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4.1 Forests and Trees

Recall that an acyclic graph is one that contains no cycles. A connected acyclic
graph is called a tree. The trees on six vertices are shown in Figure 4.1. According
to these definitions, each component of an acyclic graph is a tree. For this reason,
acyclic graphs are usually called forests.

In order for a graph to be connected, there must be at least one path between
any two of its vertices. The following proposition, an immediate consequence of
Exercise 2.2.12, says that trees are the connected graphs which just meet this
requirement.

Proposition 4.1 In a tree, any two vertices are connected by exactly one path. �

Following Diestel (2005), we denote the unique path connecting vertices x and
y in a tree T by xTy.

By Theorem 2.1, any graph in which all degrees are at least two contains a cycle.
Thus, every tree contains a vertex of degree at most one; moreover, if the tree is
nontrivial, it must contain a vertex of degree exactly one. Such a vertex is called
a leaf of the tree. In fact, the following stronger assertion is true (Exercise 2.1.2).
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Fig. 4.1. The trees on six vertices

Proposition 4.2 Every nontrivial tree has at least two leaves. �

If x is a leaf of a tree T , the subgraph T−x is a tree with v(T−x) = v(T )−1 and
e(T − x) = e(T )− 1. Because the trivial tree has no edges, we have, by induction
on the number of vertices, the following relationship between the numbers of edges
and vertices of a tree.

Theorem 4.3 If T is a tree, then e(T ) = v(T )− 1. �

Rooted Trees and Branchings

A rooted tree T (x) is a tree T with a specified vertex x, called the root of T . An
orientation of a rooted tree in which every vertex but the root has indegree one is
called a branching. We refer to a rooted tree or branching with root x as an x-tree
or x-branching, respectively.

There is an evident bijection between x-trees and x-branchings. An x-path thus
give rise to a simple example of a branching, a directed x-path. Another example
of a branching is shown in Figure 4.2.

Observe that the root of this branching is a source. This is always so, because
the sum of the indegrees of a digraph is equal to its number of arcs (Exercise 1.5.2)

Fig. 4.2. A branching
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which, in the case of a branching B, is v(B) − 1 by Theorem 4.3. Observe, also,
that every vertex of a branching is reachable from its root by a unique directed
path. Conversely, in any digraph, reachability from a vertex may be expressed in
terms of its branchings. We leave the proof of this fact as an exercise (4.1.6).

Theorem 4.4 Let x be a vertex of a digraph D, and let X be the set of vertices
of D which are reachable from x. Then there is an x-branching in D with vertex
set X. �

Proof Technique: Ordering Vertices

Among the n! linear orderings of the n vertices of a graph, certain ones are
especially interesting because they encode particular structural properties. An
elementary example is an ordering of the vertices according to their degrees,
in decreasing order. More interesting orderings can be obtained by considering
the global structure of the graph, rather than just its local structure, as in
Exercise 2.2.18. We describe a second example here. Others will be encoun-
tered in Chapters 6, 14, and 19, as well as in a number of exercises.
In general, graphs contain copies of many different trees. Indeed, every simple
graph with minimum degree k contains a copy of each rooted tree on k + 1
vertices, rooted at any given vertex of the graph (Exercise 4.1.9). The analo-
gous question for digraphs (with rooted trees replaced by branchings) is much
more difficult. However, in the case of tournaments it can be answered by
considering a rather natural ordering of the vertices of the tournament.
A median order of a digraph D = (V,A) is a linear order v1, v2, . . . , vn of its
vertex set V such that |{(vi, vj) : i < j}| (the number of arcs directed from
left to right) is as large as possible. In the case of a tournament, such an
order can be viewed as a ranking of the players which minimizes the number
of upsets (matches won by the lower-ranked player). As we shall see, median
orders of tournaments reveal a number of interesting structural properties.
Let us first note two basic properties of median orders of tournaments (Ex-
ercise 4.1.10). Let T be a tournament and v1, v2, . . . , vn a median order of T .
Then, for any two indices i, j with 1 ≤ i < j ≤ n:

(M1) the interval vi, vi+1, . . . , vj is a median order of the induced subtourna-
ment T [{vi, vi+1, . . . , vj}],

(M2) vertex vi dominates at least half of the vertices vi+1, vi+2, . . . , vj , and
vertex vj is dominated by at least half of the vertices vi, vi+1, . . . , vj−1.

In particular, each vertex vi, 1 ≤ i < n, dominates its successor vi+1. The
sequence (v1, v2, . . . , vn) is thus a directed Hamilton path, providing an alter-
native proof (see Locke (1995)) of Rédei’s Theorem (2.3): every tournament
has a directed Hamilton path.
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Ordering Vertices (continued)

By exploiting the properties of median orders, Havet and Thomassé (2000)
showed that large tournaments contain all large branchings.

Theorem 4.5 Any tournament on 2k vertices contains a copy of each branch-
ing on k + 1 vertices.

Proof Let v1, v2, . . . , v2k be a median order of a tournament T on 2k vertices,
and let B be a branching on k+1 vertices. Consider the intervals v1, v2, . . . , vi,
1 ≤ i ≤ 2k. We show, by induction on k, that there is a copy of B in T whose
vertex set includes at least half the vertices of any such interval.
This is clearly true for k = 1. Suppose, then, that k ≥ 2. Delete a leaf y of B to
obtain a branching B′ on k vertices, and set T ′ := T −{v2k−1, v2k}. By (M1),
v1, v2, . . . , v2k−2 is a median order of the tournament T ′, so there is a copy
of B′ in T ′ whose vertex set includes at least half the vertices of any interval
v1, v2, . . . , vi, 1 ≤ i ≤ 2k−2. Let x be the predecessor of y in B. Suppose that
x is located at vertex vi of T ′. In T , by (M2), vi dominates at least half of
the vertices vi+1, vi+2, . . . , v2k, thus at least k − i/2 of these vertices. On the
other hand, B′ includes at least (i− 1)/2 of the vertices v1, v2, . . . , vi−1, thus
at most k − (i + 1)/2 of the vertices vi+1, vi+2, . . . , v2k. It follows that, in T ,
there is an outneighbour vj of vi, where i + 1 ≤ j ≤ 2k, which is not in B′.
Locating y at vj , and adding the vertex y and arc (x, y) to B′, we now have a
copy of B in T . It is readily checked that this copy of B satisfies the required
additional property. �
Three further applications of median orders are described in Exer-
cises 4.1.16, 4.1.17, and 4.1.18.

Rooted trees and branchings turn out to be basic tools in the design of efficient
algorithms for solving a variety of problems involving reachability, as we shall show
in Chapter 6.

Exercises

4.1.1

a) Show that every tree with maximum degree k has at least k leaves.
b) Which such trees have exactly k leaves?

4.1.2 Show that the following three statements are equivalent.

a) G is connected and has n− 1 edges.
b) G is a forest and has n− 1 edges.
c) G is a tree.
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4.1.3 A saturated hydrocarbon is a molecule CmHn in which every carbon atom
(C) has four bonds, every hydrogen atom (H) has one bond, and no sequence of
bonds forms a cycle. Show that, for any positive integer m, the molecule CmHn

can exist only if n = 2m + 2.

4.1.4 Let G be a graph and F a maximal forest of G. Show that e(F ) = v(G) −
c(G).

4.1.5 Prove Theorem 4.3 by induction on the number of edges of G.

�4.1.6 Prove Theorem 4.4.

4.1.7 Show that a sequence (d1, d2, . . . , dn) of positive integers is a degree sequence
of a tree if and only if

∑n
i=1 di = 2(n− 1).

4.1.8 Centre of a Graph

A centre of a graph G is a vertex u such that max{d(u, v) : v ∈ V } is as small as
possible.

a) Let T be a tree on at least three vertices, and let T ′ be the tree obtained from
T by deleting all its leaves. Show that T and T ′ have the same centres.

b) Deduce that every tree has either exactly one centre or two, adjacent, centres.

4.1.9

a) Show that any simple graph with minimum degree k contains a copy of each
rooted tree on k + 1 vertices, rooted at any given vertex of the graph.

b) Deduce that any simple graph with average degree at least 2(k − 1), where
k − 1 is a positive integer, contains a copy of each tree on k + 1 vertices.

(P. Erdős and V.T. Sós (see Erdős (1964)) have conjectured that any simple graph
with average degree greater than k−1 contains a copy of each tree on k+1 vertices;
see Appendix A.)

4.1.10 Verify the properties (M1) and (M2) of median orders of tournaments.

—————

—————

4.1.11 Let G be a simple graph with vertex set V := {1, 2, . . . , n}.
a) Show that the set of transpositions S := {(i, j) : ij ∈ E} generates all permu-

tations of V if and only if G is connected.
b) Deduce that S is a minimal set of transpositions that generates all permuta-

tions of V if and only if G is a tree.

4.1.12 Let S := {x1, x2, . . . , xn} be an n-set, and let A := {A1, A2, . . . , An} be
a family of n distinct subsets of S. Construct a graph G with vertex set A, two
vertices Ai and Aj being joined by an edge if their symmetric difference Ai � Aj

is a singleton. Label the edge AiAj by this singleton. By studying this labelled
graph, prove that there is an element xm ∈ S such that the sets A1 ∪ {xm}, A2 ∪
{xm}, . . . , An ∪ {xm} are distinct. (J.A. Bondy)
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4.1.13 Give an alternative proof of Exercise 4.1.12 by proceeding as follows.
Suppose, by way of contradiction, that there is no such element xm ∈ S, so that, for
all i ∈ [1, n], there exist distinct indices j(i) and k(i) such that Aj(i)∪{xi} = Ak(i).

Let M be the incidence matrix of the hypergraph (S,A) (so that mij = 1
if xi ∈ Aj and mij = 0 otherwise), let ci denote the column vector with −1 in
position j(i), 1 in position k(i), and 0s elsewhere, let C denote the n × n matrix
whose ith column is ci, and let j be the row vector all of whose entries are 1. Show
that MC = I and jC = 0, and derive a contradiction. (J. Greene)

4.1.14 m identical pizzas are to be shared equally amongst n students.

a) Show how this goal can be achieved by dividing the pizzas into a total of
m + n− d pieces, where d is the greatest common divisor of m and n.

b) By considering a suitable bipartite graph, show that no division into a smaller
number of pieces will achieve the same objective. (H. Bass)

4.1.15 Rooted trees T1(x1) and T2(x2) are isomorphic if there is an isomorphism
from T1 to T2 mapping x1 to x2. A rooted tree is uniform if the degree of a vertex
depends only on its distance from the root. Prove that every x-tree on n vertices
has exactly n nonisomorphic uniform x-subtrees.

(M.K. Goldberg and I.A. Klipker)

4.1.16 Let v1, v2, . . . , vn be a median order of an even tournament T . Show that
(v1, v2, . . . , vn, v1) is a directed Hamilton cycle of T . (S. Thomassé)

4.1.17 A king in a tournament is a vertex v from which every vertex is reachable
by a directed path of length at most two. Show that every tournament T has a
king by proceeding as follows.

Let v1, v2, . . . , vn be a median order of T .

a) Suppose that vj dominates vi, where i < j. Show that there is an index k with
i < k < j such that vi dominates vk and vk dominates vj .

b) Deduce that v1 is a king in T . (F. Havet and S. Thomassé)

4.1.18 A second outneighbour of a vertex v in a digraph is a vertex whose distance
from v is exactly two. Show that every tournament T has a vertex with at least
as many second outneighbours as (first) outneighbours, by proceeding as follows.

Let v1, v2, . . . , vn be a median order of a tournament T . Colour the outneigh-
bours of vn red, both vn and those of its in-neighbours which dominate every red
vertex preceding them in the median order black, and the remaining in-neighbours
of vn blue. (Note that every vertex of T is thereby coloured, because T is a tour-
nament.)

a) Show that every blue vertex is a second outneighbour of vn.
b) Consider the intervals of the median order into which it is subdivided by the

black vertices. Using property (M2), show that each such interval includes at
least as many blue vertices as red vertices.
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c) Deduce that vn has at least as many second outneighbours as outneighbours.
(F. Havet and S. Thomassé)

(P. D. Seymour has conjectured that every oriented graph has a vertex with at
least as many second outneighbours as outneighbours; see Appendix A)

4.1.19

a) Show that the cube of a tree on at least three vertices has a Hamilton cycle.
(M. Sekanina)

b) Find a tree whose square has no Hamilton cycle.

(Fleischner (1974) characterized the graphs whose squares have Hamilton cycles;
see also Ř́ıha (1991).)

�4.1.20

a) Let T1 and T2 be subtrees of a tree T . Show that T1 ∩ T2 and T1 ∪ T2 are
subtrees of T if and only if T1 ∩ T2 �= ∅.

b) Let T be a family of subtrees of a tree T . Deduce, by induction on |T |, that if
any two members of T have a vertex in common, then there is a vertex of T
which belongs to all members of T . (In other words, show that the family of
subtrees of a tree have the Helly Property (defined in Exercise 1.3.7).)

4.1.21 König’s Lemma

Show that every locally-finite infinite tree contains a one-way infinite path.
(D. König)

4.2 Spanning Trees

A subtree of a graph is a subgraph which is a tree. If this tree is a spanning
subgraph, it is called a spanning tree of the graph. Figure 4.3 shows a decomposition
of the wheel W4 into two spanning trees.

Fig. 4.3. Two spanning trees of the wheel W4

If a graph G has a spanning tree T , then G is connected because any two
vertices of G are connected by a path in T , and hence in G. On the other hand, if
G is a connected graph which is not a tree, and e is an edge of a cycle of G, then
G \ e is a spanning subgraph of G which is also connected because, by Proposition
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3.2, e is not a cut edge of G. By repeating this process of deleting edges in cycles
until every edge which remains is a cut edge, we obtain a spanning tree of G.
Thus we have the following theorem, which provides yet another characterization
of connected graphs.

Theorem 4.6 A graph is connected if and only if it has a spanning tree. �

It is easy to see that every tree is bipartite. We now use Theorem 4.6 to derive
a characterization of bipartite graphs.

Theorem 4.7 A graph is bipartite if and only if it contains no odd cycle.

Proof Clearly, a graph is bipartite if and only if each of its components is bipar-
tite, and contains an odd cycle if and only if one of its components contains an
odd cycle. Thus, it suffices to prove the theorem for connected graphs.

Let G[X,Y ] be a connected bipartite graph. Then the vertices of any path in G
belong alternately to X and to Y . Thus, all paths connecting vertices in different
parts are of odd length and all paths connecting vertices in the same part are of
even length. Because, by definition, each edge of G has one end in X and one end
in Y , it follows that every cycle of G is of even length.

Conversely, suppose that G is a connected graph without odd cycles. By The-
orem 4.6, G has a spanning tree T . Let x be a vertex of T . By Proposition 4.1,
any vertex v of T is connected to x by a unique path in T . Let X denote the set of
vertices v for which this path is of even length, and set Y := V \X. Then (X,Y )
is a bipartition of T . We claim that (X,Y ) is also a bipartition of G.

To see this, consider an edge e = uv of E(G) \E(T ), and let P := uTv be the
unique uv-path in T . By hypothesis, the cycle P +e is even, so P is odd. Therefore
the ends of P , and hence the ends of e, belong to distinct parts. It follows that
(X,Y ) is indeed a bipartition of G. �

According to Theorem 4.7, either a graph is bipartite, or it contains an odd
cycle, but not both. An efficient algorithm which finds, in a given graph, either a
bipartition or an odd cycle is presented in Chapter 6.

Cayley’s Formula

There is a remarkably simple formula for the number of labelled trees on n vertices
(or, equivalently, for the number of spanning trees in the complete graph Kn).
This formula was discovered by Cayley (1889), who was interested in representing
certain hydrocarbons by graphs and, in particular, by trees (see Exercise 4.1.3).
A wide variety of proofs have since been found for Cayley’s Formula (see Moon
(1967)). We present here a particularly elegant one, due to Pitman (1999). It
makes use of the concept of a branching forest, that is, a digraph each of whose
components is a branching.
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Theorem 4.8 Cayley’s Formula

The number of labelled trees on n vertices is nn−2.

Proof We show, by counting in two ways, that the number of labelled branchings
on n vertices is nn−1. Cayley’s Formula then follows directly, because each labelled
tree on n vertices gives rise to n labelled branchings, one for each choice of the
root vertex.

Consider, first, the number of ways in which a labelled branching on n vertices
can be built up, one edge at a time, starting with the empty graph on n vertices. In
order to end up with a branching, the subgraph constructed at each stage must be a
branching forest. Initially, this branching forest has n components, each consisting
of an isolated vertex. At each stage, the number of components decreases by one. If
there are k components, the number of choices for the new edge (u, v) is n(k− 1):
any one of the n vertices may play the role of u, whereas v must be the root of
one of the k− 1 components which do not contain u. The total number of ways of
constructing a branching on n vertices in this way is thus

n−1∏

i=1

n(n− i) = nn−1(n− 1)!

On the other hand, any individual branching on n vertices is constructed exactly
(n − 1)! times by this procedure, once for each of the orders in which its n − 1
edges are selected. It follows that the number of labelled branchings on n vertices
is nn−1. �

Another proof of Cayley’s Formula is outlined in Exercise 4.2.11.
We denote the number of spanning trees in an arbitrary graph G by t(G).

Cayley’s Formula says that t(Kn) = nn−2. There is a simple recursive formula
relating the number of spanning trees of a graph G to the numbers of spanning
trees in the two graphs G\e and G/e obtained from G by deleting and contracting
a link e (Exercise 4.2.1).

Proposition 4.9 Let G be a graph and e a link of G. Then

t(G) = t(G \ e) + t(G/e) �

Exercises

�4.2.1 Let G be a connected graph and e a link of G.

a) Describe a one-to-one correspondence between the set of spanning trees of G
that contain e and the set of spanning trees of G/e.

b) Deduce Proposition 4.9.

4.2.2

a) Let G be a graph with no loops or cut edges. Show that t(G) ≥ e(G).
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b) For which such graphs does equality hold?

4.2.3 Let G be a connected graph and let x be a specified vertex of G. A spanning
x-tree T of G is called a distance tree of G with root x if dT (x, v) = dG(x, v) for
all v ∈ V .

a) Show that G has a distance tree with root x.
b) Deduce that a connected graph of diameter d has a spanning tree of diameter

at most 2d.

�4.2.4 Show that the incidence matrix of a graph is totally unimodular (defined
in Exercise 1.5.7) if and only if the graph is bipartite.

4.2.5 A fan is the join P ∨ K1 of a path P and a single vertex. Determine the
numbers of spanning trees in:

a) the fan Fn on n vertices, n ≥ 2,
b) the wheel Wn with n spokes, n ≥ 3.

4.2.6 Let G be an edge-transitive graph.

a) Show that each edge of G lies in exactly (n− 1)t(G)/m spanning trees of G.
b) Deduce that t(G \ e) = (m− n + 1)t(G)/m and t(G/e) = (n− 1)t(G)/m.
c) Deduce that t(Kn) is divisible by n, if n ≥ 3, and that t(Kn,n) is divisible by

n2.
d) Without appealing to Cayley’s Formula (Theorem 4.8), determine t(K4),

t(K5), and t(K3,3).

4.2.7

a) Let G be a simple graph on n vertices, and let H be the graph obtained from G
by replacing each edge of G by k multiple edges. Show that t(H) = kn−1t(G).

b) Let G be a graph on n vertices and m edges, and let H be the graph
obtained from G by subdividing each edge of G k − 1 times. Show that
t(H) = km−n+1t(G).

�4.2.8 Using Theorem 4.7 and Exercise 3.4.11b, show that a digraph contains a
directed odd cycle if and only if some strong component is not bipartite.

�4.2.9 A branching in a digraph is a spanning branching if it includes all vertices
of the digraph.

a) Show that a digraph D has a spanning x-branching if and only if ∂+(X) �= ∅
for every proper subset X of V that includes x.

b) Deduce that a digraph is strongly connected if and only if it has a spanning
v-branching for every vertex v.

4.2.10 Nonreconstructible Infinite Graphs

Let T := T∞ denote the infinite tree in which each vertex is of countably infinite
degree, and let F := 2T∞ denote the forest consisting of two disjoint copies of T∞.
Show that (T, F ) is a nonreconstructible pair.
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—————

—————

4.2.11 Prüfer Code

Let Kn be the labelled complete graph with vertex set {1, 2, . . . , n}, where
n ≥ 3. With each spanning tree T of Kn one can associate a unique sequence
(t1, t2, . . . , tn−2), known as the Prüfer code of T , as follows. Let s1 denote the first
vertex (in the the ordered set (1, 2, . . . , n)) which is a leaf of T , and let t1 be the
neighbour of s1 in T . Now let s2 denote the first vertex which is a leaf of T − s1,
and t2 the neighbour of s2 in T − s1. Repeat this operation until tn−2 is defined
and a tree with just two vertices remains. (If n ≤ 2, the Prüfer code of T is taken
to be the empty sequence.)

a) List all the spanning trees of K4 and their Prüfer codes.
b) Show that every sequence (t1, t2, . . . , tn−2) of integers from the set {1, 2, . . . , n}

is the Prüfer code of a unique spanning tree of Kn.
c) Deduce Cayley’s Formula (see Theorem 4.8). (H. Prüfer)

4.2.12

a) For a sequence d1, d2, . . . , dn of n positive integers whose sum is equal to 2n−2,
let t(n; d1, d2, . . . , dn) denote the number of trees on n vertices v1, v2, . . . , vn

such that d(vi) = di, 1 ≤ i ≤ n. Show that

t(n; d1, d2, . . . , dn) =
(

n− 2
d1 − 1, d2 − 1, . . . , dn − 1

)

b) Apply the Multinomial Theorem to deduce Cayley’s Formula.

4.2.13 By counting the number of branchings whose root lies in the m-set of Km,n,
show that t(Km,n) = mn−1nm−1.

4.2.14 Show that the Petersen graph has 2000 spanning trees.

4.2.15 Let T be a tree with vertex set V , and let f : V → V be a mapping with
no fixed point. For v ∈ V , denote by v+ the successor of v on the path vTf(v),
and by Df the digraph with vertex set V and arc set {(v, v+) : v ∈ V }.
a) Show that each component of Df contains a unique directed 2-cycle.
b) The centroid of T is the set of all vertices v for which the largest component

of T − v has as few vertices as possible. For v ∈ V , let f(v) be a vertex of a
largest component of T − v, and let (x, y, x) be a directed 2-cycle of Df . Show
that the centroid of T is contained in the set {x, y}, and hence consists either
of one vertex or of two adjacent vertices. (C. Jordan)

c) An endomorphism of a simple graph G is a mapping f : V → V such that, for
every xy ∈ E, either f(x) = f(y) or f(x)f(y) ∈ E. Let f be an endomorphism
of T , and let (x, y, x) be a directed 2-cycle of Df .

i) Show that f(x) = y and f(y) = x.
ii) Deduce that every endomorphism of a tree T fixes either a vertex or an

edge of T . (L. Lovász)
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d) Let T be a spanning tree of the n-cube Qn, let f(v) be the antipodal vertex
of vertex v in Qn (that is, the unique vertex whose distance from v is n), and
let (x, y, x) be a directed 2-cycle of Df .

i) Show that dT (f(x), f(y)) ≥ 2n− 1.
ii) Deduce that every spanning tree of Qn has a fundamental cycle of length

at least 2n. (R.L. Graham)

4.2.16 Let G be a connected simple graph and T a spanning tree of G. Consider
the mapping φ :

(
V
2

)
\ T →

(
T
2

)
(where T is regarded as a subset of E) defined by

φ(xy) := {e, f}, where e and f are the first and last edges of the path xTy.

a) Show that the mapping φ is a bijection.
b) Deduce that

(
n
2

)
− |T | =

(|T |
2

)
.

c) Deduce Theorem 4.3. (N. Graham, R.C. Entringer, and L. Székely)

4.3 Fundamental Cycles and Bonds

The spanning trees of a connected graph, its even subgraphs, and its edge cuts
are intimately related. We describe these relationships here. Recall that, in the
context of even subgraphs, when we speak of a cycle we typically mean its edge
set. Likewise, by a spanning tree, we understand in this context the edge set of the
tree. Throughout this section, G denotes a connected graph and T a spanning tree
of G.

Cotrees

The complement E \ T of a spanning tree T is called a cotree, and is denoted T .
Consider, for example, the wheel W4 shown in Figure 4.4a, and the spanning tree
T := {1, 2, 4, 5} indicated by solid lines. The cotree T is simply the set of light
edges, namely {3, 6, 7, 8}.

By Proposition 4.1, for every edge e := xy of a cotree T of a graph G, there is a
unique xy-path in T connecting its ends, namely P := xTy. Thus T + e contains a
unique cycle. This cycle is called the fundamental cycle of G with respect to T and
e. For brevity, we denote it by Ce, the role of the tree T being implicit. Figure 4.4b
shows the fundamental cycles of W4 with respect to the spanning tree {1, 2, 4, 5},
namely C3 = {1, 2, 3, 4}, C6 = {1, 5, 6}, C7 = {1, 2, 5, 7}, and C8 = {4, 5, 8}.

One can draw interesting conclusions about the structure of a graph from the
properties of its fundamental cycles with respect to a spanning tree. For example,
if all the fundamental cycles are even, then every cycle of the graph is even and
hence, by Theorem 4.7, the graph is bipartite. (This is the idea behind the proof
of Theorem 4.7.) The following theorem and its corollaries show why fundamental
cycles are important.

Theorem 4.10 Let T be a spanning tree of a connected graph G, and let S be
a subset of its cotree T . Then C := �{Ce : e ∈ S} is an even subgraph of G.
Moreover, C ∩ T = S, and C is the only even subgraph of G with this property.
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Fig. 4.4. (a) A spanning tree T of the wheel W4, and (b) the fundamental cycles with
respect to T

Proof As each fundamental cycle Ce is an even subgraph, it follows from Corol-
lary 2.16 that C is an even subgraph, too. Furthermore, C ∩ T = S, because each
edge of S appears in exactly one member of the family {Ce : e ∈ S}.

Let C ′ be any even subgraph of G such that C ′ ∩ T = S. Then

(C � C ′) ∩ T = (C ∩ T )� (C ′ ∩ T ) = S � S = ∅

Therefore the even subgraph C � C ′ is contained in T . Because the only even
subgraph contained in a tree is the empty even subgraph, we deduce that C ′ = C.

�

Corollary 4.11 Let T be a spanning tree of a connected graph G. Every even
subgraph of G can be expressed uniquely as a symmetric difference of fundamental
cycles with respect to T .

Proof Let C be an even subgraph of G and let S := C ∩ T . It follows from
Theorem 4.10 that C = �{Ce : e ∈ S} and that this is the only way of expressing
C as a symmetric difference of fundamental cycles with respect to T . �

The next corollary, which follows from Theorem 4.10 by taking S := T , has
several interesting applications (see, for example, Exercises 4.3.9 and 4.3.10).

Corollary 4.12 Every cotree of a connected graph is contained in a unique even
subgraph of the graph. �

We now discuss the relationship between spanning trees and edge cuts. We
show that, for each of the above statements concerning even subgraphs, there is
an analogous statement concerning edge cuts. As before, let G be a connected
graph and let T be a spanning tree of G. Note that, because T is connected and
spanning, every nonempty edge cut of G contains at least one edge of T . Thus the
only edge cut contained in the cotree T is the empty edge cut (just as the only
even subgraph contained in T is the empty even subgraph).

In order to be able to state the cut-analogue of Theorem 4.10, we need the
notion of a fundamental bond. Let e := xy be an edge of T . Then T \e has exactly
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two components, one containing x and the other containing y. Let X denote the
vertex set of the component containing x. The bond Be := ∂(X) is contained in
T ∪ {e} and includes e. Moreover, it is the only such bond. For, let B be any
bond contained in T ∪ {e} and including e. By Corollary 2.12, B �Be is an edge
cut. Moreover, this edge cut is contained in T . But, as remarked above, the only
such edge cut is the empty edge cut. This shows that B = Be. The bond Be

is called the fundamental bond of G with respect to T and e. For instance, the
fundamental bonds of the wheel W4 with respect to the spanning tree {1, 2, 4, 5}
(indicated in Figure 4.5a) are B1 = {1, 3, 6, 7}, B2 = {2, 3, 7}, B4 = {3, 4, 8}, and
B5 = {5, 6, 7, 8} (see Figure 4.5b).
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Fig. 4.5. (a) A spanning tree T of the wheel W4, and (b) the fundamental bonds with
respect to T

The proofs of the following theorem and its corollaries are similar to those of
Theorem 4.10 and its corollaries, and are left as an exercise (Exercise 4.3.5).

Theorem 4.13 Let T be a spanning tree of a connected graph G, and let S be a
subset of T . Set B := �{Be : e ∈ S}. Then B is an edge cut of G. Moreover
B ∩ T = S, and B is the only edge cut of G with this property. �

Corollary 4.14 Let T be a spanning tree of a connected graph G. Every edge cut
of G can be expressed uniquely as a symmetric difference of fundamental bonds
with respect to T . �

Corollary 4.15 Every spanning tree of a connected graph is contained in a unique
edge cut of the graph. �

Corollaries 4.11 and 4.14 imply that the fundamental cycles and fundamental
bonds with respect to a spanning tree of a connected graph constitute bases of its
cycle and bond spaces, respectively, as defined in Section 2.6 (Exercise 4.3.6). The
dimension of the cycle space of a graph is referred to as its cyclomatic number.

In this section, we have defined and discussed the properties of fundamental
cycles and bonds with respect to spanning trees in connected graphs. All the above
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theorems are valid for disconnected graphs too, with maximal forests playing the
role of spanning trees.

Exercises

4.3.1 Determine the fundamental cycles and fundamental bonds of W4 with re-
spect to the spanning tree shown in Figure 4.3 (using the edge labelling of Fig-
ure 4.4).

4.3.2 Tree Exchange Property

Let G be a connected graph, let T1 and T2 be (the edge sets of) two spanning trees
of G, and let e ∈ T1 \ T2. Show that:

a) there exists f ∈ T2 \ T1 such that (T1 \ {e}) ∪ {f} is a spanning tree of G,
b) there exists f ∈ T2 \ T1 such that (T2 \ {f}) ∪ {e} is a spanning tree of G.

(Each of these two facts is referred to as a Tree Exchange Property.)

4.3.3 Let G be a connected graph and let S be a set of edges of G. Show that the
following statements are equivalent.

a) S is a spanning tree of G.
b) S contains no cycle of G, and is maximal with respect to this property.
c) S meets every bond of G, and is minimal with respect to this property.

4.3.4 Let G be a connected graph and let S be a set of edges of G. Show that the
following statements are equivalent.

a) S is a cotree of G.
b) S contains no bond of G, and is maximal with respect to this property.
c) S meets every cycle of G, and is minimal with respect to this property.

4.3.5

a) Prove Theorem 4.13.
b) Deduce Corollaries 4.14 and 4.15.

4.3.6

a) Let T be a spanning tree of a connected graph G. Show that:
i) the fundamental cycles of G with respect to T form a basis of its cycle

space,
ii) the fundamental bonds of G with respect to T form a basis of its bond

space.
b) Determine the dimensions of these two spaces.

(The cycle and bond spaces were defined in Section 2.6.)

4.3.7 Let G be a connected graph, and let M be its incidence matrix.
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a) Show that the columns of M corresponding to a subset S of E are linearly
independent over GF (2) if and only if G[S] is acyclic.

b) Deduce that there is a one-to-one correspondence between the bases of the
column space of M over GF (2) and the spanning trees of G.

(The above statements are special cases of more general results, to be discussed in
Section 20.2.)

4.3.8 Algebraic Duals

An algebraic dual of a graph G is a graph H for which there is a bijection θ :
E(G)→ E(H) mapping each cycle of G to a bond of H and each bond of G to a
cycle of H.

a) Show that:
i) the octahedron and the cube are algebraic duals,
ii) K3,3 has no algebraic dual.

b) Let G be a connected graph and H an algebraic dual of G, with bijection θ.
i) Show that T is a spanning tree of G if and only if θ(T ) is a cotree of H.
ii) Deduce that t(G) = t(H).

4.3.9 Show that any graph which contains a Hamilton cycle has a covering by two
even subgraphs.

�4.3.10 Show that any graph which contains two edge-disjoint spanning trees has:

a) an eulerian spanning subgraph,
b) a covering by two even subgraphs.

—————

—————

4.4 Related Reading

Matroids

One of the characteristic properties of spanning trees of a connected graph is the
Tree Exchange Property noted in Exercise 4.3.2a. Because the spanning trees of
G correspond to bases of the incidence matrix M of G (Exercise 4.3.7), the Tree
Exchange Property may be seen as a special case of the appropriate exchange
property of bases of a vector space. Whitney (1935) observed that many essential
properties of spanning trees, such as the ones described in Section 4.3, and more
generally of bases of a vector space, may be deduced from that exchange property.
Motivated by this observation, he introduced the notion of a matroid.

A matroid is an ordered pair (E,B), consisting of a finite set E of elements
and a nonempty family B of subsets of E, called bases, which satisfy the following
Basis Exchange Property.

If B1, B2 ∈ B and e ∈ B1 \B2 then there exists f ∈ B2 \B1 such that
(B1 \ {e}) ∪ {f} ∈ B
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Let M be a matrix over a field F, let E denote the set of columns of M, and
let B be the family of subsets of E which are bases of the column space of M.
Then (E,B) is a matroid. Matroids which arise in this manner are called linear
matroids. Various linear matroids may be associated with graphs, one example
being the matroid on the edge set of a connected graph in which the bases are
the edge sets of spanning trees. (In the matroidal context, statements concerning
connected graphs extend easily to all graphs, the role of spanning trees being
played by maximal forests when the graph is not connected.)

Much of matroid-theoretic terminology is suggested by the two examples men-
tioned above. For instance, subsets of bases are called independent sets, and mini-
mal dependent sets are called circuits. In the matroid whose bases are the spanning
trees of a connected graph G, the independent sets of the matroid are the forests
of G and its circuits are the cycles of G. For this reason, this matroid is called the
cycle matroid of G, denoted M(G).

The dual of a matroid M = (E,B) is the matroid M∗ = (E,B∗), where B∗ :=
{E \B : B ∈ B}. When M is the linear matroid associated with a matrix M, the
bases of M∗ are those subsets of E which are bases of the orthogonal complement of
the column space of M. When M is the cycle matroid of a connected graph G, the
bases of M∗ are the cotrees of G, and its circuits are the bonds of G. For this reason,
the dual of the cycle matroid of a graph G is called the bond matroid of G, denoted
M∗(G). Many manifestations of this cycle–bond duality crop up throughout the
book. The reader is referred to Oxley (1992) for a thorough account of the theory
of matroids.




