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7.1 Transportation Networks

Transportation networks that are used to ship commodities from their production
centres to their markets can be most effectively analysed when viewed as digraphs
that possess additional structure. The resulting theory has a wide range of inter-
esting applications and ramifications. We present here the basic elements of this
important topic.

A network N := N(x, y) is a digraph D (the underlying digraph of N) with
two distinguished vertices, a source x and a sink y, together with a nonnegative
real-valued function c defined on its arc set A. The vertex x corresponds to a
production centre, and the vertex y to a market. The remaining vertices are called
intermediate vertices, and the set of these vertices is denoted by I. The function
c is the capacity function of N and its value on an arc a the capacity of a. The
capacity of an arc may be thought of as representing the maximum rate at which
a commodity can be transported along it. It is convenient to allow arcs of infinite
capacity, along which commodities can be transported at any desired rate. Of
course, in practice, one is likely to encounter transportation networks with several
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production centres and markets, rather than just one. However, this more general
situation can be reduced to the case of networks that have just one source and one
sink by means of a simple device (see Exercise 7.1.3).

We find the following notation useful. If f is a real-valued function defined on
a set A, and if S ⊆ A, we denote the sum

∑
a∈S f(a) by f(S). Furthermore, when

A is the arc set of a digraph D, and X ⊆ V , we set

f+(X) := f(∂+(X)) and f−(X) := f(∂−(X))

Flows

An (x, y)-flow (or simply a flow) in N is a real-valued function f defined on A
satisfying the condition:

f+(v) = f−(v) for all v ∈ I (7.1)

The value f(a) of f on an arc a can be likened to the rate at which material is
transported along a by the flow f . Condition (7.1) requires that, for any interme-
diate vertex v, the rate at which material is transported into v is equal to the rate
at which it is transported out of v. For this reason, it is known as the conservation
condition.

A flow f is feasible if it satisfies, in addition, the capacity constraint:

0 ≤ f(a) ≤ c(a) for all a ∈ A (7.2)

The upper bound in condition (7.2) imposes the natural restriction that the rate of
flow along an arc cannot exceed the capacity of the arc. Throughout this chapter,
the term flow always refers to one that is feasible.

Every network has at least one flow, because the function f defined by f(a) :=
0, for all a ∈ A, clearly satisfies both (7.1) and (7.2); it is called the zero flow.
A less trivial example of a flow is given in Figure 7.1. The flow along each arc is
indicated in bold face, along with the capacity of the arc.
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Fig. 7.1. A flow in a network
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If X is a set of vertices in a network N and f is a flow in N , then f+(X)−f−(X)
is called the net flow out of X, and f−(X)−f+(X) the net flow into X, relative to
f . The conservation condition (7.1) requires that the net flow f+(v)− f−(v) out
of any intermediate vertex be zero, thus it is intuitively clear and not difficult to
show that, relative to any (x, y)-flow f , the net flow f+(x)−f−(x) out of x is equal
to the net flow f−(y) − f+(y) into y (Exercise 7.1.1b). This common quantity is
called the value of f , denoted val (f). For example, the value of the flow indicated
in Figure 7.1 is 2 + 4 = 6. The value of a flow f may, in fact, be expressed as the
net flow out of any subset X of V such that x ∈ X and y ∈ V \ X, as we now
show.

Proposition 7.1 For any flow f in a network N(x, y) and any subset X of V
such that x ∈ X and y ∈ V \X,

val (f) = f+(X)− f−(X) (7.3)

Proof From the definition of a flow and its value, we have

f+(v)− f−(v) =
{

val (f) if v = x
0 if v ∈ X \ {x}

Summing these equations over X and simplifying (Exercise 7.1.2), we obtain

val (f) =
∑

v∈X

(f+(v)− f−(v)) = f+(X)− f−(X) �

A flow in a network N is a maximum flow if there is no flow in N of greater
value. Maximum flows are of obvious importance in the context of transportation
networks. A network N(x, y) which has a directed (x, y)-path all of whose arcs are
of infinite capacity evidently admits flows of arbitrarily large value. However, such
networks do not arise in practice, and we assume that all the networks discussed
here have maximum flows. We study the problem of finding such flows efficiently.

Problem 7.2 Maximum Flow

Given: a network N(x, y),
Find: a maximum flow from x to y in N .

Cuts

It is convenient to denote a digraph D with two distinguished vertices x and y by
D(x, y). An (x, y)-cut in a digraph D(x, y) is an outcut ∂+(X) such that x ∈ X and
y ∈ V \X, and a cut in a network N(x, y) is an (x, y)-cut in its underlying digraph.
We also say that such a cut separates y from x. In the network of Figure 7.2,
the heavy lines indicate a cut ∂+(X), where X is the set of solid vertices. The
capacity of a cut K := ∂+(X) is the sum of the capacities of its arcs, c+(X). We
denote the capacity of K by cap (K). The cut indicated in Figure 7.2 has capacity
3 + 7 + 1 + 5 = 16.
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Fig. 7.2. A cut in a network

Flows and cuts are related in a simple fashion: the value of any (x, y)-flow is
bounded above by the capacity of any cut separating y from x. In proving this
inequality, it is convenient to call an arc a f -zero if f(a) = 0, f -positive if f(a) > 0,
f -unsaturated if f(a) < c(a), and f -saturated if f(a) = c(a).

Theorem 7.3 For any flow f and any cut K := ∂+(X) in a network N ,

val (f) ≤ cap (K)

Furthermore, equality holds in this inequality if and only if each arc in ∂+(X) is
f-saturated and each arc in ∂−(X) is f-zero.

Proof By (7.2),
f+(X) ≤ c+(X) and f−(X) ≥ 0 (7.4)

Thus, applying Proposition 7.1,

val (f) = f+(X)− f−(X) ≤ c+(X) = cap (K)

We have val (f) = cap (K) if and only if equality holds in (7.4), that is, if and only
if each arc of ∂+(X) is f -saturated and each arc of ∂−(X) is f -zero. �

A cut K in a network N is a minimum cut if no cut in N has a smaller capacity.

Corollary 7.4 Let f be a flow and K a cut. If val (f) = cap (K), then f is a
maximum flow and K is a minimum cut.

Proof Let f∗ be a maximum flow and K∗ a minimum cut. By Theorem 7.3,

val (f) ≤ val (f∗) ≤ cap (K∗) ≤ cap (K)

But, by hypothesis, val (f) = cap (K). It follows that val (f) = val (f∗) and
cap (K∗) = cap (K). Thus f is a maximum flow and K is a minimum cut. �
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Exercises

�7.1.1 Let D = (V,A) be a digraph and f a real-valued function on A. Show that:

a)
∑
{f+(v) : v ∈ V } =

∑
{f−(v) : v ∈ V },

b) if f is an (x, y)-flow, the net flow f+(x) − f−(x) out of x is equal to the net
flow f−(y)− f+(y) into y.

�7.1.2

a) Show that, for any flow f in a network N and any set X ⊆ V ,
∑

v∈X

(f+(v)− f−(v)) = f+(X)− f−(X)

b) Give an example of a flow f in a network such that
∑

v∈X f+(v) �= f+(X) and∑
v∈X f−(v) �= f−(X).

�7.1.3 Let N := N(X,Y ) be a network with source set X and sink set Y . Construct
a new network N ′ := N ′(x, y) as follows.

� Adjoin two new vertices x and y.
� Join x to each source by an arc of infinite capacity.
� Join each sink to y by an arc of infinite capacity.

For any flow f in N , consider the function f ′ defined on the arc set of N ′ by:

f ′(a) :=

⎧
⎨

⎩

f(a) if a is an arc of N
f+(v) if a = (x, v)
f−(v) if a = (v, y)

a) Show that f ′ is a flow in N ′ with the same value as f .
b) Show, conversely, that the restriction of a flow in N ′ to the arc set of N is a

flow in N of the same value.

7.1.4 Let N(x, y) be a network which contains no directed (x, y)-path. Show that
the value of a maximum flow and the capacity of a minimum cut in N are both
zero.

—————

—————

7.2 The Max-Flow Min-Cut Theorem

We establish here the converse of Corollary 7.4, namely that the value of a maxi-
mum flow is always equal to the capacity of a minimum cut.

Let f be a flow in a network N := N(x, y). With each x-path P in N (not
necessarily a directed path), we associate a nonnegative integer ε(P ) defined by:
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ε(P ) := min{ε(a) : a ∈ A(P )}

where

ε(a) :=
{

c(a)− f(a) if a is a forward arc of P
f(a) if a is a reverse arc of P

As we now explain, ε(P ) is the largest amount by which the flow f can be
increased along P without violating the constraints (7.2). The path P is said to
be f -saturated if ε(P ) = 0 and f -unsaturated if ε(P ) > 0 (that is, if each forward
arc of P is f -unsaturated and each reverse arc of P is f -positive). Put simply,
an f -unsaturated path is one that is not being used to its full capacity. An f -
incrementing path is an f -unsaturated (x, y)-path. For example, in the network
of Figure 7.3a, the path P := xv1v2v3y is such a path. The forward arcs of P are
(x, v1) and (v3, y), and ε(P ) = min {5, 2, 5, 4} = 2.

The existence of an f -incrementing path P is significant because it implies
that f is not a maximum flow. By sending an additional flow of ε(P ) along P , one
obtains a new flow f ′ of greater value. More precisely, define f ′ : A→ R by:

f ′(a) :=

⎧
⎨

⎩

f(a) + ε(P ) if a is a forward arc of P
f(a)− ε(P ) if a is a reverse arc of P
f(a) otherwise

(7.5)

We then have the following proposition, whose proof is left as an exercise (7.2.1).

Proposition 7.5 Let f be a flow in a network N . If there is an f-incrementing
path P , then f is not a maximum flow. More precisely, the function f ′ defined by
(7.5) is a flow in N of value val (f ′) = val (f) + ε(P ). �

We refer to the flow f ′ defined by (7.5) as the incremented flow based on P .
Figure 7.3b shows the incremented flow in the network of Figure 7.3a based on the
f -incrementing path xv1v2v3y.

What if there is no f -incrementing path? The following proposition addresses
this eventuality.

Proposition 7.6 Let f be a flow in a network N := N(x, y). Suppose that there
is no f-incrementing path in N . Let X be the set of all vertices reachable from x
by f-unsaturated paths, and set K := ∂+(X). Then f is a maximum flow in N
and K is a minimum cut.

Proof Clearly x ∈ X. Also, y ∈ V \X because there is no f -incrementing path.
Therefore K is a cut in N .

Consider an arc a ∈ ∂+(X), with tail u and head v. Because u ∈ X, there exists
an f -unsaturated (x, u)-path Q. If a were f -unsaturated, Q could be extended by
the arc a to yield an f -unsaturated (x, v)-path. But v ∈ V \X, so there is no such
path. Therefore a must be f -saturated. Similar reasoning shows that if a ∈ ∂−(X),
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Fig. 7.3. (a) An f -incrementing path P , and (b) the incremented flow based on P

then a must be f -zero. By Theorem 7.3, we have val (f) = cap (K). Corollary 7.4
now implies that f is a maximum flow in N and that K is a minimum cut. �

A far-reaching consequence of Propositions 7.5 and 7.6 is the following theorem,
due independently to Elias et al. (1956) and Ford and Fulkerson (1956).

Theorem 7.7 The Max-Flow Min-Cut Theorem

In any network, the value of a maximum flow is equal to the capacity of a minimum
cut.

Proof Let f be a maximum flow. By Proposition 7.5, there can be no f -
incrementing path. The theorem now follows from Proposition 7.6. �

The Max-Flow Min-Cut Theorem (7.7) shows that one can always demonstrate
the optimality of a maximum flow simply by exhibiting a cut whose capacity is
equal to the value of the flow. Many results in graph theory are straightforward
consequences of this theorem, as applied to suitably chosen networks. Among these
are two fundamental theorems due to K. Menger, discussed at the end of this
chapter (Theorems 7.16 and 7.17). Other important applications of network flows
are given in Chapter 16.

The Ford–Fulkerson Algorithm

The following theorem is a direct consequence of Propositions 7.5 and 7.6.

Theorem 7.8 A flow f in a network is a maximum flow if and only if there is no
f-incrementing path. �

This theorem is the basis of an algorithm for finding a maximum flow in a
network. Starting with a known flow f , for instance the zero flow, we search for
an f -incrementing path by means of a tree-search algorithm. An x-tree T is f -
unsaturated if, for every vertex v of T , the path xTv is f -unsaturated. An example
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Fig. 7.4. An f -unsaturated tree

is shown in the network of Figure 7.4. It is a tree T of this type that we grow in
searching for an f -incrementing path.

Initially, the tree T consists of just the source x. At any stage, there are two
ways in which the tree may be grown. If there exists an f -unsaturated arc a in
∂+(X), where X = V (T ), both a and its head are adjoined to T . Similarly, if there
exists an f -positive arc a in ∂−(X), both a and its tail are adjoined to T . If the
tree T reaches the sink y, the path xTy is an f -incrementing path, and we replace
f by the flow f ′ defined in (7.5). If T fails to reach the sink, and is a maximal
f -unsaturated tree, each arc in ∂+(X) is f -saturated and each arc in ∂−(X) is
f -zero. We may then conclude, by virtue of Theorem 7.3, that the flow f is a
maximum flow and the cut ∂+(X) a minimum cut. We refer to this tree-search
algorithm as Incrementing Path Search (IPS) and to a maximal f -unsaturated tree
which does not include the sink as an IPS-tree.

Algorithm 7.9 Max-Flow Min-Cut (MFMC)

Input: a network N := N(x, y) and a feasible flow f in N
Output: a maximum flow f and a minimum cut ∂+(X) in N

1: set X := {x}, p(v) := ∅, v ∈ V
2: while there is either an f-unsaturated arc a := (u, v) or an f-positive arc

a := (v, u) with u ∈ X and v ∈ V \X do
3: replace X by X ∪ {v}
4: replace p(v) by u
5: end while
6: if y ∈ X then
7: compute ε(P ) := min{ε(a) : a ∈ A(P )}, where P is the xy-path in the

tree whose predecessor function is p
8: for each forward arc a of P , replace f(a) by f(a) + ε(P )
9: for each reverse arc a of P , replace f(a) by f(a)− ε(P )

10: return to 1
11: end if
12: return (f, ∂+(X))
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Fig. 7.5. (a) A flow f , (b) an f -unsaturated tree, (c) the f -incrementing path, (d) the
f -incremented flow, (e) an IPS-tree, and (f) a minimum cut

As an example, consider the network shown in Figure 7.5a, with the indicated
flow. Applying IPS, we obtain the f -unsaturated tree shown in Figure 7.5b. Be-
cause this tree includes the sink y, the xy-path contained in it, namely xv1v2v3y,
is an f -incrementing path (see Figure 7.5c). By incrementing f along this path,
we obtain the incremented flow shown in Figure 7.5d.
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Now, an application of IPS to the network with this new flow results in the
IPS-tree shown in Figure 7.5e. We conclude that the flow shown in Figure 7.5d is
a maximum flow. The minimum cut ∂+(X), where X is the set of vertices reached
by the IPS-tree, is indicated in Figure 7.5f.

When all the capacities are integers, the value of the flow increases by at least
one at each iteration of the Max-Flow Min-Cut Algorithm, so the algorithm will
certainly terminate after a finite number of iterations. A similar conclusion applies
to the case in which all capacities are rational numbers (Exercise 7.2.3). On the
other hand, the algorithm will not necessarily terminate if irrational capacities are
allowed. An example of such a network was constructed by Ford and Fulkerson
(1962).

In applications of the theory of network flows, one is often required to find
flows that satisfy additional restrictions, such as supply and demand constraints
at the sources and sinks, respectively, or specified positive lower bounds on flows
in individual arcs. Most such problems can be reduced to the problem of finding
maximum flows in associated networks. Examples may be found in the books by
Bondy and Murty (1976), Chvátal (1983), Ford and Fulkerson (1962), Lovász and
Plummer (1986), and Schrijver (2003).

Exercises

�7.2.1 Give a proof of Proposition 7.5.

7.2.2 If all the capacities in a network are integer-valued, show that the maximum
flow returned by the Max-Flow Min-Cut Algorithm is integer-valued.

�7.2.3 Show that the Max-Flow Min-Cut Algorithm terminates after a finite num-
ber of incrementing path iterations when all the capacities are rational numbers.

7.2.4 Let f be a function on the arc set A of a network N := N(x, y) such that
0 ≤ f(a) ≤ c(a) for all a ∈ A. Show that f is a flow in N if and only if f is a
nonnegative linear combination of incidence vectors of directed (x, y)-paths.

—————

—————

7.2.5 Degree Sequences of Bipartite Graphs

Let p:=(p1, p2, . . . , pm) and q:=(q1, q2, . . . , qn) be two sequences of nonnegative in-
tegers. The pair (p,q) is said to be realizable by a simple bipartite graph if there ex-
ists a simple bipartite graph G with bipartition ({x1, x2, . . . , xm}, {y1, y2, . . . , yn}),
such that d(xi) = pi, for 1 ≤ i ≤ m, and d(yj) = qj , for 1 ≤ j ≤ n.

a) Formulate as a network flow problem the problem of determining whether a
given pair (p,q) is realizable by a simple bipartite graph.

b) Suppose that q1 ≥ q2 ≥ · · · ≥ qn. Deduce from the Max-Flow Min-Cut Theo-
rem that (p,q) is realizable by a simple bipartite graph if and only if:



7.3 Arc-Disjoint Directed Paths 167

m∑

i=1

pi =
n∑

j=1

qj and
m∑

i=1

min{pi, k} ≥
k∑

j=1

qj for 1 ≤ k ≤ n

(D. Gale and H.J. Ryser)

7.2.6 Degree Sequences of Directed Graphs

Let D be a strict digraph and let p and q be two nonnegative integer-valued
functions on V .

a) Consider the problem of determining whether D has a spanning subdigraph
H such that:

d−H(v) = p(v) and d+
H(v) = q(v) for all v ∈ V

Formulate this as a network flow problem.
b) Deduce from the Max-Flow Min-Cut Theorem that D has a subdigraph H

satisfying the condition in (a) if and only if:
i)
∑

v∈V

p(v) =
∑

v∈V

q(v),

ii)
∑

v∈S

q(v) ≤
∑

v∈T

p(v) + a(S, V \ T ) for all S, T ⊆ V .

c) Taking D to be the complete directed graph on n vertices and applying (b),
find necessary and sufficient conditions for two sequences p := (p1, p2, . . . , pn)
and q := (q1, q2, . . . , qn) to be realizable as the in- and outdegree sequences of
a strict digraph on n vertices.

7.3 Arc-Disjoint Directed Paths

A communications network N with one-way communication links may be modelled
by a directed graph D whose vertices correspond to the stations of N and whose
arcs correspond to its links. In order to be able to relay information in N from
station x to station y, the digraph D must clearly contain a directed (x, y)-path. In
practice, however, the possible failure of communication links (either by accident or
by sabotage) must also be taken into account. For example, if all the directed (x, y)-
paths in D should happen to contain one particular arc, and if the communication
link corresponding to that arc should fail or be destroyed, it would no longer be
possible to relay information from x to y. This situation would not arise if D
contained two arc-disjoint directed (x, y)-paths. More generally, if D had k arc-
disjoint directed (x, y)-paths, x would still be able to send messages to y even if
k− 1 links should fail. The maximum number of arc-disjoint directed (x, y)-paths
is therefore a relevant parameter in this context, and we are led to the following
problem.

Problem 7.10 Arc-Disjoint Directed Paths (ADDP)

Given: a digraph D := D(x, y),
Find: a maximum family of arc-disjoint directed (x, y)-paths in D.
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Let us now look at the network from the viewpoint of a saboteur who wishes
to disrupt communications from x to y. The saboteur will seek to eliminate all
directed (x, y)-paths in D by destroying arcs, preferably as few as possible. Now,
a minimal set of arcs whose deletion destroys all directed (x, y)-paths is nothing
but an (x, y)-cut. The saboteur’s problem can thus be stated as follows.

Problem 7.11 Minimum Arc Cut

Given: a digraph D := D(x, y),
Find: a minimum (x, y)-cut in D.

As the reader might have guessed, these problems can be solved by applying
network flow theory. The concept of a circulation provides the essential link.

Circulations

A circulation in a digraph D is a function f : A→ R which satisfies the conserva-
tion condition at every vertex:

f+(v) = f−(v), for all v ∈ V (7.6)

Figure 7.6a shows a circulation in a digraph.
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Fig. 7.6. (a) A circulation in a digraph, and (b) a circulation associated with a cycle

Circulations in a digraph D can be expressed very simply in terms of the
incidence matrix of D. Recall that this is the matrix M = (mva) whose rows and
columns are indexed by the vertices and arcs of D, respectively, where, for a vertex
v and arc a,

mva :=

⎧
⎨

⎩

1 if a is a link and v is the tail of a
−1 if a is a link and v is the head of a

0 otherwise

The incidence matrix of a digraph is shown in Figure 7.7.
We frequently identify a real-valued function f defined on a set S with the

vector f := (f(a) : a ∈ S). With this convention, the conservation condition (7.6)
for a function f to be a circulation in D may be expressed in matrix notation as:
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1
1 2 3 4 5 6 7 8

u 1 0 0 −1 1 0 0 0
v −1 1 0 0 0 −1 0 0
w 0 0 0 0 −1 1 1 −1
x 0 0 −1 1 0 0 0 1
y 0 −1 1 0 0 0 −1 0

D M

Fig. 7.7. A digraph and its incidence matrix

Mf = 0 (7.7)

where M is the n×m incidence matrix of D and 0 the n× 1 zero-vector.
Circulations and flows can be readily transformed into one another. If f is

a circulation in a digraph D := (V,A), and if a = (y, x) is an arc of D, the
restriction f ′ of f to A\a is an (x, y)-flow of value f(a) in the digraph D′ := D \a
(Exercise 7.3.2). Conversely, if f is an (x, y)-flow in a digraph D := (V,A), and
if D′ is the digraph obtained from D by adding a new arc a′ from y to x, the
extension f ′ of f to A∪ {a′} defined by f ′(a′) := val (f) is a circulation in D′. By
virtue of these transformations, results on flows and circulations go hand in hand.
Often, it is more convenient to study circulations rather than flows because the
conservation condition (7.6) is then satisfied uniformly, at all vertices.

The support of a real-valued function is the set of elements at which its value
is nonzero.

Lemma 7.12 Let f be a nonzero circulation in a digraph. Then the support of f
contains a cycle. Moreover, if f is nonnegative, then the support of f contains a
directed cycle.

Proof The first assertion follows directly from Theorem 2.1, because the support
of a nonzero circulation can contain no vertex of degree less than two. Likewise,
the second assertion follows from Exercise 2.1.11a. �

Certain circulations are of particular interest, namely those associated with
cycles. Let C be a cycle, together with a given sense of traversal. An arc of C is a
forward arc if its direction agrees with the sense of traversal of C, and a reverse
arc otherwise. We denote the sets of forward and reverse arcs of C by C+ and C−,
respectively, and associate with C the circulation fC defined by:

fC(a) :=

⎧
⎨

⎩

1 if a ∈ C+

−1 if a ∈ C−

0 if a �∈ C

It can be seen that fC is indeed a circulation. Figure 7.6b depicts a circulation
associated with a cycle (the sense of traversal being counterclockwise).
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Proposition 7.13 Every circulation in a digraph is a linear combination of the
circulations associated with its cycles.

Proof Let f be a circulation, with support S. We proceed by induction on |S|.
There is nothing to prove if S = ∅. If S is nonempty, then S contains a cycle C
by Lemma 7.12. Let a be any arc of C, and choose the sense of traversal of C so
that fC(a) = 1. Then f ′ := f − f(a)fC is a circulation whose support is a proper
subset of S. By induction, f ′ is a linear combination of circulations associated with
cycles, so f = f ′ + f(a)fC is too. �

There is an analogous statement to Proposition 7.13 in the case where the
circulation is nonnegative. The proof is essentially the same (Exercise 7.3.4).

Proposition 7.14 Every nonnegative circulation in a digraph is a nonnegative
linear combination of the circulations associated with its directed cycles. Moreover,
if the circulation is integer-valued, the coefficients of the linear combination may
be chosen to be nonnegative integers. �

The relationship between circulations and flows described above implies the
following corollary.

Corollary 7.15 Let N := N(x, y) be a network in which each arc is of unit ca-
pacity. Then N has an (x, y)-flow of value k if and only if its underlying digraph
D(x, y) has k arc-disjoint directed (x, y)-paths. �

Menger’s Theorem

In view of Corollary 7.15, Problems 7.10 and 7.11 can both be solved by the
Max-Flow Min-Cut Algorithm. Moreover, the Max-Flow Min-Cut Theorem in this
special context becomes a fundamental min–max theorem on digraphs, due to
Menger (1927).

Theorem 7.16 Menger’s Theorem (Arc Version)

In any digraph D(x, y), the maximum number of pairwise arc-disjoint directed
(x, y)-paths is equal to the minimum number of arcs in an (x, y)-cut. �

There is a corresponding version of Menger’s Theorem for undirected graphs.
As with networks and digraphs, it is convenient to adopt the notation G(x, y) to
signify a graph G with two distinguished vertices x and y. By an xy-cut in a graph
G(x, y), we mean an edge cut ∂(X) such that x ∈ X and y ∈ V \X. We say that
such an edge cut separates x and y.

Theorem 7.17 Menger’s Theorem (Edge Version)

In any graph G(x, y), the maximum number of pairwise edge-disjoint xy-paths is
equal to the minimum number of edges in an xy-cut. �



7.4 Related Reading 171

Theorem 7.17 can be derived quite easily from Theorem 7.16. Likewise, the
undirected version of Problem 7.10 can be solved by applying the Max-Flow Min-
Cut Algorithm to an appropriate network (Exercise 7.3.5). In Chapter 8, we explain
how vertex versions of Menger’s Theorems (7.16 and 7.17) can be derived from
Theorem 7.16. These theorems play a central role in graph theory, as is shown in
Chapter 9.

Exercises

�7.3.1

a) Let D = (V,A) be a digraph, and let f be a real-valued function on A. Show
that f is a circulation in D if and only if f+(X) = f−(X) for all X ⊆ V .

b) Let f be a circulation in a digraph D, with support S. Deduce that:
i) D[S] has no cut edges,
ii) if f is nonnegative, then D[S] has no directed bonds.

�7.3.2 Let f be a circulation in a digraph D := (V,A), and let a = (y, x) be an
arc of D. Show that the restriction f ′ of f to A′ := A \ a is an (x, y)-flow in
D′ := (V,A′) of value f(a).

7.3.3 Let f and f ′ be two flows of equal value in a network N . Show that f − f ′

is a circulation in N .

�7.3.4 Prove Proposition 7.14.

�7.3.5

a) Deduce Theorem 7.17 from Theorem 7.16.
b) The undirected version of Problem 7.10 may be expressed as follows.

Problem 7.18 Edge-Disjoint Paths (EDP)

Given: a graph G := G(x, y),
Find: a maximum family of edge-disjoint xy-paths in G.

Explain how this problem can be solved by applying the Max-Flow Min-Cut
Algorithm to an appropriate network.

—————

—————

7.4 Related Reading

Multicommodity Flows

In this chapter, we have dealt with the problem of transporting a single commodity
along the arcs of a network. In practice, transportation networks are generally
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shared by many users, each wishing to transport a different commodity from one
location to another. This gives rise to the notion of a multicommodity flow. Let
N be a network with k source-sink pairs (xi, yi), 1 ≤ i ≤ k, and let di denote the
demand at yi for commodity i, 1 ≤ i ≤ k. The k-commodity flow problem consists
of finding functions fi : A→ R, 1 ≤ i ≤ k, such that:

(i) fi is a flow in N of value di from xi to yi, 1 ≤ i ≤ k,
(ii) for each arc a of D,

∑k
i=1 fi(a) ≤ c(a).

For a subset X of V , let d(X) denote the quantity
∑
{di : xi ∈ X, yi ∈ V \X}. If

there is a solution to the k-commodity flow problem, the inequality d(X) ≤ c+(X),
known as the cut condition, must hold for all subsets X of V . For k = 1, this cut
condition is equivalent to the condition val (f) ≤ cap (K) of Theorem 7.3. By the
Max-Flow Min-Cut Theorem (7.7), this condition is sufficient for the existence of
a flow of value d1. However, even for k = 2, the cut condition is not sufficient for
the 2-commodity flow problem to have a solution, as is shown by the network with
unit capacities and demands depicted in Figure 7.8a.

There is another noteworthy distinction between the single commodity and the
multicommodity flow problems. Suppose that all capacities and demands are in-
tegers and that there is a k-commodity flow meeting all the requirements. When
k = 1, this implies the existence of such a flow which is integer-valued (Exer-
cise 7.2.2). The same is not true for k ≥ 2. Consider, for example, the network
in Figure 7.8b, again with unit capacities and demands. This network has the 2-
commodity flow (f1, f2), where f1(a) = f2(a) = 1/2 for all a ∈ A, but it has no
2-commodity flow which takes on only integer values.

(a) (b)

x1

x1

x2

x2

y2

y2

y1

y1

Fig. 7.8. Examples of networks: (a) satisfies the cut condition but has no 2-commodity
flow, (b) has a fractional 2-commodity flow, but not one which is integral




