
9

Connectivity

Contents
9.1 Vertex Connectivity . 205

Connectivity and Local Connectivity 206
Vertex Cuts and Menger’s Theorem 207

9.2 The Fan Lemma . 213
9.3 Edge Connectivity . 216

Essential Edge Connectivity . 217
Connectivity in Digraphs . 217

9.4 Three-Connected Graphs . 219
Decomposition Trees . 221
Contractions of Three-Connected Graphs 222
Expansions of Three-Connected Graphs 223

9.5 Submodularity . 226
Edge Connectivity of Vertex-Transitive Graphs 227
Nash-Williams’ Orientation Theorem 228

9.6 Gomory–Hu Trees . 231
Determining Edge Connectivity . 232

9.7 Chordal Graphs . 235
Clique Cuts . 235
Simplicial Vertices . 236
Tree Representations . 237

9.8 Related Reading. 238
Lexicographic Breadth-First Search 238
Tree-Decompositions . 239

9.1 Vertex Connectivity

In Section 3.1, we discussed the concept of connection in graphs. Consider, now,
the four connected graphs in Figure 9.1.

206 9 Connectivity

G1 G2 G3 G4

Fig. 9.1. Four connected graphs

G1 is a tree, a minimal connected graph; deleting any edge disconnects it. G2

cannot be disconnected by the deletion of a single edge, but can be disconnected
by the deletion of one vertex, its cut vertex. There are no cut edges or cut vertices
in G3, but even so G3 is clearly not as well connected as G4, the complete graph
on five vertices. Thus, intuitively, each successive graph is better connected than
the previous one. We now introduce two parameters of a graph, its connectivity
and edge connectivity, which measure the extent to which it is connected. We first
define these parameters in terms of numbers of disjoint paths connecting pairs
of vertices, and then relate those definitions to sizes of vertex and edge cuts, as
suggested by the above examples.

Connectivity and Local Connectivity

We begin by discussing the notion of vertex connectivity, commonly referred to
simply as connectivity. Recall that xy-paths P and Q in G are internally disjoint
if they have no internal vertices in common, that is, if V (P) ∩ V (Q) = {x, y}.
The local connectivity between distinct vertices x and y is the maximum number
of pairwise internally disjoint xy-paths, denoted p(x, y); the local connectivity is
undefined when x = y. The matrix in Figure 9.2b displays the local connectivities
between all pairs of vertices of the graph shown in Figure 9.2a. (The function
shown in Figure 9.2c will be defined shortly.)

A nontrivial graph G is k-connected if p(u, v) ≥ k for any two distinct vertices
u and v. By convention, a trivial graph is 0-connected and 1-connected, but is not
k-connected for any k > 1. The connectivity κ(G) of G is the maximum value of k
for which G is k-connected. Thus, for a nontrivial graph G,

κ(G) := min{p(u, v) : u, v ∈ V, u �= v} (9.1)

A graph is 1-connected if and only if it is connected; equivalently, a graph
has connectivity zero if and only if it is disconnected. Nonseparable graphs on at
least three vertices are 2-connected; conversely, every 2-connected loopless graph
is nonseparable. For the four graphs shown in Figure 9.1, κ(G1) = 1, κ(G2) = 1,
κ(G3) = 3, and κ(G4) = 4. Thus, of these four graphs, the only graph that is
4-connected is G4. Graphs G3 and G4 are 2-connected and 3-connected, whereas

9.1 Vertex Connectivity 207

u

v

x y z

u x y z v

u ∗ 3 2 4 3
x 3 ∗ 2 2 3
y 2 2 ∗ 2 3
z 4 2 2 ∗ 3
v 3 3 3 3 ∗

u x y z v

u ∗ ∗ ∗ ∗ 3
x ∗ ∗ 2 2 ∗
y ∗ 2 ∗ 2 ∗
z ∗ 2 2 ∗ ∗
v 3 ∗ ∗ ∗ ∗

(a) (b) (c)

Fig. 9.2. (a) A graph, (b) its local connectivity function, and (c) its local cut function

G1 and G2 are not. And, because all four graphs are connected, they are all 1-
connected. The graph in Figure 9.2a is 1-connected and 2-connected, but is not
3-connected. Thus, the connectivity of this graph is two.

Vertex Cuts and Menger’s Theorem

We now rephrase the definition of connectivity in terms of ‘vertex cuts’. This is
not totally straightforward because complete graphs (and, more generally, graphs
in which any two vertices are adjacent) have no such cuts. For this reason, we first
determine the connectivities of these graphs.

Distinct vertices x and y of Kn are connected by one path of length one and
n − 2 internally disjoint paths of length two. It follows that p(x, y) = n − 1 and
that κ(Kn) = n − 1 for n ≥ 2. More generally, if the underlying simple graph of
a graph G is complete, and x and y are joined by µ(x, y) links, there are µ(x, y)
paths of length one, and n− 2 internally disjoint paths of length two connecting x
and y; thus p(x, y) = n− 2 + µ(x, y). Hence the connectivity of a nontrivial graph
G in which any two vertices are adjacent is n − 2 + µ, where µ is the minimum
edge multiplicity in the graph. On the other hand, if x and y are nonadjacent,
there are at most n− 2 internally disjoint paths connecting x and y. Thus, if the
underlying simple graph of a graph G is not complete, its connectivity κ cannot
exceed n− 2. For such a graph, the connectivity is equal to the minimum number
of vertices whose deletion results in a disconnected graph, as we now explain.

Let x and y be distinct nonadjacent vertices of G. An xy-vertex-cut is a subset
S of V \ {x, y} such that x and y belong to different components of G − S. We
also say that such a subset S separates x and y. The minimum size of a vertex cut
separating x and y is denoted by c(x, y). This function, the local cut function of
G, is not defined if either x = y or x and y are adjacent. The matrix displayed
in Figure 9.2c gives the values of the local cut function of the graph shown in
Figure 9.2a.

A vertex cut separating some pair of nonadjacent vertices of G is a vertex cut
of G, and one with k elements is a k-vertex cut. A complete graph has no vertex

208 9 Connectivity

cuts; moreover, the only graphs which do not have vertex cuts are those whose
underlying simple graphs are complete. We now show that, if G has at least one
pair of nonadjacent vertices, the size of a minimum vertex cut of G is equal to the
connectivity of G. The main ingredient required is a version of Menger’s Theorem
which relates the two functions p and c.

Finding the maximum number of internally disjoint xy-paths in a graph
G := G(x, y) amounts to finding the maximum number of internally disjoint di-
rected (x, y)-paths in the associated digraph D(x, y) := D(G). In turn, as noted
in Section 8.3, the latter problem may be reduced to one of finding the maximum
number of arc-disjoint directed (x, y)-paths in a related digraph D′(x, y) (of order
2n−2), and this number can be determined by the Max-Flow Min-Cut Algorithm
(7.9). Thus the Max-Flow Min-Cut Algorithm may be adapted to find, in polyno-
mial time, the maximum number of internally disjoint xy-paths in G. The same
algorithm will also return an xy-vertex-cut whose cardinality is equal to the maxi-
mum number of internally disjoint xy-paths, implying the validity of the following
fundamental theorem of Menger (1927). We include here a simple inductive proof
of this theorem due to Göring (2000), as an alternative to the above-mentioned
constructive proof.

For this purpose, we need the operation of shrinking a set of vertices in a graph.
Let G be a graph and let X be a proper subset of V . To shrink X is to delete
all edges between vertices of X and then identify the vertices of X into a single
vertex. We denote the resulting graph by G/X.

Theorem 9.1 Menger’s Theorem (Undirected Vertex Version)

In any graph G(x, y), where x and y are nonadjacent, the maximum number of
pairwise internally disjoint xy-paths is equal to the minimum number of vertices
in an xy-vertex-cut, that is,

p(x, y) = c(x, y)

Proof By induction on e(G). For convenience, let us set k := cG(x, y). Note
that pG(x, y) ≤ k, because any family P of internally disjoint xy-paths meets
any xy-vertex-cut in at least |P| distinct vertices. Thus it suffices to show that
pG(x, y) ≥ k. We may assume that there is an edge e = uv incident neither with x
nor with y; otherwise, every xy-path is of length two, and the conclusion follows
easily.

Set H := G \ e. Because H is a subgraph of G, pG(x, y) ≥ pH(x, y). Also, by
induction, pH(x, y) = cH(x, y). Furthermore, cG(x, y) ≤ cH(x, y) + 1 because any
xy-vertex-cut in H, together with either end of e, is an xy-vertex-cut in G. We
therefore have:

pG(x, y) ≥ pH(x, y) = cH(x, y) ≥ cG(x, y)− 1 = k − 1

We may assume that equality holds throughout; if not, pG(x, y) ≥ k and there
is nothing more to prove. Thus, in particular, cH(x, y) = k − 1. Let S :=
{v1, . . . , vk−1} be a minimum xy-vertex-cut in H, let X be the set of vertices
reachable from x in H − S, and let Y be the set of vertices reachable from y in

9.1 Vertex Connectivity 209

x

x

xx

y

y y

y

u

u

u

v

v

v

e

S

S

SS

X

X

X

Y

Y

Y

Fig. 9.3. Proof of Menger’s Theorem (9.1)

H − S. Because |S| = k − 1, the set S is not an xy-vertex-cut of G, so there is an
xy-path in G−S. This path necessarily includes the edge e. We may thus assume,
without loss of generality, that u ∈ X and v ∈ Y .

Now consider the graph G/Y obtained from G by shrinking Y to a single vertex
y. Every xy-vertex-cut T in G/Y is necessarily an xy-vertex-cut in G, because if
P were an xy-path in G avoiding T , the subgraph P /Y of G/Y would contain
an xy-path in G/Y avoiding T , too. Therefore cG / Y (x, y) ≥ k. On the other
hand, cG / Y (x, y) ≤ k because S ∪{u} is an xy-vertex-cut of G/Y . It follows that
S ∪ {u} is a minimum xy-vertex-cut of G/Y . By induction, there are k internally
disjoint xy-paths P1, . . . , Pk in G/Y , and each vertex of S ∪ {u} lies on one of
them. Without loss of generality, we may assume that vi ∈ V (Pi), 1 ≤ i ≤ k − 1,
and u ∈ V (Pk). Likewise, there are k internally disjoint xy-paths Q1, . . . , Qk in
the graph G/X obtained by shrinking X to x with vi ∈ V (Qi), 1 ≤ i ≤ k − 1,
and v ∈ Qk. It follows that there are k internally disjoint xy-paths in G, namely
xPiviQiy, 1 ≤ i ≤ k− 1, and xPkuvQky (see Figure 9.3, where the vertices not in
X ∪ S ∪ Y are omitted, as they play no role in the proof.). �

As a consequence of Theorem 9.1 we have:

min{p(u, v) : u, v ∈ V, u �= v, uv �∈ E} = min{c(u, v) : u, v ∈ V, u �= v, uv �∈ E}
(9.2)

210 9 Connectivity

Suppose that G is a graph that has at least one pair of nonadjacent vertices.
In this case, the right-hand side of equation (9.2) is the size of a minimum vertex
cut of G. But we cannot immediately conclude from (9.2) that the connectivity
of G is equal to the size of a minimum vertex cut of G because, according to
our definition, κ is the minimum value of p(u, v) taken over all pairs of distinct
vertices u, v (whether adjacent or not). However, the following theorem, due to
Whitney (1932a), shows that the minimum local connectivity taken over all pairs
of distinct vertices, is indeed the same as the minimum taken over all pairs of
distinct nonadjacent vertices.

Theorem 9.2 If G has at least one pair of nonadjacent vertices,

κ(G) = min{p(u, v) : u, v ∈ V, u �= v, uv �∈ E} (9.3)

Proof If G has an edge e which is either a loop or one of a set of parallel edges,
we can establish the theorem by deleting e and applying induction. So we may
assume that G is simple.

By (9.1), κ(G) = min{p(u, v) : u, v ∈ V, u �= v}. Let this minimum be attained
for the pair x, y, so that κ(G) = p(x, y). If x and y are nonadjacent, there is nothing
to prove. So suppose that x and y are adjacent.

Consider the graph H := G \ xy, obtained by deleting the edge xy from G.
Clearly, pG(x, y) = pH(x, y) + 1. Furthermore, by Menger’s Theorem, pH(x, y) =
cH(x, y). Let X be a minimum vertex cut in H separating x and y, so that
pH(x, y) = cH(x, y) = |X|, and pG(x, y) = |X|+ 1. If V \X = {x, y}, then

κ(G) = pG(x, y) = |X|+ 1 = (n− 2) + 1 = n− 1

But this implies that G is complete, which is contrary to the hypothesis. So we
may assume that V \ X has at least three vertices, x, y, z. We may also assume,
interchanging the roles of x and y if necessary, that x and z belong to different
components of H−X. Then x and z are nonadjacent in G and X ∪{y} is a vertex
cut of G separating x and z. Therefore,

c(x, z) ≤ |X ∪ {y}| = p(x, y)

On the other hand, by Menger’s Theorem, p(x, z) = c(x, z). Hence p(x, z) ≤
p(x, y). By the choice of {x, y}, we have p(x, z) = p(x, y) = κ(G). Because x and
z are nonadjacent,

κ(G) = p(x, z) = min{p(u, v) : u, v ∈ V, u �= v, uv �∈ E} �

It follows from Theorems 9.1 and 9.2 that the connectivity of a graph G which
has at least one pair of nonadjacent vertices is equal to the size of a minimum
vertex cut of G. In symbols,

κ(G) = min{c(u, v) : u, v ∈ V, u �= v, uv �∈ E} (9.4)

9.1 Vertex Connectivity 211

The vertex cuts of a graph are the same as those of its underlying simple graph,
thus (9.4) implies that the connectivity of a graph which has at least one pair of
nonadjacent vertices is the same as the connectivity of its underlying simple graph.

As noted in Section 8.2, for every nonadjacent pair x, y of vertices of G, the
value of c(x, y) may be computed by running the Max-Flow Min-Cut Algorithm
(7.9) on an auxiliary digraph of order 2n − 2 with unit capacities. It follows that
the connectivity of any graph may be computed in polynomial time.

Exercises

9.1.1 Consider the vertices x = (0, 0, . . . , 0) and y = (1, 1, . . . , 1) of the n-cube Qn.
Describe a maximum collection of edge-disjoint xy-paths in Qn and a minimum
vertex cut of Qn separating x and y.

9.1.2 Let G and H be simple graphs. Show that κ(G ∨ H) = min{v(G) +
κ(H), v(H) + κ(G)}.

9.1.3

a) Show that if G is simple and δ ≥ n− 2, then κ = δ.
b) For each n ≥ 4, find a simple graph G with δ = n− 3 and κ < δ.

9.1.4 Show that if G is simple, with n ≥ k + 1 and δ ≥ (n + k − 2)/2, then G is
k-connected.

9.1.5 An edge e of a 2-connected graph G is called contractible if G/e is 2-
connected also. (The analogous concept, for nonseparable graphs, was defined in
Exercise 5.3.2.) Show that every 2-connected graph on three or more vertices has
a contractible edge.

9.1.6 An edge of a graph G is deletable (with respect to connectivity) if κ(G\e) =
κ(G). Show that each edge of a 2-connected graph on at least four vertices is either
deletable or contractible.

9.1.7 A k-connected graph G is minimally k-connected if the graph G \ e is not
k-connected for any edge e (that is, if no edge is deletable).

a) Let G be a minimally 2-connected graph. Show that:
i) δ = 2,
ii) if n ≥ 4, then m ≤ 2n− 4.

b) For all n ≥ 4, find a minimally 2-connected graph with n vertices and 2n− 4
edges.

9.1.8 Let G be a connected graph which is not complete. Show that G is k-
connected if and only if any two vertices at distance two are connected by k
internally disjoint paths.

212 9 Connectivity

9.1.9 Consider the following statement, which resembles Menger’s Theorem. Let
G(x, y) be a graph of diameter d, where x and y are nonadjacent vertices. Then
the maximum number of internally disjoint xy-paths of length d or less is equal to
the minimum number of vertices whose deletion destroys all xy-paths of length d
or less.

a) Prove this statement for d = 2.
b) Verify that the graph shown in Figure 9.4 is a counterexample to the statement

in general. (J.A. Bondy and P. Hell)

Fig. 9.4. A counterexample to Menger’s Theorem for short paths (Exercise 9.1.9)

—————

—————

9.1.10

a) Show that if G is a k-connected graph and e is any edge of G, then G/e is
(k − 1)-connected.

b) For each k ≥ 4, find a k-connected graph G �= Kk+1 such that κ(G/e) = k−1,
for every edge e of G.

9.1.11

a) Let D := D(X,Y) be a directed graph, where X and Y are disjoint subsets of
V . Obtain an undirected graph G from D as follows.
� For each vertex v of D, replace v by two adjacent vertices, v− and v+.
� For each arc (u, v) of D, join u+ and v− by an edge.
� Delete the set of vertices {x− : x ∈ X} ∪ {y+ : y ∈ Y }.
Observe that G is a bipartite graph with bipartition

(
{v− : v ∈ V (D)} \ {x− : x ∈ X}, {v+ : v ∈ V (D)} \ {y+ : y ∈ Y }

)

Show that:
i) α′(G) = |V (D)| − |X ∪ Y |+ pD(X,Y), where pD(X,Y) denotes the maxi-

mum number of disjoint directed (X,Y)-paths in D,
ii) β(G) = |V (D)|−|X∪Y |+cD(X,Y), where cD(X,Y) denotes the minimum

number of vertices whose deletion destroys all directed (X,Y)-paths in D.
(A. Schrijver)

9.2 The Fan Lemma 213

b) Derive Menger’s Theorem (9.8) from the König–Egerváry Theorem (8.32).

9.1.12 Let xPy be a path in a graph G. Two vines on P (defined in Exercise 5.3.12)
are disjoint if:

� their constituent paths are internally disjoint,
� x is the only common initial vertex of two paths in these vines,
� y is the only common terminal vertex of two paths in these vines.

If G is k-connected, where k ≥ 2, show that there are k− 1 pairwise disjoint vines
on P . (S.C. Locke)

9.1.13 Let P be a path in a 3-connected cubic graph G.

a) Consider two disjoint vines on P . Denote by F the union of P and the con-
stituent paths of these two vines. Show that F admits a double cover by three
cycles.

b) Deduce that if P is of length l, then G has a cycle of length greater than 2l/3.
(Compare Exercise 5.3.12.) (J.A. Bondy and S.C. Locke)

9.1.14 Let G be a 3-connected graph, and let e and f be two edges of G. Show
that:

a) the subspace generated by the cycles through e and f has dimension dim (C)−1,
(C. Thomassen)

b) G has an odd cycle through e and f unless G \ {e, f} is bipartite.
(W.D. McCuaig and M. Rosenfeld)

9.2 The Fan Lemma

One can deduce many properties of a graph merely from a knowledge of its con-
nectivity. In this context, Menger’s Theorem, or a derivative of it, invariably plays
a principal role. We describe here a very useful consequence of Menger’s Theorem
known as the Fan Lemma, and apply it to deduce a theorem of Dirac (1952b)
about cycles in k-connected graphs.

The following lemma establishes a simple but important property of k-connected
graphs.

Lemma 9.3 Let G be a k-connected graph and let H be a graph obtained from G
by adding a new vertex y and joining it to at least k vertices of G. Then H is also
k-connected.

Proof The conclusion clearly holds if any two vertices of H are adjacent, because
v(H) ≥ k + 1. Let S be a subset of V (H) with |S| = k− 1. To complete the proof,
it suffices to show that H − S is connected.

Suppose first that y ∈ S. Then H − S = G − (S \ {y}). By hypothesis, G is
k-connected and |S \ {y}| = k − 2. We deduce that H − S is connected.

214 9 Connectivity

Now suppose that y �∈ S. Since, by hypothesis, y has at least k neighbours
in V (G) and |S| = k − 1, there is a neighbour z of y which does not belong to
S. Because G is k-connected, G − S is connected. Furthermore, z is a vertex of
G−S, and hence yz is an edge of H−S. It follows that (G−S)+yz is a spanning
connected subgraph of H − S. Hence H − S is connected. �

The following useful property of k-connected graphs can be deduced from
Lemma 9.3.

Proposition 9.4 Let G be a k-connected graph, and let X and Y be subsets of
V of cardinality at least k. Then there exists in G a family of k pairwise disjoint
(X,Y)-paths.

Proof Obtain a new graph H from G by adding vertices x and y and join-
ing x to each vertex of X and y to each vertex of Y . By Lemma 9.3, H is k-
connected. Therefore, by Menger’s Theorem, there exist k internally disjoint xy-
paths in H. Deleting x and y from each of these paths, we obtain k disjoint paths
Q1, Q2, . . . , Qk in G, each of which has its initial vertex in X and its terminal
vertex in Y . Every path Qi necessarily contains a segment Pi with initial vertex in
X, terminal vertex in Y , and no internal vertex in X ∪Y , that is, an (X,Y)-path.
The paths P1, P2, . . . , Pk are pairwise disjoint (X,Y)-paths. �

A family of k internally disjoint (x, Y)-paths whose terminal vertices are dis-
tinct is referred to as a k-fan from x to Y . The following assertion is another
very useful consequence of Menger’s Theorem. Its proof is similar to the proof of
Proposition 9.4 (Exercise 9.2.1).

Proposition 9.5 The Fan Lemma

Let G be a k-connected graph, let x be a vertex of G, and let Y ⊆ V \ {x} be a set
of at least k vertices of G. Then there exists a k-fan in G from x to Y . �

We now give the promised application of the Fan Lemma. By Theorem 5.1, in a
2-connected graph any two vertices are connected by two internally disjoint paths;
equivalently, any two vertices in a 2-connected graph lie on a common cycle. Dirac
(1952b) generalized this latter statement to k-connected graphs.

Theorem 9.6 Let S be a set of k vertices in a k-connected graph G, where k ≥ 2.
Then there is a cycle in G which includes all the vertices of S.

Proof By induction on k. We have already observed that the assertion holds
for k = 2, so assume that k ≥ 3. Let x ∈ S, and set T := S \ x. Because G
is k-connected, it is (k − 1)-connected. Therefore, by the induction hypothesis,
there is a cycle C in G which includes T . Set Y := V (C). If x ∈ Y , then C
includes all the vertices of S. Thus we may assume that x /∈ Y . If |Y | ≥ k, the
Fan Lemma (Proposition 9.5) ensures the existence of a k-fan in G from x to Y .
Because |T | = k − 1, the set T divides C into k − 1 edge-disjoint segments. By
the Pigeonhole Principle, some two paths of the fan, P and Q, end in the same

9.2 The Fan Lemma 215

x x

C C

PP
Q Q

Fig. 9.5. Proof of Theorem 9.6

segment. The subgraph C ∪ P ∪ Q contains three cycles, one of which includes
S = T ∪ {x} (see Figure 9.5). If |Y | = k − 1, the Fan Lemma yields a (k − 1)-fan
from x to Y in which each vertex of Y is the terminus of one path, and we conclude
as before. �

It should be pointed out that the order in which the vertices of S occur on the
cycle whose existence is established in Theorem 9.6 cannot be specified in advance.
For example, the 4-connected graph shown in Figure 9.6 has no cycle including the
four vertices x1, y1, x2, y2 in this exact order, because every x1y1-path intersects
every x2y2-path.

x1

y1

x2

y2

Fig. 9.6. No cycle includes x1, y1, x2, y2 in this order

Exercises

�9.2.1 Give a proof of the Fan Lemma (Proposition 9.5).

9.2.2 Show that a 3-connected nonbipartite graph contains at least four odd cycles.

�9.2.3 Let C be a cycle of length at least three in a nonseparable graph G, and let
S be a set of three vertices of C. Suppose that some component H of G − V (C)

216 9 Connectivity

is adjacent to all three vertices of S. Show that there is a 3-fan in G from some
vertex v of H to S.

9.2.4 Find a 5-connected graph G and a set {x1, y1, x2, y2} of four vertices in
G, such that no cycle of G contains all four vertices in the given order. (In a 6-
connected graph, it can be shown that there is a cycle containing any four vertices
in any prescribed order.)

—————

—————

9.2.5 Let G be a graph, x a vertex of G, and Y and Z subsets of V \ {x}, where
|Y | < |Z|. Suppose that there are fans from x to Y and from x to Z. Show that
there is a fan from x to Y ∪ {z} for some z ∈ Z \ Y . (H. Perfect)

9.3 Edge Connectivity

We now turn to the notion of edge connectivity. The local edge connectivity between
distinct vertices x and y is the maximum number of pairwise edge-disjoint xy-
paths, denoted p′(x, y); the local edge connectivity is undefined when x = y. A
nontrivial graph G is k-edge-connected if p′(u, v) ≥ k for any two distinct vertices
u and v of G. By convention, a trivial graph is both 0-edge-connected and 1-edge-
connected, but is not k-edge-connected for any k > 1. The edge connectivity κ′(G)
of a graph G is the maximum value of k for which G is k-edge-connected.

A graph is 1-edge-connected if and only if it is connected; equivalently, the
edge connectivity of a graph is zero if and only if it is disconnected. For the four
graphs shown in Figure 9.1, κ′(G1) = 1, κ′(G2) = 2, κ′(G3) = 3, and κ′(G4) = 4.
Thus, of these four graphs, the only graph that is 4-edge-connected is G4. Graphs
G3 and G4 are 3-edge-connected, but G1 and G2 are not. Graphs G2, G3, and G4

are 2-edge-connected, but G1 is not. And, because all four graphs are connected,
they are all 1-edge-connected.

For distinct vertices x and y of a graph G, recall that an edge cut ∂(X) separates
x and y if x ∈ X and y ∈ V \X. We denote by c′(x, y) the minimum cardinality
of such an edge cut. With this notation, we may now restate the edge version of
Menger’s Theorem (7.17).

Theorem 9.7 Menger’s Theorem (Edge Version)

For any graph G(x, y),
p′(x, y) = c′(x, y)

This theorem was proved in Chapter 7 using flows. It may also be deduced
from Theorem 9.1 by considering a suitable line graph (see Exercise 9.3.11).

A k-edge cut is an edge cut ∂(X), where ∅ ⊂ X ⊂ V and |∂(X)| = k, that
is, an edge cut of k elements which separates some pair of vertices. Because every
nontrivial graph has such edge cuts, it follows from Theorem 9.7 that the edge
connectivity κ′(G) of a nontrivial graph G is equal to the least integer k for which

9.3 Edge Connectivity 217

G has a k-edge cut. For any particular pair x, y of vertices of G, the value of
c′(x, y) can be determined by an application of the Max-Flow Min-Cut Algorithm
(7.9). Therefore the parameter κ′ can obviously be determined by

(
n
2

)
applications

of that algorithm. However, the function c′ takes at most n − 1 distinct values
(Exercise 9.3.13b). Moreover, Gomory and Hu (1961) have shown that κ′ can
be computed by just n − 1 applications of the Max-Flow Min-Cut Algorithm. A
description of their approach is given in Section 9.6.

Essential Edge Connectivity

The vertex and edge connectivities of a graph G, and its minimum degree, are
related by the following basic inequalities (Exercise 9.3.2).

κ ≤ κ′ ≤ δ

Thus, for 3-regular graphs, the connectivity and edge connectivity do not exceed
three. They are, moreover, always equal for such graphs (Exercise 9.3.5). These
two measures of connectivity therefore fail to distinguish between the triangular
prism K3 � K2 and the complete bipartite graph K3,3, both of which are 3-regular
graphs with connectivity and edge connectivity equal to three. Nonetheless, one
has the distinct impression that K3,3 is better connected than K3 � K2. Indeed,
K3 � K2 has a 3-edge cut which separates the graph into two nontrivial subgraphs,
whereas K3,3 has no such cut.

Recall that a trivial edge cut is one associated with a single vertex. A k-edge-
connected graph is termed essentially (k+1)-edge-connected if all of its k-edge cuts
are trivial. For example, K3,3 is essentially 4-edge-connected whereas K3 � K2 is
not. If a k-edge-connected graph has a k-edge cut ∂(X), the graphs G/X and
G/X (obtained by shrinking X to a single vertex x and X := V \X to a single
vertex x, respectively) are also k-edge-connected (Exercise 9.3.8). By iterating this
shrinking procedure, any k-edge-connected graph with k ≥ 1, can be ‘decomposed’
into a set of essentially (k + 1)-edge-connected graphs. For many problems, it is
enough to treat each of these ‘components’ separately. (When k = 0 — that is,
when the graph is disconnected — this procedure corresponds to considering each
of its components individually.)

The notion of essential edge connectivity is particularly useful for 3-regular
graphs. For instance, to show that a 3-connected 3-regular graph has a cycle double
cover, it suffices to verify that each of its essentially 4-edge-connected components
has one; the individual cycle double covers can then be spliced together to yield a
cycle double cover of the entire graph (Exercise 9.3.9).

Connectivity in Digraphs

The definitions of connectivity and edge connectivity have straightforward exten-
sions to digraphs. It suffices to replace ‘path’ by ‘directed path’ throughout. We
have already seen three versions of Menger’s Theorem, namely the arc version

218 9 Connectivity

(Theorem 7.16), and the edge and vertex versions for undirected graphs (The-
orems 7.17 and 9.1). Not surprisingly, there is also a vertex version for directed
graphs. It can be deduced easily from the reduction of IDDP to ADDP described in
Section 8.3. An (x, y)-vertex-cut is a subset S of V \{x, y} whose deletion destroys
all directed (x, y)-paths.

Theorem 9.8 Menger’s Theorem (Directed Vertex Version)

In any digraph D(x, y), where (x, y) /∈ A(D), the maximum number of pairwise
internally disjoint directed (x, y)-paths is equal to the minimum number of vertices
in an (x, y)-vertex-cut. �

As already noted, of the four versions of Menger’s Theorem, Theorem 7.16
implies the other three. Also, Theorem 9.8 clearly implies Theorem 9.1. Although
less obvious, the converse implication holds too (see Exercise 9.1.11). By using
a suitable line graph, Theorem 9.7 may be derived from Theorem 9.1 (see Exer-
cise 9.3.11).

Exercises

9.3.1 Determine the connectivity and the edge connectivity of the Kneser graph
KGm,n.

�9.3.2

a) Show that every graph G satisfies the inequalities κ ≤ κ′ ≤ δ.
b) Find a graph G with κ = 3, κ′ = 4, and δ = 5.

9.3.3 Let G be a simple graph of diameter two. Show that κ′ = δ. (J. Plesńık)

9.3.4

a) Show that if G is simple and δ ≥ (n− 1)/2, then κ′ = δ.
b) For each even n ≥ 2, find a simple graph G with δ = (n/2)− 1 and κ′ < δ.

�9.3.5 Show that if G is cubic, then κ = κ′.

9.3.6

a) Show that if G is k-edge-connected, where k > 0, and if S is a set of k edges
of G, then c(G \ S) ≤ 2.

b) For k > 0, find a k-connected graph G and a set S of k vertices of G such that
c(G− S) > 2.

9.3.7 Show that if G is a k-edge-connected graph on at least three vertices, and e
is any edge of G, then G/e is k-edge-connected.

�9.3.8 Show that if ∂(X) is a k-edge cut of a k-edge-connected graph G, the graphs
G/X and G/X are also k-edge-connected, where X := V \X.

9.4 Three-Connected Graphs 219

�9.3.9 Let ∂(X) be a 3-edge cut of a cubic graph G. Show that G has a cycle
double cover if and only if both G/X and G/X have cycle double covers, where
X := V \X.

9.3.10 Show that in a nontrivial connected graph, any minimal edge cut separating
two of its vertices is a bond.

—————

—————

9.3.11 Deduce Theorem 9.7 from Theorem 9.1. (F. Harary)

9.3.12 Let S be a set of three pairwise-nonadjacent edges in a simple 3-connected
graph G. Show that there is a cycle in G containing all three edges of S unless S
is an edge cut of G. (L. Lovász, N. Robertson)

�9.3.13

a) Show that, for any three vertices x, y, and z of a graph G:

c′(x, z) ≥ min{c′(x, y), c′(y, z)}

and that at least two of the values c′(x, y), c′(x, z), and c′(y, z) are equal.
b) Deduce from (a) that:

i) the function c′ takes on at most n− 1 distinct values,
ii) for any sequence (v1, v2, . . . , vk) of vertices of a graph G,

c′(v1, vk) ≥ min{c′(v1, v2), c′(v2, v3), . . . , c′(vk−1, vk)}

9.3.14 A k-edge-connected graph G is minimally k-edge-connected if, for any edge
e of G, the graph G \ e is not k-edge-connected.

a) Let G be a minimally k-edge-connected graph. Prove that:
i) every edge e of G is contained in a k-edge cut of G,
ii) G has a vertex of degree k,
iii) m ≤ k(n− 1).

b) Deduce that every k-edge-connected graph G contains a spanning k-edge-
connected subgraph with at most k(n− 1) edges. (W. Mader)

(Halin (1969) and Mader (1971b) found analogues of the above statements for
vertex connectivity.)

9.4 Three-Connected Graphs

As we observed in Chapter 5, in most instances it is possible to draw conclusions
about a graph by examining each of its blocks individually. For example, a graph
has a cycle double cover if and only if each of its blocks has a cycle double cover.
Because blocks on more than two vertices are 2-connected, the question of the
existence of a cycle double cover can therefore be restricted, or ‘reduced’, to the

220 9 Connectivity

study of 2-connected graphs. A similar reduction applies to the problem of deciding
whether a given graph is planar, as we show in Chapter 10.

In many cases, further reductions can be applied, allowing one to restrict the
analysis to 3-connected graphs, or even to 3-connected essentially 4-edge-connected
graphs. The basic idea is to decompose a 2-connected graph which has a 2-vertex
cut into smaller 2-connected graphs. Loops do not play a significant role in this
context. For clarity, we therefore assume that all graphs considered in this section
are loopless.

Let G be a connected graph which is not complete, let S be a vertex cut of
G, and let X be the vertex set of a component of G − S. The subgraph H of
G induced by S ∪ X is called an S-component of G. In the case where G is 2-
connected and S := {x, y} is a 2-vertex cut of G, we find it convenient to modify
each S-component by adding a new edge between x and y. We refer to this edge as
a marker edge and the modified S-components as marked S-components. The set
of marked S-components constitutes the marked S-decomposition of G. The graph
G can be recovered from its marked S-decomposition by taking the union of its
marked S-components and deleting the marker edge. This procedure is illustrated
in Figure 9.7, the cut S and the marker edge being indicated by solid dots and
lines.

Fig. 9.7. A marked decomposition of a 2-connected graph and its recomposition

9.4 Three-Connected Graphs 221

Theorem 9.9 Let G be a 2-connected graph and let S be a 2-vertex cut of G. Then
the marked S-components of G are also 2-connected.

Proof Let H be a marked S-component of G, with vertex set S ∪ X. Then
|V (H)| = |S| + |X| ≥ 3. Thus if H is complete, it is 2-connected. On the other
hand, if H is not complete, every vertex cut of H is also a vertex cut of G, hence
of cardinality at least two. �

Decomposition Trees

By Theorem 9.9, a 2-connected graph G with a 2-vertex cut S has a marked S-
decomposition into 2-connected graphs. If any one of these marked S-components
itself has a 2-vertex cut, it in turn can be decomposed into still smaller marked
2-connected graphs. This decomposition process may be iterated until G has
been decomposed into 2-connected graphs without 2-vertex cuts. The marked S-
components which arise during the entire procedure form the vertices of a decom-
position tree of G, as illustrated in Figure 9.8.

The root of this decomposition tree is G, and its leaves are either 3-connected
graphs or else 2-connected graphs whose underlying graphs are complete (and
which therefore have at most three vertices). We refer to the 3-connected graphs
in such a decomposition as the 3-connected components of G. The 3-connected
components of the root graph in Figure 9.8 are K3 (both with and without multiple
edges), K4, and K3,3.

At any stage, there may be a choice of cuts along which to decompose a graph.
Consequently, two separate applications of this decomposition procedure may well
result in different sets of graphs (Exercise 9.4.1). However, it was shown by Cun-
ningham and Edmonds (1980) that any two applications of the procedure always
result in the same set of 3-connected components (possibly with different edge
multiplicities).

To observe the relevance of the above decomposition to cycle double covers,
let G be a 2-connected graph with a 2-vertex cut S. If each marked S-component
of G has a cycle double cover, one can show that G also has a cycle double cover
(Exercise 9.4.2). Because 2-connected graphs on at most three vertices clearly have
cycle double covers, we conclude that if the Cycle Double Cover Conjecture is true
for all 3-connected graphs, it is true for all 2-connected graphs. This fact may be
expressed more strikingly in terms of potential counterexamples to the conjecture:
if the Cycle Double Cover Conjecture is false, a smallest counterexample to it (that
is, one with the minimum possible number of vertices) must be 3-connected. Jaeger
(1976) and Kilpatrick (1975) proved that every 4-edge-connected graph has a cycle
double cover (see Theorem 21.24). Thus, if the Cycle Double Cover Conjecture
happens to be false, a minimum counterexample must have connectivity precisely
three.

222 9 Connectivity

Fig. 9.8. A decomposition tree of a 2-connected graph

Contractions of Three-Connected Graphs

The relevance of 3-connectivity to the study of planar graphs is discussed in Sec-
tion 10.5. In this context, the following property of 3-connected graphs, established
by Thomassen (1981), plays an extremely useful role.

Theorem 9.10 Let G be a 3-connected graph on at least five vertices. Then G
contains an edge e such that G/e is 3-connected.

The proof of Theorem 9.10 requires the following lemma.

Lemma 9.11 Let G be a 3-connected graph on at least five vertices, and let e = xy
be an edge of G such that G/e is not 3-connected. Then there exists a vertex z
such that {x, y, z} is a 3-vertex cut of G.

Proof Let {z, w} be a 2-vertex cut of G/e. At least one of these two vertices,
say z, is not the vertex resulting from the contraction of e. Set F := G − z.

9.4 Three-Connected Graphs 223

Because G is 3-connected, F is certainly 2-connected. However F / e = (G−z) / e =
(G/e)− z has a cut vertex, namely w. Hence w must be the vertex resulting from
the contraction of e (Exercise 9.4.3). Therefore G− {x, y, z} = (G/e)− {z, w} is
disconnected, in other words, {x, y, z} is a 3-vertex cut of G. �

Proof of Theorem 9.10. Suppose that the theorem is false. Then, for any edge
e = xy of G, the contraction G/e is not 3-connected. By Lemma 9.11, there exists
a vertex z such that {x, y, z} is a 3-vertex cut of G (see Figure 9.9).

FH

uz

x

y

e

f

Fig. 9.9. Proof of Theorem 9.10

Choose the edge e and the vertex z in such a way that G − {x, y, z} has a
component F with as many vertices as possible. Consider the graph G−z. Because
G is 3-connected, G−z is 2-connected. Moreover G−z has the 2-vertex cut {x, y}.
It follows that the {x, y}-component H := G[V (F) ∪ {x, y}] is 2-connected.

Let u be a neighbour of z in a component of G − {x, y, z} different from F .
Since f := zu is an edge of G, and G is a counterexample to Theorem 9.10, there is
a vertex v such that {z, u, v} is a 3-vertex cut of G, too. (The vertex v is not shown
in Figure 9.9; it might or might not lie in H.) Moreover, because H is 2-connected,
H−v is connected (where, if v /∈ V (H), we set H−v := H), and thus is contained
in a component of G − {z, u, v}. But this component has more vertices than F
(because H has two more vertices than F), contradicting the choice of the edge e
and the vertex v. �

Although the proof of Theorem 9.10 proceeds by way of contradiction, the
underlying idea can be used to devise a polynomial-time algorithm for finding an
edge e in a 3-connected graph G such that G/e is 3-connected (Exercise 9.4.4).

Expansions of Three-Connected Graphs

We now define an operation on 3-connected graphs which may be thought of as
an inverse to contraction. Let G be a 3-connected graph and let v be a vertex of

224 9 Connectivity

G of degree at least four. Split v into two vertices, v1 and v2, add a new edge e
between v1 and v2, and distribute the edges of G incident to v among v1 and v2

in such a way that v1 and v2 each have at least three neighbours in the resulting
graph H. This graph H is called an expansion of G at v (see Figure 9.10).

v v1 v2e

G H

Fig. 9.10. An expansion of a graph at a vertex

Note that there is usually some freedom as to how the edges of G incident with
v are distributed between v1 and v2, so expansions are not in general uniquely
defined. On the other hand, the contraction H /e is clearly isomorphic to G.

The following theorem may be regarded as a kind of converse of Theorem 9.10.

Theorem 9.12 Let G be a 3-connected graph, let v be a vertex of G of degree at
least four, and let H be an expansion of G at v. Then H is 3-connected.

Proof Because G− v is 2-connected and v1 and v2 each have at least two neigh-
bours in G − v, the graph H \ e is 2-connected, by Lemma 9.3. Using the fact
that any two vertices of G are connected by three internally disjoint paths, it is
now easily seen that any two vertices of H are also connected by three internally
disjoint paths. �

In light of Theorems 9.10 and 9.12, every 3-connected graph G can be obtained
from K4 by means of edge additions and vertex expansions. More precisely, given
any 3-connected graph G, there exists a sequence G1, G2, . . . , Gk of graphs such
that (i) G1 = K4, (ii) Gk = G, and (iii) for 1 ≤ i ≤ k − 1, Gi+1 is obtained by
adding an edge to Gi or by expanding Gi at a vertex of degree at least four.

It is not possible to obtain a simple 3-connected graph, different from K4, by
means of the above construction if we wish to stay within the realm of simple
graphs. However, Tutte (1961b) has shown that, by starting with the class of all
wheels, all simple 3-connected graphs may be constructed by means of the two
above-mentioned operations without ever creating parallel edges. This result may
be deduced from Theorem 9.10 (see Exercise 9.4.8).

Recursive constructions of 3-connected graphs have been used to prove many
interesting theorems in graph theory; see, for example, Exercise 9.4.10. For further
examples, see Tutte (1966a).

9.4 Three-Connected Graphs 225

For k ≥ 4, no recursive procedure for generating all k-connected graphs is
known. This is in striking contrast with the situation for k-edge-connected graphs
(see Exercise 9.5.5). We refer the reader to Frank (1995) for a survey of recursive
procedures for generating k-connected and k-edge-connected graphs.

Exercises

9.4.1 Find a 2-connected graph and two decomposition trees of your graph which
result in different collections of leaves.

9.4.2 Let G be a 2-connected graph with a 2-vertex cut S := {u, v}. Prove that if
each marked S-component of G has a cycle double cover then so has G.

�9.4.3 Let G be a 2-connected graph and let e be an edge of G such that G/e is
not 2-connected. Prove that G/e has exactly one cut vertex, namely the vertex
resulting from the contraction of the edge e.

9.4.4 Describe a polynomial-time algorithm to find, in a 3-connected graph G on
five or more vertices, an edge e such that G/e is 3-connected.

9.4.5

a) Let G be a 4-regular 4-connected graph each edge of which lies in a triangle.
Show that no edge-contraction of G is 4-connected.

b) For each integer k ≥ 4, find a k-connected graph G on at least k + 2 vertices,
none of whose edge contractions is k-connected.

9.4.6 Show how the Petersen graph can be obtained from the wheel W6 by means
of vertex expansions.

—————

—————

9.4.7 Let G be a graph and let e = xy and e′ = x′y′ be two distinct (but possibly
adjacent) edges of G. The operation which consists of subdividing e by inserting a
new vertex v between x and y, subdividing e′ by inserting a new vertex v′ between
x′ and y′, and joining v and v′ by a new edge, is referred to as an edge-extension
of G. Show that:

a) any edge-extension of a 3-connected cubic graph is also 3-connected and cubic,
b) every 3-connected cubic graph can be obtained from K4 by means of a sequence

of edge-extensions,
c) an edge-extension of an essentially 4-edge-connected cubic graph G is also

essentially 4-edge-connected provided that the two edges e and e′ of G involved
in the extension are nonadjacent in G.

(Wormald (1979) has shown that all essentially 4-edge-connected cubic graphs
may be obtained from K4 and the cube by means of edge-extensions involving
nonadjacent pairs of edges.)

226 9 Connectivity

9.4.8 Let G be a 3-connected graph with n ≥ 5. Show that, for any edge e,
either G/e is 3-connected or G \ e can be obtained from a 3-connected graph by
subdividing at most two edges. (W.T. Tutte)

9.4.9 Let G be a simple 3-connected graph different from a wheel. Show that, for
any edge e, either G/e or G \ e is also a 3-connected simple graph.

(W.T. Tutte)

�9.4.10

a) Let G be the family of graphs consisting of K5, the wheels Wn, n ≥ 3, and all
graphs of the form H ∨Kn, where H is a spanning subgraph of K3 and Kn is
the complement of Kn, n ≥ 3. Show that a 3-connected simple graph G does
not contain two disjoint cycles if and only if G ∈ G.

(W.G. Brown; L. Lovász)

b) Deduce from (a) that any simple graph not containing two disjoint cycles has
three vertices whose deletion results in an acyclic graph.
(The same result holds for directed cycles in digraphs, although the proof, due
to McCuaig (1993), is very much harder. For undirected graphs, Erdős and
Pósa (1965) showed that there exists a constant c such that any graph either
contains k disjoint cycles or has ck log k vertices whose deletion results in an
acyclic graph. This is discussed in Section 19.1.)

9.5 Submodularity

A real-valued function f defined on the set of subsets of a set S is submodular if,
for any two subsets X and Y of S,

f(X ∪ Y) + f(X ∩ Y) ≤ f(X) + f(Y)

The degree function d defined on the set of subsets of the vertex set of a graph G
by d(X) := |∂(X)| for all X ⊆ V is a typical example of a submodular function
associated with a graph (see Exercise 2.5.4). Another example is described in
Exercise 9.5.7.

Submodular functions play an important role in combinatorial optimization
(see Fujishige (2005)). Here, we describe three interesting consequences of the
submodularity of the degree function. One of these is Theorem 9.16, which has
many applications, including a theorem on orientations of graphs due to Nash-
Williams (1960). A second use of submodularity is described below, and a third is
given in Section 9.6.

It is convenient both here and in the next section to denote the complement
V \X of a set X by X.

9.5 Submodularity 227

X

Y

X

Y

X ∩ Y X ∩ Y

X ∩ Y X ∩ Y

Fig. 9.11. Crossing sets X and Y

Edge Connectivity of Vertex-Transitive Graphs

Two subsets X and Y of a set V are said to cross if the subsets X∩Y , X∩Y , X∩Y ,
and X ∩ Y (shown in the Venn diagram of Figure 9.11) are all nonempty. When
V is the vertex set of a graph G, we say that the edge cuts ∂(X) and ∂(Y) cross if
the sets X and Y cross. In such cases, it is often fruitful to consider the edge cuts
∂(X∪Y) and ∂(X∩Y) and invoke the submodularity of the degree function. Here,
we apply this idea to show that the edge connectivity of a nontrivial connected
vertex-transitive graph is always equal to its degree, a result due independently to
Mader (1971a) and Watkins (1970). Its proof relies on the concept of an atom.

An atom of a graph G is a minimal subset X of V such that d(X) = κ′ and
|X| ≤ n/2. Thus if κ′ = δ, then any vertex of minimum degree is a singleton atom.
On the other hand, if κ′ < δ, then G has no singleton atoms.

Proposition 9.13 The atoms of a graph are pairwise disjoint.

Proof Let X and Y be two distinct atoms of a graph G. Suppose that X∩Y �= ∅.
Because X and Y are atoms, neither is properly contained in the other, so X ∩ Y
and X ∩ Y are both nonempty. We show that X ∩ Y is nonempty, too, and thus
that X and Y cross.

Noting that X ∪ Y and X ∩ Y are complementary sets, and that X ∩ Y is a
nonempty proper subset of the atom X, we have

d(X ∪ Y) = d(X ∩ Y) > d(X) = d(Y)

It follows that X ∪ Y �= Y or, equivalently, X ∩ Y �= ∅. So X and Y do indeed
cross.

Because ∂(X) and ∂(Y) are minimum edge cuts,

d(X ∪ Y) ≥ d(X) and d(X ∩ Y) ≥ d(Y)

Therefore
d(X ∪ Y) + d(X ∩ Y) ≥ d(X) + d(Y)

228 9 Connectivity

On the other hand, because d is a submodular function,

d(X ∪ Y) + d(X ∩ Y) ≤ d(X) + d(Y)

These inequalities thus all hold with equality. In particular, d(X ∩Y) = d(Y). But
this contradicts the minimality of the atom Y . We conclude that X and Y are
disjoint. �

Theorem 9.14 Let G be a simple connected vertex-transitive graph of positive
degree d. Then κ′ = d.

Proof Let X be an atom of G, and let u and v be two vertices in X. Because G is
vertex-transitive, it has an automorphism θ such that θ(u) = v. Being the image of
an atom under an automorphism, the set θ(X) is also an atom of G. As v belongs to
both X and θ(X), it follows from Proposition 9.13 that θ(X) = X, which implies
that θ|X is an automorphism of the graph G[X], with θ|X(u) = v. This being so
for any two vertices u, v in X, we deduce that G[X] is vertex-transitive.

Suppose that G[X] is k-regular. Because G is simple, |X| ≥ k +1, and because
G is connected, ∂(X) �= ∅. Therefore d ≥ k + 1, and we have:

κ′ = d(X) = |X|(d− k) ≥ (k + 1)(d− k) = d + k(d− k − 1) ≥ d

Since κ′ cannot exceed d, we conclude that κ′ = d. �

Nash-Williams’ Orientation Theorem

By Theorem 5.10 every 2-edge-connected graph admits a strongly connected ori-
entation. Nash-Williams (1960) established the following beautiful generalization
of this result. (In the remainder of this section, k denotes a positive integer.)

Theorem 9.15 Every 2k-edge-connected graph has a k-arc-connected orientation.

Mader (1978) proved an elegant theorem concerning the splitting off of edges
(an operation introduced in Chapter 5) and deduced Theorem 9.15 from it. We
present here a special case of Mader’s result which is adequate for proving Theo-
rem 9.15. The proof is due to Frank (1992).

Let v be a vertex of a graph G. We say that G is locally 2k-edge-connected
modulo v if the local edge connectivity between any two vertices different from v
is at least 2k. Using Menger’s theorem and the fact that d(X) = d(X), it can be
seen that a graph G on at least three vertices is locally 2k-edge-connected modulo
v if and only if:

d(X) ≥ 2k, for all X, ∅ ⊂ X ⊂ V \ {v}
Theorem 9.16 Let G be a graph which is locally 2k-edge-connected modulo v,
where v is a vertex of even degree in G. Given any link uv incident with v, there
exists a second link vw incident with v such that the graph G′ obtained by splitting
off uv and vw at v is also locally 2k-edge-connected modulo v.

9.5 Submodularity 229

Proof We may assume that n ≥ 3 as the statement holds trivially when n = 2.
We may also assume that G is loopless. Consider all nonempty proper subsets X of
V \ {v}. Splitting off uv and another link vw incident with v preserves the degree
of X if at most one of u and w belongs to X, and reduces it by two if both u
and w belong to X. Thus if all such sets either do not contain u or have degree
at least 2k + 2, any link vw may be chosen as the companion of uv. Suppose that
this is not the case and that there is a proper subset X of V \ {v} with u ∈ X and
d(X) ≤ 2k + 1. Call such a set tight. We show that the union of two tight sets X
and Y is also tight. We may assume that X and Y cross; otherwise, X ∪Y is equal
either to X or to Y . Therefore X ∩Y and X ∩Y are nonempty subsets of V \ {v}.
Note, also, that uv ∈ E[X ∩ Y,X ∩ Y]. We thus have (using Exercise 2.5.4):

(2k + 1) + (2k + 1) ≥ d(X) + d(Y)
= d(X ∩ Y) + d(X ∩ Y) + 2e(X ∩ Y,X ∩ Y) ≥ 2k + 2k + 2

so

d(X) = d(Y) = 2k + 1, d(X ∩ Y) = d(X ∩ Y) = 2k, and e(X ∩ Y,X ∩ Y) = 1

One may now deduce that e(X∩Y ,X∩Y) = e(X∩Y,X∩Y) (Exercise 9.5.4). Thus
d(X ∩Y) is odd. Because the degree of v is even, by hypothesis, X ∪Y �= V \ {v}.
Therefore ∅ ⊂ X ∪ Y ⊂ V \ {v}. Moreover, by submodularity,

d(X ∪ Y) ≤ d(X) + d(Y)− d(X ∩ Y) ≤ (2k + 1) + (2k + 1)− 2k = 2k + 2

Since d(X ∪Y) = d(X ∩Y) is odd, we may conclude that d(X ∪Y) ≤ 2k+1. Thus
the union of any two tight sets is tight, as claimed. Now let S denote the union of
all tight sets and let w be an element of V \ S distinct from v. Because w belongs
to no tight set in G, the graph G′ obtained from G by splitting off uv and vw is
locally 2k-edge-connected modulo v. �

Proof of Theorem 9.15. By induction on the number of edges. Let G be a
2k-edge-connected graph. Suppose first that G has an edge e such that G \ e is
also 2k-edge-connected. Then, by induction, G\e has an orientation such that the
resulting digraph is k-arc-connected. That orientation of G\e may be extended to
a k-arc-connected orientation of G itself by orienting e arbitrarily. Thus, we may
assume that G is minimally 2k-edge-connected and so has a vertex of degree 2k
(Exercise 9.3.14). Let v be such a vertex.

By Theorem 9.16, the 2k edges incident with v may be divided into k pairs and
each of these pairs may be split off, one by one, to obtain k new edges e1, e2, . . . , ek

and a 2k-edge-connected graph H. By the induction hypothesis, there is an ori-
entation −→H of H which is k-arc-connected. Let a1, a2, . . . , ak, respectively, be the
k arcs of −→H corresponding to the edges e1, e2, . . . , ek of H. By subdividing, for
1 ≤ i ≤ k, the arc ai by a vertex vi, and then identifying the k vertices v1, v2, . . . , vk

to form vertex v, we obtain an orientation −→G of G. Using the fact that −→H is k-
arc-connected, one may easily verify that −→G is also k-arc-connected. We leave the
details to the reader as Exercise 9.5.5. �

230 9 Connectivity

Nash-Williams (1960) in fact proved a far stronger result than Theorem 9.15.
He showed that any graph G admits an orientation −→G such that, for any two
vertices u and v, the size of a minimum outcut in −→G separating v from u is at least
�12c′(u, v)�. We refer the reader to Schrijver (2003) for further details.

Exercises

9.5.1 Let X be an atom of a graph G. Show that the induced subgraph G[X] is
connected.

9.5.2 Give an example of a connected cubic vertex-transitive graph that is not
3-edge-connected.
(This shows that Theorem 9.14 is not valid for graphs with multiple edges.)

9.5.3 Give an example of a simple connected vertex-transitive k-regular graph
whose connectivity is strictly less than k.
(Watkins (1970) showed that the connectivity of any such graph exceeds 2k/3.)

�9.5.4 In the proof of Theorem 9.16, show that e(X∩Y ,X∩Y) = e(X∩Y,X∩Y).

�9.5.5 Let −→G and −→H be the digraphs described in the proof of Theorem 9.15.
Deduce that −→G is k-arc-connected from the fact that −→H is k-arc-connected.

—————

—————

9.5.6 Let G be a 2k-edge-connected graph with an Euler trail. Show that G has
an orientation in which any two vertices u and v are connected by at least k
arc-disjoint directed (u, v)-paths.

9.5.7 Let G be a graph. For a subset S of E, denote by c(S) the number of
components of the spanning subgraph of G with edge set S.

a) Show that the function c : 2E → N is supermodular: for any two subsets X
and Y of E,

c(X ∪ Y) + c(X ∩ Y) ≥ c(X) + c(Y)

b) Deduce that the function r : 2E → N defined by r(S) := n − c(S) for all
S ⊆ E is submodular. (This function r is the rank function of a certain matroid
associated with G.)

9.5.8 Given any graph G and k distinct edges e1, e2, . . . , ek (loops or links) of G,
the operation of pinching together those k edges consists of subdividing, for 1 ≤
i ≤ k, the edge ei by a vertex vi, and then identifying the k vertices v1, v2, . . . , vk

to form a new vertex of degree 2k.

a) Show that if G is 2k-edge-connected, then the graph G′ obtained from G by
pinching together any k edges of G is also 2k-edge-connected.

9.6 Gomory–Hu Trees 231

b) Using Theorem 9.16, show that, given any 2k-edge-connected graph G, there
exists a sequence (G1, G2, . . . , Gr) of graphs such that (i) G1 = K1, (ii) Gr =
G, and (iii) for 1 ≤ i ≤ r − 1, Gi+1 is obtained from Gi either by adding an
edge (a loop or a link) or by pinching together k of its edges.
(Mader (1978) found an analogous construction for (2k + 1)-edge-connected
graphs.)

9.6 Gomory–Hu Trees

As mentioned earlier, Gomory and Hu (1961) showed that only n− 1 applications
of the Max-Flow Min-Cut Algorithm (7.9) are needed in order to determine the
edge connectivity of a graph G. The following theorem, in which two edge cuts
∂(X) and ∂(Y) that cross are replaced by two, ∂(X) and ∂(X ∩ Y), that do not
cross, is the basis of their approach. This procedure is referred to as uncrossing. We
leave the proof of the theorem, which makes use of submodularity, as an exercise
(9.6.1).

Theorem 9.17 Let ∂(X) be a minimum edge cut in a graph G separating two
vertices x and y, where x ∈ X, and let ∂(Y) be a minimum edge cut in G separating
two vertices u and v of X, where y /∈ Y . Then ∂(X ∩ Y) is a minimum edge cut
in G separating u and v. �

A consequence of Theorem 9.17 is that, given a minimum edge cut ∂(X) in G
separating vertices x and y, in order to find a minimum edge cut in G separating
u and v, where {u, v} ⊂ X, it suffices to consider the graph G/X obtained from
G by shrinking X := V \ X to a single vertex. Using this idea, Gomory and Hu
showed how to find all the

(
n
2

)
values of the function c′ by just n− 1 applications

of the Max-Flow Min-Cut Algorithm (7.9). They also showed that the n− 1 cuts
found by their procedure have certain special properties which may be conveniently
visualized in terms of an appropriately weighted tree associated with G. We first
describe the characteristics of this weighted tree and then explain how to construct
it.

Given any tree T with vertex set V , and an edge e of T , there is a unique
edge cut Be := ∂(X) of G associated with e, where X is the vertex set of one
component of T \ e. (This is akin to the notion of a fundamental bond, introduced
in Chapter 4, except that here we do not insist on T being a spanning tree of G.)
A weighted tree (T,w) on V is a Gomory–Hu tree of G if, for each edge e = xy of
T ,

i) w(e) = c′(x, y),
ii) the cut Be associated with e is a minimum edge cut in G separating x and y.

As an example, consider the graph G on five vertices shown in Figure 9.12a,
where the weights indicate edge multiplicities. Figure 9.12b is a Gomory–Hu tree
T of G. The four edge cuts of G corresponding to the four edges of T are indicated

232 9 Connectivity

1

1

11

1

2

3

4

45

6

u u

v
v

w w

x xy y

(a) (b)

Fig. 9.12. (a) A graph G, and (b) a Gomory–Hu tree T of G

by dashed lines in Figure 9.12a. Note that this particular tree T is not a spanning
tree of G.

The n−1 edge cuts associated with a Gomory–Hu tree are pairwise noncrossing.
As a consequence of the following proposition, these n − 1 cuts are sufficient for
determining κ′(G).

Proposition 9.18 Let (T,w) be a Gomory–Hu tree of a graph G. For any two
vertices x and y of G, c′(x, y) is the minimum of the weights of the edges on the
unique xy-path in T .

Proof Clearly, for every edge e on the xy-path in T , the edge cut Be associated
with e separates x and y. If v1, v2, . . . , vk is the xy-path in T , where x = v1 and
y = vk, it follows that

c′(x, y) ≤ min{c′(v1, v2), c′(v2, v3), . . . , c′(vk−1vk)}

On the other hand, by Exercise 9.3.13b,

c′(x, y) ≥ min{c′(v1, v2), c′(v2, v3), . . . , c′(vk−1vk)}

The required equality now follows. �

Determining Edge Connectivity

We conclude this section with a brief description of the Gomory–Hu Algorithm.
For this purpose, we consider trees whose vertices are the parts in a partition of
V ; every edge of such a tree determines a unique edge cut of G. A weighted tree
(T,w) whose vertex set is a partition P of V is a Gomory–Hu tree of G relative
to P if, for any edge e := XY of T (where X,Y ∈ P), there is an element x of X
and an element y of Y such that c′(x, y) = w(e) and the edge cut Be associated
with e is a minimum edge cut in G separating x and y. For example, if ∂(X) is a
minimum edge cut in G separating x and y, the tree consisting of two vertices X

9.6 Gomory–Hu Trees 233

1

1

11

1

1

1

11

1

1

1

11

1

1

1

11

1

2 2 2

3333

4 4 4 4

4444

5 5

6

u uu

uuuu

v v

vvvv

w

wwww

x x

xxxx

y

yyyy

{u, v, x} {w, y}{w, y} {w, y}{v, x}

(a) (b) (c) (d)

Fig. 9.13. Growing a Gomory–Hu tree

and X := V \X joined by an edge with weight c′(x, y) = d(X) is the Gomory–Hu
tree relative to the partition {X,X} (see Figure 9.13a).

Suppose that we are given a Gomory–Hu tree (T,w) relative to a certain par-
tition P. If each part is a singleton, then (T,w) is already a Gomory–Hu tree of
G. Thus, suppose that there is a vertex X of T (that is, a part X in P) which
contains two distinct elements u and v. It may be deduced from Theorem 9.17
that, in order to find a minimum edge cut in G separating u and v, it suffices to
consider the graph G′ obtained from G by shrinking, for each component of T −X,
the union of the vertices (parts) in that component to a single vertex. Let ∂(S)
be a minimum edge cut separating u and v in G′, and suppose that u ∈ S and
v ∈ S, where S := V (G′) \S. Now let X1 := X ∩S and X2 := X ∩S and let P ′ be
the partition obtained from P by replacing X by X1 and X2 and leaving all other
parts as they are. A weighted tree T ′ with vertex set P ′ may now be obtained
from T by:

i) splitting the vertex X into X1 and X2, and joining them by an edge of weight
c′(u, v) = d(S),

ii) joining a neighbour Y of X in T either to X1 or to X2 in T ′ (depending on
whether the vertex of G′ corresponding to the component of T −X containing
Y is in S or in S).

It may be shown that T ′ is a Gomory–Hu tree relative to P ′ (Exercise 9.6.2).
Proceeding in this manner, one may refine P into a partition in which each part
is a singleton and thereby find a Gomory–Hu tree of G. This process is illustrated
in Figure 9.13.

234 9 Connectivity

For a detailed description of the Gomory–Hu Algorithm, see Ford and Fulkerson
(1962). Padberg and Rao (1982) showed how this algorithm may be adapted to
find minimum odd cuts in graphs (see Exercise 9.6.3). Nagamochi and Ibaraki
(1992) discovered a simple procedure for determining κ′(G) that does not rely on
the Max-Flow Min-Cut Algorithm (7.9) (see Exercise 9.6.4).

Exercises

�9.6.1 Prove Theorem 9.17 by proceeding as follows.

a) Show that ∂(X ∪ Y) is an edge cut separating x and y, and that ∂(X ∩ Y) is
an edge cut separating u and v.

b) Deduce that d(X ∪ Y) ≥ d(X) and d(X ∩ Y) ≥ d(Y).
c) Apply the submodularity inequality.

—————��—————

9.6.2 Show that the weighted tree T ′ obtained from T in the Gomory–Hu Algo-
rithm is a Gomory–Hu tree of G relative to P ′.

9.6.3 Let G be a graph with at least two vertices of odd degree.

a) Suppose that ∂(X) is an edge cut of smallest size among those separating pairs
of vertices of odd degree in G. Show that:

i) if d(X) is odd, it is a smallest odd edge cut of G,
ii) if d(X) is even, a smallest odd edge cut of G is an edge cut of either G/X

or G/X, where X := V \ X.
b) Using (a), show how to find a smallest odd edge cut of a graph by applying

the Gomory–Hu Algorithm. (M.W. Padberg and M.R. Rao)

9.6.4 Call an ordering (v1, v2, . . . , vn) of the vertices of a connected graph G a
cut-greedy order if, for 2 ≤ i ≤ n,

d(vi, {v1, v2, . . . , vi−1}) ≥ d(vj , {v1, v2, . . . , vi−1}), for all j ≥ i

a) Show that one can find, starting with any vertex of G, a cut-greedy order of
the vertices of G in time O(m).

b) If (v1, v2, . . . , vn) is a cut-greedy order of the vertices of G, show that

c′(vn−1, vn) = d(vn)

c) Describe a polynomial-time algorithm for finding κ′(G) based on part (b).
(H. Nagamochi and T. Ibaraki)

d) Find the edge connectivity of the graph in Figure 9.12 by applying the above
algorithm.

9.6.5 Well-balanced Orientation

An orientation D of a graph G is well-balanced if its local arc connectivities p′D(u, v)
satisfy p′D(u, v) ≥ �p′G(u, v)/2� for all ordered pairs (u, v) of vertices. Show that
every well-balanced orientation of an eulerian graph is eulerian. (Z. Szigeti)

9.7 Chordal Graphs 235

9.7 Chordal Graphs

A chordal graph is a simple graph in which every cycle of length greater than three
has a chord. Equivalently, the graph contains no induced cycle of length four or
more. Thus every induced subgraph of a chordal graph is chordal. An example of
a chordal graph is shown in Figure 9.14.

r s

t

u

vw

x

y

Fig. 9.14. A chordal graph

Complete graphs and trees are simple instances of chordal graphs. Moreover,
as we now show, all chordal graphs have a treelike structure composed of complete
graphs (just as trees are composed of copies of K2). In consequence, many NP-
hard problems become polynomial when restricted to chordal graphs.

Clique Cuts

A clique cut is a vertex cut which is also a clique. In a chordal graph, every minimal
vertex cut is a clique cut.

Theorem 9.19 Let G be a connected chordal graph which is not complete, and let
S be a minimal vertex cut of G. Then S is a clique cut of G.

Proof Suppose that S contains two nonadjacent vertices x and y. Let G1 and
G2 be two components of G − S. Because S is a minimal cut, both x and y are
joined to vertices in both G1 and G2. Let Pi be a shortest xy-path all of whose
internal vertices lie in Gi, i = 1, 2. Then P1 ∪ P2 is an induced cycle of length at
least four, a contradiction. �

From Theorem 9.19, one may deduce that every connected chordal graph can
be built by pasting together complete graphs in a treelike fashion.

Theorem 9.20 Let G be a connected chordal graph, and let V1 be a maximal clique
of G. Then the maximal cliques of G can be arranged in a sequence (V1, V2, . . . , Vk)
such that Vj ∩ (∪j−1

i=1Vi) is a clique of G, 2 ≤ j ≤ k.

236 9 Connectivity

Proof There is nothing to prove if G is complete, so we may assume that G has
a minimal vertex cut S. By Theorem 9.19, S is a clique of G. Let Hi, 1 ≤ i ≤ p,
be the S-components of G, and let Yi be a maximal clique of Hi containing S,
1 ≤ i ≤ p. Observe that the maximal cliques of H1,H2 . . . ,Hp are also maximal
cliques of G, and that every maximal clique of G is a maximal clique of some Hi

(Exercise 9.7.1). Without loss of generality, suppose that V1 is a maximal clique
of H1. By induction, the maximal cliques of H1 can be arranged in a sequence
starting with V1 and having the stated property. Likewise, for 2 ≤ i ≤ p, the
maximal cliques of Hi can be arranged in a suitable sequence starting with Yi.
The concatenation of these sequences is a sequence of the maximal cliques of G
satisfying the stated property. �

A sequence (V1, V2, . . . , Vk) of maximal cliques as described in Theorem 9.20 is
called a simplicial decomposition of the chordal graph G. The graph in Figure 9.14
has the simplicial decomposition shown in Figure 9.15. Dirac (1961) proved that
a graph is chordal if and only if it has such a decomposition (see Exercise 9.7.2).

r rrrr sss

tttt

uuuu

vww

x xxxx

y yyyy

Fig. 9.15. A simplicial decomposition of the chordal graph of Figure 9.14

Simplicial Vertices

A simplicial vertex of a graph is a vertex whose neighbours induce a clique. Dirac
(1961) showed that every noncomplete chordal graph has at least two such vertices
(just as every nontrivial tree has at least two vertices of degree one). The graph
in Figure 9.14, for example, has three simplicial vertices, namely s, v, and y.

Theorem 9.21 Every chordal graph which is not complete has two nonadjacent
simplicial vertices.

Proof Let (V1, V2, . . . , Vk) be a simplicial decomposition of a chordal graph, and
let x ∈ Vk \ (∪k−1

i=1 Vi). Then x is a simplicial vertex. Now consider a simplicial
decomposition (Vπ(1), Vπ(2), . . . , Vπ(k)), where π is a permutation of {1, 2, . . . , k}
such that π(1) = k. Let y ∈ Vπ(k) \ (∪k−1

i=1 Vπ(i)). Then y is a simplicial vertex
nonadjacent to x. �

A simplicial order of a graph G is an enumeration v1, v2, . . . , vn of its vertices
such that vi is a simplicial vertex of G[{vi, vi+1, . . . , vn}], 1 ≤ i ≤ n. Because

9.7 Chordal Graphs 237

induced subgraphs of chordal graphs are chordal, it follows directly from Theo-
rem 9.21 that every chordal graph has a simplicial order. Conversely, if a graph
has a simplicial order, it is necessarily chordal (Exercise 9.7.3).

Corollary 9.22 A graph is chordal if and only if it has a simplicial order. �

There is a linear-time algorithm due to Rose et al. (1976), and known as lexi-
cographic breadth-first search, for finding a simplicial order of a graph if one exists.
A brief description is given in Section 9.8.

Tree Representations

Besides the characterizations of chordal graphs given above in terms of simpli-
cial decompositions and simplicial orders, chordal graphs may also be viewed as
intersection graphs of subtrees of a tree.

Theorem 9.23 A graph is chordal if and only if it is the intersection graph of a
family of subtrees of a tree.

Proof Let G be a chordal graph. By Theorem 9.20, G has a simplicial decompo-
sition (V1, V2, . . . , Vk). We prove by induction on k that G is the intersection graph
of a family of subtrees T = {Tv : v ∈ V } of a tree T with vertex set {x1, x2, . . . , xk}
such that xi ∈ Tv for all v ∈ Vi. If k = 1, then G is complete and we set Tv := T for
all v ∈ V . If k ≥ 2, let G′ = (V ′, E′) be the chordal graph with simplicial decom-
position (V1, V2, . . . , Vk−1). By induction, G′ is the intersection graph of a family
of subtrees T ′ = {T ′

v : v ∈ V ′} of a tree T ′ with vertex set {x1, x2, . . . , xk−1}. Let
Vj be a maximal clique of G′ such that Vj ∩Vk �= ∅. We form the tree T by adding
a new vertex xk adjacent to xj . For v ∈ Vj , we form the tree Tv by adding xk to
T ′

v and joining it to xj . For v ∈ V ′ \Vj , we set Tv := T ′
v. Finally, for v ∈ Vk \V ′, we

set Tv := xk. It can be checked that G is the intersection graph of {Tv : v ∈ V }.
We leave the proof of the converse statement as an exercise (9.7.4). �
We refer to the pair (T, T) described in the proof of Theorem 9.23 as a tree

representation of the chordal graph G.

Exercises

�9.7.1 Let G be a connected chordal graph which is not complete, and let S be a
clique cut of G. Show that the maximal cliques of the S-components of G are also
maximal cliques of G, and that every maximal clique of G is a maximal clique of
some S-component of G.

�9.7.2 Show that a graph is chordal if it has a simplicial decomposition.

�9.7.3 Show that a graph is chordal if it has a simplicial order.

238 9 Connectivity

�9.7.4

a) Show that the intersection graph of a family of subtrees of a tree is a chordal
graph.

b) Represent the chordal graph of Figure 9.14 as the intersection graph of a family
of subtrees of a tree.

9.7.5

a) Let G be a chordal graph and v a simplicial vertex of G. Set X := N(v)∪ {v}
and G′ := G − X, and let S′ be a maximum stable set and K′ a minimum
clique covering of G′. Show that:

i) S := S′ ∪ {v} is a maximum stable set of G,
ii) K := K′ ∪ {X} is a minimum clique covering of G,
iii) |S| = |K|.

b) Describe a linear-time algorithm which accepts as input a simplicial order of
a chordal graph G and returns a maximum stable set and a minimum clique
covering of G.

—————��—————

9.8 Related Reading

Lexicographic Breadth-First Search

By Exercise 9.7.3b, a graph is chordal if and only if it has a simplicial order.
Breadth-first search, with a special rule for determining the head of the queue, may
be used to find a simplicial order of an input graph, if one exists. The rule, which
gives the procedure its name, involves assigning sequences of integers to vertices
and comparing them lexicographically to break ties. (Sequences of integers from
the set {1.2, . . . , n} may be thought of as words of a language whose alphabet
consists of n letters 1, 2, . . . , n, the first letter being 1, the second letter 2, and
so on. A sequence S is lexicographically smaller than another sequence S′ if S
appears before S′ in a dictionary of that language.) If G happens to be chordal,
the sequence of vertices generated by this tree-search will be the converse of a
simplicial order.

We choose an arbitrary vertex of the input graph G as root, and denote the
vertex incorporated into the tree at time t by vt, the root being v1. Each vertex v
of the graph is assigned a sequence S(v) of integers, initially the empty sequence.
When vertex vt enters the tree, for each v ∈ N(vt) \ {v1, v2, . . . , vt−1}, we modify
S(v) by appending to it the integer n − t + 1. The next vertex selected to enter
the tree is any vertex in the queue whose label is lexicographically largest.

Rose et al. (1976), who introduced lexicographic breadth-first search (Lex
BFS), showed that it will find a simplicial order of the input graph if there is
one. A very readable account of chordal graphs, including a proof of the validity
of Lex BFS, can be found in Golumbic (2004). In recent years, Lex BFS has been

9.8 Related Reading 239

used extensively in algorithms for recognizing various other classes of graphs (see,
for example, Corneil (2004)).

Tree-Decompositions

Due to their rather simple structure, chordal graphs can be recognized in polyno-
mial time, as outlined above. Moreover, many NP-hard problems, such as Max

Stable Set, can be solved in polynomial time when restricted to chordal graphs
(see Exercise 9.7.5). A more general class of graphs for which polynomial-time
algorithms exist for such NP-hard problems was introduced by Robertson and
Seymour (1986).

Recall that by Theorem 9.23 every chordal graph G has a tree representation,
that is, an ordered pair (T, T), where T is a tree and T := {Tv : v ∈ V } is a family
of subtrees of T such that Tu ∩ Tv �= ∅ if and only if uv ∈ E. For an arbitrary
simple graph G, a tree-decomposition of G is an ordered pair (T, T), where T is a
tree and T := {Tv : v ∈ V } is a family of subtrees of T such that Tu ∩ Tv �= ∅ if
(but not necessarily only if) uv ∈ E. Equivalently, (T, T) is a tree-decomposition
of a simple graph G if and only if G is a spanning subgraph of the chordal graph
with tree representation (T, T).

Every simple graph G has the trivial tree-decomposition (T, T), where T is an
arbitrary tree and Tv = T for all v ∈ V (the corresponding chordal graph being
Kn). For algorithmic purposes, one is interested in finer tree-decompositions, as
measured by a parameter called the width of the decomposition. A nontrivial tree-
decomposition of K2,3 is shown in Figure 9.16.

u v w

x

y

Tu

Tv Tw

Tx Ty

Fig. 9.16. A tree-decomposition of K2,3, of width three

Let (T, {Tv : v ∈ V }) be a tree-decomposition of a graph G, where V (T) = X
and V (Tv) = Xv, v ∈ V . The dual of the hypergraph (X, {Xv : v ∈ V }) is the
hypergraph (V, {Vx : x ∈ X}), where Vx := {v ∈ V : x ∈ Xv}. For instance, if G is
a chordal graph, the sets Vx, x ∈ X, are the cliques in its simplicial decomposition.
The greatest cardinality of an edge of this dual hypergraph, max {|Vx| : x ∈ X}, is

240 9 Connectivity

called the width of the decomposition.1 The tree-decomposition of K2,3 shown in
Figure 9.16 has width three, the sets Vx, x ∈ X, being {u, x, y}, {v, x, y}, {w, x, y},
and {x, y}.

As another example, consider the tree-decomposition of the (3×3)-grid P3 � P3

with vertex set {(i, j) : 1 ≤ i, j ≤ 3} shown in Figure 9.17. This tree-decomposition
has width four, all six sets Vx (the horizontal sets) being of cardinality four.

1
1

2

2

3

3

T11T21T31T12

T22

T32

T13

T23

T33

T

Fig. 9.17. A tree-decomposition of the (3 × 3)-grid, of width four

In general, a graph may have many different tree-decompositions. The tree-
width of the graph is the minimum width among all tree-decompositions. Thus the
tree-width of a chordal graph is its clique number; in particular, every nontrivial
tree has tree-width two. Cycles also have tree-width two. More generally, one
can show that every series-parallel graph (defined in Exercise 10.5.11) has tree-
width at most three. The (n × n)-grid has tree-width n + 1; that this is an upper
bound follows from a generalization of the tree-decomposition given in Figure 9.17,
but establishing the lower bound is more difficult (see Section 10.7). For graphs
in general, Arnborg et al. (1987) showed that computing the tree-width is an
NP-hard problem. On the other hand, there exists polynomial-time algorithm for
deciding whether a graph has tree-width at most k, where k is a fixed integer
(Robertson and Seymour (1986)).

If a graph has a small tree-width, then it has a treelike structure, resembling
a ‘thickened’ tree, and this structure has enabled the development of polynomial-
time algorithms for many NP-hard problems (see, for example, Arnborg and
Proskurowski (1989)). More significantly, tree-decompositions have proved to be
a fundamental tool in the work of Robertson and Seymour on linkages and graph
minors (see Section 10.7).

1
Warning: the value of the width as defined here is one greater than the standard
definition. This difference has no bearing on qualitative statements about tree-width,
many of which are of great significance. On the other hand, as regards quantitative
statements, this is certainly the right definition from an aesthetic viewpoint.

9.8 Related Reading 241

A number of other width parameters have been studied, including the path-
width (where the tree T is constrained to be a path), the branch-width, and the cut-
width. We refer the reader to one of the many surveys on this topic; for example,
Bienstock and Langston (1995), Reed (2003), or Bodlaender (2006).

