
6

Tree-Search Algorithms

Contents
6.1 Tree-Search . 135

Breadth-First Search and Shortest Paths 137
Depth-First Search . 139
Finding the Cut Vertices and Blocks of a Graph 142

6.2 Minimum-Weight Spanning Trees 145
The Jarńık–Prim Algorithm . 146

6.3 Branching-Search . 149
Finding Shortest Paths in Weighted Digraphs 149
Directed Depth-First Search . 151
Finding the Strong Components of a Digraph 152

6.4 Related Reading. 156
Data Structures . 156

6.1 Tree-Search

We have seen that connectedness is a basic property of graphs. But how does one
determine whether a graph is connected? In the case of small graphs, it is a routine
matter to do so by inspection, searching for paths between all pairs of vertices.
However, in large graphs, such an approach could be time-consuming because the
number of paths to examine might be prohibitive. It is therefore desirable to have
a systematic procedure, or algorithm, which is both efficient and applicable to all
graphs. The following property of the trees of a graph provides the basis for such
a procedure. For a subgraph F of a graph G, we simply write ∂(F) for ∂(V (F)),
and refer to this set as the edge cut associated with F .

Let T be a tree in a graph G. If V (T) = V (G), then T is a spanning tree of G and
we may conclude, by Theorem 4.6, that G is connected. But if V (T) ⊂ V (G), two
possibilities arise: either ∂(T) = ∅, in which case G is disconnected, or ∂(T) �= ∅.
In the latter case, for any edge xy ∈ ∂(T), where x ∈ V (T) and y ∈ V (G) \ V (T),

136 6 Tree-Search Algorithms

the subgraph of G obtained by adding the vertex y and the edge xy to T is again
a tree in G (see Figure 6.1).

r

x

y

Fig. 6.1. Growing a tree in a graph

Using the above idea, one may generate a sequence of rooted trees in G, starting
with the trivial tree consisting of a single root vertex r, and terminating either
with a spanning tree of the graph or with a nonspanning tree whose associated
edge cut is empty. (In practice, this involves scanning the adjacency lists of the
vertices already in the tree, one by one, to determine which vertex and edge to
add to the tree.) We refer to such a procedure as a tree-search and the resulting
tree as a search tree.

If our objective is just to determine whether a graph is connected, any tree-
search will do. In other words, the order in which the adjacency lists are considered
is immaterial. However, tree-searches in which specific criteria are used to deter-
mine this order can provide additional information on the structure of the graph.
For example, a tree-search known as breadth-first search may be used to find the
distances in a graph, and another, depth-first search, to find the cut vertices of a
graph.

The following terminology is useful in describing the properties of search trees.
Recall that an r-tree is a tree with root r. Let T be such a tree. The level of a vertex
v in T is the length of the path rTv. Each edge of T joins vertices on consecutive
levels, and it is convenient to think of these edges as being oriented from the lower
to the higher level, so as to form a branching. Several other terms customarily used
in the study of rooted trees are borrowed from genealogy. For instance, each vertex
on the path rTv, including the vertex v itself, is called an ancestor of v, and each
vertex of which v is an ancestor is a descendant of v. An ancestor or descendant
of a vertex is proper if it is not the vertex itself. Two vertices are related in T if
one is an ancestor of the other. The immediate proper ancestor of a vertex v other
than the root is its predecessor or parent, denoted p(v), and the vertices whose
predecessor is v are its successors or children. Note that the (oriented) edge set of
a rooted tree T := (V (T), E(T)) is determined by its predecessor function p, and
conversely

E(T) = {(p(v), v) : v ∈ V (T) \ {r}}

6.1 Tree-Search 137

where r is the root of T . We often find it convenient to describe a rooted tree by
specifying its vertex set and predecessor function.

For the sake of simplicity, we assume throughout this chapter that our graphs
and digraphs are connected. This assumption results in no real loss of generality.
We may suppose that the components have already been found by means of a
tree-search. Each component may then be treated individually. We also assume
that our graphs and digraphs are free of loops, which play an insignificant role
here.

Breadth-First Search and Shortest Paths

In most types of tree-search, the criterion for selecting a vertex to be added to the
tree depends on the order in which the vertices already in the tree T were added. A
tree-search in which the adjacency lists of the vertices of T are considered on a first-
come first-served basis, that is, in increasing order of their time of incorporation
into T , is known as breadth-first search. In order to implement this algorithm
efficiently, vertices in the tree are kept in a queue; this is just a list Q which is
updated either by adding a new element to one end (the tail of Q) or removing
an element from the other end (the head of Q). At any moment, the queue Q
comprises all vertices from which the current tree could potentially be grown.

Initially, at time t = 0, the queue Q is empty. Whenever a new vertex is added
to the tree, it joins Q. At each stage, the adjacency list of the vertex at the head
of Q is scanned for a neighbour to add to the tree. If every neighbour is already in
the tree, this vertex is removed from Q. The algorithm terminates when Q is once
more empty. It returns not only the tree (given by its predecessor function p), but
also a function : V → N, which records the level of each vertex in the tree and,
more importantly, their distances from r in G. It also returns a function t : V → N

which records the time of incorporation of each vertex into the tree T . We keep
track of the vertices in T by colouring them black. The notation G(x) signifies a
graph G with a specified vertex (or root) x. Recall that an x-tree is a tree rooted
at vertex x.

Algorithm 6.1 Breadth-First Search (BFS)

Input: a connected graph G(r)
Output: an r-tree T in G with predecessor function p, a level function such
that (v) = dG(r, v) for all v ∈ V , and a time function t

1: set i := 0 and Q := ∅
2: increment i by 1
3: colour r black
4: set (r) := 0 and t(r) := i
5: append r to Q
6: while Q is nonempty do
7: consider the head x of Q
8: if x has an uncoloured neighbour y then
9: increment i by 1

138 6 Tree-Search Algorithms

10: colour y black
11: set p(y) := x, (y) := (x) + 1 and t(y) := i
12: append y to Q
13: else
14: remove x from Q
15: end if
16: end while
17: return (p, , t)

The spanning tree T returned by BFS is called a breadth-first search tree,
or BFS-tree, of G. An example of a BFS-tree in a connected graph is shown in
Figure 6.2. The labels of the vertices in Figure 6.2a indicate the times at which
they were added to the tree. The distance function is shown in Figure 6.2b. The
evolution of the queue Q is as follows, the vertices being indicated by their times.

∅ → 1→ 1 2→ 1 2 3→ 1 2 3 4→ 1 2 3 4 5→ 2 3 4 5→ 2 3 4 5 6
→ 2 3 4 5 6 7→ 3 4 5 6 7→ 3 4 5 6 7 8→ 3 4 5 6 7 8 9→ 4 5 6 7 8 9
→ 4 5 6 7 8 9 10→ 5 6 7 8 9 10→ 5 6 7 8 9 10 11→ 6 7 8 9 10 11
→ 6 7 8 9 10 11 12→ 7 8 9 10 11 12→ 8 9 10 11 12→ 9 10 11 12
→ 9 10 11 12 13→ 10 11 12 13→ 11 12 13→ 12 13→ 13→ ∅

01

1

1

1

12

2

2 2

2
2

2

3

3 3

4

5

6
7

8 9

10
11

12 13

(a) (b)

Fig. 6.2. A breadth-first search tree in a connected graph: (a) the time function t, and
(b) the level function �

BFS-trees have two basic properties, the first of which justifies our referring to
 as a level function.

Theorem 6.2 Let T be a BFS-tree of a connected graph G, with root r. Then:

a) for every vertex v of G, (v) = dT (r, v), the level of v in T ,
b) every edge of G joins vertices on the same or consecutive levels of T ; that is,

|(u)− (v)| ≤ 1, for all uv ∈ E

6.1 Tree-Search 139

Proof The proof of (a) is left to the reader (Exercise 6.1.1). To establish (b), it
suffices to prove that if uv ∈ E and (u) < (v), then (u) = (v)− 1.

We first establish, by induction on (u), that if u and v are any two vertices
such that (u) < (v), then u joined Q before v. This is evident if (u) = 0, because
u is then the root of T . Suppose that the assertion is true whenever (u) < k, and
consider the case (u) = k, where k > 0. Setting x := p(u) and y := p(v), it
follows from line 11 of BFS (Algorithm 6.1) that (x) = (u)−1 < (v)−1 = (y).
By induction, x joined Q before y. Therefore u, being a neighbour of x, joined Q
before v.

Now suppose that uv ∈ E and (u) < (v). If u = p(v), then (u) = (v) − 1,
again by line 11 of the algorithm. If not, set y := p(v). Because v was added to
T by the edge yv, and not by the edge uv, the vertex y joined Q before u, hence
(y) ≤ (u) by the claim established above. Therefore (v) − 1 = (y) ≤ (u) ≤
(v)− 1, which implies that (u) = (v)− 1. �

The following theorem shows that BFS runs correctly.

Theorem 6.3 Let G be a connected graph. Then the values of the level function
returned by BFS are the distances in G from the root r:

(v) = dG(r, v), for all v ∈ V

Proof By Theorem 6.2a, (v) = dT (r, v). Moreover, dT (r, v) ≥ dG(r, v) because
T is a subgraph of G. Thus (v) ≥ dG(r, v). We establish the opposite inequality
by induction on the length of a shortest (r, v)-path.

Let P be a shortest (r, v)-path in G, where v �= r, and let u be the predecessor
of v on P . Then rPu is a shortest (r, u)-path, and dG(r, u) = dG(r, v) − 1. By
induction, (u) ≤ dG(r, u), and by Theorem 6.2b, (v)− (u) ≤ 1. Therefore

(v) ≤ (u) + 1 ≤ dG(r, u) + 1 = dG(r, v) �

Alternative proofs of Theorems 6.2 and 6.3 are outlined in Exercise 6.1.2.

Depth-First Search

Depth-first search is a tree-search in which the vertex added to the tree T at each
stage is one which is a neighbour of as recent an addition to T as possible. In
other words, we first scan the adjacency list of the most recently added vertex
x for a neighbour not in T . If there is such a neighbour, we add it to T . If not,
we backtrack to the vertex which was added to T just before x and examine its
neighbours, and so on. The resulting spanning tree is called a depth-first search
tree or DFS-tree.

This algorithm may be implemented efficiently by maintaining the vertices of
T whose adjacency lists have yet to be fully scanned, not in a queue as we did for
breadth-first search, but in a stack. A stack is simply a list, one end of which is
identified as its top; it may be updated either by adding a new element as its top

140 6 Tree-Search Algorithms

or else by removing its top element. In depth-first search, the stack S is initially
empty. Whenever a new vertex is added to the tree T , it is added to S. At each
stage, the adjacency list of the top vertex is scanned for a neighbour to add to T .
If all of its neighbours are found to be already in T , this vertex is removed from S.
The algorithm terminates when S is once again empty. As in breadth-first search,
we keep track of the vertices in T by colouring them black.

Associated with each vertex v of G are two times: the time f(v) when v is
incorporated into T (that is, added to the stack S), and the time l(v) when all the
neighbours of v are found to be already in T , the vertex v is removed from S, and
the algorithm backtracks to p(v), the predecessor of v in T . (The time function l(v)
is not to be confused with the level function (v) of BFS.) The time increments by
one with each change in the stack S. In particular, f(r) = 1, l(v) = f(v) + 1 for
every leaf v of T , and l(r) = 2n.

Algorithm 6.4 Depth-First Search (DFS)

Input: a connected graph G
Output: a rooted spanning tree of G with predecessor function p, and two
time functions f and l

1: set i := 0 and S := ∅
2: choose any vertex r (as root)
3: increment i by 1
4: colour r black
5: set f(r) := i
6: add r to S
7: while S is nonempty do
8: consider the top vertex x of S
9: increment i by 1

10: if x has an uncoloured neighbour y then
11: colour y black
12: set p(y) := x and f(y) := i
13: add y to the top of S
14: else
15: set l(x) := i
16: remove x from S
17: end if
18: end while
19: return (p, f, l)

A DFS-tree of a connected graph is shown in Figure 6.3; the tree is indicated
by solid lines and each vertex v of the tree is labelled by the pair (f(v), l(v)). The
evolution of the stack S is as follows, the vertices being indicated by their times
of incorporation into T .

6.1 Tree-Search 141

(1, 26)
(2, 25)

(3, 24)
(4, 23)

(5, 16)

(6, 15)

(7, 14)

(8, 9)

(10, 13)

(11, 12)

(17, 22)

(18, 21)

(19, 20)

1

2

3

4

5

6

7

8 9 10

11 12

13

14

15

16 17

18

19 20

21

22

23

24

25

26

(a)

(b)

Fig. 6.3. (a) A depth-first search tree of a connected graph, and (b) another drawing of
this tree

∅ → 1→ 1 2→ 1 2 3→ 1 2 3 4→ 1 2 3 4 5→ 1 2 3 4 5 6→ 1 2 3 4 5 6 7
→ 1 2 3 4 5 6 7 8→ 1 2 3 4 5 6 7→ 1 2 3 4 5 6 7 10→ 1 2 3 4 5 6 7 10 11
→ 1 2 3 4 5 6 7 10→ 1 2 3 4 5 6 7→ 1 2 3 4 5 6 → 1 2 3 4 5→ 1 2 3 4→ 1 2 3 4 17
→ 1 2 3 4 17 18→ 1 2 3 4 17 18 19→ 1 2 3 4 17 18→ 1 2 3 4 17→ 1 2 3 4→ 1 2 3
→ 1 2→ 1→ ∅

The following proposition provides a link between the input graph G, its DFS-
tree T , and the two time functions f and l returned by DFS.

Proposition 6.5 Let u and v be two vertices of G, with f(u) < f(v).

a) If u and v are adjacent in G, then l(v) < l(u).
b) u is an ancestor of v in T if and only if l(v) < l(u).

Proof

a) According to lines 8–12 of DFS, the vertex u is removed from the stack S only
after all potential children (uncoloured neighbours) have been considered for
addition to S. One of these neighbours is v, because f(u) < f(v). Thus v is
added to the stack S while u is still in S, and u cannot be removed from S
before v is removed. It follows that l(v) < l(u).

b) Suppose that u is an ancestor of v in T . By lines 9 and 12 of DFS, the values
of f increase along the path uTv. Applying (a) to each edge of this path yields
the inequality l(v) < l(u).

142 6 Tree-Search Algorithms

Now suppose that u is not an ancestor of v in T . Because f(u) < f(v), v is
not an ancestor of u either. Thus u does not lie on the path rTv and v does
not lie on the path rTu. Let s be the last common vertex of these two paths.
Again, because f(u) < f(v), the proper descendants of s on the path rTv
could have been added to the stack S only after all the proper descendants of
s on the path rTu had been removed from it (thereby leaving s as top vertex).
In particular, v could only have been added to S after u had been removed, so
l(u) < f(v). Because f(v) < l(v), we conclude that l(u) < l(v). �

We saw earlier (in Theorem 6.2b) that BFS-trees are characterized by the prop-
erty that every edge of the graph joins vertices on the same or consecutive levels.
The quintessential property of DFS-trees is described in the following theorem.

Theorem 6.6 Let T be a DFS-tree of a graph G. Then every edge of G joins
vertices which are related in T .

Proof This follows almost immediately from Proposition 6.5. Let uv be an edge
of G. Without loss of generality, suppose that f(u) < f(v). By Proposition 6.5a,
l(v) < l(u). Now Proposition 6.5b implies that u is an ancestor of v, so u and v
are related in T . �

Finding the Cut Vertices and Blocks of a Graph

In a graph which represents a communications network, the cut vertices of the
graph correspond to centres whose breakdown would disrupt communications. It
is thus important to identify these sites, so that precautions may be taken to reduce
the vulnerability of the network. Tarjan (1972) showed how this problem can be
solved efficiently by means of depth-first search.

While performing a depth-first search of a graph G, it is convenient to orient the
edges of G with respect to the DFS-tree T . We orient each tree edge from parent
to child, and each nontree edge (whose ends are related in T , by Theorem 6.6)
from descendant to ancestor. The latter edges are called back edges. The following
characterization of cut vertices is an immediate consequence of Theorem 6.6.

Theorem 6.7 Let T be a DFS-tree of a connected graph G. The root of T is a cut
vertex of G if and only if it has at least two children. Any other vertex of T is a
cut vertex of G if and only if it has a child no descendant of which dominates (by
a back edge) a proper ancestor of the vertex. �

Let us see how depth-first search may be used to find the cut vertices and
blocks of a (connected) graph in linear time; that is, in time proportional to the
number of edges of the graph.

Let T be a DFS-tree of a connected graph G, and let B be a block of G. Then
T ∩B is a tree in G (Exercise 5.2.8b). Moreover, because T is a rooted tree, we may
associate with B a unique vertex, the root of the tree T ∩ B. We call this vertex

6.1 Tree-Search 143

the root of B with respect to T . It is the first vertex of B to be incorporated into
T . Note that the cut vertices of G are just the roots of blocks (with the exception
of r, if it happens to be the root of a single block). Thus, in order to determine the
cut vertices and blocks of G, it suffices to identify these roots. It turns out that
one can do so during the execution of depth-first search.

To this end, we consider the function f∗ : V → N defined as follows. If some
proper ancestor of v can be reached from v by means of a directed path consisting
of tree edges (possibly none) followed by one back edge, f∗(v) is defined to be
the least f -value of such an ancestor; if not, we set f∗(v) := f(v). Observe, now,
that a vertex v is the root of a block if and only if it has a child w such that
f∗(w) ≥ f(v).

The function f∗ can be computed while executing depth-first search (see Ex-
ercise 6.1.12), and the criterion for roots of blocks may be checked at the same
time. Thus the roots of the blocks of G, as well as the blocks themselves, can be
determined in linear time.

The roots of the blocks of a graph with respect to a DFS-tree are shown in
Figure 6.4. The pair (f(v), l(v)) is given for each vertex v. We leave it to the reader
to orient the edges of G as described above, and to compute the function f∗.

r
(1, 26)

(2, 9)

(3, 8)

(4, 7)

(5, 6)
(10, 25)

(11, 12) (13, 24)

(14, 23)

(15, 22)

(16, 19)

(17, 18)

(20, 21)

Fig. 6.4. Finding the cut vertices and blocks of a graph by depth-first search

Exercises

�6.1.1 Let T be a BFS-tree of a connected graph G. Show that (v) = dT (r, v),
for all v ∈ V .

6.1.2

a) Let T be a BFS-tree of a connected graph G and let z denote the last vertex
to enter T . Show that T − z is a BFS-tree of G− z.

b) Using (a), give inductive proofs of Theorems 6.2 and 6.3.

144 6 Tree-Search Algorithms

6.1.3 Refine Algorithm 6.1 (breadth-first search) so that it returns either a bipar-
tition of the graph (if the graph is bipartite) or an odd cycle (if it is not).

6.1.4 Describe an algorithm based on breadth-first search for finding a shortest
odd cycle in a graph.

6.1.5 Let G be a Moore graph (defined in Exercise 3.1.12). Show that all BFS-trees
of G are isomorphic.

6.1.6 Let T be a DFS-tree of a nontrivial connected simple graph G, and let v be
the root of a block B of G. Show that the degree of v in T ∩B is one.

—————

—————

6.1.7 For a connected graph G, define σ(G) :=
∑
{d(u, v) : u, v ∈ V }.

a) Let G be a connected graph. For v ∈ V , let Tv be a breadth-first search tree
of G rooted at v. Show that

∑
v∈V σ(Tv) = 2(n− 1)σ(G).

b) Deduce that every connected graph G has a spanning tree T such that σ(T) ≤
2(1− 1

n)σ(G). (R.C. Entringer, D.J. Kleitman and L. Székely)

6.1.8 Let T be a rooted tree. Two breadth-first searches of T (starting at its root)
are distinct if their time functions t differ. Likewise, two depth-first searches of T
are distinct if at least one of their time functions f and l differ. Show that the
number of distinct breadth-first searches of the tree T is equal to the number of
distinct depth-first searches of T , and that this number is precisely

∏
{n(v)! : v ∈

V (T)}, where n(v) is the number of children of v in T (and 0! = 1).

6.1.9 Let G be a connected graph, let x be a vertex of G, and let T be a spanning
tree of G which maximizes the function

∑
{dT (x, v) : v ∈ V }. Show that T is a

DFS-tree of G. (Zs. Tuza)

�6.1.10 Let G be a connected graph in which every DFS-tree is a Hamilton path
(rooted at one end). Show that G is a cycle, a complete graph, or a complete
bipartite graph in which both parts have the same number of vertices.

(G. Chartrand and H.V. Kronk)

6.1.11 Chord of a Cycle

A chord of a cycle C in a graph G is an edge in E(G) \ E(C) both of whose ends
lie on C. Let G be a simple graph with m ≥ 2n − 3, where n ≥ 4. Show that G
contains a cycle with at least one chord. (L. Pósa)

�6.1.12

a) Let G be a connected graph and T a DFS-tree of G, where the edges of T are
oriented from parent to child, and the back edges from descendant to ancestor.
For v ∈ V , set:

g(v) := min{f(w) : (v, w) ∈ E(G) \ E(T)}
h(v) := min{f∗(w) : (v, w) ∈ E(T)}

6.2 Minimum-Weight Spanning Trees 145

Show that:
i) the function f∗ may be computed recursively by the formula

f∗(v) = min{f(v), g(v), h(v)}

ii) a nonroot vertex v of T is a cut vertex of G if and only if f(v) ≤ h(v).
b) Refine Algorithm 6.4 (Depth-First Search) so that it returns the cut vertices

and the blocks of a connected graph. (R.E. Tarjan)

6.1.13 Let G be a simple connected graph, and let w : V → Z be a weight function
on V such that

∑
v∈V w(v) ≥ m − n + 1. For X ⊂ V , the move MX consists of

distributing a unit weight from each vertex of X to each of its neighbours in V \X
(so that the weight of a vertex v of V \X increases by dX(v)).

a) Show that the weight can be made nonnegative at each vertex by means of a
sequence of moves.

b) Show that this is no longer necessarily true if
∑

v∈V w(v) ≤ m− n.
(M. Baker and S. Norine)

6.2 Minimum-Weight Spanning Trees

An electric grid is to be set up in China, linking the cities of Beijing, Chongqing,
Guangdong, Nanjing, Shanghai, Tianjin, and Wuhan to the Three Gorges gener-
ating station situated at Yichang. The locations of these cities and the distances
(in kilometres) between them are given in Figure 6.5. How should the grid be
constructed so that the total connection distance is as small as possible?

B

C

G

N
S

T

WY

C G N S T W Y
B 1457 1892 901 1078 111 1057 1117
C – 978 1199 1430 1442 750 473
G – – 1133 1197 1820 837 867
N – – – 267 800 459 727
S – – – – 970 681 962
T – – – – – 988 1080
W – – – – – – 285

Fig. 6.5. The China hydro-electric grid problem

146 6 Tree-Search Algorithms

The table in Figure 6.5 determines a weighted complete graph with vertices B,
C, G, N , S, T , W , and Y . Our problem amounts to finding, in this graph, a con-
nected spanning subgraph of minimum weight. Because the weights are positive,
this subgraph will be a spanning tree.

More generally, we may consider the following problem.

Problem 6.8 Minimum-Weight Spanning Tree

Given: a weighted connected graph G,
Find: a minimum-weight spanning tree T in G.

For convenience, we refer to a minimum-weight spanning tree as an optimal
tree.

The Jarńık–Prim Algorithm

The Minimum-Weight Spanning Tree Problem (6.8) can be solved by means of a
tree-search due to Jarńık (1930) and Prim (1957). In this algorithm, which we call
the Jarńık–Prim Algorithm, an arbitrary vertex r is selected as the root of T , and
at each stage the edge added to the current tree T is any edge of least weight in
the edge cut associated with T .

As in breadth-first and depth-first search, the vertices of T are coloured black.
Also, in order to implement the above tree-search efficiently, each uncoloured vertex
v is assigned a provisional cost c(v). This is the least weight of an edge linking
v to some black vertex u, if there is such an edge, in which case we assign u as
provisional predecessor of v, denoted p(v). Initially, each vertex has infinite cost
and no predecessor. These two provisional labels are updated at each stage of the
algorithm.

Algorithm 6.9 The Jarńık–Prim Algorithm

Input: a weighted connected graph (G,w)
Output: an optimal tree T of G with predecessor function p, and its weight
w(T)
1: set p(v) := ∅ and c(v) :=∞, v ∈ V , and w(T) := 0
2: choose any vertex r (as root)
3: replace c(r) by 0
4: while there is an uncoloured vertex do
5: choose such a vertex u of minimum cost c(u)
6: colour u black
7: for each uncoloured vertex v such that w(uv) < c(v) do
8: replace p(v) by u and c(v) by w(uv)
9: replace w(T) by w(T) + c(u)

10: end for
11: end while
12: return (p, w(T))

6.2 Minimum-Weight Spanning Trees 147

In practice, the set of uncoloured vertices and their costs are kept in a structure
called a priority queue. Although this is not strictly a queue as defined earlier, the
vertex of minimum cost is always located at the head of the queue (hence the
‘priority’) and can therefore be accessed immediately. Furthermore, the ‘queue’ is
structured so that it can be updated rather quickly when this vertex is removed
(coloured black), or when the costs are modified (as in line 9 of the Jarńık–Prim
Algorithm). As to how this can be achieved is outlined in Section 6.4.

We call a rooted spanning tree output by the Jarńık–Prim Algorithm a Jarńık–
Prim tree. The construction of such a tree in the electric grid graph is illustrated
(not to scale) in Figure 6.6, the edges being numbered according to the order in
which they are added.

In step 1, Yichang (Y) is chosen as the root. No vertex has yet been coloured.
Because c(Y) = 0, and c(v) =∞ for every other vertex v, vertex Y is chosen as u in
step 2, and coloured black. All uncoloured vertices are assigned Y as predecessor,
and their costs are reduced to:

c(B) = 1117, c(C) = 473, c(G) = 867

c(N) = 727, c(S) = 962, c(T) = 1080, c(W) = 285

The weight of the tree T remains zero.
In the second iteration of step 2, W is selected as the vertex u and coloured

black. The predecessors of the uncoloured vertices, and their costs, become:

p(B) = W, p(C) = Y, p(G) = W, p(N) = W, p(S) = W, p(T) = W

c(B) = 1057, c(C) = 473, c(G) = 837, c(N) = 459, c(S) = 681, c(T) = 988

and w(T) is increased to 285.
In the third iteration of step 2, N is selected as the vertex u and coloured black.

The predecessors of the uncoloured vertices, and their costs, become:

p(B) = N, p(C) = Y, p(G) = W, p(S) = N, p(T) = N

c(B) = 901, c(C) = 473, c(G) = 837, c(S) = 267, c(T) = 800

and w(T) is increased to 285 + 459 = 744.
This procedure continues until all the vertices are coloured black. The total

length of the grid thereby constructed is 3232 kilometres.
The following theorem shows that the algorithm runs correctly.

Theorem 6.10 Every Jarńık–Prim tree is an optimal tree.

Proof Let T be a Jarńık–Prim tree with root r. We prove, by induction on v(T),
that T is an optimal tree. The first edge added to T is an edge e of least weight
in the edge cut associated with {r}; in other words, w(e) ≤ w(f) for all edges
f incident with r. To begin with, we show that some optimal tree includes this
edge e. Let T ∗ be an optimal tree. We may assume that e �∈ E(T ∗). Thus T ∗ + e

148 6 Tree-Search Algorithms

B

C

G

N
S

T

W
Y

6

3

1

2

4

5

7

Fig. 6.6. An optimal tree returned by the Jarńık–Prim Algorithm

contains a unique cycle C. Let f be the other edge of C incident with r. Then
T ∗∗ := (T ∗ + e) \ f is a spanning tree of G. Moreover, because w(e) ≤ w(f),

w(T ∗∗) = w(T ∗) + w(e)− w(f) ≤ w(T ∗)

As T ∗ is an optimal tree, equality must hold, so T ∗∗ is also an optimal tree.
Moreover, T ∗∗ contains e.

Now consider the graph G′ := G/e, and denote by r′ the vertex resulting
from the contraction of e. There is a one-to-one correspondence between the set
of spanning trees of G that contain e and the set of all spanning trees of G′

(Exercise 4.2.1a). Thus, to show that the final tree T is an optimal tree of G, it
suffices to show that T ′ := T / e is an optimal tree of G′. We claim that T ′ is a
Jarńık–Prim tree of G′ rooted at r′.

Consider the current tree T at some stage of the Jarńık–Prim Algorithm. We
assume that T is not simply the root vertex r, and thus includes the edge e. Let
T ′ := T / e. Then ∂(T) = ∂(T ′), so an edge of minimum weight in ∂(T) is also
an edge of minimum weight in ∂(T ′). Because the final tree T is a Jarńık–Prim
tree of G, we deduce that the final tree T ′ is a Jarńık–Prim tree of G′. As G′ has
fewer vertices than G, it follows by induction that T ′ is an optimal tree of G′. We
conclude that T is an optimal tree of G. �

The history of the Jarńık–Prim Algorithm is described by Korte and Nešetřil
(2001). A second algorithm for solving Problem 6.8, based on another approach,
is presented in Section 8.5.

Exercises

�6.2.1 Let (G,w) be a weighted connected graph whose edges have distinct
weights. Show that G has a unique optimal tree.

6.3 Branching-Search 149

6.2.2 Let (G,w) be a weighted connected graph. Show that a spanning tree T of
G is optimal if and only if, for each edge e ∈ E \ T and each edge f ∈ Ce (the
fundamental cycle of G with respect to T), w(e) ≥ w(f).

6.2.3 Let (G,w) be a weighted connected graph. Show that a spanning tree T
of G is optimal if and only if, for each edge e ∈ T and each edge f ∈ Be (the
fundamental bond of G with respect to T), w(e) ≤ w(f).

—————

—————

6.2.4 Let (G,w) be a weighted connected graph (with positive weights). Describe
an algorithm for finding a spanning tree the product of whose weights is minimum.

6.2.5 Let T be an optimal spanning tree in a weighted connected graph (G,w),
and let x and y be two vertices of G. Show that the path xTy is an xy-path of
minimum weight in G.

6.2.6 Let T be an optimal spanning tree in a weighted connected graph (G,w).

a) Show that T is a spanning tree whose largest edge-weight is minimum.
b) Give an example of a weighted connected graph (G,w) and a spanning tree

T of G whose largest edge-weight is minimum, but which is not an optimal
spanning tree of G.

6.3 Branching-Search

One can explore directed graphs in much the same way as undirected graphs,
but by growing branchings rather than rooted trees. Starting with the branching
consisting of a single vertex r, its root, one adds one arc at a time, together with its
head, the arc being selected from the outcut associated with the current branching.
The procedure terminates either with a spanning branching of the digraph or with
a nonspanning branching whose associated outcut is empty. Note that the latter
outcome may well arise even if the digraph is connected. Indeed, the vertex set of
the final branching is precisely the set of vertices of the digraph that are reachable
by directed paths from r. We call the above procedure branching-search.

As with tree-search, branching-search may be refined by restricting the choice
of the arc to be added at each stage. In this way, we obtain directed versions of
breadth-first search and depth-first search. We discuss two important applications
of branching-search. The first is an extension of directed BFS to weighted directed
graphs, the second an application of directed DFS.

Finding Shortest Paths in Weighted Digraphs

We have seen how breadth-first search can be used to determine shortest paths in
graphs. In practice, one is usually faced with problems of a more complex nature.
Given a one-way road system in a city, for instance, one might wish to determine a

150 6 Tree-Search Algorithms

shortest route between two specified locations in the city. This amounts to finding a
directed path of minimum weight connecting two specified vertices in the weighted
directed graph whose vertices are the road junctions and whose arcs are the roads
linking these junctions.

Problem 6.11 Shortest Path

Given: a weighted directed graph (D,w) with two specified vertices x and y,
Find: a minimum-weight directed (x, y)-path in D.

For clarity of exposition, we refer to the weight of a directed path in a weighted
digraph as its length. In the same vein, by a shortest directed (x, y)-path we mean
one of minimum weight, and this weight is the distance from x to y, denoted d(x, y).
For example, the path indicated in the graph of Figure 6.7 is a shortest directed
(x, y)-path (Exercise 6.3.1) and d(x, y) = 3 + 1 + 2 + 1 + 2 + 1 + 2 + 4 = 16. When
all the weights are equal to one, these definitions coincide with the usual notions
of length and distance.

x
y

1

1

1

1

1
1

2

2

2

2

3

3

4

4

4
4

5

6

6
7

7

Fig. 6.7. A shortest directed (x, y)-path in a weighted digraph

It clearly suffices to deal with the shortest path problem for strict digraphs, so
we assume that this is the case here. We also assume that all weights are positive.
Arcs of weight zero can always be contracted. However, the presence of negative
weights could well lead to complications. If the digraph should contain directed
cycles of negative weight, there might exist (x, y)-walks which are shorter than
any (x, y)-path — indeed, ones of arbitrarily small (negative) length — and this
eventuality renders shortest path algorithms based on branching-search, such as
the one described below, totally ineffective (see Exercise 6.3.3). On the other hand,
when all weights are positive, the shortest path problem can be solved efficiently
by means of a branching-search due to Dijkstra (1959).

Although similar in spirit to directed breadth-first search, Dijkstra’s Algorithm
bears a resemblance to the Jarńık–Prim Algorithm in that provisional labels are
assigned to vertices. At each stage, every vertex v of the current branching B is
labelled by its predecessor in B, p(v), and its distance from r in B, (v) := dB(r, v).
In addition, each vertex v which is not in B but is an outneighbour of some vertex in
B, is labelled with a provisional predecessor p(v) and a provisional distance (v),

6.3 Branching-Search 151

namely, the length of a shortest directed (r, v)-path in D all of whose internal
vertices belong to B. The rule for selecting the next vertex and edge to add to the
branching depends only on these provisional distances.

Algorithm 6.12 Dijkstra’s Algorithm

Input: a positively weighted digraph (D,w) with a specified vertex r
Output: an r-branching in D with predecessor function p, and a function
 : V → R

+ such that (v) = dD(r, v) for all v ∈ V

1: set p(v) := ∅, v ∈ V , (r) := 0, and (v) :=∞, v ∈ V \ {r}
2: while there is an uncoloured vertex u with (u) <∞ do
3: choose such a vertex u for which (u) is minimum
4: colour u black
5: for each uncoloured outneighbour v of u with (v) > (u) + w(u, v) do
6: replace p(v) by u and (v) by (u) + w(u, v)
7: end for
8: end while
9: return (p,)

Dijkstra’s Algorithm, like the Jarńık–Prim Algorithm, may be implemented by
maintaining the uncoloured vertices and their distances in a priority queue. We
leave it to the reader to verify that the algorithm runs correctly (Exercise 6.3.2).

Directed Depth-First Search

Directed BFS (the unweighted version of Dijkstra’s Algorithm) is a straightforward
analogue of BFS; the labelling procedure is identical, and the branching-search
terminates once all vertices reachable from the root have been found. Directed
DFS, on the other hand, involves a slight twist: whenever the branching-search
comes to a halt, an uncoloured vertex is selected and the search is continued
afresh with this vertex as root. The end result is a spanning branching forest of
the digraph, which we call a DFS-branching forest.

Algorithm 6.13 Directed Depth-First Search (Directed DFS)

Input: a digraph D
Output: a spanning branching forest of D with predecessor function p, and
two time functions f and l

1: set i := 0 and S := ∅
2: while there is an uncoloured vertex do
3: choose any uncoloured vertex r (as root)
4: increment i by 1
5: colour r black
6: set f(r) := i
7: add r to S
8: while S is nonempty do
9: consider the top vertex x of S

152 6 Tree-Search Algorithms

10: increment i by 1
11: if x has an uncoloured outneighbour y then
12: colour y black
13: set p(y) := x and f(y) := i
14: add y as the top vertex of S
15: else
16: set l(x) := i
17: remove x from S
18: end if
19: end while
20: end while
21: return (p, f, l)

Directed DFS has many applications. One is described below, and several others
are outlined in exercises (6.3.6, 6.3.7, 6.3.8, 6.3.13). In these applications, it is
convenient to distinguish three types of arcs of D, apart from those in the DFS-
branching-forest F .

An arc (u, v) ∈ A(D) \ A(F) is a forward arc if u is an ancestor of v in F , a
back arc if u is a descendant of v in F , and a cross arc if u and v are unrelated in
F and u was discovered after v. In terms of the time functions f and l:

� (u, v) is a forward arc if f(u) < f(v) and l(v) < l(u),
� (u, v) is a back arc if f(v) < f(u) and l(u) < l(v),
� (u, v) is a cross arc if l(v) < f(u).

The directed analogue of Theorem 6.6, whose proof is left as an exercise (6.3.4),
says that these arcs partition A(D) \A(F).

Theorem 6.14 Let F be a DFS-branching forest of a digraph D. Then each arc
of A(D) \A(F) is a forward arc, a back arc, or a cross arc. �

Finding the Strong Components of a Digraph

The strong components of a digraph can be found in linear time by using directed
DFS. The basic idea is similar to the one employed for finding the blocks of an
undirected graph, but is slightly more complicated.

The following proposition shows how the vertices of the strong components
of D are disposed in F . Observe that forward arcs play no role with respect to
reachability in D because any forward arc can be replaced by the directed path in
F connecting its ends. We may therefore assume that there are no such arcs in D.

Proposition 6.15 Let D be a directed graph, C a strong component of D, and F
a DFS-branching forest in D. Then F ∩ C is a branching.

Proof Each component of F ∩ C is contained in F , and thus is a branching.
Furthermore, vertices of C which are related in F necessarily belong to the same

6.3 Branching-Search 153

component of F ∩C, because the directed path in F connecting them is contained
in C also (Exercise 3.4.3).

Suppose that F ∩ C has two distinct components, with roots x and y. As
remarked above, x and y are not related in F . We may suppose that f(x) < f(y).
Because x and y belong to the same strong component C of D, there is a directed
(x, y)-path P in C, and because f(x) < f(y), there must be an arc (u, v) of P
with f(u) < f(y) and f(v) ≥ f(y). This arc can be neither a cross arc nor a back
arc, since f(u) < f(v). It must therefore be an arc of F , because we have assumed
that there are no forward arcs. Therefore l(v) < l(u). If u and y were unrelated,
we would have l(u) < f(y). But this would imply that f(v) < l(v) < l(u) < f(y),
contradicting the fact that f(v) ≥ f(y). We conclude that u is a proper ancestor
of y, and belongs to the same component of F ∩ C as y. But this contradicts our
assumption that y is the root of this component. �

By virtue of Proposition 6.15, we may associate with each strong component C
of D a unique vertex, the root of the branching F ∩ C. As with blocks, it suffices
to identify these roots in order to determine the strong components of D. This can
be achieved by means of a supplementary branching-search. We leave the details
as an exercise (Exercise 6.3.12).

Exercises

6.3.1 By applying Dijkstra’s Algorithm, show that the path indicated in Figure 6.7
is a shortest directed (x, y)-path.

�6.3.2 Prove that Dijkstra’s Algorithm runs correctly.

�6.3.3 Apply Dijkstra’s Algorithm to the directed graph with negative weights
shown in Figure 6.8. Does the algorithm determine shortest directed (r, v)-paths
for all vertices v?

x

y

z

r

−1−1

1

1 2

Fig. 6.8. Apply Dijkstra’s Algorithm to this weighted directed graph (Exercise 6.3.3)

�6.3.4 Prove Theorem 6.14.

154 6 Tree-Search Algorithms

6.3.5 Describe an algorithm based on directed breadth-first search for finding a
shortest directed odd cycle in a digraph.

6.3.6 Describe an algorithm based on directed depth-first search which accepts as
input a directed graph D and returns a maximal (but not necessarily maximum)
acyclic spanning subdigraph of D.

—————

—————

6.3.7 Describe an algorithm based on directed depth-first search which accepts as
input a tournament T and returns a directed Hamilton path of T .

6.3.8 Describe an algorithm based on directed depth-first search which accepts as
input a directed graph D and returns either a directed cycle in D or a topological
sort of D (defined in Exercise 2.1.11).

6.3.9 Bellman’s Algorithm

Prove the validity of the following algorithm, which accepts as input a topological
sort Q of a weighted acyclic digraph (D,w), with first vertex r, and returns a
function : V → R such that (v) = dD(r, v) for all v ∈ V , and a branching B
(given by a predecessor function p) such that rBv is a shortest directed (r, v)-path
in D for all v ∈ V such that dD(r, v) <∞. (R. Bellman)

1: set (v) :=∞, p(v) := ∅, v ∈ V
2: remove r from Q
3: set (r) := 0
4: while Q is nonempty do
5: remove the first element y from Q
6: for all x ∈ N−(y) do
7: if (x) + w(x, y) < (y) then
8: replace (y) by (x) + w(x, y) and p(y) by x
9: end if

10: end for
11: end while
12: return (, p).

6.3.10 Let D := (D,w) be a weighted digraph with a specified root r from which
all other vertices are reachable. A negative directed cycle is one whose weight is
negative.

a) Show that if D has no negative directed cycles, then there exists a spanning
r-branching B in D such that, for each v ∈ V , the directed path rBv is a
shortest directed (r, v)-path in D.

b) Give an example to show that this conclusion need not hold if D has negative
directed cycles.

6.3.11 Bellman–Ford Algorithm

Let D := (D,w) be a weighted digraph with a specified root r from which all other

6.3 Branching-Search 155

vertices of D are reachable. For each nonnegative integer k, let dk(v) denote the
weight of a shortest directed (r, v)-walk using at most k arcs, with the convention
that dk(v) = ∞ if there is no such walk. (Thus d0(r) = 0 and d0(v) = ∞ for all
v ∈ V \ {r}.)
a) Show that the dk(v) satisfy the following recursion.

dk(v) = min{dk−1(v),min{dk−1(u) + w(u, v) : u ∈ N−(v)}}

b) For each of the weighted digraphs shown in Figure 6.9, compute dk := (dk(v) :
v ∈ V) for k = 0, 1, . . . , 6.

c) Show that:
i) if dk �= dk−1 for all k, 1 ≤ k ≤ n, then D contains a negative directed

cycle,
ii) if dk = dk−1 for some k, 1 ≤ k ≤ n, then D contains no negative directed

cycle, and dk(v) is the distance from r to v, for all v ∈ V .
d) In the latter case, describe how to find a spanning r-branching B of D such

that, for each v ∈ V , the directed (r, v)-path in B is a shortest directed (r, v)-
path in D. (R. Bellman; L.R. Ford; E.F. Moore; A. Shimbel)

(a) (b)

x x

y y

r r

u u

v v

11

1

1

1

1

1

2

−2−2

3 3

−3−3

Fig. 6.9. Examples for the Bellman–Ford Algorithm (Exercise 6.3.11)

�6.3.12 Finding the strong components of a digraph.
Let D be a digraph, and let F be a DFS-branching forest of D. Denote by D′ the
converse of the digraph obtained from D by deleting all cross edges. By Proposi-
tion 6.15, it suffices to consider each component of D′ separately, so we assume
that D′ has just one component.

a) Show that the set of vertices reachable from the root r in D′ induces a strong
component of D.

b) Apply this idea iteratively to obtain all strong components of D (taking care
to select each new root appropriately).

c) Implement this procedure by employing branching-search.

156 6 Tree-Search Algorithms

6.3.13 The diameter of a directed graph is the maximum distance between any
two vertices of the graph. (Thus a directed graph is of finite diameter if and only
if it is strong.) Let G be a 2-edge-connected graph and P a longest path in G. By
Robbins’ Theorem (5.10), G has a strong orientation. Show that:

a) no strong orientation of G has diameter exceeding the length of P ,
b) some strong orientation of G has diameter equal to the length of P .

(G. Gutin)

6.4 Related Reading

Data Structures

We have discussed in this chapter algorithms for resolving various problems ex-
peditiously. The efficiency of these algorithms can be further enhanced by storing
and managing the data involved in an appropriate structure. For example, a data
structure known as a heap is commonly used for storing elements and their asso-
ciated values, called keys (such as edges and their weights). A heap is a rooted
binary tree T whose vertices are in one-to-one correspondence with the elements
in question (in our case, vertices or edges). The defining property of a heap is that
the key of the element located at vertex v of T is required to be at least as large
as the keys of the elements located at vertices of the subtree of T rooted at v.
This condition implies, in particular, that the key of the element at the root of
T is one of greatest value; that element can thus be accessed instantly. Moreover,
heaps can be reconstituted rapidly following small modifications such as the addi-
tion of an element, the removal of an element, or a change in the value of a key.
A priority queue (the data structure used in both Dijkstra’s Algorithm and the
Jarńık–Prim Algorithm) is simply a heap equipped with procedures for performing
such readjustments rapidly. Heaps were conceived by Williams (1964).

It should be evident that data structures play a vital role in the efficiency of
algorithms. For further information on this topic, we refer the reader to Knuth
(1969), Aho et al. (1983), Tarjan (1983), or Cormen et al. (2001).

