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2.1 Subgraphs and Supergraphs

Edge and Vertex Deletion

Given a graph G, there are two natural ways of deriving smaller graphs from G.
If e is an edge of G, we may obtain a graph on m − 1 edges by deleting e from
G but leaving the vertices and the remaining edges intact. The resulting graph is
denoted by G \ e. Similarly, if v is a vertex of G, we may obtain a graph on n− 1
vertices by deleting from G the vertex v together with all the edges incident with
v. The resulting graph is denoted by G− v. These operations of edge deletion and
vertex deletion are illustrated in Figure 2.1.

G G \ e G − v

e

v

Fig. 2.1. Edge-deleted and vertex-deleted subgraphs of the Petersen graph

The graphs G \ e and G− v defined above are examples of subgraphs of G. We
call G \ e an edge-deleted subgraph, and G − v a vertex-deleted subgraph. More
generally, a graph F is called a subgraph of a graph G if V (F ) ⊆ V (G), E(F ) ⊆
E(G), and ψF is the restriction of ψG to E(F ). We then say that G contains F or
that F is contained in G, and write G ⊇ F or F ⊆ G, respectively. Any subgraph
F of G can be obtained by repeated applications of the basic operations of edge
and vertex deletion; for instance, by first deleting the edges of G not in F and
then deleting the vertices of G not in F . Note that the null graph is a subgraph
of every graph.

We remark in passing that in the special case where G is vertex-transitive, all
vertex-deleted subgraphs of G are isomorphic. In this case, the notation G − v is
used to denote any vertex-deleted subgraph. Likewise, we write G \ e to denote
any edge-deleted subgraph of an edge-transitive graph G.

A copy of a graph F in a graph G is a subgraph of G which is isomorphic
to F . Such a subgraph is also referred to as an F -subgraph of G; for instance, a
K3-subgraph is a triangle in the graph. An embedding of a graph F in a graph G
is an isomorphism between F and a subgraph of G. For each copy of F in G, there
are aut(F ) embeddings of F in G.

A supergraph of a graph G is a graph H which contains G as a subgraph, that
is, H ⊇ G. Note that any graph is both a subgraph and a supergraph of itself.
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All other subgraphs F and supergraphs H are referred to as proper; we then write
F ⊂ G or H ⊃ G, respectively.

The above definitions apply also to digraphs, with the obvious modifications.
In many applications of graph theory, one is interested in determining if a

given graph has a subgraph or supergraph with prescribed properties. The theo-
rem below provides a sufficient condition for a graph to contain a cycle. In later
chapters, we study conditions under which a graph contains a long path or cycle, or
a complete subgraph of given order. Although supergraphs with prescribed prop-
erties are encountered less often, they do arise naturally in the context of certain
applications. One such is discussed in Chapter 16 (see also Exercises 2.2.17 and
2.2.24).

Theorem 2.1 Let G be a graph in which all vertices have degree at least two. Then
G contains a cycle.

Proof If G has a loop, it contains a cycle of length one, and if G has parallel
edges, it contains a cycle of length two. So we may assume that G is simple.

Let P := v0v1 . . . vk−1vk be a longest path in G. Because the degree of vk is
at least two, it has a neighbour v different from vk−1. If v is not on P , the path
v0v1 . . . vk−1vkv contradicts the choice of P as a longest path. Therefore, v = vi,
for some i, 0 ≤ i ≤ k − 2, and vivi+1 . . . vkvi is a cycle in G. �

Maximality and Minimality

The proof of Theorem 2.1 proceeded by first selecting a longest path in the graph,
and then finding a cycle based on this path. Of course, from a purely mathematical
point of view, this is a perfectly sound approach. The graph, being finite, must
certainly have a longest path. However, if we wished to actually find a cycle in our
graph by tracing through the steps of the proof, we would first have to find such a
path, and this turns out to be a very hard task in general (in a sense to be made
precise in Chapter 8). Fortunately, the very same proof remains valid if ‘longest
path’ is replaced by ‘maximal path’, a maximal path being one that cannot be
extended to a longer path from either end. Moreover, a maximal path is easily
found: one simply starts at any vertex and grows a path until it can no longer
be extended either way. For reasons such as this, the concepts of maximality and
minimality (of subgraphs) turn out to be rather important.

Let F be a family of subgraphs of a graph G. A member F of F is maximal
in F if no member of F properly contains F ; likewise, F is minimal in F if no
member of F is properly contained in F . When F consists of the set of all paths
of G, we simply refer to a maximal member of F as a maximal path of G. We use
similar terminology for describing maximal and minimal members of other special
families of subgraphs. For instance, when F is the set of all connected subgraphs
of G, the maximal members of F are simply its components (Exercise 2.1.1).
Similarly, because an odd cycle is not bipartite, but each of its proper subgraphs
is bipartite (Exercise 1.1.3), the odd cycles of a graph are its minimal nonbipartite
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subgraphs (see Figure 2.2b). Indeed, as we shall see, the odd cycles are the only
minimal nonbipartite subgraphs.

(a) (b) (c)

Fig. 2.2. (a) A maximal path, (b) a minimal nonbipartite subgraph, and (c) a maximal
bipartite subgraph

The notions of maximality and minimality should not be confused with those
of maximum and minimum cardinality. Every cycle in a graph is a maximal cycle,
because no cycle is contained in another; by the same token, every cycle is a
minimal cycle. On the other hand, by a maximum cycle of a graph we mean one
of maximum length, that is, a longest cycle, and by a minimum cycle we mean
one of minimum length. In a graph G which has at least one cycle, the length of a
longest cycle is called its circumference and the length of a shortest cycle its girth.

Acyclic Graphs and Digraphs

A graph is acyclic if does not contain a cycle. It follows from Theorem 2.1 that an
acyclic graph must have a vertex of degree less than two. In fact, every nontrivial
acyclic graph has at least two vertices of degree less than two (Exercise 2.1.2).

Analogously, a digraph is acyclic if it has no directed cycle. One particularly
interesting class of acyclic digraphs are those associated with partially ordered sets.
A partially ordered set, or for short poset, is an ordered pair P = (X,≺), where
X is a set and ≺ is a partial order on X, that is, an irreflexive, antisymmetric,
and transitive binary relation. Two elements u and v of X are comparable if either
u ≺ v or v ≺ u, and incomparable otherwise. A set of pairwise comparable elements
in P is a chain, a set of pairwise incomparable elements an antichain.

One can form a digraph D := D(P ) from a poset P = (X,≺) by taking
X as the set of vertices, (u, v) being an arc of D if and only if u ≺ v. This
digraph is acyclic and transitive, where transitive here means that (u,w) is an arc
whenever both (u, v) and (v, w) are arcs. (It should be emphasized that, despite its
name, this notion of transitivity in digraphs has no connection whatsoever with the
group-theoretic notions of vertex-transitivity and edge-transitivity defined earlier.)
Conversely, to every strict acyclic transitive digraph D there corresponds a poset
P on the vertex set of D. An acyclic tournament is frequently referred to as a
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transitive tournament. It can be seen that chains in P correspond to transitive
subtournaments of D.

Proof Technique: The Pigeonhole Principle

If n + 1 letters are distributed among n pigeonholes, at least two of them will
end up in the same pigeonhole. This is known as the Pigeonhole Principle,
and is a special case of a simple statement concerning multisets (sets with
repetitions allowed) of real numbers.
Let S = (a1, a2, . . . , an) be a multiset of real numbers and let a denote their
average. Clearly, the minimum of the ai is no larger than a, and the maximum
of the ai is at least as large as a. Thus, if all the elements of S are integers,
we may assert that there is an element that is no larger than �a�, and also
one that is at least as large as �a	. The Pigeonhole Principle merely amounts
to saying that if n integers sum to n + 1 or more, one of them is at least
�(n + 1)/n	 = 2.
Exercise 1.1.6a is a simple example of a statement that can be proved by
applying this principle. As a second application, we establish a sufficient con-
dition for the existence of a quadrilateral in a graph, due to Reiman (1958).
Theorem 2.2 Any simple graph G with

∑
v∈V

(
d(v)
2

)
>
(
n
2

)
contains a quadri-

lateral.

Proof Denote by p2 the number of paths of length two in G, and by p2(v)
the number of such paths whose central vertex is v. Clearly, p2(v) =

(
d(v)
2

)
.

As each path of length two has a unique central vertex, p2 =
∑

v∈V p2(v) =
∑

v∈V

(
d(v)
2

)
. On the other hand, each such path also has a unique pair of ends.

Therefore the set of all paths of length two can be partitioned into
(
n
2

)
subsets

according to their ends. The hypothesis
∑

v∈V

(
d(v)
2

)
>
(
n
2

)
now implies, by

virtue of the Pigeonhole Principle, that one of these subsets contains two or
more paths; that is, there exist two paths of length two with the same pair of
ends. The union of these paths is a quadrilateral. �

Exercises

�2.1.1 Show that the maximal connected subgraphs of a graph are its components.

�2.1.2

a) Show that every nontrivial acyclic graph has at least two vertices of degree
less than two.

b) Deduce that every nontrivial connected acyclic graph has at least two vertices
of degree one. When does equality hold?
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2.1.3

a) Show that if m ≥ n, then G contains a cycle.
b) For each positive integer n, find an acyclic graph with n vertices and n − 1

edges.

2.1.4

a) Show that every simple graph G contains a path of length δ.
b) For each k ≥ 0, find a simple graph G with δ = k which contains no path of

length greater than k.

2.1.5

a) Show that every simple graph G with δ ≥ 2 contains a cycle of length at least
δ + 1.

b) For each k ≥ 2, find a simple graph G with δ = k which contains no cycle of
length greater than k + 1.

2.1.6 Show that every simple graph has a vertex x and a family of �12d(x)� cycles
any two of which meet only in the vertex x.

2.1.7

a) Show that the Petersen graph has girth five and circumference nine.
b) How many cycles are there of length k in this graph, for 5 ≤ k ≤ 9?

2.1.8

a) Show that a k-regular graph of girth four has at least 2k vertices.
b) For k ≥ 2, determine all k-regular graphs of girth four on exactly 2k vertices.

2.1.9

a) Show that a k-regular graph of girth five has at least k2 + 1 vertices.
b) Determine all k-regular graphs of girth five on exactly k2 +1 vertices, k = 2, 3.

2.1.10 Show that the incidence graph of a finite projective plane has girth six.

�2.1.11 A topological sort of a digraph D is an linear ordering of its vertices such
that, for every arc a of D, the tail of a precedes its head in the ordering.

a) Show that every acyclic digraph has at least one source and at least one sink.
b) Deduce that a digraph admits a topological sort if and only if it is acyclic.

2.1.12 Show that every strict acyclic digraph contains an arc whose reversal results
in an acyclic digraph.

2.1.13 Let D be a strict digraph. Setting k := max {δ−, δ+}, show that:

a) D contains a directed path of length at least k,
b) if k > 0, then D contains a directed cycle of length at least k + 1.
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2.1.14

a) Let G be a graph all of whose vertex-deleted subgraphs are isomorphic. Show
that G is vertex-transitive.

b) Let G be a graph all of whose edge-deleted subgraphs are isomorphic. Is G
necessarily edge-transitive?

2.1.15 Using Theorem 2.2 and the Cauchy–Schwarz Inequality1, show that a sim-
ple graph G contains a quadrilateral if m > 1

4n(
√

4n− 3 + 1). (I. Reiman)

—————

—————

2.1.16

a) Show that if m ≥ n + 4, then G contains two edge-disjoint cycles. (L. Pósa)

b) For each integer n ≥ 5, find a graph with n vertices and n + 3 edges which
does not contain two edge-disjoint cycles.

2.1.17 Triangle-Free Graph

A triangle-free graph is one which contains no triangles. Let G be a simple triangle-
free graph.

a) Show that d(x) + d(y) ≤ n for all xy ∈ E.
b) Deduce that

∑
v∈V d(v)2 ≤ mn.

c) Applying the Cauchy–Schwarz Inequality1, deduce that m ≤ n2/4.
(W. Mantel)

d) For each positive integer n, find a simple triangle-free graph G with m =
�n2/4�.

2.1.18

a) Let G be a triangle-free graph with δ > 2n/5. Show that G is bipartite.
b) For n ≡ 0 (mod 5), find a nonbipartite triangle-free graph with δ = 2n/5.

(B. Andrásfai, P. Erdős, and V.T. Sós)

2.1.19 Let G be a simple graph with v(G) = kp and δ(G) ≥ kq. Show that G has
a subgraph F with v(F ) = p and δ(F ) ≥ q. (C.St.J.A. Nash-Williams)

2.1.20 Show that the Kneser graph KGm,n has no odd cycle of length less than
n/(n− 2m).

�2.1.21 Let Kn be a complete graph whose edges are coloured red or blue. Call
a subgraph of this graph monochromatic if all of its edges have the same colour,
and bichromatic if edges of both colours are present.

a) Let v be a vertex of Kn. Show that the number of bichromatic 2-paths in Kn

whose central vertex is v is at most (n− 1)2/4. When does equality hold?

1
∑n

i=1
a2

i

∑n

i=1
b2
i ≥

(∑n

i=1
aibi

)2
for real numbers ai, bi, 1 ≤ i ≤ n.
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b) Deduce that the total number of bichromatic 2-paths in Kn is at most n(n−
1)2/4.

c) Observing that each bichromatic triangle contains exactly two bichromatic 2-
paths, deduce that the number of monochromatic triangles in Kn is at least
n(n− 1)(n− 5)/24. When does equality hold? (A.W. Goodman)

d) How many monochromatic triangles must there be, at least, when n = 5 and
when n = 6?

2.1.22 Let T be a tournament on n vertices, and let v be a vertex of T .

a) Show that the number of directed 2-paths in T whose central vertex is v is at
most (n− 1)2/4. When does equality hold?

b) Deduce that the total number of directed 2-paths in T is at most n(n− 1)2/4.
c) Observing that each transitive triangle contains exactly one directed 2-path

and that each directed triangle contains exactly three directed 2-paths, deduce
that the number of directed triangles in T is at most 1

4

(
n+1

3

)
. When does

equality hold?

�2.1.23 Let P = (X,≺) be a poset. Show that the maximum number of elements
in a chain of P is equal to the minimum number of antichains into which X can
be partitioned. (L. Mirsky)

2.1.24 Geometric Graph

A geometric graph is a graph embedded in the plane in such a way that each edge
is a line segment. Let G be a geometric graph in which any two edges intersect
(possibly at an end).

a) Show that G has at most n edges.
b) For each n ≥ 3, find an example of such a graph G with n edges.

(H. Hopf and E. Pannwitz)

2.2 Spanning and Induced Subgraphs

Spanning Subgraphs

A spanning subgraph of a graph G is a subgraph obtained by edge deletions only,
in other words, a subgraph whose vertex set is the entire vertex set of G. If S is
the set of deleted edges, this subgraph of G is denoted G \ S. Observe that every
simple graph is a spanning subgraph of a complete graph.

Spanning supergraphs are defined analogously. The inverse operation to edge
deletion is edge addition. Adding a set S of edges to a graph G yields a spanning
supergraph of G, denoted G + S. By starting with a disjoint union of two graphs
G and H and adding edges joining every vertex of G to every vertex of H, one
obtains the join of G and H, denoted G∨H. The join Cn∨K1 of a cycle Cn and a
single vertex is referred to as a wheel with n spokes and denoted Wn. (The graph
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(a) (b)

Fig. 2.3. (a) A graph and (b) its underlying simple graph

H of Figure 1.1 is the wheel W5.) One may also add a set X of vertices to a graph,
resulting in a supergraph of G denoted G + X.

Certain types of spanning subgraph occur frequently in applications of graph
theory and, for historical reasons, have acquired special names. For example, span-
ning paths and cycles are called Hamilton paths and Hamilton cycles, respectively,
and spanning k-regular subgraphs are referred to as k-factors. Rédei’s Theorem
(Theorem 2.3, see inset) tells us that every tournament has a directed Hamilton
path. Not every tournament (on three or more vertices) has a directed Hamilton
cycle, however; for instance, the transitive tournament has no directed cycles at
all. Nonetheless, Camion (1959) proved that every tournament in which any ver-
tex can be reached from any other vertex by means of a directed path does indeed
have a directed Hamilton cycle (Exercise 3.4.12a).

By deleting from a graph G all loops and, for every pair of adjacent vertices, all
but one link joining them, we obtain a simple spanning subgraph called the under-
lying simple graph of G. Up to isomorphism, each graph has a unique underlying
simple graph. Figure 2.3 shows a graph and its underlying simple graph.

Given spanning subgraphs F1 = (V,E1) and F2 = (V,E2) of a graph G =
(V,E), we may form the spanning subgraph of G whose edge set is the symmetric
difference E1�E2 of E1 and E2. This graph is called the symmetric difference of
F1 and F2, and denoted F1�F2. Figure 2.4 shows the symmetric difference of two
spanning subgraphs of a graph on five vertices.

� =

F1 F2 F1 � F2

Fig. 2.4. The symmetric difference of two graphs
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Proof Technique: Induction

One of the most widely used proof techniques in mathematics is the Principle
of Mathematical Induction. Suppose that, for each nonnegative integer i, we
have a mathematical statement Si. One may prove that all assertions in the
sequence (S0, S1, . . .) are true by:
� directly verifying S0 (the basis of the induction),
� for each integer n ≥ 1, deducing that Sn is true (the inductive step) from

the assumption that Sn−1 is true (the inductive hypothesis).

The justification for this technique is provided by the principle that each
nonempty subset of N has a minimal element: if not all Si were true, the set
{i ∈ N : Si is false} would be a nonempty subset of N, and would therefore
have a minimal element n. Thus Sn−1 would be true and Sn false.

We shall come across many examples of inductive proofs throughout the book.
Here, as a simple illustration of the technique, we prove a basic theorem on
tournaments due to Rédei (1934).

Theorem 2.3 Rédei’s Theorem

Every tournament has a directed Hamilton path.

Proof Clearly, the trivial tournament (on one vertex) has a directed Hamil-
ton path. Assume that, for some integer n ≥ 2, every tournament on n − 1
vertices has a directed Hamilton path. Let T be a tournament on n vertices and
let v ∈ V (T ). The digraph T ′ := T−v is a tournament on n−1 vertices. By the
inductive hypothesis, T ′ has a directed Hamilton path P ′ := (v1, v2, . . . , vn−1).
If (v, v1) is an arc of T , the path (v, v1, v2, . . . , vn−1) is a directed Hamilton
path of T . Similarly, if (vn−1, v) is an arc of T , the path (v1, v2, . . . , vn−1, v)
is a directed Hamilton path of T . Because T is a tournament, v is adjacent to
each vertex of P ′, so we may assume that both (v1, v) and (v, vn−1) are arcs
of T . It follows that there exists an integer i, 1 ≤ i < n − 1, such that both
(vi, v) and (v, vi+1) are arcs of T . But now P := (v1, . . . , vi, v, vi+1, . . . , vn−1)
is a directed Hamilton path of T . �
Inductive proofs may be presented in a variety of ways. The above proof, for
example, may be recast as a ‘longest path’ proof. We take P to be a longest
directed path in the tournament T . Assuming that P is not a directed Hamil-
ton path, we then obtain a contradiction by showing that T has a directed
path longer than P (Exercise 2.2.4).

Graph-theoretical statements generally assert that all graphs belonging to
some well-defined class possess a certain property. Any ‘proof’ that fails to
cover all cases is false. This is a common mistake in attempts to prove state-
ments of this sort by induction. Another common error is neglecting to verify
the basis of the induction. For an example of how not to use induction, see
Exercise 2.2.19.
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Proof Technique: Contradiction

A common approach to proving graph-theoretical statements is to proceed by
assuming that the stated assertion is false and analyse the consequences of
that assumption so as to arrive at a contradiction. As a simple illustration
of this method, we present an interesting and very useful result due to Erdős
(1965).
Theorem 2.4 Every loopless graph G contains a spanning bipartite subgraph
F such that dF (v) ≥ 1

2dG(v) for all v ∈ V .

Proof Let G be a loopless graph. Certainly, G has spanning bipartite sub-
graphs, one such being the empty spanning subgraph. Let F := F [X,Y ] be a
spanning bipartite subgraph of G with the greatest possible number of edges.
We claim that F satisfies the required property. Suppose not. Then there is
some vertex v for which

dF (v) <
1
2
dG(v) (2.1)

Without loss of generality, we may suppose that v ∈ X. Consider the spanning
bipartite subgraph F ′ whose edge set consists of all edges of G with one end
in X \ {v} and the other in Y ∪ {v}. The edge set of F ′ is the same as that
of F except for the edges of G incident to v; those which were in F are not
in F ′, and those which were not in F are in F ′. We thus have:

e(F ′) = e(F )− dF (v) + (dG(v)− dF (v)) = e(F ) + (dG(v)− 2dF (v)) > e(F )

the inequality following from (2.1). But this contradicts the choice of F . It
follows that F does indeed have the required property. �
The method of contradiction is merely a convenient way of presenting the
idea underlying the above proof. Implicit in the proof is an algorithm which
finds, in any graph, a spanning bipartite subgraph with the stated property:
one starts with any spanning bipartite subgraph and simply moves vertices
between parts so as to achieve the desired objective (see also Exercises 2.2.2
and 2.2.18).

Induced Subgraphs

A subgraph obtained by vertex deletions only is called an induced subgraph. If X is
the set of vertices deleted, the resulting subgraph is denoted by G−X. Frequently,
it is the set Y := V \X of vertices which remain that is the focus of interest. In
such cases, the subgraph is denoted by G[Y ] and referred to as the subgraph of G
induced by Y . Thus G[Y ] is the subgraph of G whose vertex set is Y and whose
edge set consists of all edges of G which have both ends in Y .

The following theorem, due to Erdős (1964/1965), tells us that every graph has
a induced subgraph whose minimum degree is relatively large.
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Theorem 2.5 Every graph with average degree at least 2k, where k is a positive
integer, has an induced subgraph with minimum degree at least k + 1.

Proof Let G be a graph with average degree d(G) ≥ 2k, and let F be an induced
subgraph of G with the largest possible average degree and, subject to this, the
smallest number of vertices. We show that δ(F ) ≥ k + 1. This is clearly true if
v(F ) = 1, since then δ(F ) = d(F ) ≥ d(G), by the choice of F . We may therefore
assume that v(F ) > 1.

Suppose, by way of contradiction, that dF (v) ≤ k for some vertex v of F .
Consider the vertex-deleted subgraph F ′ := F −v. Note that F ′ is also an induced
subgraph of G. Moreover

d(F ′) =
2e(F ′)
v(F ′)

≥ 2(e(F )− k)
v(F )− 1

≥ 2e(F )− d(G)
v(F )− 1

≥ 2e(F )− d(F )
v(F )− 1

= d(F )

Because v(F ′) < v(F ), this contradicts the choice of F . Therefore δ(F ) ≥ k +1. �
The bound on the minimum degree given in Theorem 2.5 is sharp (Exer-

cise 3.1.6).
Subgraphs may also be induced by sets of edges. If S is a set of edges, the

edge-induced subgraph G[S] is the subgraph of G whose edge set is S and whose
vertex set consists of all ends of edges of S. Any edge-induced subgraph G[S] can
be obtained by first deleting the edges in E \ S and then deleting all resulting
isolated vertices; indeed, an edge-induced subgraph is simply a subgraph without
isolated vertices.

Weighted Graphs and Subgraphs

When graphs are used to model practical problems, one often needs to take into
account additional factors, such as costs associated with edges. In a communica-
tions network, for example, relevant factors might be the cost of transmitting data
along a link, or of constructing a new link between communication centres. Such
situations are modelled by weighted graphs.

With each edge e of G, let there be associated a real number w(e), called its
weight. Then G, together with these weights on its edges, is called a weighted
graph, and denoted (G,w). One can regard a weighting w : E → R as a vector
whose coordinates are indexed by the edge set E of G; the set of all such vectors
is denoted by R

E or, when the weights are rational numbers, by Q
E .

If F is a subgraph of a weighted graph, the weight w(F ) of F is the sum
of the weights on its edges,

∑
e∈E(F ) w(e). Many optimization problems amount

to finding, in a weighted graph, a subgraph of a certain type with minimum or
maximum weight. Perhaps the best known problem of this kind is the following
one.

A travelling salesman wishes to visit a number of towns and then return to his
starting point. Given the travelling times between towns, how should he plan his
itinerary so that he visits each town exactly once and minimizes his total travelling
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time? This is known as the Travelling Salesman Problem. In graph-theoretic terms,
it can be phrased as follows.

Problem 2.6 The travelling salesman problem (TSP)

Given: a weighted complete graph (G,w),
Find: a minimum-weight Hamilton cycle of G.

Note that it suffices to consider the TSP for complete graphs because nonad-
jacent vertices can be joined by edges whose weights are prohibitively high. We
discuss this problem, and others of a similar flavour, in Chapters 6 and 8, as well
as in later chapters.

Exercises

2.2.1 Let G be a graph on n vertices and m edges and c components.

a) How many spanning subgraphs has G?
b) How many edges need to be added to G to obtain a connected spanning su-

pergraph?

�2.2.2

a) Deduce from Theorem 2.4 that every loopless graph G contains a spanning
bipartite subgraph F with e(F ) ≥ 1

2e(G).
b) Describe an algorithm for finding such a subgraph by first arranging the ver-

tices in a linear order and then assigning them, one by one, to either X or Y ,
using a simple rule.

2.2.3 Determine the number of 1-factors in each of the following graphs: (a) the
Petersen graph, (b) the pentagonal prism, (c) K2n, (d) Kn,n.

2.2.4 Give a proof of Theorem 2.3 by means of a longest path argument.
(D. König and P. Veress)

2.2.5

a) Show that every Hamilton cycle of the k-prism uses either exactly two consec-
utive edges linking the two k-cycles or else all of them.

b) How many Hamilton cycles are there in the pentagonal prism?

2.2.6 Show that there is a Hamilton path between two vertices in the Petersen
graph if and only if these vertices are nonadjacent.

2.2.7
Which grids have Hamilton paths, and which have Hamilton cycles?

2.2.8 Give an example to show that the following simple procedure, known as the
Greedy Heuristic, is not guaranteed to solve the Travelling Salesman Problem.
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� Select an arbitrary vertex v.
� Starting with the trivial path v, grow a Hamilton path one edge at a time,

choosing at each iteration an edge of minimum weight between the terminal
vertex of the current path and a vertex not on this path.

� Form a Hamilton cycle by adding the edge joining the two ends of the Hamilton
path.

2.2.9 Let G be a graph on n vertices and m edges.

a) How many induced subgraphs has G?
b) How many edge-induced subgraphs has G?

2.2.10 Show that every shortest cycle in a simple graph is an induced subgraph.

�2.2.11 Show that if G is simple and connected, but not complete, then G contains
an induced path of length two.

�2.2.12 Let P and Q be distinct paths in a graph G with the same initial and
terminal vertices. Show that P ∪Q contains a cycle by considering the subgraph
G[E(P )� E(Q)] and appealing to Theorem 2.1.

2.2.13

a) Show that any two longest paths in a connected graph have a vertex in com-
mon.

b) Deduce that if P is a longest path in a connected graph G, then no path in
G− V (P ) is as long as P .

2.2.14 Give a constructive proof of Theorem 2.5.

2.2.15

a) Show that an induced subgraph of a line graph is itself a line graph.
b) Deduce that no line graph can contain either of the graphs in Figure 1.19 as

an induced subgraph.
c) Show that these two graphs are minimal with respect to the above property.

Can you find other such graphs? (There are nine in all.)

2.2.16

a) Show that an induced subgraph of an interval graph is itself an interval graph.
b) Deduce that no interval graph can contain the graph in Figure 1.20 as an

induced subgraph.
c) Show that this graph is minimal with respect to the above property.

2.2.17 Let G be a bipartite graph of maximum degree k.

a) Show that there is a k-regular bipartite graph H which contains G as an
induced subgraph.

b) Show, moreover, that if G is simple, then there exists such a graph H which
is simple.
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—————

—————

2.2.18 Let G be a simple connected graph.

a) Show that there is an ordering v1, v2, . . . , vn of V such that at least 1
2 (n − 1)

vertices vj are adjacent to an odd number of vertices vi with i < j.
b) By starting with such an ordering and adopting the approach outlined in Exer-

cise 2.2.2b, deduce that G has a bipartite subgraph with at least 1
2m+ 1

4 (n−1)
edges. (C. Edwards; P. Erdős)

2.2.19 Read the ‘Theorem’ and ‘Proof’ given below, and then answer the questions
which follow.
‘Theorem’. Let G be a simple graph with δ ≥ n/2, where n ≥ 3. Then G has a
Hamilton cycle.
‘Proof’. By induction on n. The ‘Theorem’ is true for n = 3, because G = K3

in this case. Suppose that it holds for n = k, where k ≥ 3. Let G′ be a simple
graph on k vertices in which δ ≥ k/2, and let C ′ be a Hamilton cycle of G′. Form
a graph G on k + 1 vertices in which δ ≥ (k + 1)/2 by adding a new vertex v and
joining v to at least (k + 1)/2 vertices of G′. Note that v must be adjacent to two
consecutive vertices, u and w, of C ′. Replacing the edge uw of C ′ by the path uvw,
we obtain a Hamilton cycle C of G. Thus the ‘Theorem’ is true for n = k + 1. By
the Principle of Mathematical Induction, it is true for all n ≥ 3. �

a) Is the ‘Proof’ correct?
b) If you claim that the ‘Proof’ is incorrect, give reasons to support your claim.
c) Can you find any graphs for which the ‘Theorem’ fails? Does the existence

or nonexistence of such graphs have any relationship to the correctness or
incorrectness of the ‘Proof’? (D.R. Woodall)

2.2.20

a) Let D be an oriented graph with minimum outdegree k, where k ≥ 1.
i) Show that D has a vertex x whose indegree and outdegree are both at

least k.
ii) Let D′ be the digraph obtained from D by deleting N−(x) ∪ {x} and

adding an arc (u, v) from each vertex u of the set N−−(x) of in-neighbours
of N−(x) to each vertex v of N+(x), if there was no such arc in D. Show
that D′ is a strict digraph with minimum outdegree k.

b) Deduce, by induction on n, that every strict digraph D with minimum outde-
gree k, where k ≥ 1, contains a directed cycle of length at most 2n/k.

(V. Chvátal and E. Szemerédi)

2.2.21 The complement D of a strict digraph D is its complement in D(Kn). Let
D = (V,A) be a strict digraph and let P be a directed Hamilton path of D. Form
a bipartite graph B[F , Sn], where F is the family of spanning subgraphs of D each
component of which is a directed path and Sn is the set of permutations of V ,
a subgraph F ∈ F being adjacent in B to a permutation σ ∈ Sn if and only if
σ(F ) ⊆ σ(D) ∩ P .
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a) Which vertices F ∈ F are of odd degree in B?
b) Describe a bijection between the vertices σ ∈ Sn of odd degree in B and the

directed Hamilton paths of D.
c) Deduce that h(D) ≡ h(D) (mod 2), where h(D) denotes the number of directed

Hamilton paths in D.

2.2.22 Let D be a tournament, and let (x, y) be an arc of D. Set D− := D \ (x, y)
and D+ := D + (y, x).

a) Describe a bijection between the directed Hamilton paths of D− and those of
D+.

b) Deduce from Exercise 2.2.21 that h(D−) ≡ h(D+) (mod 2).
c) Consider the tournament D′ obtained from D on reversing the arc (x, y). Show

that h(D′) = h(D+)− h(D) + h(D−).
d) Deduce that h(D′) ≡ h(D) (mod 2).
e) Conclude that every tournament has an odd number of directed Hamilton

paths. (L. Rédei)

2.2.23

a) Let S be a set of n points in the plane, the distance between any two of which
is at most one. Show that there are at most n pairs of points of S at distance
exactly one. (P. Erdős)

b) For each n ≥ 3, describe such a set S for which the number of pairs of points
at distance exactly one is n.

2.2.24 Let G be a simple graph on n vertices and m edges, with minimum degree
δ and maximum degree ∆.

a) Show that there is a simple ∆-regular graph H which contains G as an induced
subgraph.

b) Let H be such a graph, with v(H) = n + r. Show that:
i) r ≥ ∆− δ,
ii) r∆ ≡ n∆ (mod 2),
iii) r∆ ≥ n∆− 2m ≥ r∆− r(r − 1).

(Erdős and Kelly (1967) showed that if r is the smallest positive integer which
satisfies the above three conditions, then there does indeed exist a simple ∆-regular
graph H on n + r vertices which contains G as an induced subgraph.)

2.2.25 Let G be a simple graph on n vertices, where n ≥ 4, and let k be an integer,
2 ≤ k ≤ n − 2. Suppose that all induced subgraphs of G on k vertices have the
same number of edges. Show that G is either empty or complete.

2.3 Modifying Graphs

We have already discussed some simple ways of modifying a graph, namely deleting
or adding vertices or edges. Here, we describe several other local operations on
graphs. Although they do not give rise to subgraphs or supergraphs, it is natural
and convenient to introduce them here.
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Vertex Identification and Edge Contraction

To identify nonadjacent vertices x and y of a graph G is to replace these vertices
by a single vertex incident to all the edges which were incident in G to either x or
y. We denote the resulting graph by G/ {x, y} (see Figure 2.5a). To contract an
edge e of a graph G is to delete the edge and then (if the edge is a link) identify
its ends. The resulting graph is denoted by G/e (see Figure 2.5b).

(a) (b)

x y

G / {x, y}

e

GG G / e

Fig. 2.5. (a) Identifying two vertices, and (b) contracting an edge

Vertex Splitting and Edge Subdivision

The inverse operation to edge contraction is vertex splitting. To split a vertex v is
to replace v by two adjacent vertices, v′ and v′′, and to replace each edge incident
to v by an edge incident to either v′ or v′′ (but not both, unless it is a loop at
v), the other end of the edge remaining unchanged (see Figure 2.6a). Note that a
vertex of positive degree can be split in several ways, so the resulting graph is not
unique in general.

(a) (b)

e
v

v′ v′′
x

Fig. 2.6. (a) Splitting a vertex, and (b) subdividing an edge

A special case of vertex splitting occurs when exactly one link, or exactly one
end of a loop, is assigned to either v′ or v′′. The resulting graph can then be viewed
as having been obtained by subdividing an edge of the original graph, where to
subdivide an edge e is to delete e, add a new vertex x, and join x to the ends of
e (when e is a link, this amounts to replacing e by a path of length two, as in
Figure 2.6b).
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Exercises

2.3.1

a) Show that c(G/e) = c(G) for any edge e of a graph G.
b) Let G be an acyclic graph, and let e ∈ E.

i) Show that G/e is acyclic.
ii) Deduce that m = n− c.

—————

—————

2.4 Decompositions and Coverings

Decompositions

A decomposition of a graph G is a family F of edge-disjoint subgraphs of G such
that

∪F∈FE(F ) = E(G) (2.2)

If the family F consists entirely of paths or entirely of cycles, we call F a path
decomposition or cycle decomposition of G.

Every loopless graph has a trivial path decomposition, into paths of length one.
On the other hand, not every graph has a cycle decomposition. Observe that if a
graph has a cycle decomposition C, the degree of each vertex is twice the number
of cycles of C to which it belongs, so is even. A graph in which each vertex has even
degree is called an even graph. Thus, a graph which admits a cycle decomposition is
necessarily even. Conversely, as was shown by Veblen (1912/13), every even graph
admits a cycle decomposition.

Theorem 2.7 Veblen’s Theorem

A graph admits a cycle decomposition if and only if it is even.

Proof We have already shown that the condition of evenness is necessary. We
establish the converse by induction on e(G).

Suppose that G is even. If G is empty, then E(G) is decomposed by the empty
family of cycles. If not, consider the subgraph F of G induced by its vertices of
positive degree. Because G is even, F also is even, so every vertex of F has degree
two or more. By Theorem 2.1, F contains a cycle C. The subgraph G′ := G\E(C)
is even, and has fewer edges than G. By induction, G′ has a cycle decomposition
C′. Therefore G has the cycle decomposition C := C′ ∪ {C}. �

There is a corresponding version of Veblen’s Theorem for digraphs (see Exer-
cise 2.4.2).
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Proof Technique: Linear Independence

Algebraic techniques can occasionally be used to solve problems where combi-
natorial methods fail. Arguments involving the ranks of appropriately chosen
matrices are particularly effective. Here, we illustrate this technique by giving
a simple proof, due to Tverberg (1982), of a theorem of Graham and Pollak
(1971) on decompositions of complete graphs into complete bipartite graphs.
There are many ways in which a complete graph can be decomposed into
complete bipartite graphs. For example, K4 may be decomposed into six copies
of K2, into three copies of K1,2, into the stars K1,1, K1,2, and K1,3, or into K2,2

and two copies of K2. What Graham and Pollak showed is that, no matter
how Kn is decomposed into complete bipartite graphs, there must be at least
n − 1 of them in the decomposition. Observe that this bound can always be
achieved, for instance by decomposing Kn into the stars K1,k, 1 ≤ k ≤ n− 1.
Theorem 2.8 Let F := {F1, F2, . . . , Fk} be a decomposition of Kn into com-
plete bipartite graphs. Then k ≥ n− 1.

Proof Let V := V (Kn) and let Fi have bipartition (Xi, Yi), 1 ≤ i ≤ k.
Consider the following system of k + 1 homogeneous linear equations in the
variables xv, v ∈ V :

∑

v∈V

xv = 0,
∑

v∈Xi

xv = 0, 1 ≤ i ≤ k

Suppose that k < n−1. Then this system, consisting of fewer than n equations
in n variables, has a solution xv = cv, v ∈ V , with cv �= 0 for at least one
v ∈ V . Thus ∑

v∈V

cv = 0 and
∑

v∈Xi

cv = 0, 1 ≤ i ≤ k

Because F is a decomposition of Kn,

∑

vw∈E

cvcw =
k∑

i=1

(
∑

v∈Xi

cv

)(
∑

w∈Yi

cw

)

Therefore

0 =

(
∑

v∈V

cv

)2

=
∑

v∈V

c2
v + 2

k∑

i=1

(
∑

v∈Xi

cv

)(
∑

w∈Yi

cw

)

=
∑

v∈V

c2
v > 0

a contradiction. We conclude that k ≥ n− 1. �
Further proofs based on linear independence arguments are outlined in Exer-
cises 2.4.9 and 14.2.15.
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Coverings

We now define the related concept of a covering. A covering or cover of a graph
G is a family F of subgraphs of G, not necessarily edge-disjoint, satisfying (2.2).
A covering is uniform if it covers each edge of G the same number of times; when
this number is k, the covering is called a k-cover. A 1-cover is thus simply a
decomposition. A 2-cover is usually called a double cover. If the family F consists
entirely of paths or entirely of cycles, the covering is referred to as a path covering
or cycle covering. Every graph which admits a cycle covering also admits a uniform
cycle covering (Exercise 3.5.7).

The notions of decomposition and covering crop up frequently in the study of
graphs. In Section 3.5, we discuss a famous unsolved problem concerning cycle
coverings, the Cycle Double Cover Conjecture. The concept of covering is also
useful in the study of another celebrated unsolved problem, the Reconstruction
Conjecture (see Section 2.7, in particular Exercise 2.7.11).

Exercises

2.4.1 Let e be an edge of an even graph G. Show that G/e is even.

�2.4.2 Even Directed Graph

A digraph D is even if d−(v) = d+(v) for each vertex v ∈ V . Prove the following di-
rected version of Veblen’s Theorem (2.7): A directed graph admits a decomposition
into directed cycles if and only if it is even.

2.4.3 Find a decomposition of K13 into three copies of the circulant CG(Z13, {1,−1,
5,−5}).

—————

—————

2.4.4

a) Show that Kn can be decomposed into copies of Kp only if n − 1 is divisible
by p − 1 and n(n − 1) is divisible by p(p − 1). For which integers n do these
two conditions hold when p is a prime?

b) For k a prime power, describe a decomposition of Kk2+k+1 into copies of Kk+1,
based on a finite projective plane of order k.

2.4.5 Let n be a positive integer.

a) Describe a decomposition of K2n+1 into Hamilton cycles.
b) Deduce that K2n admits a decomposition into Hamilton paths.

�2.4.6 Consider the graph obtained from the Petersen graph by replacing each of
the five edges in a 1-factor by two parallel edges, as shown in Figure 2.7. Show
that every cycle decomposition of this 4-regular graph includes a 2-cycle.



2.5 Edge Cuts and Bonds 59

Fig. 2.7. The Petersen graph with a doubled 1-factor

2.4.7 Let G be a connected graph with an even number of edges.

a) Show that G can be oriented so that the outdegree of each vertex is even.
b) Deduce that G admits a decomposition into paths of length two.

2.4.8 Show that every loopless digraph admits a decomposition into two acyclic
digraphs.

2.4.9 Give an alternative proof of the de Bruijn–Erdős Theorem (see Exer-
cise 1.3.15b) by proceeding as follows. Let M be the incidence matrix of a ge-
ometric configuration (P,L) which has at least two lines and in which any two
points lie on exactly one line.

a) Show that the columns of M span R
n, where n := |P |.

b) Deduce that M has rank n.
c) Conclude that |L| ≥ |P |.

2.5 Edge Cuts and Bonds

Edge Cuts

Let X and Y be sets of vertices (not necessarily disjoint) of a graph G = (V,E).
We denote by E[X,Y ] the set of edges of G with one end in X and the other end
in Y , and by e(X,Y ) their number. If Y = X, we simply write E(X) and e(X) for
E[X,X] and e(X,X), respectively. When Y = V \X, the set E[X,Y ] is called the
edge cut of G associated with X, or the coboundary of X, and is denoted by ∂(X);
note that ∂(X) = ∂(Y ) in this case, and that ∂(V ) = ∅. In this notation, a graph
G = (V,E) is bipartite if ∂(X) = E for some subset X of V , and is connected if
∂(X) �= ∅ for every nonempty proper subset X of V . The edge cuts of a graph are
illustrated in Figure 2.8.

An edge cut ∂(v) associated with a single vertex v is a trivial edge cut; this is
simply the set of all links incident with v. If there are no loops incident with v, it
follows that |∂(v)| = d(v). Accordingly, in the case of loopless graphs, we refer to
|∂(X)| as the degree of X and denote it by d(X).
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∂(u) ∂(u, v) ∂(u, x) ∂(u, y)

∂(u, v, x) ∂(u, v, y) ∂(u, x, y) ∂(u, v, x, y)

Fig. 2.8. The edge cuts of a graph

The following theorem is a natural generalization of Theorem 1.1, the latter
theorem being simply the case where X = V . Its proof is based on the technique
of counting in two ways, and is left as an exercise (2.5.1a).

Theorem 2.9 For any graph G and any subset X of V ,

|∂(X)| =
∑

v∈X

d(v)−2e(X) �

Veblen’s Theorem (2.7) characterizes even graphs in terms of cycles. Even
graphs may also be characterized in terms of edge cuts, as follows.

Theorem 2.10 A graph G is even if and only if |∂(X)| is even for every subset
X of V .

Proof Suppose that |∂(X)| is even for every subset X of V . Then, in particular,
|∂(v)| is even for every vertex v. But, as noted above, ∂(v) is just the set of all
links incident with v. Because loops contribute two to the degree, it follows that
all degrees are even. Conversely, if G is even, then Theorem 2.9 implies that all
edge cuts are of even cardinality. �

The operation of symmetric difference of spanning subgraphs was introduced
in Section 2.1. The following propositions show how edge cuts behave with respect
to symmetric difference.

Proposition 2.11 Let G be a graph, and let X and Y be subsets of V . Then

∂(X)� ∂(Y ) = ∂(X � Y )
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Proof Consider the Venn diagram, shown in Figure 2.9, of the partition of V

(X ∩ Y, X \ Y, Y \X, X ∩ Y )

determined by the partitions (X,X) and (Y, Y ), where X := V \ X and Y :=
V \ Y . The edges of ∂(X), ∂(Y ), and ∂(X � Y ) between these four subsets of V
are indicated schematically in Figure 2.10. It can be seen that ∂(X) � ∂(Y ) =
∂(X � Y ). �

X

Y

X

Y

X ∩ Y X \ Y

Y \ X X ∩ Y

Fig. 2.9. Partition of V determined by the partitions (X, X) and (Y, Y )

Corollary 2.12 The symmetric difference of two edge cuts is an edge cut. �

We leave the proof of the second proposition to the reader (Exercise 2.5.1b).

Proposition 2.13 Let F1 and F2 be spanning subgraphs of a graph G, and let X
be a subset of V . Then

∂F1�F2(X) = ∂F1(X)� ∂F2(X) �

XXX

YYY

XXX

YYY

� =

∂(X) ∂(Y ) ∂(X � Y )

Fig. 2.10. The symmetric difference of two cuts
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Bonds

A bond of a graph is a minimal nonempty edge cut, that is, a nonempty edge cut
none of whose nonempty proper subsets is an edge cut. The bonds of the graph
whose edge cuts are depicted in Figure 2.8 are shown in Figure 2.11.

The following two theorems illuminate the relationship between edge cuts and
bonds. The first can be deduced from Proposition 2.11 (Exercise 2.5.1c). The
second provides a convenient way to check when an edge cut is in fact a bond.

Theorem 2.14 A set of edges of a graph is an edge cut if and only if it is a disjoint
union of bonds. �

Theorem 2.15 In a connected graph G, a nonempty edge cut ∂(X) is a bond if
and only if both G[X] and G[V \X] are connected.

Proof Suppose, first, that ∂(X) is a bond, and let Y be a nonempty proper
subset of X. Because G is connected, both ∂(Y ) and ∂(X \ Y ) are nonempty. It
follows that E[Y,X \ Y ] is nonempty, for otherwise ∂(Y ) would be a nonempty
proper subset of ∂(X), contradicting the supposition that ∂(X) is a bond. We
conclude that G[X] is connected. Likewise, G[V \X] is connected.

Conversely, suppose that ∂(X) is not a bond. Then there is a nonempty proper
subset Y of V such that X ∩ Y �= ∅ and ∂(Y ) ⊂ ∂(X). But this implies (see
Figure 2.10) that E[X ∩ Y,X \ Y ] = E[Y \ X, X ∩ Y ] = ∅. Thus G[X] is not
connected if X \Y �= ∅. On the other hand, if X \Y = ∅, then ∅ ⊂ Y \X ⊂ V \X,
and G[V \X] is not connected. �

Cuts in Directed Graphs

If X and Y are sets of vertices (not necessarily disjoint) of a digraph D = (V,A),
we denote the set of arcs of D whose tails lie in X and whose heads lie in Y
by A(X,Y ), and their number by a(X,Y ). This set of arcs is denoted by A(X)
when Y = X, and their number by a(X). When Y = V \ X, the set A(X,Y ) is
called the outcut of D associated with X, and denoted by ∂+(X). Analogously,
the set A(Y,X) is called the incut of D associated with X, and denoted by ∂−(X).
Observe that ∂+(X) = ∂−(V \ X). Note, also, that ∂(X) = ∂+(X) ∪ ∂−(X). In

uuuu

vvvv

xxxx yyyy

∂(u) ∂(u, v) ∂(u, v, x) ∂(u, v, y)

Fig. 2.11. The bonds of a graph
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the case of loopless digraphs, we refer to |∂+(X)| and |∂−(X)| as the outdegree
and indegree of X, and denote these quantities by d+(X) and d−(X), respectively.

A digraph D is called strongly connected or strong if ∂+(X) �= ∅ for every
nonempty proper subset X of V (and thus ∂−(X) �= ∅ for every nonempty proper
subset X of V , too).

Exercises

�2.5.1

a) Prove Theorem 2.9.
b) Prove Proposition 2.13.
c) Deduce Theorem 2.14 from Proposition 2.11.

�2.5.2 Let D be a digraph, and let X be a subset of V .

a) Show that |∂+(X)| =
∑

v∈X d+(v)− a(X).
b) Suppose that D is even. Using the Principle of Directional Duality, deduce

that |∂+(X)| = |∂−(X)|.
c) Deduce from (b) that every connected even digraph is strongly connected.

2.5.3 Let G be a graph, and let X and Y be subsets of V . Show that ∂(X ∪ Y )�
∂(X ∩ Y ) = ∂(X � Y ).

�2.5.4 Let G be a loopless graph, and let X and Y be subsets of V .

a) Show that:

d(X) + d(Y ) = d(X ∪ Y ) + d(X ∩ Y ) + 2e(X \ Y, Y \X)

b) Deduce the following submodular inequality for degrees of sets of vertices.

d(X) + d(Y ) ≥ d(X ∪ Y ) + d(X ∩ Y )

c) State and prove a directed analogue of this submodular inequality.

�2.5.5 An odd graph is one in which each vertex is of odd degree. Show that a
graph G is odd if and only if |∂(X)| ≡ |X| (mod 2) for every subset X of V .

�2.5.6 Show that each arc of a strong digraph is contained in a directed cycle.

2.5.7 Directed Bond

A directed bond of a digraph is a bond ∂(X) such that ∂−(X) = ∅ (in other words,
∂(X) is the outcut ∂+(X)).

a) Show that an arc of a digraph is contained either in a directed cycle, or in a
directed bond, but not both. (G.J. Minty)

b) Deduce that:
i) a digraph is acyclic if and only if every bond is a directed bond,
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ii) a digraph is strong if and only if no bond is a directed bond.

�2.5.8 Feedback Arc Set

A feedback arc set of a digraph D is a set S of arcs such that D\S is acyclic. Let S
be a minimal feedback arc set of a digraph D. Show that there is a linear ordering
of the vertices of D such that the arcs of S are precisely those arcs whose heads
precede their tails in the ordering.

—————

—————

2.5.9 Let (D,w) be a weighted oriented graph. For v ∈ V , set w+(v) :=
∑
{w(a) :

a ∈ ∂+(v)}. Suppose that w+(v) ≥ 1 for all v ∈ V \ {y}, where y ∈ V . Show that
D contains a directed path of weight at least one, by proceeding as follows.

a) Consider an arc (x, y) ∈ ∂−(y) of maximum weight. Contract this arc to a
vertex y′, delete all arcs with tail y′, and replace each pair {a, a′} of multiple
arcs (with head y′) by a single arc of weight w(a)+w(a′), all other arcs keeping
their original weights. Denote the resulting weighted digraph by (D′, w′). Show
that if D′ contains a directed path of weight at least one, then so does D.

b) Deduce, by induction on V , that D contains a directed path of weight at least
one. (B. Bollobás and A.D. Scott)

2.6 Even Subgraphs

By an even subgraph of a graph G we understand a spanning even subgraph of
G, or frequently just the edge set of such a subgraph. Observe that the first two
subgraphs in Figure 2.4 are both even, as is their symmetric difference. Indeed, it
is an easy consequence of Proposition 2.13 that the symmetric difference of even
subgraphs is always even.

Corollary 2.16 The symmetric difference of two even subgraphs is an even sub-
graph.

Proof Let F1 and F2 be even subgraphs of a graph G, and let X be a subset of
V . By Proposition 2.13,

∂F1�F2(X) = ∂F1(X)� ∂F2(X)

By Theorem 2.10, ∂F1(X) and ∂F2(X) are both of even cardinality, so their sym-
metric difference is too. Appealing again to Theorem 2.10, we deduce that F1�F2

is even. �
As we show in Chapters 4 and 21, the even subgraphs of a graph play an impor-

tant structural role. When discussing even subgraphs (and only in this context),
by a cycle we mean the edge set of a cycle. By the same token, we use the term
disjoint cycles to mean edge-disjoint cycles. With this convention, the cycles of a
graph are its minimal nonempty even subgraphs, and Theorem 2.7 may be restated
as follows.
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Theorem 2.17 A set of edges of a graph is an even subgraph if and only if it is a
disjoint union of cycles. �

The Cycle and Bond Spaces

Even subgraphs and edge cuts are related in the following manner.

Proposition 2.18 In any graph, every even subgraph meets every edge cut in an
even number of edges.

Proof We first show that every cycle meets every edge cut in an even number of
edges. Let C be a cycle and ∂(X) an edge cut. Each vertex of C is either in X or in
V \X. As C is traversed, the number of times it crosses from X to V \X must be
the same as the number of times it crosses from V \X to X. Thus |E(C)∩ ∂(X)|
is even.

By Theorem 2.17, every even subgraph is a disjoint union of cycles. It follows
that every even subgraph meets every edge cut in an even number of edges. �

We denote the set of all subsets of the edge set E of a graph G by E(G).
This set forms a vector space of dimension m over GF (2) under the operation of
symmetric difference. We call E(G) the edge space of G. With each subset X of E,
we may associate its incidence vector fX , where fX(e) = 1 if e ∈ X and fX(e) = 0
if e /∈ X. The function which maps X to fX for all X ⊆ E is an isomorphism from
E to (GF (2))E (Exercise 2.6.2).

By Corollary 2.16, the set of all even subgraphs of a graph G forms a subspace
C(G) of the edge space of G. We call this subspace the cycle space of G, because it
is generated by the cycles of G. Likewise, by Corollary 2.12, the set of all edge cuts
of G forms a subspace B(G) of E(G), called the bond space (Exercise 2.6.4a,b).
Proposition 2.18 implies that these two subspaces are orthogonal. They are, in
fact, orthogonal complements (Exercise 2.6.4c).

In Chapter 20, we extend the above concepts to arbitrary fields, in particular
to the field of real numbers.

Exercises

2.6.1 Show that:

a) a graph G is even if and only if E is an even subgraph of G,
b) a graph G is bipartite if and only if E is an edge cut of G.

�2.6.2 Show that the edge space E(G) is a vector space over GF (2) with respect
to the operation of symmetric difference, and that it is isomorphic to (GF (2))E .

2.6.3

a) Draw all the elements of the cycle and bond spaces of the wheel W4.
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b) How many elements are there in each of these two vector spaces?

�2.6.4 Show that:

a) the cycles of a graph generate its cycle space,
b) the bonds of a graph generate its bond space,
c) the bond space of a graph G is the row space of its incidence matrix M over

GF (2), and the cycle space of G is its orthogonal complement.

2.6.5 How many elements are there in the cycle and bond spaces of a graph G?

—————

—————

2.6.6 Show that every graph G has an edge cut [X,Y ] such that G[X] and G[Y ]
are even.

2.7 Graph Reconstruction

Two graphs G and H on the same vertex set V are called hypomorphic if, for
all v ∈ V , their vertex-deleted subgraphs G − v and H − v are isomorphic. Does
this imply that G and H are themselves isomorphic? Not necessarily: the graphs
2K1 and K2, though not isomorphic, are clearly hypomorphic. However, these two
graphs are the only known nonisomorphic pair of hypomorphic simple graphs, and
it was conjectured in 1941 by Kelly (1942) (see also Ulam (1960)) that there are
no other such pairs. This conjecture was reformulated by Harary (1964) in the
more intuitive language of reconstruction. A reconstruction of a graph G is any

Fig. 2.12. The deck of a graph on six vertices

graph that is hypomorphic to G. We say that a graph G is reconstructible if every
reconstruction of G is isomorphic to G, in other words, if G can be ‘reconstructed’
up to isomorphism from its vertex-deleted subgraphs. Informally, one may think
of the (unlabelled) vertex-deleted subgraphs as being presented on cards, one per
card. The problem of reconstructing a graph is then that of determining the graph
from its deck of cards. The reader is invited to reconstruct the graph whose deck
of six cards is shown in Figure 2.12.
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The Reconstruction Conjecture

Conjecture 2.19 Every simple graph on at least three vertices is recon-
structible.

The Reconstruction Conjecture has been verified by computer for all graphs on up
to ten vertices by McKay (1977). In discussing it, we implicitly assume that our
graphs have at least three vertices.

One approach to the Reconstruction Conjecture is to show that it holds for
various classes of graphs. A class of graphs is reconstructible if every member
of the class is reconstructible. For instance, regular graphs are easily shown to
be reconstructible (Exercise 2.7.5). One can also prove that disconnected graphs
are reconstructible (Exercise 2.7.11). Another approach is to prove that specific
parameters are reconstructible. We call a graphical parameter reconstructible if
the parameter takes the same value on all reconstructions of G. A fundamental
result of this type was obtained by Kelly (1957). For graphs F and G, we adopt
the notation of Lauri and Scapellato (2003) and use

(
G
F

)
to denote the number

of copies of F in G. For instance, if F = K2, then
(
G
F

)
= e(G), if F = G, then

(
G
F

)
= 1, and if v(F ) > v(G), then

(
G
F

)
= 0.

Lemma 2.20 Kelly’s Lemma

For any two graphs F and G such that v(F ) < v(G), the parameter
(
G
F

)
is recon-

structible.

Proof Each copy of F in G occurs in exactly v(G)− v(F ) of the vertex-deleted
subgraphs G − v (namely, whenever the vertex v is not present in the copy).
Therefore (

G

F

)

=
1

v(G)− v(F )

∑

v∈V

(
G− v

F

)

Since the right-hand side of this identity is reconstructible, so too is the left-hand
side. �

Corollary 2.21 For any two graphs F and G such that v(F ) < v(G), the num-
ber of subgraphs of G that are isomorphic to F and include a given vertex v is
reconstructible.

Proof This number is
(
G
F

)
−
(
G−v

F

)
, which is reconstructible by Kelly’s Lemma.

�

Corollary 2.22 The size and the degree sequence are reconstructible parameters.
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Proof Take F = K2 in Kelly’s Lemma and Corollary 2.21, respectively. �
An edge analogue of the Reconstruction Conjecture was proposed by Harary

(1964). A graph is edge-reconstructible if it can be reconstructed up to isomorphism
from its edge-deleted subgraphs.

The Edge Reconstruction Conjecture

Conjecture 2.23 Every simple graph on at least four edges is edge-
reconstructible.

Note that the bound on the number of edges is needed on account of certain
small counterexamples (see Exercise 2.7.2). The notions of edge reconstructibility
of classes of graphs and of graph parameters are defined in an analogous manner
to those of reconstructibility, and there is an edge version of Kelly’s Lemma, whose
proof we leave as an exercise (Exercise 2.7.13a).

Lemma 2.24 Kelly’s Lemma: edge version

For any two graphs F and G such that e(F ) < e(G), the parameter
(
G
F

)
is edge

reconstructible. �

Because edge-deleted subgraphs are much closer to the original graph than are
vertex-deleted subgraphs, it is intuitively clear (but not totally straightforward
to prove) that the Edge Reconstruction Conjecture is no harder than the Recon-
struction Conjecture (Exercise 2.7.14). Indeed, a number of approaches have been
developed which are effective for edge reconstruction, but not for vertex recon-
struction. We describe below one of these approaches, Möbius Inversion.

Proof Technique: Möbius Inversion

We discussed earlier the proof technique of counting in two ways. Here, we
present a more subtle counting technique, that of Möbius Inversion. This is a
generalization of the Inclusion-Exclusion Formula, a formula which expresses
the cardinality of the union of a family of sets {Ai : i ∈ T} in terms of the
cardinalities of intersections of these sets:

| ∪i∈T Ai| =
∑

∅⊂X⊆T

(−1)|X|−1| ∩i∈X Ai| (2.3)

the case of two sets being the formula |A ∪B| = |A|+ |B| − |A ∩B|.
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Möbius Inversion (continued)

Theorem 2.25 The Möbius Inversion Formula

Let f : 2T → R be a real-valued function defined on the subsets of a finite set
T . Define the function g : 2T → R by

g(S) :=
∑

S⊆X⊆T

f(X) (2.4)

Then, for all S ⊆ T ,

f(S) =
∑

S⊆X⊆T

(−1)|X|−|S|g(X) (2.5)

Remark. Observe that (2.4) is a linear transformation of the vector space
of real-valued functions defined on 2T . The Möbius Inversion Formula (2.5)
simply specifies the inverse of this transformation.

Proof By the Binomial Theorem,

∑

S⊆X⊆Y

(−1)|X|−|S| =
∑

|S|≤|X|≤|Y |

(
|Y | − |S|
|X| − |S|

)

(−1)|X|−|S| = (1− 1)|Y |−|S|

which is equal to 0 if S ⊂ Y , and to 1 if S = Y . Therefore,

f(S) =
∑

S⊆Y ⊆T

f(Y )
∑

S⊆X⊆Y

(−1)|X|−|S|

=
∑

S⊆X⊆T

(−1)|X|−|S|
∑

X⊆Y ⊆T

f(Y ) =
∑

S⊆X⊆T

(−1)|X|−|S|g(X) �

We now show how the Möbius Inversion Formula can be applied to the prob-
lem of edge reconstruction. This highly effective approach was introduced by
Lovász (1972c) and refined successively by Müller (1977) and Nash-Williams
(1978).
The idea is to count the mappings between two simple graphs G and H on the
same vertex set V according to the intersection of the image of G with H. Each
such mapping is determined by a permutation σ of V , which one extends to
G = (V,E) by setting σ(G) := (V, σ(E)), where σ(E) := {σ(u)σ(v) : uv ∈ E}.
For each spanning subgraph F of G, we consider the permutations of G which
map the edges of F onto edges of H and the remaining edges of G onto edges
of H. We denote their number by |G→ H|F , that is:

|G→ H|F := |{σ ∈ Sn : σ(G) ∩H = σ(F )}|
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Möbius Inversion (continued)

In particular, if F = G, then |G→ H|F is simply the number of embeddings
of G in H, which we denote for brevity by |G → H|, and if F is empty,
|G → H|F is the number of embeddings of G in the complement of H; that
is, |G → H|. These concepts are illustrated in Figure 2.13 for all spanning
subgraphs F of G when G = K1 + K1,2 and H = 2K2. Observe that, for any
subgraph F of G, ∑

F⊆X⊆G

|G→ H|X = |F → H| (2.6)

and that

|F → H| = aut(F )
(

H

F

)

(2.7)

where aut(F ) denotes the number of automorphisms of F , because the sub-
graph F of G can be mapped onto each copy of F in H in aut(F ) distinct
ways.

Lemma 2.26 Nash-Williams’ Lemma

Let G be a graph, F a spanning subgraph of G, and H an edge reconstruction
of G that is not isomorphic to G. Then

|G→ G|F − |G→ H|F = (−1)e(G)−e(F )aut(G) (2.8)

Proof By (2.6) and (2.7),

∑

F⊆X⊆G

|G→ H|X = aut(F )
(

H

F

)

We invert this identity by applying the Möbius Inversion Formula (identifying
each spanning subgraph of G with its edge set), to obtain:

|G→ H|F =
∑

F⊆X⊆G

(−1)e(X)−e(F )aut(X)
(

H

X

)

Therefore,

|G→ G|F − |G→ H|F =
∑

F⊆X⊆G

(−1)e(X)−e(F )aut(X)
((

G

X

)

−
(

H

X

))

Because H is an edge reconstruction of G, we have
(

G
X

)
=
(
H
X

)
for every

proper spanning subgraph X of G, by the edge version of Kelly’s Lemma
(2.24). Finally,

(
G
G

)
= 1, whereas

(
H
G

)
= 0 since e(H) = e(G) and H �∼= G. �
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FG

H

|G → G|F

|G → H|F 0

266

8 88

10

Fig. 2.13. Counting mappings

Möbius Inversion (continued)

Theorem 2.27 A graph G is edge reconstructible if there exists a spanning
subgraph F of G such that either of the following two conditions holds.

(i) |G→ H|F takes the same value for all edge reconstructions H of G,
(ii) |F → G| < 2e(G)−e(F )−1aut(G).

Proof Let H be an edge reconstruction of G. If condition (i) holds, the
left-hand side of (2.8) is zero whereas the right-hand side is nonzero. The
inequality of condition (ii) is equivalent, by (2.6), to the inequality

∑

F⊆X⊆G

|G→ G|X < 2e(G)−e(F )−1aut(G)

But this implies that |G → G|X < aut(G) for some spanning subgraph X of
G such that e(G) − e(X) is even, and identity (2.8) is again violated (with
F := X). Thus, in both cases, Nash-Williams’ Lemma implies that H is
isomorphic to G. �
Choosing F as the empty graph in Theorem 2.27 yields two sufficient condi-
tions for the edge reconstructibility of a graph in terms of its edge density,
due to Lovász (1972) and Müller (1977), respectively (Exercise 2.7.8).

Corollary 2.28 A graph G is edge reconstructible if either m > 1
2

(
n
2

)
or

2m−1 > n! �

Two other applications of the Möbius Inversion Formula to graph theory
are given in Exercises 2.7.17 and 14.7.12. For further examples, see Whitney
(1932b). Theorem 2.25 was extended by Rota (1964) to the more general
context of partially ordered sets.
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It is natural to formulate corresponding conjectures for digraphs (see Harary
(1964)). Tools such as Kelly’s Lemma apply to digraphs as well, and one might be
led to believe that the story is much the same here as for undirected graphs. Most
surprisingly, this is not so. Several infinite families of nonreconstructible digraphs,
and even nonreconstructible tournaments, were constructed by Stockmeyer (1981)
(see Exercise 2.7.18). One such pair is shown in Figure 2.14. We leave its verification
to the reader (Exercise 2.7.9).

00

11

223 3

44

Fig. 2.14. A pair of nonreconstructible tournaments

We remark that there also exist infinite families of nonreconstructible hyper-
graphs (see Exercise 2.7.10 and Kocay (1987)) and nonreconstructible infinite
graphs (see Exercise 4.2.10). Further information on graph reconstruction can be
found in the survey articles by Babai (1995), Bondy (1991), and Ellingham (1988),
and in the book by Lauri and Scapellato (2003).

Exercises

2.7.1 Find two nonisomorphic graphs on six vertices whose decks both include the
first five cards displayed in Figure 2.12. (P.K. Stockmeyer)

2.7.2 Find a pair of simple graphs on two edges, and also a pair of simple graphs
on three edges, which are not edge reconstructible.

2.7.3 Two dissimilar vertices u and v of a graph G are called pseudosimilar if the
vertex-deleted subgraphs G− u and G− v are isomorphic.

a) Find a pair of pseudosimilar vertices in the graph of Figure 2.15.
b) Construct a tree with a pair of pseudosimilar vertices.

(F. Harary and E.M. Palmer)

2.7.4 A class G of graphs is recognizable if, for each graph G ∈ G, every reconstruc-
tion of G also belongs to G. The class G is weakly reconstructible if, for each graph
G ∈ G, every reconstruction of G that belongs to G is isomorphic to G. Show that
a class of graphs is reconstructible if and only if it is both recognizable and weakly
reconstructible.
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Fig. 2.15. A graph containing a pair of pseudosimilar vertices (Exercise 2.7.3)

2.7.5

a) Show that regular graphs are both recognizable and weakly reconstructible.
b) Deduce that this class of graphs is reconstructible.

2.7.6

a) Let G be a connected graph on at least two vertices, and let P be a maximal
path in G, starting at x and ending at y. Show that G − x and G − y are
connected.

b) Deduce that a graph on at least three vertices is connected if and only if at
least two vertex-deleted subgraphs are connected.

c) Conclude that the class of disconnected graphs is recognizable.

2.7.7 Verify identity (2.6) for the graphs G and H of Figure 2.13, and for all
spanning subgraphs F of G.

�2.7.8 Deduce Corollary 2.28 from Theorem 2.27.

2.7.9 Show that the two tournaments displayed in Figure 2.14 form a pair of
nonreconstructible tournaments. (P.K. Stockmeyer)

2.7.10 Consider the hypergraphs G and H with vertex set V := {1, 2, 3, 4, 5} and
respective edge sets

F(G) := {123, 125, 135, 234, 345} and F(H) := {123, 135, 145, 234, 235}

Show that (G,H) is a nonreconstructible pair.

—————

—————

2.7.11 Let G be a graph, and let F := (F1, F2, . . . , Fk) be a sequence of graphs
(not necessarily distinct). A covering of G by F is a sequence (G1, G2, . . . , Gk) of
subgraphs of G such that Gi

∼= Fi, 1 ≤ i ≤ k, and ∪k
i=1Gi = G. We denote the

number of coverings of G by F by c(F , G). For example, if F := (K2,K1,2), the
coverings of G by F for each graph G such that c(F , G) > 0 are as indicated in
Figure 2.16 (where the edge of K2 is shown as a dotted line).

a) Show that, for any graph G and any sequence F := (F1, F2, . . . , Fk) of graphs
such that v(Fi) < v(G), 1 ≤ i ≤ k, the parameter

∑

X

c(F ,X)
(

G

X

)

is reconstructible, where the sum extends over all unlabelled graphs X such
that v(X) = v(G). (W.L. Kocay)
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b) Applying Exercise 2.7.11a to all families F := (F1, F2, . . . , Fk) such that
∑k

i=1 v(Fi) = v(G), deduce that the class of disconnected graphs is weakly
reconstructible.

c) Applying Exercise 2.7.6c, conclude that this class is reconstructible.
(P.J.Kelly)

2.7.12 Let G and H be two graphs on the same vertex set V , where |V | ≥ 4.
Suppose that G− {x, y} ∼= H − {x, y} for all x, y ∈ V . Show that G ∼= H.

�2.7.13

a) Prove the edge version of Kelly’s Lemma (Lemma 2.24).
b) Using the edge version of Kelly’s Lemma, show that the number of isolated

vertices is edge reconstructible.
c) Deduce that the Edge Reconstruction Conjecture is valid for all graphs pro-

vided that it is valid for all graphs without isolated vertices.

2.7.14

a) By applying Exercise 2.7.11a, show that the (vertex) deck of any graph without
isolated vertices is edge reconstructible.

b) Deduce from Exercise 2.7.13c that the Edge Reconstruction Conjecture is true
if the Reconstruction Conjecture is true. (D.L. Greenwell)

1

2

2

3

3

G Coverings of G by F = (K1, K1,2) c(F , G)

Fig. 2.16. Covering a graph by a sequence of graphs (Exercise 2.7.11)
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2.7.15 Let {Ai : i ∈ T} be a family of sets. For S ⊆ T , define f(S) := |(∩i∈SAi) \
(∪i∈T\SAi)| and g(S) := | ∩i∈S Ai|, where, by convention, ∩i∈∅Ai = ∪i∈T Ai.

a) Show that g(S) =
∑

S⊆X⊆T f(X).
b) Deduce from the Möbius Inversion Formula (2.5) that

∑

∅⊆X⊆T

(−1)|X|| ∩i∈X Ai| = 0.

c) Show that this identity is equivalent to the Inclusion–Exclusion Formula (2.3).

2.7.16 Use the Binomial Theorem to establish the Inclusion-Exclusion Formula
(2.3) directly, without appealing to Möbius Inversion.

2.7.17 Consider the lower-triangular matrix An whose rows and columns are in-
dexed by the isomorphism types of the graphs on n vertices, listed in increasing
order of size, and whose (X,Y ) entry is

(
X
Y

)
.

a) Compute A3 and A4.
b) For k ∈ Z, show that the (X,Y ) entry of (An)k is ke(X)−e(Y )

(
X
Y

)
.

(X. Buchwalder)

2.7.18 Consider the Stockmeyer tournament STn, defined in Exercise 1.5.11.

a) Show that each vertex-deleted subgraph of STn is self-converse.
b) Denote by odd(STn) and even(STn) the subtournaments of STn induced by its

odd and even vertices, respectively. For n ≥ 1, show that odd(STn) ∼= STn−1
∼=

even(STn).
c) Deduce, by induction on n, that STn−k ∼= STn−(2n−k+1) for all k ∈ V (STn).

(W. Kocay)

d) Consider the following two tournaments obtained from STn by adding a new
vertex 0. In one of these tournaments, 0 dominates the odd vertices and is
dominated by the even vertices; in the other, 0 dominates the even vertices
and is dominated by the odd vertices. Show that these two tournaments on
2n + 1 vertices form a pair of nonreconstructible digraphs.

(P.K. Stockmeyer)

2.7.19 To switch a vertex of a simple graph is to exchange its sets of neighbours
and non-neighbours. The graph so obtained is called a switching of the graph. The
collection of switchings of a graph G is called the (switching) deck of G. A graph
is switching-reconstructible if every graph with the same deck as G is isomorphic
to G.

a) Find four pairs of graphs on four vertices which are not switching-reconstruct
-ible.

b) Let G be a graph with n odd. Consider the collection G consisting of the n2

graphs in the decks of the graphs which comprise the deck of G.
i) Show that G is the only graph which occurs an odd number of times in G.
ii) Deduce that G is switching-reconstructible.

c) Let G be a graph with n ≡ 2 (mod 4). Show that G is switching-reconstructible.
(R.P. Stanley; N. Alon)
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2.8 Related Reading

Path and Cycle Decompositions

Veblen’s Theorem (2.7) tells us that every even graph can be decomposed into
cycles, but it says nothing about the number of cycles in the decomposition. One
may ask how many or how few cycles there can be in a cycle decomposition of
a given even graph. These questions are not too hard to answer in special cases,
such as when the graph is complete (see Exercises 2.4.4 and 2.4.5a). Some forty
years ago, G. Hajós conjectured that every simple even graph on n vertices admits a
decomposition into at most (n−1)/2 cycles (see Lovász (1968b)). Surprisingly little
progress has been made on this simply stated problem. An analogous conjecture
on path decompositions was proposed by T. Gallai at about the same time (see
Lovász (1968b)), namely that every simple connected graph on n vertices admits a
decomposition into at most (n + 1)/2 paths. This bound is sharp if all the degrees
are odd, because in any path decomposition each vertex must be an end of at least
one path. Lovász (1968b) established the truth of Gallai’s conjecture in this case
(see also Donald (1980)).

Legitimate Decks

In the Reconstruction Conjecture (2.19), the deck of vertex-deleted subgraphs of
a graph is supplied, the goal being to determine the graph. A natural problem,
arguably even more fundamental, is to characterize such decks. A family G :=
{G1, G2, . . . , Gn} of n graphs, each of order n − 1, is called a legitimate deck if
there is at least one graph G with vertex set {v1, v2, . . . , vn} such that Gi

∼= G−vi,
1 ≤ i ≤ n. The Legitimate Deck Problem asks for a characterization of legitimate
decks. This problem was raised by Harary (1964). It was shown by Harary et al.
(1982) and Mansfield (1982) that the problem of recognizing whether a deck is
legitimate is as hard (in a sense to be discussed in Chapter 8) as that of deciding
whether two graphs are isomorphic.

The various counting arguments deployed to attack the Reconstruction Con-
jecture provide natural necessary conditions for legitimacy. For instance, the
proof of Kelly’s Lemma (2.20) tells us that if G is the deck of a graph G, then(
G
F

)
=
∑n

i=1

(
Gi

F

)
/(n− v(F )) for every graph F on fewer than n vertices. Because

the left-hand side is an integer,
∑n

i=1

(
Gi

F

)
must be a multiple of n − v(F ). It is

not hard to come up with an illegitimate deck which passes this test. Indeed, next
to nothing is known on the Legitimate Deck Problem. A more general problem
would be to characterize, for a fixed integer k, the vectors (

(
G
F

)
: v(F ) = k), where

G ranges over all graphs on n vertices. Although trivial for k = 2, the problem
is unsolved already for k = 3 and appears to be very hard. Even determining the
minimum number of triangles in a graph on n vertices with a specified number
of edges is a major challenge (see Razborov (2006), where a complex asymptotic
formula, derived by highly nontrivial methods, is given).
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Ultrahomogeneous Graphs

A simple graph is said to be k-ultrahomogeneous if any isomorphism between two
of its isomorphic induced subgraphs on k or fewer vertices can be extended to
an automorphism of the entire graph. It follows directly from the definition that
every graph is 0-ultrahomogeneous, that 1-ultrahomogeneous graphs are the same
as vertex-transitive graphs, and that complements of k-ultrahomogeneous graphs
are k-ultrahomogeneous.

Cameron (1980) showed that any graph which is 5-ultrahomogeneous is k-
ultrahomogeneous for all k. Thus it is of interest to classify the k-ultrahomogeneous
graphs for 1 ≤ k ≤ 5. The 5-ultrahomogeneous graphs were completely described
by Gardiner (1976). They are the self-complementary graphs C5 and L(K3,3), and
the Turán graphs Tk,rk, for all k ≥ 1 and r ≥ 1, as well as their complements.
These graphs all have rather simple structures. There is, however, a remarkable
4-ultrahomogeneous graph. It arises from a very special geometric configuration,
discovered by Schläfli (1858), consisting of twenty-seven lines on a cubic surface,
and is known as the Schläfli graph. Here is a description due to Chudnovsky and
Seymour (2005).

The vertex set of the graph is Z
3
3, two distinct vertices (a, b, c) and (a′, b′, c′)

being joined by an edge if a′ = a and either b′ = b or c′ = c, or if a′ = a + 1 and
b′ �= c. This construction results in a 16-regular graph on twenty-seven vertices.
The subgraph induced by the sixteen neighbours of a vertex of the Schläfli graph
is isomorphic to the complement of the Clebsch graph, shown in Figure 12.9. In
turn, the subgraph induced by the neighbour set of a vertex of the complement of
the Clebsch graph is isomorphic to the complement of the Petersen graph. Thus,
one may conclude that the Clebsch graph is 3-ultrahomogeneous and that the
Petersen graph is 2-ultrahomogeneous. By employing the classification theorem
for finite simple groups, Buczak (1980) showed that the the Schläfli graph and its
complement are the only two graphs which are 4-ultrahomogeneous without being
5-ultrahomogeneous.

The notion of ultrahomogeneity may be extended to infinite graphs. The count-
able random graph G described in Exercise 13.2.18 has the property that if F and
F ′ are isomorphic induced subgraphs of G, then any isomorphism between F and
F ′ can be extended to an automorphism of G. Further information about ultraho-
mogeneous graphs may be found in Cameron (1983) and Devillers (2002).




