoff functions (represented as ellipses). A screenshot of the editor is 
shown in Figure 1. There are specialized editors for development options and 
payoff functions that allow users to specify allowable values and function 
definitions for these design primitives. The editor also enables users to insert and 
remove edges between the boxes and ellipses. Edges are data structures that carry 
boolean expressions to determine whether certain value combinations are 
acceptable. Each bi-partite graph diagram shown in Figure 1 represents a  
development portfolio. 
The second functional area is to enumerate all the possible variations of the 
development portfolio. For statically related options, a portfolio can be treated as a 
Graphical Game model, which can be approximated solved using Bayesian Belief 
Network algorithms [8]. The enumeration procedure for temporally dependent 
options is realized via a directed graph enumeration algorithm illustrated in detail 
in Reference [8]. These algorithms assess the probability distribution of likely sub-
portfolios or generate a collection of portfolio variations. 
The third functional area is to evaluate the properties by human or by machine. 
During the enumeration process, the algorithm for enumeration also carries out the 
calculations of payoff functions, yielding additional information about options, or 
eliminating options that are not compatible. Since each payoff function may assess 
more than one property, there are usually multiple named properties associated 
with each portfolio. These named properties can be used as multi-dimensional 
metrics to compare different portfolios. 

3.2 Software Architecture 
To support the three functional areas, the codebase is organized into three software 
packages. They are LanguageKernel, PersistenceServices, and 
UserInterfaceWidgets. They are all implemented in Java. 
LanguageKernel includes four basic data types: Option, Payoff, Relationship, and 
Portfolio. The data type called Relationship implements the constraints specified in 
the payoff functions (F). A portfolio is implemented as a bi-partite graph. The 
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decision operator, D is implemented as a Java method that merges or deletes 
certain parts of the bi-partite graph. The graph editing, enumeration, and function 
evaluation algorithms are all implemented as specialization of the decision 
operator. These algorithms always return the results in the portfolio data type. This 
implementation strategy is intentionally designed to mimic the nature of an 
algebraic system, so that we may inductively reason about the computational 
results of this software library.  
    UserInterfaceWidgets is the package that provides the graphical user interface 
that allows users to visualize and edit portfolios in a number of graphical modes. 
The user interface of OPN is intentionally designed to allow users visualize that 
both data content as well as structural properties of development portfolios are 
being manipulated. Moreover, it shows that portfolio refinement is an iterative 
procedure that starts from an initial portfolio and unfolds into many generations of 
alternative portfolios. The generated portfolios are listed in the middle section of 
the editor and can be individually selected and edited. Each of the portfolios is also 
associated with a set of properties listed in the lower right corner of the editor 
window. Users can decide between different portfolio options as a part of the 
human-in-the-loop decision procedure. 
  PersistenceServices is a software package currently implemented to store 
portfolios as XML files. This package is designed to allow future extensions that 
utilizes scalable database services when users need to deal with a much larger 
number of generated portfolios. 
 

4 Applications 
 

This method and its supporting tool, OPN, have been successfully applied to study 
varying compositional structures of different product development portfolios and 
assess the interactions between many qualitative and quantitative variables. Due to 
limitations on article length, the following list briefly summarizes three published 
applications: 

• A study of Moon and Mars exploration architectures for the NASA Vision for 
Space Exploration [10]. In this study, over a thousand alternative, feasible mission-
mode options were generated and compared for human travel to the Moon or Mars. 
• A study of developmental options for flight configurations of a particular type of 
military aircraft [8]. This study demonstrated OPN’s ability to reason about the 
possibility space of physical configurations under incomplete information. 
• A study of options for Space Shuttle derived cargo launch vehicles [11]. This 
study generated and evaluated hundreds of developmental portfolio options for 
evolving the Space Shuttle’s hardware into a new launch vehicle. 

    OPN helped streamline the exploration of many combinatorial possibilities in 
different option portfolios. It also supports numeric calculation of payoff values, 
and the calculations can be postponed or symbolically simplified without 
sacrificing the integrity of the analysis results. 
 



A Valuation Technology for Product Development Options 113 

Fig. 1. Screen capture of the OPN tool.
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5 Discussion and Conclusion 
 
This model-driven approach allows us to deal with three critical problems in 
product development option analysis. The are listed as follows: 

1. Enable product development planners to represent the state-space of real 
options as a network of model-driven data elements. Based on modeldriven 
analysis principles, combinatorially explosive option state-space maybe 
systematically partitioned into a manageable number of sub-spaces each 
represented by a sub-network model. 
2. Provide an executable language to encode portfolios as executable models, 
composed of a collection of options and their payoff functions. The models can 
be executed to enumerate alternative combinatorial scenarios and perform 
various levels of simulation to assess their strengths and weaknesses. 
3. Under incomplete knowledge, portfolios maybe algebraically manipulated 
[9]. This approach may proceed by applying algebraic rules to infer certain 
logical properties of the portfolios. In contrast, many quantitative analysis 
methods often require observational, statistical or stochastic simulation results 
before formal analysis may proceed. 

This model-driven method tackles knowledge incompleteness problems in option 
analysis using an algebraic approach. It also preserves the structural and behavioral 
properties of different product development portfolios during the analytical 
process. The list of rather different applications of this method, indicates that this 
model-driven analysis framework maybe applied to a broad range of decision-
making problems.  
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