
8

Complexity of Algorithms

Contents
8.1 Computational Complexity . 173

The Class P . 174
The Classes NP and co-NP . 175
The Cook–Edmonds–Levin Conjecture 176
Edmonds’ Conjecture . 177

8.2 Polynomial Reductions . 178
8.3 NP-Complete Problems . 180

The Class NPC . 180
Boolean Formulae . 181
Satisfiability of Boolean Formulae 182
Proof Technique: Polynomial Reduction 185
NP-Hard Problems . 188

8.4 Approximation Algorithms . 191
8.5 Greedy Heuristics . 193

The Bor̊uvka–Kruskal Algorithm 193
Independence Systems . 195

8.6 Linear and Integer Programming 197
Proof Technique: Total Unimodularity 199
Matchings and Coverings in Bipartite Graphs 200

8.7 Related Reading. 204
Isomorphism-Completeness . 204

8.1 Computational Complexity

In this chapter, we see how problems may be classified according to their level of
difficulty.

Most problems that we consider in this book are of a general character, applying
to all members of some family of graphs or digraphs. By an instance of a problem,
we mean the problem as applied to one specific member of the family. For example,

174 8 Complexity of Algorithms

an instance of the Minimum-Weight Spanning Tree Problem is the problem of
finding an optimal tree in a particular weighted connected graph.

An algorithm for solving a problem is a well-defined computational procedure
which accepts any instance of the problem as input and returns a solution to the
problem as output. For example, the Jarńık–Prim Algorithm (6.9) accepts as input
a weighted connected graph G and returns as output an optimal tree.

As we have seen, many problems of practical importance can be formulated in
terms of graphs. Designing computationally efficient algorithms for solving these
problems is one of the main concerns of graph theorists and computer scientists.
The two aspects of theoretical interest in this regard are, firstly, to verify that a
proposed algorithm does indeed perform correctly and, secondly, to analyse how
efficient a procedure it is. We have already encountered algorithms for solving a
number of basic problems. In each case, we have established their validity. Here,
we discuss the efficiency of these and other algorithms.

By the computational complexity (or, for short, complexity) of an algorithm, we
mean the number of basic computational steps (such as arithmetical operations
and comparisons) required for its execution. This number clearly depends on the
size and nature of the input. In the case of graphs, the complexity is a function
of the number of bits required to encode the adjacency list of the input graph
G, a function of n and m. (The number of bits required to encode an integer k
is �log2 k	.) Naturally, when the input includes additional information, such as
weights on the vertices or edges of the graph, this too must be taken into account
in calculating the complexity. If the complexity is bounded above by a polynomial
in the input size, the algorithm is called a polynomial-time algorithm. Such an
algorithm is further qualified as linear-time if the polynomial is a linear function,
quadratic-time if it is a quadratic function, and so on.

The Class P

The significance of polynomial-time algorithms is that they are usually found to
be computationally feasible, even for large input graphs. By contrast, algorithms
whose complexity is exponential in the size of the input have running times which
render them unusable even on inputs of moderate size. For example, an algorithm
which checks whether two graphs on n vertices are isomorphic by considering all n!
bijections between their vertex sets is feasible only for small values of n (certainly
no greater than 20), even on the fastest currently available computers. The class
of problems solvable by polynomial-time algorithms is denoted by P.

The tree-search algorithms discussed in Chapter 6 are instances of polynomial-
time algorithms. In breadth-first search, each edge is examined for possible inclu-
sion in the tree just twice, when the adjacency lists of its two ends are scanned.
The same is true of depth-first search. Therefore both of these algorithms are lin-
ear in m, the number of edges. The Jarńık–Prim Algorithm involves, in addition,
comparing weights of edges, but it is easily seen that the number of comparisons
is also bounded by a polynomial in m.

8.1 Computational Complexity 175

Unlike the other algorithms described in Chapter 6, the Max-Flow Min-Cut
Algorithm is not a polynomial-time algorithm even when all the capacities are
integers; the example in Exercise 8.1.1 shows that, in the worst case, the algorithm
may perform an arbitrarily large number of iterations before returning a maximum
flow. Fortunately, this eventuality can be avoided by modifying the way in which
IPS is implemented, as was shown by Edmonds and Karp (1970) and Dinic (1970).
Among all the arcs in ∂(T) that qualify for inclusion in T , preference is given to
those which are incident to the vertex that entered T the earliest, just as in breadth-
first search, resulting in a shortest incrementing path. It can be shown that, with
this refinement, the number of iterations of IPS is bounded by a polynomial in n
and thus yields a polynomial-time algorithm.

Although our analysis of these algorithms is admittedly cursory, and leaves out
many pertinent details, it should be clear that they do indeed run in polynomial
time. A thorough analysis of these and other graph algorithms can be found in the
books by Aho et al. (1975) and Papadimitriou (1994). On the other hand, there
are many basic problems for which polynomial-time algorithms have yet to be
found, and indeed might well not exist. Determining which problems are solvable
in polynomial time and which are not is evidently a fundamental question. In this
connection, a class of problems denoted by NP (standing for nondeterministic
polynomial-time) plays an important role. We give here an informal definition of
this class; a precise treatment can be found in Chapter 29 of the Handbook of
Combinatorics (Graham et al. (1995)), or in the book by Garey and Johnson
(1979).

The Classes NP and co-NP

A decision problem is a question whose answer is either ‘yes’ or ‘no’. Such a problem
belongs to the class P if there is a polynomial-time algorithm that solves any
instance of the problem in polynomial time. It belongs to the class NP if, given
any instance of the problem whose answer is ‘yes’, there is a certificate validating
this fact which can be checked in polynomial time; such a certificate is said to
be succinct. Analogously, a decision problem belongs to the class co-NP if, given
any instance of the problem whose answer is ‘no’, there is a succinct certificate
which confirms that this is so. It is immediate from these definitions that P ⊆
NP, inasmuch as a polynomial-time algorithm constitutes, in itself, a succinct
certificate. Likewise, P ⊆ co-NP. Thus

P ⊆ NP ∩ co-NP

Consider, for example, the problem of determining whether a graph is bipartite.
This decision problem belongs toNP, because a bipartition is a succinct certificate:
given a bipartition (X,Y) of a bipartite graph G, it suffices to check that each edge
of G has one end in X and one end in Y . The problem also belongs to co-NP
because, by Theorem 4.7, every nonbipartite graph contains an odd cycle, and any
such cycle constitutes a succinct certificate of the graph’s nonbipartite character.

176 8 Complexity of Algorithms

It thus belongs to NP ∩ co-NP. In fact, as indicated in Exercise 6.1.3, it belongs
to P.

As a second example, consider the problem of deciding whether a graph G(x, y)
has k edge-disjoint xy-paths. This problem is clearly in NP, because a family of
k edge-disjoint xy-paths is a succinct certificate: given such a family of paths,
one may check in polynomial-time that it indeed has the required properties. The
problem is also in co-NP because, by Theorem 7.17, a graph that does not have
k edge-disjoint xy-paths has an xy-edge cut of size less than k. Such an edge cut
serves as a succinct certificate for the nonexistence of k edge-disjoint xy-paths.
Finally, because the maximum number of edge-disjoint xy-paths can be found in
polynomial time by applying the Max-Flow Min-Cut Algorithm (7.9) (see Exer-
cise 7.3.5) this problem belongs to P, too.

Consider, now, the problem of deciding whether a graph has a Hamilton cycle.

Problem 8.1 Hamilton Cycle

Given: a graph G,
Decide: Does G have a Hamilton cycle?

If the answer is ‘yes’, then any Hamilton cycle would serve as a succinct cer-
tificate. However, should the answer be ‘no’, what would constitute a succinct
certificate confirming this fact? In contrast to the two problems described above,
no such certificate is known! In other words, notwithstanding that Hamilton Cy-

cle is clearly a member of the class NP, it has not yet been shown to belong to
co-NP, and might very well not belong to this class. The same is true of the de-
cision problem for Hamilton paths. These two problems are discussed in detail in
Chapter 18.

Many problems that arise in practice, such as the Shortest Path Problem (6.11),
are optimization problems rather than decision problems. Nonetheless, each such
problem implicitly includes an infinitude of decision problems. For example, the
Shortest Path Problem includes, for each real number
, the following decision
problem. Given a weighted directed graph (D,w) with two specified vertices x and
y, is there a directed (x, y)-path in D of length at most
?

We have noted three relations of inclusion among the classes P, NP, and
co-NP, and it is natural to ask whether these inclusions are proper. Because
P = NP if and only if P = co-NP, two basic questions arise, both of which have
been posed as conjectures.

The Cook–Edmonds–Levin Conjecture

Conjecture 8.2 P �= NP

8.1 Computational Complexity 177

Edmonds’ Conjecture

Conjecture 8.3 P = NP ∩ co-NP

Conjecture 8.2 is one of the most fundamental open questions in all of math-
ematics. (A prize of one million dollars has been offered for its resolution.) It is
widely (but not universally) believed that the conjecture is true, that there are
problems in NP for which no polynomial-time algorithm exists. One such prob-
lem would be Hamilton Cycle. As we show in Section 8.3, this problem, and its
directed analogue Directed Hamilton Cycle, are at least as hard to solve as
any problem in the class NP; more precisely, if a polynomial-time algorithm for
either of these problems should be found, it could be adapted to solve any problem
in NP in polynomial time by means of a suitable transformation. Conjecture 8.2
was, in essence, put forward by J. Edmonds in the mid-1960s, when he asserted
that there could exist no ‘good’ (that is, polynomial-time) algorithm for the Trav-
elling Salesman Problem (Problem 2.6). The conjecture thus predates the formal
definition of the class NP by Cook (1971) and Levin (1973).

Conjecture 8.3, also proposed by Edmonds (1965c), is strongly supported by
empirical evidence. Most decision problems which are known to belong to NP ∩
co-NP are also known to belong to P. A case in point is the problem of deciding
whether a given integer is prime. Although it had been known for some time that
this problem belongs to both NP and co-NP, a polynomial-time algorithm for
testing primality was discovered only much more recently, by Agrawal et al. (2004).

Exercises

�8.1.1

a) Show that, starting with the zero flow, an application of the Max-Flow Min-
Cut Algorithm (7.9) to the network N in Figure 8.1 might execute 2M + 1
incrementing path iterations before finding a maximum flow.

b) Deduce that this algorithm is not a polynomial-time algorithm.

8.1.2 Show that Fleury’s Algorithm (3.3) is a polynomial-time algorithm.

—————

—————

8.1.3 Given a graph G(x, y), consider the problem of deciding whether G has an
xy-path of odd (respectively, even) length.

a) Show that this problem:
i) belongs to NP,

178 8 Complexity of Algorithms

x y

u

v

MM

M M

1

Fig. 8.1. A network on which Algorithm 7.9 might require many iterations

ii) belongs to co-NP.
b) Describe a polynomial-time algorithm for solving the problem.

8.1.4 Describe a polynomial-time algorithm for deciding whether two trees are
isomorphic.

8.2 Polynomial Reductions

A common approach to problem-solving is to transform the given problem into one
whose solution is already known, and then convert that solution into a solution
of the original problem. Of course, this approach is feasible only if the transfor-
mation can be made rapidly. The concept of polynomial reduction captures this
requirement.

A polynomial reduction of a problem P to a problem Q is a pair of polynomial-
time algorithms, one which transforms each instance I of P to an instance J of
Q, and the other which transforms a solution for the instance J to a solution for
the instance I. If such a reduction exists, we say that P is polynomially reducible
to Q, and write P � Q; this relation is clearly both reflexive and transitive.
The significance of polynomial reducibility is that if P � Q, and if there is a
polynomial-time algorithm for solving Q, then this algorithm can be converted
into a polynomial-time algorithm for solving P . In symbols:

P � Q and Q ∈ P ⇒ P ∈ P (8.1)

A very simple example of the above paradigm is the polynomial reduction to
the Minimum-Weight Spanning Tree Problem (6.8) of the following problem.

Problem 8.4 Maximum-Weight Spanning Tree

Given: a weighted connected graph G,
Find: a maximum-weight spanning tree in G.

In order to solve an instance of this problem, it suffices to replace each weight by
its negative and apply the Jarńık–Prim Algorithm (6.9) to find an optimal tree in
the resulting weighted graph. The very same tree will be one of maximum weight in
the original weighted graph. (We remark that one can similarly reduce the problem

8.2 Polynomial Reductions 179

of finding a longest xy-path in a graph to the Shortest Path Problem (6.11).
However no polynomial-time algorithm is known for solving the latter problem
when there are negative edge weights.)

Not all reductions are quite as straightforward as this one. Recall that two
directed (x, y)-paths are internally disjoint if they have no internal vertices in
common. Consider the following problem, the analogue for internally disjoint paths
of Problem 7.10, the Arc-Disjoint Directed Paths Problem (ADDP).

Problem 8.5 Internally Disjoint Directed Paths (IDDP)

Given: a digraph D := D(x, y),
Find: a maximum family of internally disjoint directed (x, y)-paths in D.

A polynomial reduction of IDDP to ADDP can be obtained by constructing a
new digraph D′ := D′(x, y) from D as follows.

� Split each vertex v ∈ V \ {x, y} into two new vertices v− and v+, joined by a
new arc (v−, v+).

� For each arc (u, v) of D, replace its tail u by u+ (unless u = x or u = y) and
its head v by v− (unless v = x or v = y).

This construction is illustrated in Figure 8.2.

v− v+u− u+

z− z+w− w+

xx yy

u v

zw

D(x, y) D′(x, y)

Fig. 8.2. Reduction of IDDP to ADDP

It can be seen that there is a bijection between families of internally disjoint
directed (x, y)-paths in D and families of arc-disjoint directed (x, y)-paths in D′.
Thus, finding a maximum family of internally disjoint directed (x, y)-paths in
D(x, y) amounts to finding a maximum family of arc-disjoint directed (x, y)-paths
in D′(x, y). This transformation of the instance D(x, y) of IDDP to the instance
D′(x, y) of ADDP is a polynomial reduction because v(D′) = 2v(D) − 2 and
a(D′) = a(D) + v(D)− 2. Hence IDDP � ADDP .

The Max-Flow Min-Cut Algorithm (7.9) is a polynomial-time algorithm for
solving ADDP. Therefore ADDP ∈ P. Because IDDP � ADDP , we may con-
clude that IDDP ∈ P, also.

Most problems concerning paths in undirected graphs can be reduced to their
analogues in directed graphs by the simple artifice of considering the associated

180 8 Complexity of Algorithms

digraph. As an example, let G := G(x, y) be an undirected graph and let D :=
D(G) be its associated digraph. There is an evident bijection between families
of internally disjoint xy-paths in G and families of internally disjoint directed
(x, y)-paths in D. Thus IDP � IDDP , where IDP is the problem of finding
a maximum family of internally disjoint xy-paths in a given graph G(x, y). We
showed above that IDDP ∈ P. It now follows from the transitivity of the relation
� that IDP ∈ P.

Exercises

8.2.1 Consider a network in which a nonnegative integer m(v) is associated with
each intermediate vertex v. Show how a maximum flow f satisfying the constraint
f−(v) ≤ m(v), for all v ∈ I, can be found by applying the Max-Flow Min-Cut
Algorithm to a suitably modified network.

8.2.2 Consider the following problem.

Problem 8.6 Disjoint Paths

Given: a graph G, a positive integer k, and two k-subsets X and Y of V ,
Decide: Does G have k disjoint (X,Y)-paths?

Describe a polynomial reduction of this problem to IDP (Internally Disjoint

Paths).

—————

—————

8.3 NP-Complete Problems

The Class NPC

We have just seen how polynomial reductions may be used to produce new
polynomial-time algorithms from existing ones. By the same token, polynomial
reductions may also be used to link ‘hard’ problems, ones for which no polynomial-
time algorithm exists, as can be seen by writing (8.1) in a different form:

P � Q and P /∈ P ⇒ Q /∈ P

This viewpoint led Cook (1971) and Levin (1973) to define a special class
of seemingly intractable decision problems, the class of NP-complete problems.
Informally, these are the problems in the class NP which are ‘at least as hard to
solve’ as any problem in NP.

Formally, a problem P in NP is NP-complete if P ′ � P for every problem P ′

in NP. The class of NP-complete problems is denoted by NPC. It is by no means
obvious that NP-complete problems should exist at all. On the other hand, once

8.3 NP-Complete Problems 181

one such problem has been found, the NP-completeness of other problems may
be established by means of polynomial reductions, as follows.

In order to prove that a problem Q in NP is NP-complete, it suffices to find a
polynomial reduction to Q of some known NP-complete problem P . Why is this
so? Suppose that P is NP-complete. Then P ′ � P for all P ′ ∈ NP. If P � Q,
then P ′ � Q for all P ′ ∈ NP, by the transitivity of the relation �. In other words,
Q is NP-complete. In symbols:

P � Q and P ∈ NPC ⇒ Q ∈ NPC

Cook (1971) and Levin (1973) made a fundamental breakthrough by showing
that there do indeed exist NP-complete problems. More precisely, they proved
that the satisfiability problem for boolean formulae is NP-complete. We now de-
scribe this problem, and examine the theoretical and practical implications of their
discovery.

Boolean Formulae

A boolean variable is a variable which takes on one of two values, 0 (‘false’) or 1
(‘true’). Boolean variables can be combined into boolean formulae, which may be
defined recursively as follows.

� Every boolean variable is a boolean formula.
� If f is a boolean formula, then so too is (¬f), the negation of f .
� If f and g are boolean formulae, then so too are:

- (f ∨ g), the disjunction of f and g,
- (f ∧ g), the conjunction of f and g.

These three operations may be thought of informally as ‘not f ’, ‘f or g’, and ‘f
and g’, respectively. The negation of a boolean variable x is often written as x.
Thus the expression

(¬(x1 ∨ x2) ∨ x3) ∧ (x2 ∨ x3) (8.2)

is a boolean formula in the variables x1, x2, x3. Note that the parentheses are
needed here to avoid ambiguity as to the order of execution of the various opera-
tions. (For ease of reading, we omit the outer pair of parentheses.)

An assignment of values to the variables of a boolean formula is called a truth
assignment. Given a truth assignment, the value of the formula may be computed
according to the following rules.

¬
0 1
1 0

∨ 0 1
0 0 1
1 1 1

∧ 0 1
0 0 0
1 0 1

For instance, if x1 = 1, x2 = 0, and x3 = 1, the value of formula (8.2) is:

(¬(1 ∨ 0)∨1)∧(0∨1) = (¬(1 ∨ 1)∨1)∧(0∨0) = (1∨1)∧0 = (0∨1)∧0 = 1∧0 = 0

182 8 Complexity of Algorithms

Two boolean formulae are equivalent (written ≡) if they take the same value
for each truth assignment of the variables involved. It follows easily from the above
rules that negation is an involution:

¬(¬f) ≡ f

and that disjunction and conjunction are commutative, associative, and idempo-
tent:

f ∨ g ≡ g ∨ f, f ∧ g ≡ g ∧ f

f ∨ (g ∨ h) ≡ (f ∨ g) ∨ h, f ∧ (g ∧ h) ≡ (f ∧ g) ∧ h

f ∨ f ≡ f, f ∧ f ≡ f.

Furthermore, disjunction and conjunction together satisfy the distributive laws:

f ∨ (g ∧ h) ≡ (f ∨ g) ∧ (f ∨ h), f ∧ (g ∨ h) ≡ (f ∧ g) ∨ (f ∧ h)

and interact with negation according to de Morgan’s laws:

¬(f ∨ g) ≡ (¬f) ∧ (¬g), ¬(f ∧ g) ≡ (¬f) ∨ (¬g)

Finally, there are the tautologies:

f ∨ ¬f = 1, f ∧ ¬f = 0.

Boolean formulae may be transformed into equivalent ones by applying these
laws. For instance:

(¬(x1 ∨ x2) ∨ x3) ∧ (x2 ∨ x3) ≡ ((x1 ∧ x2) ∨ x3) ∧ (x2 ∨ x3)
≡ ((x1 ∨ x3) ∧ (x2 ∨ x3)) ∧ (x2 ∨ x3)
≡ (x1 ∨ x3) ∧ ((x2 ∨ x3) ∧ (x2 ∨ x3))
≡ (x1 ∨ x3) ∧ (x2 ∨ (x3 ∧ x3))
≡ (x1 ∨ x3) ∧ x2

Satisfiability of Boolean Formulae

A boolean formula is satisfiable if there is a truth assignment of its variables for
which the value of the formula is 1. In this case, we say that the formula is satisfied
by the assignment. It can be seen that formula (8.2) is satisfiable, for instance by
the truth assignment x1 = 0, x2 = 1, x3 = 0. But not all boolean formulae are
satisfiable (x ∧ x being a trivial example). This poses the general problem:

Problem 8.7 Boolean Satisfiability (Sat)

Given: a boolean formula f ,
Decide: Is f satisfiable?

8.3 NP-Complete Problems 183

Observe that Sat belongs to NP: given appropriate values of the variables, it
can be checked in polynomial time that the value of the formula is indeed 1. These
values of the variables therefore constitute a succinct certificate. Cook (1971) and
Levin (1973) proved, independently, that Sat is an example of an NP-complete
problem.

Theorem 8.8 The Cook–Levin Theorem

The problem Sat is NP-complete. �

The proof of the Cook–Levin Theorem involves the notion of a Turing machine,
and is beyond the scope of this book. A proof may be found in Garey and Johnson
(1979) or Sipser (2005).

By applying Theorem 8.8, Karp (1972) showed that many combinatorial prob-
lems are NP-complete. One of these is Directed Hamilton Cycle. In order to
explain the ideas underlying his approach, we need a few more definitions.

A variable x, or its negation x, is a literal , and a disjunction or conjunction of
literals is a disjunctive or conjunctive clause. Because the operations of disjunction
and conjunction are associative, parentheses may be dispensed with within clauses.
There is no ambiguity, for example, in the following formula, a conjunction of three
disjunctive clauses, each consisting of three literals.

f := (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

Any conjunction of disjunctive clauses such as this one is referred to as a for-
mula in conjunctive normal form. It can be shown that every boolean formula is
equivalent, via a polynomial reduction, to one in conjunctive normal form (Exer-
cise 8.3.1). Furthermore, as we explain below in the proof of Theorem 8.10, every
boolean formula in conjunctive normal form is equivalent, again via a polynomial
reduction, to one in conjunctive normal form with exactly three literals per clause.
The decision problem for such boolean formulae is known as 3-Sat.

Problem 8.9 Boolean 3-Satisfiability (3-Sat)

Given: a boolean formula f in conjunctive normal form with three literals per
clause,
Decide: Is f satisfiable?

Theorem 8.10 The problem 3-Sat is NP-complete.

Proof By the Cook–Levin Theorem (8.8), it suffices to prove that Sat � 3-Sat.
Let f be a boolean formula in conjunctive normal form. We show how to construct,
in polynomial time, a boolean formula f ′ in conjunctive normal form such that:

i) each clause in f ′ has three literals,
ii) f is satisfiable if and only if f ′ is satisfiable.

Such a formula f ′ may be obtained by the addition of new variables and clauses,
as follows.

184 8 Complexity of Algorithms

Suppose that some clause of f has just two literals, for instance the clause
(x1 ∨ x2). In this case, we simply replace this clause by two clauses with three
literals, (x1 ∨ x2 ∨ x) and (x ∨ x1 ∨ x2), where x is a new variable. Clearly,

(x1 ∨ x2) ≡ (x1 ∨ x2 ∨ x) ∧ (x ∨ x1 ∨ x2)

Clauses with single literals may be dealt with in a similar manner (Exercise 8.3.2).
Now suppose that some clause (x1 ∨ x2 ∨ · · · ∨ xk) of f has k literals, where

k ≥ 4. In this case, we add k − 3 new variables y1, y2, . . . , yk−3 and form the
following k − 2 clauses, each with three literals.

(x1∨x2∨y1), (y1∨x3∨y2), (y2∨x4∨y3), · · · (yk−4∨xk−2∨yk−3), (yk−3∨xk−1∨xk)

One may verify that (x1∨x2∨· · ·∨xk) is equivalent to the conjunction of these
k − 2 clauses. We leave the details as an exercise (8.3.3). �

Theorem 8.10 may be used to establish the NP-completeness of decision prob-
lems in graph theory such as Directed Hamilton Cycle by means of polynomial
reductions.

As we have observed, in order to show that a decision problem Q in NP is
NP-complete, it suffices to find a polynomial reduction to Q of a known NP-
complete problem P . This is generally easier said than done. What is needed is to
first decide on an appropriate NP-complete problem P and then come up with
a suitable polynomial reduction. In the case of graphs, the latter step is often
achieved by means of a construction whereby certain special subgraphs, referred
to as ‘gadgets’, are inserted into the instance of P so as to obtain an instance of Q
with the required properties. An illustration of this technique is described in the
inset overleaf, where we show how 3-Sat may be reduced to Directed Hamilton

Cycle via an intermediate problem, Exact Cover.
Almost all of the decision problems that we come across in this book are known

to belong either to the class P or to the class NPC. One notable exception is the
isomorphism problem:

Problem 8.11 Graph Isomorphism

Given: two graphs G and H,
Decide: Are G and H isomorphic?

The complexity status of this problem remains a mystery. Whilst the prob-
lem clearly belongs to NP, whether it belongs to P, to co-NP, or to NPC is
not known. Polynomial-time isomorphism-testing algorithms have been found for
certain classes of graphs, including planar graphs (Hopcroft and Wong (1974))
and graphs of bounded degree (Luks (1982)), but these algorithms are not valid
for all graphs. Graph Isomorphism might, conceivably, be a counterexample to
Conjecture 8.3.

8.3 NP-Complete Problems 185

Proof Technique: Polynomial Reduction

We establish the NP-completeness of Directed Hamilton Cycle by reduc-
ing 3-Sat to it via an intermediate problem, Exact Cover, which we now
describe.

Let A be a family of subsets of a finite set X. An exact cover of X by A
is a partition of X, each member of which belongs to A. For instance, if
X := {x1, x2, x3} and A := {{x1}, {x1, x2}, {x2, x3}}, then {{x1}, {x2, x3}}
is an exact cover of X by A. This notion gives rise to the following decision
problem.

Problem 8.12 Exact Cover

Given: a set X and a family A of subsets of X,
Decide: Is there an exact cover of X by A?

We first describe a polynomial reduction of 3-Sat to Exact Cover, and then
a polynomial reduction of Exact Cover to Directed Hamilton Cycle.
The chain of reductions:

Sat � 3− Sat � Exact Cover � Directed Hamilton Cycle

will then imply that Directed Hamilton Cycle is NP-complete, by virtue
of the Cook–Levin Theorem (8.8).

Theorem 8.13 3-Sat � Exact Cover.

Proof Let f be an instance of 3-Sat, with clauses f1, . . . , fn and variables
x1, . . . , xm. The first step is to construct a graph G from f , by setting:

V (G) := {xi : 1 ≤ i ≤ m} ∪ {xi : 1 ≤ i ≤ m} ∪ {fj : 1 ≤ j ≤ n}
E(G) := {xixi : 1 ≤ i ≤ m} ∪ {xifj : xi ∈ fj} ∪ {xifj : xi ∈ fj}

where the notation xi ∈ fj (xi ∈ fj) signifies that xi (xi) is a literal of the
clause fj . The next step is to obtain an instance (X,A) of Exact Cover

from this graph G. We do so by setting:

X := {fj : 1 ≤ j ≤ n} ∪ E(G)

A := {∂(xi) : 1 ≤ i ≤ m} ∪ {∂(xi) : 1 ≤ i ≤ m}
∪ {{fj} ∪ Fj : Fj ⊂ ∂(fj), 1 ≤ j ≤ n}

It can be verified that the formula f is satisfiable if and only if the set X has
an exact cover by the family A (Exercise 8.3.4). �

186 8 Complexity of Algorithms

Polynomial Reduction (continued)

For instance, if f := (x1 ∨ x2 ∨ x3)∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x3 ∨ x4), the graph
G obtained by this construction is:

f1 f2 f3

x1 x1 x2 x2 x3 x3 x4 x4

In this example, the given formula is satisfied by the truth assignment x1 = 1,
x2 = 1, x3 = 0, x4 = 0, and this truth assignment corresponds to the exact
cover:

f1 f2 f3

∂(x1) ∂(x2) ∂(x3) ∂(x4)

To round off the proof that Directed Hamilton Cycle is an NP-complete
problem, we describe a polynomial reduction of Exact Cover to Directed

Hamilton Cycle.

Theorem 8.14 Exact Cover � Directed Hamilton Cycle.

Proof Let (X,A) be an instance of exact set cover, where X := {xi :
1 ≤ i ≤ m} and A := {Aj : 1 ≤ j ≤ n}. We construct a directed graph G
from (X,A) as follows. Let P be a directed path whose arcs are labelled by
the elements of X, Q a directed path whose arcs are labelled by the elements
of A and, for 1 ≤ j ≤ n, Rj a directed path whose vertices are labelled by
the elements of Aj . The paths P , Q, and Rj , 1 ≤ j ≤ n, are assumed to be
pairwise disjoint. We add an arc from the initial vertex of P to the initial
vertex of Q, and from the terminal vertex of Q to the terminal vertex of P .

8.3 NP-Complete Problems 187

Polynomial Reduction (continued)

For 1 ≤ j ≤ n, we also add an arc from the initial vertex of the arc Aj of Q
to the initial vertex of Rj , and from the terminal vertex of Rj to the terminal
vertex of Aj :

P

Q

Rj

x1 x2 x3 xi xm−2 xm−1 xm

A1 Aj An

For 1 ≤ j ≤ n, we now transform the directed path Rj into a digraph Dj by
replacing each vertex xi of Rj by a ‘path’ Pij of length two whose edges are
pairs of oppositely oriented arcs. Moreover, for every such ‘path’ Pij , we add
an arc from the initial vertex of Pij to the initial vertex of the arc xi of P ,
and one from the terminal vertex of xi to the terminal vertex of Pij :

P

Q

Dj

xi

Pij

Aj

We denote the resulting digraph by D. This construction, with X :=
{x1, x2, x3} and A := {{x1}, {x1, x2}, {x2, x3}}, is illustrated in the follow-
ing figure.

x1 x2 x3

P11 P12 P22 P23 P33

A1 = {x1} A2 = {x1, x2} A3 = {x2, x3}

188 8 Complexity of Algorithms

Polynomial Reduction (continued)

Observe, now, that the digraph D has a directed Hamilton cycle C if and only
if the set X has an exact cover by the family of subsets A. If C does not use
the arc Aj , it is obliged to traverse Dj from its initial to its terminal vertex.
Conversely, if C uses the arc Aj , it is obliged to include each one of the paths
Pij of Dj in its route from the terminal vertex of P to the initial vertex of
P . Moreover, C traces exactly one of the paths Pij (xi ∈ Aj) in travelling
from the head of the arc xi to its tail. The arcs Aj of Q which are included in
C therefore form a partition of X. Conversely, to every partition of X there
corresponds a directed Hamilton cycle of D.

Finally, the numbers of vertices and arcs of D are given by:

v(D) = |X|+ |A|+ 3
∑n

j=1 |Aj |+ 2
a(D) = |X|+ 2|A|+ 7

∑n
j=1 |Aj |+ 2

Because both of these parameters are bounded above by linear functions of
the size of the instance (X,A), the above reduction is indeed polynomial. �

Corollary 8.15 The problem Directed Hamilton Cycle is NP-complete.
�

NP-Hard Problems

We now turn to the computational complexity of optimization problems such as
the Travelling Salesman Problem (TSP) (Problem 2.6). This problem contains
Hamilton Cycle as a special case. To see this, associate with a given graph G
the weighted complete graph on V (G) in which the weight attached to an edge
uv is zero if uv ∈ E(G), and one otherwise. The resulting weighted complete
graph has a Hamilton cycle of weight zero if and only if G has a Hamilton cycle.
Thus, any algorithm for solving TSP will also solve Hamilton Cycle, and we
may conclude that the former problem is at least as hard as the latter. Because
Hamilton Cycle is NP-complete (see Exercise 8.3.5), TSP is at least as hard
as any problem in NP. Such problems are called NP-hard .

Another basic NP-hard problem is:

Problem 8.16 Maximum Clique (Max Clique)

Given: a graph G,
Find: a maximum clique in G.

In order to solve this problem, one needs to know, for a given value of k, whether
G has a k-clique. The largest such k is called the clique number of G, denoted ω(G).

8.3 NP-Complete Problems 189

If k is a fixed integer not depending on n, the existence of a k-clique can be decided
in polynomial time, simply by means of an exhaustive search, because the number
of k-subsets of V is bounded above by nk. However, if k depends on n, this is no
longer true. Indeed, the problem of deciding whether a graph G has a k-clique,
where k depends on n, is NP-complete (Exercise 8.3.9).

The complementary notion of a clique is a stable set, a set of vertices no two of
which are adjacent. A stable set in a graph is maximum if the graph contains no
larger stable set. The cardinality of a maximum stable set in a graph G is called the
stability number of G, denoted α(G). Clearly, a subset S of V is a stable set in G
if and only if S is a clique in G, the complement of G. Consequently, the following
problem is polynomially equivalent to Max Clique, and thus is NP-hard also.

Problem 8.17 Maximum Stable Set (Max Stable Set)

Given: a graph G,
Find: a maximum stable set in G.

Exercises

�8.3.1 Let f := f1∧f2∧· · ·∧fk and g := g1∧g2∧· · ·∧g� be two boolean formulae
in conjunctive normal form (where fi, 1 ≤ i ≤ k, and gj , 1 ≤ j ≤
, are disjunctive
clauses).

a) Show that:
i) f ∧ g is in conjunctive normal form,
ii) f ∨ g is equivalent to a boolean formula in conjunctive normal form,
iii) ¬f is in disjunctive normal form, and is equivalent to a boolean formula

in conjunctive normal form.
b) Deduce that every boolean formula is equivalent to a boolean formula in con-

junctive normal form.

�8.3.2 Show that every clause consisting of just one literal is equivalent to a
boolean formula in conjunctive normal form with exactly three literals per clause.

�8.3.3 Let (x1 ∨ x2 ∨ · · · ∨ xk) be a disjunctive clause with k literals, where k ≥ 4,
and let y1, y2, . . . , yk−2 be boolean variables. Show that:

(x1 ∨ x2 ∨ · · · ∨ xk) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2) ∧ (y2 ∨ x4 ∨ y3) ∧ · · ·
· · · ∧ (yk−4 ∨ xk−2 ∨ yk−3) ∧ (yk−3 ∨ xk−1 ∨ xk)

�8.3.4 Let f := f1 ∧ f2 ∧ · · · ∧ fn be an instance of 3-Sat, with variables
x1, x2, . . . , xm. Form a graph G from f , and an instance (X,A) of Exact Cover

from G, as described in the proof of Theorem 8.13.

a) Show that the formula f is satisfiable if and only if the set X has an exact
cover by the family A.

190 8 Complexity of Algorithms

b) Show also that the pair (X,A) can be constructed from f in polynomial time
(in the parameters m and n).

c) Deduce that Exact Cover ∈ NPC.
d) Explain why constructing a graph in the same way, but from an instance of

Sat rather than 3-Sat, does not provide a polynomial reduction of Sat to
Exact Cover.

�8.3.5

a) Describe a polynomial reduction of Directed Hamilton Cycle to Hamil-

ton Cycle.
b) Deduce that Hamilton Cycle ∈ NPC.

8.3.6 Let Hamilton Path denote the problem of deciding whether a given graph
has a Hamilton path.

a) Describe a polynomial reduction of Hamilton Cycle to Hamilton Path.
b) Deduce that Hamilton Path ∈ NPC.

8.3.7 Two problems P and Q are polynomially equivalent, written P ≡ Q, if P � Q
and Q � P .

a) Show that:

Hamilton Path ≡ Hamilton Cycle ≡ Directed Hamilton Cycle

b) Let Max Path denote the problem of finding the length of a longest path in
a given graph. Show that Max Path ≡ Hamilton Path.

8.3.8

a) Let k be a fixed positive integer. Describe a polynomial-time algorithm for
deciding whether a given graph has a path of length k.

b) The length of a longest path in a graph G can be determined by checking, for
each k, 1 ≤ k ≤ n, whether G has a path of length k. Does your algorithm for
the problem in part (a) lead to a polynomial-time algorithm for Max Path?

�8.3.9

a) Let f = f1 ∧ f2 ∧ · · · ∧ fk be an instance of 3-Sat (where the fi, 1 ≤ i ≤ k,
are disjunctive clauses, each containing three literals). Construct a k-partite
graph G on 7k vertices (seven vertices in each part) such that f is satisfiable
if and only if G has a k-clique.

b) Deduce that 3-Sat and Max Clique are polynomially equivalent.

—————

—————

8.3.10 Let k be a positive integer. The following problem is a generalization of
3-Sat.

8.4 Approximation Algorithms 191

Problem 8.18 Boolean k-Satisfiability (k-Sat)
Given: a boolean formula f in conjunctive normal form with k literals per

clause,
Decide: Is f satisfiable?

Show that:

a) 2-Sat ∈ P,
b) k-Sat ∈ NPC for k ≥ 3.

8.4 Approximation Algorithms

For NP-hard optimization problems of practical interest, such as the Travelling
Salesman Problem, the best that one can reasonably expect of a polynomial-time
algorithm is that it should always return a feasible solution which is not too far
from optimality.

Given a real number t ≥ 1, a t-approximation algorithm for a minimization
problem is an algorithm that accepts any instance of the problem as input and
returns a feasible solution whose value is no more than t times the optimal value;
the smaller the value of t, the better the approximation. Naturally, the running
time of the algorithm is an equally important factor. We give two examples.

Problem 8.19 Maximum Cut (Max Cut)

Given: a weighted graph (G,w),
Find: a maximum-weight spanning bipartite subgraph F of G.

This problem admits a polynomial-time 2-approximation algorithm, based on
the ideas for the unweighted case presented in Chapter 2 (Exercise 2.2.2). We leave
the details as an exercise (8.4.1).

A somewhat less simple approximation algorithm was obtained by Rosenkrantz
et al. (1974), who considered the special case of the Travelling Salesman Problem
in which the weights satisfy the triangle inequality:

w(xy) + w(yz) ≥ w(xz), for any three vertices x, y, z. (8.3)

Problem 8.20 Metric Travelling Salesman Problem (Metric TSP)

Given: a weighted complete graph G whose weights satisfy inequality (8.3),
Find: a minimum-weight Hamilton cycle C of G.

Theorem 8.21 Metric TSP admits a polynomial-time 2-approximation algo-
rithm.

Proof Applying the Jarǹık–Prim Algorithm (6.9), we first find a minimum-
weight spanning tree T of G. Suppose that C is a minimum-weight Hamilton
cycle of G. By deleting any edge of C, we obtain a Hamilton path P of G. Because
P is a spanning tree of G and T is a spanning tree of minimum weight,

192 8 Complexity of Algorithms

w(T) ≤ w(P) ≤ w(C)

We now duplicate each edge of T , thereby obtaining a connected even graph
H with V (H) = V (G) and w(H) = 2w(T). Note that this graph H is not even
a subgraph of G, let alone a Hamilton cycle. The idea is to transform H into a
Hamilton cycle of G, and to do so without increasing its weight. More precisely, we
construct a sequence H0,H1, . . . , Hn−2 of connected even graphs, each with vertex
set V (G), such that H0 = H, Hn−2 is a Hamilton cycle of G, and w(Hi+1) ≤ w(Hi),
0 ≤ i ≤ n−3. We do so by reducing the number of edges, one at a time, as follows.

Let Ci be an Euler tour of Hi, where i < n−2. The graph Hi has 2(n−2)−i > n
edges, and thus has a vertex v of degree at least four. Let xe1ve2y be a segment of
the tour Ci; it will follow by induction that x �= y. We replace the edges e1 and e2

of Ci by a new edge e of weight w(xy) linking x and y, thereby bypassing v and
modifying Ci to an Euler tour Ci+1 of Hi+1 := (Hi \ {e1, e2}) + e. By the triangle
inequality (8.3),

w(Hi+1) = w(Hi)− w(e1)− w(e2) + w(e) ≤ w(Hi)

The final graph Hn−2, being a connected even graph on n vertices and n edges, is
a Hamilton cycle of G. Furthermore,

w(Hn−2) ≤ w(H0) = 2w(T) ≤ 2w(C) �

The relevance of minimum-weight spanning trees to the Travelling Salesman
Problem was first observed by Kruskal (1956). A 3

2 -approximation algorithm for
Metric TSP was found by Christofides (1976). This algorithm makes use of a
polynomial-time algorithm for weighted matchings (discussed in Chapter 16; see
Exercise 16.4.24). For other approaches to the Travelling Salesman Problem, see
Jünger et al. (1995).

The situation with respect to the general Travelling Salesman Problem, in
which the weights are not subject to the triangle inequality, is dramatically differ-
ent: for any integer t ≥ 2, there cannot exist a polynomial-time t-approximation
algorithm for solving TSP unless P = NP (Exercise 8.4.4). The book by Vazirani
(2001) treats the topic of approximation algorithms in general. For the state of
the art regarding computational aspects of TSP, we refer the reader to Applegate
et al. (2007).

Exercises

�8.4.1 Describe a polynomial-time 2-approximation algorithm for Max Cut

(Problem 8.19).

8.4.2 Euclidean TSP

The Euclidean Travelling Salesman Problem is the special case of Metric TSP in
which the vertices of the graph are points in the plane, the edges are straight-line

8.5 Greedy Heuristics 193

segments linking these points, and the weight of an edge is its length. Show that,
in any such graph, the minimum-weight Hamilton cycles are crossing-free (that is,
no two of their edges cross).

8.4.3 Show that Metric TSP is NP-hard.

�8.4.4

a) Let G be a simple graph with n ≥ 3, and let t be a positive integer. Consider
the weighted complete graph (K,w), where K := G∪G, in which w(e) := 1 if
e ∈ E(G) and w(e) := (t− 1)n + 2 if e ∈ E(G). Show that:

i) (K,w) has a Hamilton cycle of weight n if and only if G has a Hamilton
cycle,

ii) any Hamilton cycle of (K,w) of weight greater than n has weight at least
tn + 1.

b) Deduce that, unless P = NP, there cannot exist a polynomial-time t-
approximation algorithm for solving TSP.

—————

—————

8.5 Greedy Heuristics

A heuristic is a computational procedure, generally based on some simple rule,
which intuition tells one should usually yield a good approximate solution to the
problem at hand.

One particularly simple and natural class of heuristics is the class of greedy
heuristics. Informally, a greedy heuristic is a procedure which selects the best cur-
rent option at each stage, without regard to future consequences. As can be imag-
ined, such an approach rarely leads to an optimal solution in each instance. How-
ever, there are cases in which the greedy approach does indeed work. In such cases,
we call the procedure a greedy algorithm. The following is a prototypical example
of such an algorithm.

The Bor̊uvka–Kruskal Algorithm

The Jarńık–Prim algorithm for the Minimum-Weight Spanning Tree Problem, de-
scribed in Section 6.2, starts with the root and determines a nested sequence of
trees, terminating with a minimum-weight spanning tree. Another algorithm for
this problem, due to Bor̊uvka (1926a,b) and, independently, Kruskal (1956), starts
with the empty spanning subgraph and finds a nested sequence of forests, termi-
nating with an optimal tree. This sequence is constructed by adding edges, one at
a time, in such a way that the edge added at each stage is one of minimum weight,
subject to the condition that the resulting subgraph is still a forest.

194 8 Complexity of Algorithms

Algorithm 8.22 The Bor̊uvka–Kruskal Algorithm

Input: a weighted connected graph G = (G,w)
Output: an optimal tree T = (V, F) of G, and its weight w(F)
1: set F := ∅, w(F) := 0 (F denotes the edge set of the current forest)
2: while there is an edge e ∈ E \ F such that F ∪ {e} is the edge set of a

forest do
3: choose such an edge e of minimum weight
4: replace F by F ∪ {e} and w(F) by w(F) + w(e)
5: end while
6: return ((V, F), w(F))

Because the graph G is assumed to be connected, the forest (V, F) returned
by the Bor̊uvka–Kruskal Algorithm is a spanning tree of G. We call it a Bor̊uvka–
Kruskal tree. The construction of such a tree in the electric grid graph of Section 6.2
is illustrated in Figure 8.3. As before, the edges are numbered according to the or-
der in which they are added. Observe that this tree is identical to the one returned
by the Jarńık–Prim Algorithm (even though its edges are selected in a different
order). This is because all the edge weights in the electric grid graph happen to
be distinct (see Exercise 6.2.1).

B

C

G

N
S

T

W
Y

1

2

3

4

5

6

7

Fig. 8.3. An optimal tree returned by the Bor̊uvka–Kruskal Algorithm

In order to implement the Bor̊uvka–Kruskal Algorithm efficiently, one needs
to be able to check easily whether a candidate edge links vertices in different
components of the forest. This can be achieved by colouring vertices in the same
component by the same colour and vertices in different components by distinct
colours. It then suffices to check that the ends of the edge have different colours.
Once the edge has been added to the forest, all the vertices in one of the two
merged components are recoloured with the colour of the other component. We
leave the details as an exercise (Exercise 8.5.1).

8.5 Greedy Heuristics 195

The following theorem shows that the Bor̊uvka–Kruskal Algorithm runs cor-
rectly. Its proof resembles that of Theorem 6.10, and we leave it to the reader
(Exercise 8.5.2).

Theorem 8.23 Every Bor̊uvka–Kruskal tree is an optimal tree. �

The problem of finding a maximum-weight spanning tree of a connected graph
can be solved by the same approach; at each stage, instead of picking an edge of
minimum weight subject to the condition that the resulting subgraph remains a
forest, we pick one of maximum weight subject to the same condition (see Exer-
cise 8.5.3). The origins of the Bor̊uvka–Kruskal Algorithm are recounted in Nešetřil
et al. (2001) and Kruskal (1997).

Independence Systems

One can define a natural family of greedy heuristics which includes the Bor̊uvka–
Kruskal Algorithm in the framework of set systems.

A set system (V,F) is called an independence system on V if F is nonempty
and, for any member F of F , all subsets of F also belong to F . The members of
F are then referred to as independent sets and their maximal elements as bases.
(The independent sets of a matroid, defined in Section 4.4, form an independence
system.)

Many independence systems can be defined on graphs. For example, if G =
(V,E) is a connected graph, we may define an independence system on V by
taking as independent sets the cliques of G (including the empty set). Likewise,
we may define an independence system on E by taking the edge sets of the forests
of G as independent sets; the bases of this independence system are the edge sets
of spanning trees. (This latter independence system is the cycle matroid of the
graph, defined in Section 4.4.)

Consider, now, an arbitrary independence system (V,F). Suppose that, with
each element x of V , there is an associated nonnegative weight w(x), and that we
wish to find an independent set of maximum weight, where the weight of a set
is defined to be the sum of the weights of its elements. A naive approach to this
problem would be to proceed as follows.

Heuristic 8.24 Greedy Heuristic (for independence systems)

Input: an independence system (V,F) with weight function w : V → R
+

Output: a maximal independent set F of (V,F), and its weight w(F)

1: set F := ∅, w(F) := 0
2: while there is an element x ∈ V \F such that F ∪ {x} is independent do
3: choose such an element x of minimum weight w(x)
4: replace F by F ∪ {x} and w(F) by w(F) + w(x)
5: end while
6: return (F,w(X))

196 8 Complexity of Algorithms

As we have seen, the Greedy Heuristic always returns an optimal solution
when the independence system consists of the edge sets of the forests of a graph,
no matter what the edge weights. (More generally, as Rado (1957) observed, the
Greedy Heuristic performs optimally whenever F is the family of independent
sets of a matroid, regardless of the weight function w.) By contrast, when the inde-
pendent sets are the cliques of a graph, the Greedy Heuristic rarely returns an
optimal solution, even if all the weights are 1, because most graphs have maximal
cliques which are not maximum cliques. (If the Greedy Heuristic unfailingly
returns a maximum weight independent set, no matter what the weight function
of the independence system, then the system must, it turns out, be a matroid (see,
for example, Oxley (1992)).)

We remark that greedy heuristics are by no means limited to the framework
of independence systems. For example, if one is looking for a longest x-path in a
graph, an obvious greedy heuristic is to start with the trivial x-path consisting
of just the vertex x and iteratively extend the current x-path by any available
edge. This amounts to applying depth-first search from x, stopping when one is
forced to backtrack. The path so found will certainly be a maximal x-path, but not
necessarily a longest x-path. Even so, this simple-minded greedy heuristic proves
to be effective when combined with other ideas, as we show in Chapter 18.

Exercises

�8.5.1 Refine the Bor̊uvka–Kruskal Algorithm in such a way that, at each stage,
vertices in the same component of the forest F are assigned the same colour and
vertices in different components are assigned distinct colours.

�8.5.2 Prove Theorem 8.23.

�8.5.3 Show that the problem of finding a maximum-weight spanning tree of a
connected graph can be solved by choosing, at each stage, an edge of maximum
weight subject to the condition that the resulting subgraph is still a forest.

8.5.4 Give an example of a weighted independence system, all of whose bases have
the same number of elements, but for which the Greedy Heuristic (8.24) fails
to return an optimal solution.

8.5.5 Consider the following set of real vectors.

V := {(1, 0, 0, 1), (1, 1, 1, 1), (1, 0, 1, 2), (0, 1, 0, 1), (0, 2,−1, 1), (1,−1, 0, 0)}

Find a linearly independent subset of V whose total number of zeros is maxi-
mum by applying the Greedy Heuristic (8.24).

—————

—————

8.6 Linear and Integer Programming 197

8.6 Linear and Integer Programming

A linear program (LP) is a problem of maximizing or minimizing a linear function
of real variables that are subject to linear equality or inequality constraints. By
means of simple substitutions, such as replacing an equation by two inequalities,
any LP may be transformed into one of the following form.

maximize cx subject to Ax ≤ b and x ≥ 0 (8.4)

where A = (aij) is an m × n matrix, c = (c1, c2, . . . , cn) a 1 × n row vector, and
b = (b1, b2, . . . , bm) an m× 1 column vector. The m inequalities

∑n
j=1 aijxj ≤ bi,

1 ≤ i ≤ m, and the n nonnegativity conditions xj ≥ 0, 1 ≤ j ≤ n, are known
as the constraints of the problem. The function cx to be maximized is called the
objective function.

A column vector x = (x1, x2, . . . , xn) in R
n is a feasible solution to (8.4) if

it satisfies all m + n constraints, and a feasible solution at which the objective
function cx attains its maximum is an optimal solution. This maximum is the
optimal value of the LP.

Associated with every LP, there is another LP, called its dual. The dual of the
LP (8.4) is the LP:

minimize yb subject to yA ≥ c and y ≥ 0 (8.5)

With reference to this dual LP, the original LP (8.4) is called the primal LP.
Not every LP has a feasible solution. Moreover, even if it does have one, it need

not have an optimal solution: the objective function might be unbounded over the
set of feasible solutions, and thus not achieve a maximum (or minimum). Such an
LP is said to be unbounded.

The following proposition implies that if both the primal and the dual have
feasible solutions, neither is unbounded.

Proposition 8.25 Weak Duality Theorem

Let x be a feasible solution to (8.4) and y a feasible solution to its dual (8.5). Then

cx ≤ yb (8.6)

Proof Because c ≤ yA and x ≥ 0, we have cx ≤ yAx. Likewise yAx ≤ yb.
Inequality (8.6) follows. �

Corollary 8.26 Let x be a feasible solution to (8.4) and y a feasible solution to
its dual (8.5). Suppose that cx = yb. Then x is an optimal solution to (8.4) and
y is an optimal solution to (8.5). �

The significance of this corollary is that if equality holds in (8.6), the primal
solution x serves as a succinct certificate for the optimality of the dual solution
y, and vice versa. A remarkable and fundamental theorem due to von Neumann
(1928) guarantees that one can always certify optimality in this manner.

198 8 Complexity of Algorithms

Theorem 8.27 Duality Theorem

If an LP has an optimal solution, then its dual also has an optimal solution, and
the optimal values of these two LPs are equal. �

A wide variety of graph-theoretical problems may be formulated as LPs, albeit
with additional integrality constraints, requiring that the variables take on only
integer values. In some cases, these additional constraints may be ignored without
affecting the essential nature of the problem, because the LP under consideration
can be shown to always have optimal solutions that are integral. In such cases,
the duals generally have natural interpretations in terms of graphs, and interesting
results may be obtained by applying the Duality Theorem. Such results are referred
to as min–max theorems. As a simple example, let us consider the problem of
finding a maximum stable set in a graph.

It clearly suffices to consider graphs without isolated vertices. Let G be such
a graph. With any stable set S of G, we may associate its (0, 1)-valued incidence
vector x := (xv : v ∈ V), where xv := 1 if v ∈ S, and xv := 0 otherwise. Because
no stable set can include more than one of the two ends of any edge, every such
vector x satisfies the constraint xu + xv ≤ 1, for each uv ∈ E. Thus, the problem
Max Stable Set is equivalent to the following LP (where M is the incidence
matrix of G).

maximize 1x subject to Mtx ≤ 1 and x ≥ 0 (8.7)

together with the requirement that x be integral. The dual of (8.7) is the following
LP, in which there is a variable ye for each edge e of G.

minimize y1 subject to yMt ≥ 1 and y ≥ 0 (8.8)

Consider an integer-valued feasible solution y to this dual LP. The support of y
is a set of edges of G that together meet every vertex of G. Such a set of edges is
called an edge covering of G. The number of edges in a minimum edge covering of
a graph G without isolated vertices is denoted by β′(G).

Conversely, the incidence vector of any edge covering of G is a feasible solution
to (8.8). Thus the optimal value of (8.8) is a lower bound on β′(G). Likewise, the
optimal value of (8.7) is an upper bound on α(G). By the Weak Duality Theorem,
it follows that, for any graph G without isolated vertices, α(G) ≤ β′(G). In general,
these two quantities are not equal (consider, for example, K3). They are, however,
always equal for bipartite graphs (see inset).

A linear program in which the variables are constrained to take on only integer
values is called an integer linear program (ILP). Any ILP may be transformed to
one of the following form.

maximize cx subject to Ax ≤ b, x ≥ 0, and x ∈ Z (8.9)

As already mentioned, Max Stable Set can be formulated as an ILP. Because
Max Stable Set is NP-hard, so is ILP. On the other hand, there do exist
polynomial-time algorithms for solving linear programs, so LP is in P.

8.6 Linear and Integer Programming 199

Proof Technique: Total Unimodularity

Recall that a matrix A is totally unimodular if the determinant of each of its
square submatrices is equal to 0, +1, or −1. The following theorem provides
a sufficient condition for an LP to have an integer-valued optimal solution.

Theorem 8.28 Suppose that A is a totally unimodular matrix and that b
is an integer vector. If (8.4) has an optimal solution, then it has an integer
optimal solution.

Proof The set of points in R
n at which any single constraint holds with

equality is a hyperplane in R
n. Thus each constraint is satisfied by the points

of a closed half-space of R
n, and the set of feasible solutions is the intersection

of all these half-spaces, a convex polyhedron P .

Because the objective function is linear, its level sets are hyperplanes. Thus, if
the maximum value of cx over P is z∗, the hyperplane cx = z∗ is a supporting
hyperplane of P . Hence cx = z∗ contains an extreme point (a corner) of P . It
follows that the objective function attains its maximum at one of the extreme
points of P .

Every extreme point of P is at the intersection of n or more hyperplanes
determined by the constraints. It is thus a solution to a subsystem of Ax = b.
Using the hypotheses of the theorem and applying Cramér’s rule, we now
conclude that each extreme point of P is an integer vector, and hence that
(8.4) has an integer optimal solution. �
Because the incidence matrix of a bipartite graph is totally unimodular (Ex-
ercise 4.2.4), as a consequence of the above theorem, we have:

Theorem 8.29 Let G be a bipartite graph with incidence matrix M. Then
the LPs

maximize 1x subject to Mtx ≤ 1 and x ≥ 0 (8.10)
minimize y1 subject to yMt ≥ 1 and y ≥ 0 (8.11)

both have (0, 1)-valued optimal solutions. �

This theorem, in conjunction with the Duality Theorem, now implies the
following min–max equality, due independently to D. König and R. Rado (see
Schrijver (2003)).

Theorem 8.30 The König–Rado Theorem

In any bipartite graph without isolated vertices, the number of vertices in a
maximum stable set is equal to the number of edges in a minimum edge cov-
ering. �

200 8 Complexity of Algorithms

Total Unimodularity (continued)

The König–Rado Theorem (8.30) implies that the problem of deciding whether
a bipartite graph has a stable set of cardinality k is in co-NP; when the answer
is ‘no’, an edge cover of size less than k provides a succinct certificate of this
fact. In fact, as shown in Chapter 16, there is a polynomial algorithm for
finding a maximum stable set in any bipartite graph.

A second application of this proof technique is given below, and another is
presented in Section 19.3.

One approach to the problem of determining the value of a graph-theoretic
parameter such as α is to express the problem as an ILP of the form (8.9) and then
solve its LP relaxation, that is, the LP (8.4) obtained by dropping the integrality
constraint x ∈ Z. If the optimal solution found happens to be integral, as in
Theorem 8.29, it will also be an optimal solution to the ILP, and thus determine
the exact value of the parameter. In any event, the value returned by the LP will
be an upper bound on the value of the parameter. This upper bound is referred
to as the fractional version of the parameter. For example, the LP (8.10) returns
the fractional stability number, denoted α∗.

The fractional stability number of a graph may be computed in polynomial
time. However, in general, α can be very much smaller than α∗. For example,
α(Kn) = 1, whereas α∗(Kn) = n/2 for n ≥ 2. Taking into cognisance the fact
that no stable set of a graph can include more than one vertex of any clique of
the graph, one may obtain a LP associated with Max Stable Set with tighter
constraints than (8.7) (see Exercise 8.6.3).

Matchings and Coverings in Bipartite Graphs

We now describe a second application of total unimodularity, to matchings in
bipartite graphs. A matching in a graph is a set of pairwise nonadjacent links.
With any matching M of a graph G, we may associate its (0, 1)-valued incidence
vector. Since no matching has more than one edge incident with any vertex, every
such vector x satisfies the constraint

∑
{xe : e ∈ ∂(v)} ≤ 1, for all v ∈ V . Thus

the problem of finding a largest matching in a graph is equivalent to the following
ILP.

maximize 1x subject to Mx ≤ 1 and x ≥ 0 (8.12)

(where M is the incidence matrix of G), together with the requirement that x be
integral. The dual of (8.12) is the following LP.

minimize y1 subject to yM ≥ 1 and y ≥ 0 (8.13)

Because the incidence matrix of a bipartite graph is totally unimodular (Exer-
cise 4.2.4), as a consequence of the above theorem, we now have:

8.6 Linear and Integer Programming 201

Theorem 8.31 When G is bipartite, (8.12) and (8.13) have (0, 1)-valued optimal
solutions. �

If x is a (0, 1)-valued feasible solution to (8.12), then no two edges of the set
M := {e ∈ E : xe = 1} have an end in common; that is, M is a matching of G.
Analogously, if y is a (0, 1)-valued feasible solution to (8.13), then each edge of
G has at least one end in the set K := {v ∈ V : yv = 1}; such a set is called a
covering of G. These two observations, together with the Duality Theorem, now
imply the following fundamental min–max theorem, due independently to König
(1931) and Egerváry (1931).

Theorem 8.32 The König–Egerváry Theorem

In any bipartite graph, the number of edges in a maximum matching is equal to
the number of vertices in a minimum covering. �

Just as the König–Rado Theorem (8.30) shows that the problem of deciding
whether a bipartite graph G[X,Y] has a stable set of k vertices is in co-NP,
the König–Egerváry Theorem shows that the problem of deciding whether such a
graph has a matching of k edges is in co-NP. When the answer is ‘no’, a covering
of cardinality less than k provides a succinct certificate of this fact. The König–
Egerváry Theorem can also be derived from the arc version of Menger’s Theorem
(7.16) (see Exercise 8.6.7). The maximum number of edges in a matching of a
graph G is called the matching number of G and denoted α′(G).

If G is nonbipartite, (8.12) may have optimal solutions that are not integral.
For example, when G is a triangle, it can be seen that (1/2, 1/2, 1/2) is an optimal
solution. However, Edmonds (1965b) showed that one may introduce additional
constraints that are satisfied by all the incidence vectors of matchings in a graph so
that the resulting linear program has integer optimal solutions (see Exercise 8.6.8).
This was the basis for his solution to the optimal matching problem. Matchings
are discussed in detail in Chapter 16.

Using the fact that the incidence matrix of a directed graph is totally unimod-
ular (Exercise 1.5.7a), Menger’s Theorem (7.16) may be derived from the Duality
Theorem. Further examples of min–max theorems are presented in Chapters 16
and 19. For additional information on these and other applications of linear pro-
gramming, see Chvátal (1983), Lovász and Plummer (1986), and Schrijver (2003).

Exercises

8.6.1 Complementary Slackness

Let x and y be feasible solutions to the LP (8.4) and its dual (8.5), respectively.
Show that these solutions are optimal if and only if:

∑n
j=1 aijxj < bi ⇒ yi = 0, 1 ≤ i ≤ m, and

∑m
i=1 aijyi > cj ⇒ xj = 0, 1 ≤ j ≤ n

202 8 Complexity of Algorithms

(The above conditions are known as the complementary slackness conditions for
optimality. They play an important role in the solution of optimization problems
involving weighted graphs.)

�8.6.2 Clique Covering

A clique covering of a graph is a set of cliques whose union is the entire vertex set
of the graph.

a) Show that the stability number of a graph is bounded above by the minimum
number of cliques in a clique covering.

b) Give an example of a graph in which these two quantities are unequal.

8.6.3 Let K denote the set of all cliques of a graph G and let K denote the incidence
matrix of the hypergraph (V,K). Consider the LP:

maximize 1x subject to Ktx ≤ 1 and x ≥ 0 (8.14)

and its dual:
minimize y1 subject to yKt ≥ 1 and y ≥ 0 (8.15)

Show that:

a) an integer-valued vector x in R
V is a feasible solution to (8.14) if and only if

it is the incidence vector of a stable set of G,
b) a (0, 1)-valued vector y in R

K is a feasible solution to (8.15) if and only if it is
the incidence vector of a clique covering.

8.6.4 Show that the set of feasible solutions to (8.14) is a subset of the set of
feasible solutions to (8.7), with equality when G is triangle-free.

8.6.5 Let α∗∗(G) denote the optimal value of (8.14).

a) Show that, for any graph G, α ≤ α∗∗ ≤ α∗.
b) Give examples of graphs for which these inequalities are strict.

8.6.6 Let G be a simple graph with n ≥ 3, and let x := (xe : e ∈ E) ∈ R
E .

Consider the following system of linear inequalities.
∑

e∈∂(X)

xe ≥ 2 if ∅ ⊂ X ⊂ V

∑

e∈∂(v)

xe = 2 for all v ∈ V

xe ≤ 1 for all e ∈ E
xe ≥ 0 for all e ∈ E

a) Show that the integer-valued feasible solutions to this system are precisely the
incidence vectors of the Hamilton cycles of G.

8.6 Linear and Integer Programming 203

b) Let c ∈ R
E be a weight function on G. Deduce from (a) that an optimal

solution to the TSP for this weighted graph is provided by an optimal solution
to the ILP that consists of maximizing the objective function cx subject to
the above constraints, together with the integrality constraint x ∈ Z.
(Grötschel et al. (1988) have given a polynomial-time algorithm for solving the
LP relaxation of this ILP.)

�8.6.7

a) Transform the problem of finding a maximum matching in a bipartite graph
G[X,Y] into the problem of finding a maximum collection of arc-disjoint di-
rected (x, y)-paths in a related digraph D(x, y).

b) Deduce the König–Egerváry Theorem from Menger’s Theorem (7.16).

8.6.8 Show that every integer feasible solution x to the LP (8.12) satisfies the
inequality

∑

e∈E(X)

xe ≤
1
2

(|X| − 1)

for any odd subset X of V of cardinality three or more.
(Edmonds (1965b) showed that, by adding these inequalities to the set of con-
straints in (8.12), one obtains an LP every optimal solution of which is (0, 1)-
valued.)

�8.6.9 Farkas’ Lemma

The following two LPs are duals of each other.

maximize 0x subject to Ax = 0 and x ≥ b

minimize − zb subject to yA− z = 0 and z ≥ 0

Farkas’ Lemma (see Section 20.1) says that exactly one of the two linear systems:

Ax = 0, x ≥ b and yA ≥ 0, yAb > 0

has a solution. Deduce Farkas’ Lemma from the Duality Theorem (8.27).

�8.6.10 The following two LPs are duals of each other.

minimize y0 subject to yA ≥ b

maximize bx subject to Ax = 0 and x ≥ 0

A variant of Farkas’ Lemma says that exactly one of the two linear systems:

yA ≥ b and Ax = 0, x ≥ 0, bx > 0

has a solution. Deduce this variant of Farkas’ Lemma from the Duality Theorem
(8.27).

8.6.11 Prove the inequality α(G) ≤ β′(G) directly, without appealing to the Weak
Duality Theorem (8.25).

—————

—————

204 8 Complexity of Algorithms

8.7 Related Reading

Isomorphism-Completeness

As mentioned earlier, the complexity status of Graph Isomorphism is unknown.
There is strong theoretical evidence to support the belief that the problem is not
NP-complete (see, for example, Babai (1995)), and its rather unique status has led
to the notion of isomorphism-completeness: a problem is said to be isomorphism-
complete if it is polynomially equivalent to Graph Isomorphism. The Legitimate
Deck Problem, mentioned in Section 2.8, is one such problem (see Harary et al.
(1982) and Mansfield (1982)). The problem of finding the orbits of a graph is
‘isomorphism-hard’. For these and other examples, we refer the reader to Babai
(1995).

